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Kurzfassung

Binaurales Audio oder wörtlich “Audio beide Ohren betreffend” beschreibt
Methoden um realistische, dreidimensionale Sounds über Kopfhörer wieder-
zugeben. Dreidimensionale Sounds können das Erlebnis von virtuellen Um-
gebungen wie zum Beispiel Videospielen verbessern: Töne können aus allen
Richtungen wahrgenommen werden; Bilder können nur direkt vor den Augen
des Benutzers gesehen werden.

Diese Arbeit stellt ein System vor, mit welchem dreidimensionale So-
unds mit Hilfe von binauralen Techniken in einem Videospiel wiedergegeben
werden können. Es handelt sich um ein Virtual Reality Videospiel, bei dem
mehrere Benutzer in dem selben physikalischen Raum in einer virtuellen
Welt miteinander interagieren. Binaurales Audio wird verwendet, um die
Spielerfahrung zu verbessern, indem ein zusätzlicher Weg, Informationen
über die virtuelle Welt zu übermitteln, ermöglicht wird.

Um eine realistische Erfahrung zu erreichen, muss die Richtung der simu-
lierten Töne automatisch angepasst werden, wenn die Benutzer ihre Köpfe
rotieren. Um diese Rotationen zu erfassen, können Orientierungs-Sensoren
verwendet werden. Verschiedene solcher Sensoren, wie sie zum Beispiel in
den meisten Smartphones verbaut sind, wurden verwendet, getestet und
werden vom System bereitgestellt.
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Abstract

Binaural audio, which literally means “audio regarding both ears”, describes
techniques to provide realistic three-dimensional sound experience to a user
wearing headphones. Three-dimensional sound can help players immerse
themselves in virtual environments, such as video games: Sounds can be
perceived from any direction, while visuals can only be seen in front of the
user’s eyes.

This thesis presents a system to provide three-dimensional sound using
binaural techniques in a co-located multiplayer environment. In this envi-
ronment, multiple users interact with each other inside a virtual world while
being physically located in one room. Binaural audio is used to improve the
experience by adding an additional means to convey information about the
state of the virtual world.

To achieve a realistic experience, the simulated sound direction must
adapt to users rotating their heads. To track such rotations, orientation
sensors can be used. Various different orientation sensors, including those
present in common smartphones, have been used, tested and implemented
and are provided by the system.
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Chapter 1

Introduction

1.1 Motivation
With consumer devices such as the Oculus Rift and HTC Vive being re-
leased, virtual reality has become an interesting topic for video games. But
it is not only used for games played in front of a computer, but also for
co-located multiplayer games, in which players physically move around in
the same location to interact with each other. Typically, co-located games
use what is called global visuals and audio. This means output which is
the same for each player. Global visuals can be produced with video pro-
jectors, either on the floor where players move around, or on a wall next
to it. Global audio can accompany it by using loudspeakers in the room.
Multiplayer games in general, however, normally use customized visuals and
audio, which means players see and hear those parts of the game world that
are relevant to them. It would be interesting to be able to deliver these in
co-located environments.

In the real world, when sounds are heard, the direction they originate
from relative to the listener’s position can also be perceived. In simulations,
and more specific in video games, this feature of sound is still rarely used.
Audio output, even if customized for each user in a multiplayer game, mostly
consists of background music and sound effects which cannot be localized by
listening alone. When simulating virtual worlds in co-located environments,
having sounds whose origin direction can be determined just by listening
could greatly improve the sense of immersion.

1.2 Problem and goal
The goal of this thesis is to add customized, localizable audio output to
an existing co-located environment, namely the Ars Electronica Deep Space
system. This system already possesses all necessary features for co-located
multiplayer games with global audio and visuals. A project is presented that

1



1. Introduction 2

uses smartphones and headphones in combination with the Deep Space sys-
tem to deliver directional audio to each player in the co-located environment.

Using headphones and so-called binaural audio techniques, directional
information can be added to any mono-channel sound. Listeners will be able
to tell which direction the sound is coming from as if it would originate from
an actual sound source at any defined position in the room.

To achieve realistic directional audio that responds to players moving
around in the room, the orientation each player is facing needs to be deter-
mined. Only then can the relative direction of the virtual sounds in respect
to the player be calculated. Thus, an orientation sensor needs to be carried
by each player. Two different solutions to this problem are implemented and
presented.

1.3 Outline of this work
Including this chapter, this work is divided into seven chapters, each pre-
senting a part of the research and the project.

Chapter 2 describes the current state of the art in co-located environ-
ments. The requirements for using binaural audio in a co-located system are
listed. Some existing co-located systems are examined, if and how they are
capable of delivering customized directional audio to its users.

In chapter 3, the theoretical basics of binaural directional sounds are
described. It shows how humans can determine the direction of sounds, which
techniques exist to make any sound directional, and the implications of this
for designing virtual environments.

Chapter 4 presents the concept for the implementation of the project.
It discusses which problems are being solved and by which methods. A
game framework is introduced that can be used to create multiplayer games
for the co-located environment with customized binaural audio. Also, an
example game using the introduced game framework is created to showcase
its features.

The details about the technical implementation of the concept are de-
scribed in chapter 5. The different parts of the implemented system are
explained, how they have been developed and how they communicate with
each other.

Using the developed example game, data about the effectiveness of the
system has been collected by letting multiple users play a pre-defined sce-
nario and recording their performance. Chapter 6 performs an objective eval-
uation of this data and determines if the proposed goals could be achieved
by the implementation.

Chapter 7 concludes this work by presenting a short summary, the results
and contributions. Also, steps to be done regarding this topic in the future
are discussed.



Chapter 2

State of the Art: Co-Located
Environments

2.1 Overview
The term co-located literally means placing multiple entities inside the same
physical location. In terms of virtual environments, it is used to describe en-
vironments in which multiple users interact with each other by being located
in the same physical location, which usually is an enclosed space or room.

In co-located multiplayer games, users interact with each other to reach
an either common or adversarial goal inside a virtual world by sharing
the same location. This contrasts regular multiplayer games, in which each
player usually uses their own device, such as a computer or smartphone,
at arbitrary physical locations and interacts with the game using an input
device like a keyboard and a mouse or a joystick.

The interactions between users in a co-located environment arise from
their actual physical interactions, like movement. The virtual environment
can be changed by various data derived from these interactions, e.g. position
and rotation of the users inside an enclosed space or movement of hand and
feet.

2.2 Requirements
This thesis creates a concept for using directional audio in a co-located
multiplayer environment. In this environment, users should receive realistic,
customized three-dimensional audio from virtual sound sources by physi-
cally walking inside a pre-defined, rectangular location. To achieve this, the
system is required to feature the following ways to obtain data about the
physical state of the co-located users, and to report the state of the virtual
world back to them.

3



2. State of the Art: Co-Located Environments 4

2.2.1 Position

For a customized sound experience, the system must be able to have infor-
mation about each user’s position inside the co-located environment. Using
these positions, the relative directions to each virtual sound source can be
calculated and used for delivery of realistic directional sounds.

For the implementation of the thesis project, the Pharus [25] system sup-
plies these positions. It uses laser tracking devices to calculate the positions
of multiple users inside a pre-defined area and reports them to the applica-
tion. Technical details about how these positions are obtained are given in
section 5.1.

2.2.2 Orientation

Users should be able to locate the incoming direction of virtual sounds just
by listening. For this, it is also important that the system is able to obtain
the direction in which the users are facing. In the best case, the absolute
orientation of each user’s head can be obtained, so the virtual sounds change
immediately to users rotating their heads.

It might also suffice if only the rotation of the users’ bodies could be
determined; however, the immersiveness of the experience might be reduced
by this restriction.

As part of the thesis project, two ways to obtain orientation data have
been implemented and tested: the sensors included in smartphones, and a
custom solution using an Arduino microcontroller with an orientation sensor
attached to a pair of headphones. Details about this topic are covered in
section 2.3.

2.2.3 Audio output

To deliver realistic audio, each user needs to be supplied their own cus-
tomized 2-channel audio output. This can be achieved using a pair of head-
phones per user and creating one stereo audio signal per user. Chapter 3
describes how three-dimensional audio can be created using headphones.

The different audio signals can either be created centralized on a server
and wirelessly sent to each user’s headphones, e.g. using bluetooth. Alterna-
tively, one client device can be used per user to supply the audio signal, for
example by connecting each pair of headphones to a smartphone running a
client application which is carried by each user.

2.2.4 Visual output

Visual output can improve the quality of the experience, by being able to de-
liver additional information about the state of the virtual world. While users



2. State of the Art: Co-Located Environments 5

will see the position of the other players physically, other virtual entities,
such as obstacles or enemies, can be displayed visually.

Visuals can be delivered globally, e.g. by projecting an image on a wall
of on the floor, or per user by using individual displays, such as smartphones
or head-mounted displays.

2.3 Orientation measurement
Measurement of the orientation, or attitude, of an object in three dimensions
was one of the biggest challenges while implementing the concept of this
thesis. Each user’s orientation in the co-located environment needs to be
obtained in order to supply meaningful directional audio.

Orientation in 3D can be stored in multiple ways, two of which are
the most common: Euler rotation, consisting of three rotations around pre-
specified orthogonal axes, and quaternions, encoding an axis vector and a
rotation angle. Both of these can be converted from one to another.

To measure the absolute orientation of an object in three dimensions, at
least two reference directions are needed. If a vector in both these directions
can be obtained, the orientation can be calculated. This can be achieved by
using two different sensors.

Motion sensors, or accelerometers, can measure the total force acting
on an object. At rest, the only force acting on an object is gravitational
force directed to Earth’s centre, which can be used as the first reference
direction. Magnetic sensors, or magnetometers, can measure the strength
and direction of the magnetic field exerted on an object. When no artificial
magnetic fields are present, the only magnetic field is one directed to Earth’s
magnetic North or South Pole, which can be used as the second reference
direction.

Since both these kinds of sensors tend to be less accurate than desired for
a proper calculation of orientation, a third sensor can be used to improve
the accuracy: Rotation sensors, or gyroscopes, can measure the change of
rotation over time. Using algorithms called sensor fusion, the measurements
of all three kinds of sensors can be combined to obtain a very accurate result
of attitude, if one of each kind is present on the same object. Such a setup
of three sensors to calculate an object’s attitude is called attitude heading
and reference system (AHRS).

Several different such algorithms to perform sensor fusion have been
developed and can be used on the raw results of each sensor [24]. Most
algorithms can also perform if not all three kinds of sensors are available,
however with less accurate results. For example, if only a gyroscope sensor is
available, the attitude of an object in relation to an arbitrary initial attitude
can be estimated by integrating the change over time. Errors introduced by
inaccuracies of the gyroscope will accumulate though, causing the result to
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Figure 2.1: Some users playing a fish game in Ars Electronica’s Deep Space.1

become more and more inaccurate. This problem is called drift and can
cause the attitude to change even if the object is at rest. Only if all three
sensors are available, an absolute orientation without drift can be acquired.

As part of this thesis, a custom module able to determine its own orienta-
tion in space has been developed. It can be attached to a pair of headphones
and send sensor readings to a receiver device via Wi-Fi. The implementation
of this module is discussed in section 5.3.

2.4 Existing systems
Co-located systems are used for multiplayer environments in some existing
projects and installations.

2.4.1 Ars Electronica Deep Space

The Ars Electronica Center (AEC) is a scientific, educational and research
institute in Linz, Austria. There is an installation called Deep Space [17],
which contains co-located multiplayer applications. Deep Space features a
laser-tracking system which provides the positions of each person standing
or moving inside a 16×9 metre area. Further, images can be projected on the
floor of this area and on a wall next to it using four 4K projectors, resulting
in a resolution of up to 8192 × 4320.

It features lots of games and applications enabling the persons inside to
interact using their positions in the room. Figure 2.1 shows users playing a

1Image from the AEC website: http://www.aec.at/feature/en/deep-space-8k/.

http://www.aec.at/feature/en/deep-space-8k/
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Figure 2.2: Images of the Void’s head-mounted display. It features a 2K
display and headphones for three-dimensional visuals and audio.2

game in the Deep Space installation. Their positions are used to control fish
on the floor projection.

Some parts of this system, mainly the position measurement system, are
also used for the implementation of the thesis project.

2.4.2 The Void

The Void3 is a concept for virtual reality games created by The Void LLC,
Utah, USA. Advertised as “hyper reality” by its creators, the Void provides
game installations, the first of which at Madame Tussauds in New York City.

Using a virtual reality suit called Rapture Gear, an obstacle parcour
is turned into a virtual world. The suit features motion tracking of the
whole body, haptic feedback and three-dimensional audio and visuals using
a headset with a display and headphones, as displayed in Figure 2.2.

2.4.3 OptiTrack

Optitrack4 is a motion tracking system by NaturalPoint, based in Oregon,
USA. It uses high-speed cameras to track position and rotation of marker
objects. Multiple cameras can be used together to track many objects. It
can be easily integrated with VR applications, it is for example also used by
the Void to track users moving inside the VR parcour. Marker objects can
be attached to the users’ clothes to track their positions and their individ-
ual movements. There are different motion tracking solutions available by
OptiTrack; Figure 2.3 shows one of the cameras used for it.

3The Void website: https://thevoid.com
3Image by the Void website: https://thevoid.com/Press
4OptiTrack website: http://www.optitrack.com/

https://thevoid.com
https://thevoid.com/Press
http://www.optitrack.com/
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Figure 2.3: One of the cameras used by OptiTrack for motion tracking.5

Figure 2.4: Four people using the iGameFloor platform. Image from [11].

2.4.4 iGameFloor

iGameFloor [11] is a system for co-located multiplayer applications devel-
oped in the Center for Interactive Spaces at the University of Aarhus, Den-
mark. It features a glass floor of 12𝑚2 with image projection from the bot-
tom. Interaction is possible through tracking of user’s limbs with a camera.
Figure 2.4 shows what the system looks like.

5Image by the OptiTrack website: http://www.optitrack.com/products/prime-41/

http://www.optitrack.com/products/prime-41/


2. State of the Art: Co-Located Environments 9

2.4.5 Conclusion

There are some existing systems creating co-located multiplayer environ-
ments. All of them feature some kind of tracking of the users’ positions,
some even more complex tracking like motion of arms, hands, etc. Most
systems are not able to determine a user’s orientation.

Visuals, either in form of head-mounted displays (HMD) or projections
on floor or the wall, are also used in most of them. Sounds are, if used,
global and the same for each user most of the time. The only system to use
customized and directional audio is the Void.

The system created along with this thesis is supposed to contain all the
above mentioned features, with the exception of motion tracking and HMDs.



Chapter 3

Binaural Audio and Spatial
Sound Perception

3.1 Overview
The word binaural literally means “regarding both ears”. When used in
the context of audio, it usually means deliberately delivering specific sound
signals to both ears of a listener. This means, for each ear, a separate acoustic
signal is generated and should then be the only sound heard in this ear.
This can most simply be achieved by using stereo headphones, though other
methods exist to achieve binaural audio using for example stereo speakers
and crosstalk cancellation techniques [5, 6].

Using headphones, audio data can be generated by computer programs
using two audio channels, each of which is then played back by one of the
headphone’s speakers. Ideally, there should be no transformations of sound
while propagating from the headphone output to the inner ear. This, of
course, heavily depends on the type and quality of the headphones used.

The human brain can localize the direction of sounds remarkably well
in the real world. When we hear something, most of the time we instantly
know if the sound source is to the left or right, is above, below, in front or
behind us. This works because both ears do not perceive one sound exactly
the same due to various factors [4].

Binaural audio can be used to recreate what both ears of a listener heard
at another time and place, or even simulate sound sources at virtual posi-
tions inside a virtual world [7]. To achieve this, it is important to know which
kinds of differences between the signals received in both ears the brain uses
to localize a sound, which is explained in section 3.2. Various techniques
to create directional audio virtual have been invented; the ones relevant to
this work are introduced in section 3.3. Finally, problems and imperfections
of these techniques as well as their (partial) solutions are presented in sec-
tion 3.4.

10
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Figure 3.1: How monaural cues change the perceived spectrum of a sound,
depending on the incoming direction. Image from [32].

3.2 Basics of spatial sound perception
Sound localization is automatically performed by the human brain when
hearing a sound. It is possible for a listener to tell if a sound source is above,
below or on the same level as the their ears, which is called elevation detec-
tion. Furthermore, the horizontal direction or azimuth can be determined,
i.e. if the sound source is left, right, in front or behind the listener.

The accuracy of sound localization depends on various properties of the
perceived sound(s). To be able to localize the direction of a sound, the brain
automatically analyses various cues present in the perceived sound. There
are two types of cues: monaural cues, which can be detected using only
one ear, and binaural cues, which arise from the difference between what is
perceived simultaneously at each ear. Binaural cues appear as the interaural
time difference (ITD) and the interaural level difference (ILD) between the
two ears, where interaural means “between the ears”.

3.2.1 Monaural cues

Even though binaural audio is important for localizing of sound sources,
there are cues which can be sensed with just a single ear. These cues are
formed by the shape of the outer ear, the pinna. The pinna is formed in a
way that causes sound waves to bounce off elevations and thus cause positive
and negative interferences with themselves. This leads to certain frequencies
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Δt

f < 2kHz
(a)

f > 2kHz

ΔI
(b)

Figure 3.2: Illustration of interaural time difference (ITD, left) and inter-
aural level difference (ILD, right). Images from [12].

being amplified while others are attenuated. In other words, the pinna acts
as a filter on the signal whose frequency response depends on the direction of
the incoming sound waves. These cues are most important in detecting the
elevation of a sound source and contribute only little to azimuth detection
[32]. Figure 3.1 shows an example of this effect for the same sound perceived
from different elevations.

3.2.2 Interaural time difference

When a sound source is not located directly in front or behind a listener, it
will be perceived at a slightly different time in each ear. This time difference
is used as a cue to localize sounds. Figure 3.2a illustrates the time difference
of a sound source located to the front right of a listener.

The time difference depends on three factors: the propagation speed of
sound waves, which is roughly the same in air everywhere on the planet, the
distance between the ears of a listener, which does not change over time,
and the direction of the incoming sound wave. This makes it possible for the
brain to localize a sound based on the time difference.

Yet, since sounds are wave forms, a time difference can only be perceived
as a shift in phase. To unambiguously infer the actual time difference from
this phase difference, it needs to be less than half the period of the wave. As
a result, ITD can only help localize sounds with relatively low frequencies,
since these have longer periods [19]. However, for very low frequencies, the
time and thus the phase difference are also very small, resulting in less
accurate localization [3].
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3.2.3 Interaural level difference

Similar to ITD, there are also differences in the perceived volume of sounds
at each ear. These differences are caused by a longer path length to the ear
farther away from the sound source and because the head acts as an obstacle
for the sound waves. Figure 3.2b illustrates the level difference of a sound
source located to the front right of a listener.

This effect is also used to localize sound sources; the strength of the
level difference between the two ears corresponds to incident angle from this
direction. The attenuation is stronger for short wavelengths and almost non-
existent if the wavelength becomes longer than the part of the sound wave
shadowed by the head, which makes ILD more apparent for high frequencies.

3.2.4 Implications

Even though localization is performed automatically inside the brain when
hearing a sound and there is no need to create a system to localize sounds
computationally as part of this thesis, knowledge of how the localization
works is still essential. To be able to recreate sounds that can be localized
by a listener, important cues need to be included.

Importance of different cues

Both monaural and binaural cues need to be included when recreating
sounds using binaural audio. Monaural cues are most important for infer-
ring elevation, binaural cues for azimuth. To be able to localize sounds of
all frequencies, both ITD and ILD are essential.

Virtual environment design

If binaural spatial audio is to be used to help users interact in a virtual
environment, it is also important to select the sounds that can be heard in
this environment with respect to this knowledge. Those sounds should be
ones which can be localized more easily. Since ILD and ITD perform more
effectively at different frequencies, these are sounds which spread throughout
the whole frequency spectrum.

Cones of confusion

As already stated in this section, the accuracy of sound localization depends
on various properties of the sound and sound source. Since ITD and ILD are
used to detect the direction between a listener’s head and the sound source,
ambiguous points exist where both of them are roughly the same. These are
points lying on slices of a cone along the axis between the two ears. For each
point on a circle like this, the distance to both ears is the same [4, 14, 19].
Figure 3.3 shows this cone of confusion at the left ear of a listener.
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Figure 3.3: Illustration of the cone of confusion to the left of a listener. For
each point on the circle, the distances to both ears are the same, resulting in
ambiguous ITD and ILD. Image from [4].

If a sound is heard from only one direction, a listener can often not
determine if it is coming from the top, bottom, front or back. A solution to
this problem is slightly changing the incoming direction, since this context
can be used to solve the ambiguity. This can either be done by using moving
sound sources or by the listener tilting and moving their head slightly [33].

This means that it is important for a virtual system using spatial audio
to allow its users to turn their heads and instantly adapt to the simulated
sound direction, for them to be able to localize even still standing sound
sources.

3.3 Spatial sound techniques
Various different techniques exist to add directional cues to sounds to make
them appear to originate from some point in a virtual world. The aim is to
recreate exactly what would reach the ears of a person if this virtual world
and sound sources were real. Several techniques exist to achieve this task,
and only a subset of those are suitable for use in a co-located environment.

3.3.1 Positioning of real sound sources

The most obvious way to create directional sounds is to actually position real
sound sources, e.g. loudspeakers, at physical positions relative to a listener
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Figure 3.4: 5.1 surround sound set-up using five high-frequency speakers
and 1 low-frequency speaker (not shown).1

and having them produce sounds. Usually this is done by having two or
more speakers and panning sounds between them to be able to also simulate
sound positions between the sound sources, which has been shown to be
possible [10]. This includes simple stereo sound set-ups as present in most
desktop computer installations and more complex surround sound set-ups
using more than two speakers. Figure 3.4 shows one possible surround sound
configuration.

The benefit of this solution is that listeners do not need to be wearing
headphones and thus multiple persons can listen to the same sounds at the
same time, which makes it suitable for environments with many listeners,
e.g. cinemas. However, the possible positions of simulated sound sources and
the resulting accuracy of localization is very limited using these techniques,
which makes them unusable as part of this thesis project.

3.3.2 Monaural recording

Monaural recording, or mono, simply means recording sounds with one mi-
crophone and then listening to the record using headphones. Since both ears
receive the exact same sounds at the same time, ITD and ILD at both ears
is the same and the sound will be perceived to originate inside the listener’s
head. To produce directional sounds, two different sound channels for each
ear are needed.

1Image by Kamina (Own work) https://commons.wikimedia.org/wiki/File:5-1-surround-
sound.svg, CC BY-SA 3.0, via Wikimedia Commons.

https://commons.wikimedia.org/wiki/File:5-1-surround-sound.svg
https://commons.wikimedia.org/wiki/File:5-1-surround-sound.svg
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3.3.3 Binaural recording

To binaurally record a sound, two microphones are needed, one for each ear.
These two microphones need to capture exactly what the respective ear of
a potential listener would hear. This is possible by using small microphones
inside the inner ear of either a real human or a dedicated dummy head for
binaural recording.

Such dummy heads are created specifically for binaural recordings and
aim to simulate the acoustic properties of a human head with high accuracy,
including shape and material of the head, ears and torso. One example
of such a dummy head is the KEMAR2 (Knowles Electronic Manikin for
Acoustic Research) head and torso simulator by Danish company G.R.A.S.,
which has existed since 1972.

When a sound is recorded binaurally, it is saved as a two-channel sound
file, one for each signal recorded. When listened to with headphones, the
listener will be able to localize the sound the same way as when hearing the
original sound from its original direction in relation to where it was recorded.

Binaural recording can be used to provide realistic three-dimensional
sound experience for pre-defined scenarios, such as video recordings. Yet it
cannot be used in a co-located environment, since the relative direction be-
tween the users and the virtual sound sources can not be known beforehand.

3.3.4 Head-related transfer function (HRTF)

The transformations which occur to sound waves as they travel from a sound
source to the ears of a listener can be modelled by mathematical functions.
If two such functions are known, one for each ear, they can be applied to
any sound in order to add directional cues. These functions are called head-
related transfer functions, or HRTFs [28].

To model ITD, ILD and monaural cues, such a function must be able
to perform frequency-dependent phase and magnitude changes on a signal.
Fortunately, this can be done by modelling HRTFs as LTI (linear, time-
invariant) systems [18, Chapter 4]. LTI systems are relatively easy to imple-
ment and relatively fast to apply to digital signals. They can be implemented
as digital filters by convolving the original signal with a digital impulse re-
sponse signal, which has been shown to be possible to even perform in real
time on mobile devices [26].

Since HRTFs can be used to make any sound directional, they are suit-
able for creating three-dimensional sounds in virtual environments. For each
virtual sound source, two HRTFs, one for each ear of the listener, need to
be obtained and applied to the original sound. These HRTFs need to cor-
respond to the direction of the virtual sound. Thus, whenever the relative
sound direction changes, either when the virtual sound source’s position or

2KEMAR website: http://kemar.us/.

http://kemar.us/
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the position or rotation of the user changes, a new pair of HRTFs is needed.
There are multiple ways to obtain the HRTFs, as described below.

Physical modeling

It is possible to create mathematical models of the transformation of sounds
between a sound source and a listener’s inner ear. Using such a model, the
HRTFs for one specific sound direction can be calculated and applied to
an input signal [2, 6, 9]. This way, a virtual environment containing virtual
sound sources can be simulated by calculating two HRTFs for each of those
sound sources and applying them to their original sound at each simulated
time interval.

However, these mathematical models tend to be very complex and thus
take a lot of processing power and time to compute, which makes these
solutions rather impractical to simulate virtual environments in real time.

HRTF database

In contrast to modelling a virtual acoustic environment and calculating
sound transformations as HRTFs, they can also be recorded in real envi-
ronments and saved in databases. These databases contain two HRTF en-
tries, one for each ear, per desired sound direction. This means that HRTF
databases can grow rather large, dependent on the included number of di-
rections. The more HRTFs are included, the more accurate the result since
more individual direction can be simulated, but also the more data is needed
for storing the database.

To simulate a sound originating from a specific direction, the pair of
HRTFs closest to this direction is selected from the database and applied
to the simulated sound. There are also techniques to interpolate between
multiple HRTF pairs to improve the result’s accuracy [20].

HRTFs can be recorded using binaural recording. To do so, the trans-
formations between the original sound and the recorded sounds need to be
calculated. This can, for example, be done by sending only a very short
impulse, and using what is recorded as impulse response of the transfer
function. There are also better techniques to obtain the HRTFs with higher
precision. Fortunately, various such databases are available online for free
usage [1, 8, 16, 30], thus no manual recording was necessary as part of this
thesis.

3.4 Problems and limitations of binaural audio
Binaural audio techniques aim to provide sounds which can be localized
naturally by a listener. For this to be possible, the sound waves which reach
the inner ear of the listener need to be recreate real sounds originating
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from a desired direction as close as possible. Using pairs of HRTFs, the
transformations of sound waves travelling between the sound source and the
inner ear are modelled and can be applied to virtual sounds. However, the
results can never perfectly simulate real directional sounds for a number of
reasons.

3.4.1 Differing physical conditions

Since most sets of HRTFs are measured using microphones inside the ear of
a human or mechanical dummy listener, the resulting simulated directional
sounds will only be the same for the exact same listener. The shape and
physical properties of ears, head and body differ from person to person,
making the results of using HRTFs recorded with any other head than the
listener’s non-optimal. These differences can result in significant problems
in sound localization [23]. The same is true for binaural recordings.

This problem can be solved by using the same physical environment for
binaural recording or HRTF recording as for sound generation. This would
mean that each person using a co-located environment featuring binaural
audio would first have to acquire their own set of HRTFs, which is an ex-
pensive and time-consuming process.

A more simple way to not eliminate, but reduce the effects of these
problems is to automatically create individualized HRTFs for each user. This
can be done using a mix of recording HRTF databases and using physical
modelling to adapt these databases for a user. For example, Spagnol et al.
[29] created a device capable of capturing physical properties of the listener’s
pinnae. These properties are then used with the structural HRTF synthesis
model from Brown et al. [27] to obtain customized HRTFs. Other solutions
to create customized HRTFs exist, some even incorporating not only the
shape of the pinnae but also head and torso properties [21, 22, 31].

3.4.2 Sound generation inaccuracies

Additional problems exist, even if assuming a digital representation of the
perfect sound for one specific listener and direction could be obtained by
eliminating the previously mentioned problems. It is still nearly impossible
to have this exact sound be heard by the listener, since the sound still needs
to be shaped into actual physical sound waves by headphones and then reach
the inner ears. The severity of errors introduced in this step highly depends
on the type and quality of used headphones.

3.4.3 Implications

For the above stated reasons, binaural audio will most likely never reach the
same quality for localization as sounds heard in the real world. It is impor-
tant to be aware of this fact when using binaural audio provide directional
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cues for users in a co-located environment. Sounds which can be localized
perfectly by one user might not even be locatable at all by another user.

Thus, directional audio should probably only be used alongside other
directional cues such as visuals, so every user is able to interact properly with
the application. If using one of the many existing binaural audio systems for
a co-located environment, the quality of sound localization can and should
be evaluated, like it is done by Guastavino et al. [13], before deciding for a
single one of these systems.



Chapter 4

Concept—Binaural Audio in
a Co-Located Environment

This thesis creates a system to use binaural audio methods for realistic
directional audio in a co-located multiplayer environment. This chapter in-
troduces the concept of the implemented system, the goal of the project; and
it discusses which problems are being solved by it and with which methods.

4.1 Goal
Currently existing co-located multiplayer games mainly use, as discussed in
chapter 2, global visuals and audio to inform the players about the state
of the virtual world. Global means that each player receives exactly the
same information. Some systems already use customized output via head-
mounted displays and headphones, so each user gets the information from
their perspective.

The goal of this project is to use an existing co-located multiplayer envi-
ronment, namely the Ars Electronica Deep Space, and enhance the experi-
ence of users by adding customized, realistic three-dimensional audio. This
is expected to increase the feeling of immersion into the virtual world for
the players, by being able to hear virtual sound sources just as if they would
actually exist and being able to determine the relative direction to them just
by listening.

This new feature of directional audio is supposed to act as an additional
way to convey information to the users. Its quality should be high enough
that users can identify the direction to a virtual sound source by listening.
To test if this has actually been achieved, a game using this feature has
been be implemented. The game contains some kind of interaction between
the players and the virtual world which is only possible by locating sound
sources. By collecting data about users’ performance in the game, it can
then be evaluated if this goal has been achieved.

20
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Figure 4.1: Photographs1of one of the Sick laser scanner devices. The black
ring is where the laser is emitted, meaning it tracks the legs of the players
at this height.

4.2 Utilized methods
As discussed in section 2.2, the implemented system requires user interaction
to handle input and output. The following are the methods which have been
used to achieve this goal.

4.2.1 User position—Deep Space laser tracking

To receive information about each co-located user’s position, an existing
part of the Deep Space system has been used. A pre-defined, rectangular
area of 16 x 9 metres is surrounded by 2D laser scanner devices created
by the company Sick AG2. Using these devices, the positions of multiple
users inside the area can be calculated. The maximum number of users is
proportional to the number of used laser-tracking devices.

These devices are installed just above the ground, about 10−20 cm high.
They produce horizontal laser light, and by measuring at which angle and
distance the light gets reflected, the position of objects inside the area can be
calculated. These objects are, under normal circumstances, the legs of people
located inside. When two legs are close enough to each other, their centre
point is reported as the position of a user. Figure 4.1 shows two photographs

1Images by the Sick website: https://www.sick.com/at/en/detection-and-ranging-
solutions/2d-laser-scanners/lms1xx/lms100-10000/p/p109841

2Sick website: https://www.sick.com/

https://www.sick.com/at/en/detection-and-ranging-solutions/2d-laser-scanners/lms1xx/lms100-10000/p/p109841
https://www.sick.com/at/en/detection-and-ranging-solutions/2d-laser-scanners/lms1xx/lms100-10000/p/p109841
https://www.sick.com/
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of one of the laser tracking devices.
These positions are calculated and gathered by a server application called

Pharus [25] and then transmitted to the consumer application. This whole
process was already installed and available for usage as part of this project.
Section 5.1 discusses how the interaction with this system is implemented.

4.2.2 Global visual output—Deep Space projections

For global visual output, the existing projection capabilities of the Deep
Space system are used. It features two 8K projector setups, which means
an output resolution of 8192 x 4320 pixels. Each of these setups is actually
made up of four 4K projectors. One of them projects an image directly onto
the co-located 16 x 9 metre area; the other projects an image onto the wall
next to it. Figure 2.1 in chapter 2 shows the Deep Space system using both
of those projections for a game. This visual output can be used to display
information available to all users.

4.2.3 Customized visual and audio output—smartphone

It is also be important to be able to deliver information to each user specif-
ically. As the goal is to have realistic directional audio, each user must be
supplied a different audio stream. Also, having the possibility to display
custom visuals per user can help creating more interesting games.

This is implemented using one smartphone and one pair of headphones
per user. The smartphone runs a client application communicating with the
game server, from which it receives information about the virtual world,
which entities should be displayed and which sounds should be played back.

The actual smartphone devices used for this can be selected from a wide
range of possible devices. The device is required to be able to run appli-
cations created with the Unity game engine. Also, a way to connect stereo
headphones is necessary. Furthermore, about 200 megabytes of free storage
for the application is needed. This includes almost every modern smartphone
device capable of running the Android or iOS operating system.

4.2.4 Directional audio generation—RealSpace3D engine

To create realistic directional audio, spatial audio techniques as described in
section 3.3 have to be used. Fortunately, there are various software products
available capable of performing this task, so no custom solutions had to be
implemented.

In this project, the RealSpace3D3 audio engine by VisiSonics4 has been
used. It uses HRTF databases to create binaural directional audio. As in-

3RealSpace3D audio engine website: http://realspace3daudio.com/
4VisiSonics website: http://visisonics.com/

http://realspace3daudio.com/
http://visisonics.com/
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put, the engine needs the positions of one or more sound sources and one
sound listener inside the virtual world. Each sound source can play back
an audio file. In response, it generates two audio channels containing the
binaural audio. When listened to with headphones, the virtual sounds seem
to originate from their relative virtual positions. There are also many other
parameters to configure to fine-tune the result. Details about the integration
of RealSpace3D into the game are given in section 5.2.

4.2.5 User orientation—two solutions

As described in section 2.3, orientation measurement methods to calculate
the co-located users’ orientations in relation to the virtual sound sources are
needed. Only if the system responds to users turning around inside the co-
located environment by changing the simulated sound direction, the users
will be able to locate the virtual sound sources by listening. To achieve this,
two different solutions have been implemented and used in the project.

Smartphone sensors

Smartphones are used for customized visual and audio output. Most cur-
rent smartphones feature integrated sensors for orientation measurement,
namely accelerometer, gyroscope and in most cases also a magnetometer.
This means, the devices which are already used for output can also be used
for orientation input.

There are, however, two problems with this approach. The first problem
is that the quality and accuracy of these sensors in smartphones vary vastly
between different devices. Some might be very accurate, but others might not
and be subject to inaccuracies and sensor drift. Secondly, since smartphones
are held in the users’ hands, the sensors do not automatically turn when
users turn their heads in another direction. The directional audio bound to
the sensor readings will only feel realistic if users always turn the smartphone
the same way they turn their heads.

Custom orientation sensor module

Since there are obvious problems with using smartphones for orientation
measurement, another solution for this task has been developed. A custom
orientation sensor module that can be attached to a pair of headphones has
been developed. This way, the two previous problems can be eliminated. The
sensor module always turns the same way the user’s head is turned. Also,
since the sensors used can be evaluated beforehand, suitably accurate ones
can be selected.

This module consists of various pieces of hardware that can operate
autonomously and transmit sensor readings wirelessly. Details about the
hardware used and the software implementation are given in section 5.3.
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4.3 Multiplayer game framework
All the above mentioned methods have been combined into one system which
enables using binaural directional audio in a co-located multiplayer environ-
ment. It is both a software and hardware concept which allows the develop-
ment of application using these methods.

4.3.1 Application server

A central application server runs a main program that communicates with all
other parts of the system. This application contains a representation of the
virtual environment and is solely responsible for changing this environment’s
state based on user interaction and other factors. A representation of the
virtual world that should be visible to all users can be displayed via two
connected video projectors, one projecting an image onto the floor of the
co-located area, another one on a wall next to it.

The server receives information about each user’s position from a po-
sitioning application, which may or may not run on the same computer.
This positioning application receives data from the laser tracking devices
and computes the positions, which are provided by a software framework as
a conveniently accessible list.

4.3.2 Client application and mobile devices

A client application can be installed on different smartphones. When these
devices are connected to the same Wi-Fi network as the server machine,
users carrying them can enter the co-located area and begin interacting
with the application. The client devices are linked to the corresponding user’s
positions by a mapping algorithm. This way, multiple users can enter the co-
located area, with or without client devices. The client application receives
information about the virtual environment from the server and can both
display it on screen and play back three-dimensional audio using headphones
and the RealSpace3D audio engine.

The client devices also allow interaction via touchscreen and various
sensors, e.g. orientation sensors. These interactions are sent from the client
application to the server, which is responsible for responding to them by
changing the state of the virtual environment.

Optionally, the custom orientation sensor module can be attached to the
headphones worn by a user. The module transmits the sensor readings to
the client device via Wi-Fi, which can then use it for interaction instead of
its own sensor readings.
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Figure 4.2: Overview of how the different parts of the game framework
communicate with each other.

4.3.3 System overview

Figure 4.2 shows an overview over all the components of the multiplayer
game framework. Each line symbolizes communication between parts, either
wired or wireless. The type of communication is stated next to the lines.

4.3.4 Application development

To develop an application or a game using this system, a software frame-
work for the Unity game engine is provided. Both the server and the client
application can be developed using this framework. It supplies the list of
user positions and, if a client is connected, user orientations, to be used in
any desired way.

Virtual sound sources can be placed in the game world, which are played
back by the client application to appear from the correct relative direction
automatically. Further, interactions like touchscreen presses and gestures
can be sent from the client to the server application via a command system.

As an example of what this system is capable of, a fully-featured example
game has been developed, explained in the next section.
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4.4 Example use case—binaural Pac-Man

4.4.1 Overview

Alongside the concept of this thesis, a video game has been implemented that
uses the developed system discussed above. One or more players can enter
the co-located area, using a smartphone running a client application and
a pair of headphones connected to the smartphone. These headphones can
either be connected via cable or wireless, e.g. using bluetooth. Optionally,
the orientation measurement module can be attached to the headphones.
If not, the smartphone’s orientation sensors are used. If players enter the
area without a client device, they are represented as “passive” and can not
interact with the virtual environment.

4.4.2 Game rules

Players are represented by a Pac-Man like visual at their position via the
video projector and the display on the held smartphone. The player icon
appears looking in the direction that the orientation sensor measures. If the
orientation seems wrong, it can be calibrated via an option in the client
application.

After some time, the game server spawns enemy entities. They are rep-
resented by ghost images and chase a randomly selected player. On the
projector, enemies are not visible. On the client devices, the players only see
a small area of the virtual world, in the direction they are currently looking.
So enemies far away from the players, to their sides or behind them are
invisible.

The enemies also act as virtual sound sources, producing one of various
enemy sounds at their position. Players can hear these sounds via their
headphones and are to localize the relative direction from their position
to the enemy’s position. There are also variants of the enemies that are
completely invisible, so users can only find them by listening to their sounds.

Once spawned, an enemy will try to reach its target player’s position.
They move at a pre-defined speed using one of different chasing algorithms.
There are currently two of those algorithms: direct chase, which follows the
straight line from the enemies to the players, and chase from behind, which
first tries to get behind the players and then reach them without being seen.

Enemies continue to chase the players until a player is looking directly
at an enemy. It then stops moving and disappears after a certain time.
This means, it has been defeated. If, on the other hand, an enemy reaches
a defined minimum distance to a player without being seen, the player is
“hit” and loses one point. In both cases, the enemy entity gets removed.

Furthermore, the game server spawns so-called collectible items, repre-
sented by a white dot. These items are also only visible when a player is near
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Figure 4.3: Example situation of the implemented game. Two players (yel-
low) are chased by two enemies (red and purple). The objective is to avoid
the enemies and collect the white dots. The purple enemy receives damage
because one player is looking at it. Everything outside the black area will be
invisible to the player.

enough and looking directly at them. They also produce a virtual sound. The
difference to the enemy entities is that these items do not change their posi-
tion. If a player can find the collectible and reach its position, it disappears
and the player is awarded one point. At this moment, a new collectible item
is spawned at a random location.

Players’ points are associated to the smartphone devices as long as the
client application is running. Thus, a player can exit and enter the co-located
area at any time and does not lose the progress made in the game.

4.4.3 Game example

Figure 4.3 displays a screenshot of this game with two players, two enemies
and one collectible item. It shows what the player in the top left would see
on the client device’s screen. The invisible area is shown half-transparent
here; in the actual game, everything outside of the black triangle in front
of the player would be completely invisible. Thus, all entities except the
red enemy would not be visible to the player until moving near enough. On
the projection display, nothing would be greyed out, but the enemies and
collectible items would not be visible at all. Players need to try to locate the
enemies by hearing instead of by seeing.



Chapter 5

Implementation

The concept introduced in chapter 4 has been implemented as part of this
thesis. It includes the example game described in section 4.4 as well as a
software library to create new games or applications using the concept and
also the required hardware.

As this project uses features of the Ars Electronica Deep Space system
(see section 2.4), some parts of it did not have to be developed newly. This
includes the laser tracking system Pharus for user position detection and
the video projectors for visual output. These systems have been available
both in hardware and software. Furthermore, a software library for creating
three-dimensional audio using binaural techniques via headphones, called
RealSpace3D, was used, so no additional binaural methods had to be imple-
mented manually.

This chapter describes the various parts of the system which were devel-
oped with it. This includes the main server application, the client application
running on mobile devices (smartphones) and the custom orientation mea-
surement module.

5.1 The server application
The server application is the central part of the project. It is executed on
a personal computer and communicates with all other parts of the system.
It is responsible for maintaining the game state, reacting to user input and
producing output. It is developed with the Unity game engine, since software
libraries for interacting with the Pharus system are available to integrate
with Unity projects. The following describes the responsibilities and tasks
of the server application.

28
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5.1.1 Game state and game logic

The server application is responsible for maintaining the state of the virtual
world, or game state. This depends on the actual use case, but in most cases
the game state is made up of different types of entity objects, like players,
enemies, items etc. These entities interact with each other and some can be
controlled by the users or interacted with by some way from the outside.
These interactions are referred to as game logic.

Visual output

Normally the entities have a visual representation, either in 2D or 3D. In
the example game described in section 4.4, the player, enemy and collectible
objects are visualized as 2D sprites. A global representation of the game
state is displayed with the video projectors provided by the Deep Space
system. The player objects are displayed at the actual positions of the users
using floor projection, and another or the exact same image of the game
state can be displayed using the wall projection.

Audio output

The game server itself does not output any sounds, since each user is pro-
vided customized audio by the client application, and using global audio
might have a negative impact on the perception of the customized direc-
tional audio.

5.1.2 Communication with the laser tracking system

The laser tracking devices send their raw sensor data to a server application
via Ethernet. This server application, called Pharus [25], handles the raw
data and computes the positions of each user inside the co-located area. The
Pharus server can run on the same or a different machine as the game server
application. It sends data about the user positions via UDP in a format
called TUIO (tangible user interface objects) [15] and can be configured to
transmit it to one or more receiving devices.

To receive the TUIO data provided by Pharus, a software framework
for the Unity game engine is provided. It listens to a specified UDP port,
processes incoming data and provides a list of user objects containing their
positions relative to the boundaries of the co-located area. It also provides
methods for reacting to TUIO objects being added, moved and removed,
which can be overridden by the game application. The application is then
responsible for using this data to interact with the game state in some way.
The following code showcases how to create, maintain and display game
objects representing the co-located users at each of their positions using the
provided TUIO framework.
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1 abstract public class ATuioPlayerManager :
2 UnitySingleton<ATuioPlayerManager> {
3
4 protected Dictionary<long, ATuioPlayer> m_playerMap =
5 new Dictionary<long, ATuioPlayer>();
6
7 public virtual void AddPlayer (long sessionID,
8 Vector2 position, ATuioGameManager currentGameManager) {
9

10 GameObject playerObj = GameObject.Instantiate(
11 currentGameManager.m_PlayerPrefab);
12
13 ATuioPlayer player = playerObj.GetComponent<ATuioPlayer>());
14
15 player.transform.position = new Vector3(
16 position.x, position.y, 0);
17 m_playerMap.Add(sessionId, player);
18 }
19
20 public virtual void UpdatePlayerPosition (
21 long sessionID, Vector2 position) {
22 m_playerMap[sessionID].MoveTo(position);
23 }
24
25 public virtual void RemovePlayer (long sessionID) {
26 ATuioPlayer player = m_playerMap[sessionID];
27 GameObject.Destroy(player.gameObject);
28 m_playerList.Remove(sessionID);
29 }
30 }

The code assumes a prefab (prefabricated game object, a template for
new game objects in Unity) for player objects exists and is set in the Game-
Manager object. The method AddPlayer is called when a new user enters
the co-located area. The method UpdatePlayerPosition is called whenever a
new position is calculated and transmitted by the Pharus server for one of
the users. The method RemovePlayer is called when a user exits the area.
The provided parameter sessionID always represents one of the uers. All
classes referenced in this code are provided by the TUIO game framework
and the default behaviour can also be changed freely.

5.1.3 Communication with the client application

The client application is responsible for providing customized visuals and
audio for each user, and for allowing users to interact with the system in
ways additional to their co-located positions. To achieve this, the relevant
parts of the game state needs to be transmitted to the clients and interactions
need to be sent back.
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Game state synchronization

To synchronize the game state from the server to the clients, Unity’s built in
game multiplayer network system, called UNet, is used. Using UNet, game
entities can be marked as network entities. This causes their positions, ro-
tations and more to be synchronized automatically from the server to the
client applications. These network entities can only be created, updated and
removed by the game server. In the example game, the types of network en-
tities are the TUIO users, called TuioPlayer, the enemies and the collectible
items.

Additionally to this automatic entity synchronization, method calls can
be sent from the server to the client. For this, a method on a Unity script
needs to be tagged with the ClientRpc (short for client remote procedure
call) attribute. When such a method is called on the server, it is automati-
cally called on all clients with the same arguments at the same time. This
can, for example, be used to trigger the playback of a sound effect on all
clients. The following code shows an example of such an RPC method. Note
that any such method must start with the “Rpc” prefix.

1 [ClientRpc]
2 public void RpcPlayEnemyKilledSound(bool killed) {
3 GetComponent<AudioSource>().LoadAudioClip(
4 killed ? enemyKilledSound : killedByEnemySound);
5 GetComponent<AudioSource>().PlaySound();
6 }

Client interactions

There are two ways to send interactions the other way around, from the
client to the server. Both ways involve a network object with a “player au-
thority”. This authority is associated with one of the connected clients. The
authorized client then takes control of this object, and changes to position,
rotation etc. are automatically sent from this client to the server, which then
updates the game state and transmits it to all other clients.

For each connected client, a network object of type ClientPlayer is cre-
ated. These automatically get their authorities set to the respective client by
the game engine. This is done by setting the ClientPlayer prefab as player
prefab in Unity’s network manager object and enabling the “auto create
player” option. Figure 5.1 shows a screenshot of the example game in the
Unity editor with the relevant section for this configuration. It also shows
the three types of network entities available. The system automatically asso-
ciates each ClientPlayer object, representing a connected client application
with one TuioPlayer object, representing one co-located user. This associa-
tion is not always present the other way around, since users can enter the
co-located area without a client device.
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Figure 5.1: Spawn info section of Unity’s network manager in the example
game. The three types of network entities are configured, and the Client-
Player is set as the automatically created player prefab.

Additionally, so-called command methods can be used, which are the ex-
act opposite to the previously mentioned RPC methods. A command method
can be called from a client, and is then automatically invoked on the server.
These methods can also only be called on objects marked with player au-
thority. All command methods must start with the “Cmd” prefix. This code
shows one such command method to update some player preferences from
the client:

1 public string UserID { get; private set; }
2 public string GyroMode { get; private set; }
3
4 [Command]
5 public void CmdSetUserClientPrefs(string userID, string gyroMode) {
6 UserID = userID;
7 GyroMode = gyroMode;
8 }

5.2 The client application
The client application mainly acts as a means of distributing the directional
audio to each user. It is also used to deliver customized visual output to each
user and enables users to interact with the system. This application is also
developed with the Unity game engine and runnable on most modern smart-
phone devices capable of Wi-Fi. This section describes the responsibilities
of the client application and how they are implemented.

5.2.1 Connecting to the game server

To be able to interact with the game server, a connection has to be estab-
lished. For this, the device running the client application must be in the
same Wi-Fi network as the server machine. When the client application is
started, an input field to enter the server’s IP address is provided. Once the
connection is established, the client device is ready to use.
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5.2.2 Receiving game state

As described in the previous section, the game server is responsible for main-
taining the game state and running the game logic. The clients also have a
copy of the game state, which is permanently transmitted from the server
when some part of it changes. This way, a representation of the game state
can be presented to the user of the client device in form of visual and audio
output.

5.2.3 Delivering directional audio

The directional audio is the most important part of the client application,
since it is the main goal of this thesis. Directional audio is created using the
RealSpace3D audio engine and a pair of headphones connected to the client
device. It is an extension to Unity’s built in audio system.

Exactly one AudioListener object can be present in the game world. It
can be attached to any game object. The directional sounds will appear to
be perceived at this game object’s position. Any number of AudioSource
objects can then be placed in the scene. They are virtual sound sources that
can also be attached to game objects. The sounds they produce will appear
from the relative direction from the audio source to the audio listener.

The client application automatically attaches one audio listener to the
TuioPlayer object associated with its client authority object. This way, the
virtual sounds will be perceived from the user’s current position inside the
co-located area. The following lines of code are used inside the TuioPlayer
class to attach the audio listener to the player entity:

1 var audioListener = FindObjectOfType<
2 RealSpace3D_AudioListener>().gameObject;
3 audioListener.transform.parent = this.transform;
4 audioListener.transform.position = this.transform.position;

The RealSpace3D engine uses a database of HRTFs for creating the di-
rectional audio. For each sound source, the relative direction to the sound
listener is calculated, and the best matching set of HRTFs for each ear is
selected from the database. These two HRTFs are then applied to the sound
source’s audio signal (a one-channel audio file). The two created signals are
finally output via the stereo headphones. The engine also provides the option
to select a different database of HRTFs. It provides five such databases mea-
sured under different conditions. The documentation however claims that
the default setting works for 80% of users, which is what has been used
when testing the implementation.

5.2.4 Reading orientation

Finally, the client is responsible for obtaining the user’s orientation inside
the co-located area and transmitting it to the server. For this, the orienta-
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tion is applied to the client’s authority game entity. The server then rotates
the associated player entity accordingly. There are two different ways imple-
mented to receive the orientation, one of which can be selected when starting
the client application.

Smartphone sensors

The first and simple way is to use the client device’s built-in orientation
sensors. Most smartphones contain sensors for measuring their orientation,
i.e. accelerometer, gyroscope and magnetometer. The Unity engine provides
a simple way of accessing this orientation as a quaternion. This quaternion
however uses a right-handed coordinate system, while Unity uses a left-
handed one for all their entities. This can be converted by exchanging the
z- and the y-axis of the corresponding Euler rotation:

1 Quaternion getBuiltinOrientation() {
2 //gyro rotation uses right handed coordinate system, unity left handed
3 var gyro = Input.gyro.attitude.eulerAngles;
4 return Quaternion.Euler(gyro.x, gyro.z, gyro.y);
5 }

Custom orientation module

A different way to obtain the orientation of a user has been implemented
using a custom sensor module. The implementation of this module is ex-
plained in section 5.3. This module broadcasts the calculated orientation as
a quaternion via UDP in 16-byte data packages. Each of these packages con-
tains four 4-byte floating point values making up the quaternion (𝑤, 𝑥, 𝑦, 𝑧).
The quaternion can be reconstructed the following way:

1 Quaternion getCustomOrientation() {
2 //receive broadcast from any device at port 5741
3 IPEndPoint receiveEndPoint = new IPEndPoint(IPAddress.Any, 5741);
4 UdpClient receiveClient = new UdpClient(receiveEndPoint);
5
6 byte[] recvData = receiveClient.Receive(ref receiveEndPoint);
7
8 int i = 0;
9 float w = BitConverter.ToSingle(recvData, i);

10 float x = BitConverter.ToSingle(recvData, i += 4);
11 float y = BitConverter.ToSingle(recvData, i += 4);
12 float z = BitConverter.ToSingle(recvData, i += 4);
13
14 return new Quaternion(x, y, z, w); //w comes last here
15 }
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5.3 Custom orientation measurement module
To provide realistic directional audio, a co-located system is required to be
able to determine the direction its users are looking at. When a user turns
around, the virtual sounds need to change direction as well. To solve this
problem, an orientation sensor device is needed. One solution is to use the
sensors included in the mobile devices on which the client application is
running.

However, as explained in section 4.2, there are some problems with this
approach. These problems can be solved by instead attaching an orienta-
tion sensor device onto the headphones worn by the users. Since no devices
which seemed suitable for this task were available when this project was
implemented, a custom solution has been created.

5.3.1 Goal and requirements

The goal of this task was to be able to measure which direction a user’s head
is facing, in order for the system to react to users turning their heads by
adjusting the direction of the virtual sounds. For this, a device was needed
which could measure its absolute orientation. This device would have to be
small and versatile enough so it could be attached to regular headphones.
Furthermore, it should be able to operate on its own so no additional cables
are required. The values measured by its sensors have to be transmitted
wirelessly to the consumer application.

The orientation measured by this device needs to be absolute in relation
to some reference orientation. It should always provide the same results
when used under the same circumstances, i.e. in the same position and with
the same rotation. The orientation should not be subject to drift, which
means it should stay accurate over time and not change if the sensor does
not change orientation.

5.3.2 Hardware

Various pieces of consumer hardware have been used in combination to cre-
ate a device fulfilling the above mentioned requirements.

The orientation sensor

At least two reference directions are needed to measure absolute orientation.
This can be achieved by using two different sensors. An accelerometer can
provide a reference direction to Earth’s center by measuring the force vec-
tor of gravity. A magnetometer can measure the magnetic field directed to
Earth’s magnetic North or South Pole.

There are different solutions combining such sensors available on the
market. Most of these use a third sensor, namely a gyroscope, to improve
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Figure 5.2: The MPU-9250 orientation sensor containing accelerometer,
gyroscope and magnetometer on a circuity board connected via IIC interface.

the accuracy of the result. A gyroscope measures the change in orientation
over time and can be used to mitigate inaccuracies of the other sensors.

One such multi-sensor device by the company InvenSense1, called MPU-
9250, was used to create the orientation measurement module. It is avail-
able on a small circuity board, about 1 cm × 2 cm in size. The board con-
tains 10 connector pins to be able to communicate with it, either via the
inter-integrated circuit (IIC) or serial peripheral interface (SPI) protocol.
To communicate via IIC, only four of those pins have to be connected for
default operation. Figure 5.2 shows a photograph of the MPU-9250 circuity
board with the four IIC pins connected.

The microcontroller

A microcontroller unit (MCU) is necessary to read orientation sensor mea-
surements and transmit them wirelessly. This microcontroller is required to
be able to communicate with other devices via IIC interface and to support
Wi-Fi for transmission.

The most suitable hardware for this task was the “D1 mini” by WeMos2.
It is a relatively small, about 2 cm×4 cm, MCU board capable of IIC, Wi-Fi
and more. It can operate with voltage as low as 3.3 V.

Figure 5.3 shows the top and bottom side of the WeMos D1 mini board.
In the top view, the 2.4 GHz Wi-Fi chip is visible. On the left and right are
16 connector ports which can be used for various interfaces, including IIC.

1InvenSense website: https://www.invensense.com/
2WeMos website: http://www.wemos.cc/

https://www.invensense.com/
http://www.wemos.cc/
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Figure 5.3: The WeMos D1 mini MCU board from above (left) and from
below (right).3

Power supply

In order for the hardware module to be truly wireless, a power supply must
be included. The WeMos D1 can operate with a voltage between 3.3 V and
4.2 V. A module called “battery shield” is available that can be attached
to the D1 mini. It allows connecting a rechargeable lithium battery via a
JST-XH 2.54 inch connector. The battery can be charged by connecting a
micro-USB cable to the battery shield. When the USB cable is not con-
nected, it acts as power supply for the MCU by supplying the required
voltage.

As actual power supply, a lithium-ion battery in default AA format has
been used. It supplies a voltage 3.7 V with a capacity 800 mAh. According
to the WeMos website, the D1 mini consumes about 70 mA when fully
operating, which would allow for more than 11 hours of operation.

Overview

All the previously described pieces of hardware together allow the orientation
measurement module to fully operate on its own. The MPU-9250 sensor
board is connected via four cables to the WeMos D1 mini using IIC interface.
The battery shield is attached to the MCU and connected to a rechargeable
lithium-ion battery. A photograph of the complete orientation sensor module
on its own is shown in Figure 5.4. The module can be attached to any
headphones to be used with in the co-located environment. In Figure 5.5, it
is attached to a pair of Philips SHB-7250 headphones.

3Images from WeMos website: http://www.wemos.cc/Products/d1_mini.html.

http://www.wemos.cc/Products/d1_mini.html
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Figure 5.4: The custom orientation sensor module consisting of the MPU-
9250 accelerometer, gyroscope and magnetometer sensor unit (bottom left),
the WeMos D1 mini microcontroller including battery shield (centre) and a
rechargeable Lithium-ion battery (right).

Figure 5.5: The custom orientation sensor module attached to a pair of
Philips SHB-7250 headphones.
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5.3.3 Software

To complete the autonomous gyroscope module, a program for the MCU
was implemented. It reads sensor data via the IIC port, processes it into a
suitable format and transmits it via Wi-Fi to the consumer application.

The program is developed using the Arduino4 platform in the program-
ming language C++. It consists of four general parts:

• Setup: connect to Wi-Fi network, initialize IIC connection and check
for potential problems.

• Read sensor data: read raw data provided by MPU-9250 via IIC.
• Calculate orientation: get absolute orientation by combining readings

from accelerometer, magnetometer and gyroscope.
• Transmit orientation: transmit calculated orientation in a suitable for-

mat via Wi-Fi.
The first of these parts is executed once when the MCU is turned on,

the other three are called consecutively in an endless loop afterwards. At
the end of each loop, the runtime of the loop is measured. Then the MCU
is put into wait mode for an amount of time so the number of orientation
broadcasts per second does not exceed a defined limit. This can also reduce
battery usage of the module. The implementation of the four parts will be
elaborated in the following sections.

Setup

In this step, the Wi-Fi connection is established. Credentials for the Wi-Fi
network are stored in program memory, so when the sensor module is to
be used in a new network, they need to be modified and program needs to
be re-deployed onto the hardware. An Arduino code library for this task
is available, and connecting to a Wi-Fi network can be done by a single
call, where the variables ssid and pass are character-arrays containing the
network credentials:

1 WiFi.begin(ssid, pass);

Additionally, the MPU-9250 device is initialized in this step. First, the
IIC connection is established and verified. If no communication is possible,
an error is reported and the MCU will restart. In this case, the IIC wires
need to be examined for problems.

Next, there are a number of configurations that have to take place before
the sensor data can be acquired. Each of the three individual sensors must
be enabled specifically. Also, the scale of the output values can be set to one
of various pre-defined options for each sensor. This will affect the quality of
the orientation result.

4Arduino project website: https://www.arduino.cc/

https://www.arduino.cc/
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Read raw sensor data

The MPU-9250 sensor board provides raw sensor readings via IIC interface.
Using IIC, data can be requested from hardware register numbers on devices
identified by a 10-bit address. The MPU-9250 actually contains two such
devices. The accelerometer and gyroscope readings can be accessed at device
address 0x68 as vectors consisting of each three elements. The accelerometer
data vector starts at register address 0x3B, the gyroscope data vector at
0x43. The magnetometer readings can be accessed the same way at device
address 0x0C starting at register address 0x03. The reason for there being
two different device addresses is that there are actually two different MCUs
embedded on the MPU-9250 board.

Each element of such a raw vector is a 2-byte numbers with an effective
range of −32768 to 32767. These values need to be scaled to the actual range
of the sensors, which have been configured separately from a list of available
ranges for each sensor in the setup step. For example, the following piece of
C++ code calculates the acceleration vector in multiples of 𝑔 = 9.81 m/s2,
assuming the accelerometer sensor is configured to a full range of 16𝑔:

1 void readAccelData() {
2 uint8_t rawData[6]; //raw bytes from I2C
3 int16_t rawValues[3]; //actual values between -32768 and 32767
4 float accel[3]; //actual acceleration in g
5
6 //full range of acceleration sensor is 16g
7 const float sensorRange = 16.0;
8 const float factor = sensorRange / 32768.0;
9

10 //read six bytes via I2C from device 0x68 at address 0x3B
11 I2CreadBytes(0x68, 0x3B, 6, &rawData[0]);
12
13 //combine each 2 bytes of raw data into one 16-bit integer (little-endian format)
14 rawValues[0] = ((int16_t) rawData[0] << 8) | rawData[1];
15 rawValues[1] = ((int16_t) rawData[2] << 8) | rawData[3];
16 rawValues[2] = ((int16_t) rawData[4] << 8) | rawData[5];
17
18 //calculate actual acceleration in g
19 accel[0] = rawValues[0] * factor;
20 accel[1] = rawValues[1] * factor;
21 accel[2] = rawValues[2] * factor;
22
23 //do something with acceleration values...
24 }

Calculate absolute orientation

To calculate the absolute orientation of the sensor device, the readings from
all three different sensors can be combined. Each sensor provides three-
dimensional element vectors representing their current readings.
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For the accelerometer, this is a vector 𝐴 = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) pointing to Earth’s
center in multiples of 𝑔 = 9.81 m/s2, the magnitude of gravity, as long as the
sensor experiences no additional acceleration. The coordinate system used
is relative to the sensor circuity board with the z-axis pointing upwards
from the board. This coordinate system is printed on the board as visible in
Figure 5.2.

The gyroscope returns a vector 𝐺 = (𝑔𝑥, 𝑔𝑦, 𝑔𝑧) containing the current
rate of change in orientation around the 𝑥, 𝑦 and 𝑧-axis in degrees per second,
using the same coordinate system as before.

For the magnetometer, the raw values are the vector 𝑀 = (𝑚𝑥, 𝑚𝑦, 𝑚𝑧)
containing the strength of magnetic field in 𝑥, 𝑦 and 𝑧-direction in mG (milli
Gauss). The magnetic field in 𝑀 points towards Earth’s magnetic North
Pole, if no artificial magnetic fields are present. The coordinate system used
here has its 𝑥- and 𝑦-axis switched in comparison to the other two sensors,
so 𝑚𝑥 and 𝑚𝑦 should be exchanged in all following calculations.

Additionally, though, the magnetometer readings will always include con-
stant values, called bias. So the actual reading returned from the sensor will
be

𝑀𝑏 = (𝑚𝑥 + 𝑏𝑥, 𝑚𝑦 + 𝑏𝑦, 𝑚𝑧 + 𝑏𝑧). (5.1)

Including the bias, the magnetometer readings are rather useless. Fortu-
nately, the bias values do not change with sensor orientation. Thus, a cali-
bration procedure can calculate the bias and the actual magnetic field vector
can be approximated. To do this calibration, the sensor needs to be rotated
a few times in all directions, so the maximum and minimum values in all
three axes can be acquired. Then, the bias vector can be calculated as

𝐵 = (𝑏𝑥, 𝑏𝑦, 𝑏𝑧) ≈
(︂

𝑥max − 𝑚min
2 ,

𝑦max − 𝑦min
2 ,

𝑧max − 𝑧min
2

)︂
. (5.2)

The actual magnetic field can then be approximated as 𝑀 = 𝑀𝑏 − 𝐵.
After all three sensor vectors 𝐴, 𝐺 and 𝑀 have been acquired, the abso-

lute orientation can be calculated by combining them using a so-called sensor
fusion algorithm. There are many different algorithms available for this task.
Two of which, called Madgwick’s and Mahony’s sensor fusion algorithm [24]
have been used in this project, since they claim to be able to perform in
real time even on microcontrollers and still produce viable results. Both of
these algorithms perform the same task, in different ways: They combine the
three vectors to approximate the current absolute orientation of the sensor.
In general, they use the acceleration and magnetic field vectors as reference
direction to approximate the current orientation. The rate of change in ori-
entation from the gyroscope is then used to smoothen inaccuracies of the
other sensors, at the cost of response time to fast orientation changes.

The absolute orientation in three-dimensional space can not be repre-
sented as a single 3D-vector, since there would still be one degree of freedom
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available: rotating the vector around itself. Thus, quaternions are used to
represent orientations. Quaternions are of the form

𝑞 = 𝑎 + 𝑏i + 𝑐j + 𝑑k. (5.3)

A quaternion can contain an axis (𝑥, 𝑦, 𝑧) and an angle 𝜃 of rotation.
From these it can be calculated as

𝑞 = cos
(︂

𝜃

2

)︂
+ 𝑥 sin

(︂
𝜃

2

)︂
i + 𝑦 sin

(︂
𝜃

2

)︂
j + 𝑧 sin

(︂
𝜃

2

)︂
k. (5.4)

Both Madgwick’s and Mahony’s sensor fusion algorithm can calculate
such a quaternion from the three sensor vectors. They are both only effective
when called many times per second with new sensor readings and the time
interval, or delta time, between the current and the last sensor reading,
since the gyroscope’s readings are integrated numerically over time. There
are also free parameters that can be tuned to change the responsiveness to
orientation changes in contrast to the error correction efficiency.

An implementation in C++ of both of these algorithms was available
and did not have to be implemented newly.5 Both these implementations
have been used with the MPU-9250, and Madgwick’s seemed produce the
more accurate results.

Transmit orientation

To transmit the calculated orientation values to a consumer device, the user
datagram protocol (UDP) and broadcast is used. This way, data can be
sent continuously to all devices in the same network. Any device can open
a UDP socket and read it. UDP is known for being fast at the cost of not
guaranteeing that every sent datagram will be received by all clients in the
original order or at all. Since new sensor readings are being sent in constant
intervals, not receiving all of them will not be a big problem.

To communicate with UDP, 16-bit a port number needs to be agreed
upon. The port used for communication with the orientation measurement
module has been arbitrarily set to 5471. Using this port number, a UDP
client can be opened in the MCU program the following way:

1 //global:
2 WiFiUDP Udp;
3 const int udpPort = 5741;
4
5 //in setup method:
6 Udp.begin(udpPort);

5Sensor fusion algorithms provided by Kris Winer on Github: https://github.com/
kriswiner

https://github.com/kriswiner
https://github.com/kriswiner
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Once the client is open, datagram packages can be built out of any
number of bytes and then sent to a 32-bit destination IP-address. The IP-
address 255.255.255.255 can be used instead to send the datagram to all
clients in the current network. The following code can be used to send a
quaternion object consisting of four 4-byte floating-point values to all other
devices via the previously opened UDP client:

1 void sendGyroData(const quaternion &att_quat) {
2 //˜0 = 255.255.255.255, broadcast on this network
3 unsigned int sendIP = ~0;
4 Udp.beginPacket(sendIP, udpPort);
5
6 //send quaternion data in byte form:
7 Udp.write(reinterpret_cast<const uint8_t *>
8 (att_quat.quatData()), 4 * sizeof(float));
9

10 Udp.endPacket();
11 }

5.4 Problems and challenges
As described in this chapter, the whole concept from chapter 4 has been
technically implemented and a fully working game using binaural audio in a
co-located multiplayer environment has been developed. However, this whole
process was not without problems, and there were several challenges to be
faced throughout it.

5.4.1 Orientation drift

Even though, in theory, an absolute orientation can be calculated using
accelerometer and magnetometer sensor, and even a gyroscope sensor has
been used to improve the result’s accuracy, the measured orientation of the
custom orientation measurement module turned out to still be subject to
drift. When it was used in the example game, the player entity’s rotation
would sometimes change slowly even when the users were not rotating their
heads. Thus a method to re-align the in-game orientation to the user’s real
orientation was still necessary.

One possible cause for this problem is that a custom solution for the
whole process of obtaining the absolute orientation, including reading raw
sensor data and performing sensor fusion, had to be implemented. There
actually exists proprietary software performing sensor fusion with the MPU-
9250 sensor, it however was not able to be executed on an Arduino micro-
controller, thus also not on the used WeMos D1 mini MCU. There might
be small calibration errors in the custom code causing the drift.

Another possibility, assuming the orientation calculation code is flawless,
is that sensor readings were inaccurate. As mentioned in section 2.3, readings
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from accelerometer and magnetometer are only accurate if the sensors are
at rest and no artificial magnetic fields are present. If, for example, magnetic
fields exerted by electronic devices were present in the testing environment,
they could cause the sensor readings to be inaccurate and consequently cause
the drift.

5.4.2 Instability of the sensor module

The orientation measurement module was developed using MCU breakout
boards and was then attached to headphones without being contained in
a protective case. This caused the soldered wires between the MPU-9250
sensor board and the WeMos D1 mini MCU board to loosen and detach
a few times when transporting the headphones. Thus, they had to be re-
soldered a few times.



Chapter 6

Empirical study and
evaluation

Using the implementation of the example game from section 4.4, an empirical
study was performed by allowing different users to play through a pre-defined
scenario using parts of the game’s features and recording data about their
performance. From this data, statistical evaluations were performed to find
out which parts of the game worked well and which ones presented more
challenges to the users.

Section 3.2 stated that sounds which spread over big parts of the fre-
quency spectrum can be localized better than sounds which only occupy a
small part of it. The test scenario contained different sounds that were to
be localized by the users in order to be able to find out if this assumption
is actually valid.

Furthermore, the study should also show which relative directions are
best and worst suitable for localizing sound sources. Also, since there are
visible and invisible enemies in this game, the study can statistically show
which ones were easier to find and defeat for the players. Finally, the study
can evaluate if using the custom orientation measurement module can actu-
ally improve the players’ performance in finding enemies by listening.

6.1 Setup
In this study, users were asked to play through a pre-defined scenario of
the example game described in section 4.4. The main parts of the game
remained the same, with a few differences. The goal was to provide a test
scenario that is exactly the same for each user, and that can be used to
statistically evaluate data about their performances. For this, the following
limitations to the game have been made:

1. Players are asked to only stay inside a relatively small rectangle in the
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center of the co-located area. Players should just focus on localizing
the direction incoming enemies instead of walking around in the game.
When a player leaves this rectangle, the game is paused.

2. Only one enemy attacks the players at a time, and only one player can
play at a time.

3. Enemies are always spawned in the same order of combinations of
the following properties: relative direction (angle from the player to
the enemy), the sound effect used, enemy colour, chasing algorithm
and visibility. They are always spawned at the same distance from the
player. This way, each player is faced with the exact same challenge.
In total, there are 32 enemies spawned in order, one with each com-
bination of four relative directions, four colours and either visible or
invisible. The sound effect and chasing algorithm are tied to the colour.

4. Collectible items are not used, since players are not allowed to walk
around and should only concentrate on locating the enemies.

Instead of collecting points, the goal of the study game is to play through
the whole scenario of 32 enemies, regardless of how many enemies are de-
feated. Players are shown a progress bar on the screen of the mobile device
so they are aware of how many enemies are still to be defeated.

6.2 Recorded data
The study procedure described above was performed with 16 test users, 5
of which using the custom orientation measurement module and 11 using
the default mobile device orientation sensors. Each test user was asked to
complete the study procedure of 32 enemies. For each user and enemy, data
about the parameters, performance and efficiency was recorded, resulting in
512 data sets of various properties that can be grouped into two kinds.

6.2.1 Configuration and enemy properties

These properties describe the circumstances of the test and appearance and
behaviour of the enemies:

• Time stamp: Global time on the game server when the enemy was
spawned.

• User ID: Anonymous identification code for the user, to be able to
select all data sets of a single user.

• Orientation mode: Flag indicating the used orientation measurement,
either mobile device orientation or custom orientation measurement
module.

• Sound effect name: Name of the enemy’s sound effect.
• Colour : Enemy colour.
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• Spawn angle: Angle between the player and the enemy at which it was
spawned.

• Invisible: Boolean flag indicating if the enemy was invisible or visible.

6.2.2 Player performance properties

These properties give information about the player’s efficiency in the game:
• Number of enemy deactivations: Number describing how many times

the player looked at the enemy, deactivating its movement, before the
enemy was defeated or hit the player.

• Time until first deactivation: Real time between spawning the enemy
and the player first finding and looking at it. If the enemy was not
found at all, this property will be zero.

• Time until last deactivation: Real time between spawning the enemy
and the player last looking at it before it was removed. If the enemy
was not found at all, this property will also be zero.

• Time until removed: Real time between spawning the enemy and re-
moving it, either when it was defeated or hit the player.

• Defeated by player : Boolean flag indicating if the enemy was defeated
by the player, or if it did hit the player.

6.3 Results and data analysis

The data was recorded as a CSV (comma-separated values) file by the game
server while the test users were playing the game. These files were then
imported into an SQLite database, from which statistical operations can be
performed to evaluate it from various perspectives.

To find out which game parameters worked better or worse for players
in general, the player performance properties can be evaluated. Table 6.1
shows the general boundaries, averages and variances for those properties,
as calculated over the complete testing data set for all enemies that were
defeated by the players. It shows, for example, that it took the players on
average 7.91 seconds to find each enemy and 13.4 seconds to defeat them.
It is worth noting, however, that in the test game, it takes the enemies
6.25 seconds to reach a distance to the player where they can first be seen,
and 4 seconds of looking directly at the enemies until they are defeated.
Assuming the players do not change position, this means on average players
find enemies 1.66 seconds (7.91 s − 6.25 s) after them being in the visible
range. The table also shows the proportion of enemies that were defeated
by the players, which is 92.86%, thus only 7.14% of all enemies could not be
found until they reached the players.
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Property name Min
value

Max
value

Mean
value

Median
value

Variance

Number of
deactivations 1 11 2.05 1 2.25

Time until first
deactivation 2.19 s 16.51 s 7.91 s 7.40 s 6.19 s

Time until last
deactivation 2.65 s 25.69 s 9.40 s 8.61 s 10.35 s

Time until
removed 6.66 s 29.69 s 13.40 s 12.61 s 10.35 s

Defeated by
player 92.86%

Table 6.1: Statistical analysis of the recorded player performance properties
of all game modes and enemy configurations, but only for enemies which were
defeated by the players.

6.3.1 Direction analysis

In the study game scenario, enemies were spawned from four different direc-
tions, relative to the player: 0°, 90°, 180° and 270°, where an angle of zero
degrees means directly in the front of where the player is currently looking.
Assuming this angle impacts the efficiency of players finding the enemies by
listening to their directional sounds, statistical conclusions can be drawn by
analysing the test data set.

Figure 6.1 shows the average time it took players in the study scenario
to find and defeat each enemy, grouped by the initial direction. These values
are calculated as the median value of the corresponding properties of de-
feated enemies that were spawned with the specified initial angle. The time
it takes enemy objects to enter the visible range has been subtracted. The
median was used here instead of the mean to give less weight to extreme out-
lier values, which can occur due to players getting distracted or connection
between the client and server devices being temporarily slow.

The graph highlights that enemies getting spawned directly in front of
the players are found the quickest, with a median value of only 0.38 seconds.
This is most likely because players do not have to move at all to find those
enemies. Objects being spawned to the right (90°) and left (270°) seem to
be harder to find, with a median time of 1.11 and 1.02 seconds, respectively.
This is an increase in time of 192% and 168%. The most difficult objects to
find turn out to be objects spawned directly behind the players with 180°,
which took them 1.94 seconds, or 410% longer, on average.

This increase in difficulty is most likely due to the fact that sounds
directly in the front or back are generally harder to localize than ones to
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Figure 6.1: Comparison of the time it took players to find and defeat ene-
mies, depending on the initial angle between the player and the enemy.

the left or right, since the intensity and time difference is the same for those
sounds for each ear and only monaural cues can be used for localization (see
also section 3.2).

Another interesting aspect shown by this analysis is that it seemed to
take players more time to defeat enemies to their left than those to their
right. Objects at 90 degrees took them 1.93 seconds to defeat, and those
at 270 degrees took 2.39 seconds, or 24% longer. This might be caused by
players more often turning clockwise than counterclockwise when searching
for enemies.

6.3.2 Sound effect analysis

In the evaluated game scenario, four different sound effects with different
spectral properties were used for the enemy objects. Two sound effects, which
will be referred to as All #1 and All #2 later, were selected that span
over most parts of the frequency spectrum. One sound effect, called High,
has been filtered so that it mostly contains frequencies between 500 Hz and
1, 500 Hz. The last sound effect, called Low, has also been filtered and mostly
contains frequencies between 100 Hz and 400 Hz. This selection has been
made because as stated in section 3.2, sounds that span over most of the
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Figure 6.2: Spectral analysis of the four sound effects used in the test game.

spectrum are easier to localize than ones with a narrow spectrum. If this
assumption is true, the sounds All #1 and All #2 should perform better
than Low and High. Figure 6.2 shows a spectral analysis of these four sound
effects.

As in the previous section, an analysis of the players’ times in finding
and defeating enemies was performed, this time grouping by the four dif-
ferent sound effects. Figure 6.3 shows a bar graph of the median values of
these times for each of the four sound effects. The difference in these val-
ues between the sound effects is much smaller than when grouped by initial
direction. Sound effects All #1 and All #2 performed almost equally well,
with players finding those enemies after 1.04 and 1.02 seconds, on average.
Enemies producing the sound effect High were found after 1.17 seconds on
average, which is only 14.70% longer than the best performing sound. The
average of this time for the sound effect Low was 1.30 seconds, or 27.45%
longer.

From these findings it can be inferred that the actual sound effect used
for objects which are to be found by localizing the sounds has a much smaller
influence on the players’ performances than the initial position of the virtual
sound sources. Still, as assumed, sound effects with a more narrow frequency
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Figure 6.3: Comparison of the time it took players to find and defeat ene-
mies, depending on the sound effect used.

spectrum performed worse, but the impact of this was not as critical as
expected. However, when asked which sounds felt easier to localize after
playing through the study scenario, all but one player also stated that the
sound effect Low was the hardest one to locate.

6.3.3 Analysis of other properties

The same analysis as above can be performed focussing on other parameters
of the testing process. By grouping by orientation mode, it can be calculated
that users using the mobile device orientation sensors need 1.19 seconds to
find the enemies, on average, compared to 0.97 seconds when using the cus-
tom orientation measurement module. This shows that the custom solution
provides an average improvement of 18.49%.

The last aspect that was analysed is the enemy object’s visibility. Calcu-
lating the median values of players’ times until the enemies are first found
results in 1.18 seconds for visible enemies and 1.10 seconds for invisible ones.
This means invisible enemies were found 7.27% faster than visible ones, on
average. This small improvement could originate from players looking at the
screen less when the enemies are invisible and instead focussing on listening
and locating the enemies’ sound effects.
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6.4 Summary
The calculated results of this empirical study greatly correspond to the
expectations. Directional sound works better when the sound effects used
span over most parts of the frequency spectrum. The detrimental effect of
using sound effects that were filtered to only a small part of the spectrum
was weaker than expected though.

Virtual sound sources that are created directly behind the users are
harder to localize than ones to their left or right. The effect of this initial
direction on the localization of the sound source turned out significant. The
customly built orientation measurement module provided an improvement
in player performance, most likely because the virtual player entity turning
the same way users turn their heads results in a more realistic experience.
Enemies being invisible helped the players in locating them, but only by a
rather small amount.



Chapter 7

Conclusions

This thesis presented an overview of how binaural directional audio can
improve the immersiveness of co-located multiplayer games. Existing co-
located environments have been examined, if and how directional audio is
already used in them. The goal was to increase the realism of an existing
co-located environment, namely the Deep Space system, by using binaural
audio to create virtual sound sources that players can locate just by listening.
Users only need to wear some type of conventional stereo headphones; no
special equipment is necessary.

To solve this problem, the theoretical basics of sound localization have
been covered as well as methods to create locatable sounds in a virtual
environment. Using this knowledge, a concept to include binaural audio
techniques in an existing co-located environment has been built and techni-
cally implemented. The implemented solution supports developing applica-
tions that can use binaural audio in the co-located multiplayer environment.
Multiple users can interact in this environment, and multiple virtual sound
sources can be placed at any positions inside it. Users carrying a smartphone
and wearing stereo headphones will hear those virtual sound sources just as
if they would actually exist in this environment. Also, a custom extension
for measuring head rotations that can be attached to any headphones has
been developed both in hardware and software. It improves the experience
by letting the virtual player entities instantly rotate when users rotate their
heads. Without this extension, the player entities can only be rotated by
rotating the smartphone held.

Finally, an example game using the implemented methods was created.
Using this game, an empirical study was performed by collecting data from
users playing a test scenario of it, to find out if and how well the developed
methods are working. The study proved that the directional audio does
work as expected, users were able to locate the direction of virtual sound
sources by listening. It further confirmed assumptions made before devel-
opment about what kinds of sounds would work better or worse for this
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task. The study also showed that players using the custom-built orientation
measurement module improved their performance in finding virtual sound
sources, as expected.

A solution in both hardware and software that can be used to create co-
located multiplayer games featuring binaural audio has been developed and
presented. Using it, any kinds of applications and games that are playable in
the Deep Space can be created. Only one such game exists as of now, which
is the one discussed in section 4.4. In theory, it supports a large number of
co-located users interacting with each other at the same time, yet it has only
been tested with up to two users until now. Tests with more users can be
performed in the future, and improvements to the experience and stability
may be necessary. Furthermore, more such games can, and hopefully will,
be implemented by using the outcome of this thesis as a starting point.

The custom orientation measurement module has been proven to improve
the game experience. Only one prototype of this module exists as of now, and
while it is fully working, there are still some problems with it, as described
in section 5.4. Future works can hopefully solve these problems and produce
more stable versions of that module.



Appendix A

Contents of CD-ROM/DVD

Format: CD-ROM, Single Layer, UDF-Format

A.1 PDF-files
Path: /

Bartsch2016.pdf . . . . Master thesis

A.2 Literature
Path: /literature

*.pdf . . . . . . . . . . Copies of literature; each file is named by the
last name of the first author and the year
published.

A.3 Source code
Path: /src

BinauralPacMan/ . . . Unity project of the client and server
application of the binaural Pac-Man game

arduino/ . . . . . . . . . Arduino source code of the custom
orientation measurement module

A.4 Compiled binaries
Path: /bin

BinauralPacMan.zip . . ZIP-file containing the client and server
application compiled for Windows 64-bit
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BinauralPacMan.apk . . APK-file of the client and server application
compiled for Android

A.5 Study data
Path: /data

data.db . . . . . . . . . SQLite database file containing all data
collected for the empirical study

*.csv . . . . . . . . . . . Original data collected for the empirical
study

*.sql . . . . . . . . . . . SQL source files used for building and
analyzing the database

*.m . . . . . . . . . . . MATLAB source files used for generating the
graphs in this document

sqlite_extensions/* . . Extension library for SQLite to be able to
use the median function1

A.6 Images
Path: /images

*.svg, *.pdf(_tex) . . . Vector graphics used in this document
*.png, *.jpg . . . . . . . Pixel graphics used in this document
*.vsd . . . . . . . . . . . Microsoft Visio diagrams used in this

document

1SQLite extension functions:
http://www.sqlite.org/contrib/download/extension-functions.c?get=25

BinauralPacMan.apk
/data
data.db
*.csv
*.sql
*.m
sqlite_extensions/*
/images
*.svg, *.pdf(_tex)
*.png, *.jpg
*.vsd
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