
Automatic Identification of Musical
Versions Using Harmonic Pitch Class

Profiles

Christoph Engelmayer

D IP L OMA RB E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2011

© Copyright 2011 Christoph Engelmayer

This work is published under the conditions of the Creative Commons

License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbst-
ständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen
und Hilfsmittel nicht benutzt und die aus anderen Quellen entnommenen
Stellen als solche gekennzeichnet habe.

Hagenberg, am 25. September 2011

Christoph Engelmayer

iii

Contents

Erklärung iii

Kurzfassung vi

Abstract viii

1 Introduction 1
1.1 Music similarity estimation 2

2 Music version detection – state of the art 5
2.1 The definition of “version” . 5
2.2 Musical aspects . 7
2.3 Version detection – general approach 8
2.4 Approaches for feature extraction 9

2.4.1 Predominant melody 10
2.4.2 Harmonic or chord progression 11

2.5 Common pre- and post-processing steps 13
2.5.1 Reference frequency estimation 13
2.5.2 Key invariance . 13
2.5.3 Tempo invariance . 14
2.5.4 Invariance in the structure 14

2.6 Similarity estimation . 15
2.6.1 Euclidean distance . 15
2.6.2 Cross-correlation . 15
2.6.3 Dynamic programming 15

3 The Harmonic Pitch Class Profile 18
3.1 Pre-processing . 19

3.1.1 Beat detection . 19
3.1.2 Transient detection and handling 19
3.1.3 Spectral analysis . 20
3.1.4 Peak detection . 23
3.1.5 Reference frequency estimation 24

3.2 HPCP computation . 26

iv

Contents v

3.2.1 Weighting . 26
3.2.2 Harmonics . 27
3.2.3 Spectral whitening . 28

3.3 Post-processing . 29
3.3.1 Normalization . 29
3.3.2 Transposition . 30

3.4 Similarity estimation . 31
3.4.1 Cross-correlation . 31
3.4.2 Dynamic time warping 31

4 Evaluation and discussion 33
4.1 The MIREX cover song identification task 33
4.2 The covers80 dataset . 34
4.3 The my30 dataset . 35
4.4 Evaluation measure . 35
4.5 Results . 36

4.5.1 Test results for the covers80 dataset 37
4.5.2 Test results for the my30 dataset 37

4.6 Discussion . 38
4.6.1 The used datasets . 40
4.6.2 Spectral whitening . 40

5 Conclusion 41

A The covers80 dataset 43

B The my30 dataset 46

C Content of the CD-ROM 47
C.1 PDF-File . 47
C.2 MATLAB files . 47

Bibliography 49

Kurzfassung

In dieser Arbeit behandle ich Möglichkeiten um automatisch unterschiedliche
Versionen eines Musikstücks zu erkennen. Der Begriff „Version“ beschreibt in
diesem Fall alle Aufführungen eines musikalischen Werkes das bereits vor
dieser Aufführung existiert hat. Die meisten Menschen erkennen auf Anhieb,
ob ein Lied eine Version eines anderen Liedes ist. Die selbe Aufgabe stellt
einen Computer vor eine weit größere Herausforderung.

Zum Beginn gebe ich einen Überblick über unterschiedliche musikalische
Charakteristiken, die sich mit hoher Wahrscheinlichkeit in unterschiedlichen
Versionen eines Songs nicht ändern. Weiters werden Wege aufgezeigt um
diese Charakteristiken zu extrahieren und miteinander zu vergleichen um
so Aussagen über die Ähnlichkeit zweier Werke treffen zu können. Hierzu
werden unterschiedliche aktuelle Ansätze für die automatische Erkennung
von Versionen vorgestellt.

Basierend auf aktuellen Erkenntnissen habe ich einen eigenen Algorith-
mus zur Erkennung von musikalischen Versionen programmiert. Ich kombi-
nierte hierfür zwei bereits erprobte Methoden. Zur Beschreibung eines Musik-
stücks extrahiere ich sogenannte Harmonic Pitch Class Profiles (HPCP) aus
dem rohen Audio-Signals. Um die HPCP von zwei Stücken zu vergleichen,
um Aussagen über deren Ähnlichkeit zu machen, kommt Kreuzkorrelation
und Dynamic–Time–Warping zum Einsatz. Jeden Schritt der zur Erzeugung
der Harmonie Pitch Class Profiles notwenig ist wird in der Arbeit ausführlich
beschrieben.

Das vorgestellte System zur musikalischen Versionserkennung wird wei-
ters mit einem anderen Algorithmus auf zwei unterschiedlichen Datensätzen
getestet. Der zweite Algorithmus unterscheidet sich vom vorgestellten da-
durch, dass er anstatt HPCP sogenannte Mel Frequency Cepstral Coefficients
(MFCC) zur Beschreibung des Audio-Signals verwendet. Die Testergebnisse
zeigen, dass der im Zuge dieser Arbeit entwickelte Ansatz zwar funktioniert,
jedoch noch nicht an die Genauigkeit des zweiten Algorithmus herankommt.

Im weiteren Verlauf werden mögliche Verbesserungen des entwickelten
Systems diskutiert und der Einfluss verschiedener Faktoren des Algorithmus
behandelt. Weiters werden relevante Probleme, die während der Entwick-
lung des Systems auftraten, aufgezeigt. Mögliche zukünftige Arbeit auf dem
Gebiet der musikalischen Versionserkennung wird im Bereich der näheren

vi

Kurzfassung vii

Erforschung der Faktoren zur Erstellung von HPCP gesehen. Hier könnte
beispielsweise versucht werden, Einstellungen für spezielle Anwendungsfälle
wie z.B. die Erkennung eines bestimmten Genres zu finden.

Abstract

In this thesis I write about ways to compare audio in order to automatically
find different versions of a song. A “version” is every new performance of
a previously released piece of music. Most people can recognize if a given
song is a version of another one. The same task performed by a computer
although is a much more advanced problem involving many different aspects
of music similarity.

First, an overview of different musical features that are most likely to
stay the same across versions is presented. Also ways how to extract these
features and compare them to estimate the similarity of two songs. Different
state of the art approaches for music version detection are discussed.

Based on current algorithms, I implemented my own music version de-
tection system. Therefore I extract beat–aligned harmonic pitch class profile
features (HPCPs) out of a songs raw audio signal. To compare the features
I used cross-correlation and dynamic time warping. All the processing steps
that are necessary to generate HPCP features are described in detail.

The presented version detection system is compared to another approach
using Mel Frequency Cepstral Coefficients (MFCC). The results show that
the presented approach is basically working but its performance is not better
than the one of the other algorithm.

Possible further improvements to the algorithm are discussed and the
influence of different settings are presented. Also relevant problems that ap-
peared while implementing the algorithm are mentioned. Further work di-
rections are seen in exploring the settings involved in creating HPCP vectors
to see if there are any ways to tune the features to work better for a specific
genre.

viii

Chapter 1

Introduction

The way how people consume music has changed dramatically in the last 15
years. After the invention of the MPEG-1 Audio Layer 3 (MP3) codec for
audio compression by the Fraunhofer Institute, a music collection that years
ago physically filled a whole shelf with CDs now fits into a pocket.

But not only our personal have libraries changed. Nowadays nearly every
piece of music ever produced is available on the internet. Online music stores
like the Apple iTunes store1 or the Amazon music store2 sell more songs
online than their real world competitors. Also platforms like YouTube3 offer
millions of music videos from professional to amateur artists.

The most common way to organize these libraries is to assign metadata
to each item. Text based queries are used to search for artist, title or album
information. This gives the user the possibility to localize a desired piece of
music but it requires him or her to know particular information abut the
song he or she is looking for.

To allow the user to explore new music within the database, genre classi-
fication is a common used approach. Every song within a library is assigned
to a musical-style like e.g. rock, pop or classic. Users preferring music from
artists of the rock genre can look for songs tagged as rock and will find mu-
sic they may like. This of course strongly depends on the previous (manual)
organization of the library. Not every song can be assigned to one specific
genre.

With growing personal and commercial music libraries, the urge to find
better ways to handle this amount of data has raised. The scientific commu-
nity for Music Information Retrieval (MIR) started research on how to “au-
tomatically understand, describe, retrieve and organize musical contents”4.

In this thesis I am writing about methods for music similarity estimation,
1http://www.apple.com/itunes
2http://www.amazon.com
3http://www.youtube.com
4
A detailed list of MIR topics can be found at http://ismir2011.ismir.net/callforpapers.

html.

1

http://www.apple.com/itunes
http://www.amazon.com
http://www.youtube.com
http://ismir2011.ismir.net/callforpapers.html
http://ismir2011.ismir.net/callforpapers.html

1. Introduction 2

in specific I am looking at solutions for music version identification.

1.1 Music similarity estimation

Music similarity estimation in general explores ways to automatically recog-
nize and describe similarity between musical pieces. This is interesting for
applications that try to simplify the way users search for music, navigate
through music libraries and explore new (unknown) music that might fit
their taste.

Two songs can be identified as similar if they share one or more musi-
cal facets. But music similarity may also depend on different cultural (or
contextual) and personal (or subjective) aspects.

According to [5], music similarity tasks could be specified by
• their query type
• extracted descriptors
• how these descriptors are compared
• the form of the output.

Possible query types are either content-based music descriptors (information
extracted from the raw-audio data e.g. wav or mp3 files) or a symbolic rep-
resentation of the audio-content (e.g. MIDI files). The used descriptors (e.g.
Timbre, Tempo, Key, . . .) and the method of their comparison depends on
the use-case. They can be categorized by their degree of specificity. Either
exact, retrieving perfect matches (e.g. audio-fingerprinting) or approximate,
retrieving matches that are similar but not exactly the same.

Some common music-similarity tasks are:
Music recommendation Traditional ways to discover new music like radio-

broadcasts or record-stores are replaced by more personal ways. Ver-
sion detection algorithms can be used to recommend new music to
users according to their musical taste. Online music stores already use
recommendation services based on the songs a user bought.

Content-based music retrieval The user specifies a query by choosing
one or more songs he or she likes (instead of e.g. a genre) and the
system automatically returns a list of similar songs which the user
may also enjoy.

Genre-classification The MIR community started to research on features
for audio similarity with the effort to build an audio-based genre clas-
sification system. As described above, automatic-genre classification
tries to automatically assign a genre to a song in a library.

Audio fingerprinting In [53, 54] the authors present a system for audio
fingerprinting, a common topic of the MIR community. Their algorithm
is used in the very popular “Shazaam” application for smartphones. The
software gives its users the possibility, to record a sample of a song in

1. Introduction 3

a real world environment (e.g. club or bar) using their phones. The
query is sent to a server which tries to find a match in the database
and return information about the artist and title of the recognized song
back to the user. Their system shows very high recognition rates and
robustness against ambient noise.

A more complex problem the MIR community is exploring (see e.g. [7])
is to compare songs in order to find music that sounds similar but is not
exactly the same. This could be for example a live performance or cover-
version of a previously recorded song. In contrast to other music-similarity
tasks, version-detection is a more complex task. It tries to detect matches
like audio-fingerprinting while allowing many musical aspects to change. It
is more specific than genre-classification as it is based on the idea that dif-
ferent versions of one musical piece keep their identity even if many musical
dimensions vary [13].

A song contains many different sources of information (e.g. instruments)
and every source has its own structure (i.e. played notes). All this information
is combined into the audio-signal. For humans it is very easy to extract
and process this information (e.g. melody, rhythm, . . .). Most listeners can
recognize if two songs are different versions of the same song. However, the
same task performed by a machine is a much more advanced problem.

Looking at fields of application for version detection algorithms, they
could be used in a variety of ways:
Search: Nowadays, the search in large music databases is based on keywords

and tags like artist, title or genre most of the time. This information
has to be evaluated by humans and manually assigned to each musical
piece in the database. Version detection algorithms offer the possibility
to search using semantic descriptors extracted directly from the audio
content.

Music history: Exploring the history/evolution of a particular song ver-
sion. Find other songs based on the same musical piece.

Musical rights management: Identification of copyright protected mate-
rial on platforms where users can upload content (e.g. youtube.com)
to avoid licensing problems.

In this thesis, I provide an overview of current state of the art approaches
for version detection. The scope is focused on content-based methods, so no
work that uses any kind of input data other than the audio signal is referred.
Algorithms that use metadata supplied by humans, assigned by other sources
or any high-level representations (e.g. MIDI) are excluded.

In chapter 2 the general approach is described and an overview on current
state of the art approaches is given. Different musical features predestinated
for music version detection are presented and discussed. Common ways to
extract them out of raw audio data and compare them according to their
similarity are introduced.

1. Introduction 4

In chapter 3 I will present my own implementation of a version detection
algorithm, based on approaches presented in chapter 2. A detailed step by
step guide on how to extract meaningful features and use them for simi-
larity estimation is given. My approach was implemented and tested using
MATLAB. The results are presented and discussed in chapter 4. In chapter
5 possible future directions are pointed out.

Chapter 2

Music version detection – state
of the art

Before going into detail about musical version detection I first want to specify
what exactly is meant when talking about a “version” of a song.

2.1 The definition of “version”

The term “version” describes a new performance or recording of a previously
composed musical piece. Previous published work (like e.g. [13,16,39,46,49])
also often uses the term “cover-song” instead of version. In modern western
music a tradition of one artist playing a song from another artist as a homage
is called cover song. I see them as a specific version category so I prefer talking
about versions and not cover-songs in this thesis.

[46] divides versions into the following categories. Every category depends
on the way how a version is created.

Remaster Creating a new master for an album or song gener-
ally implies some sort of sound enhancement to a previously
existing product (e.g. compression, equalization, different
endings or fade-outs).

Instrumental Sometimes, versions without any sung lyrics are
released. These might include karaoke versions to sing or
play along with, alternative versions for different record-
buying public segments (e.g. classical versions of pop songs,
children versions, etc.) or rare instrumental takes of a song
in CD-box editions specially made for collectors.

MashUp This is a song or composition created by blending two
or more pre-recorded songs, usually by overlapping the vocal
track of one song seamlessly on the instrumental track of
another.

5

2. Music version detection – state of the art 6

Live performance A recorded track from live performances.
This can correspond to a live recording of the original artist
who previously released the song in a studio album or to
other performers.

Acoustic The piece is recorded with a different set of acous-
tical instruments in a more intimate situation. Sometimes
“unplugged” is used as a synonym.

Demo It is a way for musicians to approximate their ideas on
tape or disc, and to provide an example of those ideas to
record labels, producers or other artists. Musicians often
use demos as quick sketches to share with band mates or
arrangers. In other cases, a music publisher may need a sim-
plified recording for publishing or copyright purposes, or a
songwriter might make a demo in order to be sent to artists
in the hope of having the song professionally recorded.

Standard In jazz music, there are compositions that are widely
known, per- formed and recorded. Musicians usually main-
tain the main melodic and/or harmonic structure but adapt
other musical characteristics to their convenience. There is
no definitive list of jazz standards though this might change
over time.

Medley Mostly in live recordings, and in the hope of catching
listeners attention, a band performs a set of songs without
stopping between them and linking several themes. Usually
just the more memorable parts of the music work are in-
cluded.

Remix This word can be very ambiguous. From a “tradition-
alist” perspective, a remix implies an alternate master of
a song, adding or subtracting elements or simply chang-
ing the equalization, dynamics, pitch, tempo, playing time
or almost any other aspect of the various musical compo-
nents. But some remixes involve substantial changes to the
arrangement of a recorded work and barely resemble the
original one. A remix may also refer to a re-interpretation
of a given work such as a hybridizing process simultaneously
combining fragments of two or more pieces of work.

Quotation The incorporation of a relatively brief segment of ex-
isting music in another work, in a manner akin to quotation
in speech or literature. Quotation usually means melodic
quotation, although the whole musical texture may be in-
corporated. The borrowed material is presented exactly or
very similar so, but is not part of the main substance of the
work. Incorporating samples of other songs into one own

2. Music version detection – state of the art 7

song would fall into this category.

2.2 Musical aspects

When the human brain processes music it extracts certain musical informa-
tion out of the audio and compares it to music we have heard before. It is
unknown what exactly the essential information is, that has to be encoded
by the listener to identify a song as a version from another one, but it seems
that versions usually use the same melodies or tonal progression but differ
in one or more other aspect like e.g. tempo, key or timbre. (Talking about
western pop-music. Versions in classical music may only vary very slightly.)
To build a music version identification system we use the Musical Cognition
approach. This means that we try to understand how humans “decode” music
to rebuild a system similar to that.

The authors of [46] differentiate the following musical aspects:

Timbre: Many variations changing the general color or texture
of sounds might be included in this category. Two predom-
inant groups are:

Production techniques: Different sound recording and
processing techniques introduce texture variations in
the final audio rendition (e.g. equalization, microphones
or dynamic compression).

Instrumentation: the fact that the new performers could
be using different instruments, configurations or record-
ing procedures can confer different timbres to the ver-
sion.

Tempo: As it is not as common to strictly control the tempo in
a concert, this characteristic can change or fluctuate even
in a live performance of a given song by its original artist.
In fact, strictly following a predefined beat or tempo might
become detrimental for expressiveness and con- textual feed-
back. Even in classical music, small tempo fluctuations are
introduced for different renditions of the same piece. In gen-
eral, tempo changes abound, sometimes on purpose, with
different performers.

Timing: In addition to tempo, the rhythmical structure of the
piece might change depending on the performer intention
or feeling. Not only by means of changes in the drum sec-
tion, but also including more subtle expressive deviations
by means of swing, syncopation, accelerandos, ritardandos
or pauses.

2. Music version detection – state of the art 8

Structure: It is quite common to change the structure of the
song. This modification can be as simple as skipping a short
introduction, repeating the chorus where there was no such
repetition, introducing an instrumental section or shorten-
ing one. On the other hand, such modifications can be very
elaborated, usually implying a radical change in the musical
section ordering.

Key: The piece can be transposed to a different key or main
tonality. This is usually done to adapt the pitch range to
a different singer or instrument, for aesthetic reasons or to
induce some mood changes in the listener. Transposition
is usually applied to the whole song, although it can be
restricted just to a single musical section.

Harmonization: Independently of the main key, the chord pro-
gression might change (e.g. adding or deleting chords, sub-
stituting them by relatives, modifying the chord types or
adding tensions). The main melody might also change some
note durations or pitches. Such changes are very common in
introduction and bridge passages. Moreover, in instrumen-
tal solo parts, the lead instrument voice is practically always
different from the original one.

Lyrics and language: One purpose for recording a version is
to translate it to other languages. This is commonly done by
high-selling artists to become better known in large speaker
communities.

Noise: In this category we consider other audio manifestations
that might be present in a recording. Examples include audi-
ence manifestations such as claps, shouts or whistles, speech
and audio compression and encoding artifacts.

To identify two songs as versions of the same song, at least one of these
characteristics has to be similar in both of them.

2.3 Version detection – general approach

To build a system that automatically detects versions we have to extract
one or more meaningful features from the audio signal and compare it to
identify similarities. Not all musical aspects are equally important for version
detection as not all of them stay the same throughout versions. Which aspects
vary and which of them remain similar strongly depends on the way the
version is made. Table 2.1 lists several common features that are most likely
to change between two versions.

To build an algorithm to identify different versions, it is important for this

2. Music version detection – state of the art 9

T
im

br
e

T
em

po

T
im

in
g

St
ru

ct
ur

e

K
ey

H
ar

m
on

ic
s

Ly
ri

cs

N
oi

se

Remaster ⇥
Instrumental ⇥ ⇥ ⇥

Mashup ⇥ ⇥ ⇥ ⇥
Live ⇥ ⇥ ⇥ ⇥

Acoustic ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Demo ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

Standard ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Medley ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
Remix ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

Quotation ⇥ ⇥ ⇥

Table 2.1: Possible changes of musical features according to different version
categories. Possible change is marked with ⇥. (Table adapted from [45])

to happen without being influenceable by tempo, key or structure. Instead we
try to extract features that are most likely to stay similar in different versions.
The accuracy of a music version detection algorithm strongly depends on the
chosen features. Versions of a song usually preserve the main melodic and/or
harmonic progression. This is why tonal and harmonic content are the most
employed characteristics used for music version detection.

2.4 Approaches for feature extraction

To develop a music version detection algorithm, it is important to extract
features that are most likely to stay the same across versions.

As described in [20], a feature that is largely preserved across different
versions and is robust against changes in other musical facets is the tonal
sequence. Nearly all current music version detection algorithms use some
kind of tonality feature to describe polyphonic music. Exceptions are older
systems that use other descriptors like the energy of the audio signal or
spectral-based timbre [17, 56].

Tonality describes a system of hierarchical relationships between a series
of pitches [41]. The hierarchy is based on the most stable element i.e. pitch
in the system which is called central pitch class, tonic or key. Generally
speaking, a tonal sequence is a sequentially-played series of different pitch
combinations. If the played combination is unique for each time slot it is
referred as melody. If more than one note are played together for each time

2. Music version detection – state of the art 10

slot we speak of chords or harmonic progression.
Tonality is omnipresent in western music and easy to extract for human

listeners. Tests in [47] have shown that most people can identify the most
stable pitch while listening to tonal music [9], no matter if they are musically
trained or not.

All these characteristics make tonal sequences an important feature for
audio similarity tasks, especially for music version detection [1,6,26]. Similar
information is also a very common used feature for speech recognition tasks
like the one presented in [36].

Basically there are three different features modern version detection algo-
rithms try to extract to describe tonal sequences. They either try to extract

• a predominant melody,
• a chord/harmonic progression,
• or a chroma sequence.

2.4.1 Predominant melody

In music, the term melody describes a sequence of tones. This could be e.g.
the chorus of a song where the main melody is present and repeated. The
melody of a song is one of the most recognizable characteristics of a song
for human listeners which makes it a great descriptor of a musical piece [44].
This is why it is commonly used in music version identification systems e.g.
[33, 34,42,51, 52].

To explore ways for extracting predominant melody out of raw audio
data a lot of work e.g. [23, 28,38] has been done in the MIR community.

Melody extraction is based on methods for pitch perception and fun-
damental frequency estimation. As the MIR community already focused on
these tasks for several years, some advanced methods like [11, 12] already
exist. However, melody extraction is still a difficult task. Real-word audio
signals are a complex mixture of different information which leads to many
problems with the perception and tracking of useful features. One problem
is to identify the frequency belonging to the melody in case that multiple
fundamental frequencies appear at the same time.

In the following sections I briefly describe different methods to handle
these problems in order to generate more accurate melody representations.

Voice detection

One method to achieve a more reliable representation of the melody is to
combine the its extraction with a voice/non-voice detector. The system pre-
sented in [51, 52] removes non-vocal parts that are longer than a certain
timespan. This timespan depends on the tempo i.e. the beats per minute
(BPM) of the song (two seconds for 120 BPM). The removed parts are ex-
pected to belong to the intro, bridge or outro of the song. Remaining parts

2. Music version detection – state of the art 11

are therefore assumed to be part of the verse (typically containing the main
theme) or chorus (most recognizable melody). These remaining parts are
converted into musical note symbols. Sequences of these notes can later be
compared to estimate similarities between songs.

Another melody estimation system that uses voice detection and some
other post-processing modules is presented in [42]. The authors combine
voice detection with a multi resolution Fourier transform and use a distance
matrix to compare extracted descriptors.

First they use the algorithm presented in [14] to extract a pitch line
for the parts of the song where a voice is present. From this pitch line and
further spectral information, so called note candidates, are extracted. Note
candidates with a duration and/or loudness under a certain threshold are
discarded. All the remaining candidates are assigned to discrete pitches.

Another method is used to store the parts of the musical sequence that
contain relevant melody information. In [50], a pitch sequence is considered
as important if it is between 3 and 8 seconds long and consists of neither too
few nor too many notes. In a final step, the algorithm looks for repeating
sequences and weights them according to how often they appear in the song.

Mid level descriptors

In MIR we differentiate between different levels of abstraction for descriptors.
They can be categorized in High, Mid and Low according to their level of
abstraction. Low level descriptors are very closely related to the audio signal.
Therefore they are hard to understand and describe for humans. High level
descriptors are modeled according to knowledge from the fields of music
cognition and music psychology. Therefore, they are a lot more meaningful
for humans.

Another method for extracting and describing the predominant melody
in a song is to use Mid level descriptors. These melody features reduce the se-
mantic gap and describe audio in a way that simplifies retrieval. The authors
of [33,34] combine melodic, rhythmic and structural aspects to generate Mid
level features. They generate a melodic representation of the audio signal
and look for salient melodic lines in it. To handle tempo variations, the rep-
resentation is beat synchronous (see chapter 4). A search algorithm based on
locality-sensitive hashing is used to perform retrieval according to similarity
of the extracted melodic fragments. This guarantees fast performance for
similarity search in large music databases.

2.4.2 Harmonic or chord progression

Instead of using the melody as the main descriptor, other version detection
systems use representations that emphasize harmonic or chord progression.
A chord is a set of notes played simultaneously. In western music chords most

2. Music version detection – state of the art 12

frequently appear as triads e.g. three notes played at the same time.
Two common ways to extract this information are chromagram (e.g. [16])

and pitch class profiles (PCP) (e.g. [18]). According to [49], these features
might provide a more complete, reliable and straightforward representation
compared to the melody descriptors mentioned before.

Chromagram features

A chromagram is a special variation of a spectrogram, using a projection of
the spectrum onto 12 bins where each bin represents one of the 12 tones of
the musical octave. Therefore, chromagram features represent melodic and
harmonic information of the song.

A similar representation is provided by Mel-frequency Cepstral Coeffi-
cients (MFCCs). They transform the spectrum in order to describe the sound
characteristics as they are perceived by a human listener. MFCCs are com-
puted by applying a mel-spaced set of filters to the spectrum. A mel measures
the perceived pitch of a tone for the human ear.

The authors of [29] use a Chromagram representation of the music for
chord recognition. Chroma based features could be used for a wide variety
of MIR tasks like pattern discovery [10], audio thumbnailing and chorus
detection [2, 24], or audio alignment [26,35].

In [16] the authors use chromagram features to identify different ver-
sions of a song. They use a beat tracking algorithm in order to create a
12-dimensional chroma vector for every beat.

Every dimension of the vector represents one semitone on the musical
octave. To handle pieces that are slightly out of tune a margin of ±0.5
semitones is used for the construction of the chroma features.

Pitch class profiles

Another representation for harmonic content of audio are pitch class profiles
[18, 20, 25, 32, 45]. These features where first introduced in [18] to perform
chord recognition tasks. PCPs are vectors containing chroma features de-
scribing the power of each semitone of the octave for a given time frame in
the audio signal [20].

To create PCPs, the audio is windowed (usually into 100ms frames) and
every slice is transformed to the frequency domain by a discrete Fourier
transformation. Energy-peaks within a given frequency range (usually 50HZ
to 5kHz) are located and assigned to a pitch class band according to their
frequency. Peaks on lower or higher octaves are folded into one resulting in
a 12-dimensional PCP vector.

The advantages of PCP descriptors are that they combine chroma infor-
mation and harmonic structure in the spectrum while keeping the amount
of dimensions manageable. This is one fact why they are very popular for

2. Music version detection – state of the art 13

MIR tasks.

2.5 Common pre- and post-processing steps

In nearly all systems mentioned in the previous sections some pre- and post-
processing is done in order to prepare the raw data for feature extraction.
Another goal of pre-processing is also to reduce the amount of data without
loosing too much meaningful information.

The following are common pre- or post-processing methods to handle
problems that appear while extracting features for music version detection.
See table 2.2 for a detailed overview of algorithms and methods.

2.5.1 Reference frequency estimation

Theoretically, music instruments in western music are tuned to 440 Hz. In
reality no instrument is perfectly tuned. Because of that, algorithms that use
some kind of pitch class distribution to estimate a reference frequency the
musical piece is tuned in order to assure robustness to tuning issues.

2.5.2 Key invariance

A musical characteristic that frequently changes between different versions
of a song is the key. This is why nearly all algorithms try to handle key
transposition between songs. The two most common ways to deal with this
problem are either to estimate the main key or shift the key sequence to find
the transposition that fits best.

Estimation of main key

This method estimates the main key for every song and transposes it ac-
cordingly. This is done by finding the most dominant key in a songs feature
representation and set it to zero. The dominant key can be estimated by look-
ing at the total of every pitch class throughout a whole song. A big drawback
of this method is that its success strongly depends on the accuracy of the
algorithm used for key estimation. In the worst case, the estimated key of
the query song is wrong so no version will fit.

Shift key

Another method to handle key invariance between songs is to shift the key to
all possible transpositions in order to find the one that fits best. The benefit
of this method is that it will find the best fitting key transposition of the
given feature representation. On the other hand the computation is intense
because similarity measures for all possible transitions have to be done.

2. Music version detection – state of the art 14

2.5.3 Tempo invariance

Another aspect that is most likely to change between different versions of
a song and therefore interesting to handle is the tempo. There are different
ways to deal with this problem.

Mean values (per beat)

As described in [33] the events in a musical piece do not appear in a di-
rect relation to time, but in a relation within a metric hierarchy. The basic
elements of this hierarchy are beats.

Systems like [16, 33, 37] try to estimate the tempo for every song and
extract mean values accordingly. Most of the time, beat detection algorithms
are used to estimate the beats per minute (BPM) and beat timestamps.
All values between two beats are averaged to get a mean value per beat
representation of the song. These representations are tempo invariant and
can be compared with each other.

The results for this kind of tempo handling strongly depend on the ac-
curacy of the beat estimation.

Temporal compression

Temporal compression resamples the extracted descriptor sequence of a song
to several plausible expanded and compressed versions. These are compared
in order to find the best matching sample rate.

In [39] the features of every song are resampled using three different
tempo means (240, 120 and 60 BPM) leading to nine different scores for
each song pair. All scores are normalized and placed in a nine-dimensional
feature vector which is classified as cover or non-cover.

Similarity matrix

Another method to handle tempo invariance between song versions is to
create a similarity matrix.

The authors of [49] create a binary similarity matrix where each value
expresses if two extracted features are similar or not. They are considered as
similar if their similarity is under a certain threshold value.

The similarity matrix representation is used as source for dynamic pro-
gramming similarity estimation methods as described in chapter 2.6.3

2.5.4 Invariance in the structure

[22, 33] use song summarization or chorus extraction techniques to improve
the results of their algorithms. Therefore they try to find meaningful parts
of the song (e.g. repetitive parts like the chorus) and use them as input

2. Music version detection – state of the art 15

for further similarity estimation. Methods to identify and extract meanigful
sections of a song are presented in [8, 10].

2.6 Similarity estimation

The last step of each version detection algorithm is to compare the extracted
feature sequences of two or more songs in order to estimate their similarity.

Basically there are two tasks for similarity estimation. A query-by-example
task where users submit a song and the system returns a ranked list of sim-
ilar songs out of a database. Another possibility is a true/false task with a
query of two songs and a true or false response depending on if the query
songs are versions of each other or not.

2.6.1 Euclidean distance

In [5] the authors use so called shingles to describe a musical piece. Shin-
gles are sequences of audio features combined into a single high-dimensional
vector.

To measure the similarity of two songs the authors place the shingles of
both songs in a multidimensional space and pairwise compare their Euclidean
distance in this space. The smaller the distance between shingle pairs, the
more similar the two shingles are. The authors are looking for the amount of
shingle pairs with a distance less than a defined threshold. The more shingles
match, the higher the similarity of the songs is.

The success rate of the whole algorithm depends on this distance thresh-
old value. The authors estimate the distribution of shingle distances between
two tracks that are known to be unrelated.

2.6.2 Cross-correlation

In [16] the authors compare two songs by cross-correlating the beat-chroma
matrices (MFCC features) of both songs as if they where images. The row in
which the magnitudes correlate best are high pass filtered. Furthermore, a
value for every beat is computed by calculating the reciprocal of the output
maximum value. These values represent the degree of similarity for every
beat of the two songs. Parts of the songs where beats with the same tonal
structure occur create peaks in the 2D correlation.

2.6.3 Dynamic programming

Dynamic programming is a technique for aligning two data-sequences which
may vary in time or speed and automatically discover their local correspon-
dences. It is a popular technique (used in [3,15,17,21,22,27,31,33,37,48,49,
51, 52, 56] for handling tempo invariance and calculate similarity in version

2. Music version detection – state of the art 16

detection algorithms. According to results presented in [3,49], most systems
that use dynamic programming perform better than those using mean-beat
features.

To use dynamic programming for similarity estimation, a similarity ma-
trix (as described in chapter 2.5.3) is needed as a source. The most common
used dynamic programming techniques are Dynamic time warping and Edit-
distance variants. These are currently two of the most accurate ways to
handle tempo invariances but also computationally expensive (quadratic in
the songs representation).

Dynamic time warping

Dynamic time warping (DTW) uses a path finding algorithm on the distance
matrix to find an optimal alignment path.

To use DTW some pre-processing steps are necessary. Each HPCP vector
is normalized by its maximum value and a key-detection algorithm is applied
to estimate the key of the compared tracks. In a second step both songs are
transposed to the same key. Now a cumulative distance matrix describing
the similarity between the HPCPs of both songs is generated. Every cell rep-
resents the similarity between the two HPCPs (e.g. local alignment). Using
this matrix it is possible to calculate an alignment path. The length of this
path is representing the similarity between the two HPCP sequences (for a
detailed description see [49]). The smaller the alignment costs of two songs,
the more similar they are. A song compared to itself would be a perfect
match with normalized alignment costs of 1 (i.e. a diagonal line in the dis-
tance matrix). DTW is a very common used technique in speech recognition
and processing.

Edit-distance variants

The edit-distance of two character sequences is the number of operations re-
quired to transform one sequence of characters into the other. Originally edit-
distance algorithms where developed to perform DNA alignment in molecular
biology.

One very popular edit-distance algorithm is [55], the so called Smith–
Waterman algorithm. It compares feature segments of all possible lengths
and optimizes the similarity measure. The algorithm is run on the similarity
matrix from chapter 2.5.3. The highest value of the returned dynamic pro-
gram is used as a feature to describe the similarity between songs (for details
see [49]).

2.M
usic

version
detection

–
state

ofthe
art

17
Reference(s) Extracted features Key invariance Tempo invariance Structure invariance Similarity computation

Foote (2000) Energy + Spectral DP DTW
Yang (2001) Spectral DP Linearity filtering Match length
Nagano et a. (2002) PBFV All transp. Beat + DP Seq. windowing + DP Match length
Izmirli (2005) Key templates DP DTW
Müller et al. (2005) PCP Temporal comp./exp. Sequence windowing Dot product
Tsai et al. (2005, 2008) Melodic K trans. DP DTW
Gomez & Herrera (2006) PCP Key estim. DP DTW
Gomez et al. (2006) PCP Key estim. DP Repeated patterns DTW
Lee (2006) Chords Key estim. DP DTW
Marlot (2006) Melodic Key estim. DP Repeated patterns Cross-correlation
Sailer & Dressler (2006) Melodic Relative Edit-distance
Bello (2007) Chords K transp. DP Edit-distance
Ellis & Cotton (2007); Ellis
& Poliner (2007)

PCP All transp. FBeat Cross-correlation

Kim & Perelstein (2007) PCP Relative HMM MLSS
Ahonen & Perelstein
(2007)

PCP Relative NCD

Egorov & Linetsky (2008) PCP OTI DP DP Match length
Jensen et al. (2008) PCP All transp. Fourier transform Frobenius norm
Jensen et al. (2008) PCP 2D autocorrelation 2D autocorrelation Euclidean distance
Kim & Narayanan (2008);
Kim et al. (2008)

PCP + Delta PCP All transp Dot product

Kurt & Muller (2008) PCP All transp. Temporal comp./exp. Sequence windowing Dot product
Marlot (2008) Melodic 2D spectrum Beat + 2D spectrum Sequence windowing Euclidean distance
Serra et al. (2008, 2009) PCP OTIs DP DP Match length
Ahonen (2010) Chords + Other OTI NCD
Serra et al. (2010, 2011) PCP OTIs Prediciton error
Di Buccio et al. (2010) PCP K transp. Sequence windowing Set intersection

Table 2.2: Version identification algorithms developed in the last 10 years Version identification algorithms and their ways of
overcoming changing musical characteristics. PBFV. . . polyphonic binary feature vector, PCP. . . pitch class profile, OTI. . . optimal
transposition index, DP. . . dynamic programming, HMM. . . Hidden Markov Models, DTW. . . dynamic time warping, MLSS. . . most
likely sequence of states, NCD. . . normalized compression distance. (Table adapted from [45])

Chapter 3

The Harmonic Pitch Class
Profile

After working through all the state of art techniques I decided to build my
own implementation of a music version detection algorithm by combining
different parts of the systems presented in chapter 2. I built an algorithm
based on HPCP features because they have the highest success rate accord-
ing to MIREX cover song detection task1 of the recent years. During research
numerous questions appeared about how to generate meaningful HPCP fea-
tures. In [20, 45, 49] some details are unspecified or poorly described so I
spent a lot of time gathering the pieces that are missing. I created my own
implementation using MATLAB.

In this section all the necessary steps to extract HPCP features are de-
scribed in detail. Moreover, two methods for comparing them where imple-
mented and described.

The basic steps for the extraction of HPCP features are:
1. Pre-processing

(a) Beat detection
(b) Transient detection and handling
(c) Spectral analysis

i. Windowing
ii. Zero-Padding
iii. Discrete Fourier Transformation

(d) Spectral whitening
(e) Peak detection
(f) Frequency filtering

1
The Music Information Retrieval Evaluation eXchange (MIREX) is an annual eval-

uation campaign for music information retrieval (MIR) algorithms. http://www.music-
ir.org/mirex/

18

http://www.music-ir.org/mirex/
http://www.music-ir.org/mirex/

3. The Harmonic Pitch Class Profile 19

(g) Reference frequency estimation

2. Harmonic Pitch Class Profile computation

(a) Weighting
(b) Considering harmonic frequencies

3. Post-processing

(a) Normalization
(b) Transposition

3.1 Pre-processing

The following pre-processing steps prepare the audio-signal for the extraction
of the harmonic pitch class profile.

3.1.1 Beat detection

The beat detection is necessary if a per-beat HPCP representation is needed
for the comparison method.

In the first step I calculate the time location of every beat in the query
audio signal. Therefore, I use a pre-built beat-detection function2 from [16]
which delivers a vector containing the detected beat locations of the signal
in milliseconds. This information is later used in chapter 3.4.1 for the com-
putation of mean HPCPs for every beat. It is important to extract the beat
locations out of the raw audio signal before it may be influenced by other
pre-processing steps.

3.1.2 Transient detection and handling

In [20] the author suggest to handle transients in the audio signal to make
the algorithm more robust against noise.

To detect transient positions in the input signal I use an approach similar
to the one described in [4]. The basic idea is to compare the change of
Mel-frequency cepstral coefficients (MFCCs) over time. Therefore, a MEL
cepstrum (see figure 3.1a) with 42 bands between 40 and 20353.6 Hz using
a Hamming window of 23.2 ms length is created (values are recommended
in [4]).

Every MFCC is now compared to its sequential MFCC by calculating the
absolute difference between each bin as shown in figure 3.1b. This information
is stored in a matrix which is used to locate the transient locations in the
signal. Hence, I calculate a graph by using only the maximum values of each
column in the difference matrix. Peaks in this graph mark high differences
between two sequential MFCCs i.e. transient positions (figure 3.1c).

2
MATLAB code is available at http://labrosa.ee.columbia.edu/projects/coversongs

http://labrosa.ee.columbia.edu/projects/coversongs

3. The Harmonic Pitch Class Profile 20

Fr
eq

ue
nc

y
(k

Hz
)

0 0.5 1 1.5 2 2.5
0

10

20

Fr
eq

ue
nc

y
(k

Hz
)

0 0.5 1 1.5 2 2.5
0

10(b)

(a)

(c)

20

0 0.5 1 1.5 2 2.5
0

0.5

1

Tr
an

sie
nt

Time (s)

Figure 3.1: Transient detection steps for a generated sample signal playing
a continous tone that changes pitch every 0.2 s. (a) MEL cepstrum, (b)
difference matrix, (c) smoothed signal generated from maximum difference
matrix with marked peaks.

To detect these peaks I first smoothed the data using a moving average
filter followed by a peak-detection function from the MIRtoolbox3. The time
values of the peak points are the transient locations in the query signal.
Using the gathered transient time information I am now able to smooth the
input signal with an inverse tukey window of 100 ms size at each detected
peak time. Therefore 50 ms before and after each transient location are not
analyzed. According to [49] this step is necessary to lower the influence of
transients in the signal.

Other work like [45] does not use transient handling at all. I implemented
the feature and tested it with the result that in most of the cases, transient
detection does more harm than good on the accuracy of the HPCP features
(See detailed test results in chapter 4). Consequently I do not recommend
using a transient detection and handling for HPCP creation.

3.1.3 Spectral analysis

For the spectral analysis, the signal has to be converted into the frequency
domain. This is done by windowing followed by a discrete Fourier transform.

3
MIRtoolbox is a collection of functions for musical feature extraction in MATLAB

[30]

3. The Harmonic Pitch Class Profile 21

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
−1

−0.5

0

0.5

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

1

2

x 10ï�

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−2

−1

0

1

2

x 10−4

time (seconds)

(a)

(b)

(c)

m
ag

ni
tu

de
m

ag
ni

tu
de

m
ag

ni
tu

de

Figure 3.2: Windowing of the signal (a) signal (b) windowing function (c)
windowed signal.

Windowing

The sampled audio signal x(n) is split into frames of length Nframe. Every
frame is defined as x(n+ l ·Nhop). Nhop is the hop-size defining the overlap of
the frames. In addition, a windowing function w(n) is applied to each frame
(see figure 3.2). The final windowed signal xw(n) is

xw(n) = x(n+ l ·Nhop) · w(n). (3.1)

In my implementation I use a frame length of Nframe = 4096 samples
which equals 93 ms assuming an audio signal with a sample rate of 44.1 kHz.
The overlap of the frames is set to 75% so Nhop = 1025 samples. (Notice that
all values are specified in frames and therefore dependent on the sample rate
of the audio signal). All these values are recommended in [20, 45] and be
proven to generate reliable results. [20] uses a slightly smaller hop size of 512
samples. [18] defines a larger frame size of 400 ms. All values used in my
implementation are listed in table 4.1.

The windowing function w(n) is needed to create a periodic signal which
can be used as input for the discrete Fourier transform. Window functions
are defined by the width of their main lobe and their highest side lobe level.

3. The Harmonic Pitch Class Profile 22

According to [20] common windows are the rectangular window (main-lobe
width of 2 bins and side-lobe level equal to 13 dB), the Hanning window
(main-lobe width equal to 4 bins and side-lobe level equal to 23 dB), the
Hamming window (main-lobe width of 4 bins and side-lobe level equal to 43

dB), the Blackman-Harris window or the Kaiser window. For my implemen-
tation I followed the recommendations in [45] and used a Blackman Harris
window with a side lobe level of 92 dB.

A L-term Blackman-Harris window is generated using

w(n) =
1

Nframe

L�1X

l=0

↵l · cos(
2nl⇡

Nframe
), n = 0, 1, . . . Nframe � 1. (3.2)

The side lobe level depends on the ↵ parameters. To create a side lobe level
of 92dB ↵0 = 0.35875, ↵1 = 0.48829, ↵2 = 0.14128 and ↵3 = 0.01168.

As a last step of the windowing process, the windowed data gets centered
in the time origin (i.e. Zero-phase window) using

wwc(n) = xw(n+

Nframe

2

), n = �
Nframe

2

, . . . ,
Nframe

2

� 1. (3.3)

Discrete Fourier transform

In the next step the power spectrum X(k) (see figure 3.3) of the win-
dowed and zero-phased signal is created using the discrete Fourier transform
(DFT). It is defined by

X(k) = DFT [x(n)] =

Nframe
2 �1X

n=�Nframe
2

xwc(n) · e
�j2⇡nk
Nframe , (3.4)

with k = 0, 1, . . . Nframe � 1. The result of a DFT consists of a real Xr and
an imaginary Xi part. The magnitude |X(k)| and the phase �(k) can be
calculated with

|X(k)| =
p
Xr(k)2 +Xi(k)2, (3.5)

and
�(k) = arctan

Xi(k)

Xr(k)
, (3.6)

with again k = 0, 1, . . . Nframe � 1. According to the Nyquist-Shannon sam-
pling theorem, the amount of data points in X(k) is equal to Nframes and
positive frequencies range from 0 Hz up to half of the sampling rate fs/2 Hz.
The resolution of the frequency is therefore fs

Nframe .
The size of the analysis frame Nframes is a critical parameter in the

calculation of the DFT. A small amount of frames results in a good temporal
resolution of the whole signal. On the other hand, an increase of Nframes also
increases the frequency resolution.

3. The Harmonic Pitch Class Profile 23

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−80

−60

−40

−20

0

M
ag

ni
tu

de
 (d

B)

Frequency (kHz)

Figure 3.3: Spectrum with marked peak values.

Zero-padding

To increase the frequency resolution without using more samples of the input
signal, [20, 45] recommend a technique called zero-padding.

Zero-padding takes the Nframe samples of the signal x(n+ l ·Nhop) and
extends it by adding samples containing zeros until a desired size of NFFT

samples is reached.
This zero-padded signal

Xzp(n) =

8
><

>:

0 for n = �NFFT
2 . . .� Nframe

2 � 1,

xwc(n) for n = �Nframe

2 . . .
Nframe

2 � 1,

0 for n =

Nframe

2 . . . NFFT
2 � 1,

(3.7)

now has the required frequency resolution fs
NFFT

with NFFT �Nframe zeros
added to the original signal. In my implementation each window is zero-
padded to NFFT = 4 · Nframe so it uses 4 times the amount of samples as
in the original frame.

It is important to note that zero-padding does not add more informa-
tion to the signal. It just improves the information that already exists by
increasing its resolution.

3.1.4 Peak detection

In the last pre-processing step I extract the information needed to create the
HPCP vector. Therefore, the peak points (i.e. local maxima) of the spectrum
generated in 3.1.3 are extracted.

A peak detection algorithm4 is applied to the spectrum, looking for points
that are surrounded by points with a lower magnitude than itself. I defined

4
I used an algorithm by Edi Billauer which is available for free. http://billauer.co.il/

peakdet.html

http://billauer.co.il/peakdet.html
http://billauer.co.il/peakdet.html

3. The Harmonic Pitch Class Profile 24

a threshold value of 1, meaning that it only declares a point as a peak if the
difference to surrounding points is > 1.

The amplitude values of the spectrum used for peak-detection are given
on a decibel (dB) scale, so every amplitude value ai is in relation to the
maximum possible magnitude amax so that

ai(dB) = 20 · log10
ai

amax
. (3.8)

This results in amax = 0 and all other values are on a logarithmic scale below
it. The dB scale is adapted to the human perception of sound and therefore
peaks are more distinct in the dB spectrum.

The found peak points are stored in a list of frequency/amplitude pairs
{ai, fi} with i = 1 . . . nPeaks. Notice that the amplitude ai is stored as linear
instead of the dB value. The frequency fi is stored in Hz according to its bin
position and the frequency resolution fs

NFFT
.

Results are filtered and only peaks within a range of 40 – 5000 Hz are
considered. This is important because of percussion and instrumental noise.
The audio is more noisy in high frequency regions. Also a threshold of �100

dB with respect to the local maximum possible magnitude is applied. Peaks
with a maxima below this threshold are discarded. These filter ranges are
recommended and proved to generate reliable results by [20,45].

3.1.5 Reference frequency estimation

In the last pre-processing step, the reference frequency has to be estimated.
This frequency is the one which all the instruments of a song are tuned to. In
western music it is usually 440 Hz but we cannot assume that all instruments
are perfectly in tune. To make the algorithm robust against variations of the
reference frequency, we have to estimate it for every analyzed song. It is
important for scaling the center frequencies of the HPCP bins and to fold
each overtone series into a pitch class.

Basically there are two different ways for computing a songs reference
frequency. One way is to estimate it before frequency values are mapped
to pitch classes. Another way is to generate pitch classes using a standard
reference frequency and shift the features afterwards to tune them to the
right reference frequency.

In my implementation I am using the first approach. Therefore the refer-
ence frequency for each analysis frame is estimated by inspecting the devia-
tion of the spectral peaks. A global frequency is then generated by combining
the frame estimates.

Looking at the detected peak points of one frame the lowest peak fre-
quency should be the fundamental frequency f0 of all the others i.e. all the
overtones are integer multiples of it. f0 is defined as

f0 = max

N
{gj 2 G : ngj 2 G, n = 1, . . . , N}. (3.9)

3. The Harmonic Pitch Class Profile 25

425 430 435 440 445 450 455
0

10

20

30

40

50

60

70

80

90

100

Frequency (Hz)

Figure 3.4: Histogram of estimated reference frequencies.

Assuming a 12-tone equal tempered tuning system with the reference fre-
quency fref , the fundamental frequency f0 of a given pitch can be calculated
using

f0 = ft · 2�(f0;fr)/12, (3.10)

with �(f0; fref) describing where the note is on the musical octave.

�(f0; fref) := 12 log2(f0/fref). (3.11)

Knowing that �(f0; fref) must be an integer, it is possible to adjust fref to
make �(f0; fref) an integer value in a plausible range of fref 2 [410, 460] Hz.

Unfortunately, overtones appearing in a perfect integer relationship are
very rare or even not existing in reality. Therefore I am looking for a funda-
mental that fits for most of the overtone frequencies. This is done by only
taking frequencies into account that are situated in the area around the
perfect harmonic frequencies. Therefore, I define

f0 = max

N
{gj 2 G : g 2 [(1� �)ngj , (1 + �)ngj] 2 G, n = 1, . . . , N}, (3.12)

using a small � � 0. To get a estimated reference frequency for a whole
musical piece, I create a histogram of the f0 values from all windows and
choose the frequency with the highest occurrence (see figure 3.4).

It is not necessary to estimate the reference frequency using the whole au-
dio signal. Good results can be achieved by using just a 20 s sample from the

3. The Harmonic Pitch Class Profile 26

center of the signal (without removed transients). This reduces calculation
time and speeds up the algorithm.

This method is an enhancement5 of the one used in [20,45].

3.2 HPCP computation

After the pre-processing procedure, we now have a reference frequency fref
and a list of peak points found in the power spectrum containing frequen-
cy/amplitude pairs {ai, fi}, i = 1 . . . nPeaks. This information is the input
for the computation of the Harmonic Pitch Class Profile vector.

HPCPs describe the energy of each semitone at a given time frame of
the audio file. It provides a sliced representation of a musical piece, where
each slice is a vector HPCP (n) describing the power of each semitone n.
The HPCP vector for one time frame is defined as

HPCP (n) =

nPeaksX

i=1

!(n, fi) · a2i , (3.13)

with n = 1 . . . size. size equals multiples of 12 as they are representing
the 12 different notes on the western musical octave. The HPCP bins n
are dependent on the reference frequency fref (estimated in 3.1.5) and the
amount of bins size.

3.2.1 Weighting

The energy of a peak ai is not mapped to a single HPCP bin n but contributes
to bins in its surrounding area depending on the length l of the weighting
window. This is done to minimize estimation errors that occur if there are
tuning differences or inharmonicity in the spectrum.

The contribution of each peak is specified by the weighting function
!(n, fi) in eq. 3.13 dependent on frequency fi considering HPCP bin n.
Basically the weighting uses a cos2 function centered between bin frequen-
cies. In my implementation I used a size of 36 bins so every bin represents
1
3 of one note of the musical octave. For the weighting-window length l = 4

3
semitone are used. The result is that each peak will contribute to 4 different
HPCP bins (as illustrated in figure 3.5). These values are proposed in [20,45].

The center frequency fn of bin n = 1, . . . , N is

fn = fref · 2
n

size . (3.14)

The distance between a peak frequency fi and the bins center frequency fn
is defined as

d = 12 · log2(
fi
fn

) + 12 ·m. (3.15)

5
It was introduced by Bob L. Sturm in http://media.aau.dk/CRISSP/2010/11/tuning-

frequency-determination.html.

http://media.aau.dk/CRISSP/2010/11/tuning-frequency-determination.html
http://media.aau.dk/CRISSP/2010/11/tuning-frequency-determination.html

3. The Harmonic Pitch Class Profile 27

frequency

Figure 3.5: Weighting window of length l = 4
3 semitone.

m is an integer that we choose to minimize |d|, so all frequencies are mapped
to a single octave. Finally, the weight of peak fi, ai to bin n can be calculated
using

!(n, fi) =

(
log2(

fi
fn
) + 12 ·m if |d| 0.5 · l,

0 if |d| > 0.5 · l.
(3.16)

3.2.2 Harmonics

Most of the time signals that humans describe as pitched tones are not the
result of a single– but combinations of multiple frequencies. If we observe
the spectrum of an instrument playing a single note, we can observe that
spectral components appear at the notes fundamental frequency f0 and also
at harmonic frequencies in. These harmonic frequencies (or harmonics) are
(theoretically) integer multiples of the fundamental frequency (f0, 2 ·f0, 3 ·f0
etc.).

Harmonic pitch class profiles take this fact into account by considering
each peak frequency fi as a possible fundamental- and harmonic frequency.
Therefore they contribute not only to the pitch class related to fi, but also
to the pitch classes for frequencies that have fi as harmonic frequency (i.e.
fi,fi2 ,

fi
3 ,

fi
4 , . . . ,

fi
nHarmonics

).
To simulate the decrease of the spectrum amplitude for the calculated

harmonics, a weighting function

!harm(n) = sn�1, (3.17)

is introduced (see figure 3.6). s < 1 defines the curve and should ideally
depend on the played instruments timbre. I used s = 0.6 and nHarmonics = 7

as assumed by the authors of [20, 45].

3. The Harmonic Pitch Class Profile 28

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

ω h
ar

m

Figure 3.6: Weight of the harmonics s = 0.6.

3.2.3 Spectral whitening

In [20,45] the authors apply a timbre normalization to each peak point before
adding its magnitude to a HPCP bin. As all detected notes are folded to a
single octave, this step ensures that notes from all octaves contribute equally
to the final HPCP vector. This is important in order to make the system
robust against different instrument configurations or equalization settings.

Therefore the magnitude values of each peak are normalized according to
the corresponding value of the spectral envelope of the spectrum. This enve-
lope is a special smoothed representation of the spectral curve describing the
general trend of it. The progress of normalizing a spectrum with its spectral
curve is called spectral whitening. An overview about different methods to
derive the spectral envelope of a spectrum are presented in [40,43].

In my implementation I am using Linear Predictive Coding as described
in [43] to estimate the spectral envelope. This function builds the spectral
envelope as the transfer function of an all-pole filter with order p poles. In
my implementation I used a filter order p = 110.

In a pre-processing step I inverted the estimated spectral envelope and
used it as a filter (as demonstrated in figure 3.7) to smooth the spectrum.

3. The Harmonic Pitch Class Profile 29

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5−120

−100

−80

−60

−40

−20

0

Frequency (kHz)

M
ag

ni
tu

de
 (d

B)

Original
Model
Filter
Whitened

Figure 3.7: A spectrum; its spectral envelope; the flat spectrum. The spec-
tral envelope was computed using a order of p = 110 poles.

The frequencies of the peaks used for the HPCP calculation are extracted
using the unwhitened signal but for further calculation I used the magnitude
values from the whitened spectrum.

According to [20, 45] the spectral whitening process should improve the
systems accuracy but unfortunately it is insufficiently described so a lot of
time was spent collecting the pieces that are missing. I tested several different
implementations and settings but my algorithm always performed worse no
matter how I whitened the spectral peaks. Therefore I decided to not apply
the spectral whitening procedure in my system. For detailed results and
explanations see chapter 4.

3.3 Post-processing

3.3.1 Normalization

As we are dealing with linear magnitude values we need to normalize the
HPCP vector in order to make them comparable. Therefore each n = 1 . . . size
column of the HPCP vector HPCPn is normalized with respect to its max-
imum value. This process is defined as

HPCPnormalized(n) =
HPCP (n)

Maxn(HPCP (n))
. (3.18)

Figure 3.8 a shows a visualization of a normalized HPCP vector.

3. The Harmonic Pitch Class Profile 30

Pi
tc

h
Cl

as
s

Frames
0

5

10

15

20

25

30

35

(a)

Pi
tc

h
Cl

as
s

Beats
0

5

10

15

20

25

30

35

(b)

Figure 3.8: HPCP vector (a) Normalized, (b) Average beat vector.

3.3.2 Transposition

As discussed in chapter 2.5.2 there are several ways to handle key differences.
In my implementation I shift the normalized HPCP vector HPCPnormalized

according to a certain index shift. To define this index, I sum up the rows
of the whole vector and set index to the pitch class containing the maximum
value. This method is based on the consideration that the most distinctive
pitch class stays the same in different versions of a song, regardless of differ-
ences in the main key.

The transposed HPCP vector HPCPtransposed is defined as

HPCPtransposed(n) = HPCPnormalized(mod(n� shift, size)), (3.19)

for n = 1 . . . size.
It is important that the HPCPs are aligned to the same key for similarity

estimation. Otherwise even the same song transposed to another key would

3. The Harmonic Pitch Class Profile 31

not be recognized by the cross-correlation function.

3.4 Similarity estimation

This section presents two methods for comparing different HPCP vectors in
order to estimate their similarity. As mentioned in chapter 2.6 there are many
different ways to calculate the similarities of features. In my implementation
I compared the generated HPCP vectors using a Cross correlation and a
dynamic time warping approach.

3.4.1 Cross-correlation

The cross correlation approach first has to deal with possible tempo varia-
tions (as discussed in chapter 2.5.3). It does this by generating a beat aligned
representation of the HPCP matrix. Therefore, I use the estimated beat
timestamps created by the beat detection algorithm in chapter 3.1.1 and
calculate an average HPCP from all values located between two beats. The
result is a beat aligned HPCP vector (see figure 3.8b) in which each column
represents the information of one beat instead of a certain time frame.

The beat aligned HPCP representations of two songs can now be com-
pared using cross-correlation. One could say that the HPCP matrices of two
songs are put on top of each other and compared as if they where images.
They are shifted one beat at a time and the similarity is calculated for every
step. The generated correlation graph (as shown in figure 3.9) describes the
correlation of the two songs at each beat position. We use the maximum
value of the graph as the similarity descriptor for the two pieces (a perfect
match e.g. a song compared to itself would generate a maximum value of 1).

In my implementation I use the cross-correlation presented in [16]. The
source code is available online6.

3.4.2 Dynamic time warping

I also tested a second approach for similarity estimation of HPCPs using
dynamic time warping (DTW) with global constraints. DTW is a method
to measure similarities between two sequences which may vary in time or
speed.

To use DTW the first step is to create a cumulative distance matrix
representing the similarity between the HPCPs which should be compared.
This matrix describes the similarity of each HPCP vector at each given
timeframe (see figure 3.9). In the next step a path finding algorithm is used
to find the shortest alignment path in the distance matrix. The length of the
path is normalized by the length of the songs. Notice that in contrast to the

6http://labrosa.ee.columbia.edu/projects/coversongs/

http://labrosa.ee.columbia.edu/projects/coversongs/

3. The Harmonic Pitch Class Profile 32

50 100 150

Frames song B

Fr
am

es
 so

ng
 A

200 250 300

50

100

150

200

250

300

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

Frames song C

Fr
am

es
 so

ng
 A

(a) (b)

Figure 3.9: Cumulative distance matrix and alignment path. (a) version-
pair e.g. short alignment path, (b) non-version pair e.g. long alignment path.

cross-correlation approach, a smaller value indicates a higher similarity (a
song compared to itself would score 1).

A improved method using a binary similarity matrix and local instead of
global constraints is presented in [49].

Chapter 4

Evaluation and discussion

Basically we can differentiate between two fields of application for version
detection algorithms.
Finding versions in a collection of songs: The input is one query song

which is compared to a set of songs in a database. The goal is to find
the version(s) of the query from the database and rank them according
to their similarity. This task assumes that there is at least one version
in the test set.

Comparing two songs: The query consists of two songs and the output is
either true if the pair is identified as versions of each other or false if
not. The similarity of the songs is estimated as usual and compared to
a certain threshold.

My system is designed to use the first approach as it gives me a good
overview of my systems progress during the development. Moreover, many
other version detection algorithms use the same approach which makes it
easier to compare the results. Before I could start to test my system I had
to find a collection of songs to use as data and query. While searching for
an appropriate test set I became aware of the MIREX audio cover song
identification task.

4.1 The MIREX cover song identification task

MIREX i.e. Music Information Retrieval Evaluation eXchange1 is an annual
evaluation campaign for music information retrieval algorithms. It hosts sev-
eral competitions where researchers can hand in their work to let it compete
on different MIR tasks using common evaluation standards. Since 2006 there
is also an “audio cover song identification task” which they define as follows:

This task requires that algorithms identify, for a query audio
track, other recordings of the same composition, or “cover songs”.

1http://www.music-ir.org/mirex/wiki/MIREX_HOME

33

http://www.music-ir.org/mirex/wiki/MIREX_HOME

4. Evaluation and discussion 34

Within the collection of pieces in the cover song datasets, a num-
ber of different “original songs” or compositions are embedded,
each represented by a number of different “versions”. The “cover
songs” or “versions” represent a variety of genres (e.g., classical,
jazz, gospel, rock, folk-rock, etc.) and the variation span a vari-
ety of styles and orchestrations. Using each of these version files
in turn as the “seed/query” file, we examine the returned ranked
lists of items from each algorithm for the presence of the other
versions of the “seed/query” file.

The dataset used for the cover song identification task contains 1000
pieces. Within these 1000 pieces there are 30 pieces that are represented by
11 different versions. Accordingly, a total of 330 audio files are versions. All
the versions are used as query on the whole dataset. The target is to return
a list of the 10 other versions of the query. The songs of the set are not
published to avoid that algorithms get trained to the dataset. Therefore, I
had to look for another test set to test my implementation.

4.2 The covers80 dataset

During further research I found out that the authors of [16] created covers80

2,
a dataset to evaluate version detection algorithms. The covers80 collection
consists of 80 version sets with a cardinality of 2. They are split into two
lists with each list containing the same songs performed by different artists
(i.e. large changes in style and/or harmonic). The complete list can be found
in appendix A.

They describe the way they picked the songs for the set as follows:

The covers were assembled somewhat haphazardly. First we went
through the 8764 pop music tracks in uspop2002

3, listening to
any tracks with the same name to see if they were covers. That
didn’t yield enough, so we decided to look for as many pairs as we
could for two albums of cover songs we happened to have, one by
Annie Lennox (“Medusa”) and one by Tori Amos (“Strange Little
Girls”). The rest were collected even more randomly.

They also published the code they used in [16] to do version detection.
This solves two problems: I have a collection of songs to test my algorithm
with and I can compare my results to their algorithm.

2
covers80 is available at http://labrosa.ee.columbia.edu/projects/coversongs/covers80/

3
The uspop2002 Pop Music data set is available at http://labrosa.ee.columbia.edu/

projects/musicsim/uspop2002.html

http://labrosa.ee.columbia.edu/projects/coversongs/covers80/
http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html

4. Evaluation and discussion 35

4.3 The my30 dataset

In addition to the covers80 collection I also created a second dataset (my30)
using 10 versions with a cardinality of 3. Each version set contains three
different versions of one song:

1. a studio recording,
2. a live version performed by the same artist as the studio recording,
3. and a cover versions performed by a different artist.
Just as for covers80 the collection is divided into two lists. The first

list contains the studio versions (i.e. a total of 10 songs) while the second
list contains the live and the cover versions (i.e. a total of 20 songs). All
songs were extracted from (and therefore can be found on) the internet video
platform YouTube4. For a list of the songs used in my30 see appendix B.

The difference to the covers80 set is the cardinality of 3 and the quality
of the audio files. The songs in my30 have a higher sample rate of 44.1 kHz
compared to 16 kHz in covers80.

4.4 Evaluation measure

To evaluate the accuracy of the developed system in identifying song versions
I run a test on each dataset. Therefore I choose a similar method to the one
used in the MIREX competition.

I start with two lists, one containing the query songs, another one con-
taining the versions. The goal is to detect all versions (depending on the
cardinality of the dataset) from the second list using the songs from the first
one as query. For this test we assume that there is at least one right match.

In the first step, a similarity matrix is created by calculating the similarity
of all possible pairs. Each song from the first list is compared to all songs
from the second list. The result is a similarity matrix of the size 80⇥ 80 for
covers80 and 10⇥ 20 for my30.

Every row of the matrix represents the similarity of one song of the first
list with all the songs in the second list. Each cell contains the estimated
similarity of the corresponding song pair. As the order of the songs is the
same in both lists (only the artists vary), matching versions are arranged on
a diagonal line.See the similarity matrix produced by my algorithm using
the covers80 test in figure 4.1.

To find the corresponding version in the other list, the entries in every
row are sorted in descending order. The result is a ranking of all the songs
in the second list compared to the query song from the first list. The first
entry is the most similar and therefore assumed to be a version of the query.

To evaluate the success of an algorithm using this method, the amount

4http://youtube.com

http://youtube.com

4. Evaluation and discussion 36

60 70 805040
Songs by artist A

So
ng

s b
y

ar
tis

t B

302010

10

20

30

40

50

60

70

80
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

Figure 4.1: Results using cross-correlation of HPCPs on the covers80

dataset.

of possible matches in the dataset M is compared to the number of correct
matches found by the algorithm mcor so the success rate µ is defined as

µ =

mcor

M
. (4.1)

In addition, we introduce the variable x which defines the highest rank
that is still considered as a match. Therefore, x can be used to define the
algorithms accuracy. With the highest accuracy (e.g. x = 1) only the song
with the highest correlation to the query is assumed to be a version.

4.5 Results

In the following chapter the results of my test runs are presented and ex-
plained. All the relevant settings I used for the tests are summarized in table
4.1 and described in chapter 3.

4. Evaluation and discussion 37

Description Value
Window size (Nframe) 4096 Samples
Peak min. frequency 40 Hz
Peak max. frequency 5000 Hz
Peak energy threshold �100 dB
Weighting window length (l) 4

3 semitone
Amount of bins (size) 36

Parameter for weighting function of harmonics (s) 0.6

No. of harmonics (nHarmonics) 7

Number of peaks used for HPCP creation (npeaks) 20

Detuning factor for considering frequency a harmonic (�) 0.01

Assumed reference frequency 440 Hz
Spectral whitening filter order (p) 110

Frame size for Dynamic Time Warping (size) 24 Frames

Table 4.1: All relevant settings used for the evaluation.

4.5.1 Test results for the covers80 dataset

For the first test I used the covers80 dataset. As described in chapter 4.4,
each of the 80 songs from the first list is compared to the songs from the
second one using cross-correlation. From M = 80 possibles the algorithm
detected M1,CC = 21 versions as right. This equals a success rate of 26%.

Using dynamic time warping for similarity estimation the algorithm was
able to find M1,DTW = 6 out of 80 versions. This equals a 7.5% success rate.

The detailed results for this test are listed in table 4.2. A graphical rep-
resentation of the cross-correlated results is shown in figure 4.1.

In comparison, table 4.2 also lists the results of the algorithm presented
in [16]. It detected 30 right versions in the covers80 dataset using cross-
correlation. In other words, the algorithm found the right version for 37.5%
of the songs in the collection. The system was not designed to work with
dynamic time warping so no values are listed.

4.5.2 Test results for the my30 dataset

The second test was performed using the songs of the my30 dataset. In this
set, the maximum possible amount of correct matches M = 30 because there
are 10 songs in the query list and 2 versions for each in the collection (i.e. the
test set has a cardinality of 3). Therefore we have to look at the two highest
ranked songs in the similarity vector. In case of a match the first two ranks
of a song are its live and cover version, or at least one of them.

My approach using HPCP features and cross-correlation found M2,CC =

4. Evaluation and discussion 38

Features HPCP MFCC
Comparison
method

CC DTW CC

x 1 3 5 10 1 3 5 10 1

M
x

21 26 30 34 6 10 17 22 30

Success rate 0.26 0.33 0.38 0.43 0.08 0.13 0.21 0.28 0.38

Table 4.2: Performance of my algorithm using HPCP features and the
algorithm presented in [16] using MFCC features on the covers80 test
set. Maximum possible matches M

max

= 80. CC . . . Cross-Correlation,
DTW . . . Dynamic time warping, M

x

. . . Correct matches found in the first
x positions of the ordered similarity vector.

Features HPCP MFCC
Comparison
method

CC DTW CC

x 2 5 2 5 2

Mx 11 13 7 8 16

Success rate 0.55 0.65 0.35 0.4 0.8

Table 4.3: Performance of my algorithm using HPCP features and the algo-
rithm presented in [16] using MFCC features on the my30 test set. Maximum
possible matches M

max

= 20. CC . . . Cross-Correlation, DTW . . . Dynamic
time warping, M

x

. . . Correct matches found in the first x positions of the
ordered similarity vector.

11 matching versions which is a success rate of 55%. Using dynamic time
warping, the algorithm was able to detect M2,DTW = 7 versions (35%).

I also compared the results to the algorithm presented in [16]. It was able
to detect 16 out of 20 versions as accordant. This makes up a success rate of
80%. Detailed results are listed in table 4.3.

4.6 Discussion

The test results in chapter 4.5 show that my algorithm performed worse
compared to the one presented in [16]. This could have many reasons that I
will explain in the following section.

First of all, the results of the MIREX cover song identification task5

and chapter 4.1) clearly show that HPCPs could score better results. The

5
Results of the MIREX audio cover song identification task are available online http:

//www.music-ir.org/mirex/wiki

http://www.music-ir.org/mirex/wiki
http://www.music-ir.org/mirex/wiki

4. Evaluation and discussion 39

three most successful algorithms ever submitted to the contest were based
on HPCP features6.

These evaluations proved that HPCP vectors are robust features that can
be used for version detection tasks. HPCP features are relatively new in the
MIR field and therefore there are not much publications or implementations
of it. The authors of [20,45] describe the basic creation of HPCP, but certain
parts of these papers are either assumed to be known or not discussed in
proper detail. Hence, it was hard to find answers to questions that appeared
during the implementation. For some I found answers in referenced papers,
others were solved by trying different methods and settings to stick with the
one that worked best.

Anyhow, I am sure that there are still some bad chosen settings or wrong
assumptions included in my current algorithm. Consequently, these are re-
sponsible for the test results that did not match the expectations. The pre-
sented system found the right versions for over 1

4 of the covers80 dataset
and even over 1

2 of the my20 dataset. Considering this, I still proved that
my approach using cross-correlation of beat aligned Harmonic Pitch Class
Profiles worked for music version detection tasks.

In the next sections I present an overview of different considerations that
I found out during the work on this thesis.

Sample rate of the audio signal

One difference between the two datasets, except from the amount of songs
and the cardinality, is the quality of the audio files. The authors of covers80
used audio files with a sample rate of 16 kHz, whereas I used 44.1 kHz files
for the my30 set.

This is important as I specified the window size Nframe in samples and
not milliseconds. The result is that the windows of HPCP vectors created
from files of the covers80 collection have a length of over 0.256 seconds
compared to 93 ms using files from my30.

This is one possible reason why both algorithms performed better on the
my30 than on the covers80 dataset.

Comparison methods

Another detail that is visible in the results is that the cross-correlation per-
formed better in all tasks compared to the dynamic time warping. This is
because I used the length of the normalized global alignment path which
does not vary as much as expected. On the other hand, the success rate of
the cross-correlation strongly depends on the reliability of the beat detection
method, as we are correlating beat aligned HPCP vectors.

6
The best algorithm in 2008 [48] had a success rate of 75%. For a detailed list of results

see [45].

4. Evaluation and discussion 40

A more advanced dynamic time warping approach is introduced by the
authors of [49]. They suggest to use a binary distance matrix and local
instead of global constraints to enhance results.

4.6.1 The used datasets

In general, the success of course is influenced by the songs used in the dataset.
Versions that change dramatically in style and genre (like e.g. a Hard Rock
cover version of a Pop song) are harder to detect than versions that only
change in a few aspects (like e.g. live performances by the same artist as in
my30).

Another interesting observation I made during testing is, that regardless
which test set I used, nearly all the time one or two songs correlate signif-
icantly higher to all the other songs. See e.g. song 16 by artist B or 59 by
artist A in figure 4.1. I found out that the existence of these so called Hubs
(i.e. Songs which appear similar to many other songs without showing any
meaningful perceptual similarity) is a well known effect. In [19] the authors
describe this effect and explain that it depends on the homogeneity of the
samples used for feature creation. As these Hubs are most likely to distort
the results, future work is seen in trying to detect and handle them.

4.6.2 Spectral whitening

One of the main problems that occurred while implementing the system was
the spectral whitening of the peak points. [20, 45] mention the importance
of this processing step but only describe it very briefly. Referenced work
like [40] only deal with the way how to generate the spectral envelope e.g.
the curve used to normalize the peaks but not when applying the whitening
process. Therefore, I had to try different methods and test each one to see if
the accuracy of the algorithm rises.

I tried to extract the peaks from the whitened signal and use their mag-
nitude values for further calculations. Another approach was to use the un-
whitened signal to find the peaks to then normalize their magnitudes accord-
ing to the corresponding value of the estimated spectral envelope. I tried all
possible combinations of whitened and un-whitened values applied at differ-
ent processing steps of the algorithm, but in the end, the estimated similarity
between two versions always got worse. In conclusion, I decided to exclude
the spectral whitening and use un-whitened peaks as in [18].

Chapter 5

Conclusion

Music version detection is an interesting topic in MIR and so far many dif-
ferent approaches to solve this problem have been developed. In this thesis
I provided an overview of different state of the art methods for music ver-
sion detection and presented an implementation of my own approach. The
developed algorithm combines two existing methods by using beat-aligned
HPCP features of [45, 49] with the cross-correlation of [16]. I implemented
the algorithm using MATLAB and tested it on two different datasets con-
sisting of 2⇥ 80 and 3⇥ 10 songs. The system presented in [16] was used for
comparison to measure the performance. The results of the tests proved that
my approach basically works, but is not yet fully developed. Other types of
approach using the same musical features score much higher accuracies at
common MIR tasks.

A music version detection algorithm as the one presented in this thesis
basically consists of two main parts. The first part is the feature extraction
where musical aspects that are most likely to stay the same over different ver-
sions of a song are extracted from raw audio signals in order to be represented
as features. Typical aspects are tonal sequences or harmonic progression. For
my algorithm I used so called Harmonic Pitch Class Profiles. These feature
vectors are a representation of the energy of each tone of the musical octave
at a certain time frame of the audio signal.

I compared these features using a cross-correlation approach. Therefore,
the extracted HPCP vectors of two songs are compared like images to find
their maximum correlation. This value can be used to describe the similar-
ity between the musical pieces. Furthermore, a second way to compare the
similarity by creating a cumulative distance matrix of two songs and use the
alignment costs as indicator for similarity was tested.

Some problems appeared while implementing the algorithm. [20,45] pre-
sent a step–by–step guide on how to create HPCP features out of an audio
signal. Unfortunately, some parts of the papers provide only insufficient de-
tails on important parts like e.g. the spectral whitening of the peaks magni-

41

5. Conclusion 42

tude values. It is mentioned in a few sentences in [20,45] but further instruc-
tions on how exactly it is done are missing. I tried several ways to whiten
the peaks for HPCP creation but the results only got worse.

Another problem was the debugging. There is no effective way to debug
a complex system like a music version detection algorithm. For example if
I changed some settings of the algorithm that influenced the way how the
features are created, I had to analyze at least two songs and compare their
features to find out if the new setting changed the algorithms behavior for
the better or the worse.

Future directions are seen in exploring the settings involved in creating
HPCP vectors. An interesting question could be if there are ways to tune
the features to work better for e.g. a specific genre or task. Moreover, further
experiments using different settings could provide new knowledge on their
influence towards the end result.

Appendix A

The covers80 dataset

Nr. Title Artist A Artist B
1 A Whiter Shade Of Pale Annie Lennox Procol Harum
2 Abracadabra Steve Miller Band Sugar Ray
3 Addicted To Love Robert Palmer Tina Turner
4 All Along The Watch-

tower
Bob Dylan Jimi Hendrix Ex-

perience
5 All Tomorrow S Parties Japan Velvet Under-

ground
6 America Paul Simon Simon And Gar-

funkel
7 Before You Accuse Me Creedence Clear-

water Revival
Eric Clapton

8 Between The Bars Elliott Smith Glen Phillips
9 Blue Collar Man Reo Speedwagon Styx
10 Caroline No Beach Boys Brian Wilson
11 Cecilia Paul Simon Simon And Gar-

funkel
12 Claudette Everly Brothers Roy Orbison
13 Cocaine Eric Clapton Nazareth
14 Come Together Aerosmith Beatles
15 Day Tripper Beatles Cheap Trick
16 Don T Let It Bring You

Down
Annie Lennox Neil Young

17 Downtown Lights Annie Lennox Blue Nile
18 Enjoy The Silence Depeche Mode Tori Amos
19 Faith George Michael Limp Bizkit
20 God Only Knows Beach Boys Brian Wilson

43

A. The covers80 dataset 44

Nr. Title Artist A Artist B
21 Gold Dust Woman Fleetwood Mac Sheryl Crow
22 Grand Illusion Reo Speedwagon Styx
23 Happiness Is A Warm

Gun
Beatles Tori Amos

24 Heart Of Gold Neil Young Tori Amos
25 Hush Deep Purple Milli Vanilli
26 I Can T Get Next To

You
Annie Lennox Temptations

27 I Can T Get No Satis-
faction

Britney Spears Rolling Stones

28 I Don T Like Mondays Boomtown Rats Tori Amos
29 I Don T Want To Miss

A Thing
Aerosmith New Found Glory

30 I Love You Celine Dion Faith Hill
31 I M Losing You Cheap Trick John Lennon
32 I M Not In Love 10Cc Tori Amos
33 It S Tricky Bloodhound

Gang
Run DMC

34 Lady Reo Speedwagon Styx
35 Let It Be Beatles Nick Cave
36 Little Wing Corrs Eric Clapton
37 Lodi Creedence Clear-

water Revival
Tesla

38 Love Hurts Heart Nazareth
39 Maggie S Farm Bob Dylan Rage Against The

Machine
40 More Than Words Extreme Westlife
41 My Generation Green Day Who
42 My Heart Will Go On Celine Dion New Found Glory
43 Never Let Me Down

Again
Depeche Mode Smashing Pump-

kins
44 New Age Tori Amos Velvet Under-

ground
45 Night Time Is The

Right Time
Aretha Franklin Creedence Clear-

water Revival
46 No Woman No Cry Bob Marley Fugees
47 Oh Pretty Woman Al Green Roy Orbison
48 Ooby Dooby Creedence Clear-

water Revival
Roy Orbison

49 Proud Mary Creedence Clear-
water Revival

Tina Turner

50 Purple Rain Leann Rimes Prince

A. The covers80 dataset 45

Nr. Title Artist A Artist B
51 Rattlesnakes Lloyd Cole And

The Commotions
Tori Amos

52 Real Men Joe Jackson Tori Amos
53 Red Red Wine Neil Diamond UB40
54 River Deep Mountain

High
Celine Dion Tina Turner

55 September Gurls Bangles Big Star
56 She Came In Through

The Bathroom Window
Beatles Joe Cocker

57 Something So Right Annie Lennox Paul Simon
58 Stone Cold Crazy Metallica Queen
59 Straight From The

Heart
Bonnie Tyler Bryan Adams

60 Strange Little Girl Stranglers Tori Amos
61 Street Fighting Man Rage Against The

Machine
Rolling Stones

62 Summer Of 69 Bryan Adams Mxpx
63 Summertime Blues Alan Jackson Beach Boys
64 Take Me To The River Al Green Talking Heads
65 Take On Me A Ha Mxpx
66 The Boxer Paul Simon Simon And Gar-

funkel
67 Thin Line Between Love

And Hate
Annie Lennox Persuaders

68 Time Tom Waits Tori Amos
69 Tomorrow Never Knows Beatles Phil Collins
70 Toys In The Attic Aerosmith R.E.M.
71 Train In Vain Annie Lennox Clash
72 Tush Nazareth Zz Top
73 Waiting In Vain Annie Lennox Bob Marley &

The Wailers
74 Walk This Way Aerosmith Run DMC
75 Walking After Midnight Bryan Adams Garth Brooks
76 We Can Work It Out Beatles Tesla
77 What S Going On Cyndi Lauper Marvin Gaye
78 White Room Cream Sheryl Crow
79 Wish You Were Here Pink Floyd Wyclef Jean
80 Yesterday Beatles En Vogue

Appendix B

The my30 dataset

Artist A is also performing the live version.

Nr. Title Artist A Artist B
1 Papa Don’t Preach Madonna Kelly Osbourne
2 Personal Jesus Depeche Mode Marilyn Manson
3 Smells Like Teen Spirit Nirvana Tori Amos
4 Wonderwall Oasis Alex Goot
5 Umbrella Rihanna The Baseballs
6 Kids MGMT The Kooks
7 I Kissed A Girl Katy Perry William Fitzsim-

mons
8 Hey Ya Outcast Obadiah Parker
9 Nothing Else Matters Metallica Apocalyptica
10 Animal Miike Snow Juliana Richer

Daily

46

Appendix C

Content of the CD-ROM

Format: CD-ROM, Single Layer, ISO9660-Format

C.1 PDF-File

Path: /

Engelmayer_Christoph_2011.pdf Thesis (e.g. this document)

C.2 MATLAB files

Path: /Implementation/

calcListHPCP.m Function to calculate HPCP features for a
list of files

calculateHPCP.m Function to generate HPCP features of an
audio signal

calculateReferenceFrequency.m Reference frequency estimation function
crosscorr.m Cross-correlation function
dtw.m Dynamic time warping function
extractPeakPoints.m . . Function to extract the peak points
main.m Main function to use the algorithm
peakdet.m Peak detection function
plotSonogram.m Function to plot the sonogram of the

calculated features
removeTransient.m . . . Function to remove the transients of the

audio signal
transposeHPCP.m . . . Function to transpose the calculated HPCP

vector
windowfft.m Windowing and FFT function

47

Engelmayer_Christoph_2011.pdf
calcListHPCP.m
calculateHPCP.m
calculateReferenceFrequency.m
crosscorr.m
dtw.m
extractPeakPoints.m
main.m
peakdet.m
plotSonogram.m
removeTransient.m
transposeHPCP.m
windowfft.m

C. Content of the CD-ROM 48

Path: /Implementation/include

coversongs/ The source code of the algorithm from [16]
dtw/ Functions for dynamic time warping
MIRtoolbox1.3.2/ . . . The MIRtoolbox framework
mp3readwrite/ Functions to read and write MP3 files

coversongs/
dtw/
MIRtoolbox1.3.2/
mp3readwrite/

Bibliography

[1] Adams, N.H., N.A. Bartsch, J.B. Shifrin, and G.H. Wakefield: Time
series alignment for music information retrieval. In Proc. of the In-
ternational Conference on Music Information Retrieval, pp. 303–310,
Barcelona, Oct. 2004. IEEE.

[2] Bartsch, N.A. and G.H. Wakefield: To catch a chorus: Using chroma–
based representations for audio thumbnailing. In IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics, pp. 15–18,
Gregory, Oct. 2001. IEEE.

[3] Bello, J.: Audio–based cover song retrieval using approximate chord se-
quences: Testing shifts, gaps, swaps and beats. In Proc. of the Interna-
tional Conference on Music Information Retrieval, pp. 239–244, Vienna,
Sept. 2007. IEEE.

[4] Bonada, J.: Automatic technique in frequency domain for near–lossless
time–scale modification of audio. In Proceedings of the International
Computer Music Conference, pp. 396–399, Berlin, Aug. 2000. Interna-
tional Computer Music Association.

[5] Casey, M., C. Rhodes, and M. Slaney: Analysis of minimum distances in
high–dimensional musical spaces. IEEE Transactions on Audio, Speech
and Language Processing, 16:1015–1028, July 2008.

[6] Casey, M. and M. Slaney: The importance of sequences in musical simi-
larity. In Proc. IEEE International Conference on Acoustics, Speech and
Signal Processing, vol. 5, pp. V–5 – V–8, Toulouse, May 2006. IEEE.

[7] Casey, M., R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney:
Content–based music information retrieval: Current directions and fu-
ture challenges. Proceedings of the IEEE, 96:668–696, Apr. 2008.

[8] Cooper, M. and J. Foote: Automatic music summarization via similarity
analysis. In Proc. of the International Conference on Music Information
Retrieval, pp. 81–85, Barcelona, Oct. 2002. IEEE.

49

Bibliography 50

[9] Dalla Bella, S., I. Peretz, and N. Aronoff: Time course of melody recogni-
tion: a gating paradigm study. Perception & Psychophysics, 65(7):1019–
1028, Oct. 2003.

[10] Dannenberg, R.B. and N. Hu: Pattern discovery techniques for music
audio. In Proc. of the International Conference on Music Information
Retrieval, pp. 63–70, Paris, Sept. 2002. IEEE.

[11] De Cheveigne, A.: Pitch perception models. In Plack, C., A. Oxenham,
and R. Fay (eds.): Pitch: Neural coding and perception, ch. 6. Springer,
Heidelberg, 2005.

[12] De Cheveigne, A. and H. Kawahara: Comparative evaluation of f0 es-
timation algorithms. In Proc. of the Eurospeech Conference, pp. 2451–
2454, Aalborg, Sept. 2001. International Speech Communication Asso-
ciation.

[13] Downie, J.S., M. Bay, A.F. Ehmann, and M.C. Jones: Audio cover song
identification: Mirex 2006–2007 results and analysis. In Proc. of the
International Conference on Music Information Retrieval, pp. 468–473,
Philadelphia, Sept. 2008. IEEE.

[14] Dressler, K.: Sinusoidal extraction using an efficient implementation of
a multi-resolution FFT. In Proc. of the International Conference on
Digital Audio Effects, pp. 247–252, Montreal, Sept. 2006. European re-
search project for co-operation and scientific transfer.

[15] Egorov, A. and G. Linetsky: Cover song identification with if-f0 pitch
class profiles. In Music Information Retrieval Evaluation Exchange task
on Audio Cover Song Identification, Philadelphia, Sept. 2008. Interna-
tional Music Information Retrieval Systems Evaluation Laboratory.

[16] Ellis, D.P.W. and G.E. Poliner: Identifying cover songs with chroma
features and dynamic programming beat tracking. In Proc. IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, vol. 4,
pp. IV–1429 – IV–1432, Honolulu, Apr. 2007. IEEE.

[17] Foote, J.: Arthur: Retrieving orchestral music by long–term structure.
In Proc. of the International Society for Music Information Retrieval
Conference, pp. 130–135, Plymouth, Oct. 2000. International Society
for Music Information Retrieval.

[18] Fujishima, T.: Realtime chord recognition of musical sound: a system
using common lisp music. In Proc. of the International Computer Music
Conference, pp. 464–467, Beijing, Oct. 1999. International Computer
Music Accociation.

Bibliography 51

[19] Gasser, M., A. Flexer, and D. Schnitzer: Hubs and orphans – an ex-
plorative approach. In Proc. of the Sound and Music Computing Con-
ference, Barcelona, July 2010. Sound and Music Computing research
community.

[20] Gómez, E.: Tonal Description of Music Audio Signals. PhD thesis,
University Pompeu Fabra, Barcelona, July 2006.

[21] Gómez, E. and P. Herrera: The song remains the same: identifying ver-
sions of the same song using tonal descriptors. In Proc. of the In-
ternational Conference on Music Information Retrieval, pp. 180–185,
Victoria, Oct. 2006. IEEE.

[22] Gómez, E., B.S. Ong, and P. Herrera: Automatic tonal analysis from
music summaries for version identification. In Proc. of the Audio Engi-
neering Society Convention, San Francisco, Oct. 2006. Audio Engineer-
ing Society.

[23] Goto, M.: A real–time music–scene–description system: Predominant-
f0 estimation for detecting melody and bass lines in real–world audio
signals. Speech Comun, 43:311–329, Sept. 2004.

[24] Goto, M.: A chorus–section detection method for musical audio signals
and its application to a music listening station. IEEE Transactions on
Audio, Speech and Language Processing, 14:1783–1794, Sept. 2006.

[25] H., P.: Profiles of pitch classes – circularity of relative pitch and key: ex-
periments, models, computational music analysis and perspectives. PhD
thesis, Technische Universität Berlin, Berlin, Aug. 2005.

[26] Hu, N., R.B. Dannenberg, and G. Tzanetakis: Polyphonic audio match-
ing and alignment for music retrieval. In Proc. of the IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics, pp. 185–188,
New Paltz, Oct. 2003. IEEE.

[27] Izmirli, Ö.: Tonal similarity from audio using a template based attractor
model. In Proc. of the International Conference on Music Information
Retrieval, pp. 540–545, London, Sept. 2005. IEEE.

[28] Klapuri, A.: Signal processing methods for the automatic transcription
of music. PhD thesis, Tampere University of Technology, Tampere, Mar.
2004.

[29] Kyogu: Identifying cover songs from audio using harmonic representa-
tion. In Music Information Retrieval Evaluation Exchange task on Au-
dio Cover Song Identification, Illinois, Oct. 2006. International Music
Information Retrieval Systems Evaluation Laboratory.

Bibliography 52

[30] Lartillot, O., P. Toiviainen, and T. Eerola: A matlab toolbox for mu-
sic information retrieval. In Preisach, C., H. Burkhardt, L. Schmidt-
Thieme, and R. Decker (eds.): Data Analysis, Machine Learning and
Applications, ch. 4.5. Springer, Heidelberg, 2008.

[31] Lee, K.: Identifying cover songs from audio using harmonic represen-
tation. In Music Information Retrieval Evaluation Exchange task on
Audio Cover Song Identification, Illinois, Oct. 2006. International Mu-
sic Information Retrieval Systems Evaluation Laboratory.

[32] Leman, M.: Music and schema theory: cognitive foundations of system-
atic musicology. Springer, Heidelberg, 1st ed., 1995.

[33] Marolt, M.: A mid–level melody–based representation for calculating au-
dio similarity. In Proc. of the International Conference on Music Infor-
mation Retrieval, pp. 280–285, Victoria, Oct. 2006. IEEE.

[34] Marolt, M.: A mid–level representation for melody–based retrieval in
audio collections. IEEE Transactions on Multimedia, 10(8):1617–1625,
Dec. 2008.

[35] Mueller, M.: Information Retrieval for Music and Motion. Springer,
Heidelberg, 1st ed., 2007.

[36] Nadeu, C.and Macho, D. and J. Hernando: Time and frequency filter-
ing of filter–bank energies for robust hmm speech recognition. Speech
Communication, 34:93–114, Apr. 2001.

[37] Nagano, H., K. Kashino, and H. Murase: Fast music retrieval using poly-
phonic binary feature vectors. In Proc. of the International Conference
Multimedia and Expo, vol. 1, pp. 101–104, Lausanne, Aug. 2002. IEEE.

[38] Poliner, G.E., D.P.W. Ellis, A. Ehmann, E. Gómez, S. Streich, and B.S.
Ong: Melody transcription from music audio: Approaches and evalua-
tion. IEEE Trans. Audio, Speech, Lang. Process., 15:1247–1256, May
2007.

[39] Ravuri, S. and D.P.W. Ellis: Cover song detection: from high scores
to general classification. In Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 65–68, Dallas, Mar. 2010.
IEEE.

[40] Röbel, A. and X. Rodet: Efficient spectral envelope estimation and its
application to pitch shifting and envelope preservation. In Proc. of the
International Conference on Digital Audio Effects, pp. 30–35, Madrid,
Sept. 2005. European research project for co-operation and scientific
transfer.

Bibliography 53

[41] Sadie, S., J. Tyrrell, and B. Kernfeld: The New Grove Dictionary of
Music and Musicians. Oxford University Press, Oxford, 2nd ed., 2005.

[42] Sailer, C. and K. Dressler: Finding cover songs by melodic similarity.
In Music Information Retrieval Evaluation Exchange, pp. 38–40, Vic-
toria, Sept. 2006. International Music Information Retrieval Systems
Evaluation Laboratory.

[43] Schwarz, D. and X. Rodet: Spectral envelope estimation and represen-
tation for sound analysis–synthesis. In Proc. of the International Com-
puter Music Conference, pp. 351–354, Beijing, Oct. 1999. International
Computer Music Accociation.

[44] Selfridge-Field, E.: Conceptual and representational issues in melodic
comparison. In Hewlett, W. and E. Selfridge-Field (eds.): Melodic simi-
larity: concepts, procedures and applications, Computing in Musicology,
ch. 1.1, pp. 3–64. The MIT Press, Cambridge, 1998.

[45] Serrà, J.: Identification of versions of the same musical composition by
processing audio descriptions. PhD thesis, Universitat Pompeu Fabra,
Barcelona, Mar. 2011.

[46] Serrà, J., E. Gómez, and P. Herrera: Audio cover song identification and
similarity: Background, approaches, evaluation, and beyond. In Ras, Z.
and A. Wieczorkowska (eds.): Advances in Music Information Retrieval,
ch. 14. Springer, Heidelberg, 2010.

[47] Serrà, J., E. Gómez, P. Herrera, and X. Serra: Statistical analysis of
chroma features in western music predicts human judgments of tonality.
Journal of New Music Research, 37:299–309, Dec. 2008.

[48] Serrà, J. and R.G. Serra, X.and Andrzejak: Cross recurrence quantifi-
cation for cover song identification. New Journal of Physics, 11:093017,
Sept. 2009.

[49] Serrà , J., E. Gómez, P. Herrera, and X. Serra: Chroma binary similarity
and local alignment applied to cover song identification. IEEE Transac-
tions on Audio, Speech and Language Processing, 16:1138–1151, Aug.
2008.

[50] Temperley, D.: The Cognition of Basic Musical Structures. The MIT
Press, Cambridge, 1st ed., 2001.

[51] Tsai, W.H., H.M. Yu, and H.M. Wang: A query–by–example technique
for retrieving cover versions of popular songs with similar melodies. In
Proc. of the International Conference on Music Information Retrieval,
pp. 183–190, London, Sept. 2005. IEEE.

Bibliography 54

[52] Tsai, W.H., H.M. Yu, and H.M. Wang: Using the similarity of main
melodies to identify cover versions of popular songs for music document
retrieval. Journal of Information Science and Engineering, 24(6):1669–
1687, Mar. 2008.

[53] Wang, A.: An industrial strength audio search algorithm. In Proc. of
the International Conference on Music Information Retrieval, pp. 7–13,
(Baltimore, Maryland, USA), Oct. 2003. IEEE.

[54] Wang, A.: The shazam music recognition service. Communications of
the ACM, 49:44–48, Aug. 2006.

[55] Waterman, M.S. and T.F. Smith: Identification of common molecular
subsequences. Journal of Molecular Biology, 147:195–197, Mar. 1981.

[56] Yang, C.: Music database retrieval based on spectral similarity. Tech.
Rep. 2001-14, Stanford InfoLab, Stanford, 2001. http://ilpubs.stanford.
edu:8090/489/.

http://ilpubs.stanford.edu:8090/489/
http://ilpubs.stanford.edu:8090/489/

	Erklärung
	Kurzfassung
	Abstract
	Introduction
	Music similarity estimation

	Music version detection – state of the art
	The definition of ``version''
	Musical aspects
	Version detection – general approach
	Approaches for feature extraction
	Predominant melody
	Harmonic or chord progression

	Common pre- and post-processing steps
	Reference frequency estimation
	Key invariance
	Tempo invariance
	Invariance in the structure

	Similarity estimation
	Euclidean distance
	Cross-correlation
	Dynamic programming

	The Harmonic Pitch Class Profile
	Pre-processing
	Beat detection
	Transient detection and handling
	Spectral analysis
	Peak detection
	Reference frequency estimation

	HPCP computation
	Weighting
	Harmonics
	Spectral whitening

	Post-processing
	Normalization
	Transposition

	Similarity estimation
	Cross-correlation
	Dynamic time warping

	Evaluation and discussion
	The MIREX cover song identification task
	The covers80 dataset
	The my30 dataset
	Evaluation measure
	Results
	Test results for the covers80 dataset
	Test results for the my30 dataset

	Discussion
	The used datasets
	Spectral whitening

	Conclusion
	The covers80 dataset
	The my30 dataset
	Content of the CD-ROM
	PDF-File
	MATLAB files

	Bibliography

