
Analysis and Prototyping of Personal Data
Store Solutions and Applications

Maximilian Lucas Manfred Mayr

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Juni 2019

© Copyright 2019 Maximilian Lucas Manfred Mayr

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, June 24, 2019

Maximilian Lucas Manfred Mayr

iii

Contents

Declaration iii

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Problem Definition and Motivation . 1
1.2 Goal of the Work . 1

2 Information Management 3
2.1 Personal Information . 3
2.2 Personal Information Management . 4
2.3 Tools for Information Management . 4
2.4 Shortcomings . 5

3 Personal Data Stores 6
3.1 Personal Cloud vs. Personal Data Store 6
3.2 Reasons for Personal Data Stores . 7
3.3 Comparing the Paradigms . 8
3.4 Single Source of Truth . 8

3.4.1 Single Identity . 9
3.4.2 Control Access to Data . 10
3.4.3 Ownership of Data . 10
3.4.4 Freedom of Choice . 12

3.5 State of Personal Data Stores . 12
3.6 Aggregation Platforms . 13

3.6.1 Cozy Cloud . 13
3.6.2 digi.me . 14

3.7 Identity Platforms . 14
3.7.1 LifeScope . 14
3.7.2 Hub-of-All-Things . 14
3.7.3 Solid . 15

4 Technologies 17
4.1 Semantic Web . 17

iv

Contents v

4.2 Semantic Technology . 17
4.2.1 Resource Description Framework (RDF) 18
4.2.2 Graph Databases . 19
4.2.3 Semantic Search Query Language (SPARQL) 21

4.3 Authorization and Identity Management 21
4.3.1 OAuth 2.0 . 21
4.3.2 OpenID Connect . 24

4.4 Regulations . 25
4.4.1 General Data Protection Regulation 25
4.4.2 Privacy by Design and Privacy by Default 26
4.4.3 Directive on Copyright in the Digital Single Market (DCDSM) . 27

5 Solid Prototype 28
5.1 Proposal and Idea . 28

5.1.1 Linking and Discoverability . 28
5.1.2 Storing . 29
5.1.3 Data Retrieval and Querying Data 29

5.2 Implementation . 31
5.2.1 Technology . 31
5.2.2 Interaction . 31
5.2.3 Architecture . 31
5.2.4 Data Structures . 32

5.3 State of the Prototype and Learnings . 33

6 Selfbox Prototype 36
6.1 Idea and Goal . 36

6.1.1 Authorization and Permissions 36
6.1.2 Storage and Exploration . 37

6.2 Implementation . 37
6.2.1 Authentication and Authorization 37
6.2.2 Storage and Exploration . 42
6.2.3 Protection of Resources . 44

6.3 Frontend . 45
6.3.1 Authorization . 46
6.3.2 Interaction . 48

6.4 State of the Prototype and Outlook . 48

7 Conclusion 52
7.1 Future of the Web . 52
7.2 Goals and Experiences . 53

A Content of the CD-ROM 54
A.1 PDF-Files . 54
A.2 Prototypes . 54

References 55
Literature . 55

Contents vi

Software . 55
Online sources . 57

Abstract

Users have no control over data they uploaded or that was collected about them on
the internet as nearly all of the data is stored in databases of different platforms. The
companies behind these platforms often hide the details on how the data is used behind
long terms of use agreements. This way, users often do not know that their data is used
to create extensive profiles about them. These profiles allow third-party companies to
target advertisements to specific user groups. The profiles can also be used to manipulate
and spy on users as well as to spread fake news. The potential abuses and the problems
concerning the lock-in on platforms—which forces users to stay on existing platforms—
are a problem and need to be addressed.

Before presenting a solution, the thesis provides insights into Personal Information
Management. The reasons why information management is important are discussed.
Various types of personal data are explained to showcase the amount of data that is
relevant to users. Afterwards, different tools, their problems, as well as shortcomings,
are presented.

The next chapter explains the idea of Personal Data Stores (PDS), starting with
their historical development and the definition of essential terminology. Reasons, why
PDS could be a solution to the problems mentioned earlier, are presented. Afterwards,
a short market analysis of current PDS solutions is done. Next, the thesis reviews
the necessary key technologies in the areas of semantics, as well as authorization and
authentication. They are followed by a compilation concerning the regulatory framework
of PDS solutions.

Finally, an application that uses an existing PDS solution as the backend is de-
veloped. During the development, several problems with the existing PDS solution oc-
curred. The encountered problems are analyzed and are solved in a prototype PDS
solution that gets designed and implemented.

vii

Kurzfassung

Benutzer haben keine direkte Kontrolle über die meisten Daten die sie im Internet hoch-
geladen haben oder die über sie im Internet gesammelt werden. Die Gründe dafür sind,
dass fast alle Daten auf Servern verschiedenster Plattformen gespeichert werden. Die
Unternehmen hinter diesen Plattformen verbergen oftmals die Details darüber, wie die
Daten verwendet werden, hinter umfangreichen Servicevereinbarungen. Auf diese Weise
wissen die Benutzer oft nicht, dass ihre Daten verwendet werden, um umfangreiche Pro-
file über sie zu erstellen. Diese Profile ermöglichen es Drittunternehmen, Werbung gezielt
auf bestimmte Benutzergruppen auszurichten. Die Profile können auch dazu verwendet
werden, Benutzer zu manipulieren und auszuspionieren sowie gefälschte Nachrichten zu
verbreiten. Der potenzielle Missbrauch und die Probleme im Zusammenhang mit dem
Lock-In auf Plattformen (der Fakt, dass Benutzer auf bestehenden Plattformen gehalten
werden) sind ein Problem und müssen betrachtet werden.

Bevor eine Lösung präsentiert wird, wird eine Einführung in Personal Data Sto-
res (PDS) gegeben. Die Gründe, warum Informationsmanagement wichtig ist, werden
diskutiert. Verschiedenen Arten von personenbezogenen Daten werden erläutert, um
die für Benutzer relevanten Datenmengen zu verdeutlichen. Diverse Anwendungen und
Werkzeuge sowie deren Probleme und Mängel werden vorgestellt.

Das nächste Kapitel erklärt die Idee hinter Personal Data Stores, beginnend mit
ihrer historischen Entwicklung und der Definition der wesentlichen Terminologie. Es
werden Gründe dargelegt, warum PDS eine Lösung für die zuvor genannten Probleme
sein könnten. Danach erfolgt eine kurze Marktanalyse von aktuellen PDS-Lösungen.
Anschließend werden die notwendigen Schlüsseltechnologien in den Bereichen Semantik
sowie Autorisierung und Authentifizierung untersucht. Darauf erfolgt eine Übersicht
über den regulatorischen Rahmen in dem sich PDS bewegen.

Anschließend wird eine Anwendung entwickelt, die eine bestehende PDS-Lösung als
Backend nutzt. Während der Entwicklung traten mehrere Probleme mit der bestehen-
den PDS-Lösung auf die angesprochen werden. Die gefundenen Problematiken werden
analysiert und in einem Prototyp gelöst, welcher von Grund auf neu entwickelt wurde.

viii

Chapter 1

Introduction

This chapter provides an overview of the motivation of this thesis and outlines the
problem that it tries to solve.

1.1 Problem Definition and Motivation

The amount of personal data is expected to tenfold until 2025 [42]. That alone would not
be a problem, but the place where that data is going to be stored is crucial. Nearly all
of the data generated by users or about users is saved in databases provided by different
applications or platforms. While users have to trust companies with the safekeeping
of their data, companies may betray that trust and abuse user data to generate more
revenue. The abuse of personal data and the vendor lock-in on platforms—that forces
users to stay in closed ecosystems—only worsen the situation. The conditions seemed to
improve worldwide when the General Data Protection Regulation Act (GDPR) went into
effect in 2018 [63]. The regulation forced companies to change their system architectures
and adapt their terms of use in a way that is more beneficial to users. These guidelines
are often referred to as Privacy by Design or Privacy by Default. Observations over the
last year show that the regulation helped to strengthen monopolies far more than it
helped users [57]. Nonetheless did the regulation help to show users that data breaches
happen far more often than previously reported [82]. The GDPR also promised users
access to data collected about them or created by them. Companies often refuse or stall
requests that they are obligated to fulfill by law [74].

With improvements in technology for personalization and personal assistants in re-
cent years, the internet needs to undergo a paradigm shift in the way how personal
data is saved and used. One solution could be Personal Data Stores (PDS), an old idea
that recently gained a lot more traction as storage space is becoming exceedingly more
inexpensive.

1.2 Goal of the Work

This thesis aims to educate the reader about Personal Information Management (PIM),
the different types of data, and the information users encounter or can experience.
The basic knowledge about analog PIM systems, as well as electronically assisted PIM

1

1. Introduction 2

systems and their limitations, are explained. Building on these principles, the idea,
motivation, and history of Personal Data Stores are explained. Various solutions on the
market are analyzed and compared. An application gets implemented that showcases
the interaction of an application with an existing PDS solution and aims to tackle the
problem of missing adoption of PDS solutions. After showcasing the outcome of the
prototype, the problems of existing PDS solutions are explained. A prototype for a
PDS system is implemented that solves the issues that have been encountered.

Chapter 2

Information Management

Jones describes in [5, p. 5] that people spend most of their lives looking for things such
as their car keys, their phone, an address, or a website. Once they found what they are
looking for, they need to keep track of that information. The challenge is to organize
the information in such a way that it can be easily found in the future. In the past, most
data was organized physically on paper. Since personal computers are in every modern
household now, people switched their preferred way of storing information. Information
is saved digitally either on a local personal computer or in the Cloud1.

2.1 Personal Information
Before diving into managing and organizing the information that a person found or has
collected, a clarification about the type of information is needed. This thesis focuses
on information about persons or relevant to persons. This makes the data collected
personal information. Personal information is not only generated or collected by the
user as Table 2.1 shows. Most types of data people come in contact with can be assigned

1A buzzword for storage that can get accessed from anywhere, hosted in the web.

Table 2.1: Overview over different personal data types [5, p. 34].

Type Examples
Owned/controlled by “me” emails, files on the computer’s hard drive
About “me” browsing history, credit history, medical records
Directed towards “me” personalized ads, phone calls
Sent/Posted/Provided by “me” email, personal web site, published articles, post-

ings, shared pictures
Experienced by “me” visited websites, books in a library, watched TV

programs, movies, TV series
Relevant/Useful to “me” unknown but useful/relevant information available

“out there”

3

2. Information Management 4

to one of these categories. Some of the data in these categories is directly accessible by
the user, while other data is stored at an unknown location.

2.2 Personal Information Management

Jones provides the following definition for Personal Information Management [5, p. 5]:

Personal Information Management (PIM) refers to both the practice and
the study of the activities a person performs in order to acquire or create,
store, organize, maintain, retrieve, use and distribute the information needed
to meet life’s many goals (everyday and long-term, work-related and not)
and to fulfill life’s many roles and responsibilities (as parent, spouse, friend,
employee, member of community, etc.). PIM places special emphasis on the
organization and maintenance of personal information collections in which
information items, such as paper documents, electronic documents, email
messages, web references, handwritten notes, are stored for later use and
repeated re-use.

This definition offers a good overview of PIM but fails to address points such as legal
challenges in the process of information flow. As Jones [5, p. 5] further explains does PIM
also involve the managing of privacy and permission related issues. Not every employee
of a company, for example, is allowed to see every piece of information in the company.
To summarize, the tasks of Personal Information Management involve [5, p. 5]:

• Creating or acquiring information,
• Organizing information,
• Storing information,
• Maintaining information,
• Finding or retrieving information and
• Distributing information.

These main tasks are well researched but keep changing over time due to technological
and social progress. One example of such a change is the importance of specific tasks.
Information overload, for example, is critical in a society that is permanently connected.
Some workers need to be reachable even in their spare time if something goes wrong,
pupils need to be shielded and instructed to put away their mobile phones to properly
comprehend a lecture. Another example is advertisements that try to catch the attention
of someone in the hope of motivating them to buy a specific product. The time and
attention of people need to be protected as these examples show [5, p. 5]. Personal
Information Management is one way of helping people to better use and manage their
resources (money, time, and attention) as Jones [5, p. 9] explains. Because of that, the
need for PIM will continue to increase in the future.

2.3 Tools for Information Management
The tools used to support or assist users with Personal Information Management are
often called PIM Tools. The selection of the right tool for users depends on the individual

2. Information Management 5

technical skills and knowledge of the user. For advanced users a hand-full of PIM tools,
such as Keep It2, Chandler3 and EssentialPIM 4, are available. These projects allow to
synchronize data across various devices and offer the possibility to save different kinds
of data at a central location. Most users do not want to use such a complex system and
instead prefer to use multiple smaller applications. Each of these smaller applications
usually focuses on a single task. To manage lists and tasks, for example users often use
applications and services such as Google Keep5, Todoist6, Wunderlist7 and OneNote8.
Other users do not want to use any tools and instead prefer simple text files to note
things down quickly. These files are often organized in a folder structure to enable
simple navigation to relevant files. Placing files in folder structures might be the most
common way of organizing data. Other file explorers like the Finder on macOS even
allow tagging of files for quick access.

2.4 Shortcomings
Personal Information Management and the tools used have shortcomings both physi-
cally on paper and on hard-drives. If the amount of information that is stored increases,
it gets harder to store data that belongs together in the same place without losing the
overview. The advanced tools that allow users to store the data at one place that belongs
together are too complicated for regular users. The simple tools these non-technical users
prefer do however not allow them to store all data in one place. The technical limita-
tions of the tools that are used for PIM are in most cases the problem. Traditional file
structures—that most users use to order their documents, pictures, and other files—for
example, are not flexible. To store a file in two different locations—what would help the
user to remember the file—a link would have to be created and maintained. Another
example would be if the user would want to add additional information to the file. Tradi-
tional data formats cannot be extended while maintaining their portability. This limits
the information that a user is able to add to the file and depends on the type of the file.
In most cases, users have to think about other solutions, maintain them over years, and
export the additional information manually every time the file is copied. Image viewers
that support filtering of pictures by faces have the same limitations. They allow to lo-
cate pictures of one person across multiple albums, but the information about the faces
only gets stored in the application itself. Once the picture is exported, the information
is lost as there is no standardized way to store such information in a picture.

2http://reinventedsoftware.com/keepit/
3http://www.chandlerproject.org/
4https://www.essentialpim.com/
5https://keep.google.com/
6https://todoist.com/
7https://www.wunderlist.com/
8https://products.office.com/de-at/onenote/digital-note-taking-app

http://reinventedsoftware.com/keepit/
http://www.chandlerproject.org/
https://www.essentialpim.com/
https://keep.google.com/
https://todoist.com/
https://www.wunderlist.com/
https://products.office.com/de-at/onenote/digital-note-taking-app

Chapter 3

Personal Data Stores

Jones [6, p. 91] shows that Personal Data Stores are not a new idea at all. Vannevar
Bush proposed such a system in 1945, called Memex, in his famous article “As We
May Think”. The Memex (short for memory extender) system described in [40] was
a hypothetical device which could store all books, pictures, movies, communication,
experiences, and other records of a person. It would continuously capture all the data
and store it automatically in a searchable format. This would allow the owner to query
the system with enormous speed and flexibility to look up any record.

Several points of Bush’s vision have already been realized as [6, p. 91] points out.
Systems designed to continuously capture what a person sees or does are used in spe-
cialized areas such as law enforcement. Mobile phones are also turning more and more
into a Memex system. Most people always carry a phone with them that is equipped
with dozens of sensors. The sensors can continuously capture a variety of data if en-
abled. Special moments can be captured using a built-in camera and accessed later with
ease. Not only the image itself is captured in such cases, but also longitude, latitude,
and various other information gets saved and can be accessed later. Additionally, they
provide access to appointments and old memories in the form of photos, text, and video
as well as the world wide web itself. Other parts of Bush’s vision such as connected
thoughts and implicit querying were realized in the 1960s by Douglas Engelbart in the
system showcased in the famous “The Mother of All Demos”1.

In recent years, after the collapse of the dot net bubble, the idea gained traction again
as [6, pp. 91–92] explicates. Systems such as MIT’s Haystack project and Microsoft’s
Stuff I’ve Seen demonstrate personal archives. Over the years, with regards to the
increasing startup spirit worldwide and the problems showcased in Section 3.2, several
projects emerged that aim to provide Personal Data Stores.

3.1 Personal Cloud vs. Personal Data Store

Bolychevsky [38] shows that the market for Personal Clouds is relatively mature. Per-
sonal Clouds only support raw files such as documents, pictures, and video and provide
a way to upload, manage, and share that data with others. Some examples of Personal

1http://www.dougengelbart.org/content/view/209/448/

6

http://www.dougengelbart.org/content/view/209/448/

3. Personal Data Stores 7

Clouds are online file storage services such as Google Drive2, OneDrive3, Dropbox4,
NextCloud5, and OwnCloud6. Some of these products offer downloadable extensions to
save other kinds of data as well. However these systems do not solve the problems of
data collection by companies or interaction with the data via third-parties [38].

Personal Data Stores are by design not limited to raw data and instead advocate
to save all kinds of data produced or owned by the user in a structured way. These
systems are mostly backed by a database, significantly increasing the possibilities to
perform advanced queries that can generate valuable insights to their users.

3.2 Reasons for Personal Data Stores
Keeping memories connected to pictures, important documents, and general records has
always been important. Usually, users keep files on their phone, their hard drive, and
various web platforms. Having multiple copies is good for file redundancy but creates
the new problem of keeping the data in sync. When users return from a trip with some
pictures, they have to copy them from their phone to their computer, organize them
into folders, possibly rename them and then upload them into their Personal Cloud to
share them with their friends and family. Therefore multiple copies start to exist and
need to be kept in sync. When this problem is approached not only from a raw file
perspective but from a structured data perspective, the problem becomes even bigger.
Structured data or metadata such as addresses, preferences, watched movies, current
employer, and more change regularly. Keeping this kind of data in sync is important
over the lifetime of a person.

Data collection is considered as the new oil rush and opens possibilities which nobody
could have imagined only a few years ago [77]. Big companies like Google, Facebook, and
Amazon, noticed the importance of big data years ago and built monopolies which have
the sole purpose of collecting as much data as possible. The problem has already gotten
so big that the topic was even on the World Economic Forum’s agenda. The description
by George Soros is quite fitting [72]:

These companies have often played an innovative and liberating role. But
as Facebook and Google have grown into ever more powerful monopolies,
they have become obstacles to innovation, and they have caused a variety
of problems of which we are only now beginning to become aware. [...]
This is particularly nefarious because social media companies influence how
people think and behave without them even being aware of it. This has far-
reaching adverse consequences on the functioning of democracy, particularly
on the integrity of elections.

PDSs are one way to solve the problems mentioned earlier and offer additional benefits
for users, giving them a great incentive to use them.

2https://www.google.com/drive/
3https://onedrive.live.com/about/auth/
4https://www.dropbox.com/
5https://nextcloud.com/
6https://owncloud.org/

https://www.google.com/drive/
https://onedrive.live.com/about/auth/
https://www.dropbox.com/
https://nextcloud.com/
https://owncloud.org/

3. Personal Data Stores 8

Figure 3.1: This figure showcases the acquiring data model and how the platforms A,B,
and C interact with each other. If one platform needs data from another it requests
that data via the OAuth 2.0 process. All data remains on servers of the platforms. Icon
source [53].

3.3 Comparing the Paradigms
The Web 2.0 introduced users to the acquiring model of the web. Users upload, enter,
and create data on websites, but their data remains on the platform. If a website needs
any of the data stored by another platform, it depends on a publicly available interface.
The user can authorize the website to gain access to the data via the API. This process is
usually handled using the OAuth 2.0 authorization framework—see Section 4.3.1. OAuth
2.0 allows users to grant or reject access to data which another platform attempts to
access. Users can control the flow for each data type separately restricting platforms
only to the data they are willing to exchange. The acquiring model shown in Figure 3.1
is convenient because users do not need to worry about storage and hosting. Users do
however also lose control over their data, as explained in Section 3.4.3.

PDSs want to change this by centering the users and their PDSs in the process,
effectively turning it into an inquiring model—see Figure 3.2. Instead of authorizing
platforms to communicate with each other, they would only interact with the PDS.
Thereby the users themselves can define what data gets exchanged. This gives the user
more control over the permissions than most platforms currently offer, as well as control
over the data itself—more about the other advantages in the following sections.

3.4 Single Source of Truth
In software development, engineers faced the same problem as described in Section 3.2.
Data that belongs together gets stored in different places and needs to be synchronized to
keep the user interface consistent. This problem led to the invention of the Single Point
of Truth (SPOT) or Single Source of Truth (SSOT) design pattern that is nowadays

3. Personal Data Stores 9

Figure 3.2: The inquiring data model centers the user and his PDS in the data exchange
process. All data is stored in the PDS system and the user can decide what platform has
access to what information. Icon source [53].

widely used in enterprise frontend and backend development. Examples for SSOT’s are
Redux7 and relational databases such as MySQL8, as well as NoSQL databases such as
mongoDB9. This pattern advocates the practice of storing data and information only
once. If others need the data, they can access it directly or link to it with a reference.

In Section 3.2 the existence of multiple copies and versions of the same data were
explained. A Single Source of Truth for data enables users to manage their data synchro-
nization easily. If a user for example needs to change his or her address after moving,
just a single record needs to be changed in the PDS. Websites, applications, and other
shareholders than retrieve the updated information directly from the PDS when they
need it. This way, the data will always be up to date when it is needed.

3.4.1 Single Identity
Applying the SSOT pattern to personal data and the identity of the user creates a
unique opportunity. First of all, the PDS can be designed in a way that allows users to
use it to log in on other websites. This type of authentication, called Single-Sign-On is
widely known and used, as shown in Figure 3.3. In the future one of these buttons could
be labeled “Log in with PDS”. Choosing that option would prompt the user to provide
the URL of his PDS to log in. Due to the underlying technology, the website could
then request the required data from the PDS system, as explained in Section 3.4.2.
When PDSs are used for the log in on third-party websites users only need a single
password. Current data shows that the number of accounts leaked is higher than the
world’s population10, whereby only about 55%11 of the population currently have access
to the internet. In conclusion, statistics show that every user is already affected multiple

7https://redux.js.org/
8https://www.mysql.com/
9https://www.mongodb.com/

10https://haveibeenpwned.com/
11https://en.wikipedia.org/wiki/Global_Internet_usage

https://redux.js.org/
https://www.mysql.com/
https://www.mongodb.com/
https://haveibeenpwned.com/
https://en.wikipedia.org/wiki/Global_Internet_usage

3. Personal Data Stores 10

Figure 3.3: This image showcases the various login options presented to users on the
platforms Overleaf and StackOverflow.

times. Leaks are often caused by bad passwords that users usually choose because they
have to remember so many of them. If users have to remember a single password or no
password at all, for example by using a hardware token, that number is likely to decline.

3.4.2 Control Access to Data
The users are the only ones who have full control over the data stored in their Personal
Data Store. If users do not trust a website anymore, they can revoke the website’s access
to the data stored in their PDS. This mechanism of control is already familiar to users
from mobile devices—as showcased in Figure 3.4—where applications request access to
sensors or data they need. This form of requesting access forces users to think about
why a calendar app would need access to private pictures. Figure 3.5 shows an example
of how data gets requested from a third-party to data stored by Facebook.

3.4.3 Ownership of Data
As described in Section 3.4 is the SSOT pattern the basic idea behind PDS systems.
With PDS users have the choice whether they want to host the PDS system themselves
or if they want to use a more convenient service that manages the hosting for them.
Both ways will be present in the future web due to the diversity of its users and their
technical expertise. Even if users decide to use a service that handles hosting for them,
are they still the only ones with access to the data. Because less data is stored in one

3. Personal Data Stores 11

Figure 3.4: Application requesting access to sensor information on an Android device.

place large scale data leaks12 could be a thing of the past. This fact could be one of the
main drivers of adoption for PDS systems.

Business Models on the Web

Currently, big platforms gain revenue by selling data about their users, either by showing
them personalized advertisements or by selling their data to third-parties. By taking
the data from the platforms and hosting it somewhere else, their business model has to
change. Users may still prefer to give away data in exchange for free usage of services.
Users are given a choice, whether they want to pay for a service or if they want to share
their data. Future data markets will allow users to sell their anonymized data to the
highest bidder. Companies will use the bought data to improve their machine learning
algorithms in order to provide the best service on the global market.

12https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

https://informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

3. Personal Data Stores 12

Figure 3.5: Data request from the third-party application TVmaze to user data on
Facebook.

3.4.4 Freedom of Choice
Users have the choice of using any application or service they want because the data is
decoupled and stored in their PDS. This fact allows users to change or try out a new user
interface within a few mouse clicks. This possibility will likely spark innovation in the
web and will benefit users who can choose between dozens of available applications and
can select the one which best fits their preferences. The stress-free process of switching
applications allows small companies to compete with current big players on the web
because it levels the playing field. Developers can use the provided infrastructure of
the PDSs and build their applications on top of them, allowing them to develop new
applications and services rapidly.

3.5 State of Personal Data Stores
The main problems of Personal Data Stores that need to be solved seem to be the
accessibility for non-technical users as well as the missing adoption. Several projects
exist which offer an excellent entry experience by providing a free PDS that comes
preconfigured. By providing free entry PDSs with limited storage, users are more likely
to try them out. Another solution how the adoption could be increased will be outlined
in Section 5.1. The problem of accessibility is mitigated by providing preconfigured

3. Personal Data Stores 13

Figure 3.6: The idea behind Cozy Cloud is to collect data from multiple sources [44].

systems that do not need maintenance. Nonetheless, PDSs need a simple user interface
for users to interact with the PDS.

3.6 Aggregation Platforms
Aggregation platforms are Personal Clouds with the advanced functionality that allows
them to pull data from various providers and collect them in a database. This approach is
helpful to have an overview of which data gets stored on what platform. These platforms
usually provide a way to access the collected data from third-party applications to
analyze and gain new insights. Aggregation platforms increase the connectivity between
platforms. One of the most significant disadvantages of the aggregation approach is
that the platforms usually have low extensibility due to their initial design goals as the
following examples show.

3.6.1 Cozy Cloud
Cozy Cloud [44] is a French project that aims to extend typical cloud hosting by creating
a digital home for user data, as shown in Figure 3.6. The project is fully open-source and
can be self-hosted if wanted. The software design is General Data Protection Regulation
(see Section 4.4.1) compliant and designed with Privacy by Design (see Section 4.4.2)
principles. What makes Cozy Cloud interesting is the fact that they have a full-fledged
NoSQL document database running in the background. Therefore the platform is, in
theory, highly extensible and allows excellent scalability.

To access the data, developers create apps that communicate directly with Cozy
Cloud. These apps are hosted in a user’s personal Cozy Cloud server. This way of serving
applications allows strict control over data flow using the Content-Security-Policy and
Cross-Origin-Resource-Sharing (CORS) HTTP headers which prevent leaking of data

3. Personal Data Stores 14

to other websites. Hosting apps in the Cozy Cloud server and preventing websites from
talking to other services is also a problem. It dramatically limits the types of services
and usability of applications that would create a competitive market.

3.6.2 digi.me
The slogan of digi.me is “Take control of the data powering your digital life” [46].
This quote leads to the impression that users can control their existing data on various
platforms. In reality digi.me only provides control mechanisms on the data for new
applications that build on top of the digi.me architecture. These new applications can
be controlled by the user with the fine-grained permission controls. digi.me does not
need a server as all data is stored in an encrypted data file that can get saved to a
cloud provider of the user’s choice. The available options are Google Drive, Dropbox
and OneDrive. The major disadvantage of the digi.me system is the fact that it is
closed source. Furthermore, data can only be accessed on phones through apps by using
the provided SDK from digi.me.

3.7 Identity Platforms
Identity platforms go one step further than aggregate platforms by establishing a single
identity and an SSOT. As shown in Section 3.4 is an SSOT one of the main benefits
behind PDSs. These solutions allow applications to read and write various data to the
PDS and enable the user to manage and control the data flow as the following examples
showcase.

3.7.1 LifeScope
LifeScope [59] allows the user to search for data that was collected through a supported
provider. Search queries of a user can be saved, data can be tagged arbitrarily, and
collections can be shared as shown in Figure 3.7. LifeScope also provides different views
of the same data. A unique feature of LifeScope is the option to detect special events
and connect them across various providers creating a map view and timeline of what
happened during events such as a vacation.

LifeScope offers a Single-Sign-On using OAuth 2.0 and allows to query and to add
data using a GraphQL13 interface. The platform currently only supports a fixed set of
objects and does not provide a way to extend the set of objects.

3.7.2 Hub-of-All-Things
Hub-of-All-Things (HAT) [52] is one of the most advanced projects trying to create a
PDS. The HAT ecosystem started as a research project by multiple British universities,
including the University of Cambridge [52]. The ecosystem is built around the HAT
server, which wraps a dedicated database with numerous inner micro-services. HAT
offers so-called data plugs which allow the user to import data from various sources
into the HAT database. Similarly to Section 3.7.1 can third-party applications request

13https://graphql.org/

https://graphql.org/

3. Personal Data Stores 15

Figure 3.7: Overview over the LifeScope user interface [59].

access to the data stored by HAT. Users can grant and revoke permissions to apps at
any time. HAT goes a step further than other solutions by also providing a solution to
the AI problem. That problem describes that existing players always have the advantage
when it comes to AI because they have more data. This results in AI’s of big platforms
that get increasingly more powerful because of the data they possess. HAT, therefore,
provides AI services [52] that analyze the data on behalf of the user and save the
data back to the HAT to be consumed by the user. These AI services are provided by
the company behind HAT as well as by other developers who have to go through a
verification process.

3.7.3 Solid
Solid (Social Linked Data) [55] is another identity platform, created by Tim Berners-
Lee14, which aims to decentralize the web by creating a standard on how user data
is saved and handled as shown in Figure 3.8. Solid is a fully open-source project that
builds on several Linked Data standards that can be used to build the next generation
of the web. Berners-Lee’s project tries to solve the problems of account proliferation,
data lock-in on platforms, and missing interoperability between apps [78].

Solid does not use a database and instead stores everything as a file in a structured
format to keep it machine-readable [78]. This makes running Solid servers cheap as
almost no server resources are needed. Due to the RDF file format, all kinds of data
can get stored without having to think about portability—as outlined in Section 4.2.1.
Furthermore, permissions are given on a file base using the WebACL standard [56].

14https://www.w3.org/People/Berners-Lee

https://www.w3.org/People/Berners-Lee

3. Personal Data Stores 16

Figure 3.8: Secure user pod concept from Solid, that showcases how users can manage
permissions [54].

Chapter 4

Technologies

This chapter explains the basic technologies used in the prototypes that are showcased
later. It should help the reader to understand the inner workings of the prototypes.

4.1 Semantic Web

The term Semantic Web coined by Tim Berners-Lee [1, p. 177] describes a world wide
web that can be processed by machines. It is an extension of the existing web with com-
mon data formats and standards defined by the World Wide Web Consortium (W3C).

Berners-Lee describes in [1, p. 178] that finding information on the web was always
a problem. Search engines tackled this problem by creating broad indexes of documents
and websites via ranking them by word count and inter-link statistics. When the idea of
the semantic web was born, it was not possible to evaluate the real content quality or the
meaning of the text automatically. The semantic web was created to provide a solution
to this problem and introduce real semantic search capabilities for the web. In other
words, the goal is to create a web of data where machines can gather data directly from
a website without having to try to interpret the text. Nowadays, newer servers often
provide Application Programming Interfaces (API) in addition to static web pages. As a
consequence, the definition of the semantic web might as well be adapted to incorporate
this fact.

There has been some progress in the development of the semantic web, mostly driven
by scientists and researchers, as well as companies that want to improve their search
algorithms. A significant achievement has been the establishment of a standardized
ontology—basically a vocabulary—which is called schema.org1. This vocabulary is used
by over ten million sites to annotate data in various encodings on their pages [75].

4.2 Semantic Technology
This field of computer science prepares and saves data in a way that allows humans and
machines to understand the meaning behind information. This area grew rapidly in the
last years due to the developments in Machine Learning and Image Recognition as well

1https://schema.org/

17

https://schema.org/

4. Technologies 18

Program 4.1: Example that shows RDF in XML syntax.

1 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
2 xmlns:dc="http://purl.org/dc/elements/1.1/"
3 xmlns:foaf="http://xmlns.com/0.1/foaf/" >
4 <rdf:Description rdf:about="">
5 <dc:creator rdf:parseType="Resource">
6 <foaf:name>Maximilian Mayr</foaf:name>
7 </dc:creator>
8 <dc:title>Personal Data Stores</dc:title>
9 </rdf:Description>

10 </rdf:RDF>

as the amount of structured and unstructured data which is available.
Semantic technology was built around the idea of entities and the relationships they

have with other entities [70, p. 4]. Each entity such as a computer belongs to somebody;
that person lives in a country and that country is on a specific continent. These examples
show, it is possible to create relationships for anything and anyone. The harder part
is to save data in a way that is flexible enough to represent all kind of entities and
relationships which are often unknown beforehand. There are different ways to store
the data, as shown in the following sections.

4.2.1 Resource Description Framework (RDF)
The Resource Description Framework (RDF) is part of the backbone of the Semantic
Web [70, p. 8]. It describes the relations and properties of entities as triplets. These
triplets use Uniform Resource Identifiers (URI) to link to ontologies. An ontology is a
special form of vocabulary which describes entities and relations. The most common
representation or syntax of RDF is the XML syntax developed by the W3C2.

Program 4.1 shows a an RDF document that describes a document called “Personal
Data Stores” written by “Maximilian Mayr”. Encoding data in RDF is difficult as Palmer
explains in [35]. To provide an easier way to encode data in RDF, Tim Berners-Lee
created a new syntax commonly known as Notation3 :

<> <http://purl.org/dc/elements/1.1/creator> _:x0 .
this <http://purl.org/dc/elements/1.1/title> "Personal Data Stores" .
_:x0 <http://xmlns.com/foaf/spec/#term_name> "Maximilian Mayr" .

This example shows that Notation3 is much simpler to write. For a human reader, the
triplets are also more readable, which makes it easier to interpret what is going on. <>
describes a new object [81]. The next part of the triplet describes the property or relation
using the dublincore ontology [37]. In this case, the relation “creator” gets described in
the ontology as “An entity primarily responsible for making the resource” [37]. The last
part of the triplet references the third line where the name of the creator is given using
an ontology called foaf [39]. The second line uses the “this” keyword to tell the parser
that that line belongs to the entity defined in the first line. The middle part defines a
property or reference using dublincore [37]. Moreover, in the last part, a literal is defined

2https://www.w3.org/

https://www.w3.org/

4. Technologies 19

by enclosing it with double quote marks. Literals always have to be marked that way
clarify what characters are part of the literal [81].

As Palmer [35] further explains, there is also a way to omit a URI, to express that
an object exists without stating an explicit URI.

_:p1 <http://xmlns.com/foaf/spec/#term_name> "Hans Zimmer" .

The previous line shows an example which demonstrates that there exists a person called
Hans Zimmer. The symbol “_” is a placeholder—called anonymous node—for the URI
and by using “:p1” the author can label to the node to reference it in other triplets.
As [35] demonstrates is it also possible to define aliases in order not to have to repeat
the full URL—the first part of the URI—every time. The alias mechanism of Notation3
can be seen in the following example:

@prefix foaf: <http://xmlns.com/foaf/spec/#term_> .
foaf:Person foaf:name "Hans Zimmer" .

Using aliases when writing Notation3 is even simpler and faster than without and
therefore commonly used.

Although RDF is powerful, it still did not manage to gain widespread adoption [43].
The main problem is the lack of convenient libraries to use for developers that would
simplify the use of RDF.

4.2.2 Graph Databases
Graph databases utilize a graph structure instead of the traditional table structure to
save and query data. As explained in [4, p. 1], a graph is a collection of vertices and
edges. Vertices are nodes which represent an object whereas edges are the connections or
relationships between them. The flexible data representation allows storing various types
of data, because unlike relational databases, graph databases do not need to enforce any
schema.

When comparing the paradigms of graph databases and RDF, a pattern emerges, as
explained in [32]. Graph databases also contain triplets as linking two nodes together
creates a triplet. Anadiotis [32] explains that there are specialized graph databases
which can use the containing triplets to create proofs and deduce conclusions on existing
data sets stored in the graph. These specialized versions of graph databases are called
semantic graph databases or tripletstores.

Graph databases belong to the group of NoSQL databases [4, p. 193]. These kinds of
databases became popular in recent years as traditional relational database management
systems could not keep up with the ever-increasing data that is produced nowadays. The
main problem was the increased execution times of queries when data from multiple
tables is needed. Several different types of graph databases will be introduced in the
following sections.

Property Graphs

As explained in [4, pp. 206–207], property graph databases are the most common type
used. Nodes in this model contain properties that are key-value pairs, as demonstrated
in Figure 4.1. Each node can be assigned one or multiple labels that determine the type
of the node. This allows filtering the nodes preliminary by only selecting nodes of the

4. Technologies 20

Figure 4.1: Example of a property graph.

Figure 4.2: Example of a hypergraph.

type that gets requested. Due to this, property graphs are often used to store a variety of
different types in a single database. Each node can be linked to any other node making
it easy to store semantic relations based on node and relation types. Relations also have
a label which determines its type as well as properties, what enables metadata and other
information to be stored directly with the relation. Relations connect two nodes and
may have a direction to strengthen semantics and readability further.

Hypergraphs

Hypergraphs connect any number of nodes using one relationship [4, pp. 207–208]. This
makes them ideal for use-cases that are mainly dominated by many-to-many relation-
ships. Nodes can optionally contain properties depending on the database implemen-
tation. Hypergraphs are multidimensional and allow a more generalized representation
than property graphs. Figure 4.2 shows how the example from Figure 4.1 can be modeled
as a hypergraph with a single relationship.

4. Technologies 21

Triplet Stores

As described in [4, pp. 208–210], triplet stores are an outcome of the Semantic Web
movement. They allow triplets—composed of a subject, predicate, and object—to be
stored in their natural form. Triplets represent facts and knowledge. Therefore, triplet
stores are often used to represent knowledge databases. Because of the stored facts,
triplet stores can be used to infer connections between nodes. For these databases mostly
SPARQL queries—see Section 4.2.3—are used to query nodes. Triplet stores are not
native graph databases because they do not support index-free adjacency which permits
them to directly walk connected nodes in a query. Instead, before accessing another node,
they have to lookup the memory address in a global index.

4.2.3 Semantic Search Query Language (SPARQL)
As Palmer [35] explains, SPARQL is a query language and protocol for Linked Data such
as RDF and Tripletstores. It enables users to query information from any source which
can be mapped to the RDF format. Because SPARQL is a semantic search language,
the user does not need to know how the data is stored or structured. Rather, the users
ask what they want to know. Because every triplet consists of a subject, a predicate,
and an object, it is possible to query for all entities of a specific type or for entities
in a specific relation. This is achieved by using variables or wildcards where the query
matches the given properties and returns all options for the wildcard that satisfy the
query. Feigenbaum [48, p. 6] shows that SPARQL supports different types of queries:

• SELECT all results matching the wild card given in tabular form.
• ASK if there are any matches.
• CONSTRUCT new RDF triplets or graphs.
• DESCRIBE the matched resources by returning them as RDF.

With SPARQL 1.1 [49], methods to update data have been introduced that enable to
INSERT, DELETE, LOAD, CLEAR, CREATE, DROP, COPY, MOVE or ADD nodes or graphs to the
store. These operations make it easier to maintain and manipulate a tripletstore.

4.3 Authorization and Identity Management
This section explains the state of the art technologies and protocols used for authoriza-
tion and identity management.

4.3.1 OAuth 2.0
In a world full of platforms hosting a variety of content from sites such as Google and
Facebook [61], access control is essential to enable secure exchange between platforms
and third-parties. However, defining and controlling what resources can be accessed or
modified is tricky. OAuth is an open standard which tackles that problem.

As Boyd explains in [2, pp. 1–2], before OAuth it was a significant security issue
that users had to give their account details of their resource provider to a third-party so
they could access the data hosted at the resource provider. Big companies tried to solve
this issue by implementing proprietary authorization protocols such as Yahoo’s BBAuth

4. Technologies 22

or Google’s AuthSub. As Boyd further analyzed, this way of authorization solved some
security issues, but it created a burden for developers who had to learn and implement
multiple authorization protocols for different platforms. Fearing the implementation of
proprietary protocols or the development of new proprietary standards, developers, and
major companies decided to create a standardized protocol for web-based authorization
workflows.

Boyd [2, p. 2] continues to explain the advantages of OAuth for developers. They
can easily access data from OAuth enabled APIs, harnessing the data, and focusing
on application development. Because applications and servers never get access to users
passwords, developers do not need to build a secure infrastructure to handle password
data. Boyd concludes [2, p. 3]:

Having a common protocol for handling API authorization greatly improves
the developer experience because it lessens the learning curve required to
integrate with a new API. At the same time, an authorization standard
creates more confidence in the security of APIs because a large community
has vetted the standard.

As explained in [67], OAuth and OAuth 2.0 share the same name and idea behind them,
but they are two different protocols. OAuth 2.0 is not backwards compatible with OAuth
1.x and was designed to simplify and improve the workflow of OAuth 1.x. The formal
definition for OAuth 2.0 according to the specification is [51, p. 1]:

The OAuth 2.0 authorization framework enables a third-party application
to obtain limited access to an HTTP service, either on behalf of a resource
owner by orchestrating an approval interaction between the resource owner
and the HTTP service, or by allowing the third-party application to obtain
access on its own behalf.

By now, it should be clear that OAuth 2.0 is an authorization framework which is
designed to limit access of applications or clients to protected resources.

Involved Parties

Richer and Sanso further analyzed the involved parties in OAuth 2.0 [8, pp. 5–6]:
The resource owner is typically the end-user of the application. The user “owns” the

resources/data on a server and can allow, deny, or delegate access to other applications
or users. A typical example would be the owner of a Google account, and their re-
sources would be the calendar, contacts, emails, and location data hosted on the Google
platform.

Protected resources are objects that can only be accessed by the resource owner.
Resources are served, modified, read, and deleted using an API interface. An example
of a protected resource would be a printer, its functionalities are offered over an interface
and allow different operations like print, send as mail, scan and read from memory stick.

The client is an application used to access/consume/modify resources of the resource
owner. An example would be a photo application such as Instagram3 which tries to access
pictures hosted on Google Drive4.

3https://www.instagram.com/
4https://www.google.com/drive/

https://www.instagram.com/
https://www.google.com/drive/

4. Technologies 23

Workflow

OAuth 2.0 introduces multiple workflows as shown in [65]. Each workflow was designed
for a specific use-case, with Authorization Code and Implicit Workflow being the rec-
ommended and most commonly used ones.

Figure 4.3 shows the Authorization Code workflow on a basic level. The user visits
the web application and wants to access a protected resource from the application. As
the first step, the user clicks on the login button. Now the client redirects the user to the
authorization server. There the user enters his or her credentials, and the authorization
server asks the user for permission to grant access to the client application and the
requested scopes. See Section 4.3.1 for more information about scopes. As explained
in [51], if the user grants access, the authorization server redirects the user to the
client application and appends the authorization code to the redirect URL. Now the
client application parses the authorization code from the URL and exchanges it with
the authorization server for an access token. With the received access token, the client
application can now access the protected resource from the resource server.

Scopes

As Richer and Sanso [8, pp. 88–89] explain, are scopes an important mechanism in
OAuth. As mentioned in Section 4.3.1, it was a major problem before OAuth to limit
which resources clients can access. OAuth introduced scopes to represent a subset of
access rights on the resource server. Scopes can be combined into a set by using a space-
separated list [8, pp. 32–33]. Scopes are defined by the resource server and the access to
specific scopes can be granted or denied using the authorization server. This mechanism
of OAuth allows fine-grained permissions that the resource owner can manage. This type
of permission management is familiar from the smartphones’ system where apps ask for
permission to perform specific actions.

Access Token

The access token, as described in [8, p. 32], is a string or object issued by the authoriza-
tion server which represents the permissions of the client for a specific user. The format
of the token is not defined, but mostly formats such as JSON Web Token (JWT)—see
Section 4.3.1—are used.

To access a protected resource on the resource server, the client has to send a re-
quest with the access token (which is achieved by using the Authorization-Header). The
resource server then checks the token and grants access if it is valid.

JSON Web Token (JWT)

Before structured tokens were invented—as shown in [8, p. 183]—the resource server
had to do a database lookup at the authorization server for each incoming request to
validate if the user is logged in. A commonly used implementation of a structured token
is the JSON Web Token (JWT). A JWT contains all the information required by the
resource server to determine if the client is allowed to access the protected resource.
The following example of a basic JWT token shows that a JWT consists out of three
parts separated by a dot.

4. Technologies 24

Figure 4.3: High level overview of the OAuth 2.0 Authorization Code workflow.

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJ1c2VybmFtZSI6Im1heXJfbWF4Iiwic2NvcGVzIjoibWV0YWRhdGE6cmVhZCJ9.sRnrU-
yS0gtq15plGjawhepg72R0Gx6-gXZoa7hz_IY

The first part is an encoded JSON object with the type of the token and the algorithm
used to sign the token. The second part contains the payload of the token, in this example
a username and the approved scopes. The last part, as explained in [8, pp. 188–189],
represents a signature verifying the author of the JWT and a message authentication
code to guarantee the integrity and authenticity of the token.

4.3.2 OpenID Connect
Richer and Sansol [8, pp. 236–237] explain that OAuth 2.0 does not provide a built-in
authentication mechanism. Authentication indicates to the application who the current
user is and if he or she is currently using the application. OAuth 2.0 clients only receive
an opaque token or string that does not tell the client anything about the user. Because

4. Technologies 25

a user delegates access to an application on his behalf OAuth 2.0 is it often mistaken
for an authentication protocol [66].

The OpenID Connect specification was introduced to overcome this issue as de-
scribed in [8, p. 246]. OpenID Connect is the third generation of OpenID specifications.
Unlike its predecessors, it builds directly on top of OAuth 2.0, making it easier for
developers to integrate into their application. OpenID Connect provides an ID token
through a signed JSON Web Token—see Section 4.3.1. As [8, p. 246] shows, is the ID
token intended to be parsed by the client.

4.4 Regulations
This section explains current regulations that affect PDSs.

4.4.1 General Data Protection Regulation
The General Data Protection Regulation (GDPR) [71] was introduced in 2016 by the
European Union. It has been active since May 2018 within the EU and the European
Economic Area, but it also affects companies in other countries if they have customers
or users who are EU citizens. The GDPR covers multiple points that are explained
shortly in the following sections. The full information can be found at source [58].

Penalties

Companies or organizations that violate the GDPR can be fined up to 4% of their annual
global turnover or up to 20 million Euro—depending what is bigger. These maximum
fines can be imposed for severe infringements of the policy as processing or handing over
data without user consent.

Consent

Companies are forced to ask for consent in an easily accessible form instead of hiding
the consent or hint somewhere in their terms of usage. It must also be understandable
for users what they are agreeing to before they give consent. The consent can also be
withdrawn at any time.

Breach Notification

Companies need to report data breaches in all member states by reporting them to
the authorities within 72 hours of becoming aware of the breach. Companies are also
required to notify customers that a data breach has happened and which data got leaked.

Right to Access

This part guarantees users access to their data, free of charge in an electronically
parsable format as well as the right to know if, where, and for what purposes their
data is processed.

4. Technologies 26

Right to be Forgotten

Users have the right to request the deletion of their data as well as the right to request
that third-parties have to stop the processing of the data once invoked. This part only
gives the user a way to request, the data holder then has to decide if the user’s rights
count or if the public interest is more important.

Data Portability

Data portability allows users to take their data from one platform (in a standard and
machine-readable format) and transmit it to another platform.

Privacy by Design

Privacy by Design has already been around quite some time as a best practice. The
GDPR now also makes it a legal requirement to follow the rules showcased in Sec-
tion 4.4.2.

Data Protection Officers

Companies are required to have a designated person responsible for data protection.
The dedicated person must report directly to the highest level of management and can
be a member of the company or an external contractor.

4.4.2 Privacy by Design and Privacy by Default
Current storage paradigms are based on the Privacy by Design paradigm, which was
developed by Ann Cavoukian as an approach to create rules and guidelines for systems
engineering, as described in [3]. The principles got formalized in 1995 in a joint report
created by the Canadian, Dutch and Netherlands governments. Since then the frame-
work was adopted by the International Assembly of Privacy Commissioners and Data
Protection in 2010 and the European Union in 2018, making it the de-facto standard
for most internet platforms. Privacy by Design consists of seven core principles [3]:

• Proactive not reactive; preventative not remedial,
• Privacy as the default setting,
• Privacy embedded into the design,
• Full functionality—positive-sum, not zero-sum,
• End-to-end security—full life cycle protection,
• Visibility and transparency—keep it open—and,
• Respect for user privacy—keep it user-centric.

These principles describe that a system should work proactively on protecting the user’s
data. Privacy by Default asserts that users do not have to do anything additionally to
protect their privacy within a system. All privacy related options are tuned to their favor
by default. The other principles describe that privacy measures should exist upfront and
should not be added later as an add-on. Companies should seek a win-win situation that
is beneficiary for both them and their customers.

4. Technologies 27

Personal Data Stores shift the responsibility from platforms to users, to take care
of safely storing personal data [7]. They are future proof as even if platforms get shut
down, users still have access to their data. Privacy by Design will still apply to future
systems in order to take care of secure processing of data, but users will have control
over what data the platform is allowed to process.

4.4.3 Directive on Copyright in the Digital Single Market (DCDSM)
The Directive on Copyright in the Digital Single Market [47] is a directive of the Eu-
ropean Union that has been adopted but is not yet in effect. It created quite a lot
of controversy as it is mainly beneficial for newspapers, publishers, and media groups.
Opponents of the bill, such as major tech companies, internet users, and human rights
advocates are worried that parts of the directive will bring the risk of censorship and will
hinder free speech. The following paragraphs summarize the most essential points of the
DCDSM, related to this thesis. The full information can be found in the regulation [47].

Article 3

This article creates a copyright exception for artificial intelligence and machine learning
by excluding text and data mining for scientific research from the regulation.

Article 14

This article states that works which are in the public domain (unless the work is a
reproduction and original creative work) cannot be subject to copyright or related rights.

Article 15

Under this part of the regulation, publishers are granted the right to the benefit of online
usage of their press publications by news aggregators and media monitoring services.
This mainly affects the teaser texts that should motivate users to click the link.

Article 17

Online content sharing service providers such as YouTube, Facebook, and others are now
responsible for copyright infringements committed by users on their platforms. This ar-
ticle only targets commercial platforms and does not cover Personal Cloud storage, non-
profit encyclopedias, and non-profit educational/scientific repositories. Websites which
automatically reproduce or refer to significant amounts of copyrighted works have to
conclude fair and balanced agreements with all rights-holders.

Chapter 5

Solid Prototype

As explained in Section 1.1, the initial motivation of this thesis was to accelerate the
adoption of PDSs. After researching the available options, Solid that was showcased in
Section 3.7.3 was chosen. Unlike other solutions is Solid an open-source software and
allows to save various types of data without requiring users to implement additional
functionality. Additionally, Inrupt, the company behind Solid, provides a free data store
for new users, which makes it ideal as an entry system.

5.1 Proposal and Idea
The idea to attract new users to PDSs is to enter the market as Facebook did. Facebook
started in a niche market only for students of Harvard University [36]. A niche market
could provide a way to pull new users to PDS solutions as they currently lack an
adequate solution for their problem. The thesis project explores how applications can
use Solid as a Personal Data Store.

The proposed application maintains metadata about movies and TV series, such as
watched movies, owned movies, and movies which the user wants to watch in the future.
Metadata like this can currently be accessed on various platforms through viewing
history, but references are only linked to the specific platform. In order to make that
data reusable across multiple platforms, it needs to be linked to other sources within
the web.

5.1.1 Linking and Discoverability
In order to make the data reusable across multiple applications and platforms, common
reference sources have to be defined and referenced. Entities get linked to the Internet
Movie Database (IMDB)1—an established reference platform for movies and TV series—
to achieve this. Linking to a common and known identifier (in this case the entry id at
IMDB) establishes a common reference point, but not a common data structure on how
the data gets represented. The Linked Data specification [79] is utilized to save data as
Linked Data using the RDF. This allows other applications to explore the data schema
using an ontology without the need to know the exact schemas. Additionally, the widely

1https://www.imdb.com/

28

https://www.imdb.com/

5. Solid Prototype 29

Program 5.1: Example for RDF encoded data.

1 <?xml version="1.0"?>
2 <rdf:RDF
3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4 xmlns:cd="http://www.recshop.fake/cd#">
5 <rdf:Description
6 rdf:about="http://www.recshop.fake/cd/Empire Burlesque">
7 <cd:artist>Bob Dylan</cd:artist>
8 <cd:country>USA</cd:country>
9 <cd:company>Columbia</cd:company>

10 <cd:price>10.90</cd:price>
11 <cd:year>1985</cd:year>
12 </rdf:Description>
13 <rdf:Description
14 rdf:about="http://www.recshop.fake/cd/Hide your heart">
15 <cd:artist>Bonnie Tyler</cd:artist>
16 <cd:country>UK</cd:country>
17 <cd:company>CBS Records</cd:company>
18 <cd:price>9.90</cd:price>
19 <cd:year>1988</cd:year>
20 </rdf:Description>
21 .
22 .
23 .
24 </rdf:RDF>

used schema.org2 ontology is used wherever possible as it is the leading standard in
the web and widely used. When it is not possible to use a predefined schema, a new
ontology is created that refers to known ontologies. The OWL ontology [80] is used to
link an entry to the common identifier as it provides the sameAs relation that will be
used to link entities together.

5.1.2 Storing
To save the created entries RDF—see Program 5.1—is used with the Turtle syntax as
shown in Program 5.2. The RDF encoded data is stored in plain text files, which has the
advantage of compatibility. Even if RDF is end-of-lifed, the files could still be processed
by writing a parser for them. Solid—see Section 3.7.3—is used for hosting and querying
of the data, as it provides a Linked Data Platform that can naturally deal with such
kinds of data.

5.1.3 Data Retrieval and Querying Data
The interaction between the client application and Solid is planned to use REST opera-
tions. For advanced queries, SPARQL is used as this allows executing semantic queries
against multiple files at once. Because the SPARQL query needs to be sent to the Solid
server, the SPARQL over HTTP specification is used. With SPARQL over HTTP, the

2https://schema.org/

https://schema.org/

5. Solid Prototype 30

Program 5.2: Example for RDF encoded data in the Turtle format.

1 @base <http://example.org/> .
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
4 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
5 @prefix rel: <http://www.perceive.net/schemas/relationship/> .
6
7 <#green-goblin>
8 rel:enemyOf <#spiderman> ;
9 a foaf:Person ; # in the context of the Marvel universe

10 foaf:name "Green Goblin" .
11
12 <#spiderman>
13 rel:enemyOf <#green-goblin> ;
14 a foaf:Person ;
15 foaf:name "Spiderman" .

Program 5.3: Example of Linked Data encoded in the JSON-LD format.

1 {
2 "@context": "http://schema.org",
3 "@type": "ScreeningEvent",
4 "name": "Captain Marvel",
5 "description": "Captain Marvel movie screening.",
6 "location": {
7 "@type": "MovieTheater",
8 "name": "Cineplex",
9 "screenCount": 8

10 },
11 "workPresented": {
12 "@type": "Movie",
13 "name": "Captain Marvel",
14 "sameAs": "https://www.imdb.com/title/tt4154664/"
15 },
16 "inLanguage": "en"
17 }

basic query will be appended to the HTTP query string in URL-encoded form. If for
example the SPARQL query

SELECT * WHERE { ?s ?p ?o. }

is encoded and appended a request might look like the following:
GET /test/?query=SELECT%20*%20WHERE%20%7B%20%3Fs%20%3Fp%20%3Fo%20.%20%7D HTTP/1.1
Host: example.org

When retrieving data from Solid, different formats can be requested via the standard
content negotiation of the browser. For the client application the JSON-LD standard
shown in Program 5.3 will be used. JSON-LD, in theory, should allow the client appli-
cation to process the data the same way as standard JSON.

5. Solid Prototype 31

5.2 Implementation
This section explains the implementation of the application prototype.

5.2.1 Technology
For the implementation of the metadata application—called CollectIt—the Angular
framework [9] from Google, as well as TypeScript [30] from Microsoft, are used. To ease
the styling of the application, the Clarity Design System [13] is used. Clarity was created
by VMWare3 to define a set of styles and components that allows rapid prototyping, as
well as the creation of polished products.

5.2.2 Interaction
To interact with Solid, the solid-auth-client [26] library is used. The library, written
in JavaScript, allows applications to securely log in to Solid to read and write data from
it. While the built-in authentication works as expected, the functionality for reading
and writing data is minimal and lacks functionality required for the planned prototype.
Additionally, the documentation of the library and of Solid is limited and misses im-
portant details on how data should be saved and how stored data can be explored. The
mentioned points are the foundation of Personal Data Stores and need to be solved.

5.2.3 Architecture
To effectively use Solid as a PDS system, one of the most important aspects is to link
and discover data. This is achieved by saving the information as Linked Data to the
Solid server with a reference to a common identifier for movies and TV series called
IMDB4.

The architecture of this project is shown in Figure 5.1. The Solid user pod—shown
in Figure 3.8—is acting as a storage space for the data and includes no business logic.
Everything needs to be performed within the Angular application. This results in afford-
able servers and hosting, but forces developers of the client applications to guarantee
that data is fully valid when saving and querying. For saving of the data, the already
explained SPARQL over HTTP standard is used. There is no need to register the ap-
plication with the Solid server. Instead, users simply have to log in to the data pod.
Subsequently, the application can start to query data from the pod. Data written by the
CollectIT application and data written by other applications need to be differentiated.
Data that was created by the client application is known and can be expected on the
storage location that the application saves its data to. If another application wants to
access the data created by CollectIT, it would first have to explore the data structure
saved on the Solid pod to find it. After querying the data, the applications can enrich,
modify, and change the data freely. The applications only provide a view on the data
and can be exchanged easily.

3https://www.vmware.com/
4https://www.imdb.com/

https://www.vmware.com/
https://www.imdb.com/

5. Solid Prototype 32

Figure 5.1: Basic architecture of the CollectIT application.

5.2.4 Data Structures
Only basic information and references are saved to the pod to avoid synchronization
problems. The saved references point to resources on other servers where clients can find
more information about the entity. Currently, however, the amount of public Linked
Data servers or websites is limited as the lack of maintained sources for movies and
TV-series shows.

The initial idea for data handling in the frontend application was to use annotated
TypeScript classes, as shown in Program 5.4, to enhance the JSON underneath with
Linked Data references. Due to the unavailability of a library which handles the trans-
formation of the annotations, a solution was attempted but was given up due to failing
to provide accurate mappings for edge cases such as nested structures.

The next idea was to write a mapper which allows developers to manually handle
the edge cases to allow the mapping of JSON-objects to RDF using a mapping file.
An existing mapper [31] was ported to TypeScript and adapted for this prototype. In
Program 5.5 a mapped entry for a movie can be seen. Because of the generic implemen-
tation of the mapper, the output result is enormous and saves a lot of unnecessary data.
Because each movie or TV-series has to be saved separately due to the triplet structure,
the idea with the mapper was discarded. Instead, an alternative approach was chosen,
in which the frontend only works with plain JSON objects and adds the Linked Data
annotations only when data is saved was chosen. Instead of sending the result object

5. Solid Prototype 33

Program 5.4: TypeScript classes annotated with Linked Data references.

1 @JsonldType('https://schema.org/Movie')
2 export class Movie {
3 @JsonldId()
4 id: string;
5 @JsonldProperty('http://schema.org/name')
6 name: string;
7 @JsonldProperty('http://schema.org/creationDate')
8 dateCreated: Date;
9 @JsonldProperty('http://www.w3.org/2002/07/owl#sameAs')

10 sameAs: SameAsDTO[];
11 }

via the HTTP body, the SPARQL capabilities of the Linked Data Platform are used.
For this, the SPARQL over HTTP standard is used where the SPARQL query is en-
coded and sent via the query string. An example query that creates a movie in the Solid
data pod is shown in Program 5.6. To store metadata for a movie, a query as shown
in Program 5.7 can be executed. Thereby the previously created movie gets referenced
in the object property by URI. The WebID placeholder is replaced with the URL of
the WebID of the user. As these examples show does SPARQL make it much easier to
handle the storage of the metadata compared to the previously explored options.

5.3 State of the Prototype and Learnings
A Personal Data Store solution needs to be as open as possible and has to allow multiple
applications to work with the same data. Solid allows saving of all kinds of data as it
does not have a fixed schema of how data has to be saved. At first, this seemed to be
great in terms of flexibility, but during implementation, it became clear that missing
standards and no clear guidelines are a big problem. Furthermore, a considerable amount
of knowledge in different web standards is needed to develop for Solid. This creates a
situation that acts as a showstopper for developers and companies.

A PDS solution that aims to be successful needs to have the flexibility of Solid, a
secure and easy to use server, unequivocal responsibility for the data and its validity, as
well as an easy and secure way to manage permissions for data access. The server needs
to be more than a simple file server as otherwise, a single application could corrupt
all data files by changing parts of the files or redirecting URIs to invalid addresses.
The server should provide an easy way for users to control access to the data for each
application. Solid only supports the WebACL standard that provides the server-side
granularity only on a file basis, but that does not offer an accessible way to decide rights
on a client per client basis. Solid currently provides no way to register and maintain
different clients. Instead, applications are handled the same way as users. Solid is a
great idea built on open standards with the goal to change the internet. This goal might
be reached once the technology has matured and Solid offers a smooth transition for
developers and existing applications. The author feels that Solid is currently too young
and misses features that could fuel adoption. What Solid however achieved is to spark

5. Solid Prototype 34

Program 5.5: Excerpt of a mapped data entry using the mapper.

1 {
2 "subject": {
3 "termType": "NamedNode",
4 "value": "https://max.solid.community/public/metadata/movie/60a4b0a6-14cb-462f

-a4d2-badb9ae7f595-1548861938"
5 },
6 "predicate": {
7 "termType": "NamedNode",
8 "value": "https://schema.org/dateCreated"
9 },

10 "object": {
11 "termType": "Literal",
12 "value": "2019-01-30T15:25:38Z",
13 "datatype": {
14 "termType": "NamedNode",
15 "value": "http://www.w3.org/2001/XMLSchema#dateTime"
16 }
17 },
18 "why": {
19 "termType": "NamedNode",
20 "value": "https://max.solid.community/public/metadata/movie/60a4b0a6-14cb-462f

-a4d2-badb9ae7f595-1548861938"
21 }
22 },
23 {
24 "subject": {
25 "termType": "NamedNode",
26 "value": "https://max.solid.community/public/metadata/movie/60a4b0a6-14cb-462f

-a4d2-badb9ae7f595-1548861938"
27 },
28 "predicate": {
29 "termType": "NamedNode",
30 "value": "http://max.test/ns/metadataOntology#imdb"
31 },
32 "object": {
33 "termType": "Literal",
34 "value": "tt1731141"
35 },
36 "why": {
37 "termType": "NamedNode",
38 "value": "https://max.solid.community/public/metadata/movie/60a4b0a6-14cb-462f

-a4d2-badb9ae7f595-1548861938"
39 }
40 },
41 {
42 ...
43 }
44]

5. Solid Prototype 35

Program 5.6: Example for storing a movie using SPARQL.

1 INSERT DATA
2 {
3 <${baseURL}> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://schema.org

/CreativeWork>, <http://schema.org/Movie>, <http://schema.org/Thing>;
4 <http://schema.org/name> <${movieTitle}>;
5 <http://schema.org/dateCreated> <${creationDate}>;
6 <http://dbpedia.org/ontology/imdbId> <${imdbURL}>;
7 <http://www.w3.org/2002/07/owl#sameAs> <${tmdbURL}>.
8 }

Program 5.7: Example for storing an action using SPARQL.

1 INSERT DATA
2 {
3 <${actionURL}> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://schema.

org/Action>, <http://schema.org/ConsumeAction>, <http://schema.org/WatchAction>,
<http://schema.org/Thing>;

4 <http://schema.org/object> <${movieURL}>;
5 <http://schema.org/agent> <${webid}>.
6 }

further research in the area of PDSs.
Due to all the previously mentioned reasons, the development of the Solid proto-

type has been stopped. Instead, a new PDS solution will be developed that tries to
find solutions to the problems left out by Solid. The goal is to explore possible ways
of authentication, access management, and simple interfaces while still providing the
flexibility of Solid.

Chapter 6

Selfbox Prototype

This chapter explains the prototype for a PDS called Selfbox. Selfbox is designed from the
ground up and tries to solve problems encountered while implementing an application
for Solid.

6.1 Idea and Goal
The basic concept is to create a PDS based around the established and well understood
standard OAuth 2.0—see Section 4.3.1. Instead of sandboxing client applications for
security reasons, as other PDSs solutions, the Selfbox prototype focuses on the data
that leaves the server. The goal is not to create a perfect solution, but to explore ways
that would allow the usage of PDSs within the current web. To achieve this, the PDS
does not enforce anything onto developers or users. If a third-party application wants
to continue saving data to its servers, it should be able to do so. However, the developer
of the application might want to use the PDS for authentication. This way, the PDS
solution can continue to evolve by the requirements of its users and developers.

6.1.1 Authorization and Permissions
The server needs to be a OAuth 2.0 provider to allow it to get used for login purposes
on third-party websites. Therefore like existing platforms such as Facebook, Google, and
others currently do, the server needs to allow other applications to register themselves
as a client with the PDS. Normally the registration process is done by the developers by
requesting a key and copying it in their application. This process would not make sense
for the prototype as an application developer can not manually register his website on
thousands of PDS. Instead, possible ways need to be explored of how the registration
process could be done in a more decentralization friendly way. After an application has
registered itself with the PDS, users should be able to control the data flow using OAuth
scopes.

The server should also implement the OpenID Connect standard to provide third-
party applications with information about the user’s identity. OpenID Connect allows
the server to be an identity provider that allows the user to login to any existing appli-
cation that supports OpenID Connect for the login.

36

6. Selfbox Prototype 37

6.1.2 Storage and Exploration
Different ways need to be explored that would allow developers to save various kinds
of data while maintaining flexibility and validation. Without validation, a single ap-
plication could corrupt data and impact the integrity of other data. Because of the
validation problem, the idea is to use a NoSQL database that supports schemas but
does not require them. Additionally, users should be able to make sense of the stored
data. Therefore, the representation of entities should map the real world as close and
as naturally as possible. For this, a graph database is used that supports the property
node model—see Section 4.2.2. Using this model, users can query for nodes of a given
type and explore the data connected to these nodes.

A secure and extensible way that should require as little overhead as possible, to
add new types is required, to demonstrate that various kinds of data are supported.

6.2 Implementation

The prototype is built with the Nest framework [19]. Nest is a framework inspired by
Angular [9] and Spring [27] that aims to provide an enterprise framework for NodeJS [20]
applications. It uses TypeScript [30] and decorators to glue together the application.

6.2.1 Authentication and Authorization
To implement OAuth 2.0 and OpenID Connect, a module named OauthModule is cre-
ated. This module implements a configure method that allows attaching middlewares
to a route. The configure method then applies the ensureLoggedIn middleware from
the connect-ensure-login [14] library. This library works together with Passport [24]
to check if incoming requests are authenticated. If users are not logged in, they first
need to login into the server. If a user has logged in, the following middleware checks
which client application is trying to gain access. If the client is unknown, the server
returns an error stating that this is an unknown client. Unknown in this context means
that no entry or information about the client was saved on the server yet. If the client
is known, the next step is to check if the resource owner has previously granted access
to the client. If not, the server asks the resource owner for permission to grant access to
the client. If however the client was previously authorized, the client gets immediately
approved. Using this workflow, client applications can continuously gain access to the
data without having to await approval of the user all the time. This process also results
in a better user experience as users do not need to authorize clients every time. Another
middleware configuration handles the decision endpoint that displays the permission
dialog for the user when a client application first asks for access to the server. The last
middleware configuration deals with the token endpoint. Thereby a posted token gets
passed to the oauth2rize [21] library for further processing and error handling.

The OauthController exposes multiple routes needed for the OAuth 2.0 and OpenID
Connect workflows that is secured by the previously mentioned middlewares. One of the
more significant problems that had to be solved for the login process was how the client
learns about the correct routes for its actions. OAuth 2.0 does not define any routes
for this, so each client would have to be configured to work with the prototype. The

6. Selfbox Prototype 38

server exposes the .well-known/openid-configuration endpoint that implements the
OpenID Connect Discovery 1.0 specification to overcome this issue. Using this informa-
tion, the client can fetch the information about the server and configure itself automat-
ically.

OpenID Connect Discovery

The OpenID Connect Discovery [69] document exposes all available scopes and claims
that the PDS currently supports. This way, applications know what data they can
request from a Selfbox and what data is unavailable. Program 6.1 shows the discovery
document from the Selfbox prototype. The issuer field describes the identity provider
itself. The authorization_endpoint is used to request the authorization itself and
requests one of the supported response types specified in response_types_supported.
In the request, the client can request multiple scopes from the scopes_supported array
whereby some scopes cover the described claims in claims_supported. If the client
requests an id_token, the returned token will be validated using the algorithm specified
in id_token_signing_alg_values_supported and the keys provided by the jwks_uri
endpoint [68].

Dynamic Client Registration

To support dynamic client registration, Selfbox implements the OAuth 2.0 Dynamic
Client Registration Protocol [64]. Clients can use the registration_endpoint to send
an HTTP POST request with the client metadata and the scopes the application needs.
As the response, the server answers with the generated client_id and client_secret.
Afterwards, the regular login process is triggered, and the client will be identified by
the client_id, the application received before. The user still has to approve the scopes
that the client requested.

Authorization Workflows

The prototype supports all OAuth 2.0 and OpenID Connect workflows to make it us-
able with all kinds of applications. For this thesis, however, only the implicit grant and
the authorization code grant have been tested. Figure 6.1 shows the full workflow of a
Single Page Application. It is important to note that real clients serve multiple users
and therefore need to prompt the user for the URL of the user’s PDS system. The im-
plemented frontend prototype currently only supports local deployment, but can easily
be adapted. The oauth2rize [21] library is used to implement the implicit grant. The
following example showcases the registration of the workflow with the server:

this.server.grant(oauth2orize.grant.token(this.issueToken.bind(this)));

The library takes care of parsing the requests and executing the registered functions to
generate the needed tokens. For the implicit grant, a function to issue an access token
needs to be implemented. The logic for this function is showcased in Program 6.2. To
create the actual access token, a signed JWT token is created and returned as showcased
in Program 6.3. The token contains the targeted audience (the client application) the
subject (the user) and the agreed scope. To sign the token, a secret is used that is passed

6. Selfbox Prototype 39

Program 6.1: Overview over the OpenID Connect Discovery document from the Selfbox
prototype.

1 {
2 "issuer": "http://localhost:3000",
3 "authorization_endpoint": "http://localhost:3000/oauth2/auth",
4 "token_endpoint": "http://localhost:3000/oauth2/token",
5 "userinfo_endpoint": "http://localhost:3000/oauth2/userinfo",
6 "registration_endpoint": "http://localhost:3000/oauth2/register",
7 "jwks_uri": "http://localhost:3000/oauth2/certs",
8 "response_types_supported": [
9 "code",

10 "token",
11 "id_token",
12 "code id_token",
13 "token id_token",
14 "code id_token token",
15 "code token"
16],
17 "subject_types_supported": [
18 "public"
19],
20 "id_token_signing_alg_values_supported": [
21 "RS256"
22],
23 "scopes_supported": [
24 "openid",
25 "email",
26 "profile",
27 "Movie:Create",
28 "Movie:Read",
29 "Movie:Update",
30 "Movie:Delete",
31 ...
32],
33 "token_endpoint_auth_methods_supported": [
34 "client_secret_post",
35 "client_secret_basic"
36],
37 "claims_supported": [
38 "aud",
39 "email",
40 "email_verified",
41 "exp",
42 "family_name",
43 "given_name",
44 "iat",
45 "iss",
46 "locale",
47 "name",
48 "picture",
49 "sub"
50]
51 }

6. Selfbox Prototype 40

Figure 6.1: This images shows the full authorization workflow of client applications with
the Selfbox PDS solution. This workflow includes the step of prompting the user for his
Selfbox URL that will be required to establish the connection.

to the application using an environment variable. The access token can be used to make
requests to protected resources on the server.

To get the identity of the user, the extension library oauth2orize-openid [22] is
utilized to implement the id_token grant. Therefore the workflow first needs to be
registered with the server:

this.server.grant(oauth2openid.grant.idToken(this.issueIDToken.bind(this)));

Next, the creation logic for the id_token is needed, as shown in Program 6.4. The
id_token is a structured token in the JWT format [33]. For a valid id_token, the
secret used to sign the token cannot be a string but needs to be an RSA-key in the PEM
encoding [73]. The key is generated with OpenSSL [23] using the following command:
openssl genrsa -out private.pem 2048. This key is loaded by the application and

6. Selfbox Prototype 41

Program 6.2: Token issuing logic for the Authorization Code grant implemented in the
Selfbox prototype.

1 private async issueToken(client, user, ares, done) {
2 Logger.log('Issuing Access Token', 'OauthServerService');
3
4 const [createAccessTokenError, accessToken] = await to(this.oauthDBService.

createAccessToken({
5 clientId: client.clientId,
6 userId: user.id,
7 scope: ares.scope
8 }));
9

10 if (createAccessTokenError) {
11 return done(createAccessTokenError);
12 }
13
14 const [createRefreshTokenError, refreshToken] = await to(this.oauthDBService.

createRefreshToken({
15 clientId: client.clientId,
16 userId: user.id,
17 scope: ares.scope
18 }));
19
20 if (createRefreshTokenError) {
21 return done(createRefreshTokenError);
22 }
23
24 return done(null, accessToken, {
25 refresh_token: refreshToken,
26 expires_in: OauthConfig.accessTokenTTL
27 });
28 }

Program 6.3: Access Token create function used to generate an JWT token with the
approved scopes.

1 createAccessToken(data): Promise<string> {
2 return new Promise<string>((resolve, reject) => {
3 const token = jwt.sign({
4 aud: data.clientId,
5 sub: data.userId,
6 scope: data.scope,
7 }, OauthConfig.accessTokenSecret, {
8 algorithm: OauthConfig.accessTokenAlgorithm,
9 expiresIn: OauthConfig.accessTokenTTL

10 });
11 resolve(token);
12 });
13 }

6. Selfbox Prototype 42

Program 6.4: ID Token create function used to generate an JWT token with the sup-
ported claims.

1 private async issueIDToken(client, user, scope, req, done) {
2 Logger.log('Issuing ID Token', 'OauthServerService');
3
4 const idToken = jwt.sign({
5 sub: user.id,
6 nonce: req.nonce,
7 name: user.name,
8 email: user.email
9 }, OauthConfig.idTokenSecret, {

10 expiresIn: OauthConfig.idTokenTTL,
11 algorithm: OauthConfig.idTokenAlgorithm,
12 issuer: OauthConfig.baseUrl,
13 audience: client.clientId
14 });
15
16 return done(null, idToken);
17 }

is used as the id_token secret in combination with the RS256 algorithm [34]. In order
to verify the id_token, the client needs to check the signature with the identity of the
server. To achieve this functionality, an endpoint is provided that exposes the public
key part of the RSA key pair used to sign the token. The client gets the location of the
route used to serve the public key via the OpenID Discovery Document [69]. The key is
formatted in the JSON Web Key (JWK) format using the library rsa-pem-to-jwk [25].

6.2.2 Storage and Exploration
As mentioned before, a graph database is used to allow easy discovery and linking
of different data nodes. After a market analysis, the Neo4j graph database [17] was
selected. Neo4j uses the Cypher query language [45] which allows the user to write
semantic queries with ease, as the following example shows:

MATCH (u:User {id: 1})
MATCH (m:Movie {id: 1})
CREATE (u)-[rel:USER_ACTION {action: WATCHED}]->(m)
RETURN rel { .action };

The concept of property graph databases was explained in Section 4.2.2. In the query
example shown above, one can see this type of graph in action. In the first row, a node
with the label “User” and a property named “id” with the value “1” is matched in the
graph. Next, a node with the label “Movie” is searched with an “id” property with the
value “1”. Then a new relationship between the two nodes is created that is labeled
“USER_ACTION” which has a property called “action” with the value “WATCHED”.
Because such a system would be too powerful and dangerous to expose directly, a layer
between the client and the database is needed. One of the goals of this project is to find
a way how such a layer could be implemented in a safe and in a controllable way.

One solution that was considered is to create a generic controller that would support

6. Selfbox Prototype 43

Program 6.5: Example that shows how movies can be queried from Selfbox via GraphQL.

1 query {
2 Movie(orderBy: datePublished_desc, offset: 0) {
3 id
4 actionType {
5 action
6 }
7 }
8 }

all REST operations for a single entity. Additionally, entities would be created and
annotated to enable validation. On server startup, the application would look for all
entities and create an instance of the generic controller for all found entities. The problem
with the proposed solution is that with more entities the server would need to serve
dozens of endpoints. Moreover, the support for creating relations between entities could
not be solved in a type-safe manner. An alternative solution would be to create a JSON
API 1 but these types of APIs are not used quite often. Furthermore, the number of
libraries for developers to use with JSON API ’s are minimal.

For the final solution, the decision was made to use GraphQL [15] as the query
language for client applications. GraphQL allows the client to request any data from the
server in one request from one endpoint [15]. GraphQL supports queries, mutations as
well as subscriptions, which allows clients to request data, modify data, and to subscribe
to get notified when the data changes. This allows developers to create rich experiences
in client applications. Program 6.5 shows an example query that queries all movies
ordered by publishing date and returns only the id and actionType.

To connect the GraphQL interface with Neo4j, the library neo4j-graphql-js [18]
is used. This library allows to generate the required code from simple GraphQL type
definitions. To integrate the library the approach by Lutz [60] was used. Inspired by the
example on how to expose the GraphQL endpoint in Nest an GqlConfigService was
developed that can be used with the GraphQLModule from Nest. The GqlConfigService
runs on startup of the application and searches for GraphQL definition files in the
folder that contains the application as shown in Program 6.6. After files are found,
their content gets extracted and concatenated creating a single type definitions file
that then gets annotated via the functions provided by neo4j-graphql-js as shown
in Program 6.7 [62]. Afterwards, the augmented schema gets passed to the internal
Apollo [12] server used by the GraphQLModule. The augmentation step is needed to
resolve all GraphQL directives provided by neo4j-graphql-js and to automatically
create the resolvers and query functions for the given types.

The whole process allows users and developers to add new types to the server by
simply creating or uploading a GraphQL type definition file and restarting the server.
Queries and mutations are checked by the Apollo server to ensure that no invalid data
can be saved into the database. Client applications can be prototyped rapidly due to
the exposed schema offered by the GraphQL endpoint.

1https://jsonapi.org/format/

https://jsonapi.org/format/

6. Selfbox Prototype 44

Program 6.6: Function to merges all GraphQL type files that are in the source folder.

1 private getGraphQLDefinitions(): Promise<string> {
2 const typeDef: string[] = [];
3
4 return new Promise<string>((resolve, reject) => {
5 glob(process.cwd() + '/src/**/*.graphql', {}, (err, files) => {
6 if (err) {
7 reject(err);
8 return;
9 }

10 Logger.log('Found GraphQL Definitions [' + files.toString() + ']', '
GraphQLConfigService');

11 files.forEach((filePath: string) => {
12 typeDef.push(fs.readFileSync(filePath, {encoding: 'utf8'}));
13 });
14 resolve(typeDef.join('\n'));
15 });
16 });
17 }

Program 6.7: Function to augment the GraphQL schema and resolves the built in schema
directives.

1 private async getAugmentedSchema(): Promise<GraphQLSchema> {
2 return new Promise<GraphQLSchema>(async (resolve, reject) => {
3 const [error, typeDefs] = await to(this.getGraphQLDefinitions());
4
5 if (error) {
6 reject(error);
7 }
8
9 const schema = makeAugmentedSchema({

10 typeDefs,
11 logger: {
12 log(message) {
13 Logger.error(`GraphQL Schema: ${message}`);
14 }
15 },
16 config: { query: true, mutation: true, debug: true }
17 });
18
19 resolve(schema);
20 });
21 }

6.2.3 Protection of Resources
The GqlConfigService also parses the type definitions file manually to calculate the
available scopes used to protect the resources. The calculated scopes are exposed via
the OpenID Discovery Document described in Section 6.2.1 and are enforced using the

6. Selfbox Prototype 45

Program 6.8: Annotated GraphQL types with neo4j-graphql-js directives.

1 type Movie {
2 id: ID!
3 title: String
4 overview: String
5 poster: String
6 datePublished: DateTime
7 imdbRating: Float
8 tmdbId: Int
9 actionType: [UserAction]

10 genres: [Genre] @relation(name: "IN_GENRE", direction: "OUT")
11 }
12
13 type Genre {
14 id: ID!
15 name: String
16 tmdbId: Int
17 entities: [Movie] @relation(name: "IN_GENRE", direction: "IN")
18 }

graphql-auth-directives library [16]. As a result the generated resolvers, mutations
and queries are annotated with @hasScope by neo4j-graphql-js. The JWT secret
needs to be provided as an environment variable to allow the graphql-auth-directives
library to decode the JWT access token and parse the scopes of the client.

Sensitive Data Storage

Because users and developers might extend the server with a malicious extension that
aims to expose the hashed passwords of the user, an additional database for sensitive
login information and OAuth data is added. That way, it is impossible to gain access to
sensitive information via the GraphQL endpoint. This additional database is a SQLite
database [28] because traffic will be limited and infrequent. To access the database, the
library TypeORM [29] is used that allows developers to efficiently manage data access
without the need to write SQL queries. The setup process thereby works similar to the
previously described initialization. First, a connection to the database is established.
This is done by creating a provider for the database connection, as shown in Program 6.9.

In the snippet shown in Program 6.9 TypeORM searches for all annotated TypeScript
classes and generates the database structure accordingly. Program 6.10 shows one of
the annotated classes used by the prototype. Afterwards, it is possible to create a typed
instance for a given entity which allows to access data by creating a provider with a
factory method. User management and setup was not part of this prototype. Therefore
no security measures concerning password hashing have been taken.

6.3 Frontend
For the frontend of this prototype, the previous application from the Solid prototype was
adapted. The same technologies, as explained in Section 5.2.1, are used. Additionally,

6. Selfbox Prototype 46

Program 6.9: TypeORM connection provider factory.

1 {
2 provide: 'DATABASE_CONNECTION',
3 useFactory: async () => await createConnection({
4 type: 'sqlite',
5 database: Env.DbFile,
6 entities: [
7 __dirname + '/../../**/*.entity{.ts,.js}'
8],
9 synchronize: true

10 })
11 }

Program 6.10: Example of entity with TypeORM annotations.

1 @Entity()
2 export class UserEntity {
3 @PrimaryColumn()
4 _id: number;
5
6 @Column()
7 @Generated('uuid')
8 id: string;
9

10 @Column()
11 username: string;
12
13 @Column()
14 password: string;
15
16 @Column()
17 familyName: string;
18
19 @Column()
20 middleName: string;
21
22 @Column()
23 givenName: string;
24
25 @Column()
26 email: string;
27 }

the library angular2-apollo is used for communication with the server [11]. Apollo
provides a client to interact with a GraphQL endpoint.

6.3.1 Authorization
To authorize the frontend with Selfbox the angular2-oidc library is used [10]. The
library needs to be configured as shown in Program 6.11. It is important that the

6. Selfbox Prototype 47

Program 6.11: Configuration of the authorization library in the frontend.

1 export const authConfig: AuthConfig = {
2 issuer: 'http://localhost:3000',
3 oidc: true,
4 clearHashAfterLogin: false,
5 redirectUri: window.location.origin + '/index.html',
6 clientId: 'abc123',
7 responseType: 'token id_token',
8 showDebugInformation: true,
9 disableAtHashCheck: true,

10 sessionChecksEnabled: false,
11 scope: 'openid profile email Movie:Create Movie:Update Movie:Delete Movie:Read

Genre:Write Genre:Read User:Create User:Read',
12 };

Program 6.12: Trigger auto-configuration of the library using the discovery document.

1 @Injectable({
2 providedIn: 'root',
3 })
4 export class AuthService {
5 constructor(private oauthService: OAuthService) {
6 this.oauthService.configure(authConfig);
7 this.oauthService.tokenValidationHandler = new JwksValidationHandler();
8 this.oauthService.requireHttps = false;
9 this.oauthService.oidc = true;

10 this.oauthService.setStorage(localStorage);
11 this.oauthService.loadDiscoveryDocumentAndTryLogin();
12 }
13
14 getUserId(): string {
15 const claims = this.oauthService.getIdentityClaims();
16 return claims['sub'];
17 }
18 }

response type is token id_token if the application needs access to resources as well as to
the identity of the user. After defining the configuration, the client can load the discovery
document as showcased in Program 6.12. A real application would query the user for the
URL of his PDS solution beforehand. After the previous steps the frontend can initialize
the implicit grant workflow by calling this.oauthService.initImplicitFlow(). That
call will then redirect the user to the server, as shown in Figure 6.2. After the user logged
in into the server, the server asks for permission to grant the application access to the
server, as shown in Figure 6.3. If the user approves the request, the server will redirect
the user to the client application. Thereby the requested tokens will be returned in the
URL string.

To use GraphQL, the Apollo Client needs to send the retrieved access token as
“Authorization” header with the “Bearer” prefix, as shown in Program 6.13.

6. Selfbox Prototype 48

Figure 6.2: Selfbox login screen.

6.3.2 Interaction
After a successful login, the users can visit the dashboard shown in Figure 6.4 where
they can see all movies that have been added to their PDS system. Each movie can
have multiple associated actions that can be loaded with the movie. Depending on what
actions are present, different options are shown in the cards in Figure 6.4.

The frontend uses the provided GraphQL interface from Selfbox to add, update, and
delete entities from the PDS. Program 6.14 shows the code to add a movie entry to the
PDS.

6.4 State of the Prototype and Outlook
This prototype shows a PDS solution that offers a simple interface, the possibility to
save various kinds of data and provides validation for that data. The major obstacles,
such as the extension of new data types and access controls, have been solved by using
GraphQL types and provide a mechanism that generates all boilerplate code automati-
cally. GraphQL proofed to be an excellent choice for this project as websites only need

6. Selfbox Prototype 49

Figure 6.3: The Selfbox authorization dialog allows users to allow or reject scopes re-
quested by an application.

Figure 6.4: Screenshot of the CollectIT dashboard.

6. Selfbox Prototype 50

Program 6.13: Configuration of the GraphQL Apollo client.

1 export function createApollo(httpLink: HttpLink) {
2 const http = httpLink.create({uri: 'http://localhost:3000/graphql'});
3
4 const authLink = new ApolloLink((operation, forward) => {
5 const token = localStorage.getItem('access_token');
6 operation.setContext({
7 headers: {
8 'Authorization': token ? `Bearer ${token}` : ''
9 }

10 });
11 return forward(operation);
12 });
13
14 return {
15 link: authLink.concat(http),
16 cache: new InMemoryCache(),
17 };
18 }
19
20 @NgModule({
21 exports: [ApolloModule, HttpLinkModule],
22 providers: [
23 {
24 provide: APOLLO_OPTIONS,
25 useFactory: createApollo,
26 deps: [HttpLink],
27 },
28],
29 })
30 export class GraphQLModule {
31 }

one request to query all the data they need.
The next steps for the prototype are to strengthen security measures and implement

best practices in that area such as password hashing. Furthermore, a setup wizard will be
implemented that allows every user to setup the PDS without the need for any technical
knowledge. Once these basic features are finished, additional functionality such as file
storage will be implemented. The project is designed mainly for personal use but might
also get commercialized in the future if there is any demand.

6. Selfbox Prototype 51

Program 6.14: Function to add a movie via GraphQL mutation.

1 addMovie(movie: MovieModel) {
2 const createMovie = gql`
3 mutation createMovie($title: String!, $overview:String, $poster:String,

$datePublished:String, $tmdbId: Int, $imdbRating: Float) {
4 CreateMovie(title: $title, overview: $overview, poster: $poster,

datePublished: { formatted: $datePublished }, tmdbId: $tmdbId, imdbRating:
$imdbRating) {

5 id
6 }
7 }
8 `;
9

10 return this.apollo.mutate({
11 mutation: createMovie, variables: {
12 ...movie
13 }
14 })
15 .pipe(
16 map((graphQLResult: FetchResult<{ CreateMovie: { id: string } }>) =>

graphQLResult.data.CreateMovie.id),
17 switchMap((movieId: string) =>
18 forkJoin(
19 _.map(movie.genres, (genre: GenreModel) => this.getGenreByTmdbId(

genre.tmdbId)
20 .pipe(
21 map((genreResult: ApolloQueryResult<{ Genre: { id: string

}[] }>) => genreResult.data.Genre[0].id),
22 switchMap((genreId: string) => this.addGenreToMovie(movieId,

genreId))
23)
24)
25)
26),
27 map<any[], string>((queryResult: any[]) => queryResult[0].data.

AddMovieGenres.from.id)
28);
29 }

Chapter 7

Conclusion

This section concludes the collected experiences that were gained during the creation
of this thesis and explores the author’s views on the evolution of the web.

7.1 Future of the Web
The paper elaborated what is possible with current web technologies. If PDS will ever
reach mainstream is unknown, however one thing is inevitable. The web will continue to
evolve as it always has since its creation; where that will lead to nobody can answer for
sure, but some educated guesses can be made. If current trends continue, then the web
will be more regulated as it is now and possibly even more separated as developments
in authoritarian states show. Regulations which force users to give up their privacy are
already demanded by some governments and might be put into regulation in the next
years. However, politicians seem to ignore the current evolution the web is undergoing.

Startups focused on decentralization are founded all over the globe offering existing
services in a decentralized matter with secure, state-of-the-art encryption and built-
in privacy. These services are currently uncomfortable to use, but increasing concerns
about privacy drive users away from current centralized applications like WhatsApp.
The messenger even plans to show targeted advertisements in the client applications to
increase revenue at the cost of the user [76]. Trends like this, on the cost of user privacy,
can be seen everywhere, and are notice by users which start to moving to different
services. Therefore monopolies already fear the loss of users and revenue. The situation
is so critical already that companies like Google and Facebook announced that they are
going to improve privacy on their platforms. This promise slows down the change but
can not stop it as centralized platforms cannot compete with decentralized applications.

One of the first areas that will change rapidly is storage. As costs, service level
agreements, redundancy, flexibility, and security of decentralized applications outper-
form existing solutions by a factor of ten [50]. Technologies related to block-chain,
created much discussion in the last years with Bitcoin1 leading the way. Bitcoin is an
example for the Web 3.0 that focuses only on currency transfer. It inspired hundreds of
other crypto-currencies each one with a particular focus. One of the leading solutions

1https://bitcoin.org/en/

52

https://bitcoin.org/en/

7. Conclusion 53

is Ethereum2, a platform for the next generation of the web based on a programmable
block-chain under the hood. Ethereum allows the creation of so-called DApps appli-
cations that process requests and get hosted on the decentralized platform [41]. That
means the logic of these apps runs on the distributed power of the network instead of
a single point of failure like a server farm. Ethereum is currently competing for market
share with other decentralized platforms based on block-chain technology.

Decentralization is one aspect of Web 3.0. Another commonly agreed characteristic
is the semantic web, a semantic web that will look different than the one we imagine
now. The semantic web will not be based on semantic annotations on websites but on
structured interfaces between servers where autonomous agents will interact with each
other.

7.2 Goals and Experiences
The goal of this thesis was to explore the possibilities of Personal Data Stores. The
reader was introduced to the topic of PIM and examples that show the relevance and
importance of this topic as the amount of data continually grows. New data that will get
collected through IoT and other innovations will need to be saved. This thesis showed
a way to deal with that data in a structured and semantic way. PDSs will always have
to adapt to new data and data structures. Representing data in its natural form, in a
semantic way, using relationships and nodes in a graph provides a future proof solution
and allows semantic exploration.

The thesis continued to introduce the reader to the current state of the art for
PDSs and the problems with these solutions. Thereby it is important to note that the
thesis looked at the topic not only from a developer perspective but also from user and
company perspectives. PDSs should be a win-win situation for all involved parties. Some
parties, such as companies need to have the possibility to gradually switch to PDSs,
instead of forcing them to support two different ecosystems. But not only the users’
or companies’ needs are essential. Politics introduce more and more regulations and
laws that aim to improve the life of users. The thesis highlighted regulations that are
the most important, not just for Europe but also for the world as a whole. The thesis
then dived further into Solid and explored ways to utilize it as a PDS solution. During
the implementation the absence of essential features like cryptography and protection
of the data were encountered, that lead to the creation of a new PDS solution. The
prototype explored ways of how data could be protected and saved universally. The
presented solution demonstrates how PDSs can coexist an enhance the current web by
providing a central point of identity for the owner of the PDS. Companies benefit from
this as they do not have to implement and maintain authorization and authentication
solutions. Furthermore, Selfbox shows how various data can be saved while ensuring
that only valid data is accepted, protecting other implementations from corrupt data
that they can not handle.

The thesis hopes to motivate others to start researching in this area as well. The
problems in the web need a solution as soon as possible to ensure free speech and an
open discussion in the years to come.

2https://www.ethereum.org/

https://www.ethereum.org/

Appendix A

Content of the CD-ROM

A.1 PDF-Files
Path: /thesis

thesis_2019.pdf Thesis as PDF document

A.2 Prototypes
Path: /projects

README.md Markdown document with general information about the
projects

/collectIT Solid prototype of CollectIT application
/selfbox Selfbox prototype—contains README.md with instructions
/selfbox-metadata . . . Selfbox prototype of CollectIT application

54

References

Literature

[1] Tim Berners-Lee and Mark Fischetti. Weaving the Web: The Original Design and
Ultimate Destiny of the World Wide Web by Its Inventor. Paw Prints, June 2008
(cit. on p. 17).

[2] Ryan Boyd. Getting Started with OAuth 2.0. O’Reilly Media, Inc., 2012 (cit. on
pp. 21, 22).

[3] Ann Cavoukian. “Privacy by Design: Origins, meaning, and prospects for assuring
privacy and trust in the information era”. In: Privacy Protection Measures and
Technologies in Business Organizations: Aspects and Standards. Ed. by George
O.M. Yee. IGI Global, 2012. Chap. 7, pp. 170–208 (cit. on p. 26).

[4] Emil Eifrem, Jim Webber, and Ian Robinson. Graph Databases. 2nd ed. 2015 (cit.
on pp. 19–21).

[5] William P. Jones. Keeping Found Things Found: The Study and Practice of Per-
sonal Information Management. Morgan Kaufmann Publishers, 2008 (cit. on pp. 3,
4).

[6] William P. Jones and Jaime Teevan. Personal Information Management. Univer-
sity of Washington Press, July 2011 (cit. on p. 6).

[7] Max Van Kleek and Kieron OHara. “The Future of Social Is Personal: The Po-
tential of the Personal Data Store”. In: Computational Social Sciences. Ed. by
Daniele Miorandi et al. Springer International Publishing, 2014, pp. 125–158 (cit.
on p. 27).

[8] Justin Richer and Antonio Sanso. OAuth 2 in Action. Manning Publications, 2017
(cit. on pp. 22–25).

Software

[9] Angular. url: https://angular.io/ (visited on 02/04/2019) (cit. on pp. 31, 37).
[10] Angular OAuth OIDC. url: https://github.com/manfredsteyer/angular-oauth2-oi

dc (visited on 05/31/2019) (cit. on p. 46).
[11] Apollo Angular Client. url: https : / /github . com/apollographql / apollo - angular

(visited on 05/31/2019) (cit. on p. 46).

55

https://angular.io/
https://github.com/manfredsteyer/angular-oauth2-oidc
https://github.com/manfredsteyer/angular-oauth2-oidc
https://github.com/apollographql/apollo-angular

References 56

[12] Apollo GraphQL. url: https://www.apollographql.com/ (visited on 05/18/2019)
(cit. on p. 43).

[13] Clarity Design System. url: https://clarity.design/ (visited on 04/11/2019) (cit.
on p. 31).

[14] Connect Ensure Login. url: https://www.npmjs.com/package/connect-ensure-logi
n (visited on 05/11/2019) (cit. on p. 37).

[15] GraphQL. url: https://graphql.org/ (visited on 05/18/2019) (cit. on p. 43).
[16] GraphQL Auth Directives. url: https://github.com/grand-stack/graphql-auth-dire

ctives (visited on 05/18/2019) (cit. on p. 45).
[17] Neo4j Graph Platform. url: https://neo4j.com/ (visited on 06/13/2019) (cit. on

p. 42).
[18] neo4j-graphql-js. url: https://github.com/neo4j-graphql/neo4j-graphql-js (visited

on 05/18/2019) (cit. on p. 43).
[19] NestJS - A progressive Node.js web framework. url: https://nestjs.com/ (visited

on 05/09/2019) (cit. on p. 37).
[20] Node.js. url: https://nodejs.org/ (visited on 05/11/2019) (cit. on p. 37).
[21] OAuth2rize. url: https : / / github . com / jaredhanson / oauth2orize (visited on

05/11/2019) (cit. on pp. 37, 38).
[22] OAuth2rize - OpenId Connect Extensions. url: https://github.com/jaredhanson

/oauth2orize-openid (visited on 06/11/2019) (cit. on p. 40).
[23] OpenSSL. url: https://www.openssl.org/ (visited on 06/13/2019) (cit. on p. 40).
[24] Passport.js. url: http ://www.passportjs .org/ (visited on 05/11/2019) (cit. on

p. 37).
[25] RSA-PEM-to-JWK. url: https://github.com/OADA/rsa-pem-to-jwk (visited on

06/13/2019) (cit. on p. 42).
[26] Solid Auth Client. url: https ://github.com/solid/solid- auth- client (visited on

01/04/2019) (cit. on p. 31).
[27] Spring Framework. url: https ://github.com/spring- projects/spring- framework

(visited on 04/11/2019) (cit. on p. 37).
[28] SQLite. url: https://sqlite.org (visited on 05/31/2019) (cit. on p. 45).
[29] TypeORM. url: https://typeorm.io (visited on 05/31/2019) (cit. on p. 45).
[30] TypeScript. url: http://www.typescriptlang.org/ (visited on 02/04/2019) (cit. on

pp. 31, 37).
[31] Jørn Wildt. ORDFMapper. url: https://github.com/JornWildt/SolidRC/blob/ma

ster/wwwroot/js/ORDFMapper.js (visited on 03/07/2019) (cit. on p. 32).

https://www.apollographql.com/
https://clarity.design/
https://www.npmjs.com/package/connect-ensure-login
https://www.npmjs.com/package/connect-ensure-login
https://graphql.org/
https://github.com/grand-stack/graphql-auth-directives
https://github.com/grand-stack/graphql-auth-directives
https://neo4j.com/
https://github.com/neo4j-graphql/neo4j-graphql-js
https://nestjs.com/
https://nodejs.org/
https://github.com/jaredhanson/oauth2orize
https://github.com/jaredhanson/oauth2orize-openid
https://github.com/jaredhanson/oauth2orize-openid
https://www.openssl.org/
http://www.passportjs.org/
https://github.com/OADA/rsa-pem-to-jwk
https://github.com/solid/solid-auth-client
https://github.com/spring-projects/spring-framework
https://sqlite.org
https://typeorm.io
http://www.typescriptlang.org/
https://github.com/JornWildt/SolidRC/blob/master/wwwroot/js/ORDFMapper.js
https://github.com/JornWildt/SolidRC/blob/master/wwwroot/js/ORDFMapper.js

References 57

Online sources

[32] George Anadiotis. Graph databases and RDF: It’s a family affair. May 2017. url:
https ://www.zdnet .com/article/graph- databases - and- rdf - its - a - family - affair/
(visited on 06/09/2019) (cit. on p. 19).

[33] Auth0. Introduction to JSON Web Tokens. url: https : / / jwt . io / introduction/
(visited on 06/13/2019) (cit. on p. 40).

[34] Auth0. Navigating RS256 and JWKS. url: https://auth0.com/blog/navigating-rs
256-and-jwks/ (visited on 06/13/2019) (cit. on p. 42).

[35] Sean B. Palmer. The Semantic Web: An Introduction. url: http://infomesh.net/2
001/swintro/ (visited on 04/26/2019) (cit. on pp. 18, 19, 21).

[36] Mary Bellis. The History of How Mark Zuckerberg Invented Facebook. Jan. 2019.
url: https ://www.thoughtco.com/who- invented- facebook- 1991791 (visited on
06/09/2019) (cit. on p. 28).

[37] DCMI Usage Board. DCMI: DCMI Metadata Terms. June 2012. url: http://ww
w.dublincore.org/specifications/dublin-core/dcmi-terms/ (visited on 06/09/2019)
(cit. on p. 18).

[38] Irina Bolychevsky. Are Personal Data Stores about to become the NEXT BIG
THING? Oct. 2018. url: https://medium.com/@shevski/are-personal-data- sto
res-about- to-become- the-next-big- thing-b767295ed842 (visited on 06/06/2019)
(cit. on pp. 6, 7).

[39] Dan Brickley and Libby Miller. FOAF Vocabulary Specification. Jan. 2014. url:
http://xmlns.com/foaf/spec/ (visited on 06/09/2019) (cit. on p. 18).

[40] Vannevar Bush. As We May Think. July 1945. url: https://www.theatlantic.co
m/magazine/archive/1945/07/as-we-may-think/303881/ (visited on 01/07/2019)
(cit. on p. 6).

[41] Vitalik Buterin. DAOs, DACs, DAs and More: An Incomplete Terminology Guide.
2014. url: https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-an-inc
omplete-terminology-guide/ (visited on 06/10/2019) (cit. on p. 53).

[42] Andrew Cave. What Will We Do When The World’s Data Hits 163 Zettabytes In
2025? url: https://www.forbes.com/sites/andrewcave/2017/04/13/what-will-w
e-do-when-the-worlds-data-hits-163-zettabytes-in-2025/ (visited on 06/05/2019)
(cit. on p. 1).

[43] Web Data Commons. RDFa, Microdata, Embedded JSON-LD, and Microformats
Data Sets. Oct. 2016. url: http://webdatacommons.org/structureddata/2016-10/s
tats/stats.html (visited on 06/09/2019) (cit. on p. 19).

[44] Cozy. Cozy Cloud - A Personal Cloud to gather all your data. 2019. url: https
://cozy.io/en/ (visited on 03/05/2019) (cit. on p. 13).

[45] Cypher Query Language. url: https://neo4j.com/developer/cypher/ (visited on
06/13/2019) (cit. on p. 42).

[46] Digi.me. Digi.me - Your life, Your terms. 2019. url: https://digi.me/ (visited on
03/02/2019) (cit. on p. 14).

https://www.zdnet.com/article/graph-databases-and-rdf-its-a-family-affair/
https://jwt.io/introduction/
https://auth0.com/blog/navigating-rs256-and-jwks/
https://auth0.com/blog/navigating-rs256-and-jwks/
http://infomesh.net/2001/swintro/
http://infomesh.net/2001/swintro/
https://www.thoughtco.com/who-invented-facebook-1991791
http://www.dublincore.org/specifications/dublin-core/dcmi-terms/
http://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://medium.com/@shevski/are-personal-data-stores-about-to-become-the-next-big-thing-b767295ed842
https://medium.com/@shevski/are-personal-data-stores-about-to-become-the-next-big-thing-b767295ed842
http://xmlns.com/foaf/spec/
https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-an-incomplete-terminology-guide/
https://blog.ethereum.org/2014/05/06/daos-dacs-das-and-more-an-incomplete-terminology-guide/
https://www.forbes.com/sites/andrewcave/2017/04/13/what-will-we-do-when-the-worlds-data-hits-163-zettabytes-in-2025/
https://www.forbes.com/sites/andrewcave/2017/04/13/what-will-we-do-when-the-worlds-data-hits-163-zettabytes-in-2025/
http://webdatacommons.org/structureddata/2016-10/stats/stats.html
http://webdatacommons.org/structureddata/2016-10/stats/stats.html
https://cozy.io/en/
https://cozy.io/en/
https://neo4j.com/developer/cypher/
https://digi.me/

References 58

[47] EU. Proposal on copyright in the Digital Single Market. 2016. url: https://eur-l
ex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52016PC0593 (visited on
05/13/2019) (cit. on p. 27).

[48] Lee Feigenbaum. SPARQL By Example: The Cheat Sheet. Sept. 2008. url: https
://www.iro.umontreal.ca/∼lapalme/ift6281/sparql-1_1-cheat-sheet.pdf (visited on
04/17/2019) (cit. on p. 21).

[49] Paula Gearon, Alexandre Passant, and Axel Polleres. SPARQL 1.1 Update. Apr.
2013. url: https://www.w3.org/TR/sparql11-update/#updateLanguage (visited
on 04/27/2019) (cit. on p. 21).

[50] Cameron Gray. Storj Vs. Dropbox: Why Decentralized Storage Is The Future. 2014.
url: https://bitcoinmagazine.com/articles/storj-vs-dropbox-decentralized-storage-f
uture-1408177107/ (visited on 06/10/2019) (cit. on p. 52).

[51] Dick Hardt. The OAuth 2.0 Authorization Framework. url: https://tools.ietf.org
/html/rfc6749 (visited on 04/27/2019) (cit. on pp. 22, 23).

[52] Hub-of-All-Things. Hub-of-All-Things. 2019. url: https://www.hubofallthings.co
m/ (visited on 03/05/2019) (cit. on pp. 14, 15).

[53] Icons by Freepik, CCBY 3.0. url: www.freepik.com (visited on 04/22/2019) (cit.
on pp. 8, 9).

[54] Inrupt. Inrupt. 2019. url: https://inrupt.com/solid (visited on 03/09/2019) (cit.
on p. 16).

[55] Inrupt. Solid. 2019. url: https://solid.inrupt.com/ (visited on 03/05/2019) (cit. on
p. 15).

[56] Inrupt. Solid Specification v.0.7.0. 2019. url: https://github.com/solid/solid-spec
/ (visited on 02/02/2019) (cit. on p. 15).

[57] Leetaru Kalev. As GDPR Turns One Is It A Success Or A Failure? url: https
://www.forbes.com/sites/kalevleetaru/2019/05/06/as-gdpr-turns-one-is-it-a-succe
ss-or-a-failure/ (visited on 06/05/2019) (cit. on p. 1).

[58] Key Changes with the General Data Protection Regulation – EUGDPR. url: htt
ps://eugdpr.org/the-regulation/ (visited on 05/13/2019) (cit. on p. 25).

[59] LifeScope. LifeScope. 2019. url: https : // lifescope . io/ (visited on 03/05/2019)
(cit. on pp. 14, 15).

[60] Christian Lutz. Idea Integration into Nest.JS. url: https://stackoverflow.com/qu
estions/53544876/how-to-integrate-neo4j-database-nestjs-framework-and-graphql
/55318344#55318344 (visited on 05/18/2019) (cit. on p. 43).

[61] Chris Anderson Michael Wolff. The Web Is Dead. Long Live the Internet. Aug.
2010. url: https://www.wired.com/2010/08/ff -webrip/ (visited on 06/09/2019)
(cit. on p. 21).

[62] Neo4j GraphQL JS - Documentation. url: https://grandstack.io/docs/neo4j-grap
hql-js.html#schema-augmentation (visited on 05/18/2019) (cit. on p. 43).

[63] Nikolaj Nielsen. GDPR - a global ’gold standard’? url: https://euobserver.com/j
ustice/141906 (visited on 06/05/2019) (cit. on p. 1).

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52016PC0593
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52016PC0593
https://www.iro.umontreal.ca/~lapalme/ift6281/sparql-1_1-cheat-sheet.pdf
https://www.iro.umontreal.ca/~lapalme/ift6281/sparql-1_1-cheat-sheet.pdf
https://www.w3.org/TR/sparql11-update/#updateLanguage
https://bitcoinmagazine.com/articles/storj-vs-dropbox-decentralized-storage-future-1408177107/
https://bitcoinmagazine.com/articles/storj-vs-dropbox-decentralized-storage-future-1408177107/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://www.hubofallthings.com/
https://www.hubofallthings.com/
www.freepik.com
https://inrupt.com/solid
https://solid.inrupt.com/
https://github.com/solid/solid-spec/
https://github.com/solid/solid-spec/
https://www.forbes.com/sites/kalevleetaru/2019/05/06/as-gdpr-turns-one-is-it-a-success-or-a-failure/
https://www.forbes.com/sites/kalevleetaru/2019/05/06/as-gdpr-turns-one-is-it-a-success-or-a-failure/
https://www.forbes.com/sites/kalevleetaru/2019/05/06/as-gdpr-turns-one-is-it-a-success-or-a-failure/
https://eugdpr.org/the-regulation/
https://eugdpr.org/the-regulation/
https://lifescope.io/
https://stackoverflow.com/questions/53544876/how-to-integrate-neo4j-database-nestjs-framework-and-graphql/55318344#55318344
https://stackoverflow.com/questions/53544876/how-to-integrate-neo4j-database-nestjs-framework-and-graphql/55318344#55318344
https://stackoverflow.com/questions/53544876/how-to-integrate-neo4j-database-nestjs-framework-and-graphql/55318344#55318344
https://www.wired.com/2010/08/ff-webrip/
https://grandstack.io/docs/neo4j-graphql-js.html#schema-augmentation
https://grandstack.io/docs/neo4j-graphql-js.html#schema-augmentation
https://euobserver.com/justice/141906
https://euobserver.com/justice/141906

References 59

[64] OAuth 2.0 Dynamic Client Registration Protocol. url: https://tools.ietf.org/html
/rfc7591 (visited on 06/15/2019) (cit. on p. 38).

[65] OAuth.io. OAuth2 Introduction Through Flow Diagrams in 5-minutes. Sept. 2018.
url: https : / / blog . oauth . io / introduction - oauth2 - flow - diagrams/ (visited on
06/09/2019) (cit. on p. 23).

[66] Okta. Authorization vs Authentication. url: https://www.oauth.com/oauth2- s
ervers/openid- connect/authorization- vs- authentication/ (visited on 06/09/2019)
(cit. on p. 25).

[67] Okta. Differences Between OAuth 1 and 2. url: https://www.oauth.com/oauth2
-servers/differences-between-oauth-1-2/ (visited on 06/09/2019) (cit. on p. 22).

[68] OpenID Connect. url: https://openid.net/specs/openid-connect-core-1_0.html
(visited on 06/11/2019) (cit. on p. 38).

[69] OpenID Connect Discovery 1.0. url: https://openid.net/specs/openid-connect-dis
covery-1_0.html (visited on 06/11/2019) (cit. on pp. 38, 42).

[70] I. Polikoff and D. Allemang. Semantic Technology. Sept. 2003. url: https :// li
sts .oasis - open .org/archives/regrep- semantic/200402/pdf00000 .pdf (visited on
06/09/2019) (cit. on p. 18).

[71] Regulation (EU) 2016/679 of the European Parliament and of the Council. Journal
reference: L119, 4 May 2016, p. 1–88. Apr. 2016. url: https://eur-lex.europa.eu/e
li/reg/2016/679/oj (visited on 05/13/2019) (cit. on p. 25).

[72] Remarks delivered at the World Economic Forum. url: https://www.georgesoro
s.com/2018/01/25/remarks-delivered-at-the-world-economic-forum/ (visited on
03/31/2019) (cit. on p. 7).

[73] RSA Key Formats. url: https : / / www . cryptosys . net / pki / rsakeyformats . html
(visited on 06/11/2019) (cit. on p. 40).

[74] Verborgh Ruben. Getting my personal data out of Facebook. 2019. url: https://r
uben.verborgh.org/facebook/ (visited on 06/05/2019) (cit. on p. 1).

[75] Schema.org. url: https://schema.org/ (visited on 06/23/2019) (cit. on p. 17).
[76] Olivia Tambini. WhatsApp ads to appear in app from 2020. url: https : //ww

w.techradar .com/news/whatsapp- ads- to- appear - in- app- from- 2020 (visited on
06/10/2019) (cit. on p. 52).

[77] The world’s most valuable resource is no longer oil, but data. May 2017. url: htt
ps://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-i
s-no-longer-oil-but-data (visited on 06/06/2019) (cit. on p. 7).

[78] Ruben Verborgh. An introduction to the Solid ecosystem. 2018. url: https://ruben
verborgh.github.io/Web-Foundation-2018/ (visited on 02/02/2019) (cit. on p. 15).

[79] W3C. Linked Data Platform 1.0. Feb. 2015. url: https://www.w3.org/TR/2015
/REC-ldp-20150226/ (visited on 06/09/2019) (cit. on p. 28).

[80] W3C. OWL 2 Web Ontology Language Structural Specification and Functional-
Style Syntax (Second Edition). Dec. 2012. url: https://www.w3.org/TR/owl2-sy
ntax/ (visited on 06/09/2019) (cit. on p. 29).

https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591
https://blog.oauth.io/introduction-oauth2-flow-diagrams/
https://www.oauth.com/oauth2-servers/openid-connect/authorization-vs-authentication/
https://www.oauth.com/oauth2-servers/openid-connect/authorization-vs-authentication/
https://www.oauth.com/oauth2-servers/differences-between-oauth-1-2/
https://www.oauth.com/oauth2-servers/differences-between-oauth-1-2/
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://lists.oasis-open.org/archives/regrep-semantic/200402/pdf00000.pdf
https://lists.oasis-open.org/archives/regrep-semantic/200402/pdf00000.pdf
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.georgesoros.com/2018/01/25/remarks-delivered-at-the-world-economic-forum/
https://www.georgesoros.com/2018/01/25/remarks-delivered-at-the-world-economic-forum/
https://www.cryptosys.net/pki/rsakeyformats.html
https://ruben.verborgh.org/facebook/
https://ruben.verborgh.org/facebook/
https://schema.org/
https://www.techradar.com/news/whatsapp-ads-to-appear-in-app-from-2020
https://www.techradar.com/news/whatsapp-ads-to-appear-in-app-from-2020
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://rubenverborgh.github.io/Web-Foundation-2018/
https://rubenverborgh.github.io/Web-Foundation-2018/
https://www.w3.org/TR/2015/REC-ldp-20150226/
https://www.w3.org/TR/2015/REC-ldp-20150226/
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-syntax/

References 60

[81] W3C. RDFa Core 1.1 - Third Edition. Apr. 2015. url: https://www.w3.org/TR
/2015/REC-rdfa-core-20150317/ (visited on 06/09/2019) (cit. on pp. 18, 19).

[82] Josephine Wolff. How Is the EU’s Data Privacy Regulation Doing So Far? Mar.
2019. url: https://slate.com/technology/2019/03/gdpr-one-year-anniversary-breac
h-notification-fines.html (visited on 06/05/2019) (cit. on p. 1).

https://www.w3.org/TR/2015/REC-rdfa-core-20150317/
https://www.w3.org/TR/2015/REC-rdfa-core-20150317/
https://slate.com/technology/2019/03/gdpr-one-year-anniversary-breach-notification-fines.html
https://slate.com/technology/2019/03/gdpr-one-year-anniversary-breach-notification-fines.html

Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

width = 100mm
height = 50mm

— Diese Seite nach dem Druck entfernen! —

61

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Problem Definition and Motivation
	Goal of the Work

	Information Management
	Personal Information
	Personal Information Management
	Tools for Information Management
	Shortcomings

	Personal Data Stores
	Personal Cloud vs. Personal Data Store
	Reasons for Personal Data Stores
	Comparing the Paradigms
	Single Source of Truth
	Single Identity
	Control Access to Data
	Ownership of Data
	Freedom of Choice

	State of Personal Data Stores
	Aggregation Platforms
	Cozy Cloud
	digi.me

	Identity Platforms
	LifeScope
	Hub-of-All-Things
	Solid

	Technologies
	Semantic Web
	Semantic Technology
	Resource Description Framework (RDF)
	Graph Databases
	Semantic Search Query Language (SPARQL)

	Authorization and Identity Management
	OAuth 2.0
	OpenID Connect

	Regulations
	General Data Protection Regulation
	Privacy by Design and Privacy by Default
	Directive on Copyright in the Digital Single Market (DCDSM)

	Solid Prototype
	Proposal and Idea
	Linking and Discoverability
	Storing
	Data Retrieval and Querying Data

	Implementation
	Technology
	Interaction
	Architecture
	Data Structures

	State of the Prototype and Learnings

	Selfbox Prototype
	Idea and Goal
	Authorization and Permissions
	Storage and Exploration

	Implementation
	Authentication and Authorization
	Storage and Exploration
	Protection of Resources

	Frontend
	Authorization
	Interaction

	State of the Prototype and Outlook

	Conclusion
	Future of the Web
	Goals and Experiences

	Content of the CD-ROM
	PDF-Files
	Prototypes

	References
	Literature
	Software
	Online sources

