
Generating News Headlines Using a
Generative Adversarial Network

Christa Höglinger

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Juni 2019

© Copyright 2019 Christa Höglinger

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, June 25, 2019

Christa Höglinger

iii

Contents

Declaration iii

Acknowledgement ix

Abstract x

Kurzfassung xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 1
1.3 Goal of the Thesis . 2
1.4 Thesis Structure . 2

2 Artificial Intelligence Basics 4
2.1 Machine Learning . 5

2.1.1 Supervised Learning . 5
2.1.2 Unsupervised Learning . 7
2.1.3 Reinforcement Learning . 9

2.2 Artificial Neural Networks . 10
2.2.1 Convolutional Neural Network 12
2.2.2 Recurrent Neural Network . 13

3 Natural Language Processing 16
3.1 Natural Language Generation . 18

4 Deep Generative Modelling 19
4.1 Autoregressive Models . 20
4.2 Variational Auto-Encoder . 20
4.3 Generative Adversarial Networks . 22

4.3.1 GAN models . 23

5 SeqGAN Architecture 24

6 Data Management 28
6.1 Dataset . 28
6.2 Data Clearning . 28

iv

Contents v

6.3 Pre-Processing . 29
6.4 Data Handling . 31

7 SeqGAN Implementation 32
7.1 Technology Stack . 32
7.2 Discriminator . 35
7.3 Generator . 36
7.4 Hyperparameter Tuning . 39

7.4.1 General Hyperparameters . 41
7.4.2 Hyperparameters for Generator 43
7.4.3 Hyperparameters for Discriminator 44

7.5 Adversarial Training . 45
7.5.1 Evaluation Approach . 48

8 Results and Evaluation 49
8.1 Generated Headlines . 49
8.2 Performance Discriminator . 50

8.2.1 Accuracy . 51
8.2.2 Loss . 52

8.3 Performance Generator . 52
8.3.1 Loss . 53
8.3.2 Pre-train Loss . 54
8.3.3 Oracle Model . 54

9 Conclusion 57
9.1 Challenges . 57
9.2 Future Work . 59

A CD Contents 60
A.1 PDF-Dateien . 60
A.2 Source Code . 60

References 61
Literature . 61
Online sources . 63

List of Figures

2.1 The left part of the figure shows a classification problem with 2 different
classes, which are represented as blue dots and red squares. The data
points are categorized in a particular observation. On the right side of
the figure, a regression problem is shown. The blue dots represent the
predicted continuous values based on a given dataset. 6

2.2 The data points in the graph can be clustered together and are then
assigned to the same group. A data point could belong to any cluster, but
the probability of the data point defines the membership of the cluster [3,
p. 13]. 8

2.3 The principle of the reinforcement learning cycle shows that when the
agent performs an action 𝑎𝑡 in state 𝑠𝑡 and receives the reward 𝑟𝑡+1 from
the environment it ends up in state 𝑠𝑡+1 [21, p. 233]. 10

2.4 This diagram of a mathematical neuron is based on the paper of McCul-
loch and Pitts [22] shows how the inputs 𝑥 and its weights 𝑤 are fed into
the input function to sum up the inputs and weights. This input sum is
then passed on to the activation function 𝑓(𝑥) to produce the output [28,
p. 728]. 11

2.5 The unrolled structure of the RNN shows that the input 𝑥 (i.e., token of a
sequence) is observed at a time step 𝑡 and the state vector ℎ𝑡 is updated
from the previous state vector ℎ𝑡−1. Processing new input always is
dependent on the current state ℎ𝑡 and thus on the history of the sequence
(see Figure 5-2 in [18, p. 69]). 14

4.1 A vectorized input sequence 𝑥 = {𝑥1, · · · , 𝑥𝑡} is passed to a hidden layer
with a specific amount 𝑖 of hidden nodes per time step ℎ𝑖 = {ℎ𝑖

1, · · · , ℎ𝑖
𝑡}.

After computing the hidden vector sequences, the output vector sequence
𝑦 = {𝑦1, · · · , 𝑦𝑡} can be calculated. The dashed arrows then represent
the prediction process at one time step. For instance the prediction for
𝑥𝑡 is based on 𝑦𝑡−1 and can be denoted as 𝑝(𝑥𝑡 | 𝑦𝑡−1) [14, p. 3]. 21

4.2 Basic structure of VAE models: the encoder 𝑞(𝑧 | 𝑥) compresses data 𝑥
into a lower-dimensional latent space 𝑧. To generate new samples, which
look similar to the input data, the decoder 𝑝(𝑥 | 𝑧) obtains input through
the latent representation 𝑧 and outputs its reconstruction 𝑥′. 21

vi

List of Figures vii

4.3 Basic structure of GAN models: generator turns random noise 𝑧 into fake
data 𝑥′ and attempts to fool the discriminator. The discriminator tries
to distinguish fake input 𝑥′ from real input 𝑥. 22

5.1 The architecture of SeqGAN on the left side of the diagram shows the
process of the discriminative training and on the right side of the diagram
how the training of the generative model including RL is approached (see
Figure 1 in [32]). 25

7.1 The Deep Learning Framework Power Scores 2018 shows the popularity
of a selection of DL frameworks. As can be seen in the diagram, Tensor-
Flow occupies the first place with a score of 96.77 of the possible highest
value of 100 [35]. 34

7.2 If the curve fits too well, as can be seen in the right diagram, the model is
over-fitted, this means that it may have a low error rate for the training
data, but poor output results. Under-fitting, in contrast, has the problem
that important data patterns are not recognized and therefore it performs
poorly, which is shown in the left diagram. The scatter plot in the middle
illustrate an appropriate way to fit the data in a neural network (see
Figure 1-7 in [26, p. 27]). 40

7.3 In the right diagram, a very high learning rate is shown, which results in
a very unstable network training process. However, if the learning rate
is very low, as seen in the diagram on the left, the training is extremely
inefficient and will require a lengthy training period. The best example of
a learning curve is presented in the middle diagram because the learning
steps are suited to the curve [26, p. 258]. 41

8.1 Accuracy of discriminative learning process in the form of a TensorBoard
graph. 52

8.2 Loss of discriminative learning process in the form of a TensorBoard graph. 53
8.3 Loss of the generative learning process in form of a TensorBoard graph. 54
8.4 Pre-training loss of the generative learning process in the form of a Ten-

sorBoard graph. 55
8.5 Loss curve of oracle model for evaluating the SeqGAN model in the form

of a TensorBoard graph. 56

List of Tables

6.1 Structure and selection of entries of the original dataset. 29
6.2 Dataset of news headlines after data cleaning process. 29

8.1 Headlines generated at the beginning of the adversarial training. 50
8.2 Selection of well-generated headlines during the adversarial training. . . 50
8.3 Set of real headlines from the training dataset. 51

viii

Acknowledgement

I would first like to thank my advisor Dr. Andreas Stöckl for always supporting me
during the whole process of writing my Thesis and further improving the project. In
addition, I want to thank for helping me to make the best decisions for my Master
Thesis and finalize the research topic and also always taking time to read my Thesis
several times. His door to office was always open whenever I had questions about my
research or writing. I would also like to acknowledge David Hewlett as second reader of
my Master Thesis, and I am gratefully for his very valuable comments on this Thesis.
I am also very thankful to my college Christina Grafeneder, who always supported me
whenever I needed any help throughout all the years of study. She always helped me
to make the best decisions and putting all pieces together. Finally, I must express my
very profound gratitude to my lovely family and friends, but especially to my parents,
my sister Anna and to my boyfriend Jonas for providing me with unfailing support
and continuous encouragement throughout all my years of study and through the entire
process of working on my Thesis. This accomplishment would not have been possible
without them. Thank you, I am so grateful to have all of them in my life.

ix

Abstract

The technology Generative Adversarial Network is a part of the field of deep generative
modelling and is often treated as such during research. This technology has shown
impressive results in Computer Vision but has yet to be broadly applied to Natural
Language Generation. This is the reason why this Master Thesis seeks to deal with the
generation of text sequences and their evaluation and analysis. The objective of the
Thesis is to generate high quality sentences in the form of news headlines and to make
them indistinguishable from the real news headlines provided in the training dataset.

In the beginning, the basic concepts of related topics; Artificial Intelligence, Machine
Learning and Natural Language Processing and the examples provided here, were intro-
duced to provide a general overview. The main body of this Master Thesis includes the
implementation of a Generative Adversarial Network model for Natural Language Gen-
eration, with special regard being given to news headlines (i.e., short text sequences).
The Thesis concludes with a résumé of the results of the generation that are evaluated
through metrics and the challenges encountered during the implementation of this Mas-
ter Project are discussed here. The results of the headline generation are evaluated with
using specific metrics, which are commonly used for the evaluation of Artificial Neural
Network predictions. To seek for further improvement in this specific implementation,
possible future works are mentioned to provide a direction for further optimizations.

x

Kurzfassung

Die Technologie Generative Adversarial Networks ist Teil des großen Themengebiets
Deep Generative Modelling und wird auch oft in aktuellen Forschungen und Veröffent-
lichungen behandelt und erwähnt. Diese Technologie zeigte in der Vergangenheit sehr
beeindruckende Resultate in der Bildverarbeitung, wurde jedoch bisher nur wenig in der
Textverarbeitung und -generierung eingesetzt. Somit wurde dieses Problem der Text-
generierung zum Thema dieser Masterarbeit, welches zum Ziel hat, neue Texte bezie-
hungsweise Sätze in Form von englischsprachigen Schlagzeilen in einer hohen Qualität
zu generieren. Das bedeutet, dass diese generierten Schlagzeilen nicht mehr von echten
Schlagzeilen aus dem Trainingsdatensatz unterschieden werden können.

Zu Beginn der Arbeit werden die Grundkonzepte verwandter Themen, wie Künstli-
che Intelligenz, Maschinelles Lernen und Textverarbeitung im Allgemeinen vorgestellt,
um einen Überblick über diese Themen zu geben. Der Hauptteil der Masterarbeit bein-
haltet die Implementierung eines Generative Adversarial Network Modells für Text-
generierung, insbesondere in Bezug auf Schlagzeilen, bei welchen es sich speziell um
kurze Textsequenzen handelt. Schlussendlich werden Ergebnisse dieser Textgenerierung
präsentiert und evaluiert, sowie die Herausforderungen, die während des gesamten Mas-
terprojekts aufgetaucht sind, diskutiert. Für die Evaluierung der Ergebnisse wurden
spezielle Metriken verwendet, die üblicherweise für die Evaluierung von Vorhersagen
künstlicher neuronaler Netze verwendet werden. Zur weiteren Verbesserung der Imple-
mentierung des Anwendungsfalls werden mögliche zukünftige Methoden genannt, um
eine Richtung für weitere Optimierungen zu geben.

xi

Chapter 1

Introduction

In recent years, the use of machine-generated texts and the increase in the number
of fake news articles especially in specific areas, such as reports concerning the stock
market, elections or the economy, has multiplied considerably. For instance, an example
of generated text could be scientific reports, (generated) code snippets or plays inspired
by Shakespeare [37].

1.1 Motivation
There are multiple different models based on Deep Learning and neural networks, which
can be used to generate complex text data. A recently developed and extremely effective
model is the Generative Adversarial Network (GAN), which was invented by Goodfellow
et al. [13] in 2014. This model has primarily been used to create photorealistic images
for the visualisation of various real objects; however, this model is rarely used for Nat-
ural Language Generation (i.e., text generation). Therefore, this Master Thesis chooses
to deal with the generation of short text sequences in the form of high quality news
headlines.

1.2 Problem Description
Since this technology has great potential, there are many possibilities for generating
high-quality data. The basic idea behind GANs is to train two models simultaneously:
the generative model produces new samples based on a training dataset and the dis-
criminative model classifies the samples into two different classes (real or fake). The
difficulties in using this technology for the purpose of text generation are that tradi-
tional GAN models can only work effectively with continuous data but are not intended
for sequence generation of discrete tokens, such as text data based on those discrete
tokens. The intention of this Master Thesis is to test and answer the following question:

1. Is it possible to generate (short) sequences, i.e., news headlines with a GAN model
with comparable quality to sequences provided by real training data?

1

1. Introduction 2

1.3 Goal of the Thesis
The main goal of this Thesis is to provide a GAN implementation with the aim of
generating artificial news headlines that appear real and natural (i.e., written by a
human). The generator has to be able to produce new, high-quality headlines based on
a dataset, which are then classified by the discriminator. The objective is to produce
legible headlines, which are readable, regardless of whether the content is true or false.

The research question presented at the end of the previous section should be an-
swered by providing a measurement of the quality of the generated sequences with spe-
cial metrics for the evaluation of Artificial Neural Network predictions. A comparison
between the quality of the fake headlines and the real headlines from the training dataset
is possible within the evaluation and analysis of the resulting outputs and performances.
The selection of the right GAN model is essential before beginning the implementation
to ensure it has the necessary potential of producing high-quality sequences. For this
reason, a GAN model especially developed to solve Machine Learning task for Natural
Language Generation, called SeqGAN introduced by Yu et al. [32], was used for the
implementation.

To achieve the objective of this Master Thesis, several different areas were prepared
and examined to ensure an understanding of the most important related topics. These
parts are briefly described in the following section, which explains the structure of the
Thesis.

1.4 Thesis Structure
The implementation and solution for the problem defined and treated in the Thesis
requires wide-ranging knowledge about the basics of Artificial Intelligence, which are
covered in Chapter 2. As well as providing an introduction to basic concepts of Machine
Learning and mathematical and statistical algorithms, it also provides information con-
cerning Artificial Neural Networks and the models required for the implementation.

Since the subject of this Thesis is text generation, it is pivotal to provide an overview
of the field of Natural Language Processing and its subfield Natural Language Generation
to help understand the theoretical and practical concepts that are applied. These topics
are described in more detail in Chapter 3, where several inputs are illustrated to make
comprehending the decision making process easier.

Up until recently, a lot of experiments and research had been made in the field
of generating natural language (i.e., human language). In Chapter 4, a selection of
related concepts and research is presented. This work consists of different deep generative
models, which are related to the problem described within this Thesis. Basic concepts,
algorithms, and specific GAN models designed for text generation are presented with
the aim of providing a comprehensive view of the technology available for generating
natural language.

A major part of implementing a Machine Learning model is to prepare the data right
to be able to use it during training. The quality of GAN model predictions is depending
on the quality of the dataset and its preparation. This is presented in Chapter 6, where
the dataset on itself, its cleaning and pre-processing and also the handling of the data
is mentioned.

1. Introduction 3

As mentioned previously, the implementation was done with a GAN model called
SeqGAN, which was specifically developed for Natural Language Generation tasks. First,
the model was implemented based on the concept of SeqGAN with modifications made
according to the particular use case required for generating short sequences in the form
of news headlines. As a result of these modifications, a major part of the work in
this Thesis Project was the adjustment of the hyperparameters used in the SeqGAN
implementation. The process of hyperparameter tuning was essential and very important
because the quality of the output strongly depends on the hyperparameter settings. In
Chapter 5, the architecture of SeqGAN is introduced to provide a basic understanding
of how this works so that the implementation of the GAN model in Chapter 7 can be
traced.

Then the results were evaluated with specific metrics, which were calculated while
training the model so as to be able to provide the answers required for the research
question. The resulting output obtained during training were visualized and presented
for analyzation in Chapter 8, along with the metrics, which are shown in the form of
graph curves and are described and analyzed.

Finally, in Chapter 9, a conclusion consisting of a compact overview of the results is
provided along with a presentation of the challenges encountered and possible further
steps for the Thesis. This chapter provides the answer to the research question posed
in Section 1.2 and summarizes the results obtained.

Chapter 2

Artificial Intelligence Basics

The aim of Artificial Intelligence (AI) is not only to understand, how people make
decisions, but also to build intelligent systems, which attempt to reproduce certain
decision-making patterns of humans. The first experiments and research in the field of
AI began in 1956 and it is therefore a quite new field in science and engineering. AI can
be applied in many areas and is divided into several subfields. These subfields cover a
range of general tasks, such as learning and perception designed to suit tasks that are
more specific; for example playing chess, writing a story or diagnosing disease [28, p. 1].

As early as 1950, the mathematician Alan Turing presented a concept, which remains
the basis for a today’s technique for testing the intelligent behaviour of a computer by
providing a satisfactory operational definition of intelligence. This is called the Turing
Test and it is based on an interpretation of Alan Turing’s Imitation Game [30, pp. 433–
434], which is passed if it cannot be distinguished whether the response to a question
comes from a human or from a computer. The test setting consists of three people, a
man 𝐴, a woman 𝐵 and an interrogator 𝐶 who can be either a man or a woman. 𝐶 ′𝑠
objective is to find out, who of the two people is the man or woman by asking 𝐴 and
𝐵 questions, which are designed to help deduce this; such as the length of their hair
or the body size. In the end, 𝐶 knows them by labels 𝑋 and 𝑌 and should either say
“𝑋 is 𝐴 and 𝑌 is 𝐵” or “𝑋 is 𝐵 and 𝑌 is 𝐴”. If the interrogator 𝐶 is then replaced by
a computer and the test is performed using this scenario, it is called Turing Test. To
be able to apply the Turing Test successfully, a computer requires certain capabilities.
Firstly, Natural Language Processing is needed to enable successful communication in
English. Additionally, Knowledge Representation is important as this enables it to store
information regarding the knowledge already acquired and Automated Reasoning allows
the system to draw new conclusions or answer questions by using previously stored
information. Finally, Machine Learning is used to detect and extrapolate patterns and
adapt them to new circumstances [28, p. 2].

This chapter covers the basic background of AI and related topics. In Section 2.1 the
basics of Machine Learning are presented and then also the different types of Machine
Learning are discussed. Artificial Neural Networks are examined in Section 2.2, firstly
by giving an overview and a general description and then by explaining Convolutional
Neural Networks and Recurrent Neural Networks in more detail because these are both
used for the implementation of this Thesis work.

4

2. Artificial Intelligence Basics 5

2.1 Machine Learning

Machine Learning (ML) is a discipline within the domain of AI, which seeks to find the
answer to the question if a computer is capable of learning how to perform specific tasks
without assistance. ML has been used since the 1990s and thanks to the availability of
powerful hardware and large and complex datasets it has become the most popular
and successful subfield of AI. In the traditional approach to programming, software is
created with fixed input rules, with which the software processes data. The drawback
with this form of programming is the enormous number of parameters and the massive
data arrays it requires. ML software learns to perform these rules by processing the data
along with expected outputs or answers. These rules can then be applied to new datasets
to train the software to learn new rules. An ML application is able to act without being
explicitly programmed or relying on predefined rules [6, pp. 23–24].

What the term learning is meant to describe is the knowledge gained from the data
by using algorithms to acquire structural descriptions from the training data presented
to the ML application. The system learns and gains new knowledge with which to
identify the structures present within the information contained in the raw data [26,
p. 2].

ML can be divided into different types of learning; the most common forms will
be presented and explained in more detail in the following sections. Beginning with
the field of Supervised Learning in Section 2.1.1, followed by Unsupervised Learning in
Section 2.1.2 and finishing with Reinforcement Learning in Section 2.1.3. Each type is
described in this Thesis because the implementation makes use of each of these types.
However, there are no clear distinctions, which can be drawn between the three types,
often the differences are blurred and they can also be used for a variety of tasks; this is
especially true in the case of Supervised Learning and Unsupervised Learning.

2.1.1 Supervised Learning
The simplest and most popular type of ML is Supervised Learning, which is task-driven
and provides data designed to assist in predicting the next set of values. It is very
easy to understand and to implement in an ML application and can be considered as
supervising or guiding by a teacher [3, p. 10]. The dataset provided acts as the teacher
and the role of the dataset is to train the ML model by feeding entries into the model.
This is the reason it is called training data and it consists of a pair of input and target
data, in which the output should be predicted from the model. After predicting the
target data, the ML model receives feedback if the output was correct by comparing it
with the real target data [21, p. 6].

In order to be able to classify the input data correctly each example within the
dataset is associated with a target or label. In Supervised Learning applications, the
examples are observed with the assistance of a random input vector 𝑥 and an associated
target value 𝑦, which represents the label that should be predicted. Therefore, Super-
vised Learning methods generally try to construct a model by estimating a conditional
probability 𝑝(𝑦 | 𝑥) from the given training data. The term Supervised Learning origi-
nates from the point of view of the target label value 𝑦, which shows the model or ML
application what to do and is provided by the teacher or instructor [12, pp. 105–106].

2. Artificial Intelligence Basics 6

Figure 2.1: The left part of the figure shows a classification problem with 2 different
classes, which are represented as blue dots and red squares. The data points are catego-
rized in a particular observation. On the right side of the figure, a regression problem is
shown. The blue dots represent the predicted continuous values based on a given dataset.

The training dataset with input-output pairs can be denoted as (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)
and consists of 𝑛 entries. For the prediction a hypothesis ℎ has to be generated to esti-
mate the true function 𝑓 , which is generated at the beginning by the function 𝑦 = 𝑓(𝑥).
The aim is to search for the best performing hypothesis through out the space of pos-
sible hypotheses ℋ of both training data and new data not seen. The generalization of
a hypothesis is very important to optimize the predictions of the Supervised Learning
model. If the hypothesis generalization performs well, this means the label 𝑦 was cor-
rectly predicted on a novel data example. Choosing the best hypothesis ℎ* considering
the most probable data given can be calculated as [28, pp. 695–697]

ℎ* = arg max
ℎ∈ℋ

𝑝 (ℎ | 𝑑𝑎𝑡𝑎) . (2.1)

The best performing hypothesis ℎ* can be chosen by applying the arg max function,
where ℎ has to be an element of all possible hypotheses ℋ. The probability of a hy-
pothesis ℎ is calculated based on the dataset given and then the highest probability is
chosen for ℎ*.

Typically, the major segments within Supervised Learning are called Classification
and Regression and can be described as following; classification is about predicting
a label and regression is about predicting a specific value. The differences between
classification and regression problems, which are shown in Figure 2.1, are described
below.

Classification

A classification task is about predicting a class or category for the given input data
and is shown on the left part of Figure 2.1. The predicted output label 𝑦 is part of a
finite set of discrete values, which means the variables are categorical and every data
example belongs to precisely one class of the set. If the set of classes consists of only

2. Artificial Intelligence Basics 7

two values, the classification problem can be called binary classification and is used
for predicting the truth; i.e., if an email is spam or not spam. Another classification
problem is called multi-class classification and consists of more than 2 class values. For
instance if weather attributes are predicted, the classes could be sunny‚ cloudy or rainy
[28, p. 696; 21, p. 8].

Regression

Regression tasks attempt to estimate the output label 𝑦 for a specific input variable 𝑥.
The difference compared with a classification problem is the type of output variable,
because an output value of regression is numerical, while the output value of classifica-
tion is categorical. A regression is a curve described by a mathematical function that
passes as close as possible to the data points given, as can be seen in the graph on the
right of Figure 2.1. Examples of use cases for a regression problem would be predicting
house prices or predicting the temperature [28, p. 696; 21, p. 7].

2.1.2 Unsupervised Learning
The concept behind Supervised Learning problems is very different from that in Unsu-
pervised Learning, because there are no labels available in the dataset. It is no longer
possible to identify whether or not a prediction is correct or incorrect, because the
training dataset contains no target data or form of scoring system. An Unsupervised
Learning model learns through observations of the training data and is able to find spe-
cific structures within the data provided. These models try to understand the properties
of the data and find patterns and relationships in the dataset even though no explicit
feedback can be supplied [21, p. 281]. The aim of Unsupervised Learning is to discover
which structures and patterns occur in the data more frequently than others do. This
statistical approach is called density estimation, in which an unobservable underlying
probability density function of observed data is estimated. After performing the density
estimation, it is possible to solve the missing value imputation task by using the newly
obtained data distribution 𝑝(𝑥) [12, p. 103].

There are multiple use cases for Unsupervised Learning problems, because most of
the data available is unstructured and without labels. In this section, two examples
are described in more detail to give a clearer idea of the possibilities presented by
Unsupervised Learning. The concepts of Clustering and Dimensionality Reduction will
now be described and visualized.

Clustering

One method of density estimation is clustering the data by grouping the input data.
Data without any labels cannot be classified in a traditionally supervised way, because
the correct classes cannot be identified. Instead, in order to cluster the data points that
are similar to each other the identification of similarities between inputs must be found.
Basically, this can be likened to a collection of objects based on the similarities and
differences between them [21, p. 281]. As can be seen in Figure 2.2, a large amount of
data points is placed in the diagram; these can be divided into a number of groups by
using the concept of clustering. The data points in the same group are more similar

2. Artificial Intelligence Basics 8

Figure 2.2: The data points in the graph can be clustered together and are then assigned
to the same group. A data point could belong to any cluster, but the probability of the
data point defines the membership of the cluster [3, p. 13].

to each other than to data points in other groups or clusters. When compared with
a supervised classification problem, as shown in Figure 2.1, where the data points are
classified based on the classes provided, clustering attempts to cluster the data without
any labels available.

This technique of Unsupervised Learning can be used for several purposes, such as
customer segmentation. This is commonly used in marketing analytics to identify differ-
ent groups of customers with similar characteristics and then apply different marketing
strategies aimed at them. Another example is in biology, where groups of genes with
similar expression patterns are identified by clustering to obtain biological insights from
DNA [8, p. 305].

Dimensionality Reduction

This technique reduces the number of random variables already considered by obtaining
a set of main variables. In a dataset with a large amount of features, the probabilities
of hidden relations can be very high, so visualizing and working with the data becomes
increasingly difficult. The aim of dimensionality reduction is to find a low-dimensional
representation of the data given while still retaining as much information as possible.
The observed data includes individual measurable properties, called features, which
are extracted from the input data observed. Often, these features are correlated or
redundant and thus possess no additional values for the prediction [21, p. 129; 3, p. 323].
There are several reasons why dimensionality reduction is interesting and useful as a
separate pre-processing step [1, pp. 109–110]:

• By reducing the number of input dimensions, the complexity of the ML algorithm
can also be reduced thereby making it possible to reduce computation power and
memory required.

• Reducing the dimensions without losing any information makes it easier to under-

2. Artificial Intelligence Basics 9

stand and analyze the structure. Sometimes it is also possible to plot and visualize
the structure and outliers.

• A better understanding of the process is possible when the data can be explained
with fewer features, this also allows a better extraction of knowledge.

• A simplified model enables the use of smaller and simpler datasets during training,
because the features depend less on details such as existing samples, noise, or
outliers.

Dimensionality reduction can be divided into two main methods: feature selection
and feature extraction. The aim of feature selection is the process whereby attributes
that appear to be irrelevant are discarded. This will result in a smaller subset of the
data with which to train the model which is nonetheless still based on the original
set of variables (i.e., features). The dimensions that provide the most information are
retained in the subset and the other values are discarded. In feature extraction, a new
set of dimensions as combinations of the original dimensions is discovered and used
to build an entirely new set of variables or features to represent the data, while still
describing the original dataset [1, p. 110].

2.1.3 Reinforcement Learning
In reinforcement learning, quantitative information is provided by the environment to
give feedback to the agent regarding the success or failure of a certain action in a state.
This feedback is called reward and can be positive or negative and is summed up for the
policy of the actions. Policy defines the strategy and best decision of actions the agent
has to learn to be able to reach the highest expected immediate and cumulative reward.
Therefore, the best policy maximizes the expected total reward by trying to capture the
best knowledge from the past experience to make the best decision based on the feedback
reward received. Once the reinforcement model has been trained over many iterations,
it is able to accurately predict new data and produce the correct output [3, p. 14]. This
method of ML has its roots in behavioural psychology and behaviour, which has been
studied by animal psychologists for over 60 years. Animals receive a positive reward
in form of pleasure or food and a negative reward in the form of pain and hunger [28,
p. 830].

An essential part of reinforcement learning is the search over the state space for
possible inputs and outputs. The algorithm searches over this space in order to maximize
the reward by interacting between the agent and its environment. The components and
their interaction within the reinforcement learning cycle are visualized and described in
Figure 2.3. In this diagram can be seen how the interaction between the agent and its
environment works: the decision-making agent completes the learning stage by making
possible moves (actions) and the environment, in which the agent acts, produces the
current input (state) and the rewards [21, pp. 231–232]. As already mentioned, the aim
of the reinforcement learning approach is to maximize the total reward 𝑅 from any time
step 𝑡, which can be denoted as [15, p. 266]

𝑅𝑡 =
𝑛∑︁

𝑖=𝑡

𝑟𝑖 = 𝑟𝑡 + 𝑟𝑡+1 + · · · + 𝑟𝑛. (2.2)

2. Artificial Intelligence Basics 10

Figure 2.3: The principle of the reinforcement learning cycle shows that when the agent
performs an action 𝑎𝑡 in state 𝑠𝑡 and receives the reward 𝑟𝑡+1 from the environment it
ends up in state 𝑠𝑡+1 [21, p. 233].

The reward for every time step 𝑡 out of a total amount of 𝑛 rewards are summed up to
the expected total reward 𝑅𝑡 at a specific time step.

A large number of real-world applications exist for the use of reinforcement learning,
which has become increasingly popular. Possible real-world applications are resource
management, robotics, games, or self-driving cars. It can therefore be deduced that there
are a large number of possible areas of applications, which have yet to be discovered [6,
p. 131].

2.2 Artificial Neural Networks

The field of Artificial Neural Networks (ANNs) is based on discoveries made in the
field of neurosciences, specifically the electrochemical activity in networks of brain cells.
ANNs connect a set of input signals and output signals by using a model, which is
inspired by a replica of a biological brain and how it responds to and processes the
stimulus it receives from sensory inputs. A human brain is composed of about 90 billion
neurons, which are connected with each other. Although a biological brain is far more
complex than an ANN, this also has interconnected neurons and follows the general
principle of how a brain works when solving ML tasks [8, p. 241; 26, p. 5]. This section
first begins with a brief insight into the basic concepts and mathematical models of an
ANN and concludes by presenting two special ANN models in greater detail.

The learning function of a human brain can be represented as a mathematical func-
tion, which was first introduced by McCulloch and Pitts [22] in 1943 and can be seen in
Figure 2.4. This simple mathematical model of a neuron includes a set of weighted in-
puts, the summation of the input data and an activation function that decides, whether
a neuron will fire or not. In an ANN the neuron input is received from the output of
another neuron and is passed through the synapses and connections between the neu-
rons. To decide which information should be passed through the interconnected ANN,

2. Artificial Intelligence Basics 11

Figure 2.4: This diagram of a mathematical neuron is based on the paper of McCulloch
and Pitts [22] shows how the inputs 𝑥 and its weights 𝑤 are fed into the input function
to sum up the inputs and weights. This input sum is then passed on to the activation
function 𝑓(𝑥) to produce the output [28, p. 728].

the synapses are weighted to influence the strength of the neural firing. The input is
therefore multiplied by the weight value before it is fed into the neuron. Finally, the
sum of the weighted input values determines whether the neuron will fire or not. The
summation of these signals can be denoted as [21, p. 41]

ℎ =
𝑛∑︁

𝑖=1
𝑤𝑖𝑥𝑖 + 𝑏. (2.3)

Each of the total amount of 𝑛 inputs 𝑥 is combined with their weights 𝑤 by applying a
matrix multiplication. An optional constant bias 𝑏 can be added to fit the data better.
The neuron will be fired, if the resulting value ℎ is bigger than the defined threshold
value 𝜃 (e.g., if 𝜃 = 0 and ℎ = 0.5, the neuron will fire, because ℎ > 𝜃) [21, p. 41].
To get the final output value of the neuron, the resulting value ℎ has to be fed into an
activation function 𝑓(𝑥). Choosing the right activation function plays an essential role
in aggregating the signals into the output signal, which will then be passed on to the
following neurons of the network. This function takes the value ℎ and performs a certain
mathematical functional mapping on ℎ. Depending on the structure of the ANN, there
is a selection of many different types of activation functions to choose from. The most
popular functions are mentioned and described in the following listing [8, pp. 242–243]:

• A sigmoid function 𝜎(𝑥) maps a real-valued number to the range from 0 to 1.
• The tanh function tanh(𝑥) takes real-valued numbers and outputs zero centred

values in the range of [−1, 1].
• With the Rectified Linear Unit (ReLU) function 𝑓(𝑥) = max(0, 𝑥) it is possible

to set negative values to zero and let positive values grow linearly. In comparison
to the simpler functions 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 and 𝑡𝑎𝑛ℎ, this activation function is able to
avoid and rectify vanishing gradient problems and is used in the majority of ML
applications presently vailable.

2. Artificial Intelligence Basics 12

For example, using a simple logistic or sigmoid activation function, an equation can be
written as

𝑦 = 𝑓(ℎ) =
{︃

1 if ℎ > 𝜃,

0 if ℎ ≤ 𝜃.
(2.4)

The function 𝑓(ℎ) takes the dot product ℎ and outputs the number 0 (i.e., not firing)
or 1 (i.e., firing) depending on the threshold 𝜃 and the value of ℎ. The output is the
basis for further processing [21, p. 42].

A set of neurons is stacked together to form a layer and one or more layers create
an ANN, in which these layers are connected together. There are many different types
of ANNs available, which can be used for solving different ML problems. In this Thesis,
the two important neural networks that are used in the implementation are presented.
The first, Convolutional Neural Network is described in Section 2.2.1 this is followed by
the description of the second ANN, Recurrent Neural Networks in Section 2.2.2.

2.2.1 Convolutional Neural Network
A Convolutional Neural Network (CNN) is a type of neural network that has not only
shown impressive results in areas such as image recognition and image classification,
but also in Natural Language Processing, where it has been successful in the various
text classification tasks it was used for.

As the name indicates, this type of network employs a mathematical operation, called
convolution, which is a special form of linear operation. This convolutional operation
describes a rule for merging two sets of information by multiplying two functions 𝑓 and
𝑔 and is also known as a feature detector of a CNN. The convolution takes raw data or
a feature map as input, applies a convolution kernel and returns a feature map as an
output. A filter is often applied to the input data to reduce the information by filtering
the data with the kernel. An operation of a one-dimensional convolution can be denoted
as [26, p. 131]

ℎ(𝑖) = (𝑓 * 𝑔)(𝑖) =
+∞∑︁

𝑗=−∞
𝑓(𝑗) · 𝑔(𝑖 − 𝑗). (2.5)

The convolutional operation ℎ(𝑖) defines the product of the input function 𝑓 and the
kernel function 𝑔 in a one-dimensional domain. The convolution between 𝑓 and 𝑔 is
calculated at the point 𝑖 and acts on the same input data 𝑥. In the last part of the
equation an integral over all values between negative and positive infinity is calculated.
Then the value of 𝑓(𝑥) at the point 𝑗 is multiplied with the value of 𝑔(𝑥) at the point
𝑖 − 𝑗, which is the point of calculation of the convolution at a specific point 𝑗 in the
integral [12, pp. 331–332].

A CNN is basically a collection of layers of convolutions and consists of three different
layers. A first layer performs several convolutions to produce an output and then in the
second layer the output is run through a nonlinear activation function, such as 𝑅𝑒𝐿𝑈
or 𝑡𝑎𝑛ℎ, which have already been described in the introduction of Section 2.2. The third
and final layer includes the pooling function to modify the output before it is processed
further. A pooling layer replaces the output to reduce the output dimensionality so that
it only focuses on the relevant information in the output data [12, pp. 339,342]. Filters,
which are applied to the convolutions on the input matrix and generate feature maps,

2. Artificial Intelligence Basics 13

onto which the pooling layers can be applied with the aim of further modifying the
output are major components of a convolutional layer [26, p. 133].

The distinctive feature of this type of ANN is that not all the layers of the network
are connected with each others; instead, each layer is connected to only a certain num-
ber of adjacent layers. They receive input, transform it in the layer and outputs the
transformed input to the next layer. As already mentioned, the convolutional layer also
consists of a set of filters with different sizes that transform the input data into a lower
dimension. This transformation is then called a convolution operation [18, p. 49].

In a CNN model for Natural Language Processing tasks, the matrix consists of
tokenized sentences, where the rows depict a word vector representation of each token.
These vectors are word embeddings with a specified dimensionality, which is introduced
in the next Chapter 3. The advantage of convolutional filters in text applications is their
ability to learn good representations automatically, without representing the whole data
vocabulary. By vectorizing discrete data (e.g., words or characters), it is possible to work
with continuous data, which represent the discrete tokens. The filter sizes of a CNN for
Natural Language Processing applications are equal to the dimensionality of the discrete
input data, which means they are equal to the length of an input sentence. The layer
then outputs feature maps, whose size influences the depth or dimensionality of the
output. The hyperparameters for the convolutional filter are task-dependent and have
to be defined based on the special use case of learning [33].

2.2.2 Recurrent Neural Network
A Recurrent Neural Network (RNN) is a special type of ANN, which takes sequential
data as an input to solve ML problems, such as speech recognition, language modelling,
sentiment analysis, or image captioning [15, p. 175]. RNNs make use of sharing param-
eters across numerous layers within the network. Therefore, making it possible to use
the same weights over time and generalize across them. This functionality is important
when special information occurs at multiple positions within the sequence [12, p. 373].

A typical RNN has nodes with recurrent connections to themselves, this enables to
update and evolve the weights during the sequencing process. Each token of a sequence
contributes new information, which then updates the current state of the RNN model.
Based on a real-life example it can be compared with reading a sentence in a body
of text: each new word that it is read in the sentence updates the current state of
information, but it is also dependent on all the words that preceded it. This type of
network is called recurrent, because as was previously mentioned, a task is performed for
every token of an input sequence and its output depends on the previous computations.
Figure 2.5 provides a visual representation of the architecture of an RNN network in
form of a loop. On the left side of this visualization, it can be seen a general overview
of the architecture in compact form and on the right, the chain-like nature with an
unrolled structure of an RNN. If a sentence consists of five words, the network would
also be unrolled into a 5-layer neural network, in which each layer belongs to a word of
the sequence [18, p. 69].

To define the values of the hidden states of the network, the basic equation of an
RNN is shown, using the variable ℎ to represent the state,

ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡; 𝜃). (2.6)

2. Artificial Intelligence Basics 14

Figure 2.5: The unrolled structure of the RNN shows that the input 𝑥 (i.e., token of a
sequence) is observed at a time step 𝑡 and the state vector ℎ𝑡 is updated from the previous
state vector ℎ𝑡−1. Processing new input always is dependent on the current state ℎ𝑡 and
thus on the history of the sequence (see Figure 5-2 in [18, p. 69]).

This equation shows the calculation of the current state ℎ𝑡, which represents the state
of a hidden unit at the time 𝑡. This computation is based on the previous hidden state
ℎ𝑡−1 and the current external input value 𝑥𝑡. To apply non-linearity to the output
of the calculation, an activation function 𝑓 with its parameters 𝜃 is used, which are
shared during training of the model to generalize the model to the sequence length [12,
pp. 376–377].

However, an RNN will reach its limits when handling longer sequences, because it is
only capable of looking backwards for just a few steps. Therefore, the next technology
presented seeks to resolve this limitation. Long Short-Term Memory solves this problem,
which is also called Vanishing Gradients Problem; this occurs when the values of the
gradient of a model are too small and the model requires too much time for training
and as a result effectively stops learning.

Long Short-Term Memory

A Long Short-Term Memory (LSTM) network can be used to solve such tasks where the
ability to be able to learn sequences with very long time spans in between is required.
This network was introduced by Hochreiter and Schmidhuber in [17] in 1997. This net-
work has a special memory mechanism with an improved ability to store information for
longer periods of time. An LSTM network, which is capable of long-term dependencies
is the most commonly used variation of RNN [15, p. 187].

The advantage of LSTM networks and the difference compared to traditional RNNs
is the process by which they remember and forget information. Firstly, important in-
formation from the present should be remembered and unimportant information from
the past can slowly be forgotten thereby providing space for newer recently acquired
information. A special kind of mechanism, which is called gate operation, must there-
fore be used to apply this kind of knowledge filtering [4, p. 195]. This system of gating
units, which is designed to control the flow of information within the network consists

2. Artificial Intelligence Basics 15

of so-called LSTM cells and is located in an internal recurrence inside the RNN. The
system consists of three gates, each of which are allocated different tasks, these will
now be briefly described. The forget gate 𝑓 defines how much information has to pass
through the previous state ℎ𝑡−1 before it allows the network to forget less important
information. The input gate 𝑖 behaves in a very similar fashion to the forget gate 𝑓
with the main difference being that the input gate defines how much information of the
newly computed state for the input 𝑥 will be kept in the network. Finally, the output
gate 𝑜 defines how much of the filtered information will be output by the LSTM cell [12,
p. 410]. To be able to calculate the newly updated cell state 𝑐, it is also necessary to
define an internal hidden state 𝑔, which is computed based on the current input 𝑥 and
the previous hidden state ℎ𝑡−1. Then the cell state 𝑐 at the time 𝑡 is updated by multi-
plying the previous cell state 𝑐𝑡−1 by the forget gate 𝑓 and the internal hidden state 𝑔
by the input gate 𝑖 [15, p. 188].

Chapter 3

Natural Language Processing

The field of Natural Language Processing (NLP) deals with the process of understand-
ing human (i.e., natural) language and how a computer can perform useful tasks with
it. NLP combines computational linguistics, computer science, cognitive science, and AI
while attempting to model a cognitive mechanism based on the underlying understand-
ing of human language. Applications in NLP seek to facilitate the interaction between
computers and human language and include tasks, such as speech recognition, natural
language understanding, machine translation, sentiment analysis, or natural language
generation [9, p. 1].

ML models work with text sequences transformed into vector space because it is
necessary to work with continous data when trying to train a model. Therefore, the
input sequences have to be mapped from words to lower-dimensional continuous vec-
tors to enable a scalable representation, which then can be fed into an ANN layer. In
addition, processing text data is very different compared with using image data during
the training, as it possesses special properties, which make it difficult to handle at first.
For this reason, natural language data requires some basic pre-processing steps before
continuing with processing, these are shown in Chapter 6 [18, pp. 82, 93].

To build an efficient ML model for natural language, special techniques are required
to process sequences of tokens. These tokens can consist of the following: words, indi-
vidual characters or bytes. In this specific case, a word-level model was used to solve
this ML problem. These word-level language models have to operate on extremely high-
dimensional discrete space because the vocabulary size (i.e., the number of total words
occurring in the dataset) is higher than in a set of characters occurring in the set of
sequences [12, p. 461].

One possibility of representing the text data in a continuous space is to encode the
words into a list of indices, which results in a sequence of integers corresponding to
the words of a sentence. However, this technique, where each index is encoded in a
binary categorical form will simply end up creating a problem, because this very large
vocabulary set is not scalable for training purposes, which will result in data sparsity
and computational issues [18, p. 87]. This problem is reffered to as the curse of dimen-
sionality; this describes what occurs when an extremely high number of dimensions is
present in the data. The resulting amount of possible configurations of a set of tokens
increases exponentially as the number of tokens increases [12, p. 155]. For example, if a

16

3. Natural Language Processing 17

joint probability of 10 words is applied to a dataset with a vocabulary size of 100,000,
a potential number of 10000010 = 1050 parameters becomes possible. In a continuous
space, it is possible to obtain a generalization to concatenate very short overlapping
values and reduce the dimensions. However, in discrete spaces, this is not possible, be-
cause any alterations to the discrete variables could cause a very different result and
may have a drastic impact on the value of the function [2].

To overcome this curse of dimensionality, a distributed representation of the words
must be used to help recognize the similarity between two tokens or words without
losing the ability to encode each word differently. In local representations, in contrast,
tokens are modelled as discrete symbols and as has been previously mentioned their
interactions with each other are encoded as a set of discrete relations. This distributed
word representation is called word embedding and captures the relations and similarities
between the tokens in form of activations in a vector. For instance, if the model has
observed the word dog many times during training and the word cat only occurs a few
times, correlations between these 2 words can be recognized, if the learned vectors of dog
and cat are similar to each other; therefore, it is possible to share statistical strength
between these 2 learned vectors [12, p. 464; 10, pp. 92, 117].

Each word of the vocabulary set is associated with a point (i.e., feature value) in a
vector space with a 𝑑-dimensional vector. The number of features 𝑑 is much smaller than
the vocabulary size and is set in the process of hyperparameter tuning depending on the
dataset and implemented ML model; this is described in greater detail for this specific
implementation in Section 7.4. The mapping from the feature value to the 𝑑-dimensional
vector space is implemented by means of an embedding layer, which performs as a look-
up table [10, p. 49].

To summarize, a distributed representation or word embedding converts tokens, such
as words into vectors in which the similarity between the vectors correlates with the
semantic similarity between the words. Each word is transformed into its associated
vector with a function 𝜙 and can be denoted as [15, p. 142]

𝜙(“𝐵𝑒𝑟𝑙𝑖𝑛”) − 𝜙(“𝐺𝑒𝑟𝑚𝑎𝑛𝑦”) ≈ 𝜙(“𝑃𝑎𝑟𝑖𝑠”) − 𝜙(“𝐹𝑟𝑎𝑛𝑐𝑒”). (3.1)

In this example, the word pairs (Paris, Berlin) and (France, Germany) are related in
some way and cause the similarity between the vectors. Conversely, a possible value can
also be deduced by reserving the equation to

𝜙(“𝐵𝑒𝑟𝑙𝑖𝑛”) − 𝜙(“𝐺𝑒𝑟𝑚𝑎𝑛𝑦”) + 𝜙(“𝑃𝑎𝑟𝑖𝑠”) ≈ 𝜙(“𝐹𝑟𝑎𝑛𝑐𝑒”). (3.2)

By knowing there is a semantic relationship between Berlin and Germany, the related
value for Paris can be predicted using the associated semantic similarity between the
vectors.

In this chapter, the focus is on tasks based on natural language, which was introduced
within the bigger topic of NLP. The basic concept, which is about how we can turn
text into structured data and let an ML system read or process it as natural language
were presented. In the following section, the more specific topic of Natural Language
Generation is described, where the aim is to show how an ML application is able to
write natural language and turn structured data into text.

3. Natural Language Processing 18

3.1 Natural Language Generation

The field of Natural Language Generation (NLG) is a subfield of NLP and has the task
of producing new data based on a given training dataset. It does this by analyzing, in-
terpreting and organizing data into comprehensive data. NLG is located within the field
of AI and computational linguistics and is about constructing a computer system, which
is able to produce understandable text in any human language from some underlying
non-linguistic representation of the text [27].

With a language model, a probability distribution over the sequences of tokens in
form of discrete values can be defined. The task of language modelling is about assigning
a probability to a sequence and its tokens. In addition, the next token or word of a
sequence will be predicted through a probability given to the token. To be able to
model a sequence of tokens 𝑤1:𝑛, a probability has to be estimated for every part of
the sequence. This can be done with a chain-rule of probability broken down to its
component probabilities, which can be rewritten as [10, p. 105]

𝑝(𝑤1:𝑛) = 𝑝(𝑤1)𝑝(𝑤2 | 𝑤1)𝑝(𝑤3 | 𝑤1:2)𝑝(𝑤4 | 𝑤1:3) · · · 𝑝(𝑤𝑛 | 𝑤1:𝑛−1)

=
𝑛∏︁

𝑖=2
𝑝(𝑤𝑖 | 𝑤1, · · · , 𝑤𝑖−1).

(3.3)

The chain-rule makes it possible to predict a sequence of words, token by token. As-
signing a probability score to the entire sequence is based on predicting tokens that are
conditioned by the preceding tokens. As can be seen at the beginning of Equation 3.3,
only the first word 𝑤1 of a sentence is predicted and based on the first token, then a
probability is assigned to the second token. The probability for the third token is then
assigned based on the first and second token predictions 𝑤1:2, and so on. This continues
until the last token is reached, which is calculated based upon the previously modelled
sequence 𝑤1:𝑛−1 [10, pp. 105–106].

Once the language model is trained on a given dataset, random sentences can be
generated from the NLG model according to the following process: at the beginning,
the first token or word of a sequence is predicted based on a predicted probability
distribution over the first word conditioned on the start symbol. Then, the second word
is predicted conditioned on the first word and the probability distribution predicted
for the second word. This process is continued until the last token of the sequence
is reached. The task of NLG is mostly accomplished by an RNN architecture with
LSTM cells, because it performs very well and is very efficient at capturing statistical
regularities in sequential inputs [10, pp. 112, 163].

Language models are used in many real-world applications to generate text or modify
sequences for NLG or NLP. Possible uses are image captioning, text summarization, ma-
chine translation, spelling correction, response generation used for chatbots or personal
assistants, or text generations, such as fake reviews or fake news [15, p. 178].

Chapter 4

Deep Generative Modelling

In this chapter, the focus is on the deep generative models used in Unsupervised Learn-
ing, which have been described in Section 2.1.2. The goal is to create new data based on a
training dataset and its distribution 𝑝𝑑𝑎𝑡𝑎 by representing an estimation of a probability
distribution 𝑝𝑚𝑜𝑑𝑒𝑙 [11, p. 2].

In contrast to generative models, discriminative models are used in Supervised
Learning (described in Section 2.1.1) and map input data 𝑥 to a particular output
label 𝑦, which will be termed conditional probability and can be denoted as 𝑝(𝑦 | 𝑥).
However, a generative model learns the input data 𝑥 as well as the output label 𝑦 and
estimates a joint probability distribution, denoted as 𝑝(𝑥, 𝑦). Which means these mod-
els possess the ability to analyse the underlying hidden structure of unlabelled training
data 𝑝𝑑𝑎𝑡𝑎 to produce a new probability distribution 𝑝𝑚𝑜𝑑𝑒𝑙 [12, p. 105; 15, p. 248].

In the field of generative modelling, it is common practice to use the principle of max-
imum likelihood estimation. The goal of the maximum likelihood method is to estimate
a probability distribution, parameterized by parameters 𝜃 to maximize the likelihood of
the training data, given a set of observations [11, pp. 8–12]. The maximum likelihood
estimator for parameters 𝜃 is then defined as

𝜃𝑀𝐿 = arg max
𝜃

𝑛∏︁
𝑡=1

𝑝𝑚𝑜𝑑𝑒𝑙 (𝑥𝑡 | 𝜃) . (4.1)

In this equation a set of 𝑛 independent and identically distributed observations {𝑥1, · · · , 𝑥𝑛}
from the unknown data distribution 𝑝𝑑𝑎𝑡𝑎 is used. Therefore 𝑝𝑚𝑜𝑑𝑒𝑙 (𝑥𝑡 | 𝜃) represents a
probability distribution over the same space indexed by 𝜃 and maps 𝑥 to an estimated
real number from the true probability 𝑝𝑑𝑎𝑡𝑎(𝑥). After calculating the product with

∏︀𝑛
𝑡=1,

this parameter, which maximizes the likelihood, can be searched by the arg max𝜃 func-
tion [12, p. 131].

Several generative models have been proposed in recent years and three common
techniques for NLG in general are discussed in the following sections. First, the princi-
ples and related works for Autoregressive Models and Variational Auto-Encoder will be
introduced and then Generative Adversarial Networks are described in more detail.

19

4. Deep Generative Modelling 20

4.1 Autoregressive Models

Autoregressive models are also known as Fully Visible Belief Networks (FVBN), rep-
resent a very simple approach to deep generative modelling and are based on the idea
of generating new samples using previous output data. They take the output from the
previous step as an input for the regression of the next time step to predict new values.
For this, the chain rule can be applied to decompose a joint probability distribution
𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) over an 𝑛-dimensional vector 𝑥 of observed variables to obtain a product of
conditionals with [12, p. 705]

𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) =
𝑛∏︁

𝑡=1
𝑝𝑚𝑜𝑑𝑒𝑙 (𝑥𝑡 | 𝑥1, · · · , 𝑥𝑡−1) . (4.2)

Autoregressive models are commonly used in deep generative modelling, such as image
generation, audio generation or NLG. A very common autoregressive model introduced
by van den Oord et al. in 2016 and used for the continuous data generation of images is
PixelRNN [23]. This model assigns a probability to every pixel of an image based on the
information derived from all the previously generated pixels. WaveNet [24] is another
popular FVBN, which is used to produce raw audio data in the form of realistic human
speech, this was also published by van den Oord et al. in 2016.

The best-known approach to the use of autoregressive models in NLG is the gener-
ation of text with RNNs, introduced in Section 2.2.2. Graves [14] described how RNNs
could be used to generate complex sequences by predicting every data point one by one.
This approach can be used for generating discrete data, such as text sequences and is
visualized in Figure 4.1. The implementation of char-rnn [36], developed by Karpathy
in 2015 uses this approach to generate text on character-level. The model receives a text
file as input and learns to predict every character in a sequence by parameterizing the
predictive distribution from the output vector for the next input.

4.2 Variational Auto-Encoder
Traditional auto-encoders are generally trained to generate new data similar to the
original input data by attempting to copy the input to the output. Variational Auto-
Encoders (VAE) [20] are a more probabilistic type of traditional auto-encoders. Instead
of representing the data by just learning to compress data, such as auto-encoders, VAEs
have the ability to generate new data by learning the parameters from a probability
distribution model with which to represent the data. These auto-encoders consist of
more complex architecture than autoregressive models and are made out of two RNNs,
one of which represents the encoder and another the decoder network both of which are
capable of producing parameters (see Figure 4.2).

To generate new samples, first a latent representation 𝑧 is created from the distri-
bution 𝑝𝑚𝑜𝑑𝑒𝑙(𝑧) and then the latent variables are decoded, to obtain new samples. The
probabilistic encoder with the recognition model 𝑞𝜑(𝑧 | 𝑥) produces a distribution over
all the possible values of 𝑧 based on the input 𝑥. Whereas model 𝑝𝜃(𝑥 | 𝑧) represents the
probabilistic decoder, which produces a distribution over all the possible corresponding
values of 𝑥 based on 𝑧 [12, p. 696].

4. Deep Generative Modelling 21

Figure 4.1: A vectorized input sequence 𝑥 = {𝑥1, · · · , 𝑥𝑡} is passed to a hidden layer with
a specific amount 𝑖 of hidden nodes per time step ℎ𝑖 = {ℎ𝑖

1, · · · , ℎ𝑖
𝑡}. After computing the

hidden vector sequences, the output vector sequence 𝑦 = {𝑦1, · · · , 𝑦𝑡} can be calculated.
The dashed arrows then represent the prediction process at one time step. For instance
the prediction for 𝑥𝑡 is based on 𝑦𝑡−1 and can be denoted as 𝑝(𝑥𝑡 | 𝑦𝑡−1) [14, p. 3].

Figure 4.2: Basic structure of VAE models: the encoder 𝑞(𝑧 | 𝑥) compresses data 𝑥 into
a lower-dimensional latent space 𝑧. To generate new samples, which look similar to the
input data, the decoder 𝑝(𝑥 | 𝑧) obtains input through the latent representation 𝑧 and
outputs its reconstruction 𝑥′.

An intent of VAEs is training by maximizing a variational lower bound ℒ(𝜃, 𝜑; 𝑥𝑖)
of the data log-likelihood based on the data point 𝑥. Optimizing the variational lower
bound affects both, the parameters of the encoder 𝜑 and the parameter of the decoder
network 𝜃. To measure and optimize the dissimilarity between the probability distri-
butions of encoder and decoder, a Kullback-Leibler (KL) divergence 𝐷𝐾𝐿(𝑞𝜑(𝑧 | 𝑥𝑖) ||
𝑝𝜃(𝑧)) is minimized to keep 𝑝 close to 𝑞 [12, p. 697; 20, p. 3].

There are many VAE implementations for continuous data, such as images, but
there are only a few implementations for use with text, which is based on discrete
data. Bowman et al. [5] published a paper in 2016 with regard to the case of NLG,
which introduce an RNN-based VAE that integrated latent distributed representations
of entire sentences. The advantage compared to traditional RNN language models is
the explicit ability to model the holistic properties of sentences, such as the style or
topic of a text. For that specific VAE model for text generation, two single-layer LSTM
networks were used for the encoding and decoding network.

4. Deep Generative Modelling 22

Figure 4.3: Basic structure of GAN models: generator turns random noise 𝑧 into fake
data 𝑥′ and attempts to fool the discriminator. The discriminator tries to distinguish fake
input 𝑥′ from real input 𝑥.

4.3 Generative Adversarial Networks

The basic idea behind a Generative Adversarial Network (GAN), introduced by Good-
fellow et al. [13] in 2014, is to train two models simultaneously: the generative model
produces new samples based on a training dataset 𝑝𝑑𝑎𝑡𝑎 and the discriminative model
classifies the samples into two different classes (real or fake), as described in Figure 4.3.
The real samples come from the training dataset 𝑝𝑑𝑎𝑡𝑎 and the fake data samples were
generated by the network and derive from 𝑝𝑚𝑜𝑑𝑒𝑙.

The generator 𝐺 uses parameters 𝜃𝐺 and input data 𝑧 to generate new samples
with 𝑥 = 𝐺(𝑧; 𝜃𝐺). The discriminator 𝐷, however, tries to distinguish between samples
drawn from the training dataset 𝑥 or samples drawn from the generator 𝑥′ by taking the
samples as input and using 𝜃𝐷 as parameters. The output of 𝐷 should then indicate the
probability, if the sample comes from 𝑝𝑑𝑎𝑡𝑎 or 𝑝𝑚𝑜𝑑𝑒𝑙 by emitting a probability value given
by 𝐷(𝑥; 𝜃𝐷). The goal of both neural networks is to minimize their costs by controlling
their own parameters 𝜃𝐺 and 𝜃𝐷 [12, p. 699].

This technology is a relatively new type of deep generative modelling, which provides
training via an adversarial process and corresponds to a zero-sum or two-player minimax
game. To obtain the best result for both models, the payoffs for both models 𝐺 and 𝐷
can be maximized by applying [13]

min
𝐺

max
𝐷

𝑣(𝐷, 𝐺) = E𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥) log 𝐷(𝑥) + E𝑥∼𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) log(1 − 𝐷(𝑥)). (4.3)

On the one hand the equation describes how the expected value of a sample 𝑥 from
the real data distribution 𝑝𝑑𝑎𝑡𝑎 should be maximized. On the other hand, the expected
value of a sample 𝑥 from the generated distribution 𝑝𝑚𝑜𝑑𝑒𝑙 should be minimized. At the
beginning of the training, 𝐷(𝑥) is almost 1 and therefore (1−𝐷(𝑥)) is almost 0 because
the model can very easily classify them correctly based on their differences in quality.
During the training process, both values will increase and decrease and should settle in
by the end of the model training.

In recent years, many GAN models have been published for the use of NLG appli-
cations. The most popular and relevant works will be briefly described in the following
Section 4.3.1.

4. Deep Generative Modelling 23

4.3.1 GAN models
There are several GAN models for text generation, but the majority of them are only
used in combination with images, for the purpose of text-to-image generation or image
captioning. GAN models, which are only used for generating pure textual data, are not
very common.

In this section, two GAN models, which are suitable for NLG tasks are presented.
Their concepts will be introduced, differences highlighted and this will provide a bridge
to the following chapter which is about the GAN model selected for the implementation.
This model SeqGAN [32] was introduced by Yu et al. in 2016 and is described in greater
detail in Chapter 5.

TextGAN [34], proposed by Zhang et al. in 2016 is based on a generic framework
containing a LSTM network and a CNN for adversarial training to generate realistic text
data. The objective of TextGAN is to match the feature distribution while training the
generator and use techniques for pre-training the model. Instead of training the network
policy, as is common with most other models, TextGAN matches high-dimensional latent
feature distributions, which should help to avoid the common problem of mode collapse.

Another GAN model for NLG is LeakGAN [16] proposed by Guo et al. in 2017 and
has been mentioned in many publications. The model was developed especially for the
generation of very long text sequences. The special feature of this model is the integra-
tion of two separate modules Worker and Manager in addition to the common GAN
components. The Manager module extracts features of the data currently generated and
returns a latent vector to guide the Worker for the generation of the next set of words. In
this manner, the generative model is able to incorporate additional informative signals
to all the generation steps. Therefore, an RL architecture can be used as a promising
mechanism with the objective of applying this leaked information into the generation
process.

Chapter 5

SeqGAN Architecture

Multiple models have already been published for NLG with GANs, and can there-
fore be reused for implementation in further projects. However, the generation of short
sequences (e.g., news headlines) has so far been neglected and leaves room for improve-
ment. One of the models intended for short sequence generation is called SeqGAN, as
already mentioned in the previous chapter. The following parts are based on the initial
paper [32] from Yu et al.

To solve the problem of generating discrete tokens, this particular GAN model in-
tegrates an RL approach. SeqGAN was developed for text and music generation and
has already been mentioned in many papers and publications. Additionally, the model
has already been used as a basis for new GAN models with the aim of defining models
for specific use cases. The paper shows the results of experiments based on generating
Chinese poems and political speeches of Barack Obama with a sequence length of 2 for
Chinese poem generation and 20 for political speech generation. For this reason the con-
cept and approach of Yu et al. with SeqGAN was chosen to improve the implementation
for generating news headlines (short sequences).

The architecture, shown in Figure 5.1, describes the procedure of sequence generation
with SeqGAN. On the left side, the mixed data with real and fake samples is fed into
the discriminative model, which is trained to differentiate between real and generated
sequences. On the right, the generator is represented as policy in traditional RL. The
states are previous tokens, which have been stored in hidden states and the action is
the generation of the next token. To evaluate parts of a sequence, the rest of a sequence
is filled up by Monte Carlo search.

In this special GAN model, the idea and functionality of RL, which was already de-
scribed in Section 2.1.3 is applied to solve the problem of generating discrete tokens. The
generative model 𝐺 with the parameters 𝜃 produces sequences 𝑌1:𝑇 = (𝑦1, · · · , 𝑦𝑡, · · · , 𝑦𝑇)
based on the real training dataset and the resulting vocabulary set of candidate tokens,
while 𝑦1 is the first token generated and 𝑦𝑇 is the last token generated in a sequence.
State 𝑠 in RL represents the tokens already produced (𝑦1, · · · , 𝑦𝑡−1) within a specific
timestep 𝑡 and an action 𝑎 is then the next token 𝑦𝑡 generated.

The generator 𝐺𝜃(𝑦𝑡 | 𝑌1:𝑡−1) is a stochastic policy model, because the probability
distribution is generated over the actions. Every new token 𝑦𝑡 of the sequence 𝑌 is
generated based on the tokens already generated by the sequence 𝑌1:𝑡−1. SeqGAN uses
an RNN with LSTM cells, which was described in Section 2.2.2, as a generative model,

24

5. SeqGAN Architecture 25

Figure 5.1: The architecture of SeqGAN on the left side of the diagram shows the process
of the discriminative training and on the right side of the diagram how the training of
the generative model including RL is approached (see Figure 1 in [32]).

which was able to apply backpropagation through time. First of all, input word embed-
ding representations 𝑥1, · · · , 𝑥𝑇 are created out of the input sequences and are mapped
into sequences of hidden states ℎ1, · · · , ℎ𝑇 . This can be done with a update function
𝑔 in a recursive way to get the current hidden state ℎ𝑡 = 𝑔(ℎ𝑡−1, 𝑥𝑡). Afterwards, the
hidden states can be mapped into an output token distribution by adding a softmax
output layer 𝑧 with

𝑝(𝑦𝑡 | 𝑥1, · · · , 𝑥𝑡) = 𝑧(ℎ𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊ℎ𝑡 + 𝑏). (5.1)

The parameters of the softmax output layer include a bias vector 𝑏 and a weights matrix
𝑊 , which is updated during backpropagation. This final layer basically decides whether
a neuron should be activated or not.

At the same time, the discriminative model 𝐷 with its parameters 𝜑 is trained to
improve the quality of the generator 𝐺𝜃. The discriminator 𝐷𝜑(𝑌1:𝑇) predicts whether
a sequence 𝑌1:𝑇 is real or fake and its probability. The model is implemented as a CNN,
introduced in Section 2.2.1 because it has already proven itself in classification tasks
of text data. First of all, an embedding matrix is built out of every input sequence
𝑥1, · · · , 𝑥𝑇 . Every input token 𝑥 of sequence represents a token embedding and a matrix
ℰ1:𝑇 is built, on which a new feature map can be produced by applying

𝑐𝑖 = 𝜌(𝑤 ⊗ ℰ𝑖:𝑖+𝑙−1 + 𝑏). (5.2)

This feature map is created from a convolutional operation that is applied to a window
size of 𝑙 words by a kernel 𝑤. The number of kernels and window sizes can be easily
changed to obtain various features and therefore achieve better results. At the end, a
max-pooling layer is used over the feature maps 𝑐 = max {𝑐1, · · · , 𝑐𝑇 −𝑙+1} to extract
the largest number of the vector 𝑐. More details with regard to convolutional operations
are presented in Section 2.2.1. A special implementation feature of SeqGAN is the addi-
tional highway layer [29] to control the flow of information. Finally, a sigmoid activation
function is used to predict the probability that a sentence is real.

During the complete training process, both models are trained simultaneously and
their functions are called upon alternately. The objective of the generative model is to

5. SeqGAN Architecture 26

Algorithm 5.1: This algorithm shows full details of SeqGAN.
Require: generator policy 𝐺𝜃, rollout policy 𝐺𝛽, discriminator 𝐷𝜑, training dataset

𝑆 = {𝑋1:𝑇 }
1: Initialize 𝐺𝜃 and 𝐷𝜑 with their parameters 𝜃 and 𝜑
2: Pre-train 𝐺𝜃 on dataset 𝑆 using maximum likelihood estimation
3: 𝐺𝜃 generates fake samples for training 𝐷𝜑

4: Pre-train 𝐷𝜑 with minimizing cross entropy loss
5: repeat
6: for 𝐺 training steps do
7: Generate a sequence 𝑌1:𝑇
8: for timestep 𝑡 in 1 : 𝑇 do
9: Compute reward 𝑄(𝑎, 𝑠)

10: end for
11: Parameters of 𝐺 are updated via policy gradient
12: end for
13: for 𝐷 training steps do
14: Fake sequences of 𝐺𝜃 and real sequences of 𝑆 are combined
15: 𝐷𝜑 is trained with combined dataset
16: end for
17: until SeqGAN model converges

generate the sequence from the beginning with a start state 𝑠0 to maximize the expected
reward value. In this paper, therefore an action-value function 𝑄𝐺𝜃

𝐷𝜑(𝑎, 𝑠) is estimated
with the use of the REINFORCE algorithm by Williams [31]. The probability estimated
by the discriminative model 𝐷𝜃(𝑌 𝑛

1:𝑇) to be real is considered as the reward and can be
denoted as

𝑄𝐺𝜃
𝐷𝜑(𝑎 = 𝑦𝑇 , 𝑠 = 𝑌1:𝑇 −1) = 𝐷𝜑(𝑌1:𝑇). (5.3)

The action-value function returns a value following policy 𝐺𝜃, which means that the
expected value is used for action 𝑎 in a certain state 𝑠. The action represents the last
token in a sequence 𝑦𝑇 and the state is the collection of all previously generated tokens of
a sequence 𝑌1:𝑇 −1. Since the discriminator only can analyse finished sequences, the state
is always a collection of all tokens, except the last one. Therefore, the discriminative
model can only provides a reward for finished sequences; however, for the training to
be successful a long-term reward value is required at every timestep. To solve this
problem and at the same time be able to evaluate an action-value for intermediate
states, SeqGAN applies Monte Carlo search with a rollout policy 𝐺𝛽 to generate the
last unknown tokens of a sequence 𝑦𝑇 −𝑡. If the sequence is not yet generated until the
end 𝑡 < 𝑇 and no intermediate reward is available, the model iteratively creates the
next-state value starting from the current state 𝑠 = 𝑌1:𝑡 rolling out to the end of a
sequence based on the rollout policy 𝐺𝛽.

To get a better overview of the model’s architecture, in Algorithm 5.1 every step of
the process is specified in a pseudo code visualisation. After initializing the two neural
networks 𝐺𝜃 and 𝐷𝜑, both networks are pre-trained. This is done by means of maximum
likelihood estimation (described in Chapter 4) for the generator based on the training

5. SeqGAN Architecture 27

dataset. To pre-train the discriminative model by minimizing cross entropy loss, the
generator first has to produce fake samples, which are fed into the discriminator. Then
the training process starts in a loop until the model converges. This loop is further
subdivided into two further separate loops, which are activated alternatively: one for
the generator training steps and another for the discriminator training steps. In the 𝐺
loop sequences 𝑌1:𝑇 are generated and rewards 𝑄(𝑎, 𝑠) for every timestep are computed.
In the end, the parameters are updated via a policy gradient, which was described
earlier in this chapter. In the training loop for 𝐷, the same amount of generated fake
sequences of 𝐺 and real sequences of the training dataset 𝑆 are combined and fed into
the discriminative model. In this way, the discriminator is able to keep pace with the
generator because it is being periodically retrained with newly generated sequences from
𝐺𝜃. The sequences of the combined training set permanently change during the training
iterations to increase variability and improve predictions.

To evaluate and test the efficiency of the SeqGAN model, a real-world scenario
is simulated with a random initialized LSTM network to capture the dependency of
the tokens. This true model is an oracle designed to generate a real data distribution
𝑝(𝑥𝑡 | 𝑥1, · · · , 𝑥𝑡−1) for experiments. A big benefit of having such an oracle is that it
evaluates the performance of the SeqGAN model, which would not be possible using
real data alone. The best way to evaluate generated data is to use human observers to
review the data. In this case, the evaluation is inspired by a human evaluation to create
another distribution. The model only needs to minimize the Negative Log-Likelihood
(NLL) of this natural data distribution, in which the oracle can be considered as a
human observer for real-world problems. SeqGAN recommend a test stage where 𝐺𝜃

generates 100,000 sequences and calculates 𝑁𝐿𝐿𝑜𝑟𝑎𝑐𝑙𝑒 from each sample of 𝐺𝑜𝑟𝑎𝑐𝑙𝑒 and
the average loss.

Chapter 6

Data Management

One of the most important tasks in a Machine Learning project is to handle the data
correctly. The quality of the data generated not only depends on the implementation
and the hyperparameters defined but also is strongly reliant on the data used and its
quality. Therefore, the dataset used for the implementation is presented in Section 6.1
and the details of the dataset cleaning are shown in Section 6.2, as this is designed to
improve the quality of the data. After data acquisition, it is also necessary to pre-process
the data so as to be able to handle it correctly during the training process. This will be
described in Section 6.3 and Section 6.4.

6.1 Dataset
One of the initial key requirements is to have enough data for purpose of training the
model. The input sequences of the training data are fundamental for predictions and
therefore also for the output sequences of the training. First of all, a suitable dataset
for this special SeqGAN implementation for short sequences of news headlines has to
be located. The dataset1 used for the purpose of this implementation was downloaded
from the platform Kaggle and provided 1,103,665 data entries. These where a collection
of headlines from the newspaper New York Times2 dated between 19 February 2003 and
17 October 2016 and all head different sequence lengths, which were UTF-8 encoded.
The structure and entry examples of the dataset are visualized in Table 6.1.

6.2 Data Clearning
First, the data based on the original dataset had to be cleaned up to prepare it for
further processing. To save memory and improve run time, unnecessary information was
removed from the dataset before using it. The sequence length has been defined as five,
as this is the average length of a headline (explained in more detail in Section 7.4.1).
Therefore, all headlines with more than five words were deleted. Since only the text
content of the headline was required, the date of publication was removed and a new
field id added so that each headline could be uniquely identified. In addition, a new field

1https://www.kaggle.com/therohk/million-headlines
2https://www.nytimes.com/

28

https://www.kaggle.com/therohk/million-headlines
https://www.nytimes.com/

6. Data Management 29

Table 6.1: Structure and selection of entries of the original dataset.

publish_date headline_text

20030219 aba decides against community broadcasting licence

20050812 figures highlight improved waiting times

20070315 uni innovation campus secures big it tenant

20090306 tourists staying closer to home

20110916 graduate nurse recruitment to proceed

20130703 tour de france simon gerrans in yellow as

20150326 my audio template

20161017 new royal adelaide hospital paper records foi

Table 6.2: Dataset of news headlines after data cleaning process.

id headline_text fake

118 omodei to stay in politics 0

1529 dead whale turning visitors away 0

62720 earthquake hits california 0

201799 indonesian fishermen spotted ashore 0

439793 robinho fined by city 0

653196 minister reveals earlier prison drama 0

919534 a league live streaming updates 0

1103611 2017 year in review 0

was added to the dataset, which contains the information, required to identify if the
headline is real or fake. In the training dataset with the real sequences, all values of the
new field fake are zero (i.e., false). This value means that the headlines marked with
zero are real and these headlines marked with one are fake. With these data cleaning
steps, the size of the dataset entries was reduced from 1,103,665 to 324,518. A selection
of dataset entries after data cleaning is shown in Table 6.2.

6.3 Pre-Processing
Before the data can be used, it has to be pre-processed. Therefore, a CSV file has to be
loaded, transformed and then mapped into a data frame:

6. Data Management 30

1 df_real = pd.read_csv('headlines.csv', sep=',', usecols=['text', 'fake'])
2 df_real = df_real.sample(frac=1)
3
4 df_fake = pd.DataFrame(columns=['text', 'fake'])
5 df_evaluation = pd.DataFrame(columns=['text', 'fake'])

In line 2, the data frame is sampled and mixed up to improve variety. In addition to
the data frame with the real samples, in line 4 a second empty data frame is created,
which will be filled with the fake sequences during training. Another empty data frame
is created in line 5 for the purpose of evaluating the adversarial training and the perfor-
mance of the model and compares the results between a target generative LSTM model
and the SeqGAN model. How this is implemented is described in Section 7.5 and how
the evaluation works is explained in Chapter 8.

The way of preparation of the input sentences and how the information obtained was
then processed within the neural network can be implemented in a simplified manner
as follows:

1 tokenizer = Tokenizer(lower=False)
2 texts, labels = load_data(df_real)
3
4 tokenizer.fit_on_texts(texts)
5 sequences = tokenizer.texts_to_sequences(texts)
6 text_seq = pad_sequences(sequences, maxlen=SEQ_LENGTH)
7
8 labels = np.asarray(labels)
9 indices = np.arange(text_seq.shape[0])

10 np.random.shuffle[indices]
11 text_seq = text_seq[indices]
12 labels = labels[indices]
13
14 X_train = text_seq
15 y_train = to_categorical(labels, 2)
16
17 WORD_INDEX = [w for w, c in tokenizer.word_counts.items() if c > 5]
18 VOCAB_SIZE = len(WORD_INDEX)
19
20 def load_data(df):
21 texts = []
22 labels = []
23
24 for row in zip(df['text'], df['fake']):
25 texts.append(row[0].strip())
26 labels.append(row[1])
27
28 return texts, labels

At the beginning in line 1, a tokenizer had to be initialized and fitted into the training
dataset. The tokenizer is designed to break up the sequences of strings into pieces of
words (i.e., tokens). Before fitting the data, it is essential to split the data frame into
texts and labels. This was accomplished with the function load_data() in lines 20 to

6. Data Management 31

28. Here two iterable tuples based on the columns text and fake are extracted out
of the data frame. Every entry of each tuple is added to its corresponding array. To
be able to feed the data into the networks, first, the text has to fit the tokenizer and
then in line 5, the word sequences have to be converted into the corresponding tokens
with the function texts_to_sequences(). The sequences are then shaped to the same
length (defined in SEQ_LENGTH) with the Keras function pad_sequences() in line 6
to fit the placeholder of the input variable in the networks. If a sequence is shorter
than the defined sequence length, the missing tokens are filled up with zeros and in
the beginning, longer sequences are removed from the dataset as was described in the
previous Section 6.2. In lines 8 to 12 of the code snippet, the text and label arrays are
arranged and shuffled to reduce variance and over-fitting (described in Section 7.4).

After pre-processing the input data, the word index with corresponding indices is
created with the tokens, which appeared in the training dataset. Since headlines contain
a large amount of different words, which includes people’s names or company names,
a very large word index will be created. To reduce the variance only tokens over five
appearances are included in the word index. The resulting vocabulary size is calculated
by getting the length of the word index, i.e., the number of tokens in the word index.
What the variables SEQ_LENGTH and VOCAB_SIZE are used for is described in Section 7.4.

6.4 Data Handling
While the model is being trained, it is very important to load a suitable dataset, which
all depends on the generative or discriminative training process. In addition to the real
and fake data used in the adversarial training, also a data frame for evaluating the
training exists. Therefore, four different functions need to be created to either load a
specific dataset or return a mixed dataset:

1 def get_real_data()
2 def get_fake_data()
3 def get_evaluation_data()
4 def get_mixed_data()

The first three functions in lines 1 to 3 define which data to load from the specific
datasets (df_real, df_fake, df_evaluation) in a defined batch size. In line 4 the
function for loading a mixed dataset is defined. This composes a dataset with the same
amount of real and fake sequences to be used for training the discriminator in the
adversarial training process. The usage of each of the functions is shown in Section 7.5.
For the training process, it is always important to feed different data into the models.
This can be achieved by loading only parts of the dataset and by splitting the data
into parts of batch sizes. The easiest way is to mix up the whole dataset and take the
first 𝑛 entries when 𝑛 is the defined batch size (specified in Section 7.4). The newly
generated samples are then directly included in the data frame for fake data to use
them in the following training loops. At the end of training, this data frame (df_fake)
is automatically saved in a CSV file with a unique name to document the data generated
during the training process.

Chapter 7

SeqGAN Implementation

The intention of this chapter is to provide a deeper insight into the implementation by
showing code snippets combined with corresponding explanations as to exactly why this
solution was chosen. The technology used as a basis for the implementation is introduced
in Section 7.1. The discriminative and the generative models are subsequently shown in
detail in Sections 7.2 and 7.3. The structure and architecture of these models are applied
according to the concept and approach of SeqGAN. In Section 7.4, the hyperparameter
tuning is presented with an explanation of the values selected for the parameters and
the reason why these were selected. The adversarial training process in Section 7.5, in
which the combination and interaction between both network and training process is
visualized and explained concludes the implementation chapter.

7.1 Technology Stack
It is crucial to ensure that enough computational power, for management of the amount
of parameters required by the bigger and more complex neural networks is available,
in this case to deal with Machine Learning (ML) and Deep Learning (DL) models.
To handle this amount of data, a Graphics Processing Unit (GPU) instead of a Cen-
tral Processing Unit (CPU) will be required. For this reason the cloud-based service
Google Colaboratory1 was selected for the implementation and training of the model.
It is a research project initiated by Google created to support ML education and re-
search tasks. The platform does not require any additional setup and runs entirely in
the cloud. It provides upload and creation facilities for Jupyter Notebooks and the pos-
sibility of switching the runtime from CPU to GPU for the duration of a single 24-hours
training session, when required. A GPU environment is essential for the training of a
GAN because it is more efficient for matrix multiplications and it can provide more
computational units and a higher bandwidth to retrieve data from memory.

Jupyter2 notebook is a web application used in the development of open-source
software for ML applications. It has the ability to create and share documents containing
live code, equations, visualizations and descriptions in the form of text. In addition
to ML tasks, Jupyter notebooks are also useful for data cleaning and transformation,

1https://colab.research.google.com/
2https://jupyter.org/

32

https://colab.research.google.com/
https://jupyter.org/

7. SeqGAN Implementation 33

numerical simulation, statistical modelling or data visualization applications.
Python3 is one of the most popular and powerful interpreted high-level server-side

programming languages available for ML tasks; its use in this implementation is specif-
ically to develop the DL tasks. Unlike other programming languages, Python is suitable
for both research and development projects and provides a complete language and plat-
form. The simple syntax and rapid implementation offered by Python make it possible to
quickly and easily experiment with new ideas and create prototypes. The huge amount of
inbuilt libraries and modules, which are available, are an added bonus when completing
a variety of different tasks.

The open-source ML library TensorFlow4, developed by Google, was chosen for use
in this implementation on the grounds of its easy to use mathematical functionality.
The library makes it possible to obtain high-performance numerical computations. The
primary reason, why TensorFlow was preferred over other popular libraries, such as
Keras or PyTorch was the integrated Reinforcement Learning functionality, which re-
quires more modifications of calculations (e.g., a reward must be calculated within the
network). As can be seen in many rankings of ML libraries, TensorFlow is extremely
popular for most ML implementations. The popularity of TensorFlow ensures that the
combined experience of a very large community and extensive documentation are avail-
able. In Figure 7.1 the Deep Learning Framework Power Scores 2018 [35] from the data
science platform Towards Data Science is displayed, which not only considered the pop-
ularity, but also the usage and interest. Following evaluation categories were chosen to
provide a well-rounded view of DL frameworks based on popularity and interests:

• Online Job Listings,
• KDnuggets Usage Survey,
• Google Search Volume,
• Medium Articles,
• Amazon Books,
• ArXiv Articles,
• GitHub Activity.

As can be seen from the listing above, a variety of different perspectives is offered
to guarantee an extensive evaluation of possible DL frameworks. These categories on
the one hand includes the point of view of implementation, such as GitHub5 activity
rankings, the Google search volume or articles from the platform Medium6 and on the
other hand academical sources, such as research articles from ArXiv7 or available books
on Amazon8. Further details can be looked up in the original article [35].

To make the training process and the GAN computations easier to understand, it
is necessary that the TensorFlow graph and quantitative metrics, illustrating loss and
accuracy be plotted in the form of a diagram. For the purposes of this implementation,
this was done with the suite of visualization tools provided by TensorFlow, called Ten-

3https://www.python.org/
4https://www.tensorflow.org/
5https://github.com/
6https://medium.com/
7https://arxiv.org/
8https://www.amazon.com/

https://www.python.org/
https://www.tensorflow.org/
https://github.com/
https://medium.com/
https://arxiv.org/
https://www.amazon.com/

7. SeqGAN Implementation 34

Figure 7.1: The Deep Learning Framework Power Scores 2018 shows the popularity of
a selection of DL frameworks. As can be seen in the diagram, TensorFlow occupies the
first place with a score of 96.77 of the possible highest value of 100 [35].

sorBoard9. This tool is used to monitor, debug and analyze the training process and
learning curves. The tool provides the most commonly used forms of visualizations, such
as scalars, images, audio, histograms or graphs.

For the data management, described in Chapter 6, Python’s data analysis library
pandas10 is used to handle the input data. This library makes it possible to load the
data from a CSV file and transform it into a tabular form to which operations and
manipulations on the data can be easily applied.

For pre-processing and preparing the data for usage in the training process, the
DL library Keras11 was selected. This is a high-level neural network API and is part
of the TensorFlow core. In this implementation, Keras was able to vectorize an input
text corpus into a sequence of integers and generate a word index required for use in
pre-processing tasks.

The fundamental library for scientific computing in Python is called NumPy12 and
is an efficient tool for performing mathematical and logical operations. The library pro-
vides support for high-performance multidimensional array objects and various derived
objects, such as masked arrays or matrices.

9https://www.tensorflow.org/guide/summaries_and_tensorboard
10https://pandas.pydata.org/
11https://keras.io/
12https://www.numpy.org/

https://www.tensorflow.org/guide/summaries_and_tensorboard
https://pandas.pydata.org/
https://keras.io/
https://www.numpy.org/

7. SeqGAN Implementation 35

7.2 Discriminator
The task of the discriminator is to classify the sequences. Based on the two different
labels of the sequences, the input data can be differentiated between real and fake data
in a supervised way. The goal is to predict high probabilities for real samples and low
probabilities for fake samples. The discriminative model is implemented in the form
of a CNN with an embedding layer for proceeding text input and a softmax layer for
calculating the predictions. The calculation of the loss and accuracy values provides an
estimate of how well the model performs.

For the moment, pre-training was performed before the actual adversarial training
process began to optimize the model’s performance. Yu et al. recommend this approach
in the initial paper of SeqGAN implementation and it was used in their experiments.
However, this procedure led to a deterioration of the process, a detailed explanation of
which is provided in Section 7.5. For this reason, the decision was taken to train and
optimize without pre-training.

To get a deeper insight into the core components of a CNN for NLP, such as word
embeddings or convolutions, refer to the detailed illustration in Chapter 3. The structure
and different components of the model in the implementation are defined as follows:

1 def build_model(self):
2 embedding_layer = self.build_embedding_layer()
3 conv_maxpool_layers = self.build_convolution_maxpool_layers()
4 scores, predictions = self.build_softmax_layer()
5
6 loss = self.calc_mean_cross_entropy_loss()
7 accuracy = self.calc_accuracy()
8 optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
9

10 d_summary = tf.summary.merge([
11 tf.summary.scalar('d_loss', loss),
12 tf.summary.scalar('d_accuracy', accuracy)
13])

The function of the embedding layer in line 2 is to map discrete tokens to vectors of
continuous numbers. The aim of the mapping is to capture syntactic and semantic mean-
ings and similarities between words and is a common feature of learning techniques in
NLP. This layer consists of an embedding matrix initialized with a random distribu-
tion, which then learns connections during training [15, p. 140]. In line 3, convolutional
layers with max pooling operations are created to represent the core component of the
CNN. A layer transforms the input data with weights and biases from the neurons
with a 𝑅𝑒𝐿𝑈 activation function. Every unit of a convolutional layer is connected to
a specific number of units in a local region of the previous layer in an identical way
and with the same weights. A pooling operation reduces the size of representations to
only focus on the relevant changes. To achieve this reduction, the number of parameters
and computations in the network is changed. In this implementation, the max pooling
operation is used to capture the maximum of the input in each region [18, pp. 49–54].
The last layer in the network (line 4) the softmax layer produces the prediction output
by applying matrix multiplications and picking the highest score. Before predicting the

7. SeqGAN Implementation 36

probabilities, a highway architecture [29] is applied to improve the performance of the
network. This architecture provides two additional gates, a transform gate and a carry
gate, for applying non-linearity on some input data. A highway layer architecture can
prevent problems with vanishing gradients, which can happen in DL applications. In
this layer, a fully connected layer with sigmoid activation function used to generate
probability outputs. To avoid over-fitting (refer to explanation in Section 7.4), dropout
and L2 regularization are applied, to generalize the model beyond the training data.
These regularization methods are essential to ensure the model can still make accurate
predictions with data it has not seen before because it is too familiar with the train-
ing data. The dropout values are stated and justified in Chapter 7.4. Finally, a matrix
multiplication calculates the scores and the resulting predictions are returned [32].

The quality and performance of the network is calculated and measured by the
quantitative metrics loss and accuracy in lines 6 and 7 of the code snippet. The aim is
to minimize the loss and maximize the accuracy during the training process. The loss is
calculated with a mean cross-entropy between the ground truth label and the predicted
probability. The accuracy is specified by the percentage of correctly predicted outputs.
This value expresses the closeness of the predicted value to the labels known by the
network and Adam optimizer, which is an adaptive learning rate method, defined in line
8, minimizes the loss. This optimizer is able to compute the learning rates separately for
each of the different parameters. To enable a visual monitoring of the training progress
and display the values of the metrics in a graph by means of TensorBoard, provided by
the TensorFlow API the resulting values of accuracy and loss, which were updated after
iteration of the training process were saved to a summary, these were later plotted in a
TensorBoard diagram. Details and resulted graphs to the metrics loss and accuracy are
shown in the results, refer to Chapter 8.

7.3 Generator
The generator has the task of generating high quality news sequences, which the discrim-
inator should improve with its classification process during the adversarial training. The
generator takes real input sequences and turns random noise according to the specific
data distribution into fake data, which should resemble the real data. Implementation
of the generator is in the form of an RNN with LSTM cells, the objective is to create
sequences of words based on a vocabulary set in an unsupervised way. The goal is to
generate data that is indistinguishable from real data.

At the end of the implementation process, a pre-training phase was included in the
adversarial training; refer to the description in Section 7.5 for further details. To be
able to apply the pre-training in the adversarial training, the implementation must be
included in the generative model.

Before going further into the implementation of the model, first the network is
described in general, which consists of four different parts:

1. Firstly, the core components of the RNN are constructed to make the model work.
2. The pre-training is defined so that it can be used in the adversarial training.
3. The components required for the training process are implemented; this represents

the main part of the adversarial training.

7. SeqGAN Implementation 37

4. Finally, the quantitative metrics are prepared to enable them to be visualized in
TensorBoard diagrams.

How these parts are structured and implemented in the application can be seen in the
following code snippet:

1 def build_model(self):
2 self.embedding_layer = self.build_embedding_layer(self.X_input)
3 self.outputs, final_state = self.build_lstm_layers()
4
5 pretrain_predictions, self.pretrain_loss = self.get_prediction_and_loss()
6 pretrain_optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate)
7
8 self.predictions, self.loss = self.get_prediction_and_loss()
9 optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate)

10
11 self.g_pretrain_summary = tf.summary.scalar('g_pretrain_loss', self.pretrain_loss)
12 self.g_train_summary = tf.summary.scalar('g_loss', self.loss)

The embedding layer in line 2 is implemented according to the same principle previ-
ously described in Section 7.2. The implementation and aim are identical to those used
in the discriminative model: discrete tokens are mapped to vectors of numbers to cap-
ture meanings and similarities between words. The next layer in line 3 represents the
main part of the network and builds up the layers with LSTM cells of the RNN. In this
function, the layers created have corresponding hidden layer sizes; these are defined in
the hyperparameters and are described in the next Section 7.4. In addition, to prevent
over-fitting of the sequence generation each of the LSTM layers is wrapped in a dropout
layer. This collection of layers is then stacked together to a MultiRNNCell which dynam-
ically calculated the outputs and final state. In the beginning, an initial state is defined,
where all values are zero. During the training, these weights are updated depending on
the training progress.

The next two parts of the network consist of the same components and use the same
operations, these are the pre-training, defined in lines 5, 6 and 11 and training defined
in lines 8, 9 and 12. Both have the same objective: to calculate quantitative metrics and
define the optimization process. Firstly, the predictions and losses must be calculated
to provide the probabilities for newly generated sequences and the corresponding losses.
The network output has to be multiplied with the weights to generate scores for each
word of the word index. It generates a score for every word to predict, the likelihood
of each word occurring as the next word in the sequence. To predict these probabilities
of being the next token in the sequence, a softmax function is applied. This softmax
function normalizes the prediction values to a range between 0 and 1. In addition,
a temperature value is added to the logits before applying the softmax function to
avoid word repetition and increase variety. For a detailed description of the temperature
values, refer to the following Section 7.4. With the real sequences of the training dataset
and the computed predictions, a softmax loss can be calculated to identify the difference
between the predicted sequences and the data distribution of the real sequences of the
training dataset. Just like the discriminator, the generative model consists of two Adam
optimizers to cope with the pre-training and the training processes. This enables the
losses to be reduced by applying the adaptive learning rate method. Details regarding the

7. SeqGAN Implementation 38

learning rate used for this optimization process, along with the other hyperparameters,
are presented in the following section. Finally, in line 11 (for pre-training) and 12 (for
training), the quantitative metrics are fed into the summary again to track and visualize
its changes in a TensorBoard graph. In this case, only the losses are used to create a
diagram in TensorBoard.

A major reason, why SeqGAN is a very important GAN model for NLG is the
ability to generate discrete tokens as previously mentioned in Chapter 5. The problem
of passing the gradient update from the discriminative to the generative model does not
exist as. SeqGAN provides a solution by directly performing the gradient policy update
and modelling the generator as a stochastic policy in RL. Normally, it is a challenge to
predict good outputs, because the discriminative model has no access to the complete
sequence during generation. This is solved with intermediate state-action steps using a
Monte Carlo search [32]. The implementation of this concept can be realized as follows
in a simplified way:

1 def get_reward(self, sess, given_tokens, rollout_num, dis, dropout):
2 rewards = []
3
4 for i in range(rollout_num):
5 for given_num in range(1, self.seq_length):
6 feed_dict = { self.X_input: given_tokens, self.dropout_keep_prob: dropout }
7 samples = sess.run(self.predictions, feed_dict=feed_dict)
8 sentences, sequence = self.translate_samples(samples)
9 truth_probs = dis.get_truth_prob(sess, sequence)

10 if i == 0:
11 rewards.append(truth_probs)
12 else:
13 rewards[given_num-1] += truth_probs
14
15 truth_probs = dis.get_truth_prob(sess, given_tokens)
16 rewards[self.seq_length-1] += truth_probs
17
18 rewards /= rollout_num
19 return rewards

Firstly, the reward variable is initialized as an empty array. Next, two nested loops are
defined, in which the functionality is implemented. The first loop defines the number
of iterations the reward is calculated per sequence and the second loop is used to loop
through the tokens in a sequence. So a reward is calculated for each token in a sequence.
In line 7 new samples are generated by running the current session given as a parameter.
As an input, the session uses the previously generated tokens and the predefined dropout
value (explained in Section 7.4). The samples are generated in form of predictions, which
have to be translated before further processing. This is done with the function called
translate_samples(), which will be described in more detail in the following program
code block. In line 9 the truth probability of each sequence token is calculated and
initialized at the beginning of the function, which is provided by the discriminative
model. In lines 10 to 13, the calculated truth probability of each sequence token is
added to the reward variable, depending on whether it is the first value in the array or
existing values are included. For the last token of a sequence, the procedure is a little

7. SeqGAN Implementation 39

different, as can be seen in lines 15 and 16 of the code example. In this case, instead
of using newly generated samples, to obtain the truth probability the given sequence
generated from the adversarial training from the discriminator is used. Additionally, to
complete the sentence reward, it is important to add the value at the end of the array,
because it is the last token of the sequence. Before returning the rewards in line 19, the
value is divided through the defined rollout number in line 18 to get an average reward
value.

As already mentioned in the previous paragraph, the translation process of the
sequences can be implemented with following function:

1 def translate_samples(self, sequence):
2 batch_softmax = np.reshape(sequence, [self.batch_size, self.seq_length, self.

vocab_size])
3
4 sentences = []
5 vectors = []
6 for sequence in batch_softmax:
7 sentence = ''
8 vector = []
9 for pos in sequence:

10 vector_position = np.argmax(pos)
11 vector.append(vector_position)
12 word = self.word_index[vector_position]
13 sentence += word
14 sentence += ' '
15
16 sentences.append(sentence)
17 vectors.append(vector)
18
19 vectors = np.asarray(vectors)
20 return sentences, vectors

This function is used to translate the predictions into sequences of words and vectors.
Therefore, in the adversarial training, it is possible either to print the newly generated
sentences or to proceed further with the sequences of tokens. Firstly, in line 2 the
sequence is reshaped to fit the translation process. For every position of a sequence in
the current batch, the token is obtained by getting the highest value of the prediction
(see line 10). The corresponding word is then obtained from the WORD_INDEX and added
to the sentence, as can be seen in lines 12 to 14. Finally in line 20, two arrays are returned
which both include sequences of words or tokens with the size of BATCH_SIZE and the
length of SEQ_LENGTH. A description of the hyperparameters used in this function are
listed in the next section.

7.4 Hyperparameter Tuning
The process of hyperparameter tuning is the way of finding the optimal combination of
values to achieve the best outputs and metrics. With regard to training a GAN model,
it is advisable to allow enough time with regard to planning this process, since such
networks are very sensitive to changes in the hyperparameters. The performance can

7. SeqGAN Implementation 40

Figure 7.2: If the curve fits too well, as can be seen in the right diagram, the model is
over-fitted, this means that it may have a low error rate for the training data, but poor
output results. Under-fitting, in contrast, has the problem that important data patterns
are not recognized and therefore it performs poorly, which is shown in the left diagram.
The scatter plot in the middle illustrate an appropriate way to fit the data in a neural
network (see Figure 1-7 in [26, p. 27]).

fluctuate greatly and this will lead to instability of the training process. The aim of
this section is to give an insight into the decisions taken regarding the values used for
the parameters. The meaning of the hyperparameters will be explained shortly and the
decisions regarding the parameter values selected will be justified. The section is di-
vided into 3 parts: Section 7.4.1 introduce the hyperparameters in general, Section 7.4.2
presents the specific parameters for the generative model and Section 7.4.3 presents the
parameters for the discriminative model.

The wrong choice of hyperparameters often causes under-fitting or over-fitting, in
which the data distribution is imitated in the wrong way. This is illustrated in form
of different scatter plots as seen in Figure 7.2. When a model is excessively complex
due to having too many parameters in relation to the number of data sequences, over-
fitting occurs. If a model does not adapt enough from the underlying data distribution,
under-fitting will occur [26, pp. 26–27].

Before presenting descriptions of the specific hyperparameters, a general description
of one of the most important hyperparameters is explained in advance. The learning rate
in a neural network has a strong impact on the stability and efficiency of the training
process. It defines how the weights will be adjusted during training relative to the loss
gradient. As can be seen in Figure 7.3, a very high learning rate can save training time
but tend to overshoot the minimum, resulting in the algorithm bouncing backwards and
forwards in the curve without ever finding the optimum point. A very low learning rate
might find an error minimum, but will require a lot more training time and may reach
the time limits of the scheduled training epochs. Another problem when learning rates
are set too low is that the error minimum found, does not necessarily have to be the
global minimum, but may be a local minimum [26, pp. 258–259]. The best choice for
the learning rate always depends on the specific use case and implementation and needs
a lot of adjustment effort and hyperparameter tuning to achieve the best result.

7. SeqGAN Implementation 41

Figure 7.3: In the right diagram, a very high learning rate is shown, which results in a
very unstable network training process. However, if the learning rate is very low, as seen
in the diagram on the left, the training is extremely inefficient and will require a lengthy
training period. The best example of a learning curve is presented in the middle diagram
because the learning steps are suited to the curve [26, p. 258].

7.4.1 General Hyperparameters
In this section, all general hyperparameters used for the model implementation are
presented. These general hyperparameters are either used for initializing the SeqGAN
model, used for both models in the same way or used within the adversarial train-
ing process. Following the general hyperparameters defined in the implementation are
presented:

1 BATCH_SIZE = 64
2 SEQ_LENGTH = 5
3 EMB_SIZE = 300
4 TOTAL_EPOCHS = 200
5 DROPOUT = 0.4
6 VOCAB_SIZE = len(WORD_INDEX)

The hyperparameters chosen for the implementation are explained and justified in the
following section. This should help to give an insight into the decision making process.

Batch Size

The batch size defines the number of samples of a dataset that will be propagated
through the network during one training epoch. The value is very small because the GPU
used in this implementation cannot manage a higher batch size. As already mentioned
in Section 7.1, the technology Google Colaboratory is used and its resources are limited.
With a higher batch size, the GPU memory limit capacity is reached far sooner and the
system stops the training of the network before it is completed. For this reason, the batch
size was reduced to 64 to guarantee successful adversarial training. A smaller batch size
resulted in the model learning very slowly combined with a tendency to under-fit.

7. SeqGAN Implementation 42

Sequence Length

The value of the sequence length defines the final length the generated sentences should
have. For this value, the average length of the headlines given in the original training
dataset was calculated. In addition, this value should be appropriate for the specific use
case (i.e., news headlines). Therefore, the value of the sequence is 5.

Embedding Size

As already described earlier in this chapter, a word embedding is used to represent words
in a vector and map meanings and similarities between words. This hyperparameter
embedding size, presented in line 3, specifies the dimension of a word embedding in the
embedding layers of the generative and discriminative models. The length of the vectors,
which represent the words, should be relatively high in this case to get a more expressive
representation. For this reason, the value was set to 300 because the vocabulary size is
very high and a larger size was required to be able to represent the relations between the
word vectors. This meant that for each word a 300-dimensional vector is stored in the
embedding layer. Smaller embedding sizes would be unable to represent the semantics
between the word vectors adequately and bigger embedding sizes would slow down
the complete training process. This can also cause hardware problems because Google
Colaboratory only provides a single training session of 24 hours with a set GPU limit,
which would be reached before the training could be completed.

Total Number of Epochs

This hyperparameter is defined in line 4 and it represents the number of iterations in the
adversarial training process. However, the pre-training of the network is not included
in this loop. All different training components are placed within this loop and are re-
peated with every training iteration. Exactly which components the adversarial training
contains is shown in the next Section 7.5. The total number of epochs is relatively high
because adjusting the parameter requires more time and iterations. In addition, it also
is more expensive to train two neural networks at the same time alternately to adapt
to each other. However, for the generative training process, a higher number of epochs
would be a better solution to reduce further loss, but once again, the limits imposed
by Google Colaboratory means that training stops after about 210 epochs because the
limit of the GPU has been reached.

Dropout

This hyperparameter used for both networks, the discriminator and the generator, de-
fines the percentage of values, which will be dropped out during the training process.
Dropout is a common and powerful method of regularization technique to prevent over-
fitting, which was already described in general at the beginning of this section. Therefore,
a random set of neurons is set to zero in each training iteration. In this form of imple-
mentation, a quarter of the full set of neurons is dropped out in both neural networks,
which generalizes the network. As a result, there is an increased possibility that the
networks will not be able to adapt to training data provided. In general, 0.5 is a very
common dropout value, which works well on a big range of networks and goals [26,

7. SeqGAN Implementation 43

p. 277]. The dropout value in this implementation is with 0.4 a bit smaller because in
this case, a higher value led to under-fitting of the training data and the hyperparameter
temperature was already introduced to prevent over-fitting.

Vocabulary Size

This hyperparameter, shown in line 6, defines the number of different words in the
training dataset. As previously described in Section 6.3, the vocabulary size is obtained
by the length of the word index, which is already reduced after the data cleaning process.
The value of the vocabulary size is 17,751, which is relatively high because of the large
amount of different words appearing in the training dataset.

7.4.2 Hyperparameters for Generator
This section presents the hyperparameters, which are specifically used for the generative
model. These parameters help to improve the implementation of the RNN, which means
that the generator trains more effectively and faster. The specific values chosen for the
generative model are defined as follows:

1 G_PRETRAIN_EPOCHS = 100
2 G_HIDDEN_LAYER_SIZES = [128]
3 G_TEMPERATURE = 0.5
4 G_LEARNING_RATE = 0.01

The following paragraphs explain why these specific values are defined for the hyper-
parameters. Not only the meanings but also the decisions as to why the values of the
hyperparameters were chosen are described and justified.

Epochs for Pre-Training

The number of epochs for the pre-training is important for the adversarial training
process to begin this training with a higher performance of the generative model. It
defines the length of pre-training or number of training iterations before starting the
adversarial training to make the model learn patterns on its own. The number of epochs
is defined as 100, because it reaches a well fitted graph, as can be seen in Section 8.3.2.
A higher number would cause a data distribution too much adapted to the real training
data and would end up in over-fitting. A lower number of epochs would not have such
good effect of pre-training and would start adversarial training with worse performance.

Hidden Layer Sizes

A neural network can include one or more hidden layers, in which connections between
the layers present weight values. The layer size then defines the number of neurons in
a layer [26, p. 246]. In this specific case, only one layer with 128 hidden nodes was
implemented. The reason for this is the batch size presented in Section 7.4.1. For an
increase in hidden layers, a higher batch size is required, as a larger amount of data
must be processed when the number of layers increases. A larger number of hidden
layers containing less data can cause over-fitting as the network over adapts to the

7. SeqGAN Implementation 44

training data and cannot generalize the findings. In this specific case, the increase in
layers caused an increase in word repetition, as the network required more data to learn
the underlying data structure correctly. If the layer has too few neurons in the hidden
layer, the network cannot learn the structure within the total number of epochs defined.
Too many nodes results in the same problem occurring as with the number of layers:
the model tends to be over-fitted [26, p. 247]. The size of 128 nodes fits best because for
the specific dataset size more nodes would cause a higher number of word repetition.
Using fewer neurons in the hidden layers would result in the network under-fitting; this
indicated that the model cannot approximate the data very well. How over-fitting and
under-fitting are illustrated in a scatter plot is visualized in Figure 7.2 and is explained
in detail at the beginning of the section.

Temperature

The temperature hyperparameter in line 3 is used to control the randomness of predic-
tions by scaling the logits before applying a softmax function. In this implementation,
the temperature is used to avoid word repetitions in the generated output sequences.
The value has to be low because otherwise, the network will only predict the same words
after a couple of epochs. A value lower than 0.5 will cause more diversity, but also an
increase in mistakes occurring in the output sequences [25, p. 70]. The value 0.5 was
chosen because it is the highest value where word repetitions no longer appeared.

Learning Rate

A general description of learning rates was included at the beginning of this section
and it represents one of the most important hyperparameters in the training of a neural
network. The learning rate of the generative model, presented in line 4, with its value
of 0.01 is very high in contrast to the discriminative learning rate, presented in the next
Section 7.4.3. The reason for this particular value is that the higher learning rate ran
into an increase in word repetitions and the lower learning rate resulted in very small
training steps, after half of the training epochs the losses stopped decreasing.

7.4.3 Hyperparameters for Discriminator
In this section, the optimal hyperparameters for the discriminative model are presented.
These hyperparameters define the structure of the implemented CNN and helps to
improve the performance of the model. The hyperparameters for the discriminative
training were defined with following values:

1 D_NUM_CLASSES = 2
2 D_FILTER_SIZES = [1,2,3,4,5]
3 D_NUM_FILTERS = 128
4 D_LEARNING_RATE = 0.000005

The descriptions regarding why the specific values were chosen are listed below. Not
only the meanings but also the decisions as to how the values of the hyperparameters
were chosen are described and justified.

7. SeqGAN Implementation 45

Number of Classes

The value of this hyperparameter, defined in line 1, represents the number of different
classes in the classification process. In this case, two classes are available: a sequence
can be real (first class) or fake (second class). The real sequences obtained from the
training dataset are marked with zero and the fake sequence generated are marked with
the number 1. Hence, the discriminator can check itself by the defined labels or classes
if the classification of a sequence was correct.

Filter Sizes

This hyperparameter is a part of the filter or kernel of a CNN, which is explained in detail
in Section 2.2.1. In brief, the filter size also called kernel size defines the number of tokens
covered by the convolutional filters. Since the sequence length in this implementation is
5, a filter size can be defined for each word in the sequence. The filters slide over every
word of the sequence to optimize the predictions. For example, the filter size of 2 means
that the filter sees 2 words or embedding vectors at one time.

Number of Filters

As for the filter sizes, the hyperparameter for the number of filters is also described in
Section 2.2.1. This hyperparameter, defined in line 3, represents the number of filters
per filter size, where a filter stands for a neuron, which perform a specific convolution
on the input data. In this case, for all 5 filter sizes, 128 filters are applied, which means
128 different convolutions are performed on the input data to the layer.

Learning Rate

As already mentioned in the learning rate description of the generator, this is one of the
most important hyperparameters in neural network training and a general explanation is
provided at the beginning of this section. The reason for the very low value of 0.000005,
as defined in line 4, is the different training behaviour of the discriminative and the
generative models. The classification process of the discriminator is optimized to run
very fast and is able to classify every generated sequence as fake. So the generator
is not able to optimize the generation process, because every sequence is classified as
fake. Therefore, the discriminative learning processes have to learn at a slower pace so
that they are adapted to each other. More details on the evaluation of the metrics are
presented in Chapter 8.

7.5 Adversarial Training
After creating the discriminative and generative model, the SeqGAN model can be built
up with these two neural networks. They are trained against each other to maximize and
minimize the cost functions of the networks. To get the GAN working, the implemented
networks have to be trained alternately. After every training epoch, the results of the
currently trained network are passed on to the other network. So the predictions can be
optimized after every iteration. However, a working model is not a guarantee that its

7. SeqGAN Implementation 46

data output is good. This requires a lot of effort in hyperparameter tuning and training
sessions. The aim of the implemented SeqGAN model is to train the neural networks in
an adversarial way.

As mentioned in Section 7.3, a pre-training is included in the SeqGAN training pro-
cess. This provides the advantage of optimizing the generative training before proceeding
with the adversarial training. The reason, why a pre-training is used in this specific case
is that the generator requires a lot more training to optimize its results. The discrim-
inator has a much better performance during the training process and the resulting
imbalance between these two networks must be compensated for with the pre-training
of the generative model. This however means that the generator starts the adversarial
training with the advantage of a better performance. Since a supervised classification
process requires less training time and iterations, the pre-training for the discriminative
model was deliberately omitted. The main reason for this is if the discriminator would
also be pre-trained, the model would easily classify the generated sequences correctly
and the adversarial training cannot correctly evolve. The pre-training process of the
generative model is now shown and described:

1 for epoch in tnrange(G_PRETRAIN_EPOCHS, desc='gen_pretrain_loop'):
2 g_pretrain_losses = []
3
4 for _ in range(5):
5 X_train, y_train = get_real_data()
6 summary, g_pretrain_loss = generator.pretrain(sess, X_train, G_DROPOUT)
7 g_pretrain_losses.append(g_pretrain_loss)
8
9 g_pretrain_loss = np.mean(g_pretrain_losses)

10 writer.add_summary(summary, epoch)

For the pre-training loss, first, an empty array is initialized to obtain an average value
from the results at the end of each epoch. Within the training loop in lines 4 to 7,
another loop is created to pre-train the model five times to obtain the generated loss
value. Before starting the pre-training process, real data has to be fetched to feed it into
the generative model. The returned loss then is added to the loss array, from which the
mean value in line 9 is later obtained. To visualize the training process, the values are
once more added to a summary with which to plot a diagram in TensorBoard.

After pre-training of the generative model is finished, the actual training has to be
managed and the main adversarial training process starts:

1 rollout = generator
2
3 for epoch in tnrange(TOTAL_EPOCHS, desc='gan_epoch_loop'):
4 X_train, y_train = get_real_data()
5 fake_sentences, fake_sequences = generator.generate(sess, X_train, G_DROPOUT)
6 df_fake = add_samples(fake_sentences, df_fake)
7
8 rewards = rollout.get_reward(sess, fake_sequences, 16, discriminator, G_DROPOUT)
9 summary = generator.train(sess, fake_sequences, rewards, G_DROPOUT)

10 writer.add_summary(summary, epoch)
11
12 if epoch % 5 == 0:

7. SeqGAN Implementation 47

13 fake_sentences, fake_sequences = generator.generate(sess, X_train, G_DROPOUT)
14 df_evaluation = add_samples(fake_sentences, df_evaluation)
15 target_loss = target_loss(sess)
16
17 for _ in tnrange(5, desc='gen_train_loop'):
18 X_train, y_train = get_real_data()
19 fake_sentences, fake_sequences = generator.generate(sess, X_train, G_DROPOUT)
20 df_fake = add_samples(fake_sentences, df_fake)
21
22 for _ in tnrange(2, desc='dis_train_loop'):
23 for _ in range(BATCH_SIZE):
24 X_train, y_train = get_mixed_data()
25 summary = discriminator.train(sess, X_train, y_train, D_DROPOUT)

Before starting the main part of the adversarial training, a rollout has to be defined
to obtain the reward. In line 1 of this code block, the generative model is duplicated
and assigned to the new rollout variable. In line 3, the outer loop for the adversarial
GAN training is created with a total epoch number of 200, which was described in the
previous Section 7.4. Before starting the generation process, the model has to generate
fake samples and calculate corresponding rewards out of the generated data. That should
then become the basis for the following generation and optimization process. In lines 4
to 6, the real data is fetched by a data acquisition function, defined in Section 6.4 and
fed into the generative model to create fake data. This function will, on the one hand,
return the newly generated sequence in form of sentences with words and on the other
hand create new sequences with corresponding vectors. These fake sentences are saved
in the data frame for fake headlines and will then in turn be used in the adversarial
training and extend the dataset for the generated headlines. In lines 8 to 10, the reward
is calculated by the rollout model and is fed into the generative model. This function
returns a summary with the calculated loss, which is then added to a writer to visualize
the metric in a TensorBoard diagram. As already seen in the pre-training process of the
generator the target loss is also calculated in the adversarial training. In lines 12 to 15 of
the code snippet new fake sequences are generated and added to the evaluation dataset
and then the target loss is calculated by the function target_loss(), explained in the
following program code block. This calculation is performed once in five iterations of
the adversarial training process.

In line 17, the loop for the generative adversarial training begins. First, a data
batch with real sequences is fetched to feed it once more into the generative model and
the returned fake sentences are added to the dataset with the fake samples. This loop
includes five epochs within one epoch of adversarial training. In the generative loop
in line 22, another loop is defined for the discriminative training process. In this inner
training process, every batch of the defined batch size is classified by the discriminative
model. Firstly, a data selection for the input data is fetched. In this case, the data should
consist of an equal amount of fake and real data samples to train the discriminator and
optimize the classification process. To train the model, not only input sequences but
also the corresponding labels are needed for the process. Finally, again the summary
is once again added to the writer to visualize the loss and accuracy in a TensorBoard
diagram. This loop iterates through two epochs within one generative training epoch.

After every iteration of the adversarial training process, the last few samples gen-

7. SeqGAN Implementation 48

erated within the training process are printed. This allows a rough estimation of the
quality of the generated sequences.

7.5.1 Evaluation Approach
For Unsupervised Learning tasks, an evaluation is quite difficult to apply, because no la-
bels exist for comparing if a sequence is true or false. In this generation task, a sequence
should appear natural, however, that cannot be evaluated because it is not measur-
able. To solve the evaluation issue, another model was generated to obtain a basis for
comparison.

Firstly, an oracle model target_lstm was initialized in the same way as the gener-
ative model to ensure it would have the same foundation. The oracle model is trained
alongside the other two neural networks and is separated from the adversarial training.
Since the oracle model and the generative model are initialized in the same way and
both are pre-trained and trained in the same way, direct comparisons and evaluations of
the adversarial training are possible. Therefore, the SeqGAN model can be evaluated by
analyzing and comparing the losses of the oracle and generative model. This is described
in more detail in the evaluation parts of Chapter 8.

To be able to perform a evaluation also the loss of the oracle model has to be
calculated:

1 def target_loss(sess):
2 nll = []
3
4 for _ in range(5):
5 X_train, y_train = get_evaluation_data()
6 fake_sentences, fake_sequences = target_lstm.generate(sess, X_train, G_DROPOUT)
7 summary, g_pretrain_loss = target_lstm.pretrain(sess, X_train, G_DROPOUT)
8 nll.append(g_pretrain_loss)
9

10 return np.mean(nll)

For the target loss, an average Negative Log-Likelihood (NLL) is calculated by initializing
an empty array in line 2, to which the calculated values are later added. Since the
adversarial training loop only calls up this function once in five iterations, the loss is
calculated 5 times in a loop within the target_loss function. This way, the deficit
is compensated and an average loss value can be calculated. With every iteration, the
target LSTM model is pre-trained with the evaluation dataset to minimize the NLL.
The resulting loss value is then added to the defined variable for the NLL. At the end
of the function in line 10, the average of the collected value is calculated and returned.

Chapter 8

Results and Evaluation

After going deeper into the implementation part of the Thesis, in this chapter, the
results of the SeqGAN model implementation are visualized and analyzed in detail.
Firstly, the sequences generated from the model are listed and evaluated in Section 8.1.
The performance and metrics of the discriminative model are presented afterwards in
Section 8.2. The performance of the generative model includes both the metrics and
diagrams and also the comparison to the oracle model and the impact of the pre-training
of the generator before starting the adversarial training. These results are presented and
evaluated in Section 8.3.

8.1 Generated Headlines
Based on the SeqGAN implementation, presented in Chapter 7, a selection of headlines
generated from the model are presented in this section. At the beginning of the training
process, the sequences that are generated are of such poor quality that they cannot be
identified as headlines. A selection of sequences generated after a few epochs during the
training process is listed in Table 8.1 and can be easily identified as fake sequences. The
resulting sentences are generated at random without structure or pattern, as can be
seen from the first example “csl sienna academics 35b hoons” of Table 8.1. The sentence
definition makes no sense and has no structure at all.

To offer a comparison to these poorly generated samples, the selection of outputs is
shown below in Table 8.2, which were created in the middle to the end of the training
process, already possess a clearly identifiable structure and are constructed in a logical
way.

Additionally, a small set of real headlines of the training dataset is listed below in
Table 8.3 to offer a comparison with the structure and characteristics of real sentences.
As can be clearly seen from the sequences generated at the end of the training process
in Table 8.2, the SeqGAN model was able to learn the special structure required to
generate a plausible headline. These special characteristics of a headline can be identified
by the given real samples: the headline starts with a noun followed by a verb and ends
again with a noun. For instance the analysis of the first example “alcoholic independence
changes general federalism” in Table 8.2 and the first example “australian flag celebrates
100th birthday” in Table 8.3 shows the structure learned from the model based on

49

8. Results and Evaluation 50

Table 8.1: Headlines generated at the beginning of the adversarial training.

first generated headlines

csl sienna academics 35b hoons

underworld nimbin 22b ’god’s 2908

piece cw genius parkinsonia norris

lebanon pulp guineas doll fc

lea cant monrovia roper toro

sniffers sepp einstein 93 springboks

2050 ambitious 200000 seaspray soaking

Table 8.2: Selection of well-generated headlines during the adversarial training.

last generated headlines

alcoholic independence changes general federalism

hollinger sacrifices oldham bareques cats’

scout criticise our stony improvements

stabber foresees dusty poison costing

qualify multinational contains cowal lessons

policemen guild reports overflowing critic

phil martin concerning grella artworks

concrete headlines: Both headlines begin with a noun (“alcoholic independence” and
“australian flag”), are continued with a verb (“changes” and “celebrates”) and end
again with a noun (“general federalism” and “100th birthday”).

Even if the model does not learn grammar, meaningfulness, or proper formulation, it
is able to imitate the real sequences provided by the training dataset in a very believable
way. A human might not be able to differentiate between the real and the fake sentences
provided the content is disregarded.

8.2 Performance Discriminator
A very important factor is the performance of the discriminative model. It is responsible
for the classification of the sequences and identifying if they are real or fake. In this
section, the metrics of the discriminative model are analyzed and presented in the form
of TensorBoard diagrams. In addition, possible learning curves with pre-training and

8. Results and Evaluation 51

Table 8.3: Set of real headlines from the training dataset.

real headlines

australian flag celebrates 100th birthday

man charged over cooma murder

college to continue work experience

qantas plane makes emergency landing

hard work steals craftsmens identities

rising river isolates residents

nasa engineers foretold shuttle disaster

other hyperparameter values are shown, to help figure out problems with the interaction
of discriminator and generator.

8.2.1 Accuracy
The most important performance measurement and evaluation method for classification
tasks is the quantitative metric accuracy, which indicates the precision of the predictions
during the classification process. The accuracy of the closeness of the predicted labels
to the true values is calculated as [26, p. 38]

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) ÷ (𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁) (8.1)

and can be achieved by dividing the correctly predicted sequences through the whole
set of predictions. It is therefore possible to obtain the percentage of correct predictions
based on all predictions. Correctly predicted sequences 𝑇𝑃 + 𝑇𝑁 (True Positives and
True Negatives) are the amount of all fake and real sequences, which were predicted
correctly. This is the case if all generated sequences are classified as fake and all sequences
of the training dataset are classified as real. The full amount predictions 𝑇𝑃 + 𝐹𝑃 +
𝑇𝑁 +𝐹𝑁 (True Positives, False Positives, True Negatives and False Negatives) includes
not only the correctly predicted samples but also the incorrectly predicted sequences to
get a basis for the division.

Figure 8.1 shows the learning curve of the accuracy created during the adversarial
training process. A large number of irregularities are visible in the diagram. These irreg-
ularities occur due to the learning process of the generative model, which is presented
in the next Section 8.3. The learning curve of the accuracy indicates that the generator
learns to generate better sequences and the discriminator is no longer able to classify
these fake sequences correctly. After more epochs of training, the discriminator then
learns to classify them correctly and instructs the generator to optimize the sequences.
With wrong predictions of the discriminator, the generator knows what was done well.

However, based on the entire learning curve of accuracy, it can be concluded that
the discriminator is continuously improving and is therefore reliable during the training

8. Results and Evaluation 52

Figure 8.1: Accuracy of discriminative learning process in the form of a TensorBoard
graph.

process. At the end of training after 200 epochs, the network is able to classify the
sequences correctly with an accuracy of about 95% to 97%.

8.2.2 Loss
Another quantitative metric used in classification tasks is the loss or error rate, which
indicated the proportion of samples for which the neural network produces an incorrect
output [12, p. 104].

For this classification task, the cross-entropy loss is used for binary classification. It is
a common loss function for classification models, whose output is a probability between
the values 0 and 1. The more the prediction differs from the actual label, the larger
the loss becomes. For instance, if a fake sequence is classified to the value of 0.05, the
loss increases, because the prediction is closer to 0 than to 1 and thus deviates strongly
from the real label value 1 [7, p. 80]. As can be seen in Figure 8.2, the discriminator is
optimized constantly during the training process. The discriminator starts with a loss
of 3.544, which can be reduced to 0.124 within 200 epochs of training. The shape of the
learning curve is an indication of well-tuned hyperparameters with the loss decreasing
until a point of stability around the epoch 120. A learning curve of an under-fitted
model would be very flat or decrease rapidly until the end of training.

8.3 Performance Generator
The evaluation of the generator is very different compared to the discriminator, which is
a Supervised Learning model; the generator is used for an Unsupervised Learning task.

8. Results and Evaluation 53

Figure 8.2: Loss of discriminative learning process in the form of a TensorBoard graph.

Therefore, it is not possible to calculate accuracy, because there are no labels available.
As already seen in the previous section, the metrics and graphs are visualized in a
TensorBaord diagram to provide a diagram to illustrate the results and performance.
They are shown and described in the following sections.

8.3.1 Loss
The loss in an unsupervised model is calculated differently in case there are no labels
with which to compare the prediction with the actual value. For the generator, a loss
for reconstruction is used to obtain an error rate between the real and generated data
distribution.

In Figure 8.3 the loss curve, illustrates the complete adversarial training process. In
comparison to the loss curve of the discriminative model, the optimization process of
the generator takes much longer. For this reason, it is important to use a pre-training
session to optimize the model before starting adversarial training, which will be analyzed
in detail in the following section. In the actual SeqGAN training, it is possible to improve
the model further without starting from the beginning.

The loss starts with a pre-training value of 13.82 and ends with a value of 1.748
after 200 epochs of training. Without pre-training, the loss curve would start with a
value of about 25 and would not be able to reduce the value by so much. In addition,
Figure 8.3 shows that based on the learning curve the total epochs can be increased
because the curve still is falling after 200 epochs of training. Unfortunately, as explained
in Section 7.4 this is not possible when using the platform Google Colaboratory.

8. Results and Evaluation 54

Figure 8.3: Loss of the generative learning process in form of a TensorBoard graph.

8.3.2 Pre-train Loss
As already mentioned before, the pre-training is important to optimize the generative
model before starting the SeqGAN adversarial training process. This is necessary be-
cause the optimization of the generator is more advanced than the optimization of the
discriminator.

For the purposes of this implementation, the same loss function as in the actual
training process is used. This guarantees optimization in the same way and thus can be
continued in the adversarial training. This has the advantage of adapting the parameters
of the model in advance.

The loss curve of the generative pre-training is visualized in Figure 8.4. The training
period is set to 100 epochs and shows continuous improvement. The number of epochs
is not higher than 100, because the model should not be well adapted to the real data
distribution before the adversarial training begins, as already described in Section 7.4.2.

At the beginning of pre-training, the generative loss has a value of 17.41 which
was improved to 2.946 by the end of pre-training. This makes it possible to start the
adversarial training with a much lower generative loss.

8.3.3 Oracle Model
As previously described in Chapter 5, an oracle model was implemented to have the
possibility of evaluating the unsupervised generative model. The randomly initialized
LSTM network is trained in the same way as the generator in the adversarial training.
The difference compared to the SeqGAN training is the missing discriminative training
within the generative training. As a result, it is possible to compare the performance of
the SeqGAN model with a traditional training of an LSTM model.

8. Results and Evaluation 55

Figure 8.4: Pre-training loss of the generative learning process in the form of a Tensor-
Board graph.

Figure 8.5 represents the loss curve of the oracle model. After pre-training this
evaluation model, as already shown in the previous Section 8.3.2 with the generative
model, the loss for the oracle model is calculated so as to get a comparison value for
the SeqGAN adversarial training. The loss can be reduced to a value of 3.568, which is
more than twice the value of the generative loss. This indicates very good performance
of the SeqGAN model implementation and training. In addition, the training process is
more effective, because the oracle model starts with a value of 7.846 and can reduce the
loss by a value of 4.278. The generative model in comparison can reduce the loss from
13.82 to 1.748, which results in a difference of 12.072.

These results prove that the adversarial training method provides better performance
and is easier to optimize than a traditional LSTM model because the reduction of the loss
from start to finish of the training process is significantly improved with the adversarial
training.

8. Results and Evaluation 56

Figure 8.5: Loss curve of oracle model for evaluating the SeqGAN model in the form of
a TensorBoard graph.

Chapter 9

Conclusion

The objective of this Thesis was to implement a GAN for the particular case of text
generation of short sequences. To achieve this a lot of research was required to find
out, what work had already been done in the field of deep generative modelling. After
the decision had been taken to select the GAN model SeqGAN from Yu et al. [32], the
main part of the Thesis Project began. As can be seen in Chapter 8, the GAN training
outputs produced good results; thus, the goal was achieved, as it is definitely possible
to implement tasks for NLG with GANs. Although the meanings of the headlines gen-
erated does not always make sense, the structure of the real headlines was learned very
well and the fake headlines presented in Section 8.1 are indistinguishable from the real
headlines provided one is prepared to disregard the final content. At the beginning of
the Thesis Project, one of the most important things was to conduct enough research
before proceeding with the actual implementation work. A sound knowledge of the sub-
ject helped to facilitate the implementation in many points. Another important issue
was guaranteeing the quantity and suitability of the data available; this is reflected in
the quality of the data generated during adversarial training. Without adequate data of
suitable quality, it is impossible to produce high quality results. The challenges occur-
ring during implementation are presented in the following Section 9.1, in which some
recommendations are made and helpful information is provided for implementing an ML
project with a GAN model. In Section 9.2 the prospects for further works is presented
and how the Thesis Project could be modified or adapted for further implementation.
Additional approaches for solving ML problems for NLG are also mentioned.

9.1 Challenges
Prior to and during the implementation of the Thesis Project, a few problems occurred,
which had to be overcome. The most significant challenges and their solutions are men-
tioned in this section.

A challenge, which occurred right at the beginning of the implementation, was how
to handle the data correctly. This challange kept reoccuring throughout the implemen-
tation. It is important for the training process to have the right balance between of real
and fake data. The mixed dataset should not only consist of the same amount of real and
fake data it should also be up to date. The samples that have just been generated should

57

9. Conclusion 58

also become part of the newly mixed datasets. One solution to this problem is to mix up
the data before every data acquisition, so after every iteration new data is retrieved and
as a result of the large number of epochs, the majority of the data is suitable for use.
Another solution for the second part of the problem (i.e., including newly generated
data) is to translate every generated sequence created within the current generation
process. Therefore, the training function returns not only the predictions but also the
final sequence and its corresponding translated sentence thereby making it possible to
include these generated sentences into the data frame of the fake data.

Another challenge that emerged during the hyperparameter tuning process was the
extremely large word index with many nouns (e.g., city names, people’s and company
names, including abbreviations, etc.). This was the main reason for the network failing
in its attempts to learn how to recreate sentence structures and lead to inferior results.
To solve this problem, the word index was reduced from 56,442 to 17,751 words. All
words that appeared less than five times were removed making it possible to down-
size the amount of words. The vocabulary size prior to the data cleaning, shown in
Section 6.2 was 102,171 words, which posed considerable problems and resulted in very
high loading times when recreating the sequences. The smaller vocabulary size and word
index improved the GAN’s ability to learn how to reconstruct sentences and build better
headlines.

As already mentioned in Section 7.4, the amount of word repetitions increased after
only a few epochs. The discriminator quickly learned how to differentiate between real
and fake sequences; the metrics improved and it appeared that the GAN model was
becoming good at learning, however the outputs of the generator deteriorated. The
two solutions to the problem have already been described: firstly, the learning rates
of the generator and discriminator should be well coordinated to ensure they do not
end up in an imbalance during adversarial training, which will then cause over-fitting.
The learning rate of the discriminator should not be higher than 0.000005, which is
very low, otherwise, the learning steps become too high and the generator cannot find
the optimal solution. If the learning rate of the discriminator would be higher than
0.000005, the generator will not receive adequate feedback if the predictions improve,
because the discriminator will always identify the outputs as fake sequences. As the
discriminator becomes more successful, the generator gradient vanishes and it ceases
to learn, which results in diminished gradients. In addition, a temperature variable
was added to the generative model to improve the learning rates and to enable more
variety when predicting new sequences. This results in a greater diversity and helps
avoid repetitions of words, but also increases the risk of predicting sequences that are
randomly nested together.

Probably the biggest challenge was making the right decision regarding which choice
of hyperparameters to use for both ANNs and their combination. As mentioned in other
sections, it is very difficult to choose the best parameters, which is most suitable to
achieve the best training process. Good results can only be generated if both networks
have been well optimized. However, not only the individual performance is important,
but also the interaction between these two networks has to be optimized, GAN models
can be very sensitive and small deviations from the best parameter choice can cause
inferior performance. A problem that was related to the choice of parameters was the
limited resources of Google Colaboratory, because it often prevented the further optimi-

9. Conclusion 59

sation of the hyperparameters and the training of the GAN model had to be cancelled
due to the limited GPU and memory space available.

An additional challenge presented by the Thesis Project was that there is quite
a lot of research material at hand in the field of NLG with GANs, but there are no
experience reports or recommendations available for the implementation of such models
at the present. Nonetheless, it was possible to implement the concept in accordance
with the initial paper of Yu et al. [32], but the detailed work required implementing the
hyperparameter tuning was more about experimenting with various combinations and
trying out different possibilities and analyzing the results of the best cases.

9.2 Future Work
The results of the implementation, which are referred to in Chapter 8, are impressive and
confirm the claim that GANs are suitable for NLG. Nevertheless, further improvements
could be made to the model in form of hyperparameter tuning which could further
improve the overall performance of the GAN model. However, this would require a
considerable increase in computational power and memory space, which is not presently
available with Google Colaboratory. The use of other technologies or GPUs would be a
possible future step for improving the implementation.

It is a very sophisticated task to coordinate the two networks with one another to
obtain the best predictions; this required a lot of time and effort and the results had
to be analyzed and evaluated in a comprehensible and professional way. To achieve this
the training results had to be plotted and analyzed with the use of special metrics, this
is also presented in Chapter 8. In addition to an evaluation with metrics, it would be a
good idea to carry out a human evaluation combined with empirical studies to be able
to measure the quality from a human way of thinking. This could be realized in many
different ways, such as by using qualitative and quantitative research methods or a web
platform providing real and fake sequences as a comparison. With human answers a
representative study can be compiled to evaluate the results in an empirical way.

A few possible ways to further work on the implementation of the GAN model are
presented and introduced as follows:

• Other GAN models, such as LeakGAN [16] or TextGAN [34], described in Sec-
tion 4.3.1 could be tested for this specific use case to further improve the quality
of the output sequences and analyze different ways to generate news headlines.

• A recent popular approach is to combine a Variational Auto-Encoder (VAE) and
a GAN to use the advantages of both technologies to solve the ML problem. A
possible concept for implementing this combination is provided for instance by Hu
et al. [19]. This offers the possibility of using the generality and effectiveness of
the techniques transferred from VAE and GAN.

• As mentioned in Section 7.1, Keras cannot be used for the implementation of this
ML problem without applying modifications because it requires specific calcula-
tions for rewarding and passing feedback between the generative and discrimina-
tive models. The current model can be simplified if implementation is developed
by combining with Keras technology and trying to modify the ML framework to
be able to combine ANNs with the RL approach.

Appendix A

CD Contents

Format: CD, 700 MB

A.1 PDF-Dateien
Path: /

HoeglingerChrista2019.pdf Thesis

A.2 Source Code
Path: /project

datasets.zip Folder with dataset used in the implementation
implementation.ipynb . Source code of model implementation in a Jupyter

notebook

60

References

Literature

[1] Ethem Alpaydin. Introduction to Machine Learning. MIT Press, 2010 (cit. on
pp. 8, 9).

[2] Yoshua Bengio et al. “A Neural Probabilistic Language Model”. Journal of Ma-
chine Learning Research 3 (2003), pp. 1137–1155 (cit. on p. 17).

[3] Giuseppe Bonaccorso. Machine Learning Algorithms. A Reference Guide to Pop-
ular Algorithms for Data Science and Machine Learning. Packt Publishing, 2017
(cit. on pp. 5, 8, 9).

[4] Rodolfo Bonnin. Machine Learning for Developers. Packt Publishing, 2017 (cit. on
p. 14).

[5] Samuel R. Bowman et al. “Generating Sentences from a Continuous Space”. In:
Proceedings of The 20th SIGNLL Conference on Computational Natural Language
Learning. 2016, pp. 10–21 (cit. on p. 21).

[6] Francois Chollet. Deep Learning mit Python und Keras. Mitp-Verlag, 2018 (cit. on
pp. 5, 10).

[7] Francois Chollet. Deep Learning with Python. Manning Publications, 2017 (cit. on
p. 52).

[8] Pratap Dangeti. Statistics for Machine Learning. Packt Publishing, 2017 (cit. on
pp. 8, 10, 11).

[9] Li Deng and Yang Liu. Deep Learning in Natural Language Processing. Springer,
2018 (cit. on p. 16).

[10] Yoav Goldberg and Graeme Hirst. Neural Network Methods in Natural Language
Processing. Morgan & Claypool Publishers, 2017 (cit. on pp. 17, 18).

[11] Ian J. Goodfellow. “NIPS 2016 Tutorial: Generative Adversarial Networks”. 2017.
url: https://arxiv.org/abs/1701.00160. Pre-published (cit. on p. 19).

[12] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016 (cit. on pp. 5, 7, 12–17, 19–22, 52).

[13] Ian J. Goodfellow et al. “Generative Adversarial Nets”. In: Proceedings of the 27th
International Conference on Neural Information Processing Systems - Volume 2.
NIPS’14. 2014, pp. 2672–2680 (cit. on pp. 1, 22).

61

https://arxiv.org/abs/1701.00160

References 62

[14] Alex Graves. “Generating Sequences With Recurrent Neural Networks”. 2014.
url: https://arxiv.org/abs/1308.0850. Pre-published (cit. on pp. 20, 21).

[15] Antonio Gulli and Sujit Pal. Deep Learning with Keras. Packt Publishing, 2017
(cit. on pp. 9, 13–15, 17–19, 35).

[16] Jiaxian Guo et al. “Long Text Generation via Adversarial Training with Leaked
Information”. In: Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence. AAAI’18. 2018, pp. 5141–5148 (cit. on pp. 23, 59).

[17] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. Neural
Computation 9.8 (1997), pp. 1735–1780 (cit. on p. 14).

[18] Tom Hope, Yehezkel S. Resheff, and Itay Lieder. Learning TensorFlow. A Guide
to Building Deep Learning Systems. O’Reilly, 2017 (cit. on pp. 13, 14, 16, 35).

[19] Zhiting Hu et al. “On Unifying Deep Generative Models”. In: Proceedings of the
6th International Conference on Learning Representations. ICLR’18. 2018 (cit. on
p. 59).

[20] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In:
Proceedings of the 2nd International Conference on Learning Representations.
ICLR’14. 2014 (cit. on pp. 20, 21).

[21] Stephen Marsland. Machine Learning. An Algorithmic Perspective. 2nd. Chapman
& Hall/CRC, 2014 (cit. on pp. 5, 7–12).

[22] Warren S. McCulloch and Walter Pitts. “A Logical Calculus of the Ideas Immanent
in Nervous Activity”. Bulletin of Mathematical Biology 52 (1990), pp. 99–115 (cit.
on pp. 10, 11).

[23] Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel Recurrent
Neural Networks”. In: Proceedings of the 33rd International Conference on Inter-
national Conference on Machine Learning - Volume 48. ICML’16. 2016, pp. 1747–
1756 (cit. on p. 20).

[24] Aäron van den Oord et al. “WaveNet: A Generative Model for Raw Audio”. In:
Proceedings of the 9th International Symposium on Computer Architecture Speech
Synthesis Workshop. ISCA’16. 2016 (cit. on p. 20).

[25] Douwe Osinga. Deep Learning Kochbuch. Praxisrezepte für einen schnellen Ein-
stieg. O’Reilly, 2019 (cit. on p. 44).

[26] Josh Patterson and Adam Gibson. Deep Learning. A Practitioner’s Approach.
O’Reilly, 2017 (cit. on pp. 5, 10, 12, 13, 40–44, 51).

[27] Ehud Reiter and Robert Dale. “Building Applied Natural Language Generation
Systems”. Natural Language Engineering 3.1 (1997), pp. 57–87 (cit. on p. 18).

[28] Stuart J. Russell and Peter Norvig. Artificial Intelligence. A Modern Approach.
3rd. Prentice Hall, 2010 (cit. on pp. 4, 6, 7, 9, 11).

[29] Rupesh K. Srivastava, Klaus Greff, and Jürgen Schmidhuber. “Highway Net-
works”. 2015. url: https : //arxiv . org /abs/1505 . 00387. Pre-published (cit. on
pp. 25, 36).

https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1505.00387

References 63

[30] Alan M. Turing. “Computing Machinery and Intelligence”. Mind 59.236 (1950),
pp. 433–460 (cit. on p. 4).

[31] Ronald J. Williams. “Simple Statistical Gradient-Following Algorithms for Con-
nectionist Reinforcement Learning”. Machine Learning 8.3-4 (1992), pp. 229–256
(cit. on p. 26).

[32] Lantao Yu et al. “SeqGAN: Sequence Generative Adversarial Nets with Policy
Gradient”. In: Proceedings of the Thirty-First AAAI Conference on Artificial In-
telligence. AAAI’17. 2017, pp. 2852–2858 (cit. on pp. 2, 23–25, 36, 38, 57, 59).

[33] Ye Zhang and Byron C. Wallace. “A Sensitivity Analysis of (and Practitioners’
Guide to) Convolutional Neural Networks for Sentence Classification”. In: Proceed-
ings of the 8th International Joint Conference on Natural Language Processing.
IJCNLP’17. 2017, pp. 253–263 (cit. on p. 13).

[34] Yizhe Zhang et al. “Adversarial Feature Matching for Text Generation”. In: Pro-
ceedings of the 34th International Conference on Machine Learning. PMLR, 2017,
pp. 4006–4015 (cit. on pp. 23, 59).

Online sources

[35] Jeff Hale. Deep Learning Framework Power Scores 2018. 2018. url: https://to
wardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
(visited on 04/24/2019) (cit. on pp. 33, 34).

[36] Andrej Karpathy. GitHub Repository: char-rnn. 2015. url: https://github.com/k
arpathy/char-rnn (visited on 03/28/2019) (cit. on p. 20).

[37] Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural Networks.
2015. url: http://karpathy.github.io/2015/05/21/rnn-effectiveness/ (visited on
03/16/2019) (cit. on p. 1).

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://github.com/karpathy/char-rnn
https://github.com/karpathy/char-rnn
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Check Final Print Size

— Check final print size! —

width = 100mm
height = 50mm

— Remove this page after printing! —

64

	Declaration
	Acknowledgement
	Abstract
	Kurzfassung
	Introduction
	Motivation
	Problem Description
	Goal of the Thesis
	Thesis Structure

	Artificial Intelligence Basics
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Artificial Neural Networks
	Convolutional Neural Network
	Recurrent Neural Network

	Natural Language Processing
	Natural Language Generation

	Deep Generative Modelling
	Autoregressive Models
	Variational Auto-Encoder
	Generative Adversarial Networks
	GAN models

	SeqGAN Architecture
	Data Management
	Dataset
	Data Clearning
	Pre-Processing
	Data Handling

	SeqGAN Implementation
	Technology Stack
	Discriminator
	Generator
	Hyperparameter Tuning
	General Hyperparameters
	Hyperparameters for Generator
	Hyperparameters for Discriminator

	Adversarial Training
	Evaluation Approach

	Results and Evaluation
	Generated Headlines
	Performance Discriminator
	Accuracy
	Loss

	Performance Generator
	Loss
	Pre-train Loss
	Oracle Model

	Conclusion
	Challenges
	Future Work

	CD Contents
	PDF-Dateien
	Source Code

	References
	Literature
	Online sources

