
Dynamic Generation of Game Objects in a
Casual Mobile Game Using a Generative

Algorithmic Music System

Julia M. Angerer

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Juni 2018

© Copyright 2018 Julia M. Angerer

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, June 21, 2018

Julia M. Angerer

iii

Contents

Declaration iii

Preface vi

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 1
1.3 Document Structure . 2

2 Related Work 4
2.1 Algorithmic and Generative Composition 4

2.1.1 Interactive Digital Instruments 4
2.1.2 Composition Techniques . 5
2.1.3 Related Applications . 6

2.2 GameFlow and Playability in Casual Mobile Games 7
2.2.1 Casual Games Discussion . 8
2.2.2 GameFlow . 10
2.2.3 Playability . 12

3 Audio System: Conception 15
3.1 Characteristics of LaLuup . 15

3.1.1 Concept . 16
3.1.2 Requirements . 19
3.1.3 Aesthetic goals . 21

3.2 System Details . 22
3.2.1 Detailed Gameplay Description 22
3.2.2 Tools and Design Decisions . 23

4 Audio System: Implementation 25
4.1 The Pärt Algorithm . 25

4.1.1 General explanation . 25
4.1.2 Specific implementation . 25

iv

Contents v

4.2 System Architecture . 27
4.2.1 Basic Audio Modules . 27
4.2.2 Composing Modules . 29
4.2.3 Other Structuring Modules . 30

4.3 Prototype Configuration . 33
4.3.1 Sound Generation . 33
4.3.2 Level Design . 34

5 Dynamic Object Creation 35
5.1 Dynamic Objects in LaLuup . 35

5.1.1 Idea and Evaluation Concept . 36
5.1.2 Implementation . 37

5.2 Chosen Evaluation Setups . 38
5.2.1 Static Version . 38
5.2.2 Event-based Collectibles . 39
5.2.3 Event and Time-based Optional Collectibles 40

6 Evaluation 43
6.1 Expert Reviews using Heuristics . 43

6.1.1 Method . 44
6.1.2 Results . 49
6.1.3 Improvements . 50

6.2 Playability Test using GEQ . 52
6.2.1 Method . 52
6.2.2 Results . 54

7 Concluding Debate 58
7.1 Result Analysis . 58
7.2 Further Prospects . 60
7.3 Conclusion . 61

A CD-ROM/DVD Contents 62
A.1 Project . 62
A.2 Thesis . 62
A.3 Evaluations . 62

References 63
Literature . 63
Audio-visual media . 65
Online sources . 66

Preface

When looking back, I remember always being interested in the way interactive appli-
cations and especially games are developed. Starting with my education I spent a lot
of time on researching, investigating and (re)creating game mechanics and aesthetics.
These collected skills eventually gave me the chance to specialize on interactive applica-
tions and game development not only as a student but also as an employee, finally being
able to realize an interesting idea from scratch in a small team of visionaries, inventors
and designers. Getting here would not have been possible without the support of my
family, friends, fellow students, thesis supervisors and co-workers at Kunabi Brother,
therefore I want to thank them for letting me follow my dreams.

When Kunabi Brother told me about the game idea they had prototyped on paper, I
instantly was amazed by it and wanted to create this game concept as a digital prototype.
I had already found a liking in games that focus on exploration and experimentation
rather than competing in highscores or just solving level by level before. After all,
playing games to me is about the fascination for things that others realize with their
imagination by developing worlds that no one has seen and creating experiences no one
has sensed before. This again shows that at least when it comes to interactive media,
imagination truly has no limits.

I hope that people will enjoy exploring and experimenting with LaLuup as much as
I enjoyed developing the audio system, integrating it into the game and creating the
prototype versions for this thesis.

vi

Abstract

This thesis elaborates on the usage of dynamic content in casual 2D puzzle games for
mobile devices to increase variation in gameplay, mechanics and audiovisual aesthetics
and measure the effects of these objects based on a heuristic model established in games
literature. It therefore focuses on a particular game prototype called LaLuup which uti-
lizes a generative algorithmic audio system (the thesis project) to emphasize exploration
and experimentation within the levels.

At the beginning, related projects, applications and generative composition tech-
niques are described, giving insights into the influences they have on the development
of LaLuup. Furthermore, important game theory such as casual games, playability and
the GameFlow model is discussed in correspondence with the prototype.

As a next step, the thesis project is introduced by first stating concepts, require-
ments and desired features and their aesthetic effects. A detailed description of the
gameplay and audio generation algorithm is then followed by insights into the devel-
opment including details about the internal structure and components of the project.
The general configuration description of the game prototypes is given to set the scope
of the following evaluations. After investigating dynamic content in regards to LaLuup,
three different prototype versions either containing or not containing dynamic content
utilized in various ways are developed.

Finally two evaluations are conducted, the first one performed with experts to find
usability and playability issues based on GameFlow heuristics. After improving the pro-
totypes, the second evaluation using the Game Experience Questionnaire is done, de-
picting differences in the game versions and matching the results again to the GameFlow
model. The notably good and stable results show rather small differences between the
prototypes, however, the use of dynamic objects may contribute to a more challenging
gameplay experience.

vii

Kurzfassung

Diese Arbeit geht auf die Verwendung von dynamischen Inhalten in casual 2D puzzle
games für Mobilgeräte wie etwa Smartphones und Tablets ein. Dabei sollen dynamische
Objekte die Variation im Spielablauf und in den Mechaniken sowie die audiovisuelle
Ästhetik erhöhen. Um die erzielten Effekte dieser Objekte auf Basis eines heuristischen
Modells aus der Videospielliteratur messen zu können, wird ein spezifischer Spielpro-
totyp entwickelt. Dieser Prototyp mit dem Namen LaLuup verwendet ein generatives
algorithmisches Audiosystem (das Projekt dieser Arbeit) um den Erforschungs- und
Experimentiercharakter des Spiels hervorzuheben.

Zu Anfang der Arbeit werden themenverwandte Projekte, Applikationen und gene-
rative Kompositionstechniken behandelt um deren Einflüsse auf LaLuup darzustellen.
Weiters wird über mit dem Projekt zusammenhängende Videospieltheorie im Bezug auf
Playability, Casual Games und das GameFlow Modell diskutiert.

Im nächsten Schritt werden die Konzepte, Voraussetzungen und notwendigen Featu-
res des Audiosystem-Projekts vorgestellt. Danach folgt eine detaillierte Beschreibung des
Spielablaufs und des Algorithmus zur Audioerzeugung sowie Einblicke in die Entwick-
lung einschließlich einer Beschreibung der internen Struktur und deren Komponenten.
Weiters wird eine generelle Konfiguration für die Spielprototypen festgelegt um diese
auf die folgende Evaluierung vorzubereiten. Nachdem dynamische Inhalte im Bezug auf
LaLuup untersucht wurden, können schließlich drei verschiedene Prototypen mit und
ohne unterschiedliche dynamische Objekte entwickelt werden.

Daraufhin werden zwei verschiedene Evaluierungen durchgeführt: Die erste Evaluie-
rung besteht aus mehreren Expertengesprächen, bei denen vor allem auf Usability und
Playability Probleme mithilfe der GameFlow Heuristiken eingegangen wird. Nach dem
Anpassen und Verbessern der Prototypen soll die zweite Evaluierung (eine Spielebefra-
gung auf Basis des Game Experience Questionnaire) Unterschiede zwischen den einzel-
nen Spielversionen im Bezug auf das GameFlow Modell feststellen. Die auffallend guten
und stabilen Ergebnisse zeigen hierbei nur kleine Unterschiede zwischen den Prototypen,
allerdings trägt die Verwendung von dynamischen Objekten zu einer herausfordernden
Spielerfahrung bei.

viii

Chapter 1

Introduction

1.1 Motivation
When characterizing recent well-known casual mobile games, one can conclude that most
of them have an abstract or simplified look and their developers focus on generating
dynamic content rather than designing level by level by hand. While one may argue
that this results in very interchangeable, even replaceable game design, it certainly
saves money, time and also matches the current aesthetics in digital interactive media.
Another point that should not be missed is that casual games frequently utilize dynamic
content generation to facilitate gameplay diversity and replayability. Especially mobile
games that are only played for a few minutes at a time profit from dynamic game content
such as spawning game items by certain rules, adapting levels based on a difficulty grade
and even creating them based on player profiles. However, there are some casual mobile
games that lack many of these dynamic factors and are still played frequently. This
raises the question if player enjoyment (which in fact induces people to play games) is
really connected to dynamic content generation.

In the case of the corresponding thesis project LaLuup, an audio-driven 2D puzzle
game prototype, gameplay is centered around an algorithmic composition system based
on Arvo Pärt’s Tintinnabuli style (which is explained in detail in chapter 3 and chapter
4) that offers many solutions to a single level. The game prototype should therefore
encourage the player to explore and experiment with the system rather than just solving
the level and starting the next. In this case dynamic content could create a diversion from
the exploration factor of the game and its auditive aesthetics, but in fact it could also
be helpful to increase variability and long term replayability. In performing experiments
with different versions of the game prototype, the author wants to explore the effects
of dynamic elements to player enjoyment and the aesthetic experience to find a fitting
solution for LaLuup that can also be used as a reference for similar casual mobile games.

1.2 Objective
The idea of the thesis project is based on a paper prototype for an interactive application
called LaLuup by the company Kunabi Brother. As already mentioned, LaLuup is an
audio-driven 2D puzzle game for mobile devices that is centered around the generation

1

1. Introduction 2

of sounds and harmonics with user input and corresponding algorithmic composition. In
the levels different puzzle tiles are spread across a hexagonal grid and their patterns can
be drawn and redrawn by the user. When the users tap grid tiles, impulses recreate the
pattern they painted with the beat. The puzzle is solved by generating a loop within
the grid and thereby trapping the impulse in it. In addition to the puzzle tiles that
spawn impulses, there are also tiles that have to be hit by the impulses and in this way
collected to solve the level. These so-called collectibles can either spawn and stay in
their positions without changing over time or shift positions dynamically after a certain
time has passed or a certain event has happened.

The most critized factor in the informal user tests conducted while developing the
game prototype for LaLuup was variation. Many players stated independently of each
other that they would need more variation in sound aesthetics as well as gameplay to
keep focused on the game longer than a few minutes. In fact, as it is a game prototype,
there are still feature extensions and new game objects to be introduced during further
development to increase variation. Another aspect that should be mentioned is that the
tested levels, as they are the first ten in level progression, could not be too difficult for
the test users playing for the first time. Introducing new game objects may therefore not
be the best way to raise variation. Additionally, adding those new game objects does
increase difficulty in understanding the game within minutes, which is very important
because of the way casual mobile games are played.

In terms of raising variation and thereby replayability without expanding the dif-
ficulty considerably, it could instead help to utilize the already available elements and
the possible effects of dynamic content generation to conduct an experiment that can
determine if variation and therefore player enjoyment can be increased by simply mod-
ifying the way game objects are spawned or behave over time. In the case of LaLuup,
these modifications should help to determine if dynamic objects can create the varia-
tion needed or if they distract the users from experimenting with the levels’ puzzles.
Furthermore, the findings could also help to increase variation in similar games.

The term player enjoyment as the most important factor in computer games was
first introduced by Sweetser and Wyeth in 2005 in an article that revealed a new model
to evaluate the named term, called GameFlow. This model will be modified to fit the
needs of the game genre and utilized in the experiments performed. The aim of this
thesis is to explore the effects of dynamic elements to the GameFlow model and the
aesthetic experience in the case of LaLuup and to possibly help drawing conclusions for
similar games.

1.3 Document Structure
In the first section of chapter 2, related projects, composition techniques and applications
to the generative algorithmic music system developed for LaLuup are described to show
the influences of game ideas and musical aesthetics on the thesis project. In the second
section the focus shifts towards the definition of casual games, the GameFlow model
and playability in current literature. For each of the subsections the connection and
context for LaLuup is established too.

Chapter 3 contains information about the development of the thesis project, the
audio system of LaLuup. At first, concepts, requirements and features including their

1. Introduction 3

desired aesthetic effects are explained. This section is followed by a detailed gameplay
description. The Pärt algorithm and its usage in the game prototype are also described
in detail in this chapter.

Chapter 4 sheds light on the internal architecture by explaining the components of
the audio system in detail. Furthermore, the configurations of the evaluation prototype
are explained and justified as well.

In chapter 5 dynamic content creation is investigated in correspondence with LaLuup.
Different concepts on how to spawn and modify dynamic elements in LaLuup are de-
rived and explained in detail. Two of these concepts and a non-dynamic control version
are illustrated and then used as evaluation setups for the following experiments.

Chapter 6 deals with the evaluation from two different experiments. The first sec-
tion elaborates on the expert reviews using GameFlow heuristics which were conducted
to assist the general aim of this thesis and locate optimization potential within and
between the three game prototype versions. In the second section a small-scale playa-
bility evaluation conducted with target group users is described to reflect the opinion of
the target group on the three prototype versions and depict differences between them.
For both sections the methods and evaluation procedures are explained followed by a
detailed overview and discussion of the results.

To conclude this thesis, chapter 7 offers a detailed result analysis in the first section
followed by further prospects and the drawn conclusions and plans for LaLuup based on
the evaluation results in the second section. Finally, a conclusion is given to summarize
what has been done in the course of this thesis.

Chapter 2

Related Work

This chapter is split into two different topic fields with the first section concerning the
related work for creating the generative audio system for LaLuup. The second section
covers the basic and also recent specific literature on GameFlow, the model’s heuristics
and how it is used to design as well as evaluate enjoyment in different game genres.
Another important topic in combination with GameFlow is playability which is also
described in the second section.

2.1 Algorithmic and Generative Composition
The project corresponding to this master thesis is centered around the creation of the
generative algorithmic audio system for the game prototype called LaLuup. With its
functionality it considerably contributes to player enjoyment, game aesthetics and playa-
bility and is therefore also integrated in the experiments and evaluations following later
on. Consequently, it is important to describe the concepts and projects that influenced
some of the ideas incorporated into the music system. The following sections provide
insight into influences for the user interface, player feedback, algorithmic generative
composition and finally reference related applications.

2.1.1 Interactive Digital Instruments
One of the well-known instruments that is based on a digital interface is reacTable. It
was invented by a group of researchers from the Music Technology Group at the Pompeu
Fabra University in Barcelona, including S. Jorda and M. Kaltenbrunner. It follows the
concept of tangible user interfaces (TUI) as a tabletop instrument that is operated with
the use of plastic plucks that can be placed on top of it as seen in figure 2.1. The idea
behind reacTable is simple, yet very well thought-out: The plastic plucks symbolize parts
of a synthesizer and their proximity determines the connections and relations to each
other. A computer vision system detects proximity, type and also rotations of those
plucks and the instrument processes and reacts to the changes in the system performed
by the user. The reacTable was both designed to be used as part of an installation as
well as in concerts and can be played by a scalable amount of users. It abstracts the
sound generation to a higher level with still giving the user precise feedback on every
operation performed on it [10].

4

2. Related Work 5

Figure 2.1: The reacTable tangible tabletop instrument in action [10].

This project was developed in the early 2000s and quickly became known not only
in academic conferences but also to the public, as it is sold as an instrument to different
music performers around the world. It was inspired by the tangible interfaces built by
Ishii, Ullmer and researchers at the Tangible Media group [11] and also inspired back
as Colter, Ishii and others presented soundFORMS at the ACM CHI 2016, a world-
wide conference for human-computer interaction. soundFORMS is a pin-based shape-
shifting display that users can interact with through touch [1]. As much as these tangible
music interfaces differ from the thesis project, they also show certain similarities that
make them particularly interesting in research: The user interaction techniques and the
corresponding generative and compositional sound feedback were an inspiration for the
music system as well.

2.1.2 Composition Techniques
The flexible nature of games and other interactive applications pose a very special
challenge for sound composers generally. A score for a game cannot behave like a score for
theaters, movies or any passive media; it has to react to scenarios that are generated by
human-computer interaction and adaptively programmed quick-time-events. Therefore,
visual programming environments such as Cycling’s MAX and Ableton’s Live are used
to compose generative music that changes by parametrization. Audio middleware such
as FMOD, WWise and Fabric are then used to rebuild the functionality to fit the needs
of the chosen game engine. So in fact, typical game music composers have to be part
musicians but also part technicians to enable them to map classic linear composition to
the adaptive generative sound needed in games [28].

To create adaptive and yet memorable sound, several different algorithmic tech-
niques are used, many of them first introduced in other areas of information technology.
There is a broad variety of creation algorithms, many working in real-time applica-
tions as stochastic approaches using probability distributions such as Markov chains,
formal grammar algorithms based on language processing, machine learning with neu-
ral networks, genetic algorithms and almost infinitely more. Parameter mapping plays
an important role in representing user feedback in any of those approaches and is also
done in slightly different ways in audio systems for interactive applications. Numerous
papers for those topics exist and some also connect tangible interfaces with generative
composition tools.

2. Related Work 6

Figure 2.2: The musical tool January by Disasterpeace, developed by Richard Vreeland
as a composing experiment [35].

Nuanain and Sullivan for example recently proposed a prototype for creating algo-
rithmic composition on the former mentioned TUI reacTable that incorporates stochastic
techniques as well as formal grammar and hybrid algorithms using both statistics and
serialism [20].

2.1.3 Related Applications
Generative composing in interactive applications similar to the game prototype has
also been done before, except that the author did not manage to find a game exactly
matching the Tintinnabuli styled algorithm and combination of interaction ways used
to control LaLuup’s music system. During research however, some interesting projects
were found that inspired different game components of LaLuup.

American composer Richard Vreeland, who is also known for the soundtrack of the
games Fez and Hyper Light Drifter, created January under his artist alias Disasterpeace.
In this interactive explorative music tool, one controls a child in a 2D environment to
catch snowflakes with its mouth (shown in figure 2.2). The caught snowflakes generate
notes with different pitches that are chosen by a set of rules. However, the player is free
to choose from chords and determine when and how notes are played, which creates
a simple and yet beautiful back and forth communication between the player and the
application. 1 The idea of LaLuup’s communication between the player and background
voices is kind of similar, but more concrete than in January as the player influences the
application in a more simple and straightforward way. This is however needed to create
a more casual game with a broad target group that still keeps the player exploring and
experimenting rather than just solving level by level. January only has one level and
aesthetic mood to explore, but LaLuup will presumably have more in the final product
state and the gameplay has to stay interesting over time. LaLuup also does not require
the player to have any knowledge about music in general to play and understand it as
January does.

Another interesting experiment is the application called Otomata (as seen in figure
2.3) by Batuhan Bozkurt alias Earslap in Istanbul, Turkey. He created a generative

1For more information visit http://disasterpeace.com/blog/january.

http://disasterpeace.com/blog/january

2. Related Work 7

Figure 2.3: Otomata’s sequencer interface is very simple and features a grid like LaLuup
[33].

sequencer that uses cellular automation rules to create sequences that possibly never
repeat but theoretically play forever. The application consists of a grid in which the
user can paint cells and change their orientation before pressing play to create grad-
ually evolving and complex sound sequences with incredible simplicity.2 Interesting in
reference to LaLuup is in this case the sequence creation using a similar grid with only 4
directions instead of 6. Otomata was also developed for mobile devices and some of the
interaction methods used in it helped in developing the early draft of the interaction
system of LaLuup.

An upcoming audio tool called foreverloops created by Marlene and Ulrich Brand-
stätter in Linz, Austria, can also be mentioned as an inspiration to LaLuup. Their
application allows users to simply and dynamically generate soundscapes and visualiza-
tions at the same time while not needing to be experienced with classic audio programs.
It works with digital gears and motors as main interactable objects (as seen in figure
2.4) that play sounds at user defined beats.3 Its main functionality can be compared to
the reacTable. While it is much more of a composing tool than a game, foreverloops lets
users explore music through simple controls and the feeling of experimenting through
these understandable gestures also inspired LaLuup’s interaction system.

2.2 GameFlow and Playability in Casual Mobile Games
Considering the terms casual game, flow and playability are very abstract, their meaning
and context should be well defined before conducting an evaluation containing corre-
sponding heuristics. Some of those abstract concepts are greatly accepted and employed
without considering their broad meanings. For this reason and to show recent work in
their related fields this section is devoted to defining their meanings in the context of
this master thesis as well as create the basis of the following evaluations.

2For more information visit http://earslap.com/page/otomata.html.
3For more information visit https://www.foreverloops.com/.

http://earslap.com/page/otomata.html
https://www.foreverloops.com/

2. Related Work 8

Figure 2.4: A look on the interface of foreverloops [34].

2.2.1 Casual Games Discussion
There has been a time between the early years of video games including Pac-Man, Tetris
and Space Invaders and the today when not to play video games was the norm and
playing them was the exception. At that time digital games were often targeted to the
male adolescent users that we still have in our mind as the typical gamer stereotype. But
for more than 10 years now there has been a noticeable shift in demographics in gaming
as playing video games gets the norm in nearly every age. Games that are appealing
to broad audiences are developed again, featuring easy-to-understand controls, simple
gameplay and a clear and structured game design. We call them casual games, and the
ones playing them casual players [12].

Today casual games are everywhere, they can be played on mobile devices, desktop
computers and game consoles. In games cultures there is still no distinct definition
for what is casual, let alone that there exist a lot of terms combined with this word:
Games can be casual, as well as game players, playing styles, business models and many
more. Kuittinen et al. try to shed some light on the term casual in reference to existing
games cultures in their conference paper discussing casual games [16]. In a less recent
publication, Juul asks the same questions about what and who is casual and interprets
the changes in gaming demographics [12]. Following now are the defined terms that are
mentioned specifically in this thesis too, describing what they are and mentioning with
which other terms they should not be confounded with.

Casual Game A casual game is by Kuittinen’s definition a term that should be treated
ostensibly or virtual. However, the paper still offers certain casual properties that can be

2. Related Work 9

Casual Game Design Element Description
Fiction What the game is ostensibly about, often a

more positive and familiar setting than in tra-
ditional hardcore games.

Usability Easy-to-use in the way that the interface is
simple to control and the player understands
his/her actions.

Interruptibility Being able to play and stop in small time slots
instead of having to save manually at save
points.

Difficulty and punishment A game that is easy for beginners but yet offers
challenges that improve the player’s skills and
still let him/her recover from failed tasks easily.

Juicyness Excessive positive feedback to the player’s suc-
cessfully performed actions.

Table 2.1: Juul’s definition of casual game design is structured into 5 different compo-
nents [12].

seen in games: Captivating content, simple and easy-to-master controls and gameplay,
instant rewards and short game sessions can cause a game to feel casual to the user but
nonetheless, these properties may vary depending on the game [16]. Juul tries to define
casual games in a bit more detail by their design and depicts the five components of
casual game design as fiction, usability, difficulty and punishment, interruptibility, and
juiciness. They are described extensively in table 2.1.

Casual Playing This term refers to the way games are played, for example that play
sessions are rather short and the players do not have to rigorously strain their minds
to accomplish the game’s tasks. It should not be confused with casual gaming which
describes aspects of the game cultures that are characterized as casual, such as playing
games as a leisure time activity [16]. Casual games do not have to be casually played,
as Juul found out in a survey that there are many casual players that invest a lot of
time, have a deep knowledge about the casual game they play and even prefer difficult
game tasks [12].

Casual (Game) Player A person who plays games labelled as casual can be seen as a
casual game player, a casual gamer however is someone playing games in a casual way
and does thereby not necessarily play casual games [16]. A casual player could therefore
also be a person playing World of Warcraft occassionally for a short time.

LaLuup

The game prototype used and partly developed in the course of this thesis features the
following characteristics and goals that assist classifying it as a casual game supporting

2. Related Work 10

casual playing elements. It therefore also fixates the target user group for the evaluations
as casual game players.

LaLuup is specifically tailored to mobile devices and should also support casual
playing by level design. Admittedly, the fact that a game is developed for mobile devices
does not label it as casual straightaway, but it is a strong indicator that certain device-
specific properties will be defining the characteristics of the play sessions that fit into
the scheme of a casual game. The battery service life and the typical product usage
of mobile devices predict rather short play sessions without even taking a look at the
level design. However, the level design is adapted to a casual playing style too as the
levels can be solved within a few minutes and the game state is saved every time after
completing another level.

Gameplay and controls are aiming to be simple and understandable as LaLuup
should be accessible to a broad group of users. By the time the prototype is evaluated
in this thesis a tutorial about the game controls exists only in the developers’ minds
and game design documents, but as the gameplay and controls can be explained in
a few short sentences, it can be assessed that the concepts will be understandable
without verbal help in the final product. By changing the soundscape and visuals after
solving the level LaLuup aims to provide a reward for experimenting with the game and
thereby accomplishing one of many solutions. Additionally, the game does not aim to be
extremely difficult to solve as the goal is not to offer a rigourosly hard puzzle gameplay
but to encourage the players to experiment and explore the game rather than solving
the level by pure skill and calculation.

2.2.2 GameFlow
There are many heuristic models in user experience and interaction design with which
digital games can be evaluated. However, these heuristics are mostly centered around
usability rather than player enjoyment and cannot predict if players will actually enjoy
the final product in the end. Most of the heuristics guidelines and usability evaluation
processes utilized by game developers focus on three main topics: game interaction,
game mechanics and game play [5]. Naturally usability is a big part of creating an
immersive and enjoyable experience, but there are other factors that can have a strong
effect on enjoyment too. Before GameFlow there was no model for evaluating player
enjoyment in games and there is still no other comparable one since its development for
RTS (real-time strategy) games in 2005 [29] and the recent extension to different game
genres in 2017 [30].

Model

As already mentioned earlier, the GameFlow model was developed to measure and
evaluate player enjoyment in games. It is based on Flow, a concept developed by Csik-
szentmihalyi in 1990. Csikszentmihalyi’s research about the optimal experience showed
that enjoyment as a feeling seems to be the same for everyone around the globe. He
then describes a total of eight elements that together form a flow experience [3] and
should later be the foundation of the GameFlow model too. In their work, Sweetser and
Wyeth mapped these eight elements to the matching elements games and corresponding
literature consist of, as seen in the table 2.2.

2. Related Work 11

Games Literature Flow
The Game a task that can be performed
Concentration ability to concentrate on the task
Challenge and perceived skills and challenges should fit and
Player Skills must be higher than a certain threshold
Control a sense of control over the actions
Clear goals the task’s goals must be clear
Feedback immediate feedback must be provided
Immersion time and self are sensed in a different way, ef-

fortless but deep involvement
Social Interaction -

Table 2.2: This is how the psychological elements of Flow were mapped to elements in
games literature. The first eight (considering Challenge and Player Skills as separate) were
directly matched with flow components of Csikszentmihalyi’s studies, whereas the last
component was introduced by Sweetser and Wyeth because it was frequently mentioned
and studied in user experience literature [29].

Since the first element is the game itself it cannot be evaluated directly, but for
each of the other eight elements they present in their work various criteria are given to
support the evaluation using GameFlow heuristics. The heuristics were then verified by
the evaluation of two RTS games.

Modifications and Extensions

The GameFlow model was since its development frequently utilized in expert evalua-
tions of games from different genres, also including mobile games like a memory game
for seniors [31] and PyramidBloxx, a casual mobile game [22]. In the course of these
repeatedly performed tests not only the games but also the model could be evaluated
and over time some weaknesses to the heuristics were found. Sweetser et al. recently
evaluated mobile games with GameFlow heuristics in expert reviews and described that
Immersion as a criteria is difficult to review in self-report. Additionally, as many mobile
games are simple single-player games, the Social Interaction component is not possible
to evaluate too. However, the results showed that the ratings of the chosen mobile ad-
venture games utilizing the GameFlow criteria were still very close to the professional
ones done [30].

Nonetheless, some additions and changes to the model were made to serve various
game genres. For example the PGF (Pervasive GameFlow) model aims to emphasize
the characteristics of pervasive games such as mobile or place-independent gameplay,
interaction between the players and integration of virtual and physical world [9]. An-
other model especially designed for e-learning games is EGameFlow which adapts the
heuristics to a more learning-based usage [6].

2. Related Work 12

Playability Component Description
Functional Attends to how well key mappings, control peripherals

and configurations match the gameplay requirements.
Structural Contains structures, rules and patterns of how inter-

action between a player and these facets in the game
work.

Audiovisual Focuses on the relation of functional and structural el-
ements and the appearance and aesthetics of the game.

Social Analyzes social practices in media usage that the prod-
uct fits in various contexts of culture and use.

Table 2.3: Järvinen et al. define playability as a collection of evaluation criteria struc-
tured into these four components [8].

LaLuup

Many of the heuristics that the GameFlow model introduced are worth evaluating for
the casual mobile puzzle game. Especially the elements listed in the table 2.2 from
Concentration to Feedback are very interesting when it comes to the effects of dynamic
object generation. As already mentioned, Immersion is difficult to evaluate objectively
in expert reviews as they will be done in this thesis and the Social Interaction criteria
is not possible to assess in LaLuup. Additionally other fitting heuristics have to be
developed and utilized to cover the effects of dynamic content on sound aesthetics and
the flow experience in more detail too.

2.2.3 Playability
The term playability is often discussed but most times not clearly specified in current
games literature, at least not in the extent as the term usability is covered. There
are many definitions that contain circular references or do not really describe what
playability means as Korhonen states in his thesis about evaluating the playability of
mobile games with the expert review method [14].

A very useful definition however provide Järvinen et al. in describing playability as
a design and evaluation term, it refers for them to guidelines on how to design a game
that meets the requirements in player entertainment. Therefore playability should be
treated as a multifaceted criteria collection used to evaluate games as usability is in HCI
(human computer interaction). Järvinen et al. structure the definition of playability in
four components which are shown in table 2.3 [8].

Sánchez et al. also analyzed playability and user experience in 2012. They explain
playability as a set of properties defining player experience by using a specific game sys-
tem that provides as a main objective enjoyment and entertainment by being credible
and satisfying, no matter if the user is playing alone or in company. The definition of
playability is therefore characterized by terms that also exist in usability concepts but
with differing meanings. Learnability for example should not be challenging in a usabil-
ity environment, but when applied to the term playability it should. Their identified

2. Related Work 13

Playability Attributes Characterizing Properties PX Field
Effectiveness Completion, Structuring Process/Product
Learnability Game Knowledge, Skill, Difficulty,

Frustration, Speed, Discovery
Process/Product

Satisfaction Fun, Disappointment, Attractive-
ness

Process/Product

Immersion Conscious Awareness, Absorption,
Realism, Dexterity, Socio-Cultural
Proximity

Process/Product

Motivation Encouragement, Curiosity, Self-
Improvement, Diversity

User

Emotion Reaction, Conduct, Sensory Appeal User
Socialization Social Perception, Group Aware-

ness, Personal Implication, Sharing,
Communication, Interaction

Group

Table 2.4: The playability attributes and their characterizing (sub-)properties defined
by Sánchez et al. As indicated by the grey bars and the last column, they are structured
into different categories based on the area of player experience they are centered around:
Process, Product, User and Group [26].

playability categories are Learnability, Satisfaction, Effectiveness, Immersion, Motiva-
tion, Emotion and Socialisation, meaning that they split the assessment of playability
on both player- and game-centered properties as listed in detail in table 2.4. They
further define six facets of playability to create detailed evaluation measurements: In-
trinsic (game design and gameplay), mechanical (software system and game engine),
interactive (interface and user interaction), artistic (aesthetics and story), intrapersonal
(perceptions and feelings) and interpersonal (group perceptions and awareness) [26].

Korhonen offers a narrower and seemingly more concrete description of playability
in his thesis published in 2016 before illustrating his own set of heuristics [14]:

A game has good playability when the user interface is intuitive and the
gaming platform is unobtrusive, so that the player can concentrate on play-
ing the game. Fun and challenge are created through gameplay when it is
understandable, suitably difficult and engaging.

In this way he incorporates the gaming platform, user interface and the gameplay into
his definition of playability and leaves social factors affecting the game from the out-
side and not being directly part of it to the side. His majorly game-centered playability
heuristics are split into the modules Game Usability, Gameplay, Mobility, Multi-Player
and Context-Aware. However, he also includes player-centered criteria in some of the
evaluation modules. He also addresses the relationship between player experience and
playability in the way that playability helps in achieving a positive player or user ex-
perience of the product or game [14]. Also, player experience closely relates to player
enjoyment, just as flow experience and enjoyment are heavily interconnected too.

2. Related Work 14

Another recent definition of playability by Paavilainen is even more game-centric
than Korhonen’s. According to him playability describes game quality and is defined by
the three components functionality, usability and gameplay. Functionality is focused on
the technical quality concerning bugs, crashes and smooth operations whereas usability
centers on the game interface only. Gameplay is defined as the game’s internal oper-
ations, like the rules of the game creating the mechanics and dynamics, and does not
include human play activity. In this approach playability is not player-centered at all
and good playability is also not required for players to have fun [21]. This hugely differs
to Korhonen’s definition as he indicates good playability affects the player experience
positively.

LaLuup

As Korhonen defines software and hardware stability and social components out of
range for being part of playability, his description and heuristics are particularly fitting
for this thesis and the evaluation process. Järvinen et al. as well as Sánchez et al.
define playability with a social component that seems difficult to evaluate for a game
prototype like LaLuup. The evaluation should rather be centered around the intrinsic
parts of the game and the effects of dynamic game content rather than on social and
technical influences from the outside. When talking about functionality, the definition
and heuristics Korhonen propose also match better as Paavilainen incorporates more
details on the technical quality which do not support the aim of this thesis.

Additionally, the relations between Korhonen’s definition of playability, player expe-
rience and player enjoyment in general supports smoothly integrating the heuristics with
the GameFlow model for this thesis’ evaluations. Korhonen’s heuristics also contain the
criteria for aesthetics and style that have been mentioned to be missing before.

Chapter 3

Audio System: Conception

LaLuup was created as a paper prototype by the company Kunabi Brother using a
test composition of the Pärt-inspired algorithm in Ableton Live that had a simple and
yet interesting sound already fitting to the game principles in this early stage. The
gameplay worked a little different than in the current version of the digital prototype
as the player had to place puzzle tiles that redirected a given impulse to form a loop
as seen in figure 3.1. However preliminary user tests showed that the interaction would
be more exciting and experimental if users could draw continually reoccurring patterns
just as in the company’s first mobile game Blek1 illustrated in figure 3.2. A detailed
gameplay description explaining the drawing mechanism can be found in section 3.2.1.
As Kunabi Brother aim to create games that focus on experimenting and exploring
rather than on quick and common gameplay that revolves around level-solving only, the
second approach was utilized to implement the current version of the digital prototype.

This casual mobile game prototype was built upon a generative algorithmic audio
system which was constructed specifically for this application. There was no library
or tool already fitting the requirements that the game idea called for: An easy-to-use
system implementing a Tintinnabuli style algorithm creating different voices of one
given note that incorporates gameplay-specific composing in real-time. Such a system
should be reusable (in case of big changes in early stages of the project), stable and of
course clearly structured and designed. To create a clear structure the general concept,
requirements and prerequisites had to be determined in detail beforehand. This chapter
therefore covers the audio system’s characteristics, details and requirements within the
game prototype.

3.1 Characteristics of LaLuup
What defines LaLuup is the mix of a unique generative algorithmic audio with a very
simplified level design that yet allows the creation of complex puzzle patterns and sound
structures. Before the concrete implementation many of these conceptual ideas already
existed and supported in defining the prototype during development. This section is
devoted to the characteristics of LaLuup and the corresponding audio system, describing
the initial concepts, explaining the detailed requirements and finally shedding light on

1For further information visit http://blekgame.com/.

15

http://blekgame.com/

3. Audio System: Conception 16

Figure 3.1: A look at the interface of the first paper prototype of LaLuup with the
gameplay working slightly different than in the current version of the digital prototype.

Figure 3.2: Blek was the first game Kunabi Brother developed. Its main focus is on
drawing repeating patterns by touch interaction that reach all colored objects in the
level. This idea is slightly similar to the repeating patterns in LaLuup, yet they are much
more limited in directions.

the features and aesthetic goals of the thesis project.

3.1.1 Concept
At the beginning of LaLuup (its creation as a paper prototype as seen in figure 3.1) many
of the concepts also seen in later stages of the project were already there, such as the
hexagonal grid and the puzzle tiles also seen in the current version in figure 3.3. The very
first concept focused on the tile placing done by the user but was discarded later on as
a simpler, more intuitive interaction method surfaced. Now the player paints repeating
patterns by dragging them from so-called Spawner tiles (the fully filled hexagons) that
have to reach the other Spawner and all Collectible tiles in the level, thus creating a loop

3. Audio System: Conception 17

Figure 3.3: A simple level structure with Spawners and Collectibles.

that he/she can listen to. That the solution to the puzzle should be a loop and that there
should be more than one solution is still identical to the first paper prototype. However,
some concepts strengthen and also transform slightly, mainly because of user feedback
from different informal tests. The following two topics illustrate the main concepts of
LaLuup and the corresponding audio system and how they evolved from the first paper
prototype to the current digital game version.

Sound as Gameplay Element

Before LaLuup, the company was working on Frost, a casual mobile game for iOS devices
where the user interacts and controls swarms and flocks consisting of thousands of
individual particles.2 Frost is very graphic-centered and aesthetically pleasing as seen
in figure 3.4 but lacked a suitable musical setting at first. The audio of Frost was
later developed gradually along to the level design and consisted of different generative
approaches mixed up to match the user particle interaction. In a way it was important
to the game to support the immersion, but all the same it was still not the major focus
of the game. After creating Frost and its audio it was time to try something new and
invert the approach, to use sound as a fundamental gameplay element and utilize visual
aesthetics as supporting factors.

The concept for the sound was established when one of Kunabi Brother’s game
designers read a book about Arvo Pärt and his Tintinnabuli styled composing, written
by Conen [2], describing the musical theory and how Pärt utilized it in his compositions.
He first wanted to create a back- and forth communication between the player and the
Tintinnabuli styled background voices of the game, giving the illusion of sound-based
interaction. However, as soon as the algorithm was built into the sound system created
for the player, it was clear that the background should not get too involved with the
foreground player interaction as it created confusion and the background feedback was
often misunderstood. So the background voices remain at certain events performed by

2For further information visit http://frost-game.com/.

http://frost-game.com/

3. Audio System: Conception 18

Figure 3.4: Frost, the latest iOS game from Kunabi Brother, is centered on visual aes-
thetics by using particle simulations directly processed on the GPU. Sound is generated
algorithmically but not the main focus of the game.

the player to manage the needed user feedback, but are not used as much as originally
planned.

However, sounds generated by the Pärt algorithm still influence every part of the
gameplay as they generate the Melody path sounds, calculate hit sounds for Spawners
and Collectibles and also offer the possibility to even change scripted audio in a way
that matches the current level. All of these sounds are of course not only generated by
the Pärt algorithm, but heavily influenced by the player’s actions.

Puzzle Solving and Exploration

Following the style of Blek and Frost, LaLuup’s gameplay is also centered around puzzles
that do not have only one working solution. This is mainly because Kunabi Brother
focus their games on exploration and experimentation rather than solving puzzle by
puzzle just to get to the next level as fast as possible. The gameplay should be revolving
around the artistic creations of the player in the game’s world, with the game only giving
him/her directions and rules to create that must only be followed to a certain amount to
reach the next level and start exploring again. The company wants to encourage players
to create and influence the game and its elements and to remain and watch the game
evolve. Gameplay should be slowed down, thereby creating a game that can be played
after coming home from a long work day to relax.

At the moment the digital prototype of LaLuup has very restricted possibilities for
the player to explore, mainly because not all features are implemented. In the final
product there will be more content such as additional gameplay elements and audio
components reacting to user input, but as there is only a certain amount of time for
creating the prototype and testing if it really works the way it should, this will be
considered depending on the feedback of the players and implemented in later stages.
The most important factor for the user tests in this stage is rather that the main features
already exist and work stably so that the evaluations provide clear and feasible feedback
about the game mechanics.

3. Audio System: Conception 19

3.1.2 Requirements
As every piece of software, LaLuup’s audio system has some requirements that were
researched before starting with the implementation in order to create a usable, stable
and bug-free system without wasting time in the early stages. After a quick investigation
phase two areas of requirements surfaced, one concerning the editor and usability design
of the system in reference to the game designers and the other one focusing on the
technical difficulties that could be met along the way.

Internal vs. External Design

The audio system for LaLuup is utilized by two game designers and the author as
developer and programmer, meaning that it has to be easy-to-use and understandable,
providing comprehensible feedback in the game to variable changes in the editor. For
that reason it is necessary to create and maintain documentation, to check and adapt
variable naming if it is not formulated clearly enough and to be of assistance in any
remaining unclear cases.

Designing a system architecture for such an audio system is a trade-off between
function and design as the game designers should not need to be aware of all the inter-
nal structure to setup and maintain their system configurations. On one hand intrinsic
architecture should be functional, meaning it should follow appropriate design patterns
and the basic principles of object oriented programming as far as possible, using in-
heritance and reflection to create a stable, small and reusable code base. On the other
hand the exteriors of the system, which are in this case the looks and usage cases in
the Unity3 engine editor, have to be well-structured and readable by humans. In many
cases the trade-off can be done in the way that a lot of the internal variables are hidden
away and the editor input data is just fed and copied to the system. A very useful tool
helping to provide a structured external look to the system was Odin4, a inspector and
serializer tool which is also referred to in section 3.2.2. Furthermore, Odin and the Unity
editor implement so-called property attributes that can define variables as hidden in the
inspector, read-only or even create foldout group structures for better reading in the
editor.

Audio Technology

Audio systems that react to user input immediately have to fulfill certain requirements
to create the illusion of real-time feedback. Therefore, the most important technological
topics for the thesis project were researched and taken into consideration beforehand.

In general, audio processing is never real-time, it depends on a so-called ring buffer,
a circular buffer that the audio data is fed to. A circular buffer (as illustrated in figure
3.5) can be seen as an array of fixed size where head and tail move around in a cyclic
manner, meaning data is stored to the head and processed at the tail. Instead of re-
and de-allocating memory every time new audio data is stored to the processing queue,
memory allocation can be held consistent and the processing becomes faster, more stable
and also more manageable. The downside and consequence of using a cyclic array is quite

3https://unity3d.com/
4http://sirenix.net/odininspector

https://unity3d.com/
http://sirenix.net/odininspector

3. Audio System: Conception 20

Figure 3.5: A ring buffer or circular buffer has both a read and write pointer, meaning
that it reads the new data (colored blue) and then releases it to overwrite it again later
(colored grey).

obvious as when a lot of audio data is stored into the buffer, the old data is overwritten
and lost. Data loss in an audio buffer causes sound output to destabilize, become jittery
and click.

Therefore, the size of the ring buffer of the DSP (digital signal processing) system is
crucial for the sound output as a small buffer size decreases the sound latency because
data is processed sooner, but it also decreases the sound stability.5 On the other side
a large buffer increases stability but the sound latency raises too. So choosing the best
fit compromise in buffer size is important in the first place but can also be essential in
later stages of development if other requirements change.

High quality audio files can be quite large to hold in memory while in-game which is
especially important in regards to mobile devices. These devices generally have a smaller
amount of working memory available than a typical desktop computer. In the case of
small audio samples used by the sequencer to generate foreground and background voices
this problem may not arise, but ambience sounds and other audio that may be added
to the game could cause stutters in the gameplay due to high memory consumption
and so it should not be completely neglected as a requirement. Many audio systems
give the user a chance to choose between streaming the audio assets which causes more
lag in processing and loading them into working memory. That way the large long files
can be treated differently than the small frequent files and this problem can be solved
sufficiently.

Another point that is intertwined with the storage requirement is compression. Many
audio engines offer a variety of low level compression formats for the sound files. Among
the most used are Vorbis, ADPCM and PCM as they all have different benefits and
disadvantages. Vorbis is a lossy compression format that utilizes MDCT (modified dis-
crete cosine transformation) much like the well-known format MP3, but is used more
frequently in audio libraries as it is open source. It features encoding for multiple chan-

5The options in Unity for DSP buffer sizes can be found at https://docs.unity3d.com/Manual/class-
AudioManager.html.

https://docs.unity3d.com/Manual/class-AudioManager.html
https://docs.unity3d.com/Manual/class-AudioManager.html

3. Audio System: Conception 21

nels (basic MP3 features mono and stereo only), streaming as well as constant and
variable bit rate encoding. PCM (pulse code modulation) is a simple analog-to-digital
compression that samples the signal in respect to the Nyquist-Shannon sampling theo-
rem, quantisizes it linearly to discrete samples and stores those as a binary code. When
there is already a discrete signal given it is compressed in a lossless way. ADPCM
(adaptive differential pulse code modulation) is only a version of PCM that varies the
quantization step size based on a data prediction. Where PCM is larger and lossless it
can be decompressed and processed with less effort than ADPCM and with even less
than Vorbis.6

So the more complex the compression, the more latency the audio system will show
when playing this data. However, the less complex the compression, the higher the
amount of storage space needed.7

3.1.3 Aesthetic goals
The concept of LaLuup focuses on sound as the main gameplay element and the union of
puzzle solving and exploration. The features that add up to this unique game experience
are implemented in the digital prototype to the amount needed for a valid evaluation
and tracing certain aesthetic goals.

Singular Game Mechanics

LaLuup is a casual game for mobile devices and should therefore be easy to learn and
yet complex enough to create player enjoyment as mentioned in section 2.2.2. Juul’s
definition of a casual game design also describes difficulty in a similar way as seen in
table 2.1. Single game mechanics support this aesthetic goal because they are easy to
use and remember, but they still have to be unique and witty to work with complex
level structures of later levels too. It requires plenty of time to imagine, develop and
create such game mechanics.

The repeating pattern drawing in LaLuup can be seen as such a single game me-
chanic. The author calls it singular or single here because of the fact that it is the
only interaction method between the player and the game environment which ensures
that once it has been learned by the player, he/she can interact with every level of the
game. However, a game mechanic like this also needs to be complex enough to keep the
player’s interest for a long time, hence the level structure has to assist in creating this
complexity much more than if the game mechanics would develop further after every
level progression. For this reason singular game mechanics often dominate in games
where levels are built of tiled building blocks. The level progression is not implemented
as skill improvements of the game character but heavily focused on the rise in structural
level complexity.

Even if the positive factors of singular game mechanics for casual games are put
aside, there is still an aesthetic advantage to them. The game is easier to explain and
understand, even for spectators watching somebody play.

6Detailed options for audio clips in Unity are described in https://docs.unity3d.com/Manual/class-
AudioClip.html.

7A short and straightforward audio file import guide for the Unity engine is given at http://blog.
theknightsofunity.com/wrong-import-settings-killing-unity-game-part-2/.

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
http://blog.theknightsofunity.com/wrong-import-settings-killing-unity-game-part-2/
http://blog.theknightsofunity.com/wrong-import-settings-killing-unity-game-part-2/

3. Audio System: Conception 22

Minimalistic Design

Simple design appeals to a broader target group as everyone interprets it in a differ-
ent emotional way. McCloud, a US comics theorist and cartoonist draws the following
conclusion in his theoretical work Understanding comics [27]:

When we abstract an image through cartooning, we’re not so much elimi-
nating details as we are focusing on specific details. By stripping down an
image to its essential “meaning”, an artist can amplify that meaning in a
way that realistic art can’t.

Not only cartoons but abstract representations in general can work on a remarkable
meaningful emotional level. Hence, minimalistic design does not always refer to creating
a calm and sterile environment, it rather focuses on specific details, leaving things aside
that seem unimportant for the current context.

LaLuup also aims to keep the design of both audio and visuals simple and scaled-
down to appeal to its target group on an emotional level, leaving interpretation of
the aesthetics completely to the player. With Frost this approach worked arguably
well, resulting in a very diversified interpretation of the game reaching form particle
symphonies and fireworks to guiding flocking spirits to their home planets. The final
version of LaLuup should be able to create a similar kind of user feedback.

3.2 System Details
Now that the prototype is conceptually defined one can look into the details of the
system created. In this section the processes and operations within the game are de-
scribed and corresponding decisions concerning the design and technical tools used are
explained.

3.2.1 Detailed Gameplay Description
A detailed gameplay description concerning visual and auditive feedback based on a
simple level figure 3.3 is given in this subsection to create a clear foundation for following
in-depth information.

Interaction and goal

Starting at the very beginning, a Spawner (which is either one of the fully filled hexagons
in figure 3.3) is touched and the player holds his/her finger down and moves it in any
of the six grid directions. A subtle glow on the grid tiles around the finger indicate the
possible directions for drawing, holes are not highlighted in that case. Now the player
can draw as far as he/she wants with the only exception of the Collectibles, shown as
small hexagonal dots. When the finger is lifted from the touch screen the Spawner starts
spawning meaning it creates the impulse that jumps from one grid tile to the next at
every beat in the painted pattern playing notes. The system of how the notes are played
is explained in detail in the next subsection. When the end of the pattern is reached
it is simply repeated farther along the grid which constructs an interesting structure

3. Audio System: Conception 23

both visually and sound-wise. This playing pattern is called Melody later on and it stops
playing when it hits either another Spawner, a hole or the outer end of the grid. However,
when hitting a Spawner, the hit Spawner (its Melody pattern can be manipulated in a
similar way) starts spawning too. Now that all interaction principles are declared, the
player has only one goal: To get to the next level by closing a loop between the two
Spawners using his/her own drawn Melody patterns that include hitting all Collectibles
on the way.

Basic music generation

The music generation for interaction works based on relative direction changes in the
Melody patterns on the grid, that means the current direction is always forward and with
this information the change in direction can be calculated. Generally, when touching a
Spawner, it starts playing using a predefined note for its Melody that gets shifted by
semitones when the direction changes. But this so-called M-voice does not get played
unless there is a direction change, otherwise it is just generated and cached. But in all
cases another generated note is played, a Pärt-style T-voice, calculated using the cached
M-voice. The actual amount of semitones stepped in a relative direction can be done in
two ways explained in detail in section 4.2.3. A similar scheme is used for generating the
drawing sounds as they also play along the patterns, but instead of automatically on
beat, they are playing on touch interaction. Small components playing short sounds and
the mentioned background voice also use T-voices to algorithmically generate a fitting
output and are described in detail in sections 4.2.3 and 4.2.2.

3.2.2 Tools and Design Decisions
From the first ideas and concepts of LaLuup it was planned as a Unity engine based
prototype for the reason that Kunabi Brother’s interest was to create a mobile game out
of it if the prototype would succeed. Unity prototyping is not only fast and its output
deployable on all big players on the device market, it was also chosen because it was al-
ready professionally used by all company members involved in the project. Additionally,
many of the prototype’s components can be reused or just adapted for the final product
which is also great for small studios like this where all processes in the development
team are iteratively organized. Unity scripting can be done in either JavaScript or C#,
but for this project the latter one was chosen because both programmers working on
this project already had knowledge about it.

The thesis project also relies on a plugin called Odin which is a inspector and serial-
izer tool for Unity. In context of the complexity of data containers and structures inside
the project it was chosen because it helps to keep the source files and the engine’s editor
clean. Furthermore, it simplifies the component interfaces inside the editor for the game
designer’s use. For the audio system there were also some possible options to consider
in the beginning. Obviously an audio middleware like FMOD8 and WWise9 could have
been used to create the system, but in this case it would have made the implementation
much more complex than needed. To keep it clean, editable and understandable an own

8https://www.fmod.com/
9https://www.audiokinetic.com/products/wwise/

https://www.fmod.com/
https://www.audiokinetic.com/products/wwise/

3. Audio System: Conception 24

implementation of an audio sampler and sequencer system was created that fit the needs
of LaLuup perfectly and could easily be extended too. The very first iteration of this
implementation was based on a blog post about designing a music system for games by
Huguenard [37] which then soon started to differ in many aspects to fit to the concept
of LaLuup.

After defining the idea and characteristics of LaLuup in detail, researching and setting
the project requirements and deciding on the tools the implementation process could be
started. The extensive research before the actual development of the game prototype
provided a profound base for structuring the architecture as well as creating a suitable
level design.

Chapter 4

Audio System: Implementation

Based on the conceptual ideas and already defined requirements, the audio system could
be built. Using the Unity engine and its underlying FMOD sound engine an architecture
was developed that fit exactly to the needs of the game prototype.

4.1 The Pärt Algorithm
The Tintinnabuli-style based on Arvo Pärt’s rules is a little challenging to read at
first when one is not familiar with musical notation and language, but once grasped the
concept is very simple and yet effective. A detailed musical explanation and composition
schemes can be found in the book Arvo Pärt: Die Musik des Tintinnabuli-Stils by Conen
[2]. The following sections explain the general idea and schematic of Tintinnabuli music,
how to create a fitting algorithm and the specific implementation for LaLuup.

4.1.1 General explanation
The Tintinnabuli method transforms notes of a given scale (called the M-voices) into
notes on the scale’s triad below and above the original pitch [36]. Those are called
T-voices and the most common six in Tintinnabuli music are:

• T-3
• T-2
• T-1

• T+1
• T+2
• T+3

This means that three of the T-voices are below the original note and three are
above. So if given a note as M-voice including a scale and a triad, T+1 can for example
be calculated by getting the note on the triad closest but above the pitch of the original
note. T+2 is the second closest and so on, the same applies to the other direction (below
the original pitch). A schematic of this technique in A minor can be seen in figure 4.1.

4.1.2 Specific implementation
The implementation of Pärt’s Tintinnabuli algorithm in code begins with constructing
a Paert object with a given scale and triad. The musical scale and triad are then used

25

4. Audio System: Implementation 26

Figure 4.1: In this table the M-voices and their corresponding T-voices are shown. In
this case the musical scale is A minor and the first triad (A C E) is used to generate the
six closest T-voices to the M-voice [32].

to build an array of three notes that contain the actual musical notation for the triad’s
notes. This is important because the triad object given does only contain relative num-
bers so it can be reused for any given scale, but the Paert object only uses one given
scale and triad.

The next step is already the generation of the six T-voices based on one note given
as a MIDI number, this is simplified by a helper method that already gets the nearest
MIDI note number of a M-voice and the triad notes in the array built in the first place,
either above or below. The method structure is the following: NearestMidiFromNote(int
midiNoteNumber, Note toNote, bool lower) where the bool specifies if it should be
above or below the original note. These MIDI note numbers are cached in a List<int>
object and already specify the T-voices needed. But as the given original note could
not only lie exactly between two triads on the scale, these have to be sorted to be in
exact order from lowest to highest. The concept of MIDI note numbers is a great help
here because as the notes are already saved to the list as integers, they can simply
be sorted afterwards. Finally, when generating the T-voices an enumeration is used to
access the correct array index (enum TVoice{T_3, T_2, T_1, T1, T2, T3}) so it can be
accessed just with tVoiceArray[TVoice.T_3] or tVoiceArray[TVoice.T_2], for example.
The algorithm then looks as follows in plain C# code:

1 public class Paert {
2 private Note[] notes;
3
4 public Paert(MusicalScale scale, MusicalTriad triad) {
5 this.notes = new Note[3] {
6 scale.noteBaseOctaves[triad.relativeNoteNumbers[0]].note,
7 scale.noteBaseOctaves[triad.relativeNoteNumbers[1]].note,
8 scale.noteBaseOctaves[triad.relativeNoteNumbers[2]].note };
9 }

10
11 public List<int> GetTVoices(int midiNoteNumber) {
12 List<int> voices = new List<int>();
13 voices.Add(AudioUtils.NearestMidiFromNote(midiNoteNumber, notes[0], true));

4. Audio System: Implementation 27

14 voices.Add(AudioUtils.NearestMidiFromNote(midiNoteNumber, notes[1], true));
15 voices.Add(AudioUtils.NearestMidiFromNote(midiNoteNumber, notes[2], true));
16 voices.Add(AudioUtils.NearestMidiFromNote(midiNoteNumber, notes[0], false));
17 voices.Add(AudioUtils.NearestMidiFromNote(midiNoteNumber, notes[1], false));
18 voices.Add(AudioUtils.NearestMidiFromNote(midiNoteNumber, notes[2], false));
19 voices.Sort();
20 return voices;
21 }
22
23 public List<int> GetTVoices(NoteOctave nbo) {
24 return GetTVoices(AudioUtils.NoteToMidi(nbo));
25 }
26 }

4.2 System Architecture

The basic sampler/sequencer system needed to generate the sounds for LaLuup’s game-
play was based on blog entries of Huguenard about designing a music system for games
[37]. By staying close to the functionality of an analogue Synthesizer, his implementa-
tion helped to structure the system for the thesis project. Nevertheless, adaptions for
sound sampling based on a dynamic base note, additions for algorithmic sound genera-
tions and reshaping of the architecture was done very frequently in the first iterations
until not that much of the basic structure remained. The following subsections describe
the elementary components of the redesigned Pärt audio system and in figure 4.2 the
structure is described in a simplified class diagram.

Figure 4.2: The basic structure of the algorithmic audio system.

4.2.1 Basic Audio Modules
The basic modules, consisting of the Metronome, BaseSequencer and Sampler classes
and their associated objects and subclasses, will be described in detail in this subsection.

4. Audio System: Implementation 28

Together they form the smallest building blocks for the algorithmic generative audio
system of LaLuup.

Metronome

The Metronome class has an action OnTicked that is called every tick. Ticks are gener-
ated by an update loop on top of the Unity engine update callback using an accumulator
for the time that the tick should occur which is relative to the digital signal processing
timer of the engine. The Metronome can be adjusted to use a certain BPM (beats per
minute) rate that is parted in an amount of ticks that can be edited too. The action
then caches all the extra information like if the current tick is a beat, the tick length and
the tick time as parameters in a C# struct called MusicalStep. Classes can subscribe to
the Metronome to listen for ticks.

The class contains a static component of its own type to provide a main Metronome
for every game level. This guarantees that the main Metronome can be accessed and
subscribed to from every level component and still ensures the possibility to have a
second Metronome in the level if needed. Unity also does something similar to simplify
access to the provided main Camera component1.

BaseSequencer

The abstract class BaseSequencer is a simple building block for sequencers in general.
Not only does it have a class field containing a reference to a Metronome object, it
subscribes to the Metronome tick action with an abstract method called HandleTicked.
The following classes extend the BaseSequencer’s functionality and play sounds when
HandleTicked is called:

Placeable The Placeable class is a superclass to all objects that can be placed on the
grid in the editor and can be hit by so-called Melody objects that will be explained in
the next subsection.

• Spawner
The Spawner, which can be customized with a template object called Unity Prefab
and overridden per level, is a colored tile in the hexagon grid that contains the
data for the Melody it spawns. When it is hit by a Melody on the grid, it starts
playing a hit sound using its Sampler. The hit sound is generated based on the
note it was hit with.

• Collectible
Collectibles are colored objects lying on the grid and have to be hit and in that
way collected to close the loop and solve the level. They also play algorithmically
generated hit sounds with their dedicated Samplers.

Melody The Melody class (also customizable as a Unity Prefab) is the one actually
triggering the gameplay sounds. Every Spawner has a Melody that can be played when
the Spawner is touched. Melodies can have two different play modes, either they play

1https://docs.unity3d.com/ScriptReference/Camera-main.html

https://docs.unity3d.com/ScriptReference/Camera-main.html

4. Audio System: Implementation 29

direction-based notes and additionally play Pärt voices only on direction change or the
other way around. A Melody’s sound is partly based on static data input from the
corresponding Spawner like musical scale, triad, direction mapping, play mode, first
note and minimum and maximum octave. Because of replacing the first melody note to
play with the note the Spawner was hit with it will still sound differently every time it
is hit with another note. The Melody class uses two Sampler objects to play its notes,
one for the main notes played every beat and one for the direction notes only played on
direction change.

Sampler

The Sampler object (seen on the left in figure 4.3) manages an array of SamplerVoices,
their Envelopes and a SamplerBank to play the sounds through the use of simple Unity
AudioSources. When a note is meant to be played the nearest base note AudioClip in
the SamplerBank is found, pitch-shifted to the exact note and then scheduled to be
played by the oldest SamplerVoice in the array. Data like sound duration and note is
given by the Sequencer through the MusicalStep struct.

SamplerVoice When the SamplerVoice now gets to play an AudioClip, it first resets its
Envelope with values given by the Sampler and the schedules the AudioClip to play at
its corresponding AudioSource. The envelope filtering is done in a Unity-specific callback
named OnAudioFilterRead which is called by the audio thread. OnAudioFilterRead is
called every time a chunk of audio is sent to the filter and allows to insert a custom
filter into the audio DSP chain.2

Envelope The Envelope class is a simple ASR-envelope implementation that helps to
keep the SamplerVoice class more readable. It can be called to get output volume values
for sounds to create an attack, sustain and release curve.

SamplerBank The SamplerBank (seen on the right in figure 4.3) is a data container for
AudioClips and their corresponding MIDI note numbers. It allows a sampler to access
the AudioClips and pitch-shift them if needed.

4.2.2 Composing Modules
The following classes describe objects not directly part of the basic audio system, they
rather specify extensions and utilities of the system’s building blocks described before
and are therefore not shown in figure 4.2.

BackgroundVoice

The BackgroundVoice class has no sequencer but a lot of different methods that are
subscribed to the LaloopGame Script that manages such things as level solving, level
loading etc. It can play different scripted music sequences at every action it is subscribed
to, for example when the loop is closed, when a collectible gets hit, or when all spawners

2https://docs.unity3d.com/ScriptReference/MonoBehaviour.OnAudioFilterRead.html

https://docs.unity3d.com/ScriptReference/MonoBehaviour.OnAudioFilterRead.html

4. Audio System: Implementation 30

Figure 4.3: On the left: the Sampler component’s options; on the right: the SamplerBank.

have been activated. The background voice component is subscribed to the action On-
PaertPlayed() and also plays background sounds (chords of T-voices) when this action
is triggered. A detailed look on the options of this component gives figure 4.4.

ScriptedMelody This class is a simple data container for scripted melodies to test their
sound within the game. It contains information such as notes, tick lengths and octave
shifts. Many ScriptedMelody objects are referenced in the BackgroundVoice class to get
played on certain events.

ScriptedMelodySequencer While the ScriptedMelodySequencer extends from the origi-
nal BaseSequencer class, it has nothing to do with Placeable. Its purpose is to play a
predefined ScriptedMelody when the BackgroundVoice wants it to.

Paert

The Paert class implements the algorithm defined by Arvo Pärt’s Tintinnabuli styled
rule set. Upon creation it needs to know the musical scale and triad it should reference
and afterwards it can be called for every MIDI note number that has to produce a T-
voice. It then returns a list of all 6 T-voices that are currently in use in this prototype.
As it is an object, it can be reused and does not have to be created anew when another
T-voice in the same musical scale and triad is needed.

4.2.3 Other Structuring Modules
Managing an audio system relying on an algorithm based on classical music theory
requires structures and data classes to cache and convert information in a simple and
understandable way so that internal changes are also feasible for programmers not work-
ing directly on the system.

4. Audio System: Implementation 31

Figure 4.4: The BackgroundVoice component featuring options for playing the back-
ground Pärt t-voices and for starting the ScriptedMelody events.

Important Data Containers

Many data containers are needed to cache, save and load different settings in a music-
oriented game prototype. Here are the most important ones that were not mentioned
before in detail:

• DirectionMapping
The DirectionMapping object (seen on the left in figure 4.5) is used to tell the
melody how many semitones it has to go up or down when changing direction.
Currently two approaches are implemented, both can be used independently and
are chosen for each level by the game designer. The first approach uses a bool
array to choose the sign of the semitone step depending on the direction, the
amount of semitone steps is given by the amount of steps that are made forward
in one direction before changing direction again. The second approach uses simple
integers to determine how many semitones have to be stepped in which direction.
The direction is either calculated relatively or absolutely to the direction the
Melody was going before (a differentiation between relative and absolute directions
on the hexagonal grid is shown in figure 4.5 on the right). Therefore a pointy
direction system on the hexagonal grid as well as a flat direction system must be
specified and a way to convert the directions has to exist.

4. Audio System: Implementation 32

Figure 4.5: On the left: the direction mapping options; on the right: the difference
between relative and absolute directions in mapping.

Figure 4.6: A MusicalMelody object (red), a MusicalScale object (blue) and a Musical-
Triad object (green).

• MusicalMelody
A MusicalMelody (seen on the left in figure 4.6) is in use at every hit of a Placeable
object. It defines a sequence of notes and tick lengths to be played if the object is
hit based on the so-called hit note. The hit note describes exactly the M-voice it
was hit with.

• MusicalScale
A MusicalScale object (seen in the upper right corner in figure 4.6) defines notes
and a base octave for a musical scale that is used in many of the classes mentioned
before.

• MusicalTriad
The MusicalTriad object (seen in the lower right corner in figure 4.6) defines a
triad relative to every musical scale as the semitones to play are given in integer
values (for example the first triad of every musical scale is 0 2 4, relatively seen).

4. Audio System: Implementation 33

Conversion and Calculation Utilities

In the case of a highly musical and notation oriented project, a lot of conversion meth-
ods have to exist. As these methods get used basically in every audio script, they are
collectively implemented in a utility class, throughoutly tested and well-documented for
reusing. The following conversions and calculations need to be done frequently, stable
and in a fast way:

• Get the pitch from one to another MIDI note number,
• convert notes to MIDI note numbers and vice versa,
• get the nearest note to another MIDI note number (lower or higher),
• from a musical scale and a note played of it, choose the next note by just using a

relative integer value (with MIDI note numbers or notes and octaves),
• map notes to a given octave spectrum,
• calculate direction mapping differences.

4.3 Prototype Configuration
The prototype of LaLuup used in the evaluations in the following chapter has certain
special configurations in reference to which techniques are used to generate sounds,
which interaction feedback is given and how the general level structure looks.

4.3.1 Sound Generation
The basic music generation in the evaluation prototype works as already described in sec-
tion 3.2.1 but there are detailed configurations for the Spawner, Collectible and Melody
objects given which can be seen in figure 4.7. For the prototype these descriptions are
valid in every test level but they could in fact be overridden per scene.

The general sound generation in the existing test levels is based on the C-Major
musical scale and its first triad consisting of the notes C, E and G. Spawners as well
as Collectibles reference a unique hit melody that is played when they are hit and
which is the same for all levels. Melody objects’ samples are held for two ticks per note
played before they are released and play the T-voice T+1 at every step and additionally
their C-Major-based M-voice at every direction change. The direction mapping used to
generate the T- and M-voices is an absolute mapping using an integer map to determine
the semitone steps that have to be made per direction. When samples get too high or
too low, which is below the third and above the fifth octave, they are mapped back to a
valid octave in the way that higher values get mapped to the lower end and lower values
get mapped to the higher end of the scale. Melody object samples are very clear and
close to the African instrument called Kalimba while Spawners and Collectibles sound
like classic Piano music. Touch interaction creates sounds that resemble the Melody
objects.

The BackgroundVoice was retracted slightly after the informal user tests confirmed
that some of them were rather confusing, including the background sounds played when
the action OnPaertPlayed() was triggered. This prototype version therefore only features
background sound events when a Melody object leaves the grid and when a loop is

4. Audio System: Implementation 34

Figure 4.7: The Spawner (left), Melody (left) and Collectible (right) configurations of
the prototype used in the following evaluations. These configurations apply to all test
levels.

closed and the level solved. Background samples are characterized by a soft and heavily
synthesized brass sound.

4.3.2 Level Design
The evaluation prototype features ten levels with beginner difficulty, instructing the
player step by step and letting him/her train and explore the game mechanics. There
is no specific tutorial, therefore a short instruction has to be given before a play session
can be started. The level design is governed by a certain principle: The levels alternate
between instructing and exploring to create a directed and yet organic feel to the game-
play. Game progression is distinguished by level structure and complexity that increases
slightly but noticeable from level one to level ten. When a concept is learned, it is often
repeated in the next level or combined with another concept from earlier to pose a new
and still manageable challenge to the user. This ensures a very linear learning curve that
can be mastered with just a few short sentences from the evaluator as a game instruc-
tion. The maximum amount of Spawner and Collectible objects in the levels is four, the
grid size differs per level. Some level grids also feature grid holes that are indicated by
differing tile visuals.

After the Pärt algorithm was rebuilt in software, the system architecture was designed
based mostly on research, creating a stable and functional base for developing the game
prototype configurations.

Chapter 5

Dynamic Object Creation

Most casual mobile games are not designed by hand anymore, but by algorithms defining
the levels and objects in them, facilitating gameplay diversity and replayability. A lot
of games profit from dynamic content, however there are still games that miss most of
these dynamic objects that are played frequently still. Is player enjoyment connected
to dynamic object generation in some way? This chapter therefore creates a foundation
for the following evaluation of the game using the GameFlow model [29] and other
heuristics tailored to the prototype to evaluate player enjoyment in games.

LaLuup is a first approach in using Arvo Pärt’s Tintinnabuli style to create a casual
mobile game based on algorithmic music generation. The game prototype was started
on paper, based on a lot of research in the field, but also created using trial and error. As
a first of its kind the audio system uses Pärt T-voices to create the connection between
sound and visualization and provide feedback to the player of the game. Like for every
new game prototype, it is especially important to ensure that interface, player feedback
and the overall game experience follow verified usability and playability guidelines. This
can be assured by previously done research as well as through evaluations at different
stages of the game prototype. But the evaluations performed with the game prototype
LaLuup do not only have the goal to discover and erase usability problems, they have
another goal: To explore effects of dynamic game elements to the GameFlow model
and the aesthetic experience in the case of the given game prototype. In the course of
this chapter different evaluation setups of the game prototype will be mentioned and
explained, two dynamic object spawning setups and a control setup with just the static
game. In the dynamic versions of the game prototype so-called collectibles will alternate
tile coordinates based on certain parameters. The static version will leave the collectibles
at their predefined spawn points throughout the level.

5.1 Dynamic Objects in LaLuup
There are many ways to create dynamic content in games, whether by developing objects
that move, spawn or change otherwise over time or by events, or by implementing it
in concealed ways like dynamically changing difficulty or generated levels. This thesis
focuses heavily on the first kind of dynamic objects, requiring them to be visible and
understandable to the player.

35

5. Dynamic Object Creation 36

Games often utilize dynamic objects as part of their core gameplay, in the way that
the game does not work without the dynamic elements. This is already used in early
twitch-based casual games like Tetris and Space Invaders. In such games the dynamic
objects are used heavily to create more and more time pressure the farther the player’s
game progress is. In turn-based games such as Age of Empires dynamic elements are
not needed to progress through the game, the gameplay does not depend on them but
rather on the players to complete their turn and then watch the game play out their
actions. An easy way to differ between those two game definitions on the base of casual
mobile single-player games is by the way the game responds to interruptions: If the
game progresses and perhaps is finally lost when it is left unattended, the game features
are mostly twitch-based, but if it stays contained in the same state it was left with, it
is a turn-based game.

One may argue that twitch-based games with their time pressure and dynamic ob-
jects immerse the player faster than turn-based games do, but in fact the effects on
immersion alone are difficult to measure as mentioned in section 2.2.2 already. There-
fore, another type of measurement and evaluation model has to be used, the GameFlow
model. By creating dynamic objects with certain twitch-based features within the turn-
based game prototype LaLuup the differences between these prototype versions can be
evaluated and corresponding usability problems can be located.

5.1.1 Idea and Evaluation Concept
LaLuup in its original prototype version uses no dynamic objects in that way, all tiles
in the level are fixed and their locations are predefined in a special level editor within
the game engine. The reason for this design decision is that the game designers want
players to explore rather than to be distracted by moving objects, therefore visible
actions within the game should only be triggered by the players themselves. When
looking at the importance of collectibles in the levels (as described in detail in section
3.2.1) this decision is understandable, yet it is easy to imagine an alternate version
where the collectibles could move. After some experiments with both ideas the question
surfaced if it is more enjoyable for the players to have to hunt the collectibles down than
just strategically draw Melody paths. Could this help immersion in the game, creating
a flow experience in which the players lose track of time easier than if they are just
planning, drawing and watching the game evolve at their actions? At the current state
of the game prototype it is still worth considering a change in gameplay and mechanics
if it increases the players’ enjoyment. The internal structure of the prototype is built to
be reusable as it is needed to be able to perform adjustments whenever needed.

It is important to mention that the evaluation conducted in the course of this the-
sis will not prove any effects of dynamic objects to the GameFlow model directly, it
will rather seek differences between the three prototype versions and discuss them in
reference to GameFlow and playability criteria. The evaluation results will be valid for
the prototype only, and can then be used to fix usability problems and improve cer-
tain features in the game. However, some of the findings may be valid to look at when
working on other casual mobile games utilizing algorithmic audio systems and similar
interaction techniques as LaLuup.

5. Dynamic Object Creation 37

5.1.2 Implementation
The grid system of LaLuup is very modular and its core class is called the Board.
Within the Board there are indices which either contain a Cell object or nothing at
all. A Cell object has different components, including objects to create the look of the
grid cells and of course the most important interface for the Collectible system, called
Placeable. The Placeable class is already described in detail in section 4.2.1 in reference
to its tasks in the audio system. However, in the case of dynamic collectibles, there
is one more derivation of the Placeable interface as before. The XCollectible class
symbolizes Collectible objects that do not have to be collected to solve a level, they
should rather be a reward for trying new combinations of patterns within one level.

An overview of the grid structure used in the following evaluation setups can be
seen in figure 5.1. The grid, and therefore the Board object, can have different layouts
as well, depending on the number of grid neighbours defined in its properties. It is
possible to create quadratic grids with four neighbours as well as octagonal ones with
eight neighbours. For this implementation and evaluation procedure the author uses the
original configuration of the game with six neighbours and a hexagonal grid to generate
evaluation results fitting to this specific level setup.

Figure 5.1: The structural connections between the objects involved in the implemen-
tation of dynamic collectibles in LaLuup. This does not represent a class diagram as
unimportant details and objects to this topic are omitted for the purpose of clarity.

A script called DynamicCollectibles can then be used to iterate over a list of
indices and alter the positions of all collectibles in the game, for both the Collectible
and the XCollectible objects. XCollectible objects, which do not have to be collected
to solve the level, can be disabled and enabled again and play additional background
sounds when hit to symbolize the reward of hitting them with the Melody pattern.
Their hit states are also reset after they are disabled to show that they are optional
gameplay elements. In contrast to these the other Collectible objects are only reset
if the loop is broken or did not get closed yet. Because of the modular grid system
the Collectible placement can simply be done by changing the reference index of the
object and attaching it to the Transform component of the corresponding Cell (in the
Unity engine the Transform component of a game object defines the position, scale and

5. Dynamic Object Creation 38

rotation of an object in the game world1). The method used to alter the placement is the
following: collectible.AttachToCell(Cell cell) where the collectible specifies the
Collectible or XCollectible object and the Cell defines the Transform component
and visuals it should be attached to.

5.2 Chosen Evaluation Setups
Dynamic objects in games can be implemented very diversely and so it is important to
define the test cases clearly and also provide reasons why they where chosen in the first
place. The following subsections shed light on the way the three different implemented
test cases work, what feelings they strive to create for the players and why they were
chosen over several other ideas. These test setups are used for both the usability expert
reviews and the following play tests with target group users. However, due to the us-
ability reviews before the play test, little changes and improvements can be provided to
increase usability and playability for the final evaluation of the prototype done in this
thesis. These changes will be described in detail in section 6.1.3.

5.2.1 Static Version
In experimental design every playtest needs a control version of the game to find dif-
ferences in the evaluation results so that these can be inferred to be connected to the
changes in gameplay that were made in the other test versions. So the static version in
this case is the corresponding control version of the game prototype of LaLuup.

Setup This test version features similar gameplay to the one described in section 3.2.1.
There are no dynamic Collectible objects and gameplay is therefore only revolving
around the puzzle and the solution to it. The ten test levels made for the evaluations
build up in a tutorial-like structure, first giving the player time to explore and then
showing him/her the Collectible elements and their purpose step by step. Three of
the test levels do not provide Collectible objects at all but are included because they
are needed in terms of the level and skill progression. These levels can of course be
skipped in the other tests if wanted, but are essential for learning the game at first. A
short explanation on how a level in the static version works is given at table 5.1.

Justification As already mentioned, in the case of the evaluation process conducted in
the course of this thesis, the experiments require a control version of the game in which
the collectibles do not move to support finding differences in the effects, enjoyment and
playability of the game. Additionally, it can be argued that it is easier to depict hidden
usability problems within the static version of the game as there are no dynamically
moving objects within the levels of the prototype. However, this also changes the way
game mechanics are utilized slightly, so this assumption may only be true to some extent.

Another purpose of the static version is of course more game design centered: The
first ideas of the prototype as well as the later developed detailed concept revolve around
experimenting and exploration, like it is already mentioned in section 3.1.1. At the scope

1https://docs.unity3d.com/Manual/class-Transform.html

https://docs.unity3d.com/Manual/class-Transform.html

5. Dynamic Object Creation 39

Game State Description

This is the start setup of the
static game version.

When every Spawner has a
Melody pattern, the patterns
reach the Spawners and all
collectibles are hit, the loop is
closed and the level is solved.

Table 5.1: This illustrates the static version of the prototype and how it is solved for
test level 5, including a short gameplay description for each step.

of the current development the game designer believes that it could also negatively
impact the goal of the game, which is exploring and not only solving the levels.

5.2.2 Event-based Collectibles
The idea for this version of the game prototype was created early in development as it
seemed to be the most logical and most predictable version of the dynamic Collectible
implementation at first. However, it is probable that it reduces the player’s various
possibilities to solve the levels, which has at least happened in some of the test levels
due to it’s implementation.

Setup The prototype’s levels begin in the same way as they do in the static game
version, but the difference is obvious when hitting the first Spawner with a Melody
pattern: The Collectible objects will change position at every Spawner hit as these
Spawner hits are specified to be the events on which positions are alternated. Generally,
a Collectible object only has one to two predefined positions to which they can change
as it is difficult to solve levels when having to memorize more than two positions per
Collectible object. However, these collectibles are not optional to hit to solve the
level as they are the standard Collectible objects and not XCollectible objects. This
means that the player has to create different solutions to the static version, sometimes
also restricting him/her solution possibilities a bit. In the level illustrated in table 5.2
this is however not really true and the solution to the original version does also still work
in the dynamic setup. The solutions of other levels in the test prototype can nonetheless
vary in reference to the static control version.

5. Dynamic Object Creation 40

Game State Description

This is the start setup of
the event-based dynamic
Collectible game version.

As soon as the red Spawner’s
Melody pattern hits the blue
Spawner, the Collectible
objects change position.

At every hit the positions
of the Collectible objects
change again. The conditions
for solving the level do not
change in reference to the
static version.

Table 5.2: This table illustrates the event-based Collectible version of the game and
its states in test level number 5.

Justification As already mentioned, this version of the dynamic Collectible objects
was conceptually developed early in connection with first asking the question if dynamic
objects could have an effect to player enjoyment in casual mobile games like LaLuup.
The decision to really implement and use it in the evaluation process in this thesis was
made not only because its simplicity in gameplay, but also because there was a strong
indication from informal playtests that the players could easily connect the events to
the position changes and understand it as a gameplay mechanic.

The predefined positions of the Collectible objects were in fact chosen over a
slightly randomized version because they are not only more predictable to the player,
but they also let the game designer create a more predictable layout for the puzzle. This
enables a more distinct level and challenge progression over time which can be precisely
steered by the game designer without destroying the exploration component altogether.

5.2.3 Event and Time-based Optional Collectibles
When attempting to create a second dynamic Collectible version of the game pro-
totype several obstacles had to be conquered and the biggest in fact was the problem
of position prediction for the player. Alternating positions of collectibles per beat did
create more confusion than any version tested before, especially for players that did
not have a certain musical comprehension, but also for everyone else it was difficult to

5. Dynamic Object Creation 41

Game State Description

This is the start setup of
the time-based dynamic
Collectible game version.

As soon as certain trigger
Collectible objects are hit
on the way, optional purple
lined XCollectible objects
appear for short time frames.

As the XCollectibles always
appear at the same positions,
the player can now adapt
his/her Melody patterns to hit
the optional objects.

Even though these objects are
optional and conditions for
level solving do not change,
they produce additional
sounds as a reward.

Table 5.3: This table shows the time-based optional Collectible version of the game
and its states in test level number 5.

concentrate on the changes over time. Therefore, another solution had to be found, con-
necting event and time-based spawning in an optional way that creates reward rather
than frustration.

First Setup The first version of the time-based dynamic Collectible objects was cen-
tered around the Metronome’s beat only. The collectibles switched placed to exactly
the positions also used in the event-based version, but rather than waiting for Spawner
object hits, the position alternation was done per beat, or per a fixed amount of beats.
For example, after every fourth beat, the collectibles changed position and everything
else stayed the same. This setup created problems like a perceived randomness when
and where a Collectible is hit as players were not able to predict how many beats a
loop or a Melody pattern had. The whole gameplay suddenly felt random and unpre-
dictable, many players didn’t even discover the reason why and when the changes in
Collectible position happened.

5. Dynamic Object Creation 42

It was clear that there was no direct, simple solution to fix the prototype test version
and use time-based spawning in this manner. However, as time was still a factor the
author wanted to integrate in the evaluation process, a concept for a variation of the
time-based spawning had to be developed.

Variation The follow-up idea finally chosen as a variation of the time-based spawning
is so-called time-based optional spawning. In this version of the game prototype there
are two types of collectibles, static Collectible objects that do not move at all and
dynamic, time-based XCollectible objects that are only visible for a short time at
certain specified events. XCollectible objects do not have to be hit to solve the level,
instead they reward hitting them with a second Tintinnabuli-styled T-voice playing
along for a certain amount of beats.

The gameplay now works as follows (also illustrated in an example in table 5.3):
When a trigger Collectible of all the standard Collectible objects in the level is hit
and it has a specified XCollectible to activate, the XCollectible object is activated
for a short amount of time (about three seconds in the test version). It can then be hit
by a Melody pattern and thereby starts playing along the pattern for a certain amount
of beats (three in the test version). After the time has run out the XCollectible object
disappears and can be activated by the trigger Collectible again. This variation is
therefore not a purely time-based version of the dynamic object spawning, it is rather a
hybrid between event and time-based spawning. Additionally, the collection of the extra
objects is optional to the gameplay, making them a reward for exploring the level rather
than forcing the player to catch them.

Justification As already mentioned, time was a factor the author wanted to include
in the evaluation process as it is often the main reason for that dynamic objects are
spawned in casual games. However, for LaLuup a classic implementation that just
changes properties over a certain time frame did not work out in a way that can be
evaluated both rationally and usefully. Instead, a variation of the time mechanics were
found that do not hinder the wanted gameplay and still create the effect wanted for
the following evaluation. By making the extra collectibles optional the gameplay test
expands to not only include dynamic collectibles, but a dynamic reward for players that
explore other level solutions and Melody patterns. Thereby the variation gets to be more
than a replacement for the simple time-based spawning as it also supports the general
concept of experimentation described in section 3.1.1 to a noticeable degree.

Chapter 6

Evaluation

The evaluations of the three game versions explained in section 5.2 are structured into
two essential parts. First the prototypes are examined for usability and playability prob-
lems using the expert heuristic evaluation method with the main GameFlow heuristics
as mentioned in section 2.2.2 and some additional ones. This first review phase is es-
sential to the following evaluation as the critical usability issues have to be resolved
to continue the process. Furthermore, it is important that there are little or at least
negligible remaining issues in interfaces, controls, game mechanics, audio, visuals and
other game-specific areas so that the outcome of the second evaluation does not only
reveal transparent and unadulterated results, but also that the differences in the three
prototype versions can be depicted. The second evaluation is a small-scale playability
test which consists of a questionnaire filled out by players approximately within the
target group of the game prototype. The questionnaire used in this case is based on
the core module of the Game Experience Questionnaire by IJsselsteijn et al. [24] and
it includes many statements that can be connected to the playability and GameFlow
heuristics in an effective way. It is not only a well structured and profoundly designed
document, but it was also tested and validated in a professional way to ensure a robust
measurement of the game experience components for which the scoring guidelines are
provided.

At the end of this chapter, there should be enough evidence to analyze the depicted
differences of the three prototype versions and discuss them in reference to GameFlow
and playability criteria. Generally the findings can be discussed for LaLuup only, how-
ever, some results may be relevant to consider when working on other casual mobile
games with similar techniques.

6.1 Expert Reviews using Heuristics
The first part of the evaluation process focuses entirely on the remaining usability and
playability issues within the three game prototypes. The goal of this evaluation is to find
and subsequently resolve the remaining critical issues to guarantee a smooth playtest
without any players reaching dead ends because of gameplay mechanics or encountering
drastic interface problems. In the best case all players will be able to experience all ten
test levels without significant interruptions in the final playability tests.

43

6. Evaluation 44

6.1.1 Method
A common way to effectively find usability issues in games is the so-called (expert)
heuristic evaluation, usability expert evaluation or expert review which was introduced
by Nielsen and Molich in 1990 [17]. Since then it has become a popular technique to
evaluate usability in product interfaces and was adapted for games as well. Its popularity
is simple to explain as it can be summarized into three advantages to traditional user
testing [14]:

• Cheap: The usability expert evaluation was actually an attempt to find a way
to create a less expensive usability evaluation for interface designs. As the the
process relies on the user experience of only a few individuals, it generally reduces
the costs of finding issues drastically.

• Fast: As already mentioned and going hand in hand with the cost reduction, the
heuristic evaluation method is less time-consuming than traditional user tests and
accomplishes fast results with less effort. Developers can therefore already resolve
issues found on the same day the evaluation took place.

• Flexible: Less money and less time already contribute to the flexibility of the
method, but not only these two advantages result in it. Flexibility is also provided
in the way that the interface evaluated can be in different stages of development
and does not have to be entirely complete at the stage of the evaluation. This sup-
ports the idea of iterative design and agile development which are two important
concepts especially within the software domain.

The first evaluation approach on the expert review method by Nielsen and Molich
was conducted in the way that good and bad aspects of the interface were determined
in the process. The issues found were reported in detail including ways to fix them to
enable the developers to create alternative solutions. By only determining aspects and
describing them in detail, this evaluation process can be used for interface prototypes
that only exist on paper too. Including to the method the first set of usability heuristics
was published in their paper [17] which was later reviewed and published again in 1994
[18]. In general, heuristics in the sense of the expert review method can be defined
as a set of rules and guidelines commonly known that support solving problems. A
traditional expert review session is structured into four parts [19]:

1. Initial meeting: At the kick-off meeting a brief explanation of the game is given,
including what exactly should be evaluated, the missing features and target audi-
ence. The detailed heuristics should be available on paper so that the evaluators
can already have a look at them.

2. Application review: The core of the evaluation process is reviewing the applica-
tion where the experts use their knowledge and experience to independently find
usability issues based on the heuristics given before.

3. Evaluator review session: The experts then compile a list of all findings to-
gether and thereby eliminate duplicates and false ones while redefining unclear
issues and their severity ratings.

4. Final report: The final result of the heuristic evaluation is a categorized list
of usability issues with corresponding heuristics and severity ratings to estimate
which problems should be solved first.

6. Evaluation 45

The application review within this structure can however be done in many different
ways. While Nielsen recommends reviewing the interface twice [19], when looking at
game expert reviews, Korhonen suggests structuring the review in three parts, focusing
on the interface elements, gameplay and the game interface and game world interaction
[14]. However, there are many divergent methods how the review is done in practice as
it has to fit to the game prototype as well as to the detailed set of heuristics that should
be evaluated [4], [23].

Heuristics

The heuristics used in the evaluation of the previously described game prototype versions
in chapter 5 are, as recommended by Schaffer [7], put together from different sets of
heuristics used in common usability literature for game evaluations. The first seven
heuristics of the set were taken from the GameFlow heuristics by Sweetser and Wyeth
[29] and adapted to fit to the game prototype, leaving aside the last component of
GameFlow as Social Interaction is not useful to evaluate in a single player game as
LaLuup. Although Immersion is difficult to evaluate with the expert review method (as
mentioned in section 2.2.2) it is included because issues directly affecting it could still
be spotted.

The remaining three heuristics are roughly based on the playability heuristics for
mobile games by Korhonen and Koivisto and include the missing topics the author
wanted to evaluate. Interface and Audiovision belong roughly to the game usability
heuristics (GU1, GU3 and GU6) and Mobility refers to the mobility heuristics (MO1
and MO3) [15]. Other sets of heuristics as the one by Pinelle [23] and Desurvire [4] can
also be mentioned as references as they overlap with some heuristics of the chosen set
and were considered as well. The final set of heuristics can be seen in tables 6.1 and 6.2.

Preparations and Procedure

Usually, the experts invited to participate at a game prototype expert review are at least
either experienced in the area of usability engineering or in game design. In the best case
they are so-called double experts and bring experience in both areas with them [13].
Developers of the game prototype should not be part of the reviewers because of their
involvement in the development. While Nielsen originally suggests 3-5 experts for the
evaluation process as new issues found per review decrease rapidly above this amount
[19], Korhonen even scales the number of experts down to 2-3 [13]. For the LaLuup game
prototype, three experts were asked to participate in the evaluations: Two members of
the Playful Interactive Environments1 research group with professional backgrounds in
game development, design and usability and the likewise experienced co-founder and
developer of the previously mentioned audio software foreverloops (in section 2.1.3)
were invited separately as it was simply not possible to find a mutual date.

A day before the actual reviews took place, the heuristics were mailed to the experts
so they could already have a look at them. Before starting the review session, the game
was explained shortly, including the interaction methods because there is no actual
tutorial contained in the prototype versions. The experts were told that they had to close

1http://pie.fh-hagenberg.at/

http://pie.fh-hagenberg.at/

6. Evaluation 46

Topic Criteria Description
1 Concentration The player is able

to concentrate on
the game.

The game should grab the player’s atten-
tion quickly and also maintain it through
the game session. The game tasks should
feel worth attending to by providing a
suitable amount of work that is within the
perceptual, cognitive and memory limit
of the player. Players should not be dis-
tracted by tasks that don’t feel important.

2 Challenge The game is suf-
ficiently challeng-
ing.

The challenges provided by the game
should match the players skill level, there-
fore as the player increases his skill level,
the level of challenge also should increase
at a suitable speed.

3 Player Skills The player is able
to master and de-
velop skills.

Learning to play the game should be inter-
esting and encouraging. The player should
not have to read an instruction manual be-
fore being able to start playing. Interfaces
and mechanics are easy to learn and use.

4 Control The player feels
a sense of control
over his/her ac-
tions.

The player should feel in control of his/her
actions within the game. Recovering from
errors in player actions should be possi-
ble and not feel tedious. The game should
convey the feeling that the actions and
strategies the player uses change the game
world.

5 Clear Goals The game pro-
vides the player
with clear goals.

Goals should be presented early and
clearly to the player.

Table 6.1: The first part of the final set of heuristics used to evaluate the prototypes.

the loop between the Spawner objects and collect all Collectible objects on the way.
Furthermore, they were introduced to the touch-and-drag interaction and the concept
of the Melody patterns. They were also instructed that the XCollectible objects are
purely optional gameplay elements as this led to minor problems in the first review in
which it was unintentionally left out of the game introduction. Since LaLuup is a puzzle
game that completely relies on exploration and experimentation, it was very important
to give the experts the chance to play the game as unhindered as it is possible under
the observation of the evaluation moderator before starting the actual review process.
Every expert was given another version of the game to play at first before being allowed
to try the other two. They also received a handout with all heuristics seen in the tables
6.1 and 6.2 and the metrics which will be explained in detail in the next paragraph. The
resulting compiled usability issues can be seen in table 6.3 and the original handouts
and tables can be found on the the enclosed CD-ROM/DVD (cf. appendix A).

6. Evaluation 47

Topic Criteria Description
6 Feedback The game pro-

vides the player
with appropriate
feedback.

The player should receive immediate feed-
back on his/her actions and progress to-
wards the goals.

7 Immersion The player expe-
riences deep but
effortless involve-
ment in the game.

The player should have an altered sense of
time, be less aware of his/her surroundings
and self and feel deeply involved in the
game.

8 Interface The game inter-
face is easy to use
and understand.

The game interface provides sufficient
feedback, is easy to understand and con-
trol and does not distract the player from
other game tasks.

9 Audiovision The game’s sound
aesthetics sup-
port the overall
game experience.

The game audio should provide support to
the visual understanding of the game and
the overall game experience. The player
should not be distracted by the sound aes-
thetics but interested in exploring differ-
ent game configurations to alter them.

10 Mobility The play sessions
are of flexible
length and in-
terruptions are
handled reason-
ably.

Levels are of appropriate length to sup-
port the short play sessions typical for mo-
bile games. The player should not be pun-
ished by the game for interrupting a play
session and should be able to quickly get
refocused again.

Table 6.2: The second part of the final set of heuristics used to evaluate the prototypes.

Metrics and Result Structure

Normally the final report is written by one of the experts at the last stage of a traditional
heuristic evaluation [19] but in the case of this particular review, the time scope the
experts had to complete the evaluation was very limited as not even a mutual meeting
to compile the list of heuristic violations was possible to organize. The merging of the
list was instead done by the author and supported by the intentionally detailed issue
descriptions to prevent misunderstandings. There are different ways to use metrics for
rating the usability issues in the evaluation process. Ponnada and Kannan for example
only evaluate if their heuristics are statisfied for different games and therefore only use
a Yes/No rating [25]. In the case of this thesis the actual issues should be rated in detail
which renders a Yes/No rating practically unusable. Korhonen uses a severity rating in
his publications that is structured into Low/Minor, Medium and Critical/Major [14],
[13]. Since it was important to the author to get an even finer granularity to identify
the issues that were most problematic, a 5-grade severity rating system similar to the
one Nielsen originally introduced was integrated [19]:

0 / No problem: A heuristic is violated without consequences to the game.

6. Evaluation 48

1 / Minor problem: The negative effect is insignificant or just purely aesthetic.
2 / Medium Problem: The issue has a small effect on usability or playability.
3 / Major problem: The issue has a strong effect on usability or playability.
4 / Critical problem: Playing the game is impossible because of the issue.

Another metric that is not always used in addition to severity is frequency, in the case
of LaLuup, however, it is interesting because it helps at prioritizing the found issues.
The frequency rating system used in this evaluation is structured into three different
grades of issue occurrence:

1 / Rare: Only affects a small amount of users or appears in rare situations only.
2 / Frequently: Affects a large amount of users or appears in many situations.
3 / Constantly: Affects every single user or appears all the time.

Problem Description Ver. Heur. Sev. Frq. Score
1 The overall increase in difficulty

over time is too fast.
S/E/T 2 3 2 6

2 The level’s grid size is too small
(played on iPhone SE and 6), there
is still space to expand it further.

S/E/T 4/8 2 3 6

3 The purpose of the XCollectible
objects is not perfectly clear and
they need better audiovisual feed-
back.

T 6 2 2 4

4 There is some trial and error needed
to understand the controls fully.

S/E/T 4 2 2 4

5 A chain of Melody objects is seen
as a loop. It is misunderstood that
only when a pattern continues play-
ing forever and hits all Spawner and
Collectible objects it is an actual
loop.

S/E/T 4/5/6 3 1 3

6 The overall difficulty in the dynamic
versions is higher than in the static
version because of the new concepts
that are introduced.

E/T 2/3 1 3 3

7 The time span the XCollectible
objects are enabled is not estimable.

T 6 1 2 2

8 The pattern that is displayed in the
Spawner objects is not fully clear in
meaning at first.

S/E/T 8 1 1 1

Table 6.3: The compiled list of issues found by the experts within the heuristic evaluation
of the three prototype versions of LaLuup (S = static version, E = event-based collectibles,
T = event and time-based optional collectibles). The found issues are sorted by their total
score which is already suggesting an order to fix them.

6. Evaluation 49

The total score 𝑡 for the usability issue is then calculated, given the severity as 𝑠 and
frequency of appearance as 𝑓 , by the following equation: 𝑡 = 𝑠·𝑓 . Although this equation
is not commonly used and validated in heuristic evaluations in literature, in the scope
of this evaluation it was still applied because it delivers fast and easy to understand
results of sufficient quality. The total score is utilized to prioritize issues, enabling the
author to fix the most urgent and distracting ones before the upcoming playability test.
Therefore, the compiled list of issues in table 6.3 is sorted by the total score, ranked
from highest to lowest.

6.1.2 Results
In the course of the evaluations, the experts found a total of nine usability and playability
issues within the three prototype versions. After compiling the total list and merging
identical ones there were eight problems left which can be seen in the already mentioned
table 6.3. Interestingly, the severity rating always ranged from 1 to 3 and neither 0 (no
problem) nor 5 (critical problem) was rated in any of the performed reviews. Severity
is in general very uniformly distributed with two major problems and three minor and
medium problems each. In the case of frequency, the majority of issues was encountered
frequently with two rare and constantly occurring issues each as exceptions. In total,
five of the usability issues were discovered in all game prototypes, two only in the event
and time-based optional collectibles version and one in both dynamic versions of the
game. The heuristics that were found to be violated most often were number 4 (“The
player feels a sense of control over his/her actions.”) and 6 (“The game provides the
player with appropriate feedback.”) which were mentioned three times. Two times the
issues corresponded with heuristic number 2 (“The game is sufficiently challenging.”)
and 8 (“The game interface is easy to use and understand.”). For the heuristics number
1, 7, 9 and 10 no usability violations were found in the evaluation process.

Of the eight issues found, two were rated with the highest total score of 6, followed
by two issues with a score of 4 and four remaining issues scoring under 4. In the following
list the problems are ordered from lowest to highest score as in table 6.3 and include a
detailed description as well as a possible solution:

1. Score 6: The first problem states that the overall increase in difficulty is too
fast. Players could therefore become frustrated and stop playing early on before
they could grasp the controls and goals of the game in detail. This can be fixed
by reducing the overall difficulty, introducing gameplay concepts more slowly and
creating additional levels focused on exploring them in detail.

2. Score 6: Another issue found was that the grid size is too small as the screen
would allow to expand it further without any problems. During the evaluations
it was often a problem for the experts to draw the paths they wanted to draw
without touching a different tile by mistake. This can be fixed by removing the
blank space around the current test levels and zooming the camera further towards
to the grid, however it is a challenging task because this could negatively impact
the gameplay as the grid size would vary by level.

3. Score 4: Problem 3 only affects the event and time-based optional collectible ver-
sion in the way that the actual purpose of the optional collectibles is not perfectly
clear and hitting them needs additional feedback. Players could be distracted from

6. Evaluation 50

the main gameplay by trying to find out how the optional collectibles work and
get disappointed by their audiovisual feedback when they are hit. By enhancing
the background voice that is playing when they are hit and adding stronger visual
feedback this issue could be solved.

4. Score 4: The next issue is again found in all versions and refers to the trial and
error that is needed to fully understand the controls. Unfortunately, the concept
of the Melody patterns is difficult to grasp for some players, but it could definitely
help to create simple tutorial levels to start with and thereby accomplish more
possibilities to experiment and investigate.

5. Score 3: An issue that is rarely spotted because it depends on the level configu-
ration (three Spawner objects are needed) is problem number 5. It states that a
chain of Melodies is seen as a loop, meaning it is misunderstood that only when a
pattern continues playing forever and hits all Spawner and Collectible objects
it is an actual loop. The solution to this problem is easy to find but a little bit
tricky to implement: When a chain is played and the Melody gets trapped between
two of the three Spawner objects, the collectibles outside of the unfinished loop
should be reset to show that the loop is not valid.

6. Score 3: This problem states that the overall difficulty in the dynamic versions is
higher than in the static version because of the new concepts that are introduced.
Because the versions differ in gameplay elements this is not really an issue as only
one version will actually be used for further development. If it will be one of the
dynamic versions, tutorials will be provided to guarantee a smooth increase in
challenge over time.

7. Score 2: Another problem is again only found in the optional collectibles version:
The time span the XCollectible objects are enabled is not estimable and feels
rather random to the player. It can be fixed by simply showing the objects only
until the next Spawner is hit. However, this could possibly change the time when
players are trying to hit them slightly.

8. Score 1: The last problem found indicates that the pattern that is displayed in
the Spawner objects is not fully clear in meaning at first. This issue can be solved
by a similar approach as problem 4 (by creating more tutorial levels). Additionally,
the interface can be reworked in the way that the pattern includes directions in
the form of lines.

As supposed, the heuristic evaluation done in this thesis shed light on the most
critical usability problems of the three different game prototypes of LaLuup. With this
information the prototype can be improved before the playability tests are held and
further investigation in the field of dynamic objects and GameFlow is done. Interestingly,
when asking the experts directly after the evaluation, the preferred version of the game
was in two of three cases the one that they had played first.

6.1.3 Improvements
Due to the short amount of time between the two evaluations only the most critical
issues could be solved. By calculating total scores and sorting the problems these critical
ones were easy to depict and prioritize. Overall, three out of eight issues were solved,

6. Evaluation 51

mostly because of their rating, but also based on the effort to fix them. In the following
listing the issues solved including their score are named by their number, ensued by
their solution or the improvement that was made to prevent their further occurrence
during the upcoming playtests:

• Issue 1, Score 6: Reducing the overall increase in difficulty over time was in
fact hard to implement in regards to keeping the length of the playtests the same
and introducing all concepts to the point they were introduced before. It is not
possible to simply add levels because all game versions get longer by doing so.
A partly solution to this problem that was chosen for time and comfort reasons
regarding to the playtests was therefore to create five more tutorial levels as an
own game version and give the user the chance to learn the concepts through them
before starting the actual playtest. These five levels do not feature Collectible
or XCollectible objects at all as they are introduced as different concepts in the
game prototype versions, they are instead focused on level exploration and ex-
perimentation and feature large hexagonal grids to support familiarizing with the
pattern drawing mechanics. It does, however, not change the increase in difficulty
and just lowers it before playing the actual prototype versions, but this trade-off
makes sense to keep the playtest on a rational time scale.

• Issue 4, Score 4: The trial and error feeling when learning the controls can be
minimized by the same solution as issue number 1. By adding extra levels as an
introduction the controls can be grasped easier and slower, changing the trial and
error components to experimenting and exploration.

• Issue 8, Score 1: The most uncritical issue was solved too because it was a simple
and effortless task to do so: By adding direction lines in the patterns displayed in
the Spawner objects their meaning possibly became clearer. Also, the instruction
levels developed for issue 1 and 4 improve the understanding for these interface
components slightly.

Issue 2, also having a total score of 6 as issue 1, has not been solved because it would
have changed too much within the gameplay and level design structure to be integrated
at this stage in a rather short time span. One may think it is simple to rescale the levels
but in fact this could create another, even bigger problem: The grid scale would become
non-uniform between levels, resulting in a confusing and even more inaccurate gameplay.
Therefore this change was left aside as a lightweight solution was not found and has to
be considered in the results of the playability tests. As issue 3 only occurs in one version
of the game prototype, was only discovered by one expert and the improvement would
have needed a considerable amount of time and effort it was left aside too. Issue 5, 6
and 7 were also regarded to not affect the playtest in a substantial amount.

Some cosmetic issues regarding the prototype were also improved: The grid outline
color was changed to highlight Collectible objects and grid holes even more. Yellow
Spawner objects were recolored in a darker shade to emphasize the white Melody pattern
interface because it was nearly invisible on them before. Drawing a pattern and lifting
the finger from the screen now starts the Melody directly at the last touch instead of the
Spawner in order to create a better understanding for the interaction method. The most
extensive change was that when a level is solved and the loop is closed, both Melody
patterns now start playing at the same time. The reason for this is that the author

6. Evaluation 52

observed that the experts often did not recognize at first that they solved a level in the
evaluations. Everything else stayed exactly the same as in section 5.2 for the following
playability evaluation.

6.2 Playability Test using GEQ
After the improvements determined in the first evaluation of the prototypes were imple-
mented, the second evaluation could be conducted. In this case, the second evaluation
process consists of playtests with subsequent surveys to be handed out to the players.
The goal of the surveys is primarily to depict differences between the three prototype
versions and discuss them in reference to the GameFlow model and other playability as-
pects. Additionally, the playtests generate a broad amount of feedback on the prototypes
in general which can be analyzed and interpreted too.

6.2.1 Method
The surveys handed out to players had to fulfill certain requirements as reliability,
validity, robustness and convenience in the way that it is easy to administer, learn
and understand. Developing such measures and verifying them is difficult and time-
consuming, taking from a couple months to years. Therefore, appropriate measures had
to be found in state-of-the-art publications and literature rather than creating them
exactly for the case of this thesis.

Fortunately, a suitable and relatively new survey by IJisselstein et al. called the
Game Experience Questionnaire [24] was found at the time the exact questionnaire
method was researched. The core module of the Game Experience Questionnaire and its
seven components were chosen because it did not only fulfill the requirements mentioned
above, but also matched the research goal.

Structure and Metrics

The Game Experience Questionnaire (shortly called GEQ) is structured into four mod-
ules: The core module focuses mainly on game experience, the social presence module is
revolving around the involvement of the player with other entities, the post-game mod-
ule assesses the feelings of players after they stopped playing and the in-game version
of the GEQ core module is used for short, repeated surveys during game sessions.

Since the survey should be performed after playing each prototype, there is no
social component in LaLuup and the post-game module is beyond the scope of this
thesis, only the core module was chosen. The core module features 33 statements that
have to be answered on a scale ranging from 0 to 4. The 33 statements can later be
summarized in 7 game experience components to use as a basis for the comparison of the
prototype versions. The 7 components are called Competence, Sensory and Imaginative
Immersion, Flow, Tension/Annoyance, Challenge, Negative affect and Positive affect and
their respective statements asked in the playtest questionnaires can be seen in table 6.4.
The statements given per component already describe its meaning in detail, for example,
Competence means the feeling of competence or expertise a player experiences while
playing the game. The survey given to the players included all statements in original

6. Evaluation 53

Nr. GEQ Statement GEQ Component
2 I felt skilfull
10 I felt competent
15 I was good at it
17 I felt successful
21 I was fast at reaching the game’s targets

Competence

3 I was interested in the game’s story
12 It was aesthetically pleasing
18 I felt imaginative
19 I felt that I could explore things
27 I found it impressive
30 It felt like a rich experience

Sensory/Imaginative Immersion

5 I was fully occupied with the game
13 I forgot everything around me
25 I lost track of time
28 I was deeply concentrated in the game
31 I lost connection with the outside world

Flow

22 I felt annoyed
24 I felt irritable
29 I felt frustrated

Tension/Annoyance

11 I thought it was hard
23 I felt pressured
26 I felt challenged
32 I felt time pressure
33 I had to put a lot of effort into it

Challenge

7 It gave me a bad mood
8 I thought about other things
9 I found it tiresome
16 I felt bored

Negative affect

1 I felt content
4 I thought it was fun
6 I felt happy
14 I felt good
20 I enjoyed it

Positive affect

Table 6.4: The GEQ statements ordered by their respective components including their
original order number on the survey sheet handed out to players [24].

order number and a scale to indicate the amount of truth they had felt per statement
while playing the prototype, ranging from 0 to 4 as in the original GEQ version [24]:

0 / Not at all
1 / Slightly
2 / Moderately
3 / Fairly
4 / Extremely

6. Evaluation 54

Preparations and Procedure

The second evaluation performed consisted of the following steps: At the start the test
players were guided through the first level of the five introduction levels and thereby
given an overview of the interaction methods of the game. They could then play the
remaining four introduction levels to grasp the pattern concept in detail. Afterwards,
the test users played each of the three versions of the game prototype and were handed
a GEQ core module survey to complete after each version. The sequence in which the
prototypes were played was altered randomly for every playtest to make up for the
increase in skill and competence the users experienced over time.

After the evaluation process was completed, the players were asked if they had any
other remarks corresponding to the game prototypes such as which version they enjoyed
most, if there was anything they found disturbing or impressive concerning the overall
gameplay, aesthetics and mechanics.

6.2.2 Results
In total, 12 people participated in the GEQ survey, one third of them female and the
others male, with an overall range in age of 23 to 31. The test players were chosen with
the only prerequisite that they should be accustomed to playing games on a mobile
device using touch interaction (smartphone or tablet). The results per GEQ object can
be seen in table 6.5(a) for the first four components and in table 6.5(b) below for the
remaining three components. For each result set six statistical metrics are given: The
sample variance 𝑠2, measuring how far the data is spread out, is calculated as the average
of the squared differences from the mean. The square root of the variance is the standard
deviation 𝑠 which shows how far the average answer is from the mean. Another metric
measuring the spread is the range which is the difference between the highest and the
lowest number in the data set. The mode is the most common number in the data set
while the median is the one directly in the middle or if the data set is of even length,
the average of the two middle ones. Finally, the mean illustrated in the data sets in
this result table is the exact average of all values within the component and is therefore
mathematically called the arithmetic mean �̄�.

The colors in table 6.5 refer to how far the values are from the desired values for
this component: For Competence, Immersion, Flow and Positive affect the best value
is 4, while it is 0 for Tension and Negative affect. The Challenge component’s desired
value is 2, lying directly in the middle of the scale, meaning that the game should be
challenging enough for the players to have fun but simple enough to not get frustrated
about it. Colors used are a darker shade of green (best score), a lighter green (one
ranging step away), yellow (two ranging steps away), orange (three ranging steps away)
and red (farthest away from best). In total, the results are very solid, ranging from
darker green to yellow only. Generally, the spread in answers per component is slightly
higher in many of the dynamic versions compared to the respective static version which
is seen in the spread metrics such as variance, deviation and range.

The complete data sheet and survey can be found on the enclosed CD-ROM/DVD
(cf. appendix A). The following list discusses the results for each GEQ component
shortly and mentions possible reasons for them referencing the observations collected in
the playtests:

6. Evaluation 55

Competence Immersion Flow Tension
Version S E T S E T S E T S E T
Variance 0.37 0.78 0.93 1.40 1.09 1.23 1.17 1.12 1.11 0.30 0.77 0.53
Deviation 0.61 0.88 0.96 1.18 1.04 1.11 1.08 1.06 1.05 0.55 0.88 0.73
Range 2 3 3 4 4 4 3 3 4 2 3 3
Mode 3 2 3 3 3 3 3 4 3 0 0 0
Median 3 2 3 3 3 3 3 3 3 0 0 0
Mean 2.63 2.38 2.53 2.61 2.85 2.69 2.50 2.88 2.75 0.39 0.56 0.39

Challenge Negative affect Positive affect
Version S E T S E T S E T
Variance 1.41 1.71 1.78 0.34 0.63 0.46 0.55 0.63 0.71
Deviation 1.19 1.31 1.33 0.58 0.80 0.68 0.74 0.80 0.85
Range 4 4 4 2 3 3 3 3 3
Mode 0 3 0 0 0 0 3 4 4
Median 1.5 2 2 0 0 0 3 3 3
Mean 1.52 1.68 1.57 0.46 0.44 0.40 3.22 3.33 3.28

Table 6.5: The results of the game experience survey sorted by the GEQ components
and split up into two rows to increase readability. Once again the three prototype versions
are marked by there abbreviations (S = static version, E = event-based collectibles, T =
event and time-based optional collectibles).

S Mean E Mean T Mean Difference
Flow 2.50 2.88 2.75 0.38
Competence 2.63 2.38 2.53 0.25
Immersion 2.61 2.85 2.69 0.24
Tension 0.39 0.56 0.39 0.17
Challenge 1.52 1.68 1.57 0.17
Positive affect 3.22 3.33 3.28 0.12
Negative affect 0.46 0.44 0.40 0.06

Table 6.6: The GEQ components’ arithmetic means in order of the amount of difference
between all three game prototype version means. The difference is calculated by subtract-
ing the minimum mean from the maximum. The best means per category are marked in
green (note that highest mean is not always best depending on the component).

1. Competence: The solid overall result of the Competence component is close to
3 with an arithmetic mean ranging from 2.38 to 2.63. However, in regards to the
event-based version, most people chose 2 (moderately) over 3 (fairly) as is seen in
the statistic averages. This could be caused by the feeling of randomness at which
time the Collectible objects switch places as some people did not understand
when changes happened at first and also had the notion that the Collectible
objects jump in their way and block their pattern drawings.

2. Sensory and Imaginative Immersion: Another good result was achieved re-
garding the Immersion component with mean values of 2.61 to 2.85 and the event-
based version performing slightly better than the others. This could be coherent

6. Evaluation 56

with the increased amount of challenge in this version as it was already mentioned
in the expert review results in section 6.1.2. Additionally the range of the answers
given is very high (4), possibly because of the difficulty of self-assessment at this
rather subconscious topic.

3. Flow: When looking at the Flow component, the results are quite similar to
Immersion with slightly higher differences in the means ranging from 2.50 to 2.88
and an answer range of 3 to 4 (extremely) which can again be related to the
problem of self-assessment at this topic. Again the event-based dynamic version
performed best, followed by the time-based one and the static prototype version
as the last.

4. Tension/Annoyance: The results of the Tension component are very good with
most people ticking the 0 (not at all) and an arithmetic mean of 0.39 to 0.56.
The event-based version has the highest score which possibly coheres with the
arguments already mentioned at number 1 (Competence).

5. Challenge: The total results of the Challenge component show an arithmetic
mean of 1.52 to 1.68 with the event-based version being closest to the desired
value of 2. Again the range of answers was really high (4) and the most common
ones were 0 for the static and time-based version and 3 for the event-based one.
It is again clear that the event-based version was the most challenging and is
not the perfect version to start playing with but eventually it seemed to be more
interesting during the later gameplay.

6. Negative affect: A very good result (and the best of the negative components)
was accomplished at the Negative affect component where mean values are be-
tween 0.40 and 0.46 and both median and mode are 0. The lowest and therefore
best mean was scored by the time-based version which some people found to be
very inviting because they felt like they could explore more things and get personal
achievements through the optional Collectible objects.

7. Positive affect: When taking a look at Positive affect one can see that it is in
fact the best result of the positive components with an arithmetic mean ranging
from 3.22 at the static version to 3.33 at the event-based version and a broad
range of answers again. Most people even ticked 4 in both of the dynamic versions
which could be caused by the overall increase in perception when games feature
dynamic objects because of the constant need of refocusing.

Another interesting data set that can be discussed is the amount of differences of the
arithmetic means of the three prototype versions as illustrated in table 6.6. Generally,
the differences in means are very low, between 0.38 for the Flow component and 0.06
for the Negative affect component. This could mean that the effects of dynamic objects
within the game prototypes are barely influencing the overall result because thereby
caused changes in gameplay are nearly undetectable for the players.

When looking at it from a different perspective and taking the differences as im-
portant, it could however be a confirmation that Flow, Competence and Immersion are
more influenced by the usage of dynamic objects in the prototypes than all other GEQ
components. Flow, referring to losing track of time and connection with the outside
world as seen in table 6.4, describes the flow experience very similar to the original
Flow model GameFlow is derived from [3]. Sensory and Imaginative Immersion, defined

6. Evaluation 57

in table 6.4 as the feeling of exploration and making rich aesthetic experiences, matches
the idea of the flow experience too. It can be argued that the Competence component
does not really blend in to that picture but when investigating a little further one can
see that many of the GameFlow components mentioned early on in table 2.2 like Player
Skills, Controls and Feedback build upon the concept of feeling skilfull and successful.
Therefore, the small differences depicted could really be an indication that dynamic
objects can affect the GameFlow criteria.

Chapter 7

Concluding Debate

7.1 Result Analysis
The two separate evaluations conducted with the LaLuup prototypes provide valuable
information about usability and playability aspects and highlight differences between the
three game versions. In the following listing, the results and findings of both evaluations
are summarized and briefly analyzed:

• Generally good and stable results: In both evaluations the test players re-
sponded well to all versions of the game prototype, the applications were well
received and complimented in terms of the gameplay, mechanics and aesthetics.
This general notion is also mirrored in the evaluation data as there were no criti-
cal and only two major issues found in the expert reviews (one of them rendered
rather cosmetic by the rarity of occurrence). In the playability survey all arith-
metic means are above 2 for positive questions and below 1 for negative questions,
resulting in a table without any orange and red cells. Especially when looking at
the survey, one can see that the results are not only good but also very stable as
there were not many outliers in the data set as well. This could also be caused or
at least provoked by the rating scheme ranging from 0 to 4, which provides the
option of choosing the middle value. However, in the GEQ the middle choice (2,
meaning moderately) is not really an equal choice as the scale rates the amount
of truth in a statement from not at all to extremely. As there is not really a state-
ment that can be half true, there can only be granularities of the validity of a
statement, either rendering it true to some amount or not true at all.

• Very good audiovisual and aesthetic results: In reference to the aesthetics
of the game prototypes, the evaluation results showed that people enjoyed both
the sound feedback and the visuals of the game. In the expert reviews, the game’s
sound was deemed original, reminding the experts of both old computer games,
water drops and forest rain. One of the experts even asked for a system to record
solutions to listen to them again and adding the possibility of listening to solutions
of others. The visuals were complimented to be so simplified and clear, reacting
to all user interactions performed. Both the Immersion and Audiovision heuris-
tics were not violated at all in the conducted usability evaluation. In the second
evaluation performed, the GEQ components Sensory and Imaginative Immersion

58

7. Concluding Debate 59

and Positive affect are in the top three positive results. These components contain
statements like It was aesthetically pleasing, I found it impressive and I enjoyed it.
Assuming that player enjoyment is strongly coupled to the audiovisual experience,
these results confirm the opinion of the experts.

• Challenge and difficulty problems: In the expert reviews, the top scoring issue
(6) was in regards to the Challenge heuristic, indicating that The overall increase
in difficulty over time is too fast. To solve the problem, five tutorial levels were
implemented to specifically encourage the users to experiment with the game
mechanics before playing one of the three prototype versions. This, however, did
not solve the fast increase in difficulty and just lowered it before playing the actual
game versions, but was chosen as a compromise to keep the playtest length the
same. As expected, the Challenge component of the GEQ showed a broad answer
range of 4 with the most common ones being 0 (not at all) for the static and
time-based version and 3 (fairly) for event-based prototype, but interestingly the
results were not too far from the desired value. The event-based version can be
seen as a little more challenging whereas the others seemed to be not challenging
enough. Generally, there is some room for improvement concerning challenge as
well as difficulty and it was expected as a result because the balancing of puzzle
games is always a hard and time-consuming task with no perfect solution.

• Few interface, controls and feedback issues: Some issues concerning the
interface, controls and feedback of the game prototypes were also found in the
expert reviews. Many have been solved by now, but the remaining few problems
have to be looked at in detail and improved in the future. The most concerning
one is probably the screen resolution issue, stating that The level’s grid size is too
small, there is still space to expand it further. This issue cannot be solved in just
expanding the grid as this creates a non-uniform scale changing per level which
could negatively impact the gameplay, therefore, other possible solutions have to
be created. Other issues such as the clarity of the XCollectible objects’ purpose,
the learning of the controls, the way a loop works and the interface pattern also
have to be solved to create an enjoyable and satisfying gaming experience.

• Small differences between prototype versions: In the GEQ survey per-
formed, the differences in arithmetic means of the components Flow, Competence
and Immersion were larger than all other differences in means between the three
prototype versions. As already argued in section 6.2.2, this could still be coinci-
dence because of the small range the differences have and the dynamic objects
thereby may not affect the components linked to the GameFlow model more than
they influence all other components. However, the three largest differences are as
expected seen in the Flow, Competence and Immersion components. These com-
ponents are strongly connected to GameFlow (the detailed explanation can be
found in section 6.2.2 at the bottom paragraph). Therefore, the possibility of dy-
namic objects actually affecting the GameFlow model and the corresponding flow
experience cannot be ruled out.

Many of the stated conclusions are drawn on the basis of inference from a holistic
view of all evaluation results and observations collected over the course of this thesis.
This shows that there is still room for extensive research and data collection to support

7. Concluding Debate 60

the assumptions made within the result analysis above. However, the author suggests
that another evaluation should only be performed in the next stage of development
as these prototype versions were sufficiently tested and some improvements should be
integrated before repeating the rather time-consuming tests again.

7.2 Further Prospects
At the current stage, LaLuup naturally has a few solvable issues that are also reflected
in the evaluations. It is however important to mention that the game is still a prototype
and its audio system is a proof of concept as Tintinnabuli styled music has never been
utilized in this form before. Because of the evaluations, however, the next steps in
improving the game have already been discussed:

• Navigating the Player: As the controls still seem to be trial and error to some
test players and the game interaction is not clear for many users, it will most
likely be necessary to implement a tutorial at the start of the game. However,
this tutorial should be hidden by design, meaning that the users should not be
restricted or forced to create exact Melody patterns to achieve their player skills.
They should rather be encouraged by the level design to perform interactions that
lie within the wanted scheme of patterns.

• Balancing Challenge and Difficulty: With progressing development and a
ready-to-play interaction tutorial, it will finally be possible to create a reasonable
challenge curve that fits for most users. Currently it is not planned to have different
difficulty levels because all of the levels are designed by hand and with every
additional difficulty level the work doubles, but eventually there could be different
challenge stages to choose from, enabling the players to start with an easy level or
already skip some scenes to experience more challenging levels right away. Ideas
like this are currently being discussed in detail because they will be relevant in the
near future and should be implemented until the next playtests to considerably
improve the player experience.

• Optimizing Interface and Feedback: Concerning the open interface and feed-
back issues, many conceptual possibilities to fix them are already in their test
phase. The grid size problem (especially seen on smaller devices) can be reduced
by integrating zoom interactions, however this could complicate the process of
keeping track of the whole grid. As this is only an assumption made by the au-
thor, different zoom mechanisms still have to be tested in the future.

• Increasing Variation with Dynamic Objects: As mentioned at the very be-
ginning of this thesis in section 1.2, many players asked for more variation in sound
aesthetics and gameplay in the informal user tests performed. After improving the
prototypes further in the course of the thesis project the sound aesthetics seemed to
become more sophisticated and the later conducted evaluations generally revealed
very good results in audio and visual aesthetic aspects. Nevertheless, the gameplay
variation did not change that much but for the dynamic prototype versions. In
the GEQ survey it can be depicted that the event-based version, admittedly being
the most difficult, also has the most top scores in arithmetic means (as seen in
table 6.6). It may also be that the dynamic objects actually affect the flow experi-

7. Concluding Debate 61

ence, therefore it could be interesting to integrate dynamic objects within LaLuup
without overusing them as in the event-based version to keep the difficulty level
in a reasonable range.

7.3 Conclusion
In the course of this thesis, extensive research in the fields of algorithmic and generative
composition as well as flow and playability in casual games has been done. On the basis
of this research an interactive audio system for the game prototype called LaLuup was
designed, developed, integrated in the game and improved over time. Dynamic objects
were used to alter the gameplay and mechanics slightly, creating three different proto-
type versions to evaluate. Two evaluations followed after the prototype construction,
revealing usability issues to fix and differences between the prototypes to discuss. The
effects of the additional dynamic objects were then studied in regards to the GameFlow
model, revealing possible correlations between them.

As the developed game prototype is in a rather early stage and Kunabi Brother
is an indie game company with a small staff, evaluations had to be done within a
very small amount of time while still revealing useful results. When looking back, the
expert reviews definitely supported identifying usability issues and the subsequently
improved prototypes created a good basis for the following survey. The effort and time
spent with organizing the reviews turned out to be valuable to find problems that the
developers including the author did not know of before. In the case of the GEQ-based
playtests the resulting data also seemed promising, however one cannot argue that
the tendencies found are statistically relevant as the test group was rather small. This
fact complicates the result interpretation and the following implementation of new or
improved features within the game prototype. However, it is still very helpful to test
such an early prototype with actual casual game players because the observations made
in the playtests uncover playability issues and possible solutions for them.

Casual mobile games flourish nowadays but at the same time many of them end up
not succeeding because of the largely saturated and highly competitive market. In this
amount of content it is needed to stand out and distinguish from the masses, for example
by designing levels by hand instead of generating them, or utilizing technologies that
were not applied in this exact way before. LaLuup tries to achieve these concepts by
using a specially designed audio system and levels constructed by the hand of a game
designer. Many puzzle-game titles currently on the market are using similar approaches
with other special technologies, including AR and VR for mobile devices, to create
interesting new player interaction and gameplay methods. As smartphones and tablets
are currently one of the most accessible technological devices around today the game
sector is still expanding with many possibilities to explore and experiment with.

The future holds a multitude of new combinations of interaction methods, tech-
nologies and generative audio and visual aesthetics. LaLuup aims to be an example for
utilizing a different kind of technology (the audio system) to alter the way casual games
are played, shifting the focus on exploration rather than solving level by level. By adding
dynamic objects and altering the gameplay to study effects in regards to the GameFlow
model the author hopes that this example provides relevant information to consider
when working on other casual mobile games utilizing similarly special techniques.

Appendix A

CD-ROM/DVD Contents

Format: DVD-RW, 4.7 GB, Single Layer, ISO9660-Format

A.1 Project

• Project/src: Project files for LaLuup (Unity Version 2017.3.0f3)
• Project/bin1: LaLuup executables of the first evaluation (Xcode 9.4, iOS 11.4)

– /static: Static version
– /event: Event-based collectibles
– /time: Event and time-based optional collectibles

• Project/bin2: LaLuup executables of the second evaluation (Xcode 9.4, iOS 11.4)
– /instruction: Additional instruction levels
– /static: Static version
– /event: Event-based collectibles
– /time: Event and time-based optional collectibles

• Project/video: Videos of the improved executables (second evaluation)

A.2 Thesis

• /Thesis.pdf: Thesis (this document)
• /images: Original raster and vector images

A.3 Evaluations
• Evaluation: Original evaluation files

– /ExpertEvaluation.pdf: Handout the experts received filled with results
– /PlayabilityTest.pdf: Survey handout including a short game description,

summarized user notes and observations
– /PlayabilityTestResults.pdf: Complete result tables of the GEQ

62

../Project/src/.
../Project/bin1/.
../Project/bin1/static/.
../Project/bin1/event/.
../Project/bin1/time/.
../Project/bin2/.
../Project/bin2/instruction/.
../Project/bin2/static/.
../Project/bin2/event/.
../Project/bin2/time/.
../Project/video/.
./images/.
../Evaluation/.

References

Literature

[1] Aubrey Colter. “SoundFORMS : Manipulating Sound Through Touch”. In: CHI
Extended Abstracts on Human Factors in Computing Systems - CHI EA’16. San
Jose, CA, USA, 2016, pp. 2425–2430 (cit. on p. 5).

[2] Hermann Conen. Arvo Pärt. Die Musik des Tintinnabuli-Stils. 1st ed. Cologne,
Germany: Dohr, 2006, p. 202 (cit. on pp. 17, 25).

[3] Mihaly Csikszentmihalyi. Flow. The Psychology of Optimal Experience. 1st ed.
New York, USA: Harper Perennial, 1990 (cit. on pp. 10, 56).

[4] Heather Desurvire, Martin Caplan, and Jozsef A. Toth. “Using Heuristics to Eval-
uate the Playability of Games”. In: Extended Abstracts of the Conference on Hu-
man Factors and Computing Systems - CHI EA’04. Vienna, Austria, 2004, p. 1509
(cit. on p. 45).

[5] Melissa a Federoff. “Heuristics and Usability Guidelines for the Creation and Eval-
uation of Fun in Video Games”. Bloomington, Indiana, USA: Indiana University,
2002, p. 52 (cit. on p. 10).

[6] Fong Ling Fu, Rong Chang Su, and Sheng Chin Yu. “EGameFlow: A Scale to
Measure Learners’ Enjoyment of E-learning Games”. Computers and Education
52.1 (Jan. 2009), pp. 101–112 (cit. on p. 11).

[7] Katherine Isbister and Noah Schaffer. “Chapter 6 - Heuristic Evaluation of
Games”. In: Game Usability. Ed. by Katherine Isbister and Noah Schaffer. Burling-
ton, Massachusetts, USA: Morgan Kaufmann Publishers Inc., 2008, pp. 79–89 (cit.
on p. 45).

[8] Aki Järvinen, Satu Heliö, and Frans Mäyrä. Communication and Community in
Digital Entertainment Services. Tech. rep. Tampere, Finland, p. 78. url: http://t
ampub.uta.fi/tup/951-44-5432-4.pdf (cit. on p. 12).

[9] Kalle Jegers. “Pervasive GameFlow: Identifying and Exploring the Mechanisms of
Player Enjoyment in Pervasive Games”. Umeå, Sweden: Umeå Universitet, Inst
för Informatik, 2009, p. 122 (cit. on p. 11).

[10] Sergi Jordà. “The reacTable”. In: Proceedings of the 28th of the international con-
ference extended abstracts on Human factors in computing systems - CHI EA’10.
Atlanta, GA, USA, 2010, pp. 2989–2994 (cit. on pp. 4, 5).

63

http://tampub.uta.fi/tup/951-44-5432-4.pdf
http://tampub.uta.fi/tup/951-44-5432-4.pdf

References 64

[11] Sergi Jordà et al. “The reacTable: a Tangible Tabletop Musical Instrument and
Collaborative Workbench”. In: ACM SIGGRAPH Sketches on - SIGGRAPH’06.
Boston, Massachusetts, USA, 2006, p. 91 (cit. on p. 5).

[12] Jesper Juul. A Casual Revolution. Reinventing Video Games and Their Players.
1st ed. Cambridge, Massachusetts, USA: The MIT Press, 2010 (cit. on pp. 8, 9).

[13] Hannu Korhonen. “Comparison of Playtesting and Expert Review Methods in
Mobile Game Evaluation”. In: Proceedings of the 3rd International Conference on
Fun and Games - FnG’10. Leuven, Belgium, 2010, pp. 18–27 (cit. on pp. 45, 47).

[14] Hannu Korhonen. “Evaluating Playability of Mobile Games with the Expert Re-
view Method”. Tampere, Finland: School of Information Sciences, University of
Tampere, 2016, p. 280 (cit. on pp. 12, 13, 44, 45, 47).

[15] Hannu Korhonen and Elina M. I. Koivisto. “Playability Heuristics for Mobile
Multi-player Games”. In: Proceedings of the 2nd International Conference on Dig-
ital Interactive Media in Entertainment and Arts - DIMEA’07. Perth, Australia,
2007, p. 28 (cit. on p. 45).

[16] Jussi Kuittinen et al. “Casual Games Discussion”. In: Proceedings of the Confer-
ence on Future Play - Future Play’07. London, Ontario, Canada, 2007, pp. 105–
112 (cit. on pp. 8, 9).

[17] Rolf Molich and Jakob Nielsen. “Heuristic Evaluation of User Interfaces”. In:
Proceedings of the Conference on Human Factors in Computing Systems - CHI’90.
Seattle, Washington, USA, 1990, pp. 249–256 (cit. on p. 44).

[18] Jakob Nielsen. “Enhancing the Explanatory Power of Usability Heuristics”. In:
Conference Companion on Human Factors in Computing Systems - CHI’94.
Boston, Massachusetts, USA, 1994, p. 210 (cit. on p. 44).

[19] Jakob Nielsen and Morgan Kaufmann. Usability Engineering. 1st ed. San Fran-
cisco, California, USA: Morgan Kaufmann Publishers Inc., 1993, p. 362 (cit. on
pp. 44, 45, 47).

[20] Cárthach Ó Nuanáin and Liam O’ Sullivan. “Real-time Algorithmic Composition
with a Tabletop Musical Interface”. In: Proceedings of the 9th Audio Mostly on A
Conference on Interaction With Sound - AM’14. Aalborg, Denmark, 2014, pp. 1–
7 (cit. on p. 6).

[21] Janne Paavilainen. “Playability: A Game-Centric Definition”. In: Extended Ab-
stracts on Human-Computer Interaction in Play - CHI PLAY’17. Amsterdam,
Netherlands, 2017 (cit. on p. 14).

[22] Janne Paavilainen et al. GameSpace. Methods for Design and Evaluation for Ca-
sual Mobile Multiplayer. Tech. rep. Tampere, Finland, 2009, p. 103. url: http://t
ampub.uta.fi/english/tulos.php?tiedot=293 (cit. on p. 11).

[23] David Pinelle, Nelson Wong, and Tadeusz Stach. “Heuristic Evaluation for Games:
Usability Principles for Video Game Design”. In: Proceedings of SIGCHI Confer-
ence on Human Factors in Computing Systems - SIGCHI’08. Florence, Italy, 2008,
pp. 1453–1462 (cit. on p. 45).

http://tampub.uta.fi/english/tulos.php?tiedot=293
http://tampub.uta.fi/english/tulos.php?tiedot=293

References 65

[24] K Poels, Y A W de Kort, and W A IJsselsteijn. The Game Experience Question-
naire. Eindhoven, Netherlands: Technische Universiteit Eindhoven, 2013, p. 10
(cit. on pp. 43, 52, 53).

[25] Aditya Ponnada and Ajaykumar Kannan. “Evaluation of Mobile Games using
Playability Heuristics”. In: Proceedings of the International Conference on Ad-
vances in Computing, Communications and Informatics - ICACCI’12. Chennai
(Madras), India, 2012, pp. 244–247 (cit. on p. 47).

[26] José Luis González Sánchez et al. “Playability: Analysing User Experience in
Video Games”. Behaviour and Information Technology 31.10 (2012), pp. 1033–
1054 (cit. on p. 13).

[27] Scott McCloud. Understanding comics. New York, USA: Harper Collins Publ.
USA, 1994, p. 224 (cit. on p. 22).

[28] Nathan Scott. “Music to Middleware: the Growing Challenges of the Game Mu-
sic Composer”. In: Proceedings of the Conference on Interactive Entertainment -
IE’14. Newcastle, Australia, 2014, pp. 1–3 (cit. on p. 5).

[29] Penelope Sweetser and Peta Wyeth. “GameFlow: A Model for Evaluating Player
Enjoyment in Games”. Computers in Entertainment - Theoretical and Practical
Computer Applications in Entertainment 3.3 (2005), pp. 3–3 (cit. on pp. 10, 11,
35, 45).

[30] Penelope Sweetser et al. “GameFlow in Different Game Genres and Platforms”.
Computers in Entertainment - Theoretical and Practical Computer Applications
in Entertainment 15.3 (2017), pp. 1–24 (cit. on pp. 10, 11).

[31] Sharon Lynn Chu Yew Yee, Henry Been-Lirn Duh, and Francis Quek. “Investi-
gating Narrative in Mobile Games for Seniors”. In: Proceedings of the 28th Inter-
national Conference on Human Factors in Computing Systems - CHI’10. Atlanta,
Georgia, USA, 2010, pp. 669–672 (cit. on p. 11).

Audio-visual media

[32] Guy Birkin. Mapping Tintinnabuli Transformations - Chart 1. Mar. 2014. url: h
ttps://aestheticcomplexity.files.wordpress.com/2014/03/tintinnabuli_chart-1.png
(cit. on p. 26).

[33] Batuhan Bozkurt. Otomata - Generative Musical Sequencer. July 2011. url: htt
ps://www.youtube.com/watch?v=k8EfRXihiWg (cit. on p. 7).

[34] Marlene Brandstätter and Ulrich Brandstätter. Foreverloops - Hybrid Sandbox
Game. 2017. url: https://www.foreverloops.com/images/foreverloops.png (cit. on
p. 8).

[35] Richard Vreeland. January - Generative Music Tool. Jan. 2013. url: https://vim
eo.com/104276908 (cit. on p. 6).

https://aestheticcomplexity.files.wordpress.com/2014/03/tintinnabuli_chart-1.png
https://aestheticcomplexity.files.wordpress.com/2014/03/tintinnabuli_chart-1.png
https://www.youtube.com/watch?v=k8EfRXihiWg
https://www.youtube.com/watch?v=k8EfRXihiWg
https://www.foreverloops.com/images/foreverloops.png
https://vimeo.com/104276908
https://vimeo.com/104276908

References 66

Online sources

[36] Guy Birkin. Programming Arvo Pärt. Nov. 2011. url: https://aestheticcomplexit
y.wordpress.com/2011/11/11/programming-arvo-part/ (cit. on p. 25).

[37] Charlie Huguenard. Making a Music System. Aug. 2016. url: http://designingso
und.org/2016/08/making-a-music-system-part-1/ (cit. on pp. 24, 27).

https://aestheticcomplexity.wordpress.com/2011/11/11/programming-arvo-part/
https://aestheticcomplexity.wordpress.com/2011/11/11/programming-arvo-part/
http://designingsound.org/2016/08/making-a-music-system-part-1/
http://designingsound.org/2016/08/making-a-music-system-part-1/

	Declaration
	Preface
	Abstract
	Kurzfassung
	Introduction
	Motivation
	Objective
	Document Structure

	Related Work
	Algorithmic and Generative Composition
	Interactive Digital Instruments
	Composition Techniques
	Related Applications

	GameFlow and Playability in Casual Mobile Games
	Casual Games Discussion
	GameFlow
	Playability

	Audio System: Conception
	Characteristics of LaLuup
	Concept
	Requirements
	Aesthetic goals

	System Details
	Detailed Gameplay Description
	Tools and Design Decisions

	Audio System: Implementation
	The Pärt Algorithm
	General explanation
	Specific implementation

	System Architecture
	Basic Audio Modules
	Composing Modules
	Other Structuring Modules

	Prototype Configuration
	Sound Generation
	Level Design

	Dynamic Object Creation
	Dynamic Objects in LaLuup
	Idea and Evaluation Concept
	Implementation

	Chosen Evaluation Setups
	Static Version
	Event-based Collectibles
	Event and Time-based Optional Collectibles

	Evaluation
	Expert Reviews using Heuristics
	Method
	Results
	Improvements

	Playability Test using GEQ
	Method
	Results

	Concluding Debate
	Result Analysis
	Further Prospects
	Conclusion

	CD-ROM/DVD Contents
	Project
	Thesis
	Evaluations

	References
	Literature
	Audio-visual media
	Online sources

