
HTML5 for 2D Games: Implementation
and Comparative Evaluation of a

Rendering Framework

Andreas C. Kasch

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2014

© Copyright 2014 Andreas C. Kasch

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, September 29, 2014

Andreas C. Kasch

iii

Contents

Declaration iii

Abstract vi

Kurzfassung vii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Thesis Structure . 3

2 State of the Art: Web Browser Gaming 4
2.1 Browser Plug-ins for Gaming 4
2.2 Mobile Devices . 6
2.3 SVG . 7
2.4 New Possibilities with HTML5 8

2.4.1 The WebGL Context 8
2.4.2 The 2D Context . 9

2.5 Summary . 10

3 2D Rendering Techniques in HTML 11
3.1 DOM-Rendering: Using HTML-Elements for Rendering . . . 12
3.2 Rendering with CSS: Using Background Images 12
3.3 Vector Graphics: SVG . 14
3.4 The HTML5 Canvas: 2D Context 14
3.5 WebGL, 3D Graphics in HTML5 16
3.6 Comparison of these Techniques 16
3.7 Summary . 18

4 Rendering Frameworks 21
4.1 KineticJS . 21
4.2 Construct 2 . 23
4.3 EaselJS . 24
4.4 pixi.js . 25

iv

Contents v

4.5 ImpactJS . 26
4.6 Framework Comparison . 28

5 H5R Framework Prototype Implementation 30
5.1 Structure and Usage . 31

5.1.1 Defining the Tileset 31
5.1.2 Defining the Scenegraph 33
5.1.3 Defining the Camera 36
5.1.4 The H5R Class . 36
5.1.5 The H5R.Stage Class 38
5.1.6 Using the H5R-Framework 39

5.2 Optimizations . 40
5.2.1 Synchronizing the Framework with the Browser 40
5.2.2 Sub-Pixel Rendering 41
5.2.3 Math-Functions . 42
5.2.4 Off-Screen Canvas Rendering 43
5.2.5 Other Optimizations 43

5.3 Summary . 44

6 Evaluation of the H5R Framework 46
6.1 Rendering Performance Evaluation 47
6.2 Changing, Saving and Restoring the Scenegraph 48

7 Conclusion and Outlook 49
7.1 H5R Framework and the ZIEGE Project 49
7.2 Web Technologies . 49
7.3 Games . 50

A Simple Flappy Bird Clone with the H5R Framework 51

References 55
Literature . 55
Online sources . 56

Abstract

Creating games is a dream of many teenagers, but there are not many simple
tools that allow them to implement their ideas without learning a program-
ming language. The ZIEGE project tries to achieve this by providing a
game editor that can be used by teenagers without any previous knowledge
of programming. It should be possible to run it in the web browser without
any plug-ins so it is not necessary to install any software, which could be
difficult in schools. To implement this game editor, a rendering framework
is required that is capable of drawing permanently changing scenes as well
as saving and restoring them at any time. This thesis introduces the H5R
framework prototype, which realizes these requirements. The structure and
usage of this framework is demonstrated; moreover the implementation is
described as well as the decisions and evaluations that lead to this imple-
mentation. Finally the framework is evaluated and compared to a number
of existing frameworks.

vi

Kurzfassung

Eigene Spiele zu erstellen ist ein Traum vieler Jugendlicher. Allerdings gibt
es nur wenige Programme, die es ihnen ermöglichen ihre Ideen zu reali-
sieren, ohne dafür eine Programmiersprache zu erlernen. Das ZIEGE Pro-
jekt versucht dies zu ermöglichen, indem den Jugendlichen ein Spiele-Editor
geboten wird, der ohne vorherige Programmier-Kenntnisse genutzt werden
kann. Dieser sollte im Webbrowser ohne PlugIns funktionieren, damit keine
Software installiert werden muss – was vor allem an Schulen schwierig sein
kann. Um diesen Spiele-Editor umzusetzen wird ein Framework zur Grafik-
Ausgabe benötigt, welches dazu in der Lage ist, sich ständig ändernde Szenen
zu zeichnen, und diese jederzeit zu speichern und wiederherzustellen. Diese
Arbeit stellt einen Prototypen des H5R Frameworks vor, der diese Anforde-
rungen erfüllt. Die Struktur und Benutzung des Frameworks wird erläutert,
außerdem werden die Implementierung sowie die Entscheidungen und Beur-
teilungen, die zu dieser Implementierung führten, erklärt. Schließlich wird
das Framework bewertet und mit bestehenden Frameworks verglichen.

vii

Chapter 1

Introduction

The concept of 2D computer games has been around since the second half
of the 20th century. There are countless numbers of games and frameworks
to create such games. Although the hardware has been capable of rendering
complex and sophisticated 3D scenes for years, 2D games are certainly not
extinct. Especially the development of smartphones—which did not have
such good hardware at first—brought back lots of 2D games. Even with
really simple game ideas, such as Flappy Bird, some developers have been
very successful. Indie Game developers discovered the potential of 2D games
as well, mainly because 2D graphics are less time consuming and expensive
than 3D graphics, when a certain amount of quality is desired. Indie games
such as World of Goo and Terrania were very successful even though they
were not produced by a major publisher. Another platform for 2D games is
the Internet. Especially when no download is required, 2D casual games are
popular, even though their scope is limited compared to other games. How-
ever, even 2D casual games require a lot of work and knowledge. Primarily
for younger teenagers, it is their lack of knowledge that prevents them from
living out their creativity and ideas for computer games.

This chapter shows the motivation for this thesis, by presenting the re-
quirements of a rendering framework that can be used in a game editor. The
research issues and contributions of the proposed open source JavaScript 2D
rendering framework, called H5R framework, are briefly discussed. Finally
the structure of the thesis is shown.

1.1 Motivation
The idea of letting people—especially teenagers—create their own games
without too much knowledge led to the GOAT (“Game Online Authoring
Tool”) project. The aim of the project was to provide a simple game editor
that would run on any computer without installing any software—so it could
actually be used at schools, where teachers often do not have administrator

1

1. Introduction 2

Figure 1.1: The first running prototype of the GOAT project.

rights on the computers. Thus it was implemented as a web application
that does not require any browser plug-ins and that should run in every
modern web browser (see fig. 1.1). A 2D rendering framework was required
that complies with those requirements. The framework should also be able to
handle rapidly changing scenes (so drawing levels and objects in the editor is
possible in real time) and offer the possibility to save and load scenes without
much effort. After trying several existing 2D rendering frameworks for the
Web, it was decided to create a custom framework. This thesis proposes
the prototype of an open source 2D rendering framework for HTML5 and
JavaScript, called H5R framework.

The H5R framework is used in the GOAT project which is a part of the
ZIEGE (“Zielgruppenorientierter internetbasierter Educational Game Edi-
tor”) project. The ZIEGE project was funded by the netidee1, an initiative
of the Internet Foundation Austria.

1.2 Research Questions
The following open questions had to be answered in the course of the im-
plementation of the H5R framework:

• Which rendering technique performs best in the modern web browsers
without the use of plug-ins?

• Is the rendering performance of the H5R framework good enough for
rendering complex scenes with an appropriate frame rate?

1https://www.netidee.at/

https://www.netidee.at/

1. Introduction 3

• Is it possible to add or remove large amounts of objects to or from the
scene in real time?

• How can the scene be saved and restored without much effort?
• What optimizations could improve the rendering performance of the

H5R framework?
The aim of this thesis is to answer those questions by comparing differ-

ent rendering techniques and existing rendering frameworks, describing the
architecture of the framework and demonstrating its usage. It is described to
what extent the framework differs from existing frameworks and with which
optimizations the performance has been improved.

The main contribution of this thesis is to provide a framework comply-
ing with those requirements by proposing the open source JavaScript 2D
rendering framework H5R, which allows rendering of complex and rapidly
changing 2D scenes, which can be saved and restored with little effort.

1.3 Thesis Structure
This thesis is organized into seven chapters, as follows: Chapter 1 illustrates
the motivation and open questions that led to the implementation of the
H5R framework and this thesis. In chapter 2, the state of the art in web
browser gaming is shown. Some plug-ins that can be used for gaming are
introduced as well as some techniques that do not require plug-ins, which are
described in detail in chapter 3. These techniques are compared according
to the requirements to figure out which one would work best for the ZIEGE
project. In chapter 4, some frameworks are introduced which use some of
those techniques; they are compared to each other and their strengths and
weaknesses are shown. According to the insights of this chapter and the
requirements, the H5R framework is implemented and described in chapter
5. The structure and the usage of the H5R framework is illustrated as well
as some optimizations. In chapter 6, the H5R framework is evaluated and
compared to the other frameworks introduced in this thesis. Finally a brief
outlook of the H5R framework, the ZIEGE project, web browsers and games
is given in chapter 7.

Chapter 2

State of the Art: Web
Browser Gaming

Over the years, different techniques have been used in order to play games
in the web browser. Most of them use plug-ins, due to performance reasons.
Some formerly popular plug-ins, such as Shockwave, have completely dis-
appeared, while new ones are released that offer new possibilities such as
3D graphics. In this chapter, the state of the art in web browser gaming is
shown.

2.1 Browser Plug-ins for Gaming
Due to the bad hardware acceleration and performance in JavaScript exe-
cution in the past, most browser games that required a real time display of
the game—opposed to games such as OGame1 that do not require a game
loop (see fig. 2.1)—used browser plug-ins. The most common plug-ins are
Flash2, Java3 and Unity4 due to their compatibility with most browsers and
their dispersal. While Java and Flash have existed for a long time and do
not aim at gaming in particular, Unity is a relatively new competitor (2005)
and focuses mainly on gaming, especially 3D games. However, these plug-
ins have to be installed before they can be used. Further more, many people
have deactivated Java and Flash in their browsers due to security issues (for
more information on security issues, see [21] and [23]). Nevertheless, there
are countless games that use Flash such as Pandemic 25 (see fig. 2.2) or
Bloons Tower Defense6. A Flash game can be included in multiple websites,

1http://en.ogame.gameforge.com/
2http://get.adobe.com/flashplayer/
3https://www.java.com/en/
4http://unity3d.com/
5http://www.kongregate.com/games/DarkRealmStudios/pandemic-2
6http://www.kongregate.com/games/Ninjakiwi/bloons-tower-defense

4

http://en.ogame.gameforge.com/
http://get.adobe.com/flashplayer/
https://www.java.com/en/
http://unity3d.com/
http://www.kongregate.com/games/DarkRealmStudios/pandemic-2
http://www.kongregate.com/games/Ninjakiwi/bloons-tower-defense

2. State of the Art: Web Browser Gaming 5

Figure 2.1: Some games do not require client-side scripts. OGame uses web
forms to perform actions in the game. Thus it can be played in any browser
and does not require plug-ins. Image source [12].

so there are gaming websites that collect and offer multiple flash games and
even extend these games by giving the player a game independent level and
achievements for playing those games, such as in the case of Kongregate7.
This website also collects Java and Unity games. Although most games on
the website use Flash, the number of Unity games has steadily increased
over the past years. The number of Java games is rather low. Some popular
Java games that run in the browser are RuneScape8, Spiral Knights9 and
some older versions of Minecraft10 (see fig. 2.3). Before Unity was popular,
3D games for the browser were often made with Java while for 2D games
it was easier to use Flash. Hence most Java games for the browser are 3D.
Unity has become very popular over the past years; some well known games
are Roadeo11 (see fig. 2.4), Tiny Dice Dungeon12 and Broforce13.

7http://www.kongregate.com/
8http://www.runescape.com/
9http://www.spiralknights.com/

10https://minecraft.net/
11http://www.kongregate.com/games/eventhandler/roadeo
12http://www.tinydicedungeon.com/
13http://www.broforcegame.com/

http://www.kongregate.com/
http://www.runescape.com/
http://www.spiralknights.com/
https://minecraft.net/
http://www.kongregate.com/games/eventhandler/roadeo
http://www.tinydicedungeon.com/
http://www.broforcegame.com/

2. State of the Art: Web Browser Gaming 6

Figure 2.2: Pandemic 2: A popular Flash game that was reimplemented as
a smartphone game: Plague Inc. Image source [13].

Figure 2.3: Minecraft is implemented in Java. Some older versions of it
could be played in the browser as a Java applet. Image source [14].

2.2 Mobile Devices
On mobile devices, the possibilities for browser-based games were highly
limited. Java applets are not supported on Android and iOS, Flash games

2. State of the Art: Web Browser Gaming 7

Figure 2.4: Roadeo was implemented with Unity and can be played in the
web browser. Image source [15].

only partially and require additional software. Porting Flash or Java games
for mobile platforms so they could be downloaded as a native application is
not possible without a great deal of effort. This is an advantage of Unity that
has a built in support for native mobile applications for iOS, Android, Win-
dows Phone 8 and BlackBerry 10 as well as some modern gaming consoles14,
which makes it a very popular game engine.

2.3 SVG
Scalable vector graphics (SVG) offer many features for drawing lines, shapes,
images and animations. These features can be used to render games and
it does not require a browser plug-in. SVG is well supported in all major
browsers and works on mobile devices as well. But SVG has one big draw-
back: the rendering performance is not suitable for most games. In [22],
Olivier Cueilliez described it as follows:

The only serious issue related to SVG is performance. [...] At last,
SVG is an excellent technology to design browser-based game as
far as timing is not important. This of course means that today
real-time browser games cannot use SVG in an intensive way.
HTML5 may be a better choice for such games.

14A full list of supported platforms in Unity is available at http://unity3d.com/unity/
multiplatform

http://unity3d.com/unity/multiplatform
http://unity3d.com/unity/multiplatform

2. State of the Art: Web Browser Gaming 8

This result was verified by the evaluation done in this thesis (see sections
3.3 and 3.6).

2.4 New Possibilities with HTML5
HTML5, which is currently released as “Candidate Recommendation” by
W3C (see [35], a final release would be called “Recommendation”), intro-
duced the canvas element, which allows graphics rendering. With JavaScript,
the contents can be changed at real time; a browser plug-in is not required.
However, JavaScript could be disabled by the user. In addition to the can-
vas element, HTML5 also introduces semantic text elements such as header,
footer, section and some others. New form elements were introduced to
simplify, for example, the selection of a date or time. Elements for video and
audio were introduced as well. The canvas can be used with two different
contexts by setting different parameters in the getContext function:

1 var canvas = document.getElementById("myCanvas");
2 var context = canvas.getContext("2d"); // for the 2D context
3 // OR
4 var context = canvas.getContext("webgl"); // for the 3D (WebGL) context

The context can be used to draw shapes or images to the canvas. In addition
to games, the canvas can be used for interactive videos, charts, animations,
drawing tools, image manipulations and much more.

2.4.1 The WebGL Context

WebGL is an application programming interface (API) for advanced 3D
graphics on the web. Based on OpenGL ES 2.0, it provides a similar render-
ing functionality, but in an HTML and JavaScript context. With WebGL,
hardware-accelerated 3D graphics inside the browser can be obtained. 3D
games or other advanced 3D graphics applications can be created with all
the benefits that a web application has. For developers who are familiar
with the OpenGL API, it is easy to learn and use WebGL; this made it
popular for 3D web applications [3, Chap. 1]. Great examples can be found
at Chrome Experiments15 (see fig. 2.5).

Previously, the greatest problem with WebGL was browser compatibility;
some major browsers did not support WebGL. However the latest versions of
each major browser (Internet Explorer, Chrome, Firefox, Opera and Safari)
support WebGL; merely some mobile browsers do not support it yet (see
fig. 2.6) [24].

15http://www.chromeexperiments.com/webgl/

http://www.chromeexperiments.com/webgl/

2. State of the Art: Web Browser Gaming 9

Figure 2.5: A 3D info graphic rendered with WebGL. Image source [16].

Figure 2.6: As shown, WebGL is now supported by all major non-mobile
browsers. Screenshot from [24].

2.4.2 The 2D Context

The 2D context offers basic drawing functionality for lines, curves, shapes,
images and text; it is supported by each major browser, and some browsers
added hardware acceleration for the 2D context as well [19].

Although the scene can be transformed, rotation and scaling should be
used with caution as it might influence the performance due to sub-pixel
rendering (for more information see section 5.2.2).

2. State of the Art: Web Browser Gaming 10

Figure 2.7: A Quake II port running in the browser. Screenshot from [31].

2.5 Summary
HTML5 paves the way for interactive and responsive browser applications,
which are more and more important with the increasing number of platforms
and devices. It could supersede some browser plug-ins such as Java and Flash
because of its higher platform independence.

A good demonstration of the features HTML5 offers is the Quake II
GWT Port16 that uses WebGL, the canvas API, the HTML5 <audio> ele-
ments, the local storage API and WebSockets (see fig. 2.7) [26].

With the increasing amount of possibilities in HTML, some decisions
have to be made, as there are several techniques for specific tasks. A number
of techniques (including the 2D and WebGL contexts) that can be used to
render graphics in a web browser without the use of a plug-in are introduced
and compared in the next chapter.

16https://code.google.com/p/quake2-gwt-port/

https://code.google.com/p/quake2-gwt-port/

Chapter 3

2D Rendering Techniques in
HTML

There are a variety of techniques available to render graphics in a web
browser. Using browser plug-ins can improve the performance as they have
better access to hardware acceleration and there are some well-established
plug-ins, such as Adobe Flash, Java Applets and Unity, which most users
have installed on their computers. Other largely unknown plug-ins, such as
Zigfu1 or 3DVIA2, have to be installed by most users before being able to see
the rendered content. Plug-ins are not considered here, as they are usually
limited to certain operating systems or browsers and require additional soft-
ware. More interesting are techniques that do not require plug-ins as they
can be used in any modern browser at any time—even on mobile devices.
However JavaScript has to be enabled in the browser to render animated
graphics if no plug-ins are used. When rendering 3D graphics, there is only
one technique left, the WebGL context on a HTML5 canvas, but when ren-
dering 2D graphics there are more possibilities. This thesis focuses on 2D
rendering without using plug-ins. To display a 2D game, the main criteria is
the frame-rate that can be achieved when rendering large amounts of sprite
animations at the same time. A frame-rate of at least 15 frames per second
has to be reached in the major browsers in order to display smooth anima-
tions. In this chapter, several techniques are introduced and compared to
each other.

1http://zigfu.com/
2http://www.3dvia.com/studio/downloads/3dvia-player

11

http://zigfu.com/
http://www.3dvia.com/studio/downloads/3dvia-player

3. 2D Rendering Techniques in HTML 12

3.1 DOM-Rendering: Using HTML-Elements for
Rendering

The HTML5 DOM (document object model) is the document structure de-
scribed in HTML; it can be used to display images by using img tags or
defining background-image CSS attributes on div tags. To render interac-
tive animated graphics, a static image is not enough, but by using absolute
positioning of more than one HTML element (using CSS), an interactive
scene can be built (see fig. 3.1):

1 #stage{
2 position: relative;
3 /∗ A "position: relative ;" definition sets the point of origin of absolute

positioned child elements to the upper left corner of this element. ∗/
4 }
5 .entity{
6 position: absolute;
7 /∗ The "position: absolute ;" definition enables the possibility to set an

explicit position in pixels and allows overlapping of elements. The position
(top and left attribute), the size (width and height attribute) and the

drawing order (z−index attribute) are set for each entity separately using
JavaScript. ∗/

8 }

To display a sprite animation, JavaScript is used to replace the displayed
images each frame. The z-index CSS attribute should also be set to handle
overlapping elements if the desired drawing order does not match the order
of the elements in the DOM. Accessing a single object is easy by giving it a
unique ID HTML attribute. This approach makes it simple to handle click
events on certain elements in the scene as the browser registers click events
on HTML elements and no position calculations have to be done manually.
It is also possible to draw some primitive objects such as rectangles and bor-
dered rectangles without creating images for them; even rounded rectangles
and circles are possible by using the border-radius CSS attribute. Display-
ing text is also possible. However, drawing a diagonal line or a custom shape
is not possible without using images or vector graphics elements.

3.2 Rendering with CSS: Using Background Im-
ages

Another way to display a whole scene with HTML and CSS is given by the
possibility to add several background images to just one HTML element in
CSS (see fig. 3.2). A comma-separated string containing background image
URLs is set as a background-image attribute of a large HTML element. The
position of the images is set by another comma-separated string containing
coordinate pairs that is set as a background-position attribute:

3. 2D Rendering Techniques in HTML 13

<HTML>

<HEAD>

<BODY>

<DIV id="stage">

Figure 3.1: Document Object Model when rendering with HTML elements.

1 #stage{
2 background-image: url("a.png"), url("b.png"), url("c.png");
3 /∗ The number of images defined in the "background−image" attribute is only

limited by the performance of the browser. ∗/
4 background-position: 0px 0px, 0px 16px, 0px 32px;
5 /∗ The "background−position" attribute is used to define a x and y position

for each image. ∗/
6 background-repeat: no-repeat;
7 /∗ The "background−repeat: no−repeat;" definition prevents the images from

being repeated . ∗/
8 background-size: 16px 16px;
9 /∗ The "background−size" attribute sets the size for all images. If the images

have different sizes , a comma separated list can be set as value with a
width and height value pair for each image. ∗/

10 }

The order of the images in these strings has to match the desired drawing
order; a z-index cannot be set. Every single change requires all the strings
to be changed and reloaded. To create sprite animations, the image URLs
in the background-image attribute have to be changed each frame. When
click events are needed on single objects, the objects at the position of the
cursor have to be calculated manually. It is not possible to draw primitive
objects or text; only images can be drawn.

3. 2D Rendering Techniques in HTML 14

<HTML>

<HEAD>

<BODY>

<DIV id="stage">

Figure 3.2: Only one element is required when rendering with background
images.

3.3 Vector Graphics: SVG
Similar to DOM-Rendering, SVG rendering adds elements to HTML, but
within a svg tag (see fig. 3.3). “The SVG format is a new XML gram-
mar for defining scalable vector-based 2D graphics for the Web and other
applications and usable as an XML Namespace” [8, 11]. SVG (Scalable Vec-
tor Graphics) is an advancement of VML (Vector Markup Language)3 and
PGML (Precision Graphics Markup Language)4 and it has been developed
by W3C since 1999 [9]. Thus only SVG is covered in this evaluation and not
VML or PGML.

To draw the objects, SVG image tags are used, and for sprite animations
the image source is exchanged. The drawing order is defined by the order
the elements appear in the document, so a z-index cannot be set explicitly.
To access the objects, a unique ID can be given as an attribute. When using
jQuery to manipulate the document object model, the jQuery-SVG plug-in5

should be used to prevent bugs (otherwise the SVG image element would be
renamed to img automatically). Primitives such as rectangles, circles, and
even custom shapes and paths as well as text can be drawn with SVG and
the click handling is done automatically and even works for non-rectangular
shapes.

3.4 The HTML5 Canvas: 2D Context
HTML5, which is the latest standard for HTML and designed to replace
HTML 4 and XHTML [35, Chap. 1], introduced the canvas tag , which

3VML was submitted to the W3C in 1998 by Microsoft [9].
4PGML was also submitted to the W3C in 1998 by Adobe [9].
5http://keith-wood.name/svg.html

http://keith-wood.name/svg.html

3. 2D Rendering Techniques in HTML 15

<HTML>

<HEAD>

<BODY>

<SVG id="stage">

<IMAGE>

Figure 3.3: SVG rendering is similar to DOM rendering.

<HTML>

<HEAD>

<BODY>

<CANVAS id="stage">

Figure 3.4: 2D and 3D canvas rendering only requires one element on the
document object model.

can be used to draw graphics with JavaScript (see fig. 3.4). There are two
contexts to choose from; the 2D context and the WebGL context. Using the
2D context enables several functions for drawing images, primitives, custom
shapes and text on the canvas. The elements have to be drawn in the right
order; a z-index cannot be set. Sprite animations can be done by just drawing
a new image each frame. Click handling has to be implemented manually,
but some frameworks, such as KineticJS6 already include it.

6http://kineticjs.com/

http://kineticjs.com/

3. 2D Rendering Techniques in HTML 16

3.5 WebGL, 3D Graphics in HTML5
Using the WebGL-context on a HTML5 canvas enables hardware accelera-
tion with the graphics card, however it was not supported in every major
browser until the latest releases [24]. WebGL is based on OpenGL ES (Open
Graphics Library for Embedded Systems) 2.0. Without a framework it is
time-consuming and work-intensive to use the WebGL context; the API is
similar to OpenGL. Setting up a scene containing a white rectangle on black
background requires about 100 lines of code, and additionally a vertex and
fragment shader. Using a framework this can be done in about five to ten
lines of code. The most popular WebGL framework (apart from Contruct
2, which cannot be used in this case due to its automatic code generation,
for more information, see section 4.2) according to [20] is three.js7. To ren-
der sprite animated images, plane objects are generated and aligned in the
3D space. The texture of the planes is exchanged each frame to display the
sprite animation. Using an orthographic camera, the z-index can be defined
by moving the planes along their normal. Click handling can be easily im-
plemented with a ray-caster in three.js. Simple shapes such as rectangles
and circles can be added as well as text. Other shapes have to be drawn as
images or built from a 3D mesh.

3.6 Comparison of these Techniques
The purpose of the comparison is to determine which technique has the best
performance on most major browsers and if it is necessary to implement
different techniques for different browsers. The test is designed to measure
the performance in 2D games; therefore a large number of sprite animations
is used. Using sprite animations is a common method to animate characters
and other objects in classic 2D games. The game world can also be built
from sprite animations or static images. Other games or use cases—such as
effects and filters that need a lot of calculations—would require a different
test. The five techniques introduced in this chapter have been tested on the
same hardware, and the time required to display a fixed amount of frames
of the same scene is measured to compare the performance (see fig. 3.6).
The times are measured in five different browsers: Chrome 31.0, Firefox
25.0.1, Safari 5.1.7, Internet Explorer 10.0.92 and Opera 12.16. The newest
version of each browser—that was available on Windows 8 at the time of
the test—was used with the exception of Opera: An older version of Opera
was used, as the newer versions use Chromium, which is already covered by
Chrome. These browsers were chosen as they are the most commonly used
browsers according to browser usage statistics of W3Schools (see [36]) and
StatCounter (see [34]) (see fig. 3.5). The scene is also rendered in different

7http://threejs.org/

http://threejs.org/

3. 2D Rendering Techniques in HTML 17

Browser usage statisticsBrowser usage statistics from Aug 2013 to Aug 2014

Others
Opera
Safari
Firefox
IE
Chrome

Oct713Oct713 Jan714Jan714 Apr714Apr714 Jul714Jul714
00

2525

5050

7575

100100

MonthMonth

P
e
r
c
e
n

ta
g
e

P
e
r
c
e
n

ta
g
e

Figure 3.5: Desktop browser usage Statistics. Data source [34].

levels of complexity to see changes in the performance that are caused by the
scene complexity. The performance on mobile devices was not part of the
test. Using WebGL is tested as well, even though it is not supported by every
major browser, to see if it is advantageous to use it on browsers that support
it. With a scene with only a single object, it is not possible to identify which
technique is the best (see fig. 3.7); it depends on the browser used, but the
test shows that Firefox is the slowest browser at the time of the test8, yet
still has a frame rate reasonable for playing games with every technique.
With an increasing scene complexity (100 objects), it is still unclear which
technique is the best (see fig. 3.8), but the results are somewhat clearer. A
complex scene with 1250 objects shows that the 2D canvas rendering is the
fastest technique for complex scenes and still has an appropriate frame-rate
for gaming in every browser (see fig. 3.9). Of particular note is the really
good performance in Internet Explorer which was unexpected due to its
bad reputation among web developers. Using WebGL is not beneficial in
any browser, so using the 2D context in every browser is the best solution
for this kind of games; implementing a second technique is not required.
There are some possibilities to improve the performance, for instance by
using HTML5 web workers that enable parallelism (more information can
be found in [5–7]) and the requestAnimationFrame method that prevents
rendering of dropped frames, which is described in section 5.2.1. These and
other optimizations should be performed by an appropriate rendering engine.

8Firefox has improved its performance since the time of the test and now is one of the
fastest browsers at rendering 2D graphics, for more information, see sections 6.1 and 7.2.

3. 2D Rendering Techniques in HTML 18

Figure 3.6: Testing the performance of 2D canvas rendering with 100 enti-
ties.

1 Entity1 Entity

DOM
Rendering
Background
ImagepRe...
SVG
Rendering
2DpCanvas
Rendering
3DpCanvas
Rendering

Chromep31.0Chromep31.0 Operap12.16Operap12.16 Firefoxp25.0.1Firefoxp25.0.1 Safarip5.1.7Safarip5.1.7 IEp10.0.92IEp10.0.92
00

7575

150150

225225

300300

FP
S

FP
S

Figure 3.7: Rendering a scene with one entity.

3.7 Summary
As discussed, those rendering techniques offer some advantages and disad-
vantages. Most interesting is the canvas rendering technique with 2D context
as it produces the best results for this use case. Other use cases such as draw-
ing effects or rendering skeletal animations (see fig. 3.10), scenes that require

3. 2D Rendering Techniques in HTML 19

100 Entities100 Entities

DOM
Rendering
Background
ImagepRe...
SVG
Rendering
2DpCanvas
Rendering
3DpCanvas
Rendering

Chromep31.0Chromep31.0 Operap12.16Operap12.16 Firefoxp25.0.1Firefoxp25.0.1 Safarip5.1.7Safarip5.1.7 IEp10.0.92IEp10.0.92
00

7070

140140

210210

280280

FP
S

FP
S

Figure 3.8: Scene with 100 entities.

1250 Entities1250 Entities

DOM
Rendering
Background
ImagepRe...
SVG
Rendering
2DpCanvas
Rendering
3DpCanvas
Rendering

Chromep31.0Chromep31.0 Operap12.16Operap12.16 Firefoxp25.0.1Firefoxp25.0.1 Safarip5.1.7Safarip5.1.7 IEp10.0.92IEp10.0.92
00

5050

100100

150150

200200

FP
S

FP
S

Figure 3.9: Scene with 1250 entities.

floating point positions, rotations and scaling would give different results,
and another technique might be more appropriate. The next chapter will
introduce a number of frameworks that use these techniques.

3. 2D Rendering Techniques in HTML 20

Figure 3.10: A skeletal animation example. The animated object is built
from several images that are attached to and rotated against each other.
The pixi.js framework (see section 4.4) can display such animations (http:
//www.goodboydigital.com/pixijs/examples/12-2/). Image source [17].

http://www.goodboydigital.com/pixijs/examples/12-2/
http://www.goodboydigital.com/pixijs/examples/12-2/

Chapter 4

Rendering Frameworks

For most applications there are rendering frameworks that can help to im-
prove and simplify development. These frameworks have different advantages
and weaknesses depending on their major purposes. This chapter introduces
a number of frameworks suitable for games. Frameworks for 3D games such
as Three.js1, PlayCanvas2 and Turbulenz3 as well as frameworks that are
useful for applications other than games, such as MeteorCharts4 for render-
ing chart graphics, are not covered here. The frameworks introduced here
were chosen based on their popularity according to [20] or their unique
feature sets. When possible, the source code for a scene with a moving ani-
mated sprite image is shown so the frameworks can be compared. The main
focus of the comparison is on animated sprites, performance and browser
compatibility.

4.1 KineticJS
Most of the frameworks mentioned here focus on games; they come with
physics and collision detections, but KineticJS5 does not. The strengths
of KineticJS are its mouse collision detection on transformed (translated,
rotated and scaled) objects with complex boundaries; for example, the alpha
channel of an image can be used to define the boundaries of an object.
KineticJS also supports drag and drop, tweening, sprite animations, layers
and grouping. Those features make it a great framework for board and card
games, where there are complex clickable regions, smooth animations and
layered objects. But for arcade games such as platformers, it cannot be
used, as the frame-rate drops below 15 frames per second with an increasing

1http://threejs.org/
2https://playcanvas.com/
3https://github.com/turbulenz/turbulenz_engine
4http://meteorcharts.com/
5http://kineticjs.com/

21

http://threejs.org/
https://playcanvas.com/
https://github.com/turbulenz/turbulenz_engine
http://meteorcharts.com/
http://kineticjs.com/

4. Rendering Frameworks 22

number of objects. Due to the possibility of scaling and rotating images,
sub-pixel accuracy is required, which influences the rendering speed heavily
using the 2D context on the canvas. Another mentionable feature are the
image filters that KineticJS offers. For example, they can be used to convert
the image to grey-scale, invert the colours, or blur the image. The following
source code shows an animated sprite image moving from left to right:

1 <!DOCTYPE HTML>
2 <HTML>
3 <HEAD>
4 <TITLE>KineticJS Demo</TITLE>
5 <SCRIPT type="text/javascript" src="kinetic-v5.1.0.min.js"></SCRIPT>
6 </HEAD>
7 <BODY>
8 <DIV id="stage"></DIV>
9 <SCRIPT type="text/javascript">

10 var stage = new Kinetic.Stage({
11 container: 'stage',
12 width: 100,
13 height: 100
14 });
15 var layer = new Kinetic.Layer();
16
17 var actor;
18 var startTime;
19
20 var imageObj = new Image();
21 imageObj.onload = function() {
22 actor = new Kinetic.Sprite({
23 x: 0,
24 y: 0,
25 image: imageObj,
26 animation: 'walk',
27 animations: {
28 walk: [
29 // x, y, width, height (9 frames)
30 0,0,32,32,
31 32,0,32,32,
32 64,0,32,32,
33 96,0,32,32,
34 128,0,32,32,
35 160,0,32,32,
36 192,0,32,32,
37 224,0,32,32,
38 256,0,32,32
39],
40 },
41 frameRate: 8,
42 frameIndex: 0
43 });
44
45 layer.add(actor);
46 stage.add(layer);

4. Rendering Frameworks 23

47
48 actor.start();
49
50 startTime = new Date().getTime();
51 requestAnimationFrame(animate);
52
53 };
54 imageObj.src = 'walk.png';
55
56 var animate = function(){
57 var timePassed = new Date().getTime() - startTime;
58
59 actor.x(timePassed/1000*10);
60
61 requestAnimationFrame(animate);
62 };
63 </SCRIPT>
64 </BODY>
65 </HTML>

The frame definition for sprite images is an array of numbers containing the
position, width and height. This array becomes long and hard to read when
there are a lot of frames in an image. The advantage of this approach is
that there are no limitations on how the frames in the sprite image have to
be organized. However, it would be easy to create this array automatically
for most sprite images. KineticJS does not offer a timer or accessible game
loop—although there has to be some kind of game loop in KineticJS to play
the animations—so a custom implementation is required.

4.2 Construct 2
Construct 2 is more than just a rendering framework. It is a development
platform to create games for the web (using HTML5) and other platforms
with a visual editor. Construct 2 uses its own rendering and game engine. An
analysis of the script Construct 2 used in an exported game showed that the
game is stored in a very large array containing all different data types and
other arrays. Thus it is not human readable as there are no labels or variable
names; the code is generated by the Construct 2 editor, which makes it
impossible to change the game contents without the use of the editor or even
create an entire game without the editor, just using the HTML5 rendering
and game engine. Taking a closer look at the rendering and game engine—
which has about 20000 lines of code—showed that they re-implemented a
lot of methods already available in JavaScript, as for example a method
for rounding numbers. Those methods are most likely re-implemented for
performance reasons. Some sources state that some mathematics functions
can be implemented in a more efficient way than the Math-class does. For
more information on those performance optimizations see section 5.2.3. A

4. Rendering Frameworks 24

code example cannot be shown as the code generated by Construct 2 is not
human readable.

4.3 EaselJS
The JavaScript library EaselJS6 is part of CreateJS7. It focuses on games
and on the website it is stated that “[it] provides an API that is familiar to
Flash developers” [25]. In addition to drawing sprite animations, shapes, and
curves, it offers features such as click handling, masking and image filters.
According to statistics, it is one of the most popular JavaScript game engines
(see [20]). The following code example shows the animated and moved sprite
with EaselJS:

1 <!DOCTYPE HTML>
2 <HTML>
3 <HEAD>
4 <TITLE>EaselJS Demo</TITLE>
5 <SCRIPT type="text/javascript" src="easeljs-0.7.1.min.js"></SCRIPT>
6 </HEAD>
7 <BODY>
8 <canvas id="stage" width="100" height="100"></canvas>
9 <SCRIPT type="text/javascript">

10 var stage = new createjs.Stage("stage");
11
12 var spriteSheet = new createjs.SpriteSheet({
13 "framerate":8,
14 "images":["walk.png"],
15 "frames": {width:32, height:32},
16 "animations":{
17 "walk":[0, 8],
18 }
19 });
20
21 var actor = new createjs.Sprite(spriteSheet, "walk");
22
23 stage.addChild(actor);
24
25 createjs.Ticker.setFPS(60);
26 createjs.Ticker.addEventListener("tick", stage);
27 createjs.Ticker.addEventListener("tick", function(event){
28 actor.x = event.runTime/1000*10;
29 });
30 </SCRIPT>
31 </BODY>
32 </HTML>

The sprite sheet definition can become complex and hard to read, but offers
a lot of features. There are no limitations on how the frames in a sprite image

6http://www.createjs.com/#!/EaselJS
7http://www.createjs.com/

http://www.createjs.com/#!/EaselJS
http://www.createjs.com/

4. Rendering Frameworks 25

have to be organized. An image file could contain multiple animations, and
a single animation could be built from multiple images. The Ticker class
provides timer and game loop functionalities.

4.4 pixi.js
pixi.js8 tries to render the contents with the WebGL context when available
and offers a fallback to the 2D context. However it focuses on 2D rendering
and uses WebGL for better performance, especially when using filters. The
pixi.js library does not offer all features required for games, such as game
physics or defining multiple animations for an object. Just like EaselJS,
pixi.js is one of the most popular HTML5 rendering frameworks according
to statistics (see [20]). The following code shows the animated and moved
sprite with pixi.js:

1 <!DOCTYPE HTML>
2 <HTML>
3 <HEAD>
4 <TITLE>pixi.js Demo</TITLE>
5 <SCRIPT type="text/javascript" src="pixi.js"></SCRIPT>
6 </HEAD>
7 <BODY>
8 <SCRIPT type="text/javascript">
9 var stage = new PIXI.Stage(0xFFFFFF);

10
11 var renderer = PIXI.autoDetectRenderer(100, 100);
12 document.body.appendChild(renderer.view);
13
14 var animation = [];
15 for(var i = 0; i < 9; i++){
16 var rect = new PIXI.Rectangle(i*32, 0, 32, 32);
17 var texture = new PIXI.Texture(PIXI.BaseTexture.fromImage("walk.

png"), rect);
18 animation.push(texture);
19 console.log(texture);
20 }
21
22 var actor = new PIXI.MovieClip(animation);
23 actor.animationSpeed = 8 / 60; //running at 60fps, desired animation

framerate is 8fps
24 actor.gotoAndPlay(0);
25
26 stage.addChild(actor);
27
28 var startTime = new Date().getTime();
29 requestAnimFrame(animate);
30
31 function animate() {
32 requestAnimFrame(animate);

8http://www.pixijs.com/

http://www.pixijs.com/

4. Rendering Frameworks 26

33
34 var timePassed = new Date().getTime() - startTime;
35 actor.position.x = (timePassed/1000*10 +0.5) | 0; //rounded

position to prevent animation artefacts
36
37 renderer.render(stage);
38 }
39 </SCRIPT>
40 </BODY>
41 </HTML>

Creating a sprite animation with pixi.js requires more code than the other
frameworks. To define several frames in one image, each frame has to be
created as a separate Texture loaded from the same file with an additional
Rectangle as parameter to crop the image. These crop regions can also be
defined in a JSON file defining different frames from one image; however,
the Texture objects for each frame have to be created. When moving the
MovieClip object that is created from one image with cropped regions, some
artefacts from the previous and next frame occur in the image due to the
calculations when the object is not aligned with the pixel grid. This can
be prevented by rounding the position of the image. The animation speed
cannot be set in frames per second or milliseconds between frames, but
relative to the rendering frames per second of the scene, which is usually
60 frames per second. Just like KineticJS, pixi.js does not offer a timer or
accessible game loop. However it has a game loop to draw animations. In
order to use pixi.js, it has to be executed on a web server due to modern
browsers “Cross-Origin Resource Sharing policy”, as pixi.js tries to load
images with an AJAX request.

4.5 ImpactJS
The ImpactJS9 framework has to be purchased and is not open source.
It includes a browser-based level editor for tile-based levels (see fig. 4.1).
While the game engine itself runs without a web server, a PHP web server
is required in order to use the level editor. Usually, the JavaScript code of
an ImpactJS project is in a separate file—ImpactJS is the only framework
mentioned here that has a predefined project and folder structure—but for
demonstration, the JavaScript code is inside the HTML file in the following
example:

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Impact Demo</title>
5
6 <script type="text/javascript" src="lib/impact/impact.js"></script>

9http://impactjs.com/

http://impactjs.com/

4. Rendering Frameworks 27

Figure 4.1: The web based level editor of ImpactJS: Weltmeister. Image
source [18].

7 <script type="text/javascript">
8 ig.module(
9 'game.main'

10)
11 .requires(
12 'impact.game',
13 'impact.font'
14)
15 .defines(function(){
16
17 MyGame = ig.Game.extend({
18
19 spriteSheet: new ig.AnimationSheet('media/walk.png', 32, 32),
20 actor: null,
21 timer: null,
22
23 init: function() {
24 this.timer = new ig.Timer();
25 this.actor = new ig.Animation(this.spriteSheet, 1/8,

[0,1,2,3,4,5,6,7,8]);
26 },
27
28 update: function() {
29 this.parent();
30 this.actor.update();
31 },
32
33 draw: function() {

4. Rendering Frameworks 28

34 this.parent();
35 var x = this.timer.delta()*10;
36 this.actor.draw(x, 0);
37 }
38 });
39
40 ig.main('#stage', MyGame, 60, 100, 100, 1);
41
42 });
43 </script>
44 </head>
45 <body>
46 <canvas id="stage"></canvas>
47 </body>
48 </html>

ImpactJS has a clear structure, it offers an initialization, update and draw
function in the Game object. Unlike the other frameworks, the sprite im-
ages may not contain paddings between the single frames, because only
the frame width and height can be specified. It is not possible to create an
Animation that automatically uses all frames from the AnimationSheet, the
Frames have to be defined in an array containing the frame indices. These
arrays could be generated automatically. The update and draw functions
are part of a built in game loop, the Timer class can be used to get time
differences. As opposed to the other frameworks and common custom timer
implementations, the Timer class of ImpactJS works with seconds instead
of milliseconds.

4.6 Framework Comparison
The frameworks were compared by drawing a scene of 5000 animated sprite
images for a certain amount of frames and measuring the time (see fig. 4.2).
Because most frameworks limit the frame rate to 60 frames per second,
a high number of sprites was used, so the frame rate would drop beyond
the limit. Usually a scene does not contain more than about 1000 entities.
All frameworks worked in every browser, but the performance differed. Ki-
neticJS has a poor performance compared to the other frameworks, which
underlines that it is not intended to be used for arcade games. EaselJS
performs better but still drops below 30 frames per second. Yet the perfor-
mance is admissible as common scenes contain less entities. ImpactJS and
pixi.js perform best in this comparison. Since ImpactJS is commercial and
not open source, it is not unusual that it is highly optimized, even though
it does not use multi threading or WebGL. The great performance of pixi.js
could be a result of it being a pure rendering framework and not a game
engine. It uses WebGL when possible but that does not improve rendering
of sprite animations, as shown in section 3.5. For the implementation of a
game and especially the game editor ZIEGE that lead to this evaluation,

4. Rendering Frameworks 29

5000 Entities5000 Entities

KineticJS
EaselJS
pixi.js
ImpactJS

ChromeChrome
37.037.0

OperaOpera
12.1712.17

FirefoxFirefox
31.031.0

SafariSafari
5.1.75.1.7

IEIE
11.0.9611.0.96

OperaOpera
24.024.0

00

1515

3030

4545

6060

F
P

S
F

P
S

Figure 4.2: Rendering a scene with 5000 entities using different frameworks
and browsers.

pixi.js would be hard to use as it does not have a timer or game loop: The
animation of each entity would have to be started and stopped separately.
Changing the animation of an entity is not simple as well. ImpactJS could
not be used as it is commercial—the funding of the project was bound to the
condition that the project is open source. As the performance of KineticJS
is too poor and the code of Construct 2 is not human readable and thus an
editor could not be created, only EaselJS could be used. The rather complex
sprite sheet definitions and the inflexible scenegraph (the child objects of a
Stage or Container object can only be referenced by a consecutive numeric
ID, so the scenegraph is made of arrays only) of EaselJS makes it hard to
create or remove large amounts of entities or to optimize it for displaying the
entities aligned in a grid. Thus it was decided to create a custom rendering
framework for the ZIEGE project.

Chapter 5

H5R Framework Prototype
Implementation

The aim of this rendering framework—which will be referred to as the H5R
framework—is to be able to create rendered 2D scenes with little effort, to
create easily readable code and to be able to save and load scenes with-
out parsing or converting any data by hand while still having a reasonable
performance when displaying large amounts of sprite animations. These re-
quirements are defined by the ZIEGE project, which allows the user to create
2D games in the web browser. To be able to use the project on any com-
puter without special permissions to install any software, it should run in
every major web browser without the installation of any plug-ins. While the
ability to create easily readable code cannot be measured as it is highly sub-
jective, the other requirements can. The creation of scenes with little effort
can be measured by counting the lines of code required to achieve certain
tasks and comparing them to the code required with other frameworks. The
ability to save and load scenes without parsing or converting any data by
hand is fulfilled if the entire scene is stored in and read from a JSON object.
Whether the performance is reasonable when displaying large scenes can be
measured by defining a number of elements that have to be drawn at the
same time and measuring the frame-rate—which has to be higher than 15
frames per second, but ideally even higher than 30 frames per second. In [4],
Mark Claypool draws the conclusion:

In general, user performance shows a marked drop in perfor-
mance below 15 frames per second with a modest increase from
15 to 30 frames per second.

This chapter shows the implementation of the framework and describes how
these requirements are handled. The implementation is a prototype, thus it is
not complete but shows the approach and it can be used in certain projects.
Some features are not implemented on purpose (such as entity rotation or
scaling) as those features heavily affect performance.

30

5. H5R Framework Prototype Implementation 31

5.1 Structure and Usage
The framework works with two classes: The class H5R (see section 5.1.4)
controls the game loop, observes the document object model for changes,
manages stages, pre-loads the tileset images and updates the scenegraph.
The class H5R.Stage (see section 5.1.5) renders the contents on a canvas;
each H5R.Stage has its own canvas to draw on and can render the entire
scenegraph or a part of it. A camera can be defined to draw the scene from
another point of view. The tileset, scenegraph and camera are handled as
JSON Objects (see fig. 5.1), as it is human readable, has smaller amounts
of data than XML, and can be handled well with JavaScript and server
technologies like nodejs1 and mongoDB2. The framework is designed to draw
sprite animations and images, but custom graphics such as shapes or text
can be drawn as well, as the scenegraph offers the possibility to access the
rendering context at any position. To add game logic or physics, an update
function can also be added at any position in the scenegraph.

5.1.1 Defining the Tileset

The format of the tileset object is JSON, thus the structure can be defined
entirely by the user; it could be a deep object structure, a flat array structure,
or a combination of both, but it may not contain circular references. There
are two object name keywords that can be used in the tileset object to
define an image resource. The keyword src can be used to define an image
URL, but it has to be of type string in order to be read as image URL by
the parser. Using this keyword, only a single image can be defined and it
cannot be a sprite animation. Using the keyword img, either an image URL,
an object or an array of objects and strings can be defined. Defining an
image URL with type of string equals the functionality of the src keyword.
When the keyword img references an object, the object has to contain a src
keyword defining an image url with the type of string, and the object
may contain the keywords sprites defining the number of sprites in the
image with the type of number and fps with the type of number defining the
number of frames per second. When the keyword img references an array,
the array has to contain either elements with type of string containing
an image URL or objects as described before, or a combination of strings
and objects. Each image parsed from the tileset object is given a human
readable ID defined by its position in the JSON object. When parsing the
tileset object, the object keys and array indexes are concatenated separated
by dots (excluding the img and src keys). These IDs have to be used with
the _img keyword in the scenegraph to reference a certain image from the
tileset. If the img keyword references an array, the image to be drawn can be

1http://nodejs.org/
2http://www.mongodb.org/

http://nodejs.org/
http://www.mongodb.org/

5. H5R Framework Prototype Implementation 32

H5R

<HTML>
<DIVrid=hstage1h> <DIVrid=hstage2h> <DIVrid=hstage3h>

H5R.Stage
rrrr(hstage1h)

Tileset
Scenegraph

H5R.Stage
rrrr(hstage2h)

H5R.Stage
rrrr(hstage3h)

Camera Camera Camera

Figure 5.1: The structure of the H5R framework when using three different
canvases. The multiple canvases share one game loop, tileset and scenegraph,
but can display different positions set by the cameras and render different
parts of the scenegraph, provided that scenegraph parts are specified for the
H5R.Stage objects. This makes it possible to draw different layers to different
canvases that are stacked on top of each other, or to display different positions
of the scene, which could be useful in a multi-player game that runs on a
single device (split-screen).

selected with the _animation keyword in the scenegraph (see section 5.1.2).
The code below shows an example tileset object:

1 var tileset = {
2 "wall": {
3 "brick": {
4 img: "brick.png", // _img: "wall.brick"
5 },
6 "wood": {
7 src: "wood.png", // _img: "wall.wood"
8 },
9 },

10 "decoration": {
11 "torch": {
12 img: {
13 src: "torch.png", // _img: "decoration.torch"
14 sprites: 8,
15 fps: 16,
16 },

5. H5R Framework Prototype Implementation 33

17 },
18 },
19 "enemies": [
20 {
21 "spike": {
22 img: "spike.png", // _img: "enemies.0.spike"
23 },
24 "lava": {
25 img: "lava.png", // _img: "enemies.0.lava"
26 },
27 },
28 {
29 img: [
30 "idle.png", // _img: "enemies.1", _animation: 0
31 {
32 src: "walk.jpg", // _img: "enemies.1", _animation: 1
33 sprites: 8,
34 fps: 12,
35 },
36],
37 },
38],
39 };

5.1.2 Defining the Scenegraph

The scenegraph itself is also a JSON object and its structure can be defined
by the user, and as in the case for tilesets, it may not contain circular
references. There are some keywords that control how the scenegraph is
drawn to the canvas. When the key of an object starts with an underscore,
it will be ignored by the parser unless it is a keyword. Some of the keywords
can be defined by the user, while others are set by the rendering framework.
The keywords that can be defined by the user are as follows:
_x ⟨number⟩

is used to define the position in x direction. The point of origin is
the upper left corner, the x-axis points right. All child nodes of the
scenegraph part will have their origin translated by this value.

_y ⟨number⟩
is used to define the position in y direction. The point of origin is
the upper left corner, the y-axis points down. All child nodes of the
scenegraph part will have their origin translated by this value.

_img ⟨string⟩
is used to reference an image ID generated from the tileset. The refer-
enced image will be drawn at the defined position. If the image ID is
not found, no image will be drawn.

_animation ⟨number⟩
is used to define the animation to be drawn if the image id references

5. H5R Framework Prototype Implementation 34

an array of images. The default value is 0. If the value is invalid (less
than zero or greater or equal than the array length), no image will be
drawn.

_freeze ⟨boolean⟩
if set to true, the sprite animation will be stopped.

_startFrme ⟨number⟩
if set, the animation will start at the specified frame.

_flipX ⟨boolean⟩
if set to true, the image is mirrored in x-direction.

_flipY ⟨boolean⟩
if set to true, the image is mirrored in y-direction.

_repeatX ⟨number⟩
is used to define how often the image should be repeated in x-direction.

_repeatY ⟨number⟩
is used to define how often the image should be repeated in y-direction.

_hide ⟨boolean⟩
if set to true, the scenegraph part and its children will not be drawn.
However they will be parsed and updated.

_hideChildren ⟨boolean⟩
if set to true, the child elements of the scenegraph part will not be
drawn. However they will be parsed and updated.

_update ⟨function⟩
is used to define a custom update function which is called from the
scenegraph parser. It can be used for game logic and physics.

_render ⟨function⟩
is used to define a custom render function which is called from the
renderer. It can be used to draw custom shapes or text.

There are some keywords that are set by the rendering framework. The
user can access them from the custom update and render function, but they
might not be set (it takes up to two rendering cycles to calculate them):
_frame ⟨number⟩

is set to the currently displayed frame.
_previousFrame ⟨number⟩

is set to the previously displayed frame.
_imgWidth ⟨number⟩

is set to the width of the currently displayed image.
_imgHeight ⟨number⟩

is set to the height of the currently displayed image.
_width ⟨number⟩

is set to the width of the currently displayed image multiplied by the
_repeatX parameter or 1 if it is not set.

5. H5R Framework Prototype Implementation 35

_height ⟨number⟩
is set to the height of the currently displayed image multiplied by the
_repeatY parameter or 1 if it is not set.

_fps ⟨number⟩
is set to the speed in frames per second, the referenced image is drawn
at.

The Custom Update Function

As mentioned before, a custom update function can be defined at any po-
sition in the scenegraph using the _update keyword. It will be called from
the scenegraph parser once each update cycle. The function takes four pa-
rameters: The first parameter is the part of the scenegraph containing the
_update keyword, so other keywords defined on the same object in the scene-
graph, as well as child objects, can be accessed easily. The second parameter
is the time passed since the previous update cycle in milliseconds. The third
parameter is the total time passed since the first update cycle in millisec-
onds. The fourth parameter is an object containing the getImage function,
which can be used to access objects from the scenegraph. It is the same
function that is used by the renderer to get the images (see section 5.1.4).
The update function can be used to change the position and appearance
of an object, game logic and physics can be defined here. The code below
shows an example scenegraph with a custom update function that moves an
object to the right by ten pixels each second:

1 var scenegraph = {
2 _x: 0,
3 _y: 0,
4 _img: "enemies.1",
5 _animation: 1,
6 _update: function(self, timeDiff, timePassed, renderer){
7 self._x += timeDiff/1000*10;
8 },
9 };

The Custom Render Function

The custom render function can be defined with the _render keyword. It will
be called from the renderer once each render cycle from each H5R.Stage that
renders this part of the scenegraph. The function takes three parameters:
The first parameter is the same as in the custom update function; it is
the part of the scenegraph containing the _render keyword. The second
parameter is the 2D rendering context of the canvas. The third parameter is
the same as the fourth parameter of the custom update function, an object
containing the getImage function. The render function can be used to draw

5. H5R Framework Prototype Implementation 36

custom shapes or text to the canvas. The code below shows an example
scenegraph with a custom render function that draws a bordered rectangle:

1 var scenegraph = {
2 _render: function(self, ctx, renderer){
3 ctx.beginPath();
4 ctx.rect(0, 0, 20, 20);
5 ctx.fillStyle = "rgba(255,255,255,0.5)";
6 ctx.fill();
7 ctx.lineWidth = 2;
8 ctx.strokeStyle = "rgba(0,0,255,0.5)";
9 ctx.stroke();

10 },
11 };

5.1.3 Defining the Camera

The camera can be defined using a JSON object containing an x and y value,
both of type number. If no camera is set for a H5R.Stage, the camera is at
position (0,0). The width and height of the area drawn is defined by the
width and height of the canvas. The code below shows an example camera
object:

1 var camera = {
2 x: 200,
3 y: 450,
4 };

5.1.4 The H5R Class

The H5R class is the core of the framework. It contains the game loop, man-
ages the rendering stages, observes the document object model for changes,
pre-loads images and updates the scenegraph. The constructor of the class
does not take any parameters. The H5R class has the following public func-
tions:
H5R.Stage addStage(H5R.Stage stage)

adds the specified H5R.Stage to the renderer and returns the added
H5R.Stage object.

H5R.Stage getStage(string ID)
returns the H5R.Stage with the specified ID or null if the stage was
not added to the renderer before.

void removeStage(string ID)
removes the H5R.Stage with the specified ID from the renderer.

void updateStages()
checks for each H5R.Stage that was added to the H5R class, if the
HTML-element with the ID of stage the exists. If the element exists
and the canvas inside of it is not yet created, it creates it. Usually

5. H5R Framework Prototype Implementation 37

the method is called from the document object model observer of the
renderer, but the observer does not work in every browser, so it is
recommended to call the method when the website is fully loaded and
whenever the HTML-element of a stage changes.

void restart()
resets the timer, sets the paused state to false and starts the game
loop.

void start()
is an alias for restart().

void stop()
stops the game loop, resets the timer, sets the paused state to false.

void setPaused(boolean paused)
changes the paused state to the specified value. When paused, the
scenegraph is not updated or rendered.

boolean isPaused()
returns the paused state.

void drawFrame()
renders the stages with the time difference to the last frame set to 0
and the current total time, no matter if the H5R is stopped or paused.
It does not update the scenegraph.

void setTileset(object tileset, function onLoad)
removes all loaded image data, parses the specified tileset object and
pre-loads the images defined in it. If specified, the onLoad callback
function is called as soon as all images are loaded.

void updateTileset(function onLoad)
clears all loaded image data, parses the previously specified tileset
object again and pre-loads the images defined in it. If specified, the
onLoad callback function is called as soon as all images are loaded.
When the tileset object changes, this method has to be called.

void setScenegraph(object scenegraph)
sets the scenegraph to the specified object. It is not necessary to call
this method again or any update method whenever the scenegraph
object changes, as it is parsed each game loop cycle.

object getImage(string ID, number animation)
returns an image descriptor object of the image with the specified ID
and animation (see section 5.1.1). The returned object contains the
following keywords:
width ⟨number⟩

is set to the image width divided by the defined amount of sprites.
height ⟨number⟩

is set to the image height.

5. H5R Framework Prototype Implementation 38

sprites ⟨number⟩
is set to the amount of sprites in the image.

fps ⟨number⟩
is set to the number of frames per second defined for the image.

src ⟨string⟩
is set to source URL of the image.

img ⟨object⟩
is set to preloaded image object.

raw ⟨object⟩
is set to the part of the tileset object that contained the src or
img keyword.

5.1.5 The H5R.Stage Class

Each H5R.Stage class represents a stage and renders the entire scenegraph
or a part of it to the canvas. The constructor of the class requires an ID
of type string to be set as parameter; this ID defines the HTML-element
that should contain the canvas. The H5R.Stage has the following public
functions:
H5R.Stage setScenegraphPart(string sgPart)

sets the part of the scenegraph to be rendered on this stage; the param-
eter is a concatenation of the object keys and array indexes separated
by dots. If the parameter is an empty string, the entire scenegraph will
be rendered. The function returns the H5R.Stage object itself.

H5R.Stage setCamera(object camera)
sets the camera object to be used on this stage. The function returns
the H5R.Stage object itself.

string getId()
returns the ID of the stage.

boolean isValid()
returns true if an ID was set as parameter in the constructor.

void checkDOMElement()
checks if the HTML-element with the ID of stage the exists. If the
element exists and the canvas inside of it is non-existent, it creates it.
This function is called from the updateStages() function of the H5R
class.

object getCanvas()
returns an object representing the canvas element of the stage. It can
be used to copy the contents of the canvas, for example for screenshots.

5. H5R Framework Prototype Implementation 39

5.1.6 Using the H5R-Framework

Rendering a scene with the H5R-Framework requires a minimum of a tileset
object, a scenegraph object, an instance of the H5R class, an HTML-element
with a specified ID and an instance of the H5R.Stage class initialized with
the ID of the HTML-element. The code below shows an example on how to
use the H5R-Framework:

1 <!DOCTYPE HTML>
2 <HTML>
3 <HEAD>
4 <TITLE>H5R Framework Demo</TITLE>
5 <SCRIPT type="text/javascript" src="H5R.js"></SCRIPT>
6 <SCRIPT type="text/javascript">
7 renderer = new H5R();
8 renderer.addStage(new H5R.Stage("stage"));
9

10 var tileset = {
11 "walk": {
12 img: {
13 src: "walk.png",
14 sprites: 9,
15 fps: 8,
16 }
17 }
18 };
19
20 var scenegraph = {
21 actor: {
22 _x: 0,
23 _img: "walk",
24 _update: function(self, timediff, timepassed){
25 self._x = timepassed/1000*10;
26 },
27 }
28 };
29
30 renderer.setScenegraph(scenegraph);
31 renderer.setTileset(tileset);
32 </SCRIPT>
33 </HEAD>
34 <BODY>
35 <DIV id="stage" style="width: 100px; height: 100px;"></DIV>
36 </BODY>
37 </HTML>

In appendix A, the code for a simple Flappy Bird clone implemented
with the H5R framework can be found. This should illustrate the readability
of the code as well as the required amount of code when using the H5R
framework. It includes features like saving and restoring the scene (when
the player dies), image pre-loading, animated sprites, custom update and
render functions and custom values in the scenegraph.

5. H5R Framework Prototype Implementation 40

5.2 Optimizations
Optimizations in JavaScript are only possible to a certain extent, as the low-
level code cannot be changed; only high-level optimizations are possible. This
section introduces some possible optimizations and evaluates most of them
by directly comparing the results with and without the optimization.

5.2.1 Synchronizing the Framework with the Browser

The game loop could be executed consecutively using the setTimeout or
setInterval functions of JavaScript, which offer the possibility to set a de-
lay in milliseconds so the frame rate could be set. The setTimeout function
executes the callback function only once while the setInterval function
executes the callback function consecutively until it gets stopped by the
clearInterval function. The following example shows how a game loop
could be implemented using either the setTimeout or the setInterval
function:

1 var animateWithTimeOut = function(){
2 window.setTimeout(animateWithTimeOut, 1000/60);
3 console.log("tick with timeout");
4 };
5 window.setTimeout(animateWithTimeOut, 1000/60);
6
7 var animateWithInterval = function(){
8 console.log("tick with interval");
9 };

10 window.setInterval(animateWithInterval, 1000/60);

This implementation would work; however, it has several disadvantages.
First of all “[...] the millisecond delay is not an indication of when the code
will be executed, only an indication of when the job will be queued” [37],
thus the real delay between the function executions might be different. The
range of this variance differs among the browsers. Interent Explorer 8 and
earlier have a resolution of about 16 milliseconds which equals the difference
between 30 and 60 frames per second; Internet Explorer 9 and above, as well
as Chrome have a resolution of 4 milliseconds and Firefox and Safari have a
resolution of about 10 milliseconds [30, 37]. Another problem with this ap-
proach is, that the game loop is not paused when the page is hidden (when
the browser is minimized or the tab is hidden), which affects performance
even though the animation is not visible. “Chrome does throttle setInter-
val and setTimeout to 1fps in hidden tabs, but this [is not] to be relied
upon for all browsers” [30]. Another drawback is that the setTimeout and
setInterval functions usually require the screen to redraw. The browser
usually updates the screen itself at a fixed frame rate. If the frame rates
are not synchronized, either the screen is redrawn in between the regular
redraws, or the frames are dropped (not drawn and thus calculated unnec-

5. H5R Framework Prototype Implementation 41

essarily); either way it takes more processing power and drains the batteries
of mobile devices [30, 37].

These problems are solved using the requestAnimationFrame function
that was proposed by Mozilla and “adopted and improved by the WebKit
team” [30] which synchronizes the frame rate of the rendering cycle to the
frame rate of the browser:

1 var animate = function(){
2 window.requestAnimationFrame(animate);
3 console.log("tick with requestAnimationFrame");
4 };
5 window.requestAnimationFrame(animate);

Usually the browser executes this function at a frame rate of 60 frames per
second which equals a typical display that refreshes at 60Hz. The browsers
are able to optimize performance based on page visibility and battery status
by throttling or stopping the execution. Another advantage of this function
is that the screen is only redrawn once each frame even though there are
multiple rendering loops [30, 37].

To ensure that the function works with every browser (some browsers
have a different name for the function and older browsers do not have the
function at all), the following solution with fall-back functions is used (taken
from [27]):

1 window.requestAnimFrame = (function(){
2 return window.requestAnimationFrame ||
3 window.webkitRequestAnimationFrame ||
4 window.mozRequestAnimationFrame ||
5 function(callback){
6 window.setTimeout(callback, 1000 / 60);
7 };
8 })();
9

10 var anim = function(){
11 window.requestAnimFrame(anim);
12 console.log("tick with requestAnimFrame");
13 };
14 window.requestAnimFrame(anim);

5.2.2 Sub-Pixel Rendering

Evaluations show that some browsers are slower when rendering images that
are not aligned to the pixel grid (e.g. having floating point positions), scaled
or rotated, as the pixel values have to be interpolated instead of copied
from the image (see fig. 5.4). Some sources including [28] and [33] confirm
this observation. Hence the H5R Framework does not support rotation and
scaling, and rounds the objects positions before drawing them.

5. H5R Framework Prototype Implementation 42

1250 Entities1250 Entities

Rounded
positions
FloatingIpoint
positions

ChromeChrome
36.036.0

OperaOpera
12.1712.17

FirefoxFirefox
32.032.0

SafariSafari
5.1.75.1.7

IEIE
11.0.9611.0.96

OperaOpera
24.024.0

2020

9090

160160

230230

300300

F
P

S
F

P
S

Figure 5.2: The frame rates when drawing 1250 entities with rounded or
floating point positions.

5.2.3 Math-Functions

According to a number of sources including [28], [29] and [32], some Math
functions of JavaScript can be improved with custom implementations, es-
pecially the functions for rounding numbers. There are different approaches
on reimplementing those methods, the following example shows possible im-
plementations for rounding numbers down:
Math class implementation:

The standard implementation of the Math class in JavaScript:
1 var floor = Math.floor(number);

Bit shift by 0:
When shifting the bits by zero, the decimal places are cut off. Negative
numbers have to be treated differently:

1 var floor = (number < 0 && number % 1 != 0)? (number << 0) -1 :
number << 0;

Double bitwise NOT operation:
A bitwise NOT operation executed twice returns the same number
without the decimal places:

1 var floor = (number < 0 && number % 1 != 0)? (~~number) -1 : ~~
number;

Bitwise OR operation with 0:

5. H5R Framework Prototype Implementation 43

A bitwise OR operation with zero also returns the same number with-
out the decimal places:

1 var floor = (number < 0 && number % 1 != 0)? (number | 0) -1 :
number | 0;

This implementation can also be found in Construct 2:
1 cr.floor = function (x)
2 {
3 if (x >= 0)
4 return x | 0;
5 else
6 return (x | 0) - 1;
7 };

The implementation of Construct 2 is similar to the one shown above,
but it does not check if a negative number has any decimal places; in
this case Construct 2 would still subtract one, and thus return a wrong
value.

Comparing those implementations (see fig. 5.3) shows that the custom imple-
mentations are at most half a second faster at 100 million calculations. Using
Google Chrome, the standard implementation is one second faster than the
custom implementations. The differences in speed between the implemen-
tations are insignificant. Usually there are not more than several thousand
rounding calculations in each game loop cycle. With 100000 calculations the
difference would be, at most, one millisecond, so this optimization approach
can be neglected. More significant are the differences between the browsers.

5.2.4 Off-Screen Canvas Rendering

Another optimization technique proposed by [33] is rendering the scene to
a canvas that is not added to the scenegraph (and thus not visible) and
copying the contents to the visible canvas. This approach should prevent
the browser from rendering in-between states of the scene. The scene is only
rendered to the display when completely drawn. The evaluation shows that
this optimization only works well in Google Chrome (and other Browsers
using Chromium); in all other browsers it is slightly slower (see fig. 5.4).

5.2.5 Other Optimizations

Rendering different parts of the scene to different layers can be done by ren-
dering them to different canvases (different H5R.Stage-Objects with the H5R
framework) that are stacked on top of each other (which can be done with
absolute positioning in CSS). Using those layers will only update and ren-
der layers where contents have changed, thus the performance is improved.
Another possibility for performance optimizations would be to render only
parts of the scenes where content has changed, but to do this the engine

5. H5R Framework Prototype Implementation 44

Rounding numbers down (100 million calculations)Rounding numbers down (100 million calculations)

Math.floor
Bit7shift7by70
Double
Bitwise7NOT
Bitwise7OR
with70

ChromeChrome
36.036.0

Opera712.17Opera712.17 Firefox731.0Firefox731.0 Safari75.1.7Safari75.1.7 IE711.0.96IE711.0.96
00

22

44

66

88

S
e
c
o
n

d
s

S
e
c
o
n

d
s

Figure 5.3: The time required for rounding down 100 million numbers with
different implementations.

1250 Entities1250 Entities

CanvasI2D
CanvasI2D
withIoff-
screen
Canvas

ChromeI36.0ChromeI36.0 OperaI12.17OperaI12.17 FirefoxI31.0FirefoxI31.0 SafariI5.1.7SafariI5.1.7 IEI11.0.96IEI11.0.96 OperaI23.0OperaI23.0
00

7070

140140

210210

280280

F
P

S
F

P
S

Figure 5.4: Rendering a scene with 1250 entities with and without an off-
screen canvas.

would have to know what parts have changed—this is not implemented in
the H5R framework. Not rendering elements that are outside the scenegraph
could improve performance as well, but a relatively fast function to check if
an element is inside or not would be required.

5.3 Summary
The H5R framework tries to combine simplicity and performance by provid-
ing a manageable API and performing some optimizations. However, some

5. H5R Framework Prototype Implementation 45

functions such as rotating images or sub-pixel rendering are not supported in
favour of the performance. On the other hand it provides features for adding
several stages using the same scenegraph and renderer, for saving and restor-
ing scenes easily and for making large changes to the scenegraph in real time,
which is required for the ZIEGE project. Being a prototype, some features
are missing such as sound and collision detection and handling, which would
be required for a full-featured game engine.

Chapter 6

Evaluation of the H5R
Framework

The use of the H5R framework in the ZIEGE project shows that it meets its
requirements; the frame rates are acceptable, even in complex scenes. How-
ever, the H5R framework has been compared to the other frameworks intro-
duced earlier in this thesis. This chapter shows how the remaining research
questions from the introduction are addressed. It is difficult to measure how
good a framework is; the simplicity and usability is highly subjective. Less
code required for the same scene does not mean it is better or easier. Indeed
it could even be more difficult. The number of methods a framework or API
offers could be measured as well, but a high number does not mean it is more
complex or poorly structured; it could just have more features. What can
be measured is the frame rate of the same scene built with different frame-
works. However, a framework could be fast at rendering one scene, but slow
at rendering another, depending on the contents of the scene. Thus a use
case for the framework has to be defined; in this case it is the rendering of a
scene with a large number of sprite animations. Most scenes can be rendered
at 60 frames per second with most of the frameworks; the frame rate is not
higher as it is limited to 60 frames per second with most frameworks. Thus
the performance cannot be compared in a common game scene. Therefore
a stress test is used in which a much larger number of sprite animations is
drawn so that the frame rate would drop below the 60 frames per second.
This makes it possible to compare the frame rates but it is not representative
for a common game scene. The ZIEGE project has several layers which are
rendered to a number of canvases. Rendering to multiple canvases can im-
prove performance when the content of one or more canvases stays the same
from frame to frame, while others are moving, so they do not have to be
repainted. If the content on all canvases change, the performance stays the
same. So this test ignores that one layer might not be repainted, as it ren-
ders only one layer. This means that the performance in the ZIEGE project

46

6. Evaluation of the H5R Framework 47

5000 Entities5000 Entities

KineticJS
EaselJS
pixi.js
ImpactJS
H5R

ChromeChrome
37.037.0

OperaOpera
12.1712.17

FirefoxFirefox
31.031.0

SafariSafari
5.1.75.1.7

IEIE
11.0.9611.0.96

OperaOpera
24.024.0

00

1515

3030

4545

6060

F
P

S
F

P
S

Figure 6.1: Rendering a scene with 5000 entities using the H5R framework,
the other frameworks and different browsers.

might be better, but not worse than in the test with the same amount of
entities. Drawing to different canvases would be more work using one of the
other frameworks.

6.1 Rendering Performance Evaluation
The display rate in frames per second is measured in order to find out if
the H5R framework meets the requirements of a game rendering frame-
work. According to [1] and [10], it is “the common metric to measure the
responsiveness of interactive applications including computer games”. The
rendering speed of the H5R framework was measured the same way as it was
measured for the other frameworks, so it could be compared directly (see
fig. 6.1). The performance of the H5R framework is about the same as the
performance of EaselJS on most browsers, but still not as good as the other
frameworks. However, the performance is good enough, as the 60 frames per
second are easily reached when rendering a scene with 1250 entities, which
is still more entities than most scenes contain. Even with lesser hardware,
a frame rate between 50 and 60 frames per second is reached; it can draw
about 2800 entities at a frame rate of 30 frames per second, which is still
appropriate for gaming.

6. Evaluation of the H5R Framework 48

6.2 Changing, Saving and Restoring the Scene-
graph

Adding or removing 5000 entities to or from the scenegraph takes about one
to five milliseconds; it would only marginally affect the frame rate, so it can
be considered real-time. The ZIEGE project has a playing field of 40 by 30
grid units, which can be extended in any direction, but only 40 by 30 is
displayed at any time. Even though there are three layers for level elements,
it is not possible to draw on more than one at once. Thus the ZIEGE project
allows 1200 (40×30) elements at most to be added or removed at once, which
would take not more than two milliseconds.

The scenegraph or parts of it can be saved by using the JSON.stringify
function and storing the text object locally or on a server. The only precon-
dition is that there are no circular references in it. However there are some
issues about what can be stored: If there are several fields referencing the
same object, they will reference different objects with the same initial values
when restoring the JSON object from the text using JSON.parse. If a field
is referencing a function, it will not be saved using the JSON.stringify
function. On the one hand, it is a drawback, as the _update and _render
functions cannot be saved this way, but on the other hand it would be an
enormous security vulnerability, as program code would be evaluated from
text that is probably stored on a server, and could be manipulated by a user.
Restoring the saved scenegraph from text can be done using the JSON.parse
function.

Chapter 7

Conclusion and Outlook

7.1 H5R Framework and the ZIEGE Project
Even though the H5R framework works well in the ZIEGE project, it is still
a prototype, so some features are missing and some optimizations could be
done. In future, sound support will be added as well as some game physics.
An alternative to the JSON.stringify and JSON.parse functions will be
added, so references to the same object as well as circular references and
functions could be preserved and stored. The ZIEGE project will also be
continued and extended. Some features such as a behaviour editor for the
entities is already planned and only the UI implementation is missing (see
fig. 7.1).

7.2 Web Technologies
Web technologies are getting better and better and the support of HTML5
features among the browsers as well as the performance is increasing steadily.
Even during the writing of this thesis, the HTML5 support and performance
in some browsers increased substantially. Firefox had almost 10 new version
releases and the improvements in performance can be seen by comparing the
charts from chapters 3 and 4. It shows that Firefox was one of the slowest
browsers and became one of the fastest again. It is a steady head-to-head
race among the browsers. With the increasing performance and improv-
ing technologies, the web is transforming from a document-oriented to a
application-oriented platform. A good summary can be found in [2]:

The ability to run non-trivial applications (as opposed to sim-
ple scripts) inside the web browser has increased tremendously
over the last years. Thanks to high performance JavaScript en-
gines, raw JavaScript execution speed has increased by two or-
ders of magnitude compared to the situation only three years
ago. In this area, competition between browser manufacturers

49

7. Conclusion and Outlook 50

Figure 7.1: The planned UI design of the behaviour editor in the ZIEGE
project.

has clearly benefited the customer and led to a situation in which
web applications and environments that were barely runnable
in 2007 [...] can now run even in mobile devices without major
problems. In general, limitations associated with raw JavaScript
execution performance have mostly disappeared.

7.3 Games
The number of platforms for gaming is increasing and so are the require-
ments for games. Consoles, mobile devices, browsers, Steam OS are just
some examples of gaming platforms. To reach as many people as possible,
cross-platform development is becoming more and more important. Game
engines like Unity support a number of platforms that the games could be
released on, but nevertheless some platform-specific code is almost always
required. Web browser games that do not use any plug-ins are a great alter-
native, as most platforms and operating systems can run them without many
changes to the code. But especially with mobile devices, the performance is
still not adequate for browser games. Yet this will most likely change in the
future. In addition to the desktop browsers, also mobile browsers are im-
proving steadily, but it will take some time until most mobile devices have
an adequate browser for gaming installed.

Appendix A

Simple Flappy Bird Clone
with the H5R Framework

The code below shows a simple Flappy Bird clone implemented using the
H5R framework (see fig. A.1). There are three graphics used: A background
image with a size of 640 by 480 pixels, which equals the scene size. The bird
graphic is a sprite animation with three frames with a size of 64 by 48 pixels
each. The obstacles are displayed using a brick graphic with a size of 16 by
16 pixels. The graphic is repeated to match the size of the obstacles.

1 <!DOCTYPE HTML>
2 <HTML>
3 <HEAD>
4 <TITLE>H5R framework demo: Flappy Bird clone</TITLE>
5 <SCRIPT type="text/javascript" src="H5R.js"></SCRIPT>
6 </HEAD>
7 <BODY>
8 <DIV id="stage" style="width: 640px; height: 480px;"></DIV>
9 <SCRIPT type="text/javascript">

10 var isCollision = function(a, b){
11 return !(a._x >= b._x + b._width ||
12 a._y >= b._y + b._height ||
13 b._x >= a._x + a._width ||
14 b._y >= a._y + a._height);
15 };
16
17 var TS = {
18 "bird": { //size: 64x48
19 img: {
20 src: "bird.png",
21 sprites: 3,
22 fps: 8,
23 },
24 },
25 "background": {
26 img: "background.png",
27 },

51

A. Simple Flappy Bird Clone with the H5R Framework 52

Figure A.1: A Flappy Bird clone implemented using the H5R framework.

28 "brick": { // size: 16x16
29 img: "brick.png",
30 },
31 };
32
33 var SG = {
34 bg: {
35 _img: "background",
36 },
37 bricks: [],
38 bird: {
39 _x: 32,
40 _y: 64,
41 _img: "bird",
42 _width: 64,
43 _height: 64,
44 vY: 0,
45 },
46 score: {
47 value: 0,
48 }
49 };
50
51 var storedSG = JSON.stringify(SG);
52
53 var sceneBounds = {

A. Simple Flappy Bird Clone with the H5R Framework 53

54 _x: 0,
55 _y: 0,
56 _width: 680, //added more space so spawned gates would not disappear

immediately
57 _height: 480
58 };
59
60 var R = new H5R();
61 R.addStage(new H5R.Stage("stage"));
62 R.setScenegraph(SG);
63
64 var die = function(){
65 //show score and restart when player dies
66 alert("You died! Final score: " + SG.score.value);
67 R.stop();
68 SG = JSON.parse(storedSG);
69 R.setScenegraph(SG);
70 play();
71 };
72
73 var play = function(){
74 R.start();
75 SG.score._render = function(self, ctx){
76 //display score on screen
77 ctx.font = 'italic 20pt Calibri';
78 ctx.fillText('Score: ' + self.value, 20, 40);
79 };
80 SG.bird._update = function(self, dT, time){
81 //bird gravity
82 self.vY += 20 * dT * 0.005;
83 var dY = self.vY * dT * 0.005;
84 self._y += dY;
85 };
86 SG._update = function(self, dT, time){
87 //add new gate when necessary
88 if(SG.bricks.length < 1 || SG.bricks[SG.bricks.length-1].top.

_x <= 432){
89 var x = 664;
90 if(SG.bricks.length > 0){
91 x = SG.bricks[SG.bricks.length-1].top._x + 192;
92 }
93 var gatePosition = (Math.random()*8)|0;
94 SG.bricks.push({
95 top:{
96 _img: "brick",
97 _x: x,
98 _y: 0,
99 _repeatX: 2,

100 _repeatY: 4+gatePosition
101 },
102 bottom:{
103 _img: "brick",
104 _x: x,
105 _y: (12+gatePosition)*16,

A. Simple Flappy Bird Clone with the H5R Framework 54

106 _repeatX: 2,
107 _repeatY: 18-gatePosition
108 },
109 scored: false,
110 _update: function(self, dT, time){
111 //move gate
112 var newX = self.top._x - dT*0.1;
113 self.top._x = newX;
114 self.bottom._x = newX;
115 //score when gate is passed
116 if(newX <= 48 && !self.scored){
117 SG.score.value++;
118 self.scored = true;
119 }
120 },
121 });
122 }
123 //check collisions
124 if(SG.bricks.length > 0){
125 //remove gate when out of screen
126 if(!isCollision(SG.bricks[0].top, sceneBounds)) SG.bricks.

shift();
127 }
128 if(!isCollision(SG.bird, sceneBounds)){
129 //player vs. scene bounds
130 die();
131 }
132 for(var i = 0; i < SG.bricks.length; i++){
133 //player vs. gates
134 if(isCollision(SG.bricks[i].top, SG.bird)) die();
135 if(isCollision(SG.bricks[i].bottom, SG.bird)) die();
136 }
137 };
138
139 window.onclick = function(){
140 SG.bird.vY = -50;
141 };
142 };
143
144 R.setTileset(TS, function(){
145 play();
146 });
147 </SCRIPT>
148 </BODY>
149 </HTML>

References

Literature
[1] Navid Ahmadi, Mehdi Jazayeri, and Alexander Repenning. “Perfor-

mance Evaluation of User-created Open-web Games”. In: Proceedings
of the 27th Annual ACM Symposium on Applied Computing. SAC ’12.
Trento, Italy: ACM, 2012, pp. 730–732. url: http://doi.acm.org/10.
1145/2245276.2245414 (cit. on p. 47).

[2] Matti Anttonen et al. “Transforming the Web into a Real Application
Platform: New Technologies, Emerging Trends and Missing Pieces”.
In: Proceedings of the 2011 ACM Symposium on Applied Computing.
SAC ’11. TaiChung, Taiwan: ACM, 2011, pp. 800–807. url: http :
//doi.acm.org/10.1145/1982185.1982357 (cit. on p. 49).

[3] Andreas Anyuru. Professional WebGL Programming: Developing 3D
Graphics for the Web. 2nd. Birmingham, UK, UK: Wrox Press Ltd.,
2012 (cit. on p. 8).

[4] Mark Claypool and Kajal Claypool. “Perspectives, Frame Rates and
Resolutions: It’s All in the Game”. In: Proceedings of the 4th Inter-
national Conference on Foundations of Digital Games. FDG ’09. Or-
lando, Florida: ACM, 2009, pp. 42–49. url: http://doi.acm.org/10.
1145/1536513.1536530 (cit. on p. 30).

[5] Aiman Erbad, Norman C. Hutchinson, and Charles Krasic. “DOHA:
Scalable Real-time Web Applications Through Adaptive Concurrent
Execution”. In: Proceedings of the 21st International Conference on
World Wide Web. WWW ’12. Lyon, France: ACM, 2012, pp. 161–170.
url: http://doi.acm.org/10.1145/2187836.2187859 (cit. on p. 17).

[6] Stephan Herhut et al. “River Trail: A Path to Parallelism in
JavaScript”. In: Proceedings of the 2013 ACM SIGPLAN Interna-
tional Conference on Object Oriented Programming Systems Lan-
guages & Applications. OOPSLA ’13. Indianapolis, Indiana, USA:
ACM, 2013, pp. 729–744. url: http://doi.acm.org/10.1145/2509136.
2509516 (cit. on p. 17).

55

http://doi.acm.org/10.1145/2245276.2245414
http://doi.acm.org/10.1145/2245276.2245414
http://doi.acm.org/10.1145/1982185.1982357
http://doi.acm.org/10.1145/1982185.1982357
http://doi.acm.org/10.1145/1536513.1536530
http://doi.acm.org/10.1145/1536513.1536530
http://doi.acm.org/10.1145/2187836.2187859
http://doi.acm.org/10.1145/2509136.2509516
http://doi.acm.org/10.1145/2509136.2509516

References 56

[7] Shusuke Okamoto and Masaki Kohana. “Load Distribution by Using
Web Workers for a Real-time Web Application”. In: Proceedings of the
12th International Conference on Information Integration and Web-
based Applications & Services. iiWAS ’10. Paris, France: ACM,
2010, pp. 592–597. url: http://doi.acm.org/10.1145/1967486.1967577
(cit. on p. 17).

[8] Chengyuan Peng. “SCALABLE VECTOR GRAPHICS (SVG)”. In:
Tik-111.590 Research Seminar on Interactive Digital Media. Helsinki,
Finland: Helsinki University of Technology, 2000. url: http://www.
tml.tkk.fi/Opinnot/Tik-111.590/2000/Papers/svg.pdf (cit. on p. 14).

[9] Steve Probets et al. “Vector Graphics: From PostScript and Flash to
SVG”. In: Proceedings of the 2001 ACM Symposium on Document En-
gineering. DocEng ’01. Atlanta, Georgia, USA: ACM, 2001, pp. 135–
143. url: http://doi.acm.org/10.1145/502187.502207 (cit. on p. 14).

[10] Ben Shneiderman. “Response Time and Display Rate in Human Per-
formance with Computers”. In: ACM Comput. Surv. 16.3 (Sept. 1984),
pp. 265–285. url: http://doi .acm.org/10.1145/2514.2517 (cit. on
p. 47).

[11] Gojko Vladić. Evaluating Web browser graphics rendering system
performance by using dynamically generated SVG. Ed. by Darko
Avramović. 2012, Online–Ressource (cit. on p. 14).

Online sources
[12] url: http://img.fettspielen.de/img/prepages/000000082/ogame%5C_

screenshot342%5C_n.jpg (cit. on p. 5).
[13] url: http://kosmix.co/static/2455a2306c62fe3f607d932e21185b01.jpg

(cit. on p. 6).
[14] url: http://www.stagetwo.eu/Attachment/4689- minecraft- 5- jpeg/

(cit. on p. 6).
[15] url: http://www.indiegames.com/images/timw/roadeo2a.png (cit. on

p. 7).
[16] url: http : / / 3 . bp . blogspot . com/ - 8qcBaKla9oE / TcIgCBW6hWI /

AAAAAAAAAVM/A-NQJ0tU0G4/s1600/globescreenshot.png (cit. on
p. 9).

[17] url: http://esotericsoftware.com/files/dragon-screenshot.jpg (cit. on
p. 20).

[18] url: http://impactjs.com/files/weltmeister-new.png (cit. on p. 27).

http://doi.acm.org/10.1145/1967486.1967577
http://www.tml.tkk.fi/Opinnot/Tik-111.590/2000/Papers/svg.pdf
http://www.tml.tkk.fi/Opinnot/Tik-111.590/2000/Papers/svg.pdf
http://doi.acm.org/10.1145/502187.502207
http://doi.acm.org/10.1145/2514.2517
http://img.fettspielen.de/img/prepages/000000082/ogame%5C_screenshot342%5C_n.jpg
http://img.fettspielen.de/img/prepages/000000082/ogame%5C_screenshot342%5C_n.jpg
http://kosmix.co/static/2455a2306c62fe3f607d932e21185b01.jpg
http://www.stagetwo.eu/Attachment/4689-minecraft-5-jpeg/
http://www.indiegames.com/images/timw/roadeo2a.png
http://3.bp.blogspot.com/-8qcBaKla9oE/TcIgCBW6hWI/AAAAAAAAAVM/A-NQJ0tU0G4/s1600/globescreenshot.png
http://3.bp.blogspot.com/-8qcBaKla9oE/TcIgCBW6hWI/AAAAAAAAAVM/A-NQJ0tU0G4/s1600/globescreenshot.png
http://esotericsoftware.com/files/dragon-screenshot.jpg
http://impactjs.com/files/weltmeister-new.png

References 57

[19] John Bauman, Brian Salomon, and Pixel Engineers. Chromium Blog:
GPU accelerating 2D Canvas and enabling 3D content for older GPUs.
2012. url: http://blog.chromium.org/2012/02/gpu-accelerating-2d-
canvas-and-enabling.html (cit. on p. 9).

[20] Clay.io. HTML5 Game Engines - Find Which is Right For You. 2014.
url: http://html5gameengine.com/ (cit. on pp. 16, 21, 24, 25).

[21] Lucian Constantin. Researchers: Java’s security problems unlikely to
be resolved soon. 2013. url: http://www.pcworld.com/article/2030778/
researchers- javas- security-problems-unlikely- to-be- resolved- soon.html
(cit. on p. 4).

[22] Oliver Cueilliez. An Original Approach to Web Game Development
Using SVG. 2011. url: http://www.svgopen.org/2011/papers/14-
An%5C_Original%5C_Approach%5C_to%5C_Web%5C_Game%5C_
Development%5C_Using%5C_SVG/ (cit. on p. 7).

[23] CVE. Adobe Flash Player : CVE security vulnerabilities, versions and
detailed reports. 2014. url: http://www.cvedetails.com/product/6761/
Adobe-Flash-Player.html (cit. on p. 4).

[24] Alexis Deveria. Can I use... Support tables for HTML5, CSS3, etc.
2014. url: http://caniuse.com/%5C#feat=webgl (cit. on pp. 8, 9, 16).

[25] EaselJS. A Javascript library that makes working with the HTML5
Canvas element easy. 2014. url: http://www.createjs.com/%5C#!/
EaselJS (cit. on p. 24).

[26] Stefan Haustein, Joel Webber, and Ray Cromwell. Quake II GWT
Port. 2010. url: https://code.google.com/p/quake2-gwt-port/ (cit. on
p. 10).

[27] Paul Irish. requestAnimationFrame for smart animating. 2011. url:
http : //www.paulirish . com/2011/ requestanimationframe - for - smart -
animating/ (cit. on p. 41).

[28] Seb Lee-Delisle. HTML5 canvas sprite optimisation. 2011. url: http:
//seb.ly/2011/02/html5-canvas- sprite-optimisation/ (cit. on pp. 41,
42).

[29] Afshin Mehrabani. ˜˜ is faster than Math.floor(). 2012. url: https:
//coderwall.com/p/9b6ksa (cit. on p. 42).

[30] Paul Neave. requestAnimationFrame. 2013. url: http://creativejs.com/
resources/requestanimationframe/ (cit. on pp. 40, 41).

[31] PlayN Quake II Demo Port. url: http://quake2playn.appspot.com/
(cit. on p. 10).

[32] Rix Library. JavaScript Math.floor Optimization. 2014. url: http://
rix.li/javascript-math-floor-optimization/ (cit. on p. 42).

http://blog.chromium.org/2012/02/gpu-accelerating-2d-canvas-and-enabling.html
http://blog.chromium.org/2012/02/gpu-accelerating-2d-canvas-and-enabling.html
http://html5gameengine.com/
http://www.pcworld.com/article/2030778/researchers-javas-security-problems-unlikely-to-be-resolved-soon.html
http://www.pcworld.com/article/2030778/researchers-javas-security-problems-unlikely-to-be-resolved-soon.html
http://www.svgopen.org/2011/papers/14-An%5C_Original%5C_Approach%5C_to%5C_Web%5C_Game%5C_Development%5C_Using%5C_SVG/
http://www.svgopen.org/2011/papers/14-An%5C_Original%5C_Approach%5C_to%5C_Web%5C_Game%5C_Development%5C_Using%5C_SVG/
http://www.svgopen.org/2011/papers/14-An%5C_Original%5C_Approach%5C_to%5C_Web%5C_Game%5C_Development%5C_Using%5C_SVG/
http://www.cvedetails.com/product/6761/Adobe-Flash-Player.html
http://www.cvedetails.com/product/6761/Adobe-Flash-Player.html
http://caniuse.com/%5C#feat=webgl
http://www.createjs.com/%5C#!/EaselJS
http://www.createjs.com/%5C#!/EaselJS
https://code.google.com/p/quake2-gwt-port/
http://www.paulirish.com/2011/requestanimationframe-for-smart-animating/
http://www.paulirish.com/2011/requestanimationframe-for-smart-animating/
http://seb.ly/2011/02/html5-canvas-sprite-optimisation/
http://seb.ly/2011/02/html5-canvas-sprite-optimisation/
https://coderwall.com/p/9b6ksa
https://coderwall.com/p/9b6ksa
http://creativejs.com/resources/requestanimationframe/
http://creativejs.com/resources/requestanimationframe/
http://quake2playn.appspot.com/
http://rix.li/javascript-math-floor-optimization/
http://rix.li/javascript-math-floor-optimization/

References 58

[33] Boris Smus. Improving HTML5 Canvas Performance - HTML5 Rocks.
2013. url: http : / / www . html5rocks . com / en / tutorials / canvas /
performance/ (cit. on pp. 41, 43).

[34] StatCounter. Top 5 Desktop Browsers from Aug 2013 to Aug 2014.
2014. url: http ://gs . statcounter . com/%5C#desktop- browser - ww-
monthly-201308-201408 (cit. on pp. 16, 17).

[35] W3C et al. HTML5 - Candidate Recommendation. 2014. url: http:
//www.w3.org/TR/html5/ (cit. on pp. 8, 14).

[36] W3Schools. Browser Statistics. 2014. url: http : / / www . w3schools .
com/browsers/browsers%5C_stats.asp (cit. on p. 16).

[37] Nicholas C. Zakas. Better JavaScript animations with requestAnima-
tionFrame. 2011. url: http : / / www . nczonline . net / blog / 2011 / 05 /
03/better- javascript- animations-with- requestanimationframe/ (cit. on
pp. 40, 41).

http://www.html5rocks.com/en/tutorials/canvas/performance/
http://www.html5rocks.com/en/tutorials/canvas/performance/
http://gs.statcounter.com/%5C#desktop-browser-ww-monthly-201308-201408
http://gs.statcounter.com/%5C#desktop-browser-ww-monthly-201308-201408
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://www.w3schools.com/browsers/browsers%5C_stats.asp
http://www.w3schools.com/browsers/browsers%5C_stats.asp
http://www.nczonline.net/blog/2011/05/03/better-javascript-animations-with-requestanimationframe/
http://www.nczonline.net/blog/2011/05/03/better-javascript-animations-with-requestanimationframe/

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Motivation
	Research Questions
	Thesis Structure

	State of the Art: Web Browser Gaming
	Browser Plug-ins for Gaming
	Mobile Devices
	SVG
	New Possibilities with HTML5
	The WebGL Context
	The 2D Context

	Summary

	2D Rendering Techniques in HTML
	DOM-Rendering: Using HTML-Elements for Rendering
	Rendering with CSS: Using Background Images
	Vector Graphics: SVG
	The HTML5 Canvas: 2D Context
	WebGL, 3D Graphics in HTML5
	Comparison of these Techniques
	Summary

	Rendering Frameworks
	KineticJS
	Construct 2
	EaselJS
	pixi.js
	ImpactJS
	Framework Comparison

	H5R Framework Prototype Implementation
	Structure and Usage
	Defining the Tileset
	Defining the Scenegraph
	Defining the Camera
	The H5R Class
	The H5R.Stage Class
	Using the H5R-Framework

	Optimizations
	Synchronizing the Framework with the Browser
	Sub-Pixel Rendering
	Math-Functions
	Off-Screen Canvas Rendering
	Other Optimizations

	Summary

	Evaluation of the H5R Framework
	Rendering Performance Evaluation
	Changing, Saving and Restoring the Scenegraph

	Conclusion and Outlook
	H5R Framework and the ZIEGE Project
	Web Technologies
	Games

	Simple Flappy Bird Clone with the H5R Framework
	References
	Literature
	Online sources

