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Abstract

Multi-core hardware has become a standard in personal computing. Similar
to the software crisis around 1970, writing software which is able to exploit
the new, parallel hardware is still a difficult, error-prone process.

Due to a side effect free programming style, functional programming
languages are said to be specifically suitable for this kind of tasks. One ap-
plication of such languages are theorem provers. Their foundation in math-
ematics and logics makes functional programming the paradigm of choice.
Isabelle is an interactive theorem proving framework whose back-end has
been implemented in Standard ML. Development efforts during recent years
have enabled the system to efficiently use the full processing power available
on current multi-core architectures. The educational mathematics system
Isac draws on Isabelle’s functionality and was thus until recently the only
project of its kind to be based on theorem proving technology.

This thesis documents the introduction of Isabelle’s parallelism concepts
to Isac and outlines related technologies such as parallelism fundamentals,
various approaches to parallelism in functional programming and computer
theorem proving. Furthermore, the architectures and concepts of Isabelle and
Isac are discussed, both including means of communicating with the Java
Virtual Machine for their front-ends. Thereby the strengths of functional
and imperative programming are combined and both paradigms are utilized
to solve the respective problems for which they are particularly appropri-
ate. The results of the parallelization are promising and will enable a high
number of students to use one single, responsive Isac server for calculations
simultaneously.
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Kurzfassung

Multicore-Prozessoren sind im Personal Computing Bereich mittlerweile ein
etablierter Standard. Ahnlich der Softwarekrise um 1970 ist aber die Ent-
wicklung von Software, die diese Hardware effizient nutzen kann, immer
noch ein schwieriger, fehleranfalliger Prozess.

Funktionale Programmiersprachen basieren auf einem Programmierstil
ohne Nebeneffekten und sollen daher fiir diese Art von Aufgaben beson-
ders geeignet sein. Eine Anwendung solcher Sprachen sind computerbasier-
te Theorembeweiser. Wegen ihrer Begriindung in Mathematik und Logik
liegt funktionale Programmierung als Paradigma besonders nahe. Isabelle
ist ein Framework fiir interaktives Beweisen von Theoremen, dessen Ba-
ckend in Standard ML entwickelt wurde. Die Implementierungsarbeiten der
letzten Jahre haben dazu gefiihrt, dass das System nun die Ressourcen mo-
derner Multicore-Prozessorarchitekturen besonders wirkungsvoll einsetzen
kann. Das Mathematiklernsystem Isac baut auf Isabelle auf und war damit
bis vor Kurzem das einzige seiner Art, welches auf Theorembeweisertechno-
logien basiert.

Diese Arbeit dokumentiert die Einfithrung von Isabelles Parallelitdatskon-
zepten in Isac und gibt einen Uberblick iiber dafiir relevante Technologien
wie Grundlagen der Parallelitit, unterschiedliche Ansétze zu Parallelitit in
funktionaler Programmierung und maschinengestiitzes Beweisen. Auflerdem
werden die Architekturen Isabelles und Isacs vorgestellt, die beide Mechanis-
men zur Kommunikation mit der Java Virtual Machine fir ihre Frontends
beinhalten. Damit werden die Stdrken funktionaler und imperativer Pro-
grammierung kombiniert und beide Paradigmen jeweils zur Losung jener
Probleme eingesetzt, fiir die sie besonders angemessen sind. Die Ergebnisse
der Parallelisierung sind vielversprechend und werden es ermoglichen, dass
eine grofle Anzahl von Schiilern und Studenten gleichzeitig einen schnell
reagierenden Isac Server fiir Berechnungen beanspruchen kann.

viii



Chapter 1

Introduction

1.1 Motivation

Moore’s Law [65] states that the density of transistors which can be placed
on a single chip doubles about every two years. Clock speeds hit an upper
bound around the year 2004 (see fig. 1.1) due to thermal issues [84] and
transistor sizes cannot be reduced any more [28]. Therefore most CPUs now
come with multiple processing cores. This poses a challenge to the software
running on these CPUs because it must support parallel or concurrent ex-
ecution in order to efficiently exploit a computer’s full processing power.
Concurrency allows for multitasking and asynchronous computations can
improve responsiveness even on uniprocessors (see section 2.4). But writing
efficiently parallel or concurrent software is hard [85]. Now that multi-core
architectures are commonplace and highly parallel GPUs are beginning to
get exploited for general-purpose computing [68], concurrent processes and
threads can effectively be running simultaneously and therefore significantly
faster.

Functional programming is a declarative paradigm based on the lambda
calculus. It has been claimed that it is specifically suited not only for proto-
typing but also for efficient parallelism due to some of its defining features
such as immutable data, statelessness and the lack of side effects (e.g. [17]).

The interactive theorem prover Isabelle [69] is a comprehensive, interna-
tional software project. Its internal logic has been written entirely in Stan-
dard ML which later was embedded in a Scala environment to simplify in-
teraction with the underlying operating system and software built on top of
Isabelle. As the use of multi-core systems became more common, Isabelle’s
computationally complex logic was required to exploit the newly available
processing power. Makarius Wenzel, one of the leading developers of Isabelle,
parallelized essential parts of the system within a few man months (scat-
tered over about two years). This is a surprisingly little amount of effort
considering the project’s size and complexity. A significant amount of the
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Figure 1.1: Intel CPU trends (source: [84]).

work was required due to the use of impure code, facilitated by Standard
ML and Scala, i.e. work concerning purification in terms of the functional
paradigm. Isabelle/Scala provides tools for interaction between front-end
and proof engine and contains object-oriented components to deal with in-
herently stateful aspects of the development environment Isabelle/jEdit.
The educational mathematics system Isac is being prototyped at Graz
University of Technology. The prototype combines a Java front-end with
a mathematics-engine written in Standard ML, which reuses logical con-
cepts and mechanisms of Isabelle [67]. Both projects are case studies for
the use of functional programming in practical, interactive software projects
which also demonstrate how the disadvantages of this paradigm’s intrinsic
properties like side effect free programming can be complemented by in-
tegrating functional and imperative programming. Analogous to Isabelle’s
parallelization, Isac was reengineered for multi-core systems. The involved
background knowledge, documentation and outcomes of this project form
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the basis for this document. These topics will be expanded to include com-
mon parallelism and concurrency mechanisms suggested and implemented
for other functional programming languages as well as previous research on
refactoring techniques for multi-core.

1.2 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 establishes a
theoretical background on the different areas relevant for the practical work
on the case study within Isac and includes topics such as functional program-
ming, computer theorem proving, parallelism, concurrency, responsiveness
and refactoring of programs within the functional paradigm. Subsequently,
various approaches towards parallelism that can and may have been used in
functional programming are investigated in chapter 3. The end of this chap-
ter briefly talks about refactoring of functional programs for parallelism.
Chapter 4 is then dedicated to the two main software projects involved in
the practical part of this thesis, Isabelle and Isac, as well as to a discussion
of what has been done in the course of the practical work. A conclusion and
outlook on possible future work are given in chapter 5. Appendix A provides
code samples in addition to those given in the main text as well as comments
and further explanations. Finally, appendix B lists the contents of the DVD
that was handed in along with the thesis.



Chapter 2

Fundamentals

In this chapter we want to get an overview of fundamental concepts relevant
for the practical project work carried out along with and as a basis for this
thesis. We will also consider ideas and technologies that are related to the
topic of the thesis and could be utilized for similar practical applications.
Section 2.1 explores the history and common features of functional program-
ming. Computer theorem proving will be introduced in section 2.2, followed
by 2.3 on a theoretical background on parallelism. Sections 2.4 and 2.5 ex-
plain concurrency in relation to latency and responsiveness and refactoring
of programs developed in functional programming languages, respectively.

2.1 Functional Programming

Functional programming is a declarative way of programming, i.e. source
code does not describe routines but rather the desired result of a compu-
tation. Computation is the evaluation of expressions. Even programs are in
fact functions; hence the name functional programming. Pure functional pro-
gramming languages do not permit mutable data which means that there are
no variables, only constant values. Functional programs are side effect free,
i.e. given the same input parameters they must always produce the same
results. Unlike subroutines in imperative languages, here the term function
refers to a function in the mathematical sense. Therefore the implementa-
tion of programs tends to be closer to their specification compared to other
paradigms. Although functional programming languages are rarely utilized
for the development of commercial software [36], they have had a significant
impact on the theory and pragmatics of other paradigms and programming
languages in general [45].
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2.1.1 History

The history of functional programming dates back to a time before com-
puters existed, when Alonzo Church published his work on the lambda cal-
culus in 1932 [20]. This formal system was the first methodical approach
towards describing a computational perspective on mathematical functions.
One of its most notable properties is function self-application, which gives
the lambda calculus its power whilst maintaining its consistency as a mathe-
matical system. One of the first languages which contained elements of what
is now known as functional programming is Lisp. Its initial language design,
established in 1958, was only slightly influenced by the lambda calculus, but
later dialects have encouraged a more pure, side effect free programming
style [61]. The original purpose for the design of Lisp was a language for list
processing to be utilized in artificial intelligence research. A notable feature
of Lisp are higher-order functions which can be found in most contemporary
functional languages and which enable list iterations without the need for
explicit loops.

In 1978 John Backus, who had been heavily involved in the design of
Fortran and ALGOL, held a Turing award lecture which emphasized cer-
tain benefits of functional style languages over imperative programming.
The document which resulted from the lecture [8] strongly influenced and
fueled research in the area of functional programming. Also in the mid 1970s,
Robin Milner and others from the University of Edinburgh designed the ML
metalanguage as a command language for the theorem prover LCF [62] (see
section 2.2). They continued the development of ML and turned it into a
stand-alone programming language. Even though it has impure features such
as mutable references and an I/O system which is not side effect free, ML is
known as a functional programming language because it encourages a func-
tional programming style. ML’s type system employs the Hindley—Milner
type inference algorithm (see section 4.1.1) which reduces the number of
required type annotations because it can infer the types of expressions in
most cases. Later, a standard for the language was established [63], which
resulted in the programming language Standard ML.

As a dozen non-strict languages (i.e. employing lazy evaluation) emerged
in the 1980s, it was decided at a conference in 1987 that the parallel efforts
should be merged into one common language as a basis for an exchange of
ideas. This decision resulted in the formation of a committee which created
Haskell [75]. Research around this purely functional, general-purpose pro-
gramming language has produced many innovations in the area of functional
programming during the last two decades.
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2.1.2 Common Features

There are certain distinguishing features which can be found in most contem-
porary functional programming languages. This section outlines the most
prevalent ones (e.g., see [105, 45]).

Referential Transparency

The heavy use of immutable data has already been mentioned in section
2.1. A consequence of pure functions is referential transparency, which is the
property of computations which always yield equal results whenever they
are invoked with the same input parameters. Later in this section we will
see how pure languages enable e.g. input, output and exception handling
whilst preserving purity.

Recursion

Recursion is not a technique which is specific to functional programming.
However, since loops require the use of mutable values (counter variables),
recursion is used way more excessively than in imperative languages. Of-
ten, it is the only way to describe iterations. As recursion can easily cause
an overflow of the call stack, most implementations of functional languages
employ tail call optimization. This mechanism discards a function call’s en-
vironment and thereby avoids creating a new stack frame for the recursive
call and saves memory. This only works for true tail recursion, i.e. if the
result of the recursive call is the result of the function itself.

Higher-Order Functions

Higher-order functions (HOFs) are functions which expect other functions
as their input parameters or have functions as their return values. Examples
for frequently used HOFs are the map and fold operations, which apply other
functions to lists of values as in the Standard ML expression

val 1s = map (fn x => x + 2) [1, 2, 5]

which would result in the list [3, 4, 7]. HOFs generally require languages
to treat functions as first-class citizens, i.e. simple values. Although HOFs
are a central aspect of functional programming, imperative languages may
facilitate the use of functions as arguments of other functions. E.g. C allows
the use of function pointers as first-class citizens. As we will see later, e.g.
in section 3.2.3, HOFs can be beneficial for the expression of concurrency.

Purity and Effects

Many functional programming languages such as Standard ML encourage a
purely functional coding style. However, certain functionality like memory
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I/0 require developers to write impure code. Purely functional programming
languages like Haskell and Clean do not permit any side effects and therefore
use other mechanisms to accomplish the desired effects. The Haskell devel-
opers decided to implement a language construct called monad [75]. Monads
can be described as representations of possibly impure computations. In or-
der to preserve purity, functions which perform e.g. I/O operations have to
accept monads as arguments or return them. Similarly, Clean uses unique-
ness types [1] which ensure that every function’s type makes transparent
to the environment, which mutable aspects of the environment it manipu-
lates. This is accomplished by allowing these functions exactly one access
to the denoted mutable data which they receive as arguments and whose
manipulated versions are contained in their return values.

Partial Function Evaluation

Partial function evaluation facilitates applying less arguments to a function
than it requires which results in another function that only requires the
remaining arguments. E.g. the function fun add x y = x + y accepts two
arguments. Its partial evaluation val add2 = add 2 results in a function
which only expects one argument and adds 2 to it.

Pattern Matching

Pattern matching allows for data to be processed on the basis of its structure.
E.g. in Standard ML, functions are usually expressed with exhaustive pattern
definitions. The classic definition of the Fibonacci numbers! would be

fun fib 0 = 0
| fib 1 =1
| fib x = fib (x - 1) + fib (x - 2); .

Lazy Evaluation

Due to referential transparency, the order in which expressions are evaluated
does not affect the results. Therefore, some languages like Haskell defer
the computation of expressions until they are actually needed. This avoids
unnecessary calculations and makes infinite data structures possible. On
the other hand, lazy evaluation can potentially cause space leaks [53] and it
makes formal reasoning about code hard [56]. The opposite is called eager
or strict evaluation which is the standard for most imperative languages and
e.g. Standard ML.

1 . .
see comments in appendix A.1
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2.2 Computer Theorem Proving

Computer Theorem Proving is related to functional programming in several
fundamental ways. My practical work for this thesis concerned TP (Theorem
Proving) on a technical level below the logical level of TP, on the level of
parallel execution on multi-core hardware. However, it is the logical level of
TP which provides the fundamental relations to functional programming.

2.2.1 History

In order to understand TP, we start with the history of TP from the very
beginning.

AT and Lisp. Mechanical or “formal” reasoning was an original interest
of Artificial Intelligence (AI). The first important programming languages
in AT were Prolog (logic programming) and Lisp. The latter was briefly
introduced as a functional language in section 2.1.1.

Automath. A first notable success was the mechanization of Edmund Lan-
dau’s Foundations of Analysis [10] in Automath in 1969. Automath is out-
dated, but some of its achievements are still used in TP, e.g. de-Brujin
indices, the lambda calculus and Curry-Howard correspondence. This early
success in TP was not acknowledged by mainstream mathematics. Rather,
TP was mixed up with predictions of early Al, e.g. Herbert A. Simon’s claim
that “/mjachines will be capable, within twenty years, of doing any work a
man can do.” [83]; predictions that soon turned out to be unrealistic. Nev-
ertheless, mechanization of various logics (sequent calculus, temporal logics,
communicating sequential processes (see section 3.4.3), etc.) was continued
and led to many different, unrelated software tools.

LCF. LCF (Logic for Computable Functions) [62] denotes an interactive,
automated theorem prover developed at the universities of Edinburgh and
Stanford in the early 1970s. The LCF project is relevant for this thesis,
because it introduced the ML programming language explored in section
4.1.1 and was used for the practical work within the thesis. The purpose of
LCF was to allow users to write theorem proving tactics and to encapsulate
theorems as abstract datatypes, such that only the admitted inference rules
can establish a theorem. This is still called LCF principle. LCF became the
ancestor of the HOL family of provers introduced below.

The Next Seven Hundred Theorem Provers. As mentioned above,
although an academic niche, TP developed many different and unrelated
software tools in the 1970s and 1980s. So in the 1980s the situation with
TP was similar to the situation with programming languages in the 1960s.
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In 1965 Peter Landin had published a talk and a paper titled The next 700
programming languages [52]. This paper influenced the convergence of pro-
gramming languages and led to focused efforts on a few leading products.
When Larry Paulson started the development of a generic logical framework
with the purpose of allowing various logics to be implemented within this
framework, he reused the analogy and published a paper titled The Next
Seven Hundred Theorem Provers [73]. This paper addressed the general is-
sues involved in the design of a TP, the many technicalities to overcome
until a system becomes usable and warns to produce provers for one-time
usage: “Programs like Isabelle are not products: when they have served their
purpose, they are discarded.” [73]. In fact, the resulting logical framework,
Isabelle, was able to attract efforts to implement new logics [102] within
Isabelle and thus focused efforts, avoiding development of further TPs from
scratch.

The HOL family of provers. This family of provers is a descendant of
LCF introduced above and models higher-order logic, a specific logic which
does not have sets (as preferred by mathematics) at the axiomatic basis,
but functions. Thus this family shows great affinity to functional program-
ming. The ancestor of this family is HOL [30]. Isabelle [69] abstracts from
higher-order logics to natural deduction and thus allows for implementa-
tions of various logics within one and the same system as mentioned above.
HOL Light [107] uses a much simpler logical core and has little legacy code,
giving the system a simple and uncluttered feel for programmers. Isabelle is
also a good example demonstrating that the traditional distinction between
automated theorem proving (ATP) and interactive theorem proving (ITP)
is obsolete today. Isabelle and other interactive proof assistants include var-
ious automated provers in order to assist interactive construction of proofs.
Isabelle’s collection of automated theorem provers is called Sledgehammer
(see section 4.1.5).

Breakthrough in mathematics: the four color theorem. The four
color theorem was stated more than a hundred years ago, but it turned out
to be hard to prove. In 1976 the theorem was tackled by Appel and Haken
by the use of computer software [5]. However, they could not prove their
program correct and thus their work was not acknowledged as a mathemat-
ical proof. In 2005, Georges Gonthier [29] used TP for proving the theorem
and since that time TP was accepted as an indispensable tool for large and
complicated proofs. Gonthier used the TP Cog [19], which works within the
theory of the calculus of inductive constructions, a derivative of the calculus
of constructions. Another famous theorem is the Kepler conjecture which
took even longer to be proved. In 1998, Thomas Hales presented a proof
of 250 pages of notes and 3GB of computer programs, data and results. In
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2003, after four years of work, a prominent team of referees reported that
they were “99% certain” of the correctness of the proof [33]. Since a mathe-
matical proof is either correct or not, Hales started the Flyspeck project [104]
in order to employ TP for a complete and trustable proof. The mentioned
webpage hints at the important role of Isabelle in the project.

Continuous penetration of computer science. In computer science
there are no spectacular breakthroughs like in mathematics. But there was
much work on formalizing foundations from the very beginning. In the early
days of computer science, Austria had a world-renowned group gathered by
Heinz Zemanek [124]. At Vienna University of Technology, Zemanek had
built one of the first computers only with transistors, the Maildfterl in 1955.
And IBM, the dominating company at that time, hired Zemanek to im-
plement IBM’s programming language number one, PL1. PL1 was a mon-
strosity born by an IBM management decision to join Fortran with COBOL
using insights from ALGOL. The overwhelming difficulties to implement
PL1 were solved by what later became known as the Vienna Development
Method (VDM) [26], an ancestor of what is now called formal methods.

Formal methods, as the name indicates, formalizes a domain with math-
ematical notions. In parallel, computer science clarified the logical foun-
dations of programming (Hoare, Dijkstra and others), such that programs
could be proved correct with respect to a formal specification, i.e. proofs
rely on specifications created by formal methods. Ever since the Pentium
bugs [109, 81] swallowed several millions of dollars, Intel has invested in for-
mal methods. For instance, Intel supports the TP HOL Light mentioned
above. As there are many safety critical applications in medicine, air traffic
control, etc. and technical systems become more complex, the demand for
formal methods is increasing. This includes TP.

2.2.2 Relevance

The executable fragment of HOL and code generation. As al-
ready mentioned, higher-order logic is closely related to functional program-
ming. This relation includes an executable fragment, i.e. equational theo-
rems within HOL, which can model programs and which can be evaluated
within the logic. This way of embedding programs in the logical environ-
ment provides the best prerequisites for proving properties of programs and
for software verification. Isabelle recently implemented a function package.
Execution, or more appropriately, evaluation, within a prover is very inef-
ficient in comparison with state-of-the-art production software. Therefore
engineering software cannot be built within a prover. However, it turned
out that algorithms described within the executable fragment of HOL are
a concise source for automatic generation of efficient code in a surprisingly
straight forward manner.
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Functional programming. Software verification tools are presently al-
ready more advanced for functional programming languages. And the theo-
retical background presented in this section indicates that verification tools
will develop better in the paradigm of functional programming than in other
paradigms. Also, efficiency considerations are expected to change in favor of
the functional paradigm. Programs written on an abstract level in a TP can
be transformed into efficient code by automated code generation. This trans-
formation can potentially handle parallelization much more conveniently
than programs developed within other paradigms [32].

2.3 Parallelism

Concurrency in software has been around for a long time and without it,
multitasking would be impossible. It means that processes and threads may
be started, executed and completed in overlapping time periods. This does
not necessarily imply any parallel, i.e. simultaneous, execution. Parallel soft-
ware is structured in a way which allows for literally simultaneous execu-
tion, e.g. on multi-core processors. Now that this kind of processors is used
heavily in PCs, laptops and smart phones, efficient software must be able
to exploit parallelism. Approaches to parallelism can roughly be grouped
into three different levels: instruction-level (section 2.3.2), task parallelism
(section 3.2) and data (section 3.3). The following sections will establish a
theoretical background of parallelism.

2.3.1 Gain, Cost and Limits

Formulated in 1967, Amdahl’s Law [4] describes the correlation between
the inherently sequential fraction of a program and the resulting maximally
possible speedup S4 under parallel execution (see fig. 2.1), given by

1

Sa(n) = m,

(2.1)

where f is the ratio of the parts of a program which can be parallelized and
n is the number of processing units. The upper limit for the speedup for a
theoretically infinite number of processors is therefore

N 1 1

S4 = lim = .
A n%ool_f_|_% 1—f

Amdahl’s Law expects the input dataset size to be fixed. However, John
L. Gustafson discovered that generally the fraction which can be computed
in parallel behaves proportionally to the problem size, i.e. the bigger the in-
put dataset, the higher the percentage of calculations which can be carried
out simultaneously [31]. Therefore Gustafson’s Law approaches the problem
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Figure 2.1: Amdahl’s Law and potential speedups.

from a different perspective. It assumes that in practice an algorithm’s prob-
lem size depends on available temporal and computational resources. The
resulting scaled speedup S¢ identifies the ratio between total and parallel
execution time of an algorithm which linearly increases with the number of
processors (see fig. 2.2) and it is given by

Se(n)=1—f-(1—n). (2.2)

The two theoretical speedups do not take into account dependencies or
communications of parallel tasks. These factors can cause a performance
overhead which may exceed the speedup if parallelization is taken too far.
A certain class of parallel problems, called embarrassingly parallel problems
[64], do not require any communication.

2.3.2 Multi-Core Processors

While the computing industry continued to fulfill Moore’s predictions [65]
by fitting more and more transistors on smaller chips and thereby produc-



2. Fundamentals 13

Gustafson’s Law

500 |
parallel portion f
450 | — 50%
A — 75%
001 — 0%
350 | — 9%
=
= 300 |
o~
5 250 |
e}
g
2200 |
150 |
100 |
50 |
0

50 100 150 200 250 300 350 400 450 500
number of processors n

Figure 2.2: Gustafson’s Law and potential speedups.

ing persistently faster uniprocessors, it is now physically almost impossible
to make transistors any smaller [28]. Heat dissipation resulting from tran-
sistor density on the fastest chips requires extensive cooling and causes a
high power consumption. Therefore hardware manufacturers have turned to
building chips with multiple processing cores which may not be as fast as
recent uniprocessors, but produce less heat and are more energy efficient.
Architectures differ in the number of cores and their memory models. Several
or all cores may share one cache or may each have their own cache. Separate
caches avoid the challenges of coordinating cache accesses, but sometimes
a centralized cache can be faster. Unlike multiple chips, several cores on
the same chip can share memory management and memory elements and
signaling between them can be faster because they are placed on the same
die.

Multi-core processors, however, could not solve all performance issues,
even if software were able to fully exploit their power. Other factors like
memory bandwidth can turn out to be performance bottlenecks [66]. Also,
these processors are not the only way hardware may support parallelism:
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Bit-level parallelism takes advantage of increased processor word sizes in
order to reduce the number of instructions that need to be executed
to complete operations on variables which are longer than one word
[21].

Instruction-level parallelism tries to discover data independent instruc-
tions which often can be reordered and computed during the same
processing cycle. Also, instruction pipelines with multiple stages allow
different instructions to be in different stages and thereby overlap their
processing [41].

Simultaneous multithreading enables multiple threads to issue instruc-
tions on a single processing core which may be processed during the
same cycle [90].

2.3.3 Operating Systems

Operating systems are heavily involved in the resource management of their
underlying architecture, both for their own operations and for user appli-
cations. Besides support for simultaneous multithreading (see previous sec-
tion), general-purpose OSes have to deal with diverse hardware approaches,
e.g. multiprocessors vs. multi-core processors, shared vs. separate cache mod-
els. Scheduling algorithms and memory management are facing new chal-
lenges because they must balance loads between cores while avoiding cache
misses and reducing the number of context switches. In this thesis we will as-
sume symmetric multiprocessing (SMP), i.e. systems whose processing cores
are identical and access the same main memory. Scheduling algorithms in
OSes for more heterogeneous systems also need to take into account differ-
ing performance characteristics and possibly even instruction sets of several
processors.

2.3.4 Functional Programming

Imperative programming lets the programmer make the steps that the sys-
tem should carry out explicit. The idea of declarative, including functional,
paradigms is a description of the desired result of a computation. On the
spectrum between an algorithm’s formal specification and the resulting ma-
chine code, functional code is generally said to be particularly close to the
formal specification [40]. Therefore this high-level programming paradigm
puts higher demands for optimization on compilers and run-time systems.
This also includes the management and exploitation of multiple CPU cores.

As purely functional programming prohibits side effects, parallelizing
such programs should be trivial. However, in practice, general-purpose func-
tional programming languages are not only used for embarrassingly parallel
problems. Harris and Singh [38] identify five issues which may arise when
trying to automatically parallelize functional programs:
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1. Inherent parallelism may be limited, i.e. call hierarchies may enforce
a certain order of execution.

2. Parallel executions need to be managed by the run-time system. This
introduces an overhead which can even cause a slowdown if the paral-
lelizable work is too fine-grained.

3. Sometimes, purely functional code may contain side effects when it is
compiled (e.g. memoization).

4. Purely functional general-purpose languages generally do have means
of encapsulating side effects such as I/O or updates to mutable data.

5. In languages supporting lazy evaluation it is not known whether ex-
pressions actually need to be computed until their results are queried.

For more details see chapter 3 which is entirely dedicated to parallelism in
functional programming languages.

2.4 Concurrency, Latency and Responsiveness

Concurrency can improve system performance by hiding latencies. While one
thread performs blocking operations such as e.g. disk I/O, another thread’s
execution can continue to perform other calculations independently. In cases
where latencies are introduced only because a computationally complex op-
eration claims the processor for a long period of time, multithreading can-
not improve performance. But it can improve responsiveness by updating
the user interface, giving feedback about pending operations’ status and
react to user input. Responsiveness does not necessarily require high perfor-
mance, but it is a major factor of the user experience that an application
is able to deliver. Concurrency can facilitate increased responsiveness. How-
ever, reasoning intuitively as well es formally about concurrent software and
developing it is said to be difficult, mostly due to undetermined execution
orders and thread synchronization issues [85].

2.5 Refactoring Functional Programs

Refactoring is a process which changes the design and structure of exist-
ing software without changing its external behavior. It can result in simpler
programs, remove duplicate code or prepare an extension of the program’s
functionality. Because refactoring is a potentially tedious and error-prone
process [88], there is a variety of tools which automatically check precondi-
tions for and apply refactoring steps for object-oriented programming lan-
guages. The number of such tools for functional programming languages,
however, is limited. One of the few existing projects targets Haskell code
and is called HaRe (Haskell Refactorer). It follows five main strategies:
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1. Generalization. Extract some of a function’s behavior into an argu-
ment, possibly a HOF, and thereby make the function more general
and reusable.

2. Commonality. Similar or identical parts of a program are identified,
extracted into a single function which is invoked at the respective
locations and with appropriate parameters.

3. Data Abstraction. Replacing algebraic datatypes by abstract data-
types often allows programmers to modify concrete implementations
without touching client code.

4. Overloading. The use of type classes and instances allows for over-
loading of names. This may improve readability and facilitate code
reuse.

5. Monadification. Packing code into monads also makes it possible to
separate parts of a system from the client code, i.e. developers can
modify the monads without changing client code.

HaRe furthermore implements structural refactorings such as deletion of un-
used definitions and arguments, renaming of several kinds of program items
and modifications of the scopes of definitions. Later versions introduced
module-aware refactorings including import/export function organization
and moving definitions between modules. For more details and refactoring
techniques implemented in HaRe please refer to [88].

Type classes and monadification are specific to Haskell. In Standard ML
overloading can be achieved simply by omitting the type indicators, thanks
to the Hindley—Milner type inference algorithm. Please note that Standard
ML is a strongly typed language [63].



Chapter 3

Parallelism in Functional
Programming

This section presents several concepts for parallelism and concurrency which
have been suggested for and implemented in functional programming lan-
guages. The central idea here is the philosophy of the declarative paradigm:
The developer should not have to worry about how the parallel execution
needs to be organized but at most make informed decisions on what has to be
parallelized. Ideally, process management details such as process creation,
resource assignment and synchronization should be taken care of by com-
piler and run-time system. In practice, various properties of languages such
as impureness and monadic I/O, may allow for language constructs from
imperative programming or even require forms of explicit synchronization.

Many of the mechanisms presented in the following sections have been
implemented in and modified for certain programming languages. It seemed
appropriate to place details on these realization details and changes in the re-
spective sections. Table 3.1 gives a brief overview. Note that it only contains
those mechanisms and sections that mention concrete implementations. For
consistency reasons, all sample code is provided in Standard ML, even where
the demonstrated concepts are not actually available in the language.

3.1 Implicit Parallelism

Due to the lack of side effects, it should be possible to compute independent
subexpressions in parallel. This means that in theory, purely functional pro-
grams are parallelizable automatically by the compiler. However, the whole
process is not trivial as section 2.3.4 already pointed out. A compiler that
supports implicit parallelization must be able to perform granularity and
cost analyses in order to achieve advantageous parallelizations and avoid
those whose overhead would exceed their potential gain because they are
too fine-grained. Additionally, compilers for lazy languages have to incor-

17
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Table 3.1: Overview of parallelism mechanisms and referenced programming
languages.

Concept Language Section
Annotations Clean 3.2.2
Futures and Promises Multilisp, Isabelle/ML, Scala | 3.2.3, 3.4.2, 3.4.3
Parallel Combinators Haskell 3.24
Algorithmic Skeletons Java 3.2.5
Data Parallelism Haskell 3.3
Software Transactional C, Haskell, Java, JavaScript, 3.4.1
Memory Python, Scala
Actors Erlang, Scala 3.4.2
Communicating Sequential | occam, Limbo, Go 3.4.3
Processes

porate a strictness analysis, i.e. identify expressions which must necessarily
be evaluated, such that they do not introduce an overhead by computing
expressions whose results are not needed. An example for a function with a
strict argument is the map operation. If its list argument is undefined, the
result of the whole function call will be undefined.

3.2 Task Parallelism

Instead of automating parallelization, functional general-purpose languages
such as Haskell and Clean provide special syntax to indicate that expres-
sions are to be evaluated in parallel and thereby make theoretically implicit
parallelism explicit.

3.2.1 Parallel let-Expressions

One proposed method are parallel let-expressions [35]. let-expressions are
a common way in functional languages to allow the programmer to declare a
list of values required for the evaluation of one final expression. The modified
version letpar has been suggested for the indication of a list of independent
values which could potentially be computed in parallel. While this keyword
is not available in Standard ML a hypothetical use could look like the ex-
pression

letpar
val x = add2 3
val y = fib 8
val z = add 7 5

in x +y + z end; .
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3.2.2 Annotations

Another straight forward solution is the use of annotations. This is proba-
bly the simplest way of expressing parallelism because it does not affect the
semantics of a program but only its runtime behavior. By ignoring the an-
notations the program can then still be compiled sequentially. This method
has been implemented in the programming language Clean [70] which also
allows indications of the target processing unit for the evaluation. Since ea-
ger languages evaluate a function’s arguments before invoking the function
itself, this mechanism, in its simple form, only works for lazy languages. A
potential implementation of the parallel fib function' in a lazy version of
Standard ML could look somewhat like the definition

fun fib 0 = 0
| fib 1 =1
| fib x = fib (x - 1) + par (fib (x - 2));

A similar construct for eager languages is slightly more involved and will be
discussed in the following section.

3.2.3 Futures and Promises

The concepts of promises and futures were first suggested in the mid 1970s
[9]. The idea is similar to annotations (see previous section). One of the
first languages that adopted futures was called Multilisp [47]. As the Isabelle
theorem prover provides its own implementation of futures [60] which have
been introduced to Isac during the parallelization process (section 4.3.2),
they are of special interest for this thesis. Futures are objects representing
the result of an expression which may not be known initially because its
computation is managed by the run-time system and may occur in parallel.
Implicit futures are usually an integral part of a language and treated like
ordinary references. If results are not available the first time they are re-
quested, program execution stops until the future value has been obtained.
In contrast, explicit futures require programmers to manually enforce their
computations before they can access their results. Isabelle’s solution follows
the latter approach and will be discussed in more detail in section 4.1.1. The
definition

fun fib 0 =
| fib 1 =1
| £fib x = let

fun fib’> (O = £fib (x - 2)
val fibf = Future.fork fib’
in fib (x - 1) + (Future.join fibf) end;

!see comments in appendix A.1
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demonstrates the use of futures in Isabelle/ML?. The function Future.fork
accepts one argument which must be a function of type unit -> ’a, i.e.
one which accepts an empty argument “()” and returns an arbitrary type.
Future. join requires a future value as its argument and returns the result
contained in it.

As with general evaluation strategies, futures can be determined eagerly
or lazily, i.e. their computation can be started on creation of the datastruc-
ture or on demand. They are read-only placeholders. In contrast, promises
are the single assignment containers which hold the future’s value. Futures
and promises are closely linked to Communicating Sequential Processes (sec-
tion 3.4.3) and also to the Actor model (section 3.4.2) and are therefore
available e.g. in Scala [106]. Although their adoption originated in functional
programming, their use is not limited to this paradigm.

3.2.4 Parallel Combinators

Haskell’s approach to task parallelism is the use of parallel combinators. Its
run-time system manages a queue of tasks, so called sparks, whose evalua-
tion occurs as soon as an idle CPU is detected. The language provides the
keyword par, which accepts two arguments, “sparks” the evaluation of the
first and returns the computed result of the second. For more details see e.g.
[57].

3.2.5 Algorithmic Skeletons

The idea of algorithmic skeletons is simple and not limited to parallelism.
Most parallel algorithms show common patterns. These patterns can be
abstracted into higher-order functions. A well known example is divide-and-
conquer:

fun dac is_trivial solve divide conquer x =
if is_trivial x then
solve x
else
divide x
|> map (dac is_trivial solve divide conquer)
|> conquer;

where x |> f is syntactic sugar for £ x and is_trivial is a function with
one argument and a bool return value. In order to parallelize the algorithm
we only need to use a parallel version of map. Other common patterns in-
clude branch-and-bound and dynamic programming. While this method is
also available for imperative languages such as Jawa, the fact that func-
tional languages treat higher-order functions as first-class citizens makes

2see comments in appendix A.1
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them particularly suitable for the use of skeletons. Algorithmic skeletons
hide the orchestration between sequential portions of code from the program-
mer. Sometimes the compiler can provide low-level support for the skeletons.
Furthermore, multiple primitive skeletons can be composed to produce more
powerful patterns. Unlike other high-level parallelism mechanisms, they are
apt to cost modeling [36].

3.3 Data Parallelism

Many operations require the application of the same function on multiple
items of a data set. This can generally occur in parallel. With this kind of
algorithms, the parallel portion naturally depends on the problem size. Here
the same issues apply that we encountered before: The granularity often is
too fine and the overhead exceeds the benefits of parallel processing. Most
applications of data parallelism are based on array structures and early im-
plementations specialized in highly parallel, high-performance and scientific
computing [36]. Recent developments in GPU hardware and the arrival of
general-purpose GPU programming thanks to projects such as CUDA and
Accelerator [86] have fueled data parallelism research during the last few
years [68]. Distributed, parallel algorithms like Google’s MapReduce should
be mentioned here. However, we will not discuss distributed parallelism in
this thesis.

In 1990, Blelloch and Sabot first made a distinction between flat and
nested parallelism [12]. Until then, data parallelism implementations had
only considered sequential functions for parallel application on data sets.
Nested data parallelism is significantly more complex in that it allows the
application of functions which themselves are parallel. More than 15 years
later, this functionality was suggested and implemented as an extension to
the Haskell Glasgow Compiler called Data Parallel Haskell [74].

3.4 Concurrent Functional Programming

As we saw in section 2.3, concurrency describes two or more tasks whose
lifespans may overlap while parallelism is capable of exploiting multiple pro-
cessing units by executing multiple tasks simultaneously. Section 2.4 out-
lined how concurrency can be beneficial by hiding latencies and improving
responsiveness. Now we want to explore concurrency models and control
mechanisms in functional programming.

3.4.1 Software Transactional Memory

While hardware support for transactions had been introduced before and
they were a fundamental aspect of fault tolerance in the context of database
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systems, software-only transactional memory was first suggested by Shavit
and Touitou in 1997 [82]. Unlike lock-based synchronization STM generally
is a non-blocking strategy. Transactions are sequences of read and write
operations on a shared memory. They are tagged atomic blocks, processed
optimistically, regardless of other threads potentially performing other alter-
ations to the memory simultaneously. Each access to the memory is logged
and once a transaction is finished, a final validation step verifies that no
other thread modified any of the elements which were read during the pro-
cess, i.e. the transaction’s view of the memory was consistent. If there was
no conflicting write access, the transaction is committed to the memory.
Otherwise the whole process is repeated until no more conflicts arise. In or-
der to be correct, transactions must be linearizable, i.e. it must be possible
to execute them in a certain sequence without temporal overlaps, such that
the resulting state of the shared memory is the same as if the transactions
had been carried out concurrently [42]. Because of their non-blocking nature,
STMs do not cause deadlocks or priority inversion. They are inherently fault
tolerant to a certain extent, because transactions can be undone in the event
of a timeout or an exception. Also, they are free from the tradeoffs between
lock granularity and concurrency.

Recent work on commitment ordering has helped reduce the number of
transaction conflicts and thereby improve performance of STM implemen-
tations [77, 101]. Also, there are various STM solutions that do in fact use
locking mechanisms during different phases of transaction. They can poten-
tially reduce the number of rollbacks and consequently also make process
coordination faster [25]. The significant difference between these approaches
and conventional, mutex based thread synchronization mechanisms is the
fact that with STM, any locking is invisible to the programmer and taken
care of by the run-time system. The downside of STM is the performance
overhead caused by transaction management which typically impairs the
performance of programs with a low number of threads, such that they are
slower than when implemented in a sequential manner. STMs, however, scale
particularly well with respect to higher thread and processor numbers [80].

Several implementations for various programming languages including C,
Java, Scala, Python and even JavaScript are available. Concurrent Haskell
offers multiple language constructs built on the basis of STM to allow for
composable, nested, alternative and blocking transactions as well as STM
exceptions [39].

3.4.2 The Actor Model

In 1973, Hewitt, Bishop and Steiger suggested a modular actor formalism
[43] which laid out the basis of what is now known as the Actor model.
Several publications of the following decade formed a comprehensive Actor
model theory. The two central concepts of the Actor model are actors and



3. Parallelism in Functional Programming 23

messages [2]. Actors are entities that can send and receive messages. Their
behavior is defined by the actions they perform on receipt of a message (e.g.
create another actor) and a finite number of other actors they know about,
called acquaintances. The acquaintance relation is not necessarily bidirec-
tional, i.e. an acquaintance B of actor A must not necessarily know actor
A. Each actor has an immutable, unique name and a local state. Commu-
nication between actors is asynchronous. Incoming messages are processed
one at a time and as a response to each message an atomic sequence of
actions is performed. Since actors and messages are autonomous, encapsu-
lated entities they are easy to reason about and can be composed into more
complex systems [3]. The order of actions affects an actor’s external be-
havior. But because messaging occurs asynchronously, the processing order
of messages is undefined. This leads to non-determinism in computations
based on the actor system. There are certain abstractions available which
allow for constraints on message ordering and can therefore eliminate part
of the non-determinism [48]. They can be summarized in four important
properties:

1. Encapsulation. Unlike shared memory thread models, actors are
highly encapsulated. Therefore, they provide no locking or synchro-
nization mechanisms for shared resources. Their internal states are
not directly accessible by other actors. The only way for them to ex-
change data or influence each other is by means of messages. This
limitation, however, is violated by some implementations in languages
such as Scala [89]. In programming languages which permit mutable
data, messages should, in theory, not transfer references to locations
in a shared address space. Otherwise the receiving party could modify
memory locations that are contained in another actor’s state represen-
tation. However, Java’s actor library Akka allows actors to do just that
and it is the programmer’s responsibility to maintain encapsulation.

2. Fairness. Another important property is fairness with respect to actor
scheduling: a message will be delivered to its target actor eventually,
i.e. unless an actor dies or displays faulty behavior, it will be scheduled
in a fair manner.

3. Location Transparency. This property demands that an actor’s
unique name is independent of its location, i.e. its assigned CPU and
memory can potentially belong to a remote machine and even be mi-
grated at run time.

4. Mobility. The ability for this migration can enable load balancing and
improved fault tolerance. However, implementations do not necessar-
ily satisfy these properties (e.g. Scala). Weak mobility allows code or
initial states to be moved, while strong mobility additionally supports
execution state migration [27]. It has been shown that the presence of
mobility can significantly improve an architecture’s scalability [72].
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To demonstrate the use of a theoretical actor library for Standard ML, let
us define a trivial function greet and execute it in the background:

fun greet name = print ("Hello " " name "~ "!\n");
val greeter = Actor.create greet;
Actor.send greeter "John Doe";

Scala

Scala is a programming language for the Java Virtual Machine that combines
concepts of object-oriented and functional programming [71]. Its distribu-
tion comes with a toolkit for actors and message passing functionality called
Akka. Scala’s standard actors library up to version 2.9.2 [114] has now been
deprecated and replaced by Akka. Its implementation is based on FErlang
like, fault tolerant actors and its execution model follows an event-based ap-
proach, thus introducing inversion of control. Compared to Scala’s original
actors, Akka actors are more performant, fault tolerant and offer automatic
load balancing [87]. They draw on the language’s functional programming
features such as partial functions and, like Erlang, pattern matching which
are convenient for message passing. Actors potentially provide safer concur-
rency than traditional shared memory mechanisms because by design, no
race conditions can occur. Also, actors are more lightweight than threads.

Futures

As mentioned in section 3.2.3, futures are related to the Actor model. Akka
provides a Future class whose constructor accepts a block ({...}) b and
returns immediately with a future value which is a placeholder for the com-
putation’s result. b is then executed asynchronously by a thread pool man-
aged by the run-time environment [106]. Instead of creating futures directly,
Akka’s actors have a method ? that one can use to send a message. The
method then returns a future value whose calculation can be synchronized
and retrieved using Await.result. There are further functions for com-
position, combination or ordering of futures as well as exception and error
handling. The library also supports direct access to Promises, the containers
that complete futures.

3.4.3 Communicating Sequential Processes

CSP (Communicating Sequential Processes) belong to the family of process
calculi and are another model of concurrency. Process calculi are of spe-
cial interest for functional programming in that they support a declarative
notion of concurrency. CSP were first proposed in an acclaimed paper by
Hoare in 1978 [44] and originally designed for reasoning about concurrent
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processes. Like the Actor model they utilize message passing for communi-
cation. Implementations include occam [46], Limbo [24] and Go by Google
[76]. The main difference from the Actor model is the use of a concept named
channels in CSP. Actors communicate directly with each other while CSP
send and receive messages on directed channels. Another distinction is the
fact that in the original CSP model, messages are delivered synchronously
and instantaneously. This means that when a process sends a message to
a channel, it waits until another process has received it and the receiving
party blocks until there is a message available on the channel. Processes
are anonymous and need to establish channels between each other in or-
der to be able to communicate which involves a rendezvous, i.e. they need
to exchange receiving and sending ends of channels to allow them to com-
municate. While the basic proposal suggested point-to-point channels, this
can also be extended to allow multiple processes to know and use a chan-
nel’s sending and/or receiving end. The developers of Go have chosen an
approach that differs slightly from the original CSP model: Channels are
asynchronous and buffered. They are declared to transmit a specific data-
type. Interestingly, channels are first class values. As a consequence, they
can also be transmitted via channels. Using Poly/ML’s thread library, we
can utilize a supposed CSP library to achieve the same behavior we already
saw with actors and invoke greet asynchronously:

fun greet name = print ("Hello " ~ name "~ "!\n");

val (c_in, c_out) = Channel.create () : string channel;
fun greet_csp () = Channel.read c_out |> greet;
Thread.fork (greet_csp, [1);

Channel .write c_in "John Doe";

Futures

CSP, too, can simulate futures (section 3.2.3): A future is a channel that can
transmit exactly one element and the according promise is another process
that sends the result of a computation to the channel.

3.5 Refactoring for Parallelism

Only few publications have been dedicated to refactorings for parallelism
[23, 49, 100], even less so in the context of functional programming. The
ParaForming tool for Haskell [13] appears to be the first attempt, followed
by very recent work on Erlang [15] and language independent approaches
[14, 37]. Due to the trend towards multi-, many- and even megacore ma-
chines, modern programming languages should support parallelism by design
because the introduction of parallelism should not occur as an afterthought
during later stages of the software development cycle. ParaForming enforces
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a separation of concerns between business logic and implementation details
usually taken care of by system programmers. It offers several additional
refactorings for HaRe (section 2.5) to support efficient, coarse-grained task
and data parallelism.

Introduce Task Parallelism. This refactoring takes an expression z from
a function, embeds = into an Eval monad, sparks its evaluation using
parallel combinators (section 3.2.4) and substitutes the occurrences of
x for the sparked computation z’.

Introduce Data Parallelism takes an expression [ which must be a list,
replaces it by a parList, i.e. a parallel implementation of a list sup-
ported by the standard library, and ensures the parallel versions of
operations on [.

Introduce Thresholding allows for the definition of limits to the granu-
larity of the aforementioned refactorings. Thresholding requires a des-
ignated expression t and a threshold. Calls to the respective function
are only evaluated in parallel if ¢ is not lower than the threshold.

Clustering refers to data parallelism and accepts a minimum chunk size
for a parallel list. Whenever the size of a list falls below this value, the
sequential versions of operations are used.

For other refactorings, examples and a discussion of performance gains and
overheads please refer to [13]. ParaForming is very specific to Haskell and
its refactorings are relatively straight forward. However, they avoid common
pitfalls like forgetting to substitute the use of an expression. Decisions on
granularity are not made by the system, but their implementation is auto-
mated as much as possible.

Wrangler

In 2013, Brown et al. documented their work on an extension for a refactoring
tool for Erlang, named Wrangler [15, 55]. The provided refactorings make
use of skeletons (section 3.2.5) and thereby facilitate informed decisions on
which refactorings and skeletons to use based on cost modeling.



Chapter 4

Isabelle and Isac

The case study described in this chapter was performed as an invasive de-
velopment on Isac, a prototype of an educational tool for applied mathe-
matics which is built upon the theorem prover Isabelle in order to ensure
the logical correctness of calculations. The development was invasive in that
it addressed basic mechanisms of Isabelle which are reused by Isac. The
motivation for this development was to improve Isac’s integration with Is-
abelle as well as Isac’s efficiency and responsiveness in a multi-user setting.
Both improvements are related to the introduction of parallelism in Isabelle
during the last years.

Section 4.1 introduces Isabelle, its basic architecture and the main com-
ponents it is comprised of. It furthermore discusses Standard ML and the
Poly/ML compiler it uses (section 4.1.1). Section 4.1.6 is about Isabelle’s de-
velopment and documentation workflow which has mostly been adopted for
the work on Isac. An overview of the basics of why parallelism was added to
Isabelle’s computation model in section 4.1.7 wraps up the main part about
Isabelle. In order to make the gain from Isac’s improvements comprehensi-
ble, section 4.2.1 gives some background information about Isac’s principal
design and architecture. Section 4.2.2 shows Isac’s architecture, which had
to be adhered to by the study’s implementation work. Since the case study
concerns deeply invasive development into Isac, section 4.2.3 is dedicated to
the question, how Isac’s prototype development relates to Isabelle’s ongoing
development, which is invasive, too. The detailed descriptions of the study’s
implementation work are section 4.3.1 on the integration of Isac’s knowledge
definitions into Isabelle’s parallel theory evaluation and section 4.3.2 on the
introduction of concurrency to Isac’s user session management.

4.1 Isabelle

Isabelle is one of the leading computer theorem provers as introduced in
section 2.2. It is used in many academic courses, courses on semantics of

27
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programming languages, on program verification, on introduction to math-
ematical proof, etc. But the number of professional users can hardly be
estimated. Continuous reading of the mailing list for technical support [117]
suggests more than a hundred persons worldwide who already did a no-
table development within a PhD, some academic postdoctoral work or as
engineers in industry. Isabelle represents more than hundred man years of
development, dedicated within the last twenty five years and still ongoing.
Isabelle was started by Larry Paulson as a “logical framework”, an answer to
the issue of The Next Seven Hundred Theorem Provers mentioned on page
8.

Today, development is ongoing at three universities: At the Computer
Laboratory of the University of Cambridge, Larry Paulson develops spe-
cific automated provers, formalizes mathematics and security protocols. The
Chair for Logic and Verification at the Technical University of Munich
spawned from the institute of Manfred Broy and is led by Tobias Nipkow.
Nipkow is responsible for the core system as well as for general theory de-
velopment. About ten postdocs and PhDs are employed for these purposes
[118]. The parallelization efforts and development of the Isabelle/jEdit front-
end (section 4.1.4) are undertaken at Université Paris-Sud in the Laboratoire
de Recherche en Informatique, supervised by Makarius Wenzel. Confirmed
by a wide range of expectations in TP technology as mentioned in section
2.2, Isabelle strives for usability at the workplace of computer scientists,
of practitioners in various engineering disciplines and of mathematicians.
E.g. at RISC Linz there is an initiative for verified computer algebra using
Isabelle. Usability issues were the driving force to introduce parallelism to
Isabelle.

Isabelle integrates various tools and languages. This section describes
the technologies involved in the system, its most important components and
how they work together. Also, it discusses the repository, development and
documentation workflow and the introduction of parallelism. The distribu-
tion for all major platforms can be downloaded from the Isabelle website
[108]. Whenever files are referenced, “~~” stands for the distibution’s root
directory. These references address the Isabelle release Isabelle2013-2.

4.1.1 Isabelle/ML

This section presents Isabelle/ML, which allows programmers to embed
Standard ML code into the Isabelle environment. The used compiler is called
Poly/ML. 1t is fast and efficient, implements the full ML standard [63] and
provides additional features like a foreign language interface and support
for POSIX threads based concurrency. Isabelle/ML furthermore includes a
number of libraries built on top of Poly/ML with extra language constructs
for concurrency. Before we take a deeper look into these we need to discuss
Standard ML and the Poly/ML compiler.
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Standard ML

ML stands for meta language. The language was briefly introduced in sec-
tion 2.1.1. It is a strongly typed, functional programming language, which
is not pure as it allows side effects and updatable references. Many peo-
ple contributed ideas to the language. In order maintain a common ground,
a standard was established [63]. All the code samples in this document are
written in Standard ML syntax. Since Standard ML is only a language defini-
tion which is not dictated by a reference implementation, there are multiple
compilers available, most notably Standard ML of New Jersey (SML/NJ)
[116], MLton [91] and Moscow ML [115]. They differ in their priorities such
as optimization, standard library size or platform support. ML was origi-
nally designed as a command language for the interactive theorem prover
LCF (section 2.2.1) [62]. Because of its history in this area, it was specifically
suitable for the development of Isabelle. Inference rules can easily be imple-
mented as functions that accept a theorem and return a new one. Complete
theorems can be constructed by applying a sequence of rules to other known
theorems.

The Hindley-Milner Type System. Standard ML makes use of Hind-
ley-Milner type inference [62] based on a type system for the lambda calculus
which utilizes parametric polymorphism, i.e. types can be declared using
type variables (e.g. Synchronized signature on page 30) and the decision on
the instantiated types is left to the inference algorithm. This allows for the
generic definition of functions while still ensuring static type safety. The type
inference method is complete and is able to always deduce the most general
type of an expression without requiring type annotations. If it cannot find a
suitable type for an expression, its declaration must contain errors. Because
type checking in ML is secure, deduction of theorems is always sound. Wrong
applications of rules lead to exceptions.

Another important feature of Standard ML is its design for robust, large
scale, modular software. Signatures are part of the type system and describe
the interfaces between different modules.

Poly/ML

In the course of his PhD thesis, David Matthews from the University of
Cambridge developed and implemented a language called Poly, which had
many ideas in common with Standard ML. The compiler was reimplemented
in Poly itself. Later, Matthews rewrote parts of the compiler to compile Stan-
dard ML code. The result was Poly/ML [59] which is now available under an
open source license. It implements the full Standard ML specification and
provides a few extensions. The run-time system was written in C. Poly/ML’s
most notable feature are its concurrency mechanisms. While the Standard
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ML specification [63] is limited to sequential programming, Poly/ML pro-
vides concurrency primitives based on POSIX threads. Its native support
for system threads and parallel garbage collection make it unique amongst
Standard ML compilers. Another related project is Concurrent ML, an ex-
tension of SML/NJ [78]. The primitives in Poly/ML include threads, mu-
texes and condition variables. An example for forking a thread was shown
in the communicating sequential process example on page 25. For details on
the operations and their implementation, please refer to [60].

Isabelle/ML

Isabelle/ML is a way of programming in Standard ML which is encouraged
and enhanced within the Isabelle infrastructure. It adds many library mod-
ules to plain Poly/ML.

Antiquotations. A very powerful mechanism for easy access to Isabelle
system values and logical entities are so called antiquotations [98]. Depend-
ing on their particular purpose they are resolved at compile, link or run
time. They can refer to various datatypes such as theorems (derived propo-
sitions), theories (containers for global declarations), contexts (deductive en-
vironment states) and many other concepts within the Isabelle framework.
E.g. @{context} would refer to the context at compile time at the location
where it is used, i.e. a Standard ML value of type context.

Concurrency. Poly/ML comes with very general mechanisms for concur-
rency. Its approach is based on shared resources and synchronized access.
While this concurrency model is well established, it is easy for the program-
mer to overlook some detail in the coordination of threads and deadlocks
can occur. In order to ensure correctness by design, Isabelle/ML provides
higher-order combinators and thereby hides synchronization details.

Guarded Access. Guarded access primitives operate on an abstract
type called var. They are available from the module Synchronized' and the
most notable elements of its interface are declared as

type ’a var

val var: string -> ’a -> ’a var

val value: ’a var -> ’a

val guarded_access: ’a var -> (’a -> (b * ’a) option) -> ’b
val change: ’a var -> (’a -> ’a) -> unit .

This type is merely a wrapper for an ML reference. Please note the type
parameters ’a and ’b. The constructor creates a var from such a reference.

!-~/src/Pure/Concurrent/synchronized.ML
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value is the inverse operation and performs a read access. Machine code
produced by the Poly/ML compiler generally treats memory cells as volatile,
i.e. calls to value need not be synchronized because read operations always
return some value. The guarded_access combinator is where the magic
happens. Besides the var element x with value v that the write access will
be performed on, it expects a function f that maps v to an option element
of the touple type ’a * ’b. The type option is Standard ML’s equivalent of
the Maybe monad in Haskell: It can either be NONE or contain a value, i.e.
in our case SOME (y, v2). f is executed in a critical section of z on its
value v. As long as it returns NONE, the current execution context waits for
another thread to change v. If f returns SOME (y, v2), the value of x is set
to v2 and the call to guarded_access returns with result y. The original
definition of change?, i.e. an unconditional, synchronized update to a var
element is given by

fun change_result var f = guarded_access var (SOME o f);
fun change var f = change_result var (fn x => (O, f x));

It is easily possible to implement higher-order mechanisms using these prim-
itives. See [60] for an example of a message queue.

Futures. While the last approach allows for process synchronization
on a high level, most of the complexity persists and as software gets larger it
still gets increasingly hard to coordinate a high number of concurrent com-
putations efficiently. For this reason, Isabelle/ML provides futures (section
3.2.3) and is thereby able to completely hide threads and their synchro-
nization from the programmer. The goal was to provide a mechanism for
parallelism which is both simple to use and performant with a special em-
phasis on operations typically carried out by a proof engine. Future values
fulfill these requirements. They are value-oriented, i.e. the focus hereby is on
parallelism rather than concurrency. Error handling happens synchronously
by means of exceptions and asynchronously with interrupts. The Future
module?® has a comprehensive signature. The following declarations are only
an excerpt:

type ’a future

val fork: (unit -> ’a) -> ’a future

val cancel: ’a future -> unit

val is_finished: ’a future -> bool

val join: ’a future -> ’a

val map: (’a -> ’b) -> ’a future -> ’b future
val value: ’a -> ’a future

2.~ /src/Pure/Concurrent/synchronized.ML
3~~/src/Pure/Concurrent/future . ML
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Notice that ’a is a placeholder for an arbitrary type which a future can
represent. Calls to Future. join synchronize the evaluation and wait for the
future’s result if it is not already available. In case an exception is raised
during the evaluation, its propagation will wait until the future is joined.
Future.cancel stops a future’s evaluation if it has not finished, otherwise
the function has no effect. The evaluation of futures is managed by means of
tasks and worker threads. The number of workers should be related to the
number of available processing cores. The exact number, however, is adjusted
dynamically because the future scheduler always keeps a limited number of
inactive threads in memory, such that they can immediately take over if
another thread is temporarily stalled. In practice, the additional functions
Future.map and Future.value have turned out to be useful in reducing the
number of tasks and as a consequence the scheduling overhead. Future .map
can append another operation to an existing future, which will be executed
on the originally scheduled function’s result. If the original future’s evalua-
tion has not started yet, the appended operation will be computed within
the same task. Future.value produces a dummy future holding the func-
tion’s argument as a result. Additionally, futures can be assigned priorities
in order to influence execution order which by default is based on creation
time. Also, futures can be organized in groups and even hierarchies of groups.
This allows futures that depend on each other to be canceled whenever one
of them raises an exception.

A simple future example has already been shown on page 19. Internally,
the Futures module is based on the guarded access mechanisms introduced
above. Based on futures, Isabelle/ML provides more specific parallel combi-
nators such as the parallel list combinators map and find. The latter makes
use of future groups and throws an exception as soon as a match is found,
such that other search branches are not evaluated. This example shows how
exceptions can be used as a basic means for functional interaction of futures
without reintroducing the complexities usually associated with inter-process
communication. See [60] for further details and a discussion of the perfor-
mance of futures.

4.1.2 Isabelle/Isar

While in older versions of Isabelle, theorem proving tasks had to be solved
using raw ML tactic scripts, theories and proofs can now be developed in-
teractively in an interpreted, structured, formal proof language called Isar
(Intelligible semi-automated reasoning) [96, 99]. Isar was designed to address
an issue common to state-of-the-art theorem provers: Despite successfully
formalizing a good amount of existing mathematical knowledge, logics and
computer science theory, it was still hard to reach potential target groups
unfamiliar with the involved computer programming requirements. The pri-
mary users of theorem provers should be mathematicians and engineers who



4. [sabelle and Isac 33

presentation audience

authors

f

internal inference engine

Figure 4.1: Isar proof notions [96].

utilize them to formulate new proofs and for verification purposes. Isar en-
ables these users (“authors” in fig. 4.1) to write proofs and theories in a way
that can be understood by machines while being much closer to human lan-
guage than ML code or some logical calculus. As much as possible, it hides
operational details thanks to its notion of obvious inferences. With a little
extra care it can therefore also be used for presentation to an audience. The
short, well-known proof that the square root of 2 is an irrational number is
presented in appendix A.3.

The Isar virtual machine interpreter performs proof checking and incor-
porates an operational semantics for Isar. It is provided by the Isabelle/Isar
framework, which embeds Isar into the Isabelle environment. It supplies
the Isar/VM interpreter with all available proofs and definitions which are
implemented in theory documents. These theories are structured in an inher-
itance hierarchy that forms a directed, acyclic graph. Isar proofs operate on
the basis of certain object logics. The most established logic is Isabelle/HOL,
i.e. higher-order logic (simply typed set theory), but a wide range of logics
is available through the Isabelle/Pure meta logic. Another important ele-
ment are proof methods, which are function mappings between proof goals
and according proof rules. Isar’s lack of mechanisms for the formulation of
automated proof procedures turned out to cause an unacceptable amount of
duplicate code. Very recent work on a new language called Fisbach, which
is based on Isar, has tried to address these issues [58].

4.1.3 Isabelle/Scala

The original user interface for the Isabelle theorem prover was a project
called Proof General. It is a proof assistant front-end based on Emacs, also
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available for other provers like Cog [19]. Its interaction model offers some
improvements over a basic TTY model. The user enters a prover command
and immediately receives a result, such as information on proof state or
goals, before they can issue the next command. But interaction remains
sequential and synchronous. There are two main weaknesses to Proof Gen-
eral and similar approaches. The underlying editor framework is outdated:
Emacs offers a very powerful environment, but its graphical user interface
can be considered dated. Also Emacs’ Lisp engine does not support mul-
tithreading and does therefore not allow the development environment to
make full use of the available CPU power. The other main shortcoming is
the poor interaction model that is limited to a synchronous input / output
sequence. Instead of simple text editing tools, a fully-featured IDE was de-
sirable [92]. In addition, the IDE should be available on many platforms and
as the main development focus of Isabelle developers is theorem provers,
they wanted to be able to draw on existing IDE frameworks, rather than
developing a new one from scratch. They chose to make use of the Java Vir-
tual Machine and enable tools written for the JVM to communicate with
the Isabelle prover via simple byte streams. The resulting asynchronous doc-
ument model utilized for the communication between ML and JVM allows
GUISs, text editors like jEdit, IDE frameworks such as Fclipse as well as web
services to make use of the Isabelle prover. The outcome of the efforts to
design this prover IDE framework is called Isabelle/PIDE. In order to over-
come the differing programming models and datastructures of Standard ML
and the JVM, Scala was chosen as the JVM communication endpoint be-
cause, due to its flexibility and functional features, it allows programmers to
imitate a programming style similar to Isabelle/ML. Scala’s actors (section
3.4.2) were used heavily for asynchronous communication and concurrency
until recently. Since the original Actor library was replaced by Akka, Isabelle
developers have decided to imitate the ML variants of parallelism mecha-
nisms in Scala without actors [119]. All datastructures that are part of the
protocol have been implemented in both languages side by side. E.g. the
datatype definition of file system path elements is

datatype elem =
Root of string |
Basic of string |
Variable of string |
Parent;

in Standard ML*. Here, a value of type elem can be either of the four sub-
types, three of which are strings. The equivalent datastructure in Scala® is
given as four concrete classes inheriting from the abstract class Elem:

4.~/src/Pure/General/path.ML
5~~/src/Pure/General/path.scala
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Figure 4.2: The Isabelle/PIDE communication model [93].

sealed abstract class Elem

private case class Root(val name: String) extends Elem
private case class Basic(val name: String) extends Elem
private case class Variable(val name: String) extends Elem
private case object Parent extends Elem

The internal protocol utilizes YXML, a transfer format based on XML [94].
Instead of keeping a public protocol specification, the details are being kept
private. This allows the developers to make substantial changes to protocol
and document model to improve robustness and performance without fur-
ther ado. Instead, both Isabelle/ML and Isabelle/Scala offer public, static
APIs for their communication which are maintained and kept simple and
stable.

Fig. 4.2 outlines the basic communication model between the JVM and
the prover. Whenever the user edits a file in an editor, a description of
this update is sent to the prover which then produces markup to annotate
the new contents with proof data and other semantic information. Then
the changes on the editor side are reverted and replaced by the new, an-
notated content. As a consequence, the interaction mechanism adheres to
the functional paradigm’s philosophy by using strictly immutable document
snapshots of versioned file histories.

4.1.4 Isabelle/jEdit

Recent Isabelle distributions include a complete prover IDE prototype im-
plementation based on the text editor framework jEdit [95]. Isabelle/jEdit
features a completely new interaction model that performs continuous, par-
allel proof checking. It uses GUI functionality such as highlighting, color-
ing, tooltips, popup windows and hyperlinks to annotate user code written
in Isar and ML incrementally with semantic information from the prover
(see fig. 4.3). Prover and editor front-end are executed independently and
never block each other thanks to the asynchronous protocol. Additionally,
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Figure 4.3: GUI feedback in Isabelle/jEdit.

Isabelle/jEdit includes several plugins and fonts to facilitate entering and
rendering of mathematical symbols.

The IDE also manages loaded theory files and the computation of their
dependency graph. Changes to theories are automatically propagated ap-
propriately and the user receives immediate feedback on the processing of

theories (fig. 4.4).

4.1.5 The Prover Framework

The paragraph titled The Next Seven Hundred Theorem Provers in section
2.2.1 (page 8) explained that Isabelle was initiated and designed as a logical
framework for automated theorem provers. Its design is described in [97].
The metaprover / collection of external automated provers supporting in-
teractive proofs is called Sledgehammer. The standard provers are called E,
SPASS, Vampire and Z3. Fig. 4.5 (page 38) depicts the view on Sledgeham-
mer in Isabelle/jEdit. In those cases where theorems are invalid and therefore
cannot be proved, two disproof tools called Quickcheck and Nitpick can be
utilized for producing counterexamples. See [11] for a more detailed overview
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Figure 4.4: Feedback on theory processing Isabelle/jEdit.

on the integration of these external tools.

4.1.6 Development and Documentation

Apart from the technologies used in Isabelle, also Isabelle’s development pro-
cess and system documentation had an impact on this thesis. The adaption
to Isabelle’s specifics was quite challenging. Isabelle’s development process
is much faster and much more radical as compared to commercial software
development due to the specific kind of development. This development is
led by three persons (see introduction to section 4.1, two of them supervising
and also writing code themselves) and executed by a small team of about
ten postdocs and PhDs, each working under contracts for three years at
least. The members grow into the team by doing projects and master theses
before entering the team. According to my supervisor, this particular kind
of development leads to the following way of system documentation which
is given by:

1. The code itself, without any further comments except in few specific
cases. This is common to functional programming and very different
from what one is used to from e.g. Javadoc. The code can be inspected
in the repository, see pt. 3 below.

2. Reference manuals and tutorials, which can be found online [102]
and are easily accessible from Isabelle/jEdit (section 4.1.4). Both,
manuals and tutorials are automatically held in sync with the code
by specifically developed mechanisms such as antiquotations (section
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Figure 4.5: instance of the Sledgehammer panel.

4.1.1, page 30), e.g. @{type ...}, @{const ...}, etc. These entries
in the documentation raise exceptions in case some type or constant
has changed in the code.

3. The repository, publicly readable [110] is the third pillar for doc-
umentation. Commits must follow a minimal changeset policy which
allows for quick queries and documents particular interdependencies
across several files. This kind of documentation of complicated con-
nections is very efficient and always up to date even with frequent
changes.

This documentation model has evolved during more than two decades and
still allows for ongoing rapid development with invasive changes, last but
not least parallelization. However, relevant documentation for this thesis is
marginal. Parallelization, as already mentioned, has been done by Makarius
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Wenzel and was preceded by a feasibility study conducted by a master stu-
dent [34]. Wenzel’s respective papers [60, 92, 94-96] concern fundamental
considerations. The most relevant reference manual [98] contains less than
ten pages on parallelization. All the rest had to be found in the code (several
hundred thousand LOCs®). The gap between papers and code was hard to
bridge.

4.1.7 Reasons for Parallelism in Isabelle

Isabelle is the first theorem prover which is able to exploit multi-core hard-
ware. The reasons for introducing parallelism in Isabelle are directed towards
the future and complement considerations discussed for functional program-
ming. There are three motivations for parallelization mentioned for Isabelle.
They have all been addressed at once: parallel invocation of multiple au-
tomated provers, a responsive prover IDE and efficient theory evaluation
envisage better usability in engineering practice. All three development is-
sues are successfully being tackled, an end cannot be foreseen yet.

Run Automated Provers in Parallel

Isabelle’s collection of automated provers was mentioned in section 4.1.5.
It still has a mechanism to connect with remote prover instances and these
already featured parallel access to external resources. Since personal comput-
ers and laptops have become powerful enough to run Isabelle, this hardware
has also become powerful enough to run automated provers. But running
them in parallel on a local machine required a redesign.

Provide a Tool Usable in Engineering Practice

The paragraph about Continuous Penetration of Computer Science by for-
mal methods in section 2.2.1 (page 10) mentioned the increasing demand for
theorem provers in the practice of software engineering and related mathe-
matics. In particular, software engineers are used to comprehensive support
by integrated development environments (IDEs): interlinked code, various
views on relations between code elements, etc. Since TPs have been used by
experts only until the presence, specific user interfaces were sufficient. For
Isabelle this was Proof General (see section 4.1.4), which is based on Emacs.
Those who still use this editor which was dominant during the last decades,
know how different Emacs is: not reasonable for engineering practice of to-
day. So the issue was to meet the usability requirements of contemporary
engineering practice. Isabelle’s attempt to meet such requirements is the
PIDE project (section 4.1.3). Isabelle/jEdit (section 4.1.4) is the reference

Slines of code
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implementation, which is accompanied by development of an Eclipse plugin
[111] and a browser-based front-end under construction.

Accelerate theory evaluation

My supervisor’s first experience with Isabelle was about fifteen years ago
on a high-end SPARK workstation. The initial evaluation of Isabelle/HOL
took more than twenty minutes; not to speak of the considerable amount
of time an experienced system administrator needed for installation. Since
this time Isabelle/HOL has become about three times larger, but the initial
evaluation of theories takes about two minutes for recent Isabelle releases.
Isabelle/jEdit represents theory evaluation as shown in fig. 4.4 on page 37.
Parallel branches in the dependency graph are evaluated in parallel. Without
this kind of speedup, large theory developments involving several dozens of
theories would not be manageable. The most recent Isabelle releases do not
package binaries of evaluated theories any more. Instead, they pack further
components into the bundle. The bundle of the current release is more than
400MB for download. Also, all other bandwidth aspects of Isabelle are at
the limits of present mainstream hardware. Isabelle does not run below 4GB
main memory and requires a dual-core processor with more than 2GHz per
core.

4.2 Isac

Isac is a prototype in both, in the mathematics-engine based on Isabelle and
written in Standard ML as well as in the front-end involving rule-based di-
alogs and written in Java. The mathematics-engine heavily reuses technology
from Isabelle and thus comprises a comparably small portion of code: 25,000
LOCs" plus 15,000 LOCs of knowledge in theories compiled to Standard ML
for fast access and 40,000 LOCs for tests. This code features functional-
ity which is radically new for educational mathematics systems. The gain
from TP technology is explained in section 4.2.1. The front-end exploits the
mathematics-engine’s TP-based functionality for dialogs on a new level of
flexibility and user guidance. The gain from rule-based dialog guidance is
addressed in section 4.2.2. Since Isabelle is still under rapid development, the
principal question arises, whether Isac’s prototype development can persis-
tently adjust to Isabelle, an issue addressed in section 4.2.3. Otherwise the
success achieved with the case study on parallelization would be worthless
in the long term. The description of the case study is comprised of two
parts: the integration with Isabelle’s parallel theory evaluation is described
in section 4.3.1 and section 4.3.2 discusses the parallelization of Isac’s user
session management.

"lines of code
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Figure 4.6: Structured derivation editor (source: [7]).

4.2.1 Principal Design Decisions

Isac is still the only educational mathematics system worldwide which ad-
heres to concepts of TP and which is built reusing TP technology, except
for a system under construction by the Scandinavian E-Math project [103].
All the other math tutoring systems are based on computer algebra. Thus,
the distinctive design decision to rely on TP deserves an explanation.

TP concepts ensure logical correctness in stepwise problem solving.
When learning independently from a human tutor or supervisor, a student
wants to know whether the calculations are done correctly or not. An ed-
ucational software system supporting this expectation cannot be based on
computer algebra systems. These are in no way related to logics (which is an
unresolved issue for computer algebra, for instance at RISC Linz), so true
/ false or correct / not correct requires underpinning with logical concepts
as is the case e.g. in the Theorema project at RISC Linz. The system under
construction in E-Math supports so called structured derivations which are
close to calculations written by hand (see fig. 4.6).
This kind of calculation is proved logically equivalent [7] to natural deduc-
tion, which forms the logical foundation of Isabelle and other provers as
mentioned in section 2.2.1.

With the decision for Isabelle, Isac intentionally dissociates itself from
the kind of artificial intelligence that tries to imitate human behavior. Isac
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does not intend to mimic a human tutor by modeling the system with respect
to human thought, human comprehension or human learning. Rather, Isac
is designed as a model of mathematics, following the structure of mathe-
matics from the very bottom, from formal logics as implemented in Isabelle.
However, Al technologies can take profit from the strength, the general-
ity and the flexibility of the mathematics-engine resulting from this design.
The principal strengths of Isac’s math engine are described in the following
paragraphs.

TP technology features new functionality of Isac’s mathematics-
engine. The following features arise naturally from TP:

Check students’ input automatically, flexibly and reliably. Given
a problem of applied mathematics by a formal specification (input,
output, precondition and postcondition; generally hidden from the
student), any formula (or a theorem for application) input by the
student establishes a proof situation. Automated provers then derive,
if possible, the input from the logical context. This is what computer
theorem provers are built for. They represent the technology for
accomplishing this task as generally and reliably as possible at the
present state of the art in computer mathematics.

Give explanations on request by students. Provers designed on the
basis of the LCF principle (section 2.2.1) such as Isabelle, derive all
knowledge from “first principles”. For each definition and for each the-
orem the respective prerequisites can be traced down to the most fun-
damental axioms. All this knowledge is represented in human readable
form [112]. Thus the situation in systems like Isabelle is quite different
from computer algebra systems. While documentation for the latter
requires additional efforts for creation, all documentation is already
there in Isabelle. Generation of explanations calls for filtering out de-
tails, which could distract or overwhelm students. Another nice feature
of Isabelle/Isar, although not relevant for applied mathematics, are hu-
man readable proofs close to mathematical traditions (see section 4.1.2
and appendix A.3).

Propose a next step if students get stuck. This feature seems indis-
pensable for independent learning. However, this exceeds the tradi-
tional discipline of TP. E.g., lemma [1+ z + 2? do =z + % + % +c
can be proved, but given [14 z+ x? dx there is no direct way to
calculate the result x + % + x—; + ¢ in TP. Since indispensable, Isac
provides this feature by a novel combination of deduction and com-
putation, called Lucas-Interpretation [67]. Lucas-Interpretation works
on programs which describe how to solve a problem of applied math-
ematics in a quite traditional way. In addition to maintaining an en-
vironment as usual for interpretation, Lucas-Interpretation maintains
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a logical context, such that automated provers are provided with all
current knowledge required to check user input. [22] gives a brief in-
troduction to Lucas-Interpretation.

These three features together establish a powerful interface to the mathe-
matics-engine. With these given, interaction can be analogous to learning
how to play chess in interaction with a chess program. The player executes a
move (the student inputs a formula) and the program checks the correctness
of the move (Isac checks the input). The program performs a move (Isac
proposes a next step) and the player accepts or changes it. If the player
is in danger of losing the game (the student gets stuck within the steps to-
wards a problem solution), they can go back a few moves and try alternative
moves. Or the player can even switch roles with the system and watch how
the system copes with the unfortunate configuration. All these choices are
available to a student analogously when learning mathematics in interaction
with Isac.

The comparison of interaction in Isac with interaction in playing chess
makes clear, that learning with a mechanical system does not necessarily lead
to drill and practice in operational mechanization. The degree of freedom
in interaction allows for fostering of the evaluation of alternatives and thus
learning by trial and error, comparing strategies, etc.

4.2.2 Architecture Separating Mathematics and Dialogs

The strengths of Isac’s mathematics-engine, as described above, provide
powerful features for human-machine interaction and thus call for concepts
and technology from Al. In order to cope with increasing complexity, a
separation of concerns between Al and mathematics is required.

Separation of Concerns between Dialogs and Mathematics

This separation is reflected in Isac’s architecture shown in fig. 4.7. The front-
end on the left within a Java environment comprises GUI 1..n, an arbitrary
number of remote devices for input and output, the Isac server with the
dialog component. The dialog component comprises a rule-based system as
described in [50], not shown in the figure. Dialog authors are not concerned
with mathematics and are free to focus on the complexity of dialog guid-
ance, see [22] and an example from the paper in fig. 4.8. In fig. 4.7, the server
accesses the knowledge in HTML representation, both in turn administered
by a learning management system like moodle. Separated from the front-end
concerned with dialogs etc. is the Standard ML environment, the implemen-
tation language of Isabelle and Isac: the math-engine together with programs
for Lucas-Interpretation and knowledge in Standard ML representation for
fast access. The math-engine builds upon Isabelle by reusing the term struc-
ture of simply typed lambda calculus and respective parsing, pretty printing,
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Figure 4.7: Isac’s architecture as seen by users.

6a+3b __ 9
3b
student / computer
%} = 6a “You can’t simplify like that.

Try to make products out of both,
nominator and denominator.

-—

Here is a link to look up.”
NEXT
6a+3b __ )

— 3b
NEXT
6a+3b _ 3(2a+.)

— 3b
6a+3b __ 2a+b
3b = b

Figure 4.8: Interaction with Isac [22].



4. [sabelle and Isac 45

matching as well as management of knowledge within theories. The orange
color in fig. 4.7 indicates parallelization in order to exploit availability of
an arbitrary number of cores (core 1..n). In 2009, Isabelle introduced spe-
cific mechanisms to cope with multi-core environments. The central Isabelle
component for parallelization is the Scala bridge (section 4.1.3) supporting
asynchronous user interaction [92] and parallel proof checking [97] via the
editor jEdit (section 4.1.4). Isabelle’s parallel mechanisms are reused in the
case study. The horizontal orange bar above Isabelle indicates that paral-
lelization of Isabelle affected Isac’s management of knowledge in Standard
ML representation. This part of the case study is described in section 4.3.1.
The vertical orange bar to the left of the Isac math-engine indicates the
concurrent user session management accomplished by the second part of the
case study, which is described in section 4.3.2.

Modeling the Universe of Mathematics

This goes beyond Isabelle’s way of modeling the deductive dimension of
knowledge. Due to a suggestion by Bruno Buchberger in 2001, Isac now im-
plements two additional dimensions, together spanning a three-dimensional
space:

1. Deductive knowledge is defined and managed in TP. Beginning with
the basic axioms (axioms of higher-order logic in Isabelle/HOL used
by Isac), definitions are given and theorems about these definitions are
proved, theory by theory. Isabelle provides an elegant mechanism for
defining new syntax, which results in a language close to traditional
mathematical notation. The subset of Isabelle knowledge presently in
use by Isac can be found online [123].

2. Application-oriented knowledge is given by formal specifications
of problems in applied mathematics. The specification of all problems,
which can be solved automatically by Isac (with the help of algorithms,
see below), is available online [121]. This collection is structured as a
tree. Given a tree, automated problem refinement is possible, e.g. start-
ing from the specification at the node of univariate equations [122] a
certain equation can be matched with all child nodes until the appro-
priate type of equation has been identified. In case a match has been
found, such a node contains a pointer to a program solving the specific
type of equation. This kind of problem refinement makes transparent,
what is done by computer algebra systems as black boxes.

3. Algorithmic knowledge is given by programs to undergo Lucas-
Interpretation. The collection of programs is structured as a tree. How-
ever, principal requirements on the structure are still unclear. There
are ideas of how to group algorithms in [16] but the ideas are too vague
for mechanization. Isac’s programs can be found online [120].
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The structure of the knowledge collections of pt. 2 and 3 are different from
pt. 1. E.g. linear equations in pt. 2 are the same for rational numbers and
complex numbers, but the definition of rationals is far away from complex
numbers in pt. 1. So the implementation of the latter two collections is
orthogonal to the first, the collection structured and managed by Isabelle.
The only way of implementation was by Unsynchronized.ref, i.e. by global
references. Write access to these references assumed a certain sequence in
evaluation of the theories. This assumption broke with the introduction of
parallel execution in Isabelle. Section 4.3.1 explains how this issue was re-
solved.

4.2.3 Relation to Ongoing Isabelle Development

In my Bachelor’s project [54] I already had the chance to contribute to Isac.
From my experience with Isac I can give the following overview of Isac’s
development.

Although being active for more than two decades, Isabelle development
still undergoes invasive reforms concerning localization, parallelization, etc.
See the NEWS file [113] for details. These reforms cause significant changes
in module signatures and in functionality more or less with each release.
Many of these changes enforce considerable updates of Isac because Isac
extracts functionality from Isabelle at a rather deep level, apart from public
interfaces. Updating Isac in accordance to the regular Isabelle releases is
crucial: Between 2002 and 2010 Isac development focused on the front-end.
In 2010, Lucas-Interpretation [67] was clarified and Isabelle’s contexts ap-
peared indispensable. Contexts appeared in Isabelle after 2002, so an update
was necessary. However, updating Isac’s math-engine from Isabelle2002 to
Isabelle2009-2 turned out to be very hard and it was done during and after
my Bachelor’s project. Ever since this unpleasant experience Isac has been
updated with each official Isabelle release which are published every eight to
twelve months. In addition to these regular updates there are major tasks
concerning further adoption of Isabelle’s mechanisms which are open due to
early design decisions of Isac.

Adopt logical contexts from Isabelle. Isac’s mathematics-engine was
developed between 2000 and 2002, long before Isabelle introduced logical
contexts [98]. Without these contexts the user needed to explicitly fix the
type of variables during input. This was very inconvenient. I implemented
my Bachelor’s project in time to introduce contexts to Isac and gain first
experiences with the system. Experience with contexts also contributed to
the theoretical clarification of Lucas-Interpretation [67].

Adapt to Isabelle’s parallel theory evaluation. Since Isabelle tra-
verses its theory dependency graph in parallel, Isac can no longer rely on a
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particular, deterministic execution order. Fixing the problems which arose
from this fact and integrating the related datastructures into Isabelle’s the-
ory data management model is one of the big achievements of the project
work that this thesis is based on. The details of this process are outlined in
section 4.3.1.

Exploit parallelism for concurrent session management. This task
addresses the utilization of Isabelle’s new mechanisms for parallelism, most
notably futures, for Isac’s user session management in order to allow for a
high number of concurrent, efficiently executed calculations. Section 4.3.2
documents this step in more depth.

Make Isac’s programming language usable. Isac’s programming lan-
guage was implemented between 2000 and 2002, long before Isabelle’s func-
tion package was available [51]. Lucas-Interpretation on programs in this
language uses a variety of rulesets for rewriting, too complicated for an
average programmer [79]. Considerable simplification of programming can
be expected by narrowing Isac’s programming language towards Isabelle’s
function package. In particular, components of Isabelle’s code generator [32]
promise to greatly improve computational efficiency.

Adopt Isabelle’s numeral computation for Isac. The initial concep-
tion of Isac emphasized applied mathematics, which is unrealistic without
floating point numbers. There were early attempts to implement the latter
together with complex numbers. Both, floating point numbers and complex
numbers have in the meantime been implemented in Isabelle. These shall
now be adopted for Isac.

Improve the efficiency of Isac’s rewrite engine. Isac’s initial de-
sign stressed the importance of computations closely resembling work by
paper and pencil. Major parts of computation happen by rewriting, so a
large number of rewrite rules need to form groups which as such mimic
the step width of human computations. Isabelle’s rewrite engine meets op-
posite requirements: provide a maximum of automation with large rule sets
(“simpsets”). Only recently, frequent user requests motivated projects in the
Isabelle development to provide readable traces for rewriting. However, the
requirements of Isabelle and Isac are too different and Isac will keep its own
rewrite engine. But the mechanism of term nets [18] could be adopted to
improve Isac’s efficiency.

Adopt Isabelle/jEdit for Isac. Isac’s initial design also stressed usabil-
ity of the front-end for students. At this time Isabelle’s front-end was Proof
General [6]. Thus there was no choice but to develop a custom GUI for Isac.
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In the meantime Isabelle/jEdit has become an appealing prover IDE. How-
ever, the requirements are presently quite opposing. Isabelle connects one
engineer with a multitude of cores while Isac connects a multitude of stu-
dents with one server. Isac’s centralized structure has good reasons: groups
of students have one lecturer, groups of students are examined together, etc.
During the next years, Isac’s front-end will be developed and improved in-
dependently from Isabelle. Narrowing towards Isabelle can start as soon as
Isabelle/jEdit moves towards collaborative work, implements session man-
agement, version management, etc.

Summary on Isac’s Approach to Isabelle

Above, those points are listed, where Isac’s math-engine is supposed to
approach Isabelle in future development, as this thesis already has begun.
Development of Isac’s math-engine is separated from the development of
Isac’s front-end. Section 4.2.2 describes Isac’s architecture separating math-
ematics and dialogs. Development of the front-end addresses the expertise
represented by our University of Applied Sciences in Hagenberg: human-
centered computing, interactive media, mobile computing, secure informa-
tion systems, software engineering, etc. Isac’s development efforts in these
disciplines can be planned independently from the above list for several
years, until Isabelle/jEdit is ready to be adopted for Isac in a particularly
interesting development effort.

4.3 Practical Work on Isac

This section documents the implementation work that has been carried out
as project work in preparation for and along with the writing of this thesis.
During the first big step, the breakdown of Isac’s theory evaluation caused
by an invasive update to Isabelle’s mechanisms was fixed (section 4.3.1).
This made possible the introduction of concurrency to Isac’s user session
management and thus enabled the parallel computation of independent cal-
culations. This process is described in section 4.3.2. Section 4.3.3 discusses
the effects of this process on Isac’s performance. Finally, Isac’s project status
is summarized in section 4.3.4.

4.3.1 Integration With Isabelle’s Parallel Theory Evaluation

In older Isabelle versions, it was not possible for programmers to append
arbitrary data to the datastructure which holds all the theories. Isabelle2005
[113] then introduced a concept called theory data, which allowed developers
to store user-defined datastructures in a theory’s context from ML code
embedded in that theory.
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Data flow. In order to understand the following paragraphs, we need to
know how Isabelle computes theories and what the theory data flow looks
like. Section 4.1.2 already mentioned, that the inheritance structure of Is-
abelle’s theories forms an acyclic, directed graph. Computation begins at
the root theories which are determined backwards from the current work-
ing theory. The resulting data is then available in all descendant theories.
Whenever a theory has more than one ancestor, the derived data is merged.

The last sections have outlined the conceptual and architectural differ-
ences between Isabelle and Isac. Isac needs to manage application-oriented
and algorithmic knowledge which originally could not be integrated with the
deductive structure of Isabelle’s theories. Therefore these data were stored in
raw ML references. Isabelle2009 then introduced parallelism. Now the com-
putation order of the theories was not deterministic anymore and Isac could
not ensure that its ML references were accessed and updated in the same
order as previously. This caused certain parts of the system to show faulty
behavior in some cases. Isabelle2009-1 then added the wrapper structure
Unsynchronized.ref to denote that these references are not synchronized
with the parallel environment managed by Isabelle. While the temporary de-
activation of faulty modules and certain workarounds fixed most problems,
the parallelization of Isac’s user session management required that most rel-
evant data be properly managed by Isabelle. Therefore the preparatory step
for the parallelization was the integration of the unsynchronized references
in question with Isabelle by means of the functor Theory_Data [98]. It is im-
portant to mention that the Isabelle implementation manual [98] warns to
be careful about using too many datastructures on the basis of Theory_Data
because they are newly initialized for every single theory that derives from
the respective module that declared the datastructures. Thus, space is re-
served which can cause a significantly increased memory footprint. Most of
the overhead, however, occurs when theories are loaded dynamically. When
working with a compiled Isac system the overhead should be reasonable.

The workflow was implemented for several central elements and broken
down into five isolated steps to conform with Isabelle’s minimal changeset
development and documentation model (section 4.1.6):

1. Isolate access. In this step, read accesses were centralized by wrap-
ping references in an access function and replacing all occurrences with
a call to the function:

val foo = Unsynchronized.ref [1,2,3]; (*declarationx*)
fun get_foo () = !foo; (*newx*)

fun add x y = x + y;

fun foo_sum () = fold add (!'foo) 0; (*obsoletex)

fun foo_sum () = fold add (get_foo ()) 0; (*newx)
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2. Add Theory_Data access functions in parallel to the existing ones.
This includes a new version of the getter function (get_foo in pt. 1).
But first we need to define a datastructure that Isabelle can manage.
Thus, we need to implement the functor Theory_Data for our specific
datatype®:

structure Foo_Data = Theory_Data (
type T = int list;
val empty = [J;
val extend = I; (*identity*)
val merge = merge_lists;

)

T is the type of the data. empty is the initial value for every theory
that does not define this particular data slot content. extend is used
for reinitialization on import of a theory and can be understood as
a unitary merge. Finally, merge declares, how the data slot contents
of two theories are to be joined. Unlike the operations that we are
replacing during this process, the two simple access functions

val get_foo’ = Foo_Data.get;
fun put_foo’ xs = Foo_Data.map (merge_lists’ xs);

additionally require the target theory as input parameter. Because
ML code is always embedded in Isabelle theories, they can operate on
any available theory according to the dependency graph. Each theory
stores its own version of the data slot. A new version of get_foo,

fun get_foo () = get_foo’ @{theory}; ,

which is not yet in use during this phase, could replace get_foo from
pt. 1. This definition uses antiquotations (section 4.1.1, page 30). This
means that @{theory} always refers to the theory where the func-
tion definition is located and is thus resolved at compile time. The
alternative approach

fun get_foo () = get_ref_thy () |> get_foo’;

is more flexible in that get_foo’ operates on a reference theory set
by the programmer (details on get_ref_thy are explained in the sub-
sequent section) and passes it to get_foo’ from above. The last as-
pect of this step is the addition of setup blocks [99] where previously
the raw references had been updated. These blocks must contain one
ML expression which represents a mapping between two theorys. As
a consequence, Isabelle updates the current theory context with the
function’s result in these locations, e.g.

8see appendix A.2 for definitions of merge_lists(’)
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setup {* put_foo’ [4,5,6] *} .

3. Check differences. Now that both, the old unsynchronized reference
and the new stored as theory data, are created and updated, we can
compare their contents and make sure that the last steps were success-
ful. Due to the nature of the datastructures and the fact that the new
method caused a different ordering to some of the elements, the most
convenient solution was to compute a string representation from both
results, write them into documents and compare the documents using
a file comparison utility. If any errors occurred, step 1 and 2 required
revision.

4. Shift to theory data. Optimally, this step merely meant exchanging
the old definition of get_foo (pt. 1) for the new one (pt. 2).

5. Cleanup. Finally, we can remove all code concerned with the unsyn-
chronized reference.

Besides acquiring the necessary knowledge on how to store and access ar-
bitrary datastructures in a theory’s context, the biggest challenges included
understanding and merging the different kinds of custom datastructures and
keeping the solutions simple; optimally simpler than the previous code. Also,
I had to adjust the theory hierarchy and add new theories in order to keep
a clean structure and ensure that the availability and computation of datas-
tructures was sound and behaved as it had previously. Some of the data de-
pendencies had not been reflected in the dependency graph but had rather
been fulfilled by a fortunate execution order.

As a result of this contribution, most of the stateful components in Isac,
which had been necessary to circumvent mismatches between Isac’s and
Isabelle’s architectures, were eradicated from the system. Those which are
still not synchronized are currently being replaced. However, they are not
accessed by theories potentially executed in parallel and therefore do not
interfere with Isac’s parallel user session management.

4.3.2 Introduction of Concurrent User Session Management

Isabelle’s programming conventions prohibit user programs based on Isabelle
from forking their own ML threads. This is necessary because Isabelle has
its own managed environment for concurrency which takes care of thread
synchronization and shared resources. Accesses from user threads could eas-
ily break this well-tested framework. After careful analysis of the Isabelle
documentation and the code in some concurrency related Isabelle/ML mod-
ules, our suspicion that parallelizing Isac’s user session management required
breaking this convention was rendered unfounded. As it turned out, Isabelle’s
implementation of futures (section 4.1.1) provided everything we needed. As
a result, the actual implementation effort was marginal. Since Isac’s does not
maintain any problematic stateful resources anymore, there was no further
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effort required for synchronizing shared resources beyond those managed by
Isabelle, except for the states element, which maintains a state for each
active calculation. Instead of an Unsynchronized.ref, it was replaced by a
Synchronized.var (see section 4.1.1, page 30).

The function appendFormula, which derives the input formula from a
calculation’s state, had to be transformed in a way, such that it can be
passed to Future.fork which then takes care of the parallel execution.

fun appendFormula params =
Future.fork (fn () => appendFormula’ params);

is a simplified version of the key line in this transition, with appendFormula’
being the original version of the function. The same transformation was ap-
plied to autoCalculate, which can compute calculations step by step as
well as automatically determine the final result. Many of the computations
within autoCalculate require access to the current proof context datas-
tructure. During the previous part of the project (section 4.3.1), this was
done using the function the_generic_context from Isabelle’s ML__Context
module. When I called more than one instance of autoCalculate simultane-
ously, it turned out that functions executed within a future cannot acquire
access to the current proof context through this function. In practice, the
context data of the theory Isac is sufficient for all calculations and could be
completed and made available at compile time. However, the Isac test suite
extends the context data, which cannot be modified at run time. In order to
overcome this, there is now a Synchronized.var at an appropriate location
within the dependency graph, which determines the reference theory for all
operations accessing the newly introduced Theory_Data elements. The test
suite uses a new function set_ref_thy to override the standard value which
is the theory Isac.

Now that all calls to the_generic_context have been eliminated, in-
vocations of autoCalculate and appendFormula return immediately with
a future value and thus the respective operations are executed in the back-
ground.

4.3.3 Performance

The main objective of my project was to improve the speed with which
calculations are performed by the system when multiple user front-ends
invoke the Isac mathematics-engine simultaneously.

The change in memory usage is not our foremost concern and it can
only increase linearly. The number of concurrent calculations depends on
Isabelle’s thread pool size. Pending invocations of the mathematics-engine
are problem descriptions whose memory footprint is negligible, considering
a reasonable number of clients working on the same Isac server. One concern
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Figure 4.9: autoCalculate performance comparison.

is the keeping of state data on a per user basis which could accumulate and
pose a challenge to the server’s working memory under heavy load.

Temporal gains were measured on a 64-bit Arch Linux system running on
a Lenovo ThinkPad X230 with 4GB RAM and an Intel® Core™ i5-3320M
CPU with two physical 2.60GHz cores and one additional logical core respec-
tively (see simultaneous multithreading in section 2.3.2). The performance
test file can be found on the attached DVD (see appendix B.2). It uses the
most CPU-intensive problem instance currently available, whose calculation
takes about 1.58 seconds on average. Various numbers of parallel invoca-
tions were issued and the time until all of them were finished was measured.
Per test there were 20 repetitions and an average taken. All the samples are
shown in fig. 4.9.

Discussion

From these results it is evident, that two parallel calculations can almost
fully exploit both physical processing cores. The slight increase of processing
time can be explained by a parallelization overhead caused by Isabelle’s
future management. Another factor are the synchronized accesses to the
states datastructure. Since simultaneous multithreading cannot completely
simulate additional cores, the increase in runtime between two and three
parallel calculations is then slightly bigger. The same happens between six
and seven parallel autoCalculate invocations. As the number of logical
cores of the used machine is four, multiples of four show a significant increase
in runtime because once all cores are occupied, additional calculations need
to wait. Hence, the execution time accurately doubles with the number of
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calculations according to the number of cores. The measured runtime of
the new autoCalculate version was only 38.7% of the previous, sequential
implementation with eight parallel calculations, 39.8% with ten and 39.7%
with twelve. This is a very satisfying outcome and we trust that it will help
to significantly improve the end user experience and enable Isac servers to
deal with a high number of clients simultaneously.

4.3.4 Project Status

The user session management is now able to utilize several processing cores
for independent computations. However, communication between the ML
and Jawva layers occurs on the basis of plain standard I/O streams, i.e. mul-
tiple front-ends using the same math-engine instance need to write to the
same input stream on the ML side and thus communication is unsynchro-
nized. This means that although the math-engine is now able to deal with
calculations for multiple users concurrently in an efficient manner, the com-
munication model does not yet allow for thread-safe communication. Chang-
ing this may be subject for a future project. Another area requiring further
investigation is the memory footprint of accumulated state data for calcula-
tions and how to deal with a very high number of concurrent user sessions
in this respect.



Chapter 5

Conclusion

In this thesis we showed how an educational mathematics system called Isac
was integrated with the theory data evaluation scheme managed by Isabelle,
an interactive theorem proving system. This modification allowed for the
straight forward introduction of a parallel execution mechanism called fu-
tures, which are data structures holding possibly unfinished computations
and whose evaluation is efficiently managed by Isabelle’s run-time system.
Before we went into the details of this process, a comprehensive theoreti-
cal basis was established. This included a discussion of the requirement for
modern software to utilize the processing power available on shared mem-
ory multi-core architectures which have become a standard during the last
decade. Also, various approaches towards the implementation and benefits
of parallelism and concurrency in functional programming were explored,
along with important aspects to consider in order to parallelize software ef-
ficiently. The architectures and technologies related to Isabelle and Isac were
explained and we saw how both projects combined JVM-based front-ends
with logical engines developed in Standard ML and followed different ap-
proaches for the communication between these layers. The systems’ designs
show how one can benefit from the advantages and strengths of different pro-
gramming paradigms and platforms within a single architecture. The results
of the case study are promising and show that depending on the problem
at hand, the achievable speedup can be close to a factor of the number of
available processing cores, potentially enhanced even more by the use of
simultaneous multithreading (hyper-threading).

5.1 Future Work

While Isac’s internal user session management has now been parallelized,
multiple user GUIs communicate with the same standard input stream on
the Standard ML side and this communication is unsynchronized. The math-
ematic engine writes to one single standard output stream. The write opera-
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tion in use is provided and synchronized by Isabelle. However, since all GUIs
read from the same stream, they need to filter out all messages not meant for
them and thus waste resources, especially with growing numbers of simul-
taneous user sessions. The next important step is therefore a more flexible,
efficient and robust communication model which would then allow the paral-
lel session management to be stressed and also fine-tuned to perform well in
practice. Other improvements to Isac include utilizing of Isabelle’s function
package and code generator to simplify and speedup Isac’s programming
language, adaptation of Isabelle’s capabilities with respect to floating point
numbers and complex numbers, possibly adopt term nets for better per-
formance of Isac’s rewrite engine. The latter plans for improvement of the
mathematics-engine can be pursued independently from work on the front-
end due to a stable interface in between. While Isac’s own front-end will be
extended and improved, future development of the Isabelle/jEdit IDE may
enable Isac to adopt it as its front-end in the long run.

The whole case study involved deeply invasive refactoring processes. The
presence of automatic tools for this kind of tasks in Standard ML would have
been desirable. While there has been related work on Haskell [13, 23, 55, 88|
and Erlang [15, 55], there are, to my knowledge, no such projects specifically
for Standard ML available. These could also help remove unused code and
support convenient restructuring of modules.



Appendix A

Code Samples and
Comments

A.1 Fibonacci Implementations

The Fibonacci numbers are an integer sequence given by
Fy=F, 1+ F, (Al)
and
Fo=0,F1=1. (A.2)

Because this is a very simple, recursive definition, it was chosen for the
demonstration of certain concepts in this thesis. However, it is very impor-
tant to note that the straight forward implementation

fun fib 0 = 0O
| fib 1 =1
| fib x = fib (x - 1) + fib (x - 2),

which we presented as an example for pattern matching in Standard ML
(page 7, section 2.1.2), is very inefficient because it has a runtime behavior
of O(F,,). An efficient version of the function,

fun fib’ 0 (0, 1
| fib’ n = let
val (x1, x2) = fib’ (n - 1)
in
(x2, x1 + x2)
end;
(xgets 2nd element of touplex)
fun fib n = fib’> (m - 1) |> snd ,

shows linear runtime behavior. Annotations (section 3.2.2) were demon-
strated using the Fibonacci function (page 19):
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fun fib 0 = 0O
| fib 1 =1
f

| £fib x = fib (x - 1) + par (fib (x - 2))

In practice, the gain from parallelism in this example would not just be
marginal, the overhead for managing parallel execution would most likely
result in a performance worse than the sequential version. Note that annota-
tions of this kind can only work in a programming language following a lazy
evaluation strategy because in an eager language like Standard ML the anno-
tated expression would be evaluated before being passed to the hypothetical
par evaluation. Futures have been discussed in detail throughout this thesis
(sections 3.2.3, 3.4.2, 3.4.3, 4.1.1). The example on page 19 redefined fib
with a future:

fun fib 0 = 0
| fib 1 =1
| fib x = let

fun fib’ () = fib (x - 2)
val fibf = Future.fork fib’
in fib (x - 1) + (Future.join fibf) end

This code does work in Isabelle/ML (section 4.1.1). The performance
concerns we saw with the previous example also apply here: in practice,
parallelizing the evaluation of the Fibonacci function in this way makes no
sense.

A.2 nmerge lists implementation

In the Theory_Data implementation on page 50 (section 4.3.1) we omitted
the definitions of the functions merge_lists and merge_lists’ for simplic-
ity reasons. They have been added here (program A.1). Please note that
they require that their input lists of type int list are already ordered.
The difference is that merge_lists accepts the two lists in a touple and
merge_lists’ as two separate arguments.

A.3 Irrationality of v/2 in Isar

Program A.2 is a simple proof in Isar, showing that the square root of 2 is
an irrational number!.

1-~/src/HOL/ex/Sqrt.thy
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Program A.1: merge_lists implementation.

1 fun merge out [] xs = (rev out) @ xs

2 | merge out xs [] = (rev out) @ xs

3 | merge out (xs' as x::xs) (ys' as y::ys) =

4 if x = y then

5 merge (x::out) xs ys

6 else if x < y then

7 merge (x::out) xs ys'

8 else

9 merge (y::out) xs' ys;

10 val merge_lists' = merge [];

11 fun merge_lists (xs, ys) = merge_lists' xs ys;
Program A.2: Isabelle/Isar proof of the irrationality of /2.

1 lemma "Ja b::real. a ¢ Q A b ¢ Q A a powr b € Q"

2 (is "EX a b. 7P a b")

3 proof cases

4 assume "sqrt 2 powr sqrt 2 € Q"

o

then have "7P (sqrt 2) (sqrt 2)"
6 by (metis sqrt_2_not_rat)

7 then show 7thesis by blast

s next

9 assume 1: "sqrt 2 powr sqrt 2 ¢ Q"

10 have "(sqrt 2 powr sqrt 2) powr sqrt 2 = 2"

11 using powr_realpow [of _ 2]

12 by (simp add: powr_powr power2_eq_square [symmetric])
13 then have "7P (sqrt 2 powr sqrt 2) (sqrt 2)"

14 by (metis 1 Rats_number_of sqrt_2_not_rat)

15 then show 7thesis by blast
16 ged
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Content of the DVD

Format: DVD-R, Single Layer, ISO9660-Format

B.1 Master Thesis

Pfad: /thesis/

Lehnfeld14.pdf . . . . . Master thesis
images/*.png . . . . .. Images
literature/*.pdf . . . . . Copies of online/selected sources

B.2 Project Files

Pfad: /project/

demos/ .. ... .... Demo theories, performance test
repo/ . ... ... ... Repository snapshot (28/06,/2014)
README.md . . . . .. Usage instructions
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