
Integration of Mobile Devices into a
Floor-Based Game to Increase Player

Dynamics

Andreas Friedl

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2015

© Copyright 2015 Andreas Friedl

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, September 28, 2015

Andreas Friedl

iii

Contents

Declaration iii

Preface vi

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Objective . 2
1.4 Document Structure . 3

2 Floor-Based Co-Located Play 4
2.1 Co-Located Game Systems 6

2.1.1 Commercial Products 6
2.1.2 Research Projects . 8
2.1.3 Deep Space . 9

2.2 Game Design Challenges . 14

3 Second Screens in Co-Located Settings 19
3.1 Cross-Device Interaction Barriers 20

3.1.1 Three Levels of Interaction Barriers in Public Spaces . 20
3.1.2 Overcoming Interaction Barriers 22

3.2 Smart Gaming in Co-Located Settings 25
3.2.1 Cognition Characteristics 25
3.2.2 Technology Characteristics 27
3.2.3 Social Characteristics 28

4 MoCo: a Mobile Companion Framework 30
4.1 Characteristics of MoCo . 32

4.1.1 Requirements . 32
4.1.2 Features . 34

iv

Contents v

4.2 Implementation . 36
4.2.1 Unity TUIO/Pharus Tracking Client 36
4.2.2 MoCo Module Integration 39

5 Evaluation 46
5.1 Demo Games . 46

5.1.1 Lazor Arena . 47
5.1.2 Lazor Lab . 48

5.2 Game Experience Survey . 50
5.2.1 Method . 50
5.2.2 Results . 51

5.3 Expert Heuristic Evaluation 53
5.3.1 Method . 53
5.3.2 Results . 57

6 Concluding Debate 61
6.1 Results Analysis . 61
6.2 Further Prospects . 62
6.3 Conclusion . 63

A Results: Expert Heuristic Evaluation 65
A.1 Used Heuristics . 65
A.2 Evaluation Results . 65

B Content of the CD-ROM/DVD 68
B.1 Evaluations . 68
B.2 Project . 68
B.3 Miscellaneous . 69

References 70
Literature . 70

Preface

Through my studies and a lot of spare time spent on watching tutorials,
reading books, doing research, talking to other developers and so forth, I
was gifted with the opportunity to specialize in what I always wanted to
do. Interactive and entertaining multimedia systems have been my passion
since my childhood. Now, as a student who focuses on game development, I
gained the ability to take an interesting idea and create something out of it
more or less from scratch. This is something I am truly grateful for and that
would not have been possible without my family, friends and colleagues. I
want to thank those people for letting me follow my passion.

In the last couple of months I spent a lot of time in the Deep Space,
physically and mentally. Walking around this multifunction room at the
Ars Electronica museum in Linz and interacting with its applications is
a stunning experience. However, for me the even greater experience is to
explore the interaction possibilities for this setup and the search for new ways
to impress its users. When designing an application for such an interesting
environment, one needs to imagine how it is being used, how the people
are perceiving it. That’s when one as a designer enters the room mentally,
envisions an idea, improves the design over and over again until, eventually,
it is brought to perfection.

I really hope that people will have as much fun playing with MoCo as I
had designing and creating the framework and its games.

vi

Abstract

This thesis shows the diversity of co-located floor-based video games and
elaborates on how the user interface in such games can be extended. A
particular focus lies on how to give the player more control over the game
and more ways to perform explicit actions during the game.

First a selection of co-located video games is described and some of its
technical features are discussed. Furthermore, there are deeper insights into
the field of smart gaming, a genre in video games which integrates so called
smart devices (mobile multifunctional devices, such as smartphones and
tablets) directly into the game play.

MoCo is introduced as a novel concept. It is the approach developed by
the author to integrate mobile devices in co-located games and, thereby, on
the one hand to extend the controls and on the other hand to offer a new
game experience. In order to be able to rate the capability and efficiency of
this system, a game experience survey with a selected group of users as well
as an expert heuristic evaluation with focus on usability and playability were
conducted.

Finally, the results of both evaluations show that MoCo is not fully
matured yet and requires further improvement. However, the idea behind
the concept has the potential to pave new paths in co-located floor-based
games.

vii

Kurzfassung

Diese Arbeit zeigt die Vielfältigkeit von co-located und floor-based video ga-
mes auf, und nimmt sich der Thematik an, wie die Schnittstelle zum Spieler
in solchen Systemen erweitert werden kann. Im Speziellen geht es darum,
dem Spieler mehr Kontrolle im Spiel zu geben, also mehr Möglichkeiten
explizite Aktionen durchführen zu können.

Dazu wird zuerst auf bestehende co-located floor-based video games ein-
gegangen und Besonderheiten dieser Systeme werden aufgezeigt. Im Weite-
ren gibt es auch einen Einblick in das Feld des smart gaming, ein Genre im
Videospielbereich, bei dem sogenannte smart devices (mobile Multifunkti-
onsgeräte, wie etwa Smartphones und Tablets) ins Spiel integriert werden.

Als neuer Ansatz wird anschließend MoCo vorgestellt. Dabei handelt
es sich um den Versuch des Autors mobile Geräte in co-located video ga-
mes einzubinden und somit einerseits das Steuerungskonzept zu erweitern
und dadurch ein neues Spielerlebnis zu kreieren. Um die Tauglichkeit dieses
Systems bewerten zu können wurde einerseits ein game experience Fragebo-
gen an eine ausgewählte Gruppe von Testspielern ausgehändigt, sowie eine
Expertenevaluation mit der Hilfe von Usability und Playability Heuristiken
durchgeführt.

Die Ergebnisse beider Forschungsmethoden zeigen deutlich, dass MoCo
zwar – wie für einen Prototyp üblich – noch Kinderkrankheiten aufweist,
aber die Idee dahinter durchaus das notwendige Potenzial mitbringt, um in
co-located floor-based video games neue Wege beschreiten zu können.

viii

Chapter 1

Introduction

This thesis describes floor-based game installations and discusses interaction
models for these game systems. Smart gaming in the context of co-located
games is described and finally, a novel way which aims to increase player dy-
namics via the use of mobile devices as an interface to the game is explained
in detail.

1.1 Motivation
The basis for this thesis was formed through the development of five floor-
based multiplayer games. Together, these games form the Game Changer
suite [11]. It was first shown at the Ars Electronica Festival 2014 in Linz and
afterwards became a permanent exhibition in the Ars Electronica museum.
The main idea behind the project was to provide a collection of games
which make use of different styles of cooperative and competitive play in
a co-located setting. For the system architecture a layered approach was
chosen, mostly for maintainability and convenience reasons. This basically
means the games make use of an underlying framework which takes care
of most common controls and parameters. The layered architecture offered
valuable flexibility during the development, however, soon, it became clear
that certain boundaries were reached with the system.

The five games offer diverse experiences and play-styles but in the end
in Game Changer the players are very limited in the ways they can interact
with the system and with each other. These limitations are described in
more detail in Chapter 2.2. Also, for the developers the design process was
challenging because of these constraints. To give the players as well as the
game designers more freedom, the author wants to explore the field of player
dynamics in floor-based co-located games even further.

1

1. Introduction 2

1.2 Problem Statement
The main problem the developers were confronted with, during the devel-
opment of Game Changer, is that players are limited in the way they can
interact with the system. In Game Changer the players control their vir-
tual avatar with their physical bodies. A tracking system based on multiple
laser rangers spread over the floor computes the positions of the players in
the playing area. This system provides fast response times and is capable
of tracking up to 25 people at the same time. But even though position
data in form of Cartesian coordinates and all sorts of additional data (ve-
locity, estimated position, approximated orientation) are transmitted from
the tracking system to the game server, in the end, the players only have
their body position to interact with the system.

To work around this constraint in Game Changer certain player actions
are automated: In Swarm Defender the players’ spaceships shoot laser beams
automatically in a short timed interval because there is no obvious way to
let a player decide when to trigger a shot. Another approach to facilitate
user interaction is to make intensive use of collision detection: In games
which involve virtual objects which should be collected or even dragged the
most evident way to achieve this is by letting players simply run over them.
The virtual collision between the object and the player avatar would then
cause the object to be collected or parented onto the avatar. This approach
works quite well in games in which objects can only be used in one particular
way. In Tower Of Power, for example, there is a particular zone in which
players collect blocks and another zone in which those blocks are dropped
automatically. Unfortunately, as soon as the player should have a choice on
what action he or she actually wants to perform (e.g. with a virtual object)
there is no obvious or user-friendly way to handle this.

These are the major problems encountered during the development of
Game Changer. Exploring solutions to these issues was the main motivation
for the author to write this thesis. There are, however, more challenges in
the design of games for floor-based co-located systems as can be seen in the
Chapters 2 and 3.

1.3 Objective
The aim of this thesis is to explore alternative and additional control me-
chanics in floor-based co-located games with focus on inclusion of personal
mobile devices. Control models in existing co-located game setups are ana-
lyzed and advantages as well as limitations of those systems are discussed.
From this basis, a novel system for increasing player dynamics in floor-based
multiplayer games is inferred. Subsequently, a prototypic implementation of
a novel system, called MoCo, which aims to integrate most of the findings,

1. Introduction 3

is described.

1.4 Document Structure
Chapter 2 of this document deals with basic principles on the matter of floor-
based co-located play. In the first section, a selection of existing floor-based
co-located game systems is described. There are systems for commercial
usage and systems built and used for research. A close look is taken at
the Deep Space installation as it is also used by MoCo. The second section
elaborates on game design challenges in co-located play. Besides some general
aspects, there are also specific issues discussed concerning the development
process of Game Changer. Pro and contra of the found issues are described
and in some cases solutions are proposed.

Chapter 3 goes into detail on utilizing mobile devices in video games as
non-primary devices. The first section describes the three levels of interac-
tion barriers and suggests ways to overcome them. In the second section,
problems, limitations and other requirements that come with smart gaming
in a co-located setting are discussed. Opportunities and benefits of having
a personal smart device in floor-based games are also part of that section.

In Chapter 4 MoCo, a framework for including mobile devices into floor-
based co-located multiplayer games is introduced. In the first section, the
requirements of a novel system which offers more dynamics to the players
are described. The basic idea behind MoCo as well as its features are also
explained. MoCo’s system architecture is described in the second section. It
explains the network layer, how MoCo is implemented as an extension of
the Unity TUIO/Pharus Tracking Client, the server and client role of the
application, the process of identifying players, sensor calibration and how
different game views are handled by MoCo.

Chapter 5 is devoted to evaluating the game experience and usability of
MoCo. The first section describes the two demo games based on MoCo, Lazor
Arena and Lazor Lab, which were used for both evaluations. The second
section elaborates on the game experience survey which was conducted in
the course of this thesis. The third section describes the expert heuristic
evaluation of MoCo which also was carried out in order to locate usability
issues and potential for optimisation of the system. For both evaluations
the methods as well as how the evaluations were conducted are described in
detail and the results are listed and discussed.

Chapter 6, finally, concludes this thesis. The first section sheds some
more light on the results of the evaluations. Future plans and potential
improvements for MoCo are described in the second section. The last section
gives a brief overview of the current state of the art and further prospects
for the field of co-located games.

Chapter 2

Floor-Based Co-Located Play

Video games have always appeared in various social contexts. One of them
is co-located play1. Over the next few paragraphs, this section elaborates
on some of the rather vague terms. Most of them are by no means new and
also exist beyond research, still they might require additional definition in
the context of co-located play.

Of course, not just video games but all kinds of interaction can take place
in co-located settings. As a basic rule of thumb, one can say that all systems
which establish an environment in which multiple users are interacting at
the same time in the same physical space with the system and with each
other can be considered as co-located systems. Through the co-presence of its
users, various interpersonal interactions are facilitated, such as full-duplex
communication, non-verbal communication, eye gaze and face-to-face inter-
action. Co-located systems come in particularly handy for group work and
group play. Tasks like decision-making, coordinating, planning and design-
ing usually benefit from the diversity and rapidness in communication [7,
35].

Co-located play is an area in which sociability naturally occurs. It refers
to the joy emerging from the social component when being together with
other human beings. In video games this phenomenon occurs when peo-
ple come together (virtually/online or physically/locally) in order to play
games together or against each other [16, 36]. Systems which incorporate
co-located play particularly in social spaces and with full-body input are
also part of what can be described as social immersive media [37]. In the
field of video games, this type of play used to be practised mostly in the
living room via video game consoles or during LAN parties. When online
gaming became more popular and technically mature in the early 2000s,
local multiplayer went through a rather lean period of time. However, co-

1It is noteworthy that the terms co-located, colocated and collocated often are used in
the same context and therefore can be handled as synonym, at least in the game research
field.

4

2. Floor-Based Co-Located Play 5

located play recovered well just a few years later, around 2006 when the
Nintendo Wii console was released and motion sensor games became more
and more popular. Nowadays, there is a broad variety of local video game
systems available which utilize various kinds of controls and input mechanics
and take also place in more diverse spaces such as urban and public space
games.

The field of co-located games and interactive installations has been the
focus of research for several years. Still there are areas which are mostly
unexplored. One example are floor-based games. Unfortunately, the term
floor-based has not gained enough popularity yet to get its own clear defi-
nition. In this thesis the term is used to describe installations in which one
or more users are able to interact with the system by moving their phys-
ical body inside a defined space on a planar surface. In most cases, the
users’ position is tracked by a camera-array and an associated computer
vision algorithm [15]. There are, however, other ways to achieve body track-
ing, e.g. through ground-based laser rangers [27] or floor embedded pressure
plates [24, 38]. Usually, all these systems have in common that they project
virtual avatars at the positions of the players in an interactive environment.
The projection on the floor is either done via projectors or floor embedded
displays.

According to Ballagas [1], interaction with large displays can be placed in
three different types of spaces:
Personal space: An interactive installation in the personal space can only

be used by a single user and usually is located in a private setting, such
as at home or in an office building. As for co-located play, the personal
space setting is not suitable by definition.

Semi-public space: An installation is semi-public if it is situated in a
controlled access environment. Only a limited amount of people can
interact, often collaboratively. For co-located play, this space is suited
perfectly as it provides the opportunity to regulate access to the ap-
plication and allows intervening directly if interaction is unclear.

Public space: Large open areas with usually high pedestrian traffic
and/or extended wait times such as train stations are also suited well
for co-located play.

The rest of this chapter provides an overview of the field and elaborates on
selected existing systems which offer co-located play in floor-based games.
The main focus lies on installations in public or semi-public environments.
Interaction limitations and design challenges when working with these sys-
tems are described as well.

2. Floor-Based Co-Located Play 6

2.1 Co-Located Game Systems
There is a broad range of floor-based co-located game installations. They
vary in technical regards as well as in the social environment they are placed
in. Some of these installations are quite experimental or have been built for
research purposes whereas some others are even commercially available. In
this section insights and some details on selected systems are given.

2.1.1 Commercial Products

Body tracking has existed for quite some time and it has reached a state
in which the technology is sophisticated enough to be commercially viable.
Today, there are many commercial floor-based gaming systems available. To
stay within the scope of this thesis, three of these systems are described
briefly.

GroundFX2 is a visual display system which uses a video camera to
capture body movements. A software-side computer vision algorithm then
tracks individual players and detects motion-based gestures. Unfortunately,
as GroundFX is a commercial product, there is no documentation publicly
available which explains how the tracking exactly works and what gestures
it is capable of recognizing. An example usage of the system can be seen in
Fig. 2.1 (a).

MotionMagix3 is a ceiling mounted unit which uses either an integrated
3D sensor or an optional external 2D motion sensor, both of which are not
described in detail. The projection is either handled by the device itself or an
external projector is utilized. Also multi-user point tracking, hand tracking,
foot tracking, full skeleton tracking, silhouette tracking and depth tracking
are supported. Same as with GroundFX, there is no detailed documentation
of the used technology for MotionMagix publicly available. MotionMagix is
pictured in Fig. 2.1 (b).

EyePlay Floor4 is an interactive floor system which is especially aimed at
kids. It is not publicly documented how the system works, but from pictures
on the company website, one can assume that the system also uses vision-
based image processing to detect body-movement within a defined area. The
system is pictured in Fig. 2.1 (c).

From the product folders as well as the pictures and videos on the websites it
can be concluded that these systems are not trying to break new grounds in
co-located interaction but instead focus on a solid user-experience and game

2More about GroundFX® by GestureTek can be found online: http://www.gesturetek.
com/gesturefx/productsolutions_groundfx.php

3More about MotionMagix™ by TouchMagix can be found online: http://www.
touchmagix.com/interactive-floor-interactive-wall

4More about EyePlay™ Floor by EyeClick can be found online: http://eyeplay.info/
floor/

http://www.gesturetek.com/gesturefx/productsolutions_groundfx.php
http://www.gesturetek.com/gesturefx/productsolutions_groundfx.php
http://www.touchmagix.com/interactive-floor-interactive-wall
http://www.touchmagix.com/interactive-floor-interactive-wall
http://eyeplay.info/floor/
http://eyeplay.info/floor/

2. Floor-Based Co-Located Play 7

(a)

(b)

(c)

Figure 2.1: Diverse commercial floor-based co-located game systems:
GroundFX by GestureTek (a), MotionMagix by TouchMagix (b), EyePlay
Floor by EyeClick (c).

2. Floor-Based Co-Located Play 8

Figure 2.2: The Lumetila installation uses pressure plates in the floor to
track the players’ movement.

play which is easy to grasp. As all three example products apparently use
vision-based motion tracking it can be assumed that this technology offers
a convincing cost-benefit ratio and is mature enough for commercial usage.

2.1.2 Research Projects

In the research field of co-located game systems there are some interesting
and also quite exotic approaches to implement body tracking. The following
installations are either research projects or publicly documented through
scientific papers.

One of the rather early projects is the Lumetila installation from 2001 [24]
(Fig. 2.2). It was built with the goal in mind to create an interactive natu-
ral environment with a shared experience between the players. The system
tracks people via an array of sensors arranged below a tiled floor and re-
sponds to changes in pressure. This approach provides a simple way to de-
tect movement without requiring the players to wear any kind of additional
equipment (e.g. helmets or gloves with motion sensors) but also makes it
hard to locate still standing people. Additionally, the system is capable of
recognizing outliers in the pressure measurement (e.g. rapid up-and-down
movements of arms) and interprets them as gestures. However, it is not
documented how accurate this gesture detection works.

An application specifically made for the Lumetila installation is the Nau-
tilus project [38]. It is a collaborative multiplayer game in which the players
form the crew of a diving bell. It is their mission to rescue a dolphin at the
bottom of a lake. The players control the diving bell with synchronized body

2. Floor-Based Co-Located Play 9

movements and movements on the floor. The game requires them to avoid
obstacles and to collect bonus items on their way down. The paper which
describes this installation does not mention it being showcased in public
but rather being evaluated by experts and selected groups of end users in
a closed environment. It can only be assumed that the technology was not
mature enough at that point to be used for a broader audience.

Lumetila is the only co-located gaming installation found during research
for this thesis which utilizes pressure plates. The technology is likely not
the most suitable for tracking movement of multiple persons. The approach
seems rather cumbersome as it requires a very specific hardware setup, spa-
tial preconditions and thus does not easily scale.

iGameFloor [15] is an interactive floor platform with vision-based track-
ing and bottom projection. It is built 3 meters into the physical floor and is
covered with a projection surface. Four web-cams film the surface bottom-
up in order to provide fine-grained tracking of limb positions. A lightweight
version of the iGameFloor installation can also run with a single ceiling
mounted camera which provides coarse-grained body tracking. The first ap-
proach, however, is preferred as it eliminates the problem of perspective and
does a better job at separating multiple users’ contours from each other.
In both setups the cameras are managed by a computer which processes
the video signal through a vision software. Since the application is tracking
limbs, it is possible to detect gestures like a three-step walk-sequence.

A completely different approach is being used for YOUPLAY. It is also an
interactive installation with wall and floor projection. However, the users are
equipped with wearable interfaces. Players get to wear helmets with built-in
infra-red markers which are tracked by a camera mounted to the ceiling.
Additionally, the helmets have accelerometers in order to detect shaking or
slight movements and help to track the players’ orientation. As YOUPLAY
is set up as a story driven 30-minute live entertainment show, each player
engages in one of ten predefined character roles. Some of the characters have
even more additional equipment, such as a toy gun or a butterfly net which
also have hardware augmentations (accelerometer, Arduino Fio, XBee, and
Lithium ion battery) installed (Fig. 2.3). Thereby, the players are able to
trigger certain actions in the game with their tools [17].

2.1.3 Deep Space

A setup which is quite unique due to its large dimensions is the Deep Space5

at the Ars Electronica museum in Linz. It is a multifunction room which
is used for presentations, interactive art installations, games and more. Six
industrial laser rangers6 are mounted across the room covering the floor and
thereby comprise an extensive tracking system. This architecture is capable

5http://www.aec.at/center/ausstellungen/deep-space/
6Hokuyo UTM-30-LX1 LiDAR (http://www.hokuyo-aut.jp/)

http://www.aec.at/center/ausstellungen/deep-space/
http://www.hokuyo-aut.jp/

2. Floor-Based Co-Located Play 10

Figure 2.3: In YOUPLAY the players wear helmets with integrated motion
sensors. Some players even have additional equipment such as butterfly net.

of tracking the position of approximately 25 people at the same time and
has three major benefits in comparison to e.g. image-processing of a video
stream:

• Laser rangers are not affected by brightness and thus can be even used
in very dark or bright environments.

• Laser rangers can be placed directly on the floor which means that
there is no need to consider a camera which might block the projector’s
field of view or perceive a distorted view of the scenery [15].

• The problem of privacy7 is avoided, which is a rather sensitive topic [41].
A computer processes all the tracking data and broadcasts it over the

local network. The network broadcast can be configured to use both the
open TUIO protocol [18] via UDP/OSC.NET as well as the proprietary
Pharus protocol [27] via either TCP or UDP. This way any application
which implements the client side of one of the two available protocols can
utilize the tracking data, even at the same time.

The application’s video signal is then projected both onto the floor in
up to 8K8 resolution via four 4K projectors mounted to the ceiling and on
the rear wall also in up to 8K via four additional 4K projectors. Both the
floor and wall projection measure 16 by 9 meters. The projection on the wall
can be configured to either mirror the floor projection or to show additional

7Some tracking systems (especially in public space and especially image based tech-
nologies) are faced with privacy concerns as it’s possible to identify people.

88K resolution or Full Ultra HD (FUHD) refers to total image dimensions of 7680×4320
pixels.

2. Floor-Based Co-Located Play 11

content.
There are several game applications available for the Deep Space tracking

environment. Some of them are described in the following section.

Game Changer

Game Changer9 is a semi-public interactive installation which was specif-
ically made for the Ars Electronica Deep Space. It is a collection of five
different multiplayer games. The focus of the project is to explore cooper-
ative and competitive game-play in a co-located setting and was initially
developed for public showcasing during the Ars Electronica Festival10 in
2014. Since then it was shown several times at other public events and in
early 2015 Game Changer was taken into the regular exhibition program of
the museum.

In Game Changer each person inside the tracked area is assigned a visual
avatar (depending on the current game). The avatar gets projected onto the
player’s position and follows the person as he or she moves in the room.
The video output is additionally mirrored on the wall. This helps orienting
oneself in the digital environment. Each of the five games functions only by
means of players’ physical presence and movements.

The game Fish Feast (Fig. 2.4 (c)) is a slightly adapted version of playing
tag (also known as it or tip you’re it). In Fish Feast the players are repre-
sented as fish in an ocean. The goal for each player is to consume as many
non-player fish as possible and thereby grow in size. The largest player fish
becomes the king (signified by the crown on its head) and from there on can
also devour other player fish and eliminate them from the game. A player
fish automatically eats another fish (turning it into an inactive fish bone)
by approaching it and overlapping their collision boundary circles. As the
boundary circles grow with the size of the fish it gets easier and faster over
time to eat other fish. That is why there is a computer controlled electric
eel from time to time wandering through the ocean which attempts to take
the leading player fish down a bit. The game ends once there is only a single
fish left alive. In the development of Fish Feast one of the major challenges
was to avoid physical collisions between players. Section 2.2 elaborates more
on this particular design issue. Also an important aspect was to balance the
game in a way that players who would perform rather bad in the early phase
of the game would still have a chance to win the game.

Another game part of Game Changer is Swarm Defender (Fig. 2.4 (f)).
It is a collaborative game in which the players must work together to defend
earth from extraterrestrial invaders. In this game each player is controlling
a spaceship which automatically fires green laser beams. Invaders appear in
three variations: green, blue and red. Green invaders are destroyed through

9http://game-changer.at
10http://www.aec.at/c/deepspace-gamechanger

http://game-changer.at
http://www.aec.at/c/deepspace-gamechanger

2. Floor-Based Co-Located Play 12

a single player’s green beam. In order to destroy a blue or red invader two
or three players have to join forces by standing next to each other. A group
of two players will fire a blue beam and a group of three players will re-
lease a powerful red laser. The dynamic in the game requires the players to
coordinate among themselves in order to match their fire behaviour to the
onslaught. The game ends either in a positive way once all invaders are de-
stroyed or in a negative way once enough invaders manage to break through
the players’ defence line and deal damage to earth.

There are three more games in Game Changer : Tower Of Power
(Fig. 2.4 (d)) draws its inspiration from the game classics Tetris and Bomber-
man, combining them into a team-based building race. By carrying Tetris-
shaped blocks from the energy source in the center to the home base, each
team can construct their own tower that eventually connects to the source
and draws on its energy. Beelzeball (Fig. 2.4 (b)) channels the energy of com-
petitive ball sports such as football or squash with computer game elements
inspired by classic games like Arkanoid and Snake. But rather than being
a team sport, the focus here is entirely on competition. And then there is
Fluridus (Fig. 2.4 (e)), a game which combines competitive and cooperative
play in a space setting. Players collect asteroid fields of varying sizes and
colors that provide energy for each team’s mother ship. After every of the
above games the Game Changer application switches to a game selection
(Fig. 2.4 (a)). In here players can choose between any of the five games by
simply standing on the desired game window. Once the timer has expired
the game with the most people standing on it (votes) will be loaded. That
way, the game selection is a collective and democratic process.

Limelight

Limelight11 [16] is another game specifically made for the Deep Space and
works a little bit differently than GameChanger. The game is projected
on the wall solely as the game’s aesthetic matches the traditional two-
dimensional platformer genre. A single player controls a wizard (“Limus”)
via a gamepad controller. The wizard’s task is to find three gems in a dark
cellar in order to escape. As the player’s vision is very limited through dark-
ness (darkness in the game, not actual darkness in the real environment) he
or she is reliant on the help of the players in the tracking area of the Deep
Space. Each of these players controls a Will-O-Wisp (“Lumee”) which illumi-
nates its surroundings. This asynchronous cooperative gameplay makes the
game already very interesting. However, there is another mechanic which
involves the audience: People can make monsters appear in the game world
by sending a text via SMS or email to a specified phone number or email
address. Players can even give their monsters (“SMorcS”) names.

11http://pie.fh-hagenberg.at/projekte/student-projects/limelight/

http://pie.fh-hagenberg.at/projekte/student-projects/limelight/

2. Floor-Based Co-Located Play 13

Figure 2.4: All applications of the Game Changer suite: game selection
screen (a), Beelzeball (b), Fish Feast (c), Tower Of Power (d), Fluridus (e),
Swarm Defender (f).

Concluding, it can be said that there is a broad variety in technology used
among co-located gaming systems. However, a problem which all presented
systems have in common is that the game design is highly depending on the
system’s capabilities and restrictions. In the following section game design
challenges which occur in this context are described.

2. Floor-Based Co-Located Play 14

2.2 Game Design Challenges
Designing games for co-located game settings is a rather hard task as various
unique factors come into play. This section handles special limitations and,
consequentially, lists some requirements for game design for co-located games
in order to work around these limitations.

Instant drop-in and drop-out: As for public and semi-public installa-
tions, it is a necessity to allow passers-by to easily join as well as leave the
game. Any obstacle in this process will hinder the experience not just for
the joining or leaving player but also for the other players. In an optimal
case there is no player limit and people can join the game immediately, play
as long as they want and then leave any time without affecting the game for
the others. However, of course there are games which require a limited player
access. In Fish Feast, for example, all players who join an already started
round (after a certain time) they will instantly switch to the inactive fish
bone state. This ensures that a round of Fish Feast cannot artificially be
prolonged by already eliminated players rejoining the game. However, this
also has the drawback that a player who leaves the tracking area by accident
not just loses his game progress but also is permanently eliminated from the
current round. This issue partially is the reason why most of the games
in Game Changer avoid having player progress or complex player states.
There are more details on this issue in one of the following paragraphs (cf.
anonymity of the player 2.2).

Player proximity: In a co-located setting usually there is no way around
coming physically close to other players. In fast paced games like Fish Feast
or Tower Of Power the co-located setting introduces important concerns of
player proximity in the form of real physical collisions. Players might get
distracted of the many game events or flashy visual effects and forget to
watch their local surroundings. Particularly games in which players run a
lot and often take quick turns in direction are affected by this risk. There
are measures that can be taken to reduce the chance of physical collisions,
however, it does not change the fact that this is a rather exotic and pecu-
liar limitation for the game design process of co-located games. Some the
precautions which can be maintained are to slow down the game pace, to in-
crease the size of the players’ bounding boxes and to try to avoid distracting
players’ vision in general.

Inhibition to approach strangers: Another problem which arises in
public space is that some people experience social inhibition when they are
playing together with people they do not know. Games which requires them
to approach strangers make them feel uncomfortable and often they react

2. Floor-Based Co-Located Play 15

restrained. In the worst case this might even lead players to quit the game.
Similar to the fact that one can not expect every passers-by in public space
to be experienced with video games, one also should not assume that every
potential player is as extroverted and sociable as one would want them to
be. Also for this issue there are some workarounds: The game design could
consider the players’ respect of other players. This would mean that a game
does not force its players to closely interact with others. There could be
passive player roles in the game which allow them to perform tasks which
require indirect interaction rather than direct interaction with other players.
When observing people playing the Game Changer games it can be seem
that it is a good practice to not force players to harm each other. Concluding,
collaboration usually works better than competitiveness if the players do not
know each other that well.

Perspective: Another issue that arises especially in large scaled floor-
based games is perspective. When interacting with large interactive displays
users tend to start struggling between getting close enough to the display
to interact with it, and getting away from the display far enough to put the
whole picture into their field of vision [1]. In floor-based games it is usually
not possible to step away from the display as the player is required to stay
within in a certain area in which the tracking takes place. Also, as a logical
consequence, the larger the display is dimensioned the harder it is to keep
an overview of what is going on in the game.

Game Changer benefits from the option of the Deep Space to not just
project the display onto the floor but also to mirror it onto the wall. This way
the player can immediately see what is happening in his local surroundings
by looking at the floor around his feet and look up to the wall at any time
to see what is going on in the far away corners of the playing field. However,
when there are many players in the game it can get difficult in the heat of
the moment to find oneself’s own avatar on the wall projection. Some kind of
additional (unique) visual identifier on the public display (such as the name
or a photo of the player) could help the player to find his or her avatar more
quickly.

Lack of physical barriers: As floor-based games usually track their
players’ body position things get complicated when there are certain areas
in the game which should not be accessible to players. In the real world it
is not possible to prevent people from moving freely in the tracking area.
Placing obstacles in the real world is often not an option as it is a danger
for players. Co-located games already requires players to deal with a rather
high cognitive load. Also obstacles in the playing area can interfere with
the tracking technology’s vision (may it be laser rangers or image based
computer vision).

2. Floor-Based Co-Located Play 16

An approach to work around this issue is to cut the connection between
the player’s movement and his or her avatar. For example, a wall in the
digital world can stop the avatar even though the player can continue his
movement in the real world. But this method has a major drawback: Im-
mersion in floor-based games significantly benefits from the direct mapping
of the player’s position to his or her avatar. Breaking this connection would
drastically affect immersion.

Anonymity of the player: The next design challenge is also quite
unique to public space games. The players in public co-located games are
usually anonymous from a technical perspective. This means that the game
is not capable of differentiating between players as it does not identify them.
Thus, the game has no memory about a player’s history or experience with
the game. This leads to the problem that as soon as a game introduces player
states, points or some other metric which allows any kind of progress for a
player this limitation can quickly become annoying.

In Game Changer once a person steps out of the tracking area he or she
automatically drops out of the game. Once the same person steps into the
game again he or she will start as a new player as the game has no way to
determine if the person already was in the game. But this issue of course
does not only affect intentional re-registration. In the Deep Space the system
in some rare cases can lose a player’s tracking identity. This happens due
to various reasons: occlusion, close proximity to other players or jumping.
Usually the player automatically gets a new tracking identity assigned, but
nevertheless his or her game progress so far is lost.

Explicit player actions: In co-located floor-based games the users’ basic
interaction is done through the movement of the players’ bodies. The body
tracking is then usually mapped to the player’s position in the game. In some
cases the tracking system is also capable of recognizing certain body gestures
or even movement patterns. This motion gestures then can be used to trig-
ger certain actions in the game. Unfortunately, there are some drawbacks to
these motion based controls: Even with very sophisticated gesture tracking
there still is the problem that gestures might get interpreted wrongly or not
recognized at all. As gestures usually need to be performed very precisely
the error rate could get problematic in hectic or action driven games. Also
motion gestures need to be learned and trained before they can be used
and it usually takes the players a while to internalize them. Furthermore,
some floor-based environments might not even offer adequate possibilities
to track gestures. The Pharus tracking system in the Deep Space for exam-
ple is capable of recognizing crowd movement patterns [27] such as linear
movement, circular movement and flocking. However, pattern recognition
for single persons is not supported as for now.

2. Floor-Based Co-Located Play 17

The games part of the Game Changer suite work around this limitation
by triggering certain user actions when the players’ bounding boxes overlap
specific areas or objects in the game. This method provides satisfactory re-
sults but does only work in specific cases. The actions players can trigger,
for example, always depend on their immediate surroundings (defined areas
in the game): A player cannot decide when to use a collected power-up in
Beelzeball (cf. Section 2.1.3), instead the power-up gets activated automat-
ically in the moment the player steps on it. Also the timing of triggering
actions that way is rather imprecise due to spatial distance between player
and trigger area, inertia while rapid body movement and possible movement
delay. Not having the possibility to allow players to explicitly trigger actions
is in the author’s opinion the a major limitation in the process of designing
games.

Individual player feedback: As floor-based games don’t utilize indi-
vidual input and output interfaces for every player, it is difficult to provide
individual feedback to a specific player. For example, in Fish Feast it hap-
pens from time to time that a player’s fish gets devoured but he or she
continues playing just as if nothing had happened. This goes on until even-
tually the player notices that he or she has been eliminated from the game.
There are sound and visual effects whenever a player fish gets devoured but
especially in hectic situations and also in situations with many players in-
volved these indicators get easily missed. Audio feedback in particular is
ambiguous as it cannot be directed towards a specific player but instead
everyone will hear it. So a player might hear the sound effect but cannot
tell what it was caused by and which player is affected. This problem also
occurs in scenarios in which the system loses track of a player’s position and
the he or she suddenly doesn’t have a tracking identity anymore.

Player exhaustion: There is another design challenge which can often be
seen in motion controlled games: floor-based games can easily cause physical
exhaustion as usually extensive body movement is required. This problem
can be clearly observed in games like FishFeast and Tower Of Power (cf.
Section 2.1.3). A rather obvious workaround to the players limited physical
endurance is to keep play durations short.

Distraction through immersion: An interesting phenomenon was dis-
covered in Limelight when players were playing as “Lumees”. Especially chil-
dren were distracted a lot—probably by the engaging visual looks of their
avatars—and did rarely focus on the actual gameplay. Instead they were
playing with their Lumees and watching them move on the wall. Some of
the players were even trying to touch their avatars on the wall projection [16].
The visual looks of the avatar as well as the responsiveness to the players

2. Floor-Based Co-Located Play 18

motion fosters the relationship between the player and his or her avatar.
This immersive experience apparently can in some rare cases negatively af-
fect the player’s behaviour as it distracts from his or her actual task in the
game.

Concluding, it can be said that there are a lot of unique aspects in floor-
based co-located video games. Some these aspects, such as player proximity,
the lack of physical barriers and the lack of explicit player actions can be
worked around in a more or less satisfactory manner. However, they require
a certain amount of inventiveness. For some other issues, such as individual
player feedback or the general anonymity of players there seems to be no
smooth way to overcome them without some kind of extension to the overall
system. In Chapter 4 such an extension to the co-located game system in
the Deep Space is presented.

Chapter 3

Second Screens in
Co-Located Settings

Providing an additional display in video games is not really new or innovative
any more. At least on consoles and PC it has been done already more or less
efficiently by some of the biggest gaming companies, mostly for extending
the user experience or providing additional content. The augmentation of
digital experiences through one or more additional displays is called second
screen. This concept has been applied in various branches of digital media.
But so far, the use cases of second screen applications are mostly set in a
private space of the user, usually the living room. While in passive media,
in which the user can only consume content from the system, second screens
are often used to provide (optional) additional content (e.g. trivia) to the
content (e.g. movie) of the main media channel (main screen). However, in
interactive media such as video games a second screen offers a much broader
spectrum of use cases [12].

An exciting approach is to utilize mobile devices in this scenario. So
called smart devices are usually laid out for being operated one handed and
have a focus on multimedia and communication (touch screen, microphone,
speakers, wireless network/internet connection, Bluetooth, Near Field Com-
munication, infrared sensor). They are equipped with various sensors to
determine the device’s position (compass/GPS, barometer), its orientation
(accelerometer, gyroscope) and its local surrounding environment (proxim-
ity sensor, ambient light sensor, cameras). Typical smart devices are smart-
phones, phablets and tablets [2, 32] but also convertibles or detachables
(lightweight laptops which basically can be transformed into tablets). Ob-
viously these extremely versatile and feature-rich hardware opens a whole
new horizon of interaction possibilities.

Smart gaming as defined by Emmerich [12] is a subcategory of second
screen gaming. It is characterized by the usage of smart devices as game
controllers and their private screens in addition to a separate public display

19

3. Second Screens in Co-Located Settings 20

(e.g. a TV or a projector) which is utilized as a main screen. In other words,
smart gaming is the combination of private smart devices with co-located
play in public space. Naturally, lots of problems and requirements but also
opportunities arise in such a scenario. This Chapter elaborates on how to
overcome interaction barriers as well as problems and opportunities of smart
gaming.

3.1 Cross-Device Interaction Barriers
Social inhibition (the fear of being embarrassed in public) [4, 25, 33] and
uncertainty about the interaction possibilities [29] are the main problems
interactive installations in public space are confronted with. In 2014 Che-
ung [6] took a closer look on the combination of large public displays and
personal mobile devices and found out that there are massive differences
when it comes to people overcoming their inhibition to interact with these
systems. Therefrom, it is stated that social inhibition is just one factor of
many which can prevent people from interacting with the installation. Fur-
thermore, the potential of using private mobile devices as a bridge between
the user and the public screen is clearly emphasized. To foster this con-
nection and to remove psychological hurdles in the best possible way, some
more interaction barriers are defined and subsequently a broad spectrum of
possible solutions is proposed which covers these issues.

When Cheung defined the following interaction barriers they weren’t
framed in any application specific context. However, the approaches pre-
sented in the following are perfectly applicable to games.

3.1.1 Three Levels of Interaction Barriers in Public Spaces

According to Cheung there are three different levels on which interaction
barriers can occur [6]. These three levels overlap partially, as can be seen in
Fig. 3.1.

Attraction level: The first level is the attraction level. It involves all
interaction aspects during the first phase of contact and recognition between
the user and the public installation. Display blindness, for example, is the
phenomenon when the user can not identify the public display as such. This
usually happens when the installation is not attracting the attention or
interest of passers-by. Another barrier on the attraction level is interaction
blindness. It occurs when the user does not realize that the installation is
interactive or that it is meant to be interacted with by anyone. Lastly, there
is cross-device blindness, which means that it is not clear to the user that
his personal mobile device can and should be used to interact with the
installation.

3. Second Screens in Co-Located Settings 21

Figure 3.1: The three levels of interaction barriers in the order they usually
appear according to Cheung [6].

Interaction level: The second level is the interaction level. It contains
aspects which are connected to the understanding and usage of the mobile
devices in combination with the public installation. There is complex inter-
action, which is a barrier that occurs when the interaction with the mobile
device and the public display is not easy to learn or to understand. And
there is social inhibition, a phenomenon which occurs when users do not feel
comfortable and are afraid of failure or looking foolish while interacting.

Management level: Finally, the third level is the management level.
It describes aspects of the connection between the mobile devices and the
public display.

Inadequate opt-in/opt-out can cause frustration, for example, when it is
not easy to engage and withdraw from interacting with the system. Con-
necting and disconnecting the mobile device from the public display does
require a significant effort or causes frustration. At the same time mistrust
might be generated if the system performs sensible actions on the user’s
private device (connecting to the system, downloading third party software
and similar actions), especially if this happens automatically without explicit
permission.

Also missing control/recovery can be fatal e.g. when interruptions are not
handled properly or there is no easy and fast way to restore the previous
state. As mobile devices are primarily stated as communication devices,
incoming calls, messages or notifications might cause the interaction with
the public space system to pause or, even worse, to stop [12].

3. Second Screens in Co-Located Settings 22

3.1.2 Overcoming Interaction Barriers

For the above listed issues Cheung made a collection of approaches to solve
them [6]. The following list contains proposed solutions to minimize or avoid
these barriers. Once again, the previous division into three levels is being
used.

Attraction level: Reacting to the presence of the users can help to
overcome display blindness. The display could call attention to the system
by playing automated animations or audio signals. In case it is equipped
with sensors to track passers-by it can react to changes in its environment
and show appropriate content and visual cues on the public display [6, 26].

To prevent interaction blindness a good way would be to show clear
instructions directly on the public display. They can be animated to attract
the users attention, however, the user must not be overwhelmed by too
fancy animations or too much information all at once. A step-by-step-like
approach in which the user is guided through the instructions and thus only
gets to see the information he or she just needs is preferred [6, 40]. Passers-
by are also attracted by music and sound effects. It’s important, though, to
not push it too hard since this might have the opposite effect. Also in most
public spaces (e.g. shopping malls or train stations) insonification might
not be an option due to local restrictions. If it’s not possible to show these
instructions on the public display there should at least be some signs or
instruction labels be put next to the public display [6, 30]. In some cases
it might also be an option to assign an on-site instructor directly to the
installation. This person can then teach passers-by directly how to use the
system. The author’s experience with Game Changer has shown that this
approach is very well received and usually works best.

Another way to help overcoming interaction and cross-device blindness
is to provide signifiers. If the system uses sensors or eye-catching technol-
ogy instead of hiding it it is a good idea to rather expose it. This is often
understood as a sign of interactivity. To indicate that the system is used
with private mobile devices a symbol (pictogram), photo or even a video of
someone using his or her phone to interact with the display can be shown on
the public display. Also, commonly known indicators like a QR code is often
a clear indicator for interactivity [6]. Another important phenomenon which
can be utilized is the honeypot effect [4]: Once someone starts interacting
with the system, others will start watching and their inhibition threshold to
join will be reduced significantly.

Interaction level: To reduce interaction complexity providing immediate
interaction is a key strategy. The less steps the users are required to perform
in order to connect their devices to the system the better. For example, a
(shortened) URL or a QR code which redirects to the actual application are

3. Second Screens in Co-Located Settings 23

preferred solutions [6]. Ideally, the user does not have to install an external
application on the private device at all. The connection could be established
through a web-app in the device’s internet browser. Other examples on how
this can be achieved even without requiring an internet connection are Blue-
Tone [9] (by transmitting predefined dual-tone multi-frequency sounds via
Bluetooth), e-Campus [8] (by manipulating the Bluetooth device name of
the private mobile device) and Blinkenlights1 [9] (by calling a phone number
and pressing the numeric keypad to perform predefined actions).

Also, it is important to convey possible input modalities. Mobile smart
devices are per definition (cf. Section 3) equipped with multiple sensors, and
thus offer various ways to exchange input and data [2]. It is recommended to
make use of the devices capabilities as efficient as possible: Instead of limiting
controls to one particular way multiple alternative control schemes should
be offered. For example, with a smartphone an avatar can be navigated on
the public display via touch gestures on the phone’s screen but additionally
the same can be achieved by utilizing the phone’s gyroscope [6]. It is im-
portant, though, that users are not excluded from the system if a certain
hardware feature is missing on their mobile device. Therefore, controls with
rather exotic hardware requirements should be offered additionally. Also, it
is noteworthy that with this approach the various controls types must be
pointed out and explained additionally [6].

As already mentioned in the introduction of Section 3.1, social inhibition
is usually seen as the main reason for people to avoid public installations.
One key strategy to reduce this inhibition is to provide appropriate feedback
during display interaction, device connection and connection failures [6],
since uncertainty about the state of the system, uncertainty about what
interaction is possible and fear of failure are usually the main causes of
social embarrassment [4, 33].

To make the interaction more easily understandable to the users it is
recommended to provide a fail-safe test environment, a kind of tutorial in
which new users can learn how the system works fast and get a feeling of how
it reacts to input before the actual interaction even has begun [6]. Googles
Super Sports Sync game2, for example, has such a training mode. Before
the actual competition starts the players can try out the controls already
in the lobby while they wait for other players to join (fig. 3.2). To highlight
the connection between the mobile devices and the public part of the system
synchronized feedback between the two is recommended [6]. By offering such
kinds of hints and exploration aspects it should be more easy for the user
to learn the utilized interaction modalities.

1http://blinkenlights.net/blinkenlights
2https://chrome.com/supersyncsports/

http://blinkenlights.net/blinkenlights
https://chrome.com/supersyncsports/

3. Second Screens in Co-Located Settings 24

Figure 3.2: In Googles Super Sports Sync the player learns the controls
before the actual game even starts. Also, there is synchronized visual feedback
on the smartphone’s display and the main display

Management level: To enable a flawless and smooth experience when
connecting multiple mobile devices to the public display the necessary band-
width should be minimized as far as possible by reducing the amount of mes-
sages sent in the network. Network traffic for data which usually requires
a high-frequency update rate (e.g. orientation sensor data from the mobile
devices) can be optimized by reducing the update rate and interpolating in
between each update on the retrieving end (public display) [6]. Minimizing
the bandwidth is especially important for games as responsiveness is a key
factor for playability and user experience.

Keeping the user aware of the system state is especially important during
the connection- and withdrawal-process. This can be achieved by conducting
proper opt-in and opt-out modalities: The system must not download any
data or connect to any system automatically without explicit permission by
the user, otherwise the user might get insecure and mistrust the integrity
of the system [14, 25]. For the same reasons the system must not expose
personal data which could (from a technical point) rather easily be gathered
from the users’ mobile devices. Seeking the user’s explicit permission for
joining the system has also benefits when it comes to avoiding false positives.
Again, wrongly interpreted user actions usually foster social inhibition [3]
(e.g. a passer-by’s device is immediately connected and shown on the large
display even though the person just wanted to check out the web link which
is shown on the display).

Another approach to prevent frustration on the management level is to
support proper recovery & control mechanisms: The system should be able
to handle the circumstance that some users might not explicitly sign off their

3. Second Screens in Co-Located Settings 25

mobile devices but simply walk away. In such a case one solution would be
to introduce a timer which signs off idle devices after a certain period of
time [6]. In case of an interruption or accidental disconnection of a device
the re-establishment of the previous connection state should be handled as
user-friendly as possible [6, 12]: If some kind of user-authentication, network
information, device-calibration or any other step linked with additional effort
is required on connection, it should be possible to skip it by saving the
particular user-specific parameters on the server. If this is not possible, at
least sensible default values should be provided [6]. Also the application on
the large display should handle connection issues properly: In a game, for
example, when a player’s device has connection issues his avatar on the big
screen should freeze and get into some kind of idle state in which the player
is safe of negative consequences (e.g. lose points) until the connection is re-
established [6]. And last but not least, providing live drop-in and drop-out
helps to make the experience more flawless: Users should be able to join and
leave the system at any time without interrupting the experience for other
users [12].

As shown above, there are quite a lot of interaction barriers in smart gaming
which need to be addressed properly. However, smart gaming offers a lot
more unique characteristics. Some of them can be hindering but some others
can actually be beneficial if utilized correctly. The next section elaborates
on some of these aspects.

3.2 Smart Gaming in Co-Located Settings
When it comes to designing games for co-located settings, there are already
a lot of unique challenges. The utilization of smart devices in this context
helps in many ways to overcome these limitations to some extent, but at the
same time it brings in completely new aspects which require the designer’s
attention.

This section elaborates on further problems, limitations and specific re-
quirements but also on benefits and rather unique opportunities which go
hand in hand with smart gaming in co-located settings. Some strategies to
overcome specific issues are presented as well.

Emmerich [12] already explored most of these design challenges and cat-
egorized them into three levels: cognition challenges, technology challenges
and social challenges. Emmerich’s classification is also used in the following.

3.2.1 Cognition Characteristics

Common video games connect their player through a single display to its
digital environment. With second screen gaming the player suddenly is con-
fronted with one or more additional displays. As a result the decision on

3. Second Screens in Co-Located Settings 26

what to focus in which particular situation is imposed on the player. Thus,
completely new cognitive challenges arise [12, 39].

Cognitive load: The cognitive load which comes with more than one
screen hinders the player’s processing of information [39]. An uncertainty
about which screen holds the more important information may lead to frus-
tration and might affect concentration. The game experience in general is
put at risk. Fortunately, consistency and clarity in the user interface (UI)
already diminishes a big part of this cognitive load. Less important or less
frequently used UI elements often can be hidden in submenus to reduce the
general amount of UI elements. Furthermore, context-relevant UI elements
should be highlighted in order to help the player draw his or her attention
to them quickly. And finally, special attention cues can signalize the player
directly which display he or she should focus on (e.g. an icon in the shape of
a smartphone which is shown on the public display, or, of course, the other
way round) [12]. These cues do not have to be exclusively visual, also audio
cues3 or even haptic cues (vibration on the smart device) can be used to
draw the players attention.

In large-display and floor-based games the players are often constantly
moving around in the playing field. For example, most of the games in Game
Changer involve fast-paced gameplay in which player proximity is a major
concern [11]. For these kind of games the distraction through a second screen
can even be dangerous as players not focusing on their surrounding might
crash into each other. To reduce the risk of physical injuries the usage of the
smart device should work intuitively and not require the players to focus on
the screen for more than a few seconds. Thus, a drastically reduced UI and
controls which can be operated blindly are preferred.

Asymmetric information distribution: Players having access to a
private display offers game designers to distribute information across them
in an asymmetric way. This means, while every player has access to the
same base information (public display) each player can have additional in-
dividual information (private display) [12]. Moreover, not just information
can be distributed unequally but also the players’ abilities can differ. From
a game design perspective this is a very interesting aspect since it allows
relatively easy to emerge different player roles, and thus adds a very unique
social component to the game. This diverse information distribution must,
however, be explained to the players accordingly. It should be clear to the
player which role he or she has and what actions can be performed based

3Some best practises on the use of audio feedback through small built-in speak-
ers in gamepads or personal devices can be found here: http://gamasutra.com/
blogs/RevDrBradleyMeyer/20150406/240483/Best_practices_using_the_PS4_Dualshock_
controller_speaker.php

http://gamasutra.com/blogs/RevDrBradleyMeyer/20150406/240483/Best_practices_using_the_PS4_Dualshock_controller_speaker.php
http://gamasutra.com/blogs/RevDrBradleyMeyer/20150406/240483/Best_practices_using_the_PS4_Dualshock_controller_speaker.php
http://gamasutra.com/blogs/RevDrBradleyMeyer/20150406/240483/Best_practices_using_the_PS4_Dualshock_controller_speaker.php

3. Second Screens in Co-Located Settings 27

on the role. Otherwise confusion and frustration might arise quickly [12].
When it comes to asymmetric game design sophisticated balancing is re-
quired. Despite unequal abilities, resources, rules, or objectives each player
should have roughly the same chance of winning. Often players are required
to adapt their tactics and build alliances with other players. Maybe players
even can change their role during a play session [13].

3.2.2 Technology Characteristics

As already stated above, smart devices come in various configurations. Not
all players have the latest hardware on the market and therefore care should
be taken when a broad range of devices is used in the same setting.

Hardware limitations: The explicit utilization of certain rather new
hardware features can exclude a lot of older or low-budget devices. To serve
a wide range of players it is essential to overcome this issue. Exotic hard-
ware features like NFC (Near Field Communication), gyroscope, Bluetooth,
fingerprint sensors and so forth, should be either avoided or made option-
ally (alternative controls) [6, 12]. Another way to handle this problem is
to create specific roles for players with rather poorly equipped smart de-
vices: e.g. in a team-based game in which motion sensors are mandatory for
action-based tasks, a player without the required sensors could take the role
of a commander and take over tasks like resources management or strategic
planning.

Another hardware limitation which affects the game experience and thus
requires a special game design is battery-life. Short durations for single play
sessions are preferred so prevent smart devices running out of battery. Also,
heavy and complex computations (especially graphics) should be avoided
since they drain a lot of energy [12].

Balancing despite various device characteristics: The game design
must work well with variations in hardware and ensure that certain charac-
teristics of a personal device do not offer significant advantages. The screen
size, for example, varies a lot between different device categories (smart-
phone - phablet - tablet). A larger screen must show the same content as a
small one does to ensure everyone plays under the same conditions [12]. But
again, players with a rather large screen on their private device could take
a special role in a game, such as a commander or overseer. A clever usage
of this approach is e.g. the commander mode4 in Battlefield 4. It is not a
co-located game per se but the point being made is that its concept could
offer interesting gameplay for public space games.

4http://battlelog.battlefield.com/bf4/news/view/commander-mode-app-out-now-2/

http://battlelog.battlefield.com/bf4/news/view/commander-mode-app-out-now-2/

3. Second Screens in Co-Located Settings 28

Private devices versus shared devices: Device-based interaction with
a large public display can also be done with publicly available mobile con-
trols. By providing the necessary smart device directly on-site allows partic-
ipation without specific hardware requirements for the users. This approach
seems very promising on first thought, however, there are certain drawbacks
which should be considered, such as maintenance, sanitation, multi-user si-
multaneity and the users’ ability to spontaneously interact with the large
display [1].

Furthermore, the aspects of individuality of smart gaming mentioned
in the following (cf. Section 3.2.3) are not applicable when publicly shared
devices are used instead of private ones.

3.2.3 Social Characteristics

The social aspects in public co-located settings vary a lot from common
video games played on consoles or PC at home. The fact that they take
place in public already has an effect on how people behave and how they
interact with each other. The private smart devices also provide new ways
to involve a broader range of player types in the game.

Audience participation: In public space naturally not every passers-by
is a gamer. Besides that affinity for gaming, participation in public space
games usually also requires extroversion to some extent. People who do
not come up to these requirements may be afraid of performing badly or
simply feel uncomfortable due to close contact with other players. These
people might still be interested in the game but simply prefer watching over
playing. Thus, a big portion of the possible target group of large-display
games in public excludes itself already before it even gives the game a try.
This issue, however, can be addressed once private mobile devices come into
play. As already mentioned in the Sections 3.2.1 and 3.2.2 various player
roles can be introduced [12]. For the above described rather passive player
type a role with limited and simple controls might eventually attract them
after all. A passive role in which the audience does not act as players per se
but still can influence the course of the game is introduced in Limelight [16].

Individual user settings: Usually public space games are closed systems
in terms of player progress. Every play round starts with all participants
sharing the same basis as the players are anonymous. This is often due to
avoiding a cumbersome authorization procedure. Smart devices, though, can
be used to keep track of player’s experience and progress. Points and other
statistics can be stored in a private user profile on the smart device which
is then synchronized with the game.

There are other benefits of this individuality aspect as well. The player
can easily personalize his own gaming experience. The private mobile game

3. Second Screens in Co-Located Settings 29

interface could provide the ability to customize the appearance or enter a
name for the user’s avatar which is then shown on the public display [5].
Furthermore, the player’s private game interface can be altered manually or
even dynamically to match personal preferences, habits or cognitive condi-
tions [23].

Another aspect which profits through individual user statistics is the
player diversity in a smart gaming setting. Since a lot of different people
in terms of gender, age and expertise are involved, it is a design challenge
to satisfy a wide range of concurrent demands [5, 12]. What Fullerton [13]
describes as balancing for skill means for co-located public-space games that
an algorithm can balance certain game parameters [5]. In contrast to match-
making algorithms of common multiplayer PC or console games, which try
to select players with equal skills and brings them together, this approach
adjusts the overall difficulty and pace of the game to match the sum of expe-
rience of all connected players (profiles). This can happen before each game
round or even during the game play.

As this chapter shows there are, compared to regular co-located gaming,
some novel and interesting characteristics in smart gaming. Care has to be
taken when designing applications for smart gaming. A lot of the design
principles presented in this chapter were already applied in smart games
and some more experimental applications (e.g. First Strike [25], Multiplayer
Breakout [6], Catch a Thief, Data Theft Algorithm, The Mole Rush [12]).
Also the framework presented in the next chapter makes use of some of
these guidelines.

Chapter 4

MoCo: a Mobile Companion
Framework for Floor-Based
Games

While Chapter 2 clearly shows that there is a lot to consider when designing
applications for floor-based co-located systems in public space, Chapter 3
points out the benefits and special considerations when bringing smart de-
vices into public co-located installations. In this chapter an attempt is being
made to define requirements to an extension of floor-based co-located games
in order to overcome the mentioned limitations. This extension should bring
new opportunities for players to interact with the game without interfering
with existing modalities.

MoCo is such an extension. It is a framework for including personal
mobile devices into floor-based games. It tries to work around most of the
design challenges described in the previous chapters and to enable more
versatile and attractive game design.

System overview: MoCo stands for mobile companion and is the au-
thor’s approach to enhance floor-based games with personal smart devices.
It has a client implementation (companion application for mobile devices)
and a server implementation (co-located game in (semi-)public space). The
server component is an extension to the TUIO/Pharus tracking receiver sys-
tem used in the Deep Space setup. This means, while there is still a network
client thread running which processes tracking information through TU-
IO/Pharus, it also additionally runs a network server which allows mobile
devices to connect to the game server. The mobile component of MoCo is
a fundamental structure and network interface for applications running on
mobile devices (Google Android and Apple iOS at the moment). One job
of the MoCo server is to handle the game server and all connected mobile
devices. The other job MoCo does is to manage the references between the

30

4. MoCo: a Mobile Companion Framework 31

Game Server

Figure 4.1: In MoCo the players’ smart devices are connected to the central
game server via WiFi. The identification avatars match the symbols in the
identification view of the mobile application (fig. 4.4 (b)).

mobile devices and the corresponding tracking identity.
The idea of MoCo is that each player who has joined the game by phys-

ically stepping into the tracking area also holds a smart device in his or
her hands which is connected via WiFi to the MoCo game server (as pic-
tured in Fig. 4.1). Therefore the MoCo server/client interface provides the
functionality to identify a player and assign it to his or her corresponding
TUIO/Pharus tracking id. As soon as a player’s smart device is connected
to the game server and the player has been assigned the correct tracking id
the mobile device acts as an extended UI to the game. The game still takes
place on the public display (floor projection) and all the game logic runs
on the server side, but the player receives personalized audio and tactile
feedback through the handset when his or her avatar in the game is being
confronted with any kind of interaction. This way the player’s perception
in the game is noticeably extended. But MoCo also works the other way
round: the player’s smart device is used to send commands from the player
directly to the game. At the moment the system supports two types of com-
mands: permanent transmission of sensor data (e.g. gyroscope) and input
based commands such as pressing and releasing of a button. The MoCo client
structure therefore suggests a simple design and supports basic UI elements

4. MoCo: a Mobile Companion Framework 32

such as buttons. Any other more complex 2D or 3D interfaces are neither
explicitly supported nor recommended, in order to keep the cognitive load
as low as possible (this subject is also discussed later in Section 4.1.1).

In MoCo all the game logic happens on the server side, the machine
which runs the actual game. This ensures that it’s harder to manipulate
the game by sending unexpected messages over the network. The server will
simply ignore every message he does not understand. Also, each individual
player state in the game is stored on the server side. Though, once a game
is over, the player state (profile, score, etc.) gets synchronized also on the
private mobile devices. This is necessary as the game server is not capable of
storing this information between game sessions at the moment. The handling
of user data might not be really matured yet but it also allows the users to
check on their user profiles without being connected to the game server.
However, the future development will most likely include an improvement
of this architecture.

4.1 Characteristics of MoCo
In this section some characteristics of MoCo related to the matter of the
previous chapters are being focused on. It focusses on requirements to the
system as well as features of the system.

4.1.1 Requirements

The previous chapters elaborated a lot on problems and limitations. In this
section requirements in order to overcome these issues are inferred and their
implementation in MoCo are described. These requirements are used to un-
derpin the concept on which MoCo is based on.

Seamless drop-in and drop-out: As previously described it is essential
for public installations to allow instant drop-in and drop-out. It ensures that
the usage barrier is kept as low as possible. In the design process of MoCo
it was of great importance that the process of joining and leaving a game
would work as easy as possible while still conducting opt-in and opt-out.

To connect the mobile companion app to the MoCo server the player has
two options: When the player joins the game for the very first he or she has
enters the IP address of the game server into the respective input field and
join the game by pressing the manual connect button. Once the connection
is established the IP address of the server gets cached in the mobile app.
When connecting to the server the next time the last used IP address is
proposed automatically. The second and obviously more user-friendly way is
to simply press the auto connect button and let the client listen for a network
broadcast message provided by server. Once the broadcast was received the
client retrieves the server’s IP address from the message and connects to the

4. MoCo: a Mobile Companion Framework 33

game. This usually takes not more than three seconds but depends on the
network traffic. In a setting in which the network is known and persistent
the IP address could innately be stored directly in the mobile companion
app’s settings. Unfortunately, this is not often the case, so for new users the
IP lookup or manual input is required.

Whenever the player leaves the physical tracking area of the game, as the
tracking id gets removed, his or her mobile companion app automatically
gets unassigned from its tracking record. The mobile app, however, is still
connected to the game server so that the player quickly can rejoin the game
without being required to reconnect to the game server. The player then
only needs to re-identify his or her tracking id. In order to disconnect from
the game server completely the player can do so by pressing the according
button in the settings menu. As this option is usually not required often
it is placed in the settings menu intentionally. This ensures that the player
does not press the disconnect button by accident during regular game play.
Of course once the game server shuts down or the mobile app is closed the
client gets disconnected from the server.

Minimizing cognitive load: The additional screen of the smart device
in a MoCo setting can easily lead to the described issues with increased
cognitive load (cf. Section 3.2.1). Therefore some precautions have been
made to minimize cognitive load.

The MoCo UI is being held clear and consistent: The mobile companion
app is separated into different views. The main view is shown when the
device is not connected to a MoCo server. It shows an input field for the
player’s in-game name, a big button which starts the auto connect process,
another input field for the IP address of the server, and finally a small button
which is used to connect manually to the game server via the provided IP.
The player is usually not confronted with the main view during regular
game play as it is only required to establish the connection to the game.
Once the application is connected the identification view is shown. It shows
four buttons, each with a specific color and geometrical shape. In this view
the user can easily and quickly assign him or herself to one of the available
tracking records in the game. A more detailed insight on this step is given
in Section 4.2.2. The simple UI of this view ensures that the process of
identification works intuitive and fluently. The next view the player gets
confronted with is the calibration view (only in games which utilize data
of the gyroscope sensor). Again, this view is kept very simple, there is only
a single button which causes the gyroscope data to calibrate. This step
is mandatory the first when connecting the first time and from then on
the calibration offset is cached (more on the calibration can be read in
Section 4.2.2).

After identification and calibration is done the app switches to the game

4. MoCo: a Mobile Companion Framework 34

view. The game view depends on the current game running on the MoCo
game server. All game views have a settings button in the top right corner of
the screen. It is part of the overlay of the MoCo framework. The menu button
opens a menu which holds some MoCo specific options, like re-identification,
re-calibration and disconnecting from the server. Aside from the MoCo spe-
cific UI, the game view’s UI is recommended to consist of not more than 3
big elements such as buttons. Buttons which trigger actions only in a spe-
cific context or situations are greyed out and only get interactable in these
specific situations.

There are lot more design challenges discussed in the Sections 2.2 and 3.2
which obviously need to be addressed. However, issues such as inhibition
to approach strangers, player exhaustion, distraction through immersion or
even hardware limitations are not in the scope of MoCo and instead should
be handled by the game system itself, the environment it is being set up in
and the actual game play design.

4.1.2 Features

Some of the unique aspects of smart gaming are implemented in MoCo in
a beneficial way. These features are the core of MoCo and the reasons why
MoCo is an enhancement to regular floor-based co-located games.

Individual player feedback: The lack of individual player feedback can
be problematic in co-located games (cf. Section 2.2). Fortunately, as smart
devices are equipped with various hardware features such as a display, speak-
ers and small vibration motors, they are a great opportunity to personalize
feedback. MoCo makes use of all these features in order to increase immer-
sion and to make the connection between a game event and the involved
players clear.

As soon as the system loses track of a player’s position (e.g. when he
or she steps out of the playing field) the player’s handset will vibrate to
signalize that the identification was lost. This measurement ensures that a
player immediately gets informed in such a situation and therefore prevents
frustration. In other games without MoCo (e.g. in games part of the Game
Changer suite) it can be observed that when players lose their tracking they
usually are confused as they often notice it somewhat later.

While the just described feature is implemented in the MoCo foundation
of the mobile application it is also possible for the game specific part of the
mobile app to receive individual feedback from the game server. Vibration
signals can be used to draw the player’s attention from the surrounding
environment to the private display. Audio signals can be used to emphasize
player specific actions such as firing a gun. As only a specific player fires
the gun and only another specific player is eventually hit by the bullet not

4. MoCo: a Mobile Companion Framework 35

everyone needs to hear the according sound effects (only the shooting player’s
device would play the shooting effect and only the hit player’s device would
play the hit sound). Visual signals can be used to display player specific
information on the player’s private screen. For example, an action which
needs to be performed by a single player over a certain amount of time
could be shown as a progress bar on the private display. As this information
is only of relevance to the performing player it would be distracting for other
players if the progress bar was shown on the public display instead.

Explicit player actions: Virtual buttons in the UI of the mobile com-
panion app allow players to trigger action in the game. The MoCo framework
implements a communication interface which let’s the player send commands
through the companion app to the game server. These commands are tied to
the player’s device id. As the server side MoCo system knows to which track-
ing record a mobile device is coupled, these commands are player specific.
In order to also allow user actions over time, two separate signals are sent
per button press (on the button down event and on the button up event).
The communication interface of the server side keeps track of the pressed
buttons for each user. This approach ensures that the network bandwidth
is not unnecessarily loaded but at the same time requires the usage of a
network protocol which handles the loss of network packets properly. MoCo
also handles the input from sensors like the gyroscope or accelerometer of
connected smart devices. These signals are sent continuously in order to
guarantee high precision. Section 3.1.2 suggests to reduce the update rate of
sensor data and interpolate between the updates on the server side. During
the development of MoCo and also in field tests with up to 10 connected
smart devices it turned out that this step actually is not required and there
was no measurable delay in the network when continuous sensor data trans-
mission was enabled. For the further development of MoCo it is planned to
perform more extensive tests with even more connected devices to confirm
this assertion.

Player profile: As already mentioned earlier (cf. Section 2.2), the
anonymity of players in common co-located games is difficult to handle when
different player states are introduced in the game design. Most of the stated
problems are handled by MoCo’s architecture. Because players need to iden-
tify themselves in the game by assigning their device to a tracking record,
the system knows which player actually is in the game and which state he
or she currently is in.

In Section 3.2.3 the benefits of player profiles are explained. MoCo im-
plements a lightweight version of a player profile on the mobile client side.
This profile currently stores the player’s nickname and the score of individ-
ual games. Other previously mentioned data such as experience, time spent

4. MoCo: a Mobile Companion Framework 36

in games, user settings or preferences are currently not implemented. Such
metrics could and maybe will be added in future to allow an even more
personalized gaming experience.

As MoCo is still a prototype there are some flaws in the implementation.
Some features are not as generic as they could be. Unfortunately, the server
and client side are not completely independent from each other yet and there-
fore only work with two specific example games (cf. Section 5.1). Also MoCo
currently only works in the Deep Space setup on top of the existing tracking
technology as the framework architecture is not encapsulated and adaptive
enough. All these issues will probably be addressed in future releases of the
framework. However, already at this stage MoCo demonstrates very clearly
how smart devices can be utilized in co-located settings to increase player
dynamics.

4.2 Implementation
While the previous section describes the overall architecture and the char-
acteristics of MoCo, in this section the implementation is documented. As
MoCo works as a layer on top of the tracking system of the Deep Space, the
TUIO/Pharus tracking implementation is also described. Having a look at
the greater picture helps to understand why certain things were implemented
as they are.

4.2.1 Unity TUIO/Pharus Tracking Client

As already mentioned earlier (cf. Section 2.1.3) the Deep Space has a laser
ranger tracking system installed that is capable of tracking the position,
speed, movement direction as well as expected position for multiple people
at the same time [27]. This data is broadcasted over the local network and
can be subscribed by any other program in the same network.

The co-located games running in the Deep Space are made with Unity3D1

(short: Unity), a free game engine which allows to create a wide range of
interactive content and export it on various platforms. One characteristic
of the Unity engine is that its application programming interface (API) is
not thread safe. This means that all game related code needs to run in
the Unity main thread and that code which runs in a different thread on
the CPU cannot access any Unity specific code. However, as the scripting
environment of Unity is plain and simple .NET 2 it is possible to create a

1https://unity3d.com/
2this is not entirely true as Unity actually uses C# in combination with Mono (http:

//www.mono-project.com) which is an open source implementation of Microsoft’s .NET
Framework.

https://unity3d.com/
http://www.mono-project.com
http://www.mono-project.com

4. MoCo: a Mobile Companion Framework 37

new thread from the Unity main thread and let the two communicate indi-
rectly (asynchronously). Both tracking client implementations (TUIO [18]
and Pharus [27]) for Unity handle the data receiving the same way (there-
fore the following operational sequence is only explained for Pharus): In the
Unity main thread (thread A in Fig. 4.2) there exists a UnityPharusManager
(as a singleton) instance which instantiates and holds references to a
UnityPharusListener object and a UnityPharusEventProcessor object.
The UnityPharusListener instantiates and holds a reference to either
a UDPTransmissionClient or a TCPTransmissionClient (the respec-
tive settings for each client type are read from an XML configuration
file and passed on by the UnityPharusManager beforehand). The actual
TransmissionClient then starts a new thread (thread B in Fig. 4.2) and
listens for incoming data on a specified port. Once a tracking record is
received the according event (OnTrackNew, OnTrackUpdate, OnTrackLost;
depending on the life cycle state of the received track record) is called and
the track record is passed to the UnityPharusListener which adds it to a
queue container:

// UnityPharusListener enqueues a new track record
public void OnTrackNew (TrackRecord track)
{

lock(m_lockObj)
{

m_eventQueue.Enqueue(new PharusEvent(track.state, track));
}

}

This queue is then processed by the UnityPharusEventProcessor. The
UnityPharusEventProcessor is also the component which informs other
components of the tracking by using the event handler pattern. In the fol-
lowing code segment the APharusPlayerManager subscribes to these events:

// APharusPlayerManager subscribes the tracking events
if(UnityPharusManager.Instance != null)
{

UnityPharusManager.Instance.EventProcessor.TrackAdded += OnTrackAdded;
UnityPharusManager.Instance.EventProcessor.TrackUpdated +=

OnTrackUpdated;
UnityPharusManager.Instance.EventProcessor.TrackRemoved +=

OnTrackRemoved;
}

The actual method which handles the queue in the
UnityPharusEventProcessor is called from the update loop of the
UnityPharusManager. It might be noteworthy that in this whole setup
the UnityPharusManager is the only class which inherits from Unity’s
MonoBehaviour class and therefore is attached to a gameobject in Unity’s
scene graph and is being updated by the Unity game loop. This means the
dequeuing is actually initiated from the Unity main thread (thread A in

4. MoCo: a Mobile Companion Framework 38

Fig. 4.2) while the enqueuing from the second thread (thread B in Fig. 4.2).
Therefore, every access to the queue is being made thread-safe by locking
an empty object. Fig. 4.2 shows that the transmission APIs are decoupled
from Unity as far as possible. In the following code segment the function
which processes the event queue is shown:

// UnityPharusEventProcessor processes its event queue
public void Process()
{

while (m_listener.EventQueue.Count > 0)
{

UnityPharusListener.PharusEvent aEvent;
lock (m_listener.LockObj)
{

aEvent = m_listener.EventQueue.Dequeue();
}
switch (aEvent.PharusEventType)
{

case ETrackState.TS_NEW:
if(TrackAdded != null) TrackAdded(this, new PharusEventTrackArgs

(aEvent.TrackRecord));
break;

case ETrackState.TS_CONT:
if(TrackUpdated != null) TrackUpdated(this, new

PharusEventTrackArgs(aEvent.TrackRecord));
break;

case ETrackState.TS_OFF:
if(TrackRemoved != null) TrackRemoved(this, new

PharusEventTrackArgs(aEvent.TrackRecord));
break;

}
}

}

Using the event handler pattern helps to loosen coupling in the code which
is always a good thing. Also, it allows multiple modules to subscribe to the
tracking events independently: The APharusPlayerManager receives events
and uses them to manage the players in the game. A completely other class
(e.g. an analytics tool) could also subscribe to these events and use them for
other purposes without affecting the APharusPlayerManager at all.

APharusPlayerManager is an abstract class. The idea behind this is
that each game that uses the tracking system implements its own ver-
sion of the APharusPlayerManager. This ensures that the PlayerMan-
ager is always compatible to the UnityPharusManager and its following
up classes. Thereby it’s relatively easy to switch between multiple games
within the same application (as e.g. in Game Changer). However, the
APharusPlayerManager actually is not a required part of the tracking sys-
tem.

4. MoCo: a Mobile Companion Framework 39

Thread AThread B
Unity3D Engine

Tr
ac
ki
ng
 S
er
ve
r

Pharus
Transmission
Client

: ITransmissionClient

APharus
PlayerManager

UDP or TCP
connection

UnityPharus
Manager

UnityPharus
Listener

: ITransmission-
Receiver

(Singleton)

UnityPharus
Event

Processor

<<create>>

<<create>>

<<use>>

<<create>>1.Receive()

2.OnTrackNew(TrackRecord)

2.OnTrackUpdate(TrackRecord)
2.OnTrackLost(TrackRecord) 3.Enqueue(PharusEvent)

4.ProcessQueue()
2.InformSubscribers()

1.SubscribeToProcessor()

Figure 4.2: This diagram shows the most important components of the
Pharus transmission architecture. Thread A is the Unity main thread while
thread B is started by the PharusTransmissionClient.

4.2.2 MoCo Module Integration

Server side: On the server side one of the most important parts of what
MoCo does is replacing the concept of the above described PlayerManager
with the PharusMOCOPlayerManager (fig. 4.3): In a MoCo application when
new tracking record is detected it does not create a player instance imme-
diately because the track record is not identified as a player yet. Instead
an anonymous entity is instantiated which moves with the actual player on
the floor projection. In this state the entity does not have any affect on the
game. Its visual look is either one of four colored shapes (red square, blue
circle, green triangle, yellow star; pictured in Fig. 4.1), signalizing that the
entity is ready and waiting for being claimed (identified) by a player, or
it is displayed as a grey circle which means that none of the four colored
shapes is currently available as other entities are already using them and
are waiting for being identified. As soon as a player claims an entity it im-
mediately switches to the actual game state and the game avatar is shown.
The PharusMOCOPlayerManager keeps track of which entity is identified and
which is not, therefore it updates a pending grey circle entity to a colored
shape as soon as one is free again.

Another important job of MoCo is to run a network server to which the
mobile smart devices can connect to via WiFi (cf. MOCONetworkServer in
Fig. 4.3). As Unity comes with a built-in version of RakNet3 there is not

3RakNet is a cross platform network communication solution developed by Jenkins

4. MoCo: a Mobile Companion Framework 40
Tr
ac
ki
ng
 S
er
ve
r

Pharus
Transmission
Client

TC
P
or
 U
D
P
 c
on
ne
ct
io
n

UnityPharus
Listener

UnityPharus
Manager

UnityPharus
Event

Processor

Mobile Client

MoCo
Player
Manager

1.SubscribeTo-
 Processor()

2.AddPlayer()

1.AssignNetwork
 Player()
2.UnassignNetwork
 Player()

2.UpdatePlayer()
2.RemovePlayer()

MoCo
PlayerM

oC
o
Pl
ay
er
 C
on
ta
in
er

1.Unity Raknet
(UDP connection)

2.RPC
(Unity Raknet)<<call>><<manage>>MoCo

Player

MoCo
Player

MoCo
Network
Server

MoCo
Communicator
Server

MoCo
Network
Client

MoCo
Communicator

Client

(Singleton)

Figure 4.3: The PharusMOCOPlayerManager subscribes to the
UnityPharusEventProcessor through the UnityPharusManager. The
MOCONetworkServer and the MOCONetworkClient handle the initial network
connection. All MoCo game and player specific communication is handled
by the MoCoCommunicator which exists on the server and on the client
side. Both implementations of the MoCoCommunicator know the respective
opposite API and communicate via RakNet RPCs (remote procedure calls)

much additional code required in order to start and run the server. The
server settings, such as used port, max clients and NAT Punchthrough4

usage are hard coded in the current version. It is planned, however, to make
MoCo more flexible in the future and read these settings also from an XML
configuration file in the same way as the TUIO/Pharus network settings are
read. As soon as the server is ready its IP address is shown on the public
display and the players can connect their mobile smart device.

Client side: Unity was also used to make the mobile MoCo client as the
engine supports also mobile platforms, allows fast development and offers
a sophisticated build and test process. At the current stage Android and
iOS are the only platforms the MoCo client runs on. Within the scope of
future work additional mobile platforms such as Windows 10 Mobile might
get supported as well.

The client application is divided into MoCo specific components and

Software (http://www.jenkinssoftware.com/) and was recently acquired by Oculus VR
(https://www.oculus.com).

4NAT Punchthrough is a design pattern for overcoming connection issues when using
NAT (network address translation) in settings in which multiple computers are using the
same IP address (because they are connected to the network via a router).

http://www.jenkinssoftware.com/
https://www.oculus.com

4. MoCo: a Mobile Companion Framework 41

(a) (b) (c)

Figure 4.4: The home view (a) is shown when the device is not connected
to a game server, the identification view (b) is intentionally kept very simple,
the gyroscope calibration view (c) is only shown at the very first connection
and if gyroscope data is being used by the game.

game specific components in order to allow an easy adaptation for custom
games or applications. The MoCo specific components handle the network
connection, displaying the correct view as well as the management of user
settings and sensor calibration data. The game specific components mainly
handle the game UI and implement a game “communicator” script (more
on that can be found in Section 4.2.2).

Network: MoCo uses Unity’s RakNet for connecting the client applica-
tion to the server. RakNet in Unity builds on top of the UDP protocol which
allows lightweight data transmission and due to RakNet’s implementation it
adds a reliable layer in order to prevent data packet loss. The later feature
comes especially handy when transmitting press and release commands of
UI elements, as a missed command would get the two sides out of sync.

In order to connect to the game server, in the home view (fig. 4.4 (a))
the player either hits the “Auto Connect” button or enters the IP address
of the server into the input field and then presses the “Manual Connect”
button. In the home view the player also can enter a nickname which then
is used by the game on the public display.

While connecting to the MOCONetworkServer is done by the
MOCONetworkClient, the vast majority of the network communication is
handled by so called “communicators”. Each communicator component con-
sists of a communicator script on each side (client and server). Both com-
municator classes are aware of each others signature and thus can exchange

4. MoCo: a Mobile Companion Framework 42

data via remote procedure calls (RPCs5). Most of the communication be-
tween the two communicators makes use of the three-way-handshake pat-
tern6 to ensure that both sides can rely on messages being received. The
MoCo relevant communication is handled by the MOCOCommunicatorClient
on the client side and the MOCOCommunicatorServer on the server side. They
mainly exchange data for identification, un-identifcation (unassigning a net-
work player from a tracking record), sensor calibration and view changing.
All game related data transmission is handled by a respective game commu-
nicator script pair.

Identification: The process of assigning a player’s smart device to one
of the tracking records is being referred to as “identification” in MoCo. As
already mentioned earlier, as soon as a new player steps into the tracking
area of the game system a visual entity is projected below his or her feet. For
an unidentified player this entity has a colored geometrical shape (pictured in
Fig. 4.1). Once the player connects his smart device to the game server, the
identification view is shown on the mobile display (fig. 4.4 (b)). By pressing
the according button on the player’s private display, the game server knows
that the network client of the smart device belongs to the tracking record
with the matching shape. As there are only four available identification
shapes, four unidentified players can identify themselves at the same time.
Once a player identified him or herself the identification shape is being freed
and gets available again. If there are more than four unidentified tracking
records pending they will be visualized by a grey circle and change to one
of the identification shapes as soon as one gets available.

There are of course other ways to solve the problem of assigning player
to tracking records which might seem more sophisticated on first thought:
Another way, for example, would be to project a unique QR code for each
player in front of his physical position and then let the player scan it with his
or her smart device’s camera. However, that degree of complexity is not even
required. During development and early tests with up to seven players the
color and shape based system, in which the recognition part is simply being
imposed to the player instead of a computer algorithm, seemed sufficient
and worked very well. There were no situations in which players would have
to wait longer than just a couple of seconds in the identification process.
Anyhow, further evaluation has yet to be done to confirm this assertion.

5RPCs are RakNets implementation of a straightforward API to send network messages
between two or more known endpoints in a flexible and rather effortless way.

6The three-way-handshake usually is a sequence of three messages sent between two
clients (A and B). The first message is a request from A to B. The second message is
a request acknowledgement from B to A. The third message is a sync acknowledgement
from A to B.

4. MoCo: a Mobile Companion Framework 43

Calibration: MoCo allows the utilization of sensor data. One specific
sensor, the gyroscope, allows to determine the orientation of the smart device
the player is holding. MoCo offers particular support for the gyroscope sensor
because it enables a lot new dynamics in player controls: The player can
rotate his avatar according to his smart devices orientation. Before that
in floor-based games it was only possible to have the avatar line up with
the player’s movement direction. By decoupling the orientation from the
movement, aiming and targeting at specific objects does work much better
and more intuitive.

However, most sensor data of smart devices need to be calibrated before
they can be used properly. For example, the gyroscope sensors of various
smart phones (even of the same model) might deliver different results in
the same situation. This is due to the way gyroscopes work7. In order to
use this data properly, it needs to be equilibrated by adding a calibration
offset value to the actual value the sensor returns. This offset value needs
to be determined for every device. And unfortunately gyroscopes are also
significantly prone to drift over time8.

This is where MoCos calibration comes into play. Once a player connects
and identifies the first time in a game which utilizes gyroscope data, the cal-
ibration view (fig. 4.4 (c)) pops up on the private screen. The player now
has to point his or her smart device to the calibration point in the physical
room (which is usually the center of the tracking area) and press the calibra-
tion button. The game server then calculates the angular offset between the
current sensors orientation to the calibration point and sends it back to the
mobile client. From this point on the client adds the offset value to the gyro-
scope data before transmitting it to the server. The whole process literally
just takes the blink of an eye. In order to correct drift over time, which might
occur during a game session, the player can repeat the calibration process
directly with the quick recalibration function from within the game view
without interrupting the game play: By pressing the “Recalibrate Orienta-
tion” button (fig. 4.5 (a) and (b)) the whole calibration procedure is done
instantly without calling the calibration view again. Of course the player,
again, has to point the device to the calibration point while recalibrating.

The support for other sensor data (especially the accelerometer, microphone
or camera) would hold a lot of potential but has not yet been implemented
into MoCo at this stage. It most likely will be a part of the future develop-
ment of the system.

7A gyroscope measures either changes in orientation or changes in rotational velocity
but it is not able to determine absolute orientation data.

8There are solutions to this problem: So called inertial measurement units (IMU) use a
range of different sensors (sensor fusion) to correct drift. However, only a small percentage
of smart devices are capable of this technology and given the broad variety in smart devices
(e.g. fragmentation of the Android operating system) probably neither should developers
rely on this technology to be available.

4. MoCo: a Mobile Companion Framework 44

(a) (b) (c)

Figure 4.5: The game view of Lazor Arena (a), the game view of Lazor Lab
(b), the MoCo settings overlay (c) is available in every game view.

Game view: The game view on the mobile client shows interactive UI
elements, such as buttons, and passive elements, such as labels. Labels on
the private screen can hold player specific information, like personal score,
but also general game information, like the remaining game time. However,
it is essential that the game view is not overloaded with information to keep
the users time focusing on the small screen to a minimum. Examples of game
views are shown in Fig. 4.5 (a) and (b).

There is one constant MoCo layer which gets rendered on top of every
game view. It has a small settings button on the top right corner. By press-
ing this button another overlay appears which holds MoCo specific options
(fig. 4.5 (c)), such as re-identification, re-calibration and disconnecting from
the game.

In general the game view is only shown when the client has been identi-
fied and sensor calibration has been done. If one of these preconditions is not
fulfilled, the according view (identification or calibration) is shown but the
game ID is still stored internally which means that the client knows which
game view to load as soon as everything else is ready.

When a new client connects it receives the current game view ID from
the game server and updates its view state internally. The game server is
determinant which means that the client will stay in a game view until the
game server tells it differently. Usually, when a game session is over the game
server switches from one game to the next one. In this case the server in-
forms its clients and they will update their game view accordingly. As MoCo
handles all allocations between clients and tracking records, the players are
not disconnected and also are not required to re-identify themselves.

On the game server, when a game is over, all MoCo relevant player in-

4. MoCo: a Mobile Companion Framework 45

formation from the actual player object is being mapped onto a so called
MOCOPlayerDataImage object. This is necessary as in Unity on a new scene
load certain gameobjects in the scene graph are wiped. It does not make
sense to keep the player objects as they hold data and references to assets
which are all game specific. As soon as the new game scene is loaded, all
player objects are restored with the new game specific data and their pre-
viously mapped MoCo data (such as track id, client id and identification
state). This approach works very well in practice but unfortunately it also
makes the code rather complex. Another more flexible approach would be
to change the player object model to a component based model in which the
MoCo specific part could persist over game changes and only game specific
data would be wiped.

As mentioned, in its current state MoCo is a prototype and does not take full
advantage of the potential of the technology yet. However, it is sophisticated
enough for being used in an evaluation on how player dynamics can be
increased in floor-based co-located video games and which problems arise
when using approaches like MoCo.

Chapter 5

Evaluation

MoCo is a first approach in creating a framework for implementing smart
devices into co-located games. It is based on a lot of research, trial and error
and of course proven concepts found in literature. However, the implementa-
tion is new and not based on any code-wise foundation. As for every software
it is important to make sure the structure of the application, its interface
and its usage is not hindering the user experience. This is especially true
when new software is built which does not benefit from iterations of previ-
ously versions or a sophisticated base framework. Typical usability problems
found in games include menus that are cumbersome to use, displays whose
meanings are not clear and controls that are difficult to learn.

For this reason two evaluations were conducted. A game experience ques-
tionnaire was filled out by people who played the two MoCo demo games
Lazor Lab and Lazor Arena as well as GameChanger (in order to compare
the two systems). Furthermore, a heuristic evaluation was carried out to find
and document weaknesses in the usability of MoCo and the overall playa-
bility of the two demo games. The demo games are describe in the following
Section 5.1, the evaluation methods and results in the sections thereafter.

5.1 Demo Games
MoCo is a framework which only works in conjunction with actual games.
Therefore, two games based on MoCo were specifically developed for the
Deep Space setting. In order to test a broad range of use-cases, the games
focus on different play styles. Both games are combined in a single appli-
cation so that the session administrator or an on-site supervisor can switch
games without closing the application. Once a game is over, the other game
will start automatically afterwards. Both games also have a pause mode
which can be toggled by the supervisor. A paused game stops the overall
progression and timer but still allows basic user interaction. This is espe-
cially practical to let new players learn the controls in a safe environment

46

5. Evaluation 47

Figure 5.1: Four people playing Lazor Arena: Three players have been iden-
tified (the colored circles are their game avatar), one player has not been
identified yet and an identification shape is displayed (yellow star on the
right). The magenta colored player has the shield activated.

before the actual game starts.

5.1.1 Lazor Arena

Lazor Arena (fig. 5.1) is a competitive battle arena game. Energy blocks
spawn randomly from time to time across the whole playing field. There
are three different types of energy: Lime, Cyan and Magenta. The players
can collect up to three energy blocks from the floor by running over them.
Collected energy blocks will slowly orbit around the player’s avatar. Each
player has his or her own gyroscope-controlled little arrow which acts as
a pointer (fig. 5.2). By holding the smart device into a certain direction
the arrow will point into the same direction (provided that the calibration
has been conducted properly). When the arrow points to one of the energy
blocks in the player’s orbit, the player can grab it by pressing and holding
the “Action” button on the personal screen. A player can hold an energy
block as long as he or she wants but only one single block at the same time.
As soon as the “Action” button is released the grabbed energy will transform
into a laser beam and fire into the arrow’s direction. This way the players
can shoot at other players. The avatar (circle) of every player has one of
the three energy colors, which color is decided randomly. A laser beam can
hit a player if the color of the laser matches the color of that player. Once
a player was hit his smart device vibrates to inform him or her about the
hit and the avatar’s color changes to one of the other two colors. However,

5. Evaluation 48

Figure 5.2: In Lazor Arena and Lazor Lab the smart device’s orientation
is mapped to the player’s pointer (black arrow). The avatar moves with the
player’s physical position.

players can also block laser attacks by activating a time limited shield by
pressing and holding the “Shield” button on the smart device. The shield
is always aligned with the player’s smart device. Eventually, a player scores
points if he or she either hits another player with a matching energy beam
or if a beam was blocked with the shield.

As the game is rather hectic and the players have to run a lot, one single
round of Lazor Arena is only three minutes. Once the timer expires a ranking
list with each player’s name and score is shown on the public display. During
the game the players can see their own current score also on their private
screen.

5.1.2 Lazor Lab

Lazor Lab (fig. 5.3) is a collaborative game in which players have to defend
their base from incoming enemies. There are a lot of similarities between
Lazor Arena and Lazor Lab. For example, the players’ avatars look similar
despite the fact that they are grey all along. A player can still collect up
to three energy blocks and also the grabbing and releasing of energy works
the same way (“Action” button). However, players do not have a shield as
it is not required. Energy blocks do not spawn randomly around the scene
but instead there are five energy dispenser spread over the playing field

5. Evaluation 49

Figure 5.3: Five people playing Lazor Lab: Two of them have not been
identified yet (green triangle and yellow star). Two players are exchanging
energy cubes while the third player uses an energy cube to shoot at incoming
enemies.

which always offer randomly one of the three energy types. In the center
of the playing field is the core which needs to be defended by the players.
The playing field is surrounded by a wall of 36 individual bricks. Each brick
is colored in one of the three energy colors. From time to time individual
bricks break and hostile polygons enter the playing field. Once they reached
the core they slowly deal damage to it. The players have to shoot incoming
polygons but also repair the wall in order to slow down the onslaught. A
brick can only be re-built by a player who has three energy blocks of the
same type. By pressing and holding the “Repair” button on the smart device
while standing next to an open wall slot, will create a new brick. Only
bricks of different types can stay next to each other. If a player e.g. builds
a magenta brick directly next to another magenta brick both will explode.
The game requires the players to coordinate themselves and handle their
resources (energy) with care. Players can also exchange collected energy by
grabbing a collected energy block and moving it on another player. There
are also polygons with yellow shields. These enemies appear from time to
time randomly in the scene and cannot be shot with a single energy beam.
Instead, a player has to collect energy blocks of all three types in order to
power one of the two stationary big laser guns in the corners of the playing
field. By pressing and holding the “Use Sentry” button a player who meets
the requirements can then shoot a powerful big laser across the scenery
which destroys shielded enemies. Regular polygons are not affected by the

5. Evaluation 50

big laser but other players will lose their collected energy blocks when hit.
If the players manage to defend the core for six minutes they collabora-

tively win the game. If the core loses to many health points the players will
lose altogether instead.

5.2 Game Experience Survey
The first evaluation method is a survey handed out to players. The aim of
it was to find flaws in the design of the system and the games and to get an
overall feeling on how the system is perceived.

5.2.1 Method

The questionnaire holds eleven questions. The first six focus on the game
feel and experience the users perceived during playing Lazor Lab and La-
zor Arena. Questions no. 7 to 11 are aimed to explore the relation between
GameChanger (pure body controls) and MoCo supported games (body con-
trols plus enhanced mobile interface). In order to reach the best results
possible, the survey was conducted with the players directly on-site right
after they finished the game session. It includes the following questions:

1. When grabbing a block it felt like I really grabbed it physically.
2. When shooting a laser beam it felt good.
3. I liked the way I could interact with objects.
4. I liked the way I could interact with other players.
5. The audio feedback on the smartphone improved the overall experi-

ence.
6. The haptic feedback (vibration) on the smartphone improved the over-

all experience.
7. In Lazor Arena / Lazor Lab I had more control over the game as in

Game Changer.
8. In Lazor Arena / Lazor Lab I was able to influence the game’s outcome

more as in Game Changer.
9. In Lazor Arena / Lazor Lab I received more feedback/response from

the game as in Game Changer.
10. Collecting an energy block in Lazor Lab felt better than collecting a

(tetris-)block in Tower Of Power.
11. Shooting laser beams in Lazor Lab felt better than shooting a laser

beam in Swarm Defender.

Each question is accompanied with a five-level Likert-type scale which is to
be ticked directly on paper:

5. Evaluation 51

1. Strongly disagree
2. Disagree
3. Neither agree nor disagree
4. Agree
5. Strongly agree

5.2.2 Results

Altogether, 28 people participated in the survey. Unfortunately, as this num-
ber is too small in order to five representative results, the following interpre-
tation should be treated with caution. The results of the survey can be seen
in Table 5.1. For each question there are some metrics which help to under-
stand the results: The range is calculated by subtracting the lowest given
value from the highest given value and shows the overall breadth of answers.
The standard deviation shows how much the average answer deviates from
the arithmetic mean of all answers; it is the square root of the variance.
Finally, to weight the results of each answer, there is the total mean which
is calculated from the arithmetic mean, the median and the mode.

Regarding Q1, although some users agreed that when grabbing a block it
felt like grabbing it physically, the overall result does not clearly mirror this
(arithmetic mean: 3.11). The standard deviation (1.23) for Q1 also shows
that people were perceiving the feeling of grabbing blocks quite differently.
Q2, Q3 and Q4 have very similar results. This means that players seem to
like the way how shooting laser beams feels and how interacting with objects
works. Especially Q4, with extremely small values for range (2) and standard
deviation (0.82), shows that there were no users who did not like the inter-
action with other players. Some players had troubles with answering Q5 as
they claimed they did not hear any audio from the smart device. This is most
likely why some people did not answer the question or ticked it rather bad
(strongly disagree). There are three possible reasons how this could happen:
Either, audio was disabled on the device by accident through the player
or the surrounding sounds and music of the game and environment were
too loud so that players could not hear the smart device or the personal
audio feedback from the device was not perceived as such but as regular
game sound from the public installation. More interestingly, when looking
at Q6, there is a rather high total mean (3.91). This is a clear but rather
contrary result: personal feedback from the device—at least vibrating—is
very well appreciated and improves the overall experience. The results of
Q6 strengthen the theory that Q5 could have received higher results if vol-
ume balancing in the test setting would have been better. The results of
Q7 only shows a slight tendency towards agreement. From the relatively
broad range (4) and deviation (1.24) it can be concluded that regarding this
questions there was an uncertainty among the players. Most likely people

5. Evaluation 52

Range Deviation Ar. Mean Median Mode Total Mean

Q1 4.00 1.23 3.11 3.00 2.00 2.70
Q2 3.00 0.98 4.00 4.00 4.00 4.00
Q3 3.00 0.77 3.93 4.00 4.00 3.98
Q4 2.00 0.82 4.00 4.00 4.00 4.00
Q5 4.00 1.32 3.31 3.00 3.00 3.10
Q6 4.00 1.10 3.74 4.00 4.00 3.91
Q7 4.00 1.24 3.67 4.00 4.00 3.89
Q8 3.00 1.08 3.81 4.00 5.00 4.27
Q9 3.00 0.96 3.96 4.00 5.00 4.32
Q10 3.00 0.97 4.09 4.00 5.00 4.36
Q11 3.00 1.20 4.17 5.00 5.00 4.72

Table 5.1: Results of the game experience survey.

found it hard to compare the five games of GameChanger with the two
games Lazor Lab and Lazor Arena. However, Q8 aims in a similar direction
and received surprisingly positive results (total mean: 4.27). Also Q9, which
compares the MoCo games with GameChanger in terms of feedback from
the games (the main focus of MoCo), received very similar positive results
(total mean: 4.32). Q10 and Q11 aim for a direct comparison of two different
implementations of two game mechanics: collecting blocks and shooting laser
beams. According to the results both mechanics feel better in Lazor Lab or
Lazor Arena, however, shooting laser beams (Q11) got better results than
collecting blocks (Q10). Both actions are supported by audio feedback from
the personal device and both do not trigger a vibration feedback. The better
results for Q11 might come from the fact that with MoCo it is required to
trigger the laser beam by the user directly (button press or release), which
likely increases immersion and the feeling of being in control compared to
the automatic shooting mode in Swarm Defender. In contrast, the collect-
ing of blocks works the same way in Tower Of Power and the MoCo games:
physically moving over a block or a block spawning area.

Again, this brief breakdown of the results should be taken with caution as
the number of participants was rather small. The complete data sheet with
the answers from all players can be found on the enclosed CD-ROM/DVD
(cf. Appendix B).

5. Evaluation 53

5.3 Expert Heuristic Evaluation

5.3.1 Method

The method chosen for the second evaluation is the usability expert evalua-
tion (often also referred to as expert heuristic evaluation, heuristic evaluation
or many other terms1).

Common user studies highlight issues specific to the game: boredom,
challenge and pace level, as well as terminology. But usually these issues
are targeted by usability engineers not until the more general problems in
the interface and usability have already been addressed. Evaluations using
heuristics (in contrast to user studies) do not target specific gameplay rele-
vant elements such as specific behaviours and problems that could only be
found by observing user play. Instead, heuristic evaluations target general
system principles [10]. Therefore, it seems reasonable to perform an expert
evaluation as a very first usability evaluation method.

It is important to understand that using heuristics is a discount usabil-
ity method and it will not find all usability problems, but heuristics help to
broaden the scope of an expert evaluation. Heuristics also give some credi-
bility to the results evaluators find. Still, an expert evaluation does not auto-
matically target all problems real users would have, so it is recommended to
conduct user tests in addition. After all, usability engineering is an iterative
process which will find more and more detailed issues over time. There is
even a common rule which says test early, test often. This is especially true
for heuristic evaluations [34].

The traditional procedure of an expert evaluation is divided into four
phases [22, 28]:
1. Kick-off meeting: In the initial meeting the game is briefly introduced

to the evaluators. The experts need to know who the target audience
of the game is. They also need to know about missing features. As
often video games are too big and content-rich to evaluate everything
in a single session, another part of the meeting can be to agree on the
issues that should be evaluated.

2. Reviewing the game: The evaluators use the provided set of heuristic
rules, knowledge of good design practices and work related experience
to review the application. In this step the specialists work indepen-
dently as far as possible in order to find a broad range of issues.

3. Evaluators review session: The experts discuss their findings and
compile a list of found issues and possible solutions. The goal is to
clarify or eliminate potential false findings (wrong assumptions) and
agree about severity of the remaining issues.

1http://www.uxmatters.com/mt/archives/2014/06/an-overview-of-expert-heuristic-
evaluations.php

http://www.uxmatters.com/mt/archives/2014/06/an-overview-of-expert-heuristic-evaluations.php
http://www.uxmatters.com/mt/archives/2014/06/an-overview-of-expert-heuristic-evaluations.php

5. Evaluation 54

4. Final report: The final result of the expert evaluation is a categorized
or quantified list of violations of the heuristics which helps the priori-
tizing during the problem solving.

Also for the conducted expert evaluation in the course of this thesis the final
product is an evaluation report. For each found issue it lists a description,
the violated heuristic, the frequency of occurrence, a severity rating and an
effort rating including a suggested solution to the problem.

Heuristics

For creating an appropriate set of heuristics, Schaffer [34] recommends to
start with one or more existing lists of heuristics and alter or improve their
wording until they match given criteria. Therefore, a new set containing
eight heuristics to evaluate usability and two heuristics to evaluate game
play was assembled. The sources for the set were the usability and gameplay
heuristics by Laitinen [22], the heuristics to evaluate playability (HEP) by
Desurvire [10], the playability heuristics for mobile games by Korhonen [21]
as well as the heuristics for usability and game mechanics by Pinelle [31]. As
these heuristics overlap here and there, their meaning and description were
unified in the respective cases.

The final set of heuristics used in the expert evaluation can be found
in Appendix A.1. When compared to Jacob Nielsen’s original heuristics for
usability evaluations [28] one can see that despite their strong adaptation to
video games the heuristics mirror the basic principles of Nielsen’s work.

Experts, Planning and Preparation

Nielsen recommends to involve 3-5 experts in the evaluation [28]. Other
researchers, however, such as Korhonen [20] and Laitinen [22] who are spe-
cialised in heuristic evaluations for video games have settled with 2-3 evalu-
ators and also gained satisfactory results. In general it can be said that the
number of found problems does not rise considerably when more specialists
are involved, especially when going beyond 10 experts (cf. fig. 5.4). Also,
the more evaluators participate in the evaluation the more expensive and
challenging it will get to coordinate everything [28].

The people who conduct an expert evaluation are usually usability spe-
cialists and not necessarily experienced in game design. However, it does not
hurt to have people in the team who are familiar with both fields. At least
the person who leads the evaluation and works on the final report should, if
possible, be a so called double expert (experienced in usability engineering
and game design). Also, the evaluators should not be the same people who
are working on the game as they know their work too well, and thus might
be too forgiving or simply oversee specific issues which external specialists
would find. [20, 22]

5. Evaluation 55

Figure 5.4: Proportion of number of evaluators to found usability issues
[28, p. 156].

The actual evaluation took place in the Ars Electronica Deep Space: Two
staff members from the Ars Electronica Futurelab, both with a professional
background in multimedia and interactive installations, were personally in-
structed with the heuristics (cf. Appendix A.1) in order to conduct the eval-
uation. Additionally, they also received a handout with the heuristics as well
as the severity and frequency metrics (cf. Section 5.3.1). They were given 20
minutes to play first Lazor Arena and then Lazor Lab, 10 minutes for each
game. The devices they used were both iOS smartphones2. After playing the
games they were asked to write down their findings and to rate the severity
and frequency by using the predefined metrics from the handout.

Report Structure and Processing of Found Data

Usually, the final report is written by a single person, ideally one of the
experts of the evaluation. As it can take a while (often a few days) to put
all findings in the report, it is not required to involve more than one expert
in this final process of documentation.

The complete report of the conducted evaluation can be found on the
enclosed CD-ROM/DVD (cf. Appendix B.1). The results taken from the
report can also be found directly in Appendix A.2. The report contains a
list of the found issues. Each issue has a description which explains why it is
problematic and in which situations it occurs, the id of the violated heuristic,
a proposed solution and several additional parameters, listed below:

2Apple® iPhone® 4

5. Evaluation 56

Severity refers to the degree of obstruction in the usability. The severity
rating has five grading steps3:
0 – No problem: A heuristic is violated but there are no consequences.
1 – Minor problem: The negative effect is negligible or purely aesthetic.
2 – Problem: The issue has a small impact on usability or playability.
3 – Major problem: The issue has a strong impact on usability or playa-

bility.
4 – Critical problem: A very serious problem, proper usage of the appli-

cation is not possible. Also known as show-stopper.

Frequency of occurrence describes how often a user is affected by the
issue. There are three possible grading steps:
1 – Rare: The issue only occurs in rare situations or only affects a small

percentage of users.
2 – Often: The issue occurs in many situations or affects a large percentage

of users.
3 – Permanent: The issue occurs all the time or affects every single user.

Ease of solution is the required effort to fix the issue. It has also three
possible grading steps:
1 – Difficult: Profound changes have to be made in order to fix the issue.

Other subsystems might be affected by the changes so that big chunks
of the system need to be re-designed or re-implemented.

2 – Average: A small part of the system needs to be re-designed or re-
implemented.

3 – Easy: Tiny changes to one or a few specific elements are sufficient in
order to fix the issue.

Overall score: Finally, there is the overall score which helps to prioritize
found issues. It is calculated from the above metrics. Given the overall score
as 𝑜, severity as 𝑠, frequency of occurrence as 𝑓 and ease of solution as 𝑒,
the formula is: 𝑜 = 𝑠 · (𝑓 + 𝑒).

Unfortunately, this formula is not a commonly used approach to measure
usability problems. It has not been used a lot in scientific studies so far and
therefore its value prove is yet pending. A critical point is e.g. that the
evaluators have to estimate the frequency of occurrence as there is no real
user data available. Also the severity rating is rather objective, however,
this is a common issue which all problem severity rating methods share.
Ultimately, the approach was used anyhow as it was found to deliver results

3There are, however, many other ways to measure severity with various grading steps:
http://www.measuringu.com/blog/rating-severity.php

http://www.measuringu.com/blog/rating-severity.php

5. Evaluation 57

which are easy to understand, easy to produce and of sufficient quality for
the evaluation in the scope of this investigation.

Report Usage

The results in the report are sorted by the overall score and thereby already
suggest an order in which the problems can be addressed. Issues with a high
score should be fixed early as they have a high impact on the usability, occur
often and are easy to solve. In the end, as already discussed, this sorting is
not the ultimate truth but another important tool to help understanding
the weight of the found problems.

Another way to approach the results in the report is to prioritize issues
with a high rating in ease of solution. Focusing on the so called low-hanging
fruits4 is a great way improve usability quickly with little effort. However,
care should be taken because sometimes focusing too much on low-hanging
fruits may lead to turning a blind eye to the more fundamental problems
which, again, might be the original cause of some of the smaller issues. Thus,
getting to the root of the problem is often the better approach.

Often, after the report has been completed, a review session is orga-
nized in which one of the experts goes through the report together with
the developers and talk about the findings. The expertise of both parties is
often beneficial and helps to clear up misunderstandings. Ultimately, even if
not all found issues are addressed, which is absolutely legitimate, the data
helps to focus the development process and define goals for current iteration
cycle [22]. In the course of the conducted evaluation, however, it was not
necessary to hold an additional review session.

5.3.2 Results

Altogether, there were 13 issues reported by the experts. After merging the
duplicates there were 12 issues left. During the debriefing the evaluators
rated the severity and the frequency for each issue. In presence of one of
the developers of MoCo, a proposed solution in combination with a rating
for the ease of solution was added. Finally, everything was put into a report
structure and the overall score was calculated. Interestingly, the range of
severity ratings of all found problems only goes from 1 to 3, which means
that no purely aesthetic issues (severity: 0) or critical problems (severity:
4) were found. There is not an extremely large number of violations of a
specific heuristic or in a certain area, but rather the opposite is true: the
found problems and their rating are harmoniously distributed. However,
there were no violations found for the heuristics no. 3 (“The player’s memory
load is minimized.”) and no. 7 (“Drop in and drop out works quickly and
effortless.”).

4Commonly known as goals which are easy to achieve.

5. Evaluation 58

There are four problems with an overall score of 12, followed by three
problems with a score of 10 and five more issues with a score under 10. In
the following the problems are ordered by their overall score:
1. (overall score: 12) Calibration point representation: The first

problem states that the meaning of the visual representation of the
calibration point on the playing field is not clear. As a result, players
might not understand how to calibrate their smart devices. Even
though the calibration view (fig. 4.4 (c)) on the private screen contains
a very similar icon (arrow pointing to the center of the calibration
point), the geometric shape seems not to be clear enough. The obvious
solution to this issue is to go away from the circle-shape and change
the icon to a reduced and clearer x-shape.

2. (overall score: 12) Sentry gun usability: The next problem which
was found states that using the sentry laser in Lazor Lab sometimes is
abruptly aborted when the player accidentally leaves the trigger area
of the sentry platform. This problem does not happen very often but it
is still really frustrating for the player as he or she wastes three energy
blocks all at once. The problem is also easy to fix by increasing the
trigger size of the sentry platform.

3. (overall score: 12) Tracking system delay: A problem which is rath-
er hard to fix is the delay of the tracking system. Heuristic no. 6 clearly
states that controls should respond quickly. One of the experts noted
that the delay of the tracking system makes it difficult to predict the
players’ positions and especially in Lazor Arena the game becomes
about anticipating the slowly moving player avatars instead of strate-
gic and responsive movement. As the delay is caused on the server
side of the tracking implementation, it is not possible to approach this
problem through MoCo. A workaround could be to alter the game de-
sign in order to decrease the game pace so that the latency does not
affect the game significantly.

4. (overall score: 12) Health core state: Another problem is that the
state of the health core in Lazor Lab is only visualized through color.
The color fades from green (healthy) to red (destroyed) the more dam-
age it receives. As it’s hard to tell the actual health during the game,
tension and urgency gets lost. This problem affects every player all
the time but it is actually easy to fix: The proposed solution is to sim-
ply add a progress bar or a numerical value to the GUI on the public
display.

5. (overall score: 10) Range of laser beams: When releasing a grabbed
energy block a laser beam is fired. The range of this beam is not com-
municated clearly enough. This leads to situations in which players
assume they effectively hit another player in Lazor Arena, but instead
it is a miss. In combination with the delayed movement of avatars, due

5. Evaluation 59

to latency, this issue causes frustration. To solve this problem, either
the range of the laser beams needs to be increased or there could be
some kind of crosshair for each player.

6. (overall score: 10) Repairing wall usability: In Lazor Lab the color
a brick is expected to get repaired with is not visualized. Also, there
are no cues whatsoever indicating that two bricks of the same color will
explode when placed directly next to each other. This lack of trans-
parency naturally causes frustration, as the player is not prevented
from making mistakes. To approach this issue, either some kind of tu-
torial could be introduced or a visualization of the color of the broken
wall slot could be shown.

7. (overall score: 10) Enemy representation: In Lazor Lab the visual
representation of the enemies is problematic. As the hostile polygons
are grey colored they do not stand out from the white background very
good. This makes them hard to see or recognize. Changing the visual
appearance (color, size or shape) or adding some kind of eye-catching
details (blinking highlights or a trail) could solve this issue.

8. (overall score: 9) Player state management: Sometimes it happens
that the laser ranger system loses track of a player. This usually only
occurs when a player moves close to the edges of the playing field,
runs fast or jumps. However, the two demo games do not cover these
situations sufficient. When a player loses his or her tracking and then
re-identifies him or herself, in Lazor Arena the player score is restored,
but in both games the player loses all collected energy blocks. To solve
this problem the game could save the players’ game states, for identi-
fying the correct game state on reconnection either the player name or
the hardware id of the smart device could be used. However, a better
approach would be to extend the underlying tracking system to wait
for the tracking record to appear again near by before the tracking
record gets removed entirely together with the player avatar.

9. (overall score: 6) Complex body coordination: A rather peculiar
problem is that some players experience troubles coordinating head-
hand orientation and body orientation while walking/running. This
problem is hard to solve as it is a core mechanic of Lazor Arena and
Lazor Lab to use the mobile device as a pointer. The only ways to han-
dle this issue are to replace the pointer-mechanic and utilize the gy-
roscope sensor for something less elementary or to completely remove
the gyroscope controls. The reason why this issue has a relatively low
overall score even though it seems rather severe is the bad rating in
ease of solution.

10. (overall score: 5) Communication of possible actions: In Lazor
Lab some of the possible player actions are not communicated prop-
erly. For example, the possibility to repair a wall or to use a sentry

5. Evaluation 60

gun is not being visualized on the public display. This leads to a lack
of affordance during the game and players might be confused about
what actions they can or should perform. Adding visual cues directly
at the particular spots were user actions are required would solve this
problem.

11. (overall score: 4) Inconsistent collectables: The way collectables
(energy blocks) spawn in the two demo games is different. In Lazor
Arena the blocks spawn randomly anywhere on the playing field, in
Lazor Lab there are five specific spawn areas which randomly produce
energy blocks. This lack of consistency is problematic because players
might get wrong expectations of what the collectables do and how
they work. This issue can be fixed by unifying the way energy blocks
spawn.

12. (overall score: 3) Player-to-player communication: The issue
with the lowest overall score states that the communication with other
players is difficult. Especially in Lazor Lab in which players have to
collaborate, manage resources and distribute tasks in order to survive,
it is difficult to tell what tasks other players are currently following.
There are two ways to approach this issue: When reducing the game
pace by altering the game design, there should be more time to actu-
ally talk with each other while playing. The other way is to introduce
some kind of visual and/or acoustic commands which can be triggered
through the smart devices (e.g. “Defend the core!” or “I need a blue
block!”).

As expected, the expert evaluation shed light on some usability problems of
MoCo and playability problems of the two demo games. Some more discus-
sion on the results of both evaluations can be found in the final Chapter 6.
However, in order to cover a more complete spectrum of usability and playa-
bility issues, larger user play tests as well as further heuristic evaluations
throughout the whole development process of MoCo are required.

Chapter 6

Concluding Debate

6.1 Results Analysis
Both evaluations, the game experience survey and the expert heuristic evalu-
ation, provide valuable data to improve MoCo and its games. In the following
are some interesting findings and conclusions:
Good overall results: In general, it can be said that the evaluations re-

ceived good results and the system was relatively well received by the
users who filled out the survey but also by the experts who conducted
the heuristic evaluation. In the survey all questions received an arith-
metic mean greater than 3, which means that for every question the
average user either agrees or does neither agree or disagree. In the ex-
pert evaluations no critical problems were found and only three issues
were rated as a major problem.

Bad audio balancing in test setting: One thing which probably could
have been avoided is the rather bad result for Q5 in the game experi-
ence survey: As already mentioned the balancing of the sound levels in
the test environment was anything but good. The audio output from
the game on the public display which came from the room-installed
sound system in the Deep Space was quite loud compared to the small
speakers of the used smart devices (iPhone 4 smartphones). A proper
balancing of the audio levels would have lead to more players recog-
nizing the distinction between public audio feedback and individual
private audio feedback.

Few system related problems: An essential finding is that only 2-3 of
the problems (depending on how they are interpreted) are actually
related to MoCo or the underlying system: Merely the unclear visual
representation of the calibration point, the current handling of players
who get lost by the tracking system (which actually is not really part of
MoCo) and the delay of the tracking system (again not part of MoCo)
are issues on the system level. The rest of the issues is purely game

61

6. Concluding Debate 62

related.
Identification process proven to work: Another vital finding is, that

one of the most important features of MoCo was proven to work flaw-
lessly: the identification process. Both the players in the test session
as well as the experts in the heuristic evaluations immediately under-
stood how to identify their tracking record with their smart device.
Even with up to six players simultaneously, if a player got lost by the
tracking server he or she was able to quickly re-identify him or herself.

Differences in accessibility: A quite interesting impression was gathered
when people were observed playing Lazor Arena, Lazor Lab and Game
Changer : The games based on MoCo seem to vary in terms of acces-
sibility from games with merely body controls, presumably because of
the additionally required smart device. On the one hand, people tend
to enter the playing field automatically on their own more likely if
there are no additional devices required to start playing, on the other
hand, however, people who seem interested in the game but are yet re-
served are more easily to persuade to try playing when they are offered
a device directly through a supervisor on-site.

Client UI has room for improvement: Another observation was made
during the user play tests: Once the players understood the interface
on the private display, they could operate it more or less blindly. The
generously scaled buttons are easy to press without looking on the
smart device. However, many players needed support from one of the
supervisors as they did not understand that some buttons are meant to
be pressed and held (e.g. for grabbing and carrying an energy block).
Either some kind of tutorial for first-time users or better labelling of
the UI elements could solve this issue.

Some of these findings are not direct results from the evaluations but rather
have been made through observation and inference. This clearly shows that
there are many more valuable data to collect from co-located smart games
and a lot of research still has to be done to scientifically substantiate such
assumptions.

6.2 Further Prospects
MoCo obviously has some flaws which are clearly pointed out by both eval-
uations. However, these issues are solvable. For some of the problems the
solutions are even documented in the Chapters 2 and 3 already. Unfortu-
nately, due to a lack of time and the fact that MoCo is more of a prototypic
proof of concept than a final product, many suggested features did not find
their way into the system yet. However, they are already on the list for
further development of MoCo (or its successor):

6. Concluding Debate 63

• More visual or acoustic cues to steer the users’ attention between the
displays.

• A comprehensive personal user profile synchronized between server
and client.

• A sophisticated architecture for keeping track of the player states (es-
pecially for re-establishing the progress after disconnections).

• Exposing the MoCo server settings (port, max clients and NAT Punch-
through usage) to the XML configuration file.

• More diverse input modalities (e.g. sensors such as camera, micro-
phone, accelerometer or even UI elements such as sliders or input
fields).

• Porting the client to more mobile platforms such as Windows 10 Mo-
bile.

• Decoupling the server and client code even more in order to foster
a clean system architecture and to improve the ability to reuse and
extend the framework.

But not just MoCo has room for improvements, also the Unity TUIO/Pharus
Tracking Client (cf. Section 4.2.1) has new features already in the pipeline:
The most important addition is to not trigger the OnTrackLost event (cf.
Fig. 4.2) immediately when a track gets lost, but instead to introduce a
new idle/pending event. Pending entities are basically lost, but their player
object will remain invisible until it either gets eventually removed after a
while of inactivity (OnTrackLost event) or a new tracking record appears
near by and the pending record will replace the new one and thereby the
invisible player object will become active again. This feature should prevent
players from losing their game progress due to the tracking system through
a low level implementation instead of an extra specific implementation for
every game.

6.3 Conclusion
The prior work in the field of co-located floor-based video games as well
as the research in smart gaming and co-located play were both essential
parts when designing novel interaction modalities: The creation of MoCo,
a system which extends the actual player interface to the game, would not
have been possible without the appropriate effort. However, by allowing
players to perform more diverse actions, MoCo is only one way to give more
control to the players. Augmented reality (AR) and virtual reality (VR) are
on their way and without any doubt they will turn video games and very
likely also co-located games upside down. Both technologies offer exciting
novel mechanics to alter or enhance the user experience drastically. And of

6. Concluding Debate 64

course there are still other systems which extend their user interface through
proprietary additional hardware, such as the Wii BalanceBoard1, the Wii
Remote2 [19] or the Kinect3. However, in some cases the hardware is still
too rigid or does not properly scale for large dimensioned environments such
as the Deep Space. Also, in the author’s opinion smart devices still offer the
best results in terms of accessibility, as nearly everyone these days constantly
carries at least one smart device. Furthermore, smart devices are becoming
more and more sophisticated and feature-rich and as for now there is no end
in sight for this trend.

In any case, one thing seems certain: There are going to be some exciting
combinations of various new technologies which will pave the way for a bright
future for co-located video games and the author hopes that this thesis takes
us one step further on this long road ahead.

1Nintendo® Wii™ BalanceBoard
2Nintendo® Wii™ Remote, often referred to as Wiimote
3Microsoft® Kinect®

Appendix A

Results: Expert Heuristic
Evaluation

A.1 Used Heuristics
Table A.1 shows the assembled set of heuristics used in the expert heuristic
evaluation. It is referenced in the Sections 5.3.1 and 5.3.1.

A.2 Evaluation Results
Table A.2 holds the results of the expert heuristic evaluation. It is referenced
in Section 5.3.1. The results are taken directly from the evaluation report
which can be found on the enclosed CD-ROM/DVD (cf. Appendix B.1).

65

A. Results: Expert Heuristic Evaluation 66

1 Appropriate feedback is provided.

The game provides immediate, adequate, and
easy-to-understand feedback after each action taken within
the game or while using menus before or after playing the
game. The provided feedback supports understanding the
consequences of the action. (Such actions are e.g. a single
press of a button, complicated input sequences like combos
or the character interacting with the environment/gameworld)

2 Terminology and visual language
are easy to understand.

The terminology and language used in the game and in
menus is easy to understand. Technical terms are avoided.
Texts are written from the player's point of view. Art, symbols
and pictograms in the interface are either commonly known
or easy to recognize (and speak to its function).

3 The player's memory load is
minimized.

The player is not required to remember information. The
information the player needs is displayed clearly at the time
the player needs it. User preferences and achievements are
saved across game sessions. Frequently required
information is placed prominently in the interface or effortless
accessible.

4 The player is prevented from
making mistakes.

The user interface is designed in a way so that it prevents
the player from making mistakes that are not part of the
gameplay (especially irreversible errors). The user interface
limits available options, provides help or automates options
in order to reduce the number of errors the players can
make. If errors occur, easy-to-understand error messages
(that informs the player about the consequences of the error
and what the player can do to recover from the error) are
provided.

5 The audiovisual representation
supports the game.

Graphics and visual effects are used to make the basic user
interface elements easy to use and appealing. The
audiovisual appearance and tactile effects of the game
supports also the gameplay by providing information and
feedback.

6 The game controls are convenient
and respond quickly.

Controls are easy to learn and accessible for people who do
not play games often. They are suitable for the game and
offer efficient ways to take actions in the game. Input
mapping is designed in a way that users can issue
commands quickly and accurately in order to respond rapidly
and intuitively to game events. Shortcuts are provided for
common activities (if applicable).

7 Drop in and drop out works quickly
and effortless.

Joining and leaving the game works easily and quickly.
Dropping in or out during an active game session does not
affect the experience for other players.

8 Interruptions are handled
reasonably.

The game handles interruptions properly. In case of an
interruption or disconnection the re-establishment of the
previous state is handled fast and as user-friendly as
possible.

9 The player is in control.
The game conveys the feeling that the player is in control.
Unforeseeable events with negative effects on the player's
progress are reduced to a minimum. The player never starts
feeling that the game is more of a lottery than a game.

10 Progress and results are visible
during the game.

The player is always informed on his or her (or the team's)
progress within the game. By being able to compare results
and progress motivation is maintained.

Table A.1: The final set of heuristics used by the experts to evaluate MoCo
and its demo games.

A. Results: Expert Heuristic Evaluation 67

Description Heur. Sev. Freq. Proposed Solution Ease of
solution

Overall
score

The meaning of the visual
representation of the calibration point
on the playing field is not clear.

2 2 3
Change the visual representation
of the calibration point to
something more obvious.

3 12

When using the sentry laser in Lazor
Lab it sometimes happens that the
actions is aborted because the player
accidentally left the trigger area.

4 3 1
Either increase the size of the
trigger area or allow shooting the
big laser outside of the trigger
area once it was started.

3 12

Delay of the tracking system makes
is hard to predict the players’
positions. In Lazor Arena the game
becomes more about the slowly
moving player circles instead of the
actual people.

6 3 3
Either reduce latency, or decrease
game pace so that the delay does
not play such a significant role..

1 12

The state of the core in Lazor Lab is
only visualized by color. This is not
sufficient to tell the current “game
health”. This leads to a slight lack of
tension / urgency.

10 2 3
Add a progressbar or percentage
to the health core so that the
game state is clearly visible.

3 12

The range of the laser beam is not
communicated clearly enough. This
leads to frustration, when an
assumed hit does not actually hit.

1 2 2 Either increase range of lasers or
add some kind of visual crosshair. 3 10

In Lazor Lab the color a wall brick is
expected to get repaired with is not
visualized. This leads to players
building bricks with wrong colors and
causes frustration when the bricks
explode as a consequence.

4 2 3
Either visualize the color of a
broken wall slot or explain the
repair mechanic better through a
tutorial.

2 10

Color and shape of hostile polygons
in Lazor Lab makes them hard to
see/recognize.

5 2 3
Change the visual appearance of
enemies, add some eye-catching
details. (loud colors, blinking, trail)

2 10

Sometimes it happens that the
tracking system loses a player, when
this happens the player can easily
reconnect but loses his or her
collectables.

8 3 1
Save the players’ game state on
the server side. Once a player
reconnects reestablish his or her
progress.

2 9

It is often difficult to coordinate head-
hand orientation and body orientation
while walking/running.

6 2 2
Remove or replace pointer-
mechanic (gyroscope controls)
entirely.

1 6

Some player actions are missing
visual affordance on the public
display. E.g. repairing a wall / using
sentry gun in Lazor Lab.

1 1 2 Add visual cues on the public
display to increase affordance. 3 5

The way the spawning of collectables
(energy blocks) in the two demo
games work differently. This leads to
different expectations although the
actually work the same way.

2 1 2 Uniform the way collectables
appear in the game world. 2 4

Communication with other players in
Lazor Lab often is difficult as it’s hard
to tell what tasks other players are
currently follwing.

9 1 2

Introduce some kind of visual or
acoustic commands which can be
triggered through the smart
devices (e.g. “Defend the core!”, “I
need a blue block!”).

1 3

Table A.2: The results list taken from the evaluation report. The found
problems are ranked after the overall score (cf. Section 5.3.1), and thus al-
ready suggest an order to approach the issues.

Appendix B

Content of the
CD-ROM/DVD

Format: CD-ROM, Single Layer, ISO9660-Format

B.1 Evaluations
Pfad: /

Friedl_Andreas_2015.pdf Thesis (this document)

Pfad: /GameExperienceSurvey
Handout.pdf The actual survey which was handed out to

the play testers
Results.pdf The complete results of the game experience

survey

Pfad: /UsabilityExpertEvaluation
Handout.pdf The handout the experts received for the

evaluation
Heuristics.pdf A list of all heuristics used in the usability

expert evaluation
Report.pdf The final evaluation report including raw

findings as well as the final results list
Results.pdf The raw results of the evaluation in a plain

table

B.2 Project
Pfad: /Project/Bin

68

/
Friedl_Andreas_2015.pdf
/GameExperienceSurvey
Handout.pdf
Results.pdf
/UsabilityExpertEvaluation
Handout.pdf
Heuristics.pdf
Report.pdf
Results.pdf
/Project/Bin

B. Content of the CD-ROM/DVD 69

LazorLab_Client_(Android).zip MoCo client executable (Android)
LazorLab_Server_(Win).zip MoCo server executable (Windows)

Pfad: /Project/Other
MoCo_early_prototype.mp4 Video of an early prototype of MoCo
GameDesign_LazorLab.pdf Early design draft for LazorLab

Pfad: /Project/Src
UnityProject_Client_(Android_iOS).zip Project files for the MoCo

client (Android and iOS)
UnityProject_Server_(Win).zip Project files for the MoCo server

(Windows)
UnityProject_TrackingServer_(Win).zip Project files for the plain

UnityTrackingServer framework (Windows)

B.3 Miscellaneous
Pfad: /Images

*.jpg, *.png original raster images
*.pdf original vector images and tables

LazorLab_Client_(Android).zip
LazorLab_Server_(Win).zip
/Project/Other
MoCo_early_prototype.mp4
GameDesign_LazorLab.pdf
/Project/Src
UnityProject_Client_(Android_iOS).zip
UnityProject_Server_(Win).zip
UnityProject_TrackingServer_(Win).zip
/Images
*.jpg, *.png
*.pdf

References

Literature
[1] Rafael Ballagas et al. “BYOD : Bring Your Own Device”. In: Proceed-

ings of the Workshop on Ubiquitous Display Environments, UbiComp
’04. Nottingham, England, UK, 2004, pp. 20–28 (cit. on pp. 5, 15, 28).

[2] Rafael Ballagas et al. “The smart phone: A ubiquitous input device”.
In: IEEE Pervasive Computing 5.January (2006), pp. 70–77 (cit. on
pp. 19, 23).

[3] Victoria Bellotti and Keith Edwards. “Intelligibility and Accountabil-
ity: Human Considerations in Context-Aware Systems”. In: Human-
Computer Interaction 16.2 (2001), pp. 193–212 (cit. on p. 24).

[4] Harry Brignull and Yvonne Rogers. “Enticing People to Interact with
Large Public Displays in Public Spaces”. In: Proceedings of Interna-
tional Conference on Human-Computer Interaction. Zürich, Switzer-
land, 2003, pp. 17–24 (cit. on pp. 20, 22, 23).

[5] Darryl Charles et al. “Player-centred game design: Player modelling
and adaptive digital games”. In: Proceedings of DiGRA 2005 Con-
ference: Changing Views – Worlds in Play. Vancouver, BC, Canada,
2005, pp. 285–298 (cit. on p. 29).

[6] Victor Cheung et al. “Overcoming Interaction Barriers in Large Public
Displays Using Personal Devices”. In: Proceedings of the 9th ACM
International Conference on Interactive Tabletops and Surfaces, ITS
’14. Dresden, Germany: ACM Press, 2014, pp. 375–380 (cit. on pp. 20–
25, 27, 29).

[7] Herbert H Clark and Susan E Brennan. “Grounding In Communi-
cation”. In: Perspectives on Socially Shared Cognition. Vol. 13. Wash-
ington, DC, USA: American Psychological Association, 1991. Chap. 3,
pp. 127–149 (cit. on p. 4).

[8] Nigel Davies et al. “Using Bluetooth Device Names to Support Interac-
tion in Smart Environments”. In: Proceedings of the 7th International
Conference on Mobile Systems, Applications, and Services. Wroclaw,
Poland: ACM Press, 2009, pp. 151–164 (cit. on p. 23).

70

References 71

[9] David Dearman and Khai N Truong. “BlueTone: A Framework for
Interacting with Public Displays Using Dual-tone Multi-frequency
Through Bluetooth”. In: Proceedings of the 11th International Confer-
ence on Ubiquitous Computing. Orlando, FL, USA: ACM Press, 2009,
pp. 97–100 (cit. on p. 23).

[10] Heather Desurvire, Martin Caplan, and Jozsef A. Toth. “Using Heuris-
tics to Evaluate the Playability of Games”. In: Proceedings of the Con-
ference on Human Factors in Computing Systems, CHI ’04. Vienna,
Austria: ACM Press, 2004, pp. 1509–1512 (cit. on pp. 53, 54).

[11] Jeremiah Diephuis et al. “Game Changer: Designing Co-Located
Games that Utilize Player Proximity”. In: Proceedings of DiGRA 2015:
Diversity of Play. Lüneburg, Germany, 2015 (cit. on pp. 1, 26).

[12] Katharina Emmerich, Stefan Liszio, and Maic Masuch. “Defining Sec-
ond Screen Gaming: Exploration of New Design Patterns”. In: Proceed-
ings of the 11th Conference on Advances in Computer Entertainment
Technology. Funchal, Portugal: ACM Press, 2014 (cit. on pp. 19, 21,
25–29).

[13] Tracy Fullerton and Christopher Swain. Game Design Workshop: A
Playcentric Approach to Creating Innovative Games. 2nd ed. Taylor
& Francis, 2008 (cit. on pp. 27, 29).

[14] Saul Greenberg et al. “Dark Patterns in Proxemic Interactions: A Crit-
ical Perspective”. In: Proceedings of the 2014 Conference on Design-
ing Interactive Systems. Vancouver, BC, Canada: ACM Press, 2014,
pp. 523–532 (cit. on p. 24).

[15] Kaj Grønbæk et al. “IGameFloor: A Platform for Co-located Collab-
orative Games”. In: Proceedings of the International Conference on
Advances in Computer Entertainment Technology. Salzburg, Austria:
ACM Press, 2007, pp. 64–71 (cit. on pp. 5, 9, 10).

[16] Wolfgang Hochleitner, Michael Lankes, and Christina Hochleitner.
“Limelight – Fostering Sociability in a Co-located Game”. In: Proceed-
ings of the Workshop on Designing and Evaluating Sociability in On-
line Video Games, CHI ’13. Paris, France: ACM Press, 2013, pp. 23–
28 (cit. on pp. 4, 12, 17, 28).

[17] Ryo Izuta et al. “Early Gesture Recognition Method with an Ac-
celerometer”. In: Proceedings of the 12th International Conference on
Advances in Mobile Computing and Multimedia, MoMM ’14. Kaohsi-
ung, Taiwan: ACM Press, 2014, pp. 43–51 (cit. on p. 9).

[18] Martin Kaltenbrunner et al. “TUIO - A Protocol for Table-Top Tangi-
ble User Interfaces”. In: Proceedings of the 6th International Workshop
on Gesture in Human-Computer Interaction and Simulation. Vannes,
France: Springer, 2005 (cit. on pp. 10, 37).

References 72

[19] Dennis L Kappen et al. “Exploring Social Interaction in Co-Located
Multiplayer Games”. In: Proceedings of the Conference on Human Fac-
tors in Computing Systems, CHI ’13. Paris, France: ACM Press, 2013,
pp. 1119–1124 (cit. on p. 64).

[20] Hannu Korhonen. “Comparison of Playtesting and Expert Review
Methods in Mobile Game Evaluation”. In: Proceedings of the 3rd In-
ternational Conference on Fun and Games. Leuven, Belgium: ACM
Press, 2010, pp. 18–27 (cit. on p. 54).

[21] Hannu Korhonen and Elina Koivisto. “Playability Heuristics for Mo-
bile Games”. In: Proceedings of the 8th Conference on Human-
computer Interaction with Mobile Devices and Services, MobileHCI
’06. Espoo, Finland: ACM Press, 2006, pp. 9–16 (cit. on p. 54).

[22] Sauli Laitinen. “Usability and Playability Expert Evaluation”. In:
Game Usability: Advancing the Player Experience. Ed. by Morgan
Kaufmann. CRC Press, 2008. Chap. 7, pp. 91–111 (cit. on pp. 53,
54, 57).

[23] Pat Langley. “Machine Learning for Adaptive User Interfaces”. In:
Proceedings of the 21st German Annual Conference on Artificial In-
telligence. Freiburg, Germany: Springer, 1997, pp. 53–62 (cit. on p. 29).

[24] Jaana Leikas, Antti Väätänen, and Veli-pekka Räty. “Virtual Space
Computer Games with a Floor Sensor Control Human Centred Ap-
proach in the Design Process”. In: Proceedings of the 1st Interna-
tional Workshop on Haptic Human-Computer Interaction. Glasgow,
Scotland, UK: Springer, 2000, pp. 199–204 (cit. on pp. 5, 8).

[25] Jaana Leikas et al. “Multi-User Mobile Applications and a Public Dis-
play: Novel Ways for Social Interaction”. In: Proceedings of the 4th
Annual IEEE International Conference on Pervasive Computing and
Communications. Pisa, Italy: IEEE, 2006, pp. 66–70 (cit. on pp. 20,
24, 29).

[26] Jörg Müller et al. “Display Blindness: The Effect of Expectations on
Attention towards Digital Signage”. In: Proceedings of the 7th Inter-
national Conference on Pervasive Computing, Pervasive ’09. Nara,
Japan, 2009 (cit. on p. 22).

[27] Otto Naderer. “Crowd Tracking And Movement Pattern Recognition”.
master thesis. Johannes Kepler University Linz, 2015. url: http://
epub.jku.at/obvulihs/content/titleinfo/493866 (cit. on pp. 5, 10, 16, 36,
37).

[28] Jakob Nielsen. Usability Engineering. Morgan Kaufmann, 1993 (cit. on
pp. 53–55).

http://epub.jku.at/obvulihs/content/titleinfo/493866
http://epub.jku.at/obvulihs/content/titleinfo/493866

References 73

[29] Timo Ojala et al. “Multipurpose Interactive Public Displays in the
Wild: Three Years Later”. In: Computer 45.5 (2012), pp. 42–49 (cit.
on p. 20).

[30] Susan Palmiter, Jay Elkerton, and Patricia Baggett. “Animated
Demonstrations vs Written Instructions for Learning Procedural
Tasks: A Preliminary Investigation”. In: International Journal of Man-
Machine Studies 34.5 (1991), pp. 687–701 (cit. on p. 22).

[31] David Pinelle, Nelson Wong, and Tadeusz Stach. “Heuristic Evaluation
for Games: Usability Principles for Video Game Design”. In: Proceed-
ings of the Conference on Human Factors in Computing Systems, CHI
’08. Florence, Italy: ACM Press, 2008, pp. 1453–1462 (cit. on p. 54).

[32] Stefan Poslad. Ubiquitous Computing: Smart Devices, Environments
and Interactions. Wiley, 2009 (cit. on p. 19).

[33] Stuart Reeves et al. “Designing the Spectator Experience”. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’05. Portland, OR, USA, 2005, pp. 741–750 (cit. on
pp. 20, 23).

[34] Noah Schaffer. “Heuristic Evaluation of Games”. In: Game Usability:
Advancing the Player Experience. Ed. by Morgan Kaufmann. CRC
Press, 2008. Chap. 6, pp. 79–89 (cit. on pp. 53, 54).

[35] Stacey D Scott and James R Wallace. “"Local Remote" Collabora-
tion: Applying Remote Group AwarenessTechniques to Co-located Set-
tings”. In: Proceedings of the 18th ACM Conference Companion on
Computer Supported Cooperative Work & Social Computing. Vancou-
ver, BC, Canada: ACM Press, 2015, pp. 319–324 (cit. on p. 4).

[36] George Simmel. “The Sociology of Sociability”. In: The American jour-
nal of sociology 55.3 (1949), pp. 254–261 (cit. on p. 4).

[37] Scott S. Snibbe and Hayes S. Raffle. “Social Immersive Media: Pur-
suing Best Practices for Multi-user Interactive Camera/Projector Ex-
hibits”. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’09. Boston, MA, USA: ACM Press, 2009,
pp. 1447–1456 (cit. on p. 4).

[38] Hanna Strömberg, Antti Väätänen, and Veli-pekka Räty. “A Group
Game Played in Interactive Virtual Space: Design and Evaluation”. In:
Proceedings of the 4th Conference on Designing Interactive Systems:
Processes, Practices, Methods, and Techniques. London, England, UK:
ACM Press, 2002, pp. 56–63 (cit. on pp. 5, 8).

[39] John Sweller, Jeroen van Merrienboer, and Fred Paas. “Cognitive Ar-
chitecture and Instructional Design.” In: Educational Psychology Re-
view 10.3 (1998), pp. 251–296 (cit. on p. 26).

References 74

[40] Daniel Vogel and Ravin Balakrishnan. “Interactive Public Ambient
Displays: Transitioning from Implicit to Explicit, Public to Personal,
Interaction with Multiple Users”. In: Proceedings of the 17th annual
ACM symposium on User interface software and technology, UIST ’04.
Santa Fe, NM, USA, 2004, pp. 137–146 (cit. on p. 22).

[41] Huijing Zhao and Ryosuke Shibasaki. “A Novel System for Track-
ing Pedestrians using Multiple Single-Row Laser-Range Scanners”. In:
IEEE Transactions on Systems, Man and Cybernetics, Part A: Sys-
tems and Humans 35.2 (2005), pp. 283–291 (cit. on p. 10).

	Declaration
	Preface
	Abstract
	Kurzfassung
	Introduction
	Motivation
	Problem Statement
	Objective
	Document Structure

	Floor-Based Co-Located Play
	Co-Located Game Systems
	Commercial Products
	Research Projects
	Deep Space

	Game Design Challenges

	Second Screens in Co-Located Settings
	Cross-Device Interaction Barriers
	Three Levels of Interaction Barriers in Public Spaces
	Overcoming Interaction Barriers

	Smart Gaming in Co-Located Settings
	Cognition Characteristics
	Technology Characteristics
	Social Characteristics

	MoCo: a Mobile Companion Framework
	Characteristics of MoCo
	Requirements
	Features

	Implementation
	Unity TUIO/Pharus Tracking Client
	MoCo Module Integration

	Evaluation
	Demo Games
	Lazor Arena
	Lazor Lab

	Game Experience Survey
	Method
	Results

	Expert Heuristic Evaluation
	Method
	Results

	Concluding Debate
	Results Analysis
	Further Prospects
	Conclusion

	Results: Expert Heuristic Evaluation
	Used Heuristics
	Evaluation Results

	Content of the CD-ROM/DVD
	Evaluations
	Project
	Miscellaneous

	References
	Literature

