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Kurzfassung

Eine künstliche Intelligenz (KI), die es in einem Spiel schaft die gegnerische
Strategie herauszuĄnden und diese Information nutzt, bietet eine größere
Herausforderung und ein spannenderes Spielerlebnis. Dieser Ablauf ist unter
dem Begrif Opponent Modeling bekannt. Um die Strategie des Gegners zu
identiĄzieren, können KlassiĄzierungsansätze verwendet werden. Opponent
Modeling zählt daher zu den KlassiĄzierungsproblemen. In dieser Arbeit
werden drei verschiedene Ansätze getestet und die Ergebnisse verglichen.

Ein Ziel dieser Arbeit ist es, die wichtigsten Schritte, die bei der Er-
stellung einer solchen KI nötig sind, zu veranschaulichen. Zusätzlich soll
die gezeigte Implenentierung anderen Spieleentwicklern helfen, diese Meth-
oden in ähnlichen Spielen zu verwenden. Getestet wurden folgende Klassi-
Ązierungsmethoden: Naive BayesŠ, der CART Algorithmus zur Erstellung
eines Entscheidungsbaumes und die Nächste-Nachbarn-KlassiĄkation. Ein
rundenbasiertes Strategiespiel wurde als Testumgebung für die Erkennung
der gegnerischen Strategien im Zuge der Master Lehrveranstaltungen Thesis-
Project I und II in der Programmiersprache Java implementiert. Das Spiel ist
ein Nullsummenspiel für zwei Spieler mit perfekter Information. Die Aufgabe
der Spieler ist es spezielle Spielfelder mit ihren SpielĄguren einzunehmen,
um sich einen Vorteil gegenüber ihren Gegner zu verschafen. In dem im-
plementierten Spiel gibt es drei verschiedene Strategien. Testspiele, in de-
nen statische KIs gegeneinander angetreten sind, wurden verwendet, um die
verschiedenen KlassiĄzierungsmethoden zu trainieren.

Um gute Ergebnisse zu erzielen, müssen mehrere Faktoren berücksichtigt
werden. Das Bestimmen der richtigen Features ist einer der wichtigsten
Schritte bei der KlassiĄzierung. In dem implementierten Spiel wurde der
Gegner nach jeder Runde klassiĄziert, um möglichst schnell auf die erkan-
nte Strategie des Gegners reagieren zu können. Die KI gewann mit Hilfe der
verschiedenen KlassiĄzierungsansätze 44 von 45 Spielen. Ein Spiel verlor
die KI aufgrund von FehlklassiĄzierung in den ersten Runden. Während der
Evaluierung konnte dieser Fehler behoben werden, indem die Anfangsstrate-
gie der KI für die ersten fünf Runden Ąx gesetzt wurde. Die Ergebnisse
zeigen, dass mit dieser Maßnahme die Genauigkeit der Methoden verbessert
werden konnte. Die besten Ergebnisse lieferte CART mit einer Genauigkeit
von fast 95 %.
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Abstract

An artiĄcial intelligence (AI) in a game which is able to create a model
of the opponent player and uses this information to compete against this
opponent makes the game AI more challenging and more exiting to play
against. Opponent modeling is considered a classiĄcation problem, as the
methods try to classify the strategy of the opponent. This research is about
testing diferent opponent modeling strategies in a turn-based strategy game
in order to evaluate their performance.

This thesis should provide the reader with information about the most
important tasks when implementing a simple opponent modeling AI in a
game. Additionally the results should give other game developers guidance
about how to include the opponent modeling methods in a similar game
setup. The tested classiĄers are: Naive BayesŠ, the decision tree classiĄer
CART and k-nearest-neighbor. The testbed for the opponent modeling is
a simple turn-based strategy game developed in Java during the master
programs ThesisProject I and II. It is a two-player, zero-sum game where the
player moves units to special platforms in order to capture them and receive
rewards. The players in the game do have perfect information about the
whole setup and their opponentŠs moves. There are three diferent strategies
in the game. Test-games, where static AIs played games against each other,
are used to train the opponent modeling AI.

In order to achieve good results, there are many tasks to be considered.
Feature extraction is one of the most important ones. As classiĄcation was
performed every round, the opponent modeling AI could quickly react upon
the opponentŠs strategy. With the help of the classiĄers, the opponent mod-
eling AI did win almost every game against the static AIs. In one out of 45
games, misclassiĄcation in the early game caused the opponent modeling AI
to lose the game. During the evaluation process, this error could be elimi-
nated by Ąxing the strategy of the opponent modeling AI during the Ąrst few
rounds. By doing so, the accuracy of all classiĄers was increased. All in all,
the CART classiĄer performed most accurately. In almost 95% of all rounds,
classiĄcation was correct. The other classiĄers did just slightly worse.

vii



Chapter 1

Introduction

Entertainment is the most important goal of almost any game. In order to
reach this goal, the game designers and developers try to produce games
which capture the playersŠ complete attention and make them forget about
everything else while playing. This condition is better known as the game
flow. In The Art of Game Design: A Book of Lenses [21] Ćow is described as
Şa feeling of complete and energized focus in an activity, with a high level
of enjoyment and fulĄllment.Ť Besides clear goals, no distractions and direct
feedback, providing the players with continuous challenges is a crucial part
of keeping them in the state of Ćow as long as possible. Of course, if the
challenges in the game are too diicult, the players are frustrated quickly.
On the contrary, players become bored if the game is too easy. Figure 1.1
visualizes the Ćow channel between boredom and frustration.

When including an artiĄcial intelligence (AI) in the game, it is diicult
to achieve constant Ćow for the player. When the AI is over powered, or
obviously cheating the player will not enjoy the game. On the other hand,
if the AI is static, or non-adaptive, meaning it is not able to analyze the
playerŠs actions and react upon them, the player can easily exploit the AIŠs
weaknesses. Beating the same AI is easy then and again, the game will lose
its charm.

An approach of creating a non-cheating but challenging AI is to include
the ability of opponent modeling.

1.1 What is Opponent Modeling?

In a game, where all diferent kinds of strategies are known, the enemyŠs
strategy is exploited by classifying the current game state or the actions of
the opposing player. This classiĄcation and the process of identifying the
strategy of opponents with the help of the observed information of their
behavior is called Opponent Modeling. In Bakkes et al. [2] it is deĄned as
creating Şan abstracted description of a player or of a playerŠs behavior

1



1. Introduction 2

Figure 1.1: Game Ćow: When the challenges are too high, but the skill
level of the player is low, frustration is inevitable. If the playerŠs skills are
high and the challenges are not, the player becomes bored. Inside the Ćow
channel, skills and challenges are well-matched and the player experiences
excitement. The waved arrow should visualize the playerŠs experience growth,
which makes the game a bit easier, followed by rewards and new challenges.
The original picture and a more detailed description can be found in [21].

in a game.Ť Hence, the task of an opponent modeling AI is to identify its
opponentsŠ strengths and weaknesses and react to them. Of course, in order
to keep the game fair and the players inside the Ćow channel, the opponent
modeling AI should only use information which could be observed by a
human player too (no cheating).

Opponent modeling is used to create game AIs that are fair, more chal-
lenging and more exiting to play against. An opponent modeling AI which is
able to use the observations to identify the opponentŠs strategy can achieve
better results than playing a known optimal solution a.k.a. Nash equilibrium
solution concept [31]. For example, in the game ŞRoshamboŤ (rock-paper-
scissors) the Nash equilibrium strategy is to play randomly. When the AI
is doing so, it will win 1/3 of all games, 1/3 of the games will be lost and
the rest are ties. When the opponent modeling AI Ąnds out, that its enemy
sticks to playing rock, it can switch its strategy and play paper as a counter.
As a result, it will win more than 1/3 of the games, or force the opponent
to switch to another strategy too. Hence, the AI is able to perform better
than playing the Nash equilibrium solution when it is able to identify the
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opponentŠs strategy.
Here, the term strategy refers to the plan of the player how the long-term

goal can be reached in the game. For example, there are diferent strategies
in the game series of Sid MeierŠs Civilization. These strategy games are
turn-based and the main goals there are: building a civilization, capturing
land, harvesting resources and money in order to invest in new technology
or a better army to gain an advantage over the opponent civilizations. On
the one hand, the game can be won aggressively, by destroying the other
civilizations. On the other hand, when putting efort into research and the
technology improvements in order to build a rocket and explore the space,
the game can be won defensively too. The overall plan, which actions to make
in order to win the game, is considered a game strategy. On the contrary,
when talking about tactics, the duration is short as a tactical move includes
only one or a small set of actions. For instance, a tactical move in chess
would be if a player decides to sacriĄce the rook in order to save the queen
from being taken. All in all, the strategy encloses all tactical moves during
the play.

A game AI which is able to create a model of the opponent player and
uses this information to compete against this opponent makes the AI more
challenging and more exiting to play against. Opponent modeling is consid-
ered a classiĄcation problem, as the methods try to classify the strategy of
the opponent. The diferent classiĄcation methods are part of the Ąeld of
Machine Learning. Bowling et al. [4] state that opponent modeling, as well
as partner and team modeling, can be found in the sub-domain Şlearning
about playersŤ. Here, the pattern classiĄcation methods are used in order to
identify the strategy of the opponent in the game.

At Ąrst, when creating an opponent modeling AI, it is important that
the AI is aware of all the possible strategies in the game. In order to be-
come familiar with the game, the AI needs to be trained. This is similar for
all human players too. However, for a human being, classiĄcation is done
automatically. Certainly, knowing the rules of the game and some training
is also necessary to become familiar with the possibilities in the game. Fur-
thermore, being aware of the strategies and their counter is important to
have a chance against a more experienced player. Nonetheless, for a com-
puter program the classiĄcation task is not trivial and requires more steps
than training. Some of those steps are discussed in detail in the subsequent
chapters.

After the opponent modeling AI has been trained, it is able to use the
observations during the game in order to classify its opponent with the help
of pattern classiĄcation algorithms.
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1.2 Goals

In this research one of the main goals is to test diferent opponent modeling
methods in a small game environment in order to evaluate their performance.
The three methods which were tested are: Naive Bayes’, the decision tree
classiĄer CART and the nearest-neighbor approach kNN. Besides the test-
ings the results should give other game developers guidance about how to
include these methods in a similar game setup. The test environment of the
opponent modeling methods is a small turn-based strategy game, which is
written in the object-oriented computer programming language Java and
was developed during the master programs: ThesisProject I and II. The
classiĄers were implemented in Java as well and no software tools were used
for the testings.

In previous work, most of the opponent modeling methods were tested in
well-known games, like Civilization or StarCraft® (developed and published
by Blizzard Entertainment™), with replay data from expert plays. As a
result, the classiĄers could be trained efectively. As the implemented game
here is not available online or somewhere else, and as it was just created
for testing the diferent opponent modeling methods, there is no data from
game logs available. Hence, another goal of this research is also to encourage
game developers to include opponent modeling methods before having their
games released.

As mentioned before, the pattern classiĄcation methods were imple-
mented by hand. This approach is advisable if the classiĄcation methods
are used for the Ąrst time in order to fully understand the diferent meth-
ods and the mechanisms beyond. One big advantage is that the reasons for
misclassiĄcation can be identiĄed easier if one is familiar with the workĆow
of the used classiĄcation method.

The following list provides an overview of the main goals of this thesis:

• Test and evaluate diferent pattern classiĄcation methods for opponent
modeling.

• Provide an idea of how to implement the tested methods for other
researchers in this Ąeld.

• Show how the methods can be used without replay data or game logs
from expert play.

1.3 Outline

In chapter 2, related work in the Ąeld of opponent modeling in games is
presented. Studies for the diferent types of games, like board games, or video
games, are structured and summarized in the subsections of this chapter.

The turn-based strategy game and the rules of the game are described in
detail in chapter 3. Additionally, some information about the implemented
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game architecture and the used algorithms can be found in section 3.2. The
identiĄed strategies in the game are described in section 3.2.2. At the end
of this chapter, some information about the game balance is provided.

In chapter 4, the opponent modeling AI is presented. The main parts here
are: the AIŠs workĆow, feature extraction and the implemented classiĄers.
Section 4.1 covers the basic information about the Naive BayesŠ classiĄer. A
classiĄer using a decision tree for the identiĄcation of the opponentŠs strategy
is presented in section 4.2. The basics of the kNN classiĄer are described in
section 4.3. Implementation details of the AI as well as the classiĄers are
given in the last section of this chapter.

Chapter 5 covers the test results of the opponent modeling AI when
playing against static AIs. The performance as well as the simplicity of each
classiĄer was evaluated individually. The results are compared in section 5.4.

The last chapter summarizes the results of this research and provides
an outlook for further improvement of the proposed opponent modeling
strategies.

In appendix A the content of the enclosed CD-ROM is listed.



Chapter 2

Related Work

By analyzing the tactical moves of a player and trying to classify them, op-
ponent modeling can be considered as a classiĄcation problem. In the book
Pattern Classification by Duda et al. [9] detailed information about classi-
Ącation methods and algorithms can be found. Besides these descriptions,
mathematical foundations are enclosed at the end of this book in order to
better understand the described methods for pattern classiĄcation.

Bakkes et al. [2] describe in the article ŞOpponent modelling for case-
based adaptive game AIŤ the two diferent roles of player modeling. There
are: (1) modeling the companion and (2) modeling the opponent player.
When trying to identify the strategy of a team member, the opponent mod-
eling AI is used to help and adjust its moves to the player. On the other
hand, when opponent modeling is used to compete with the player, the task
of the opponent modeling AI is to identify the playerŠs strategy and try to
challenge it with the appropriate counter.

The following sections provide an overview about related work in the
Ąeld of opponent modeling considering diferent types of games.

2.1 Board games

In zero-sum board games with perfect information, like chess, opponent mod-
eling can be done with adversarial search. Certainly, the Minimax algorithm
is infeasible in most games, as the search tree of the possible moves is too
large. Adding alpha-beta pruning helps to reduce the search space a little.
However, Minimax tries to compute the Nash equilibrium for both players,
meaning the algorithm assumes that the opponent does not make mistakes
and tries to maximize the payof [12].

In board games with imperfect information Stankiewicz and Schadd [24]
used a Bayesian approach to model the opponentŠs behavior in Stratego.
With the help of probability distributions they tried to determine the un-
known pieces of the game. A similar approach was provided by Zhang [28]

6



2. Related Work 7

who built an opponent model for a variation of Stratego. For easier classi-
Ącation they created models of the arrangement tendency of opponents out
of history data of the game. A probability table for each diferent strategy
was built to generate decision methods. As a result, four diferent opponent
models (general, aggressive, balance and defensive model), on the base of
the playersŠ arrangement tendencies, could be established.

2.2 Card games

When considering opponent modeling in card games, Poker is the one which
has been studied most. While Hoehn et al. [14] analyzed Khun Poker, a
simpliĄed two-player version of Poker, Boudewijn and other researchers ex-
amined the most popular variation of Poker, Texas HoldŠem [3, 22]. In order
to build reliable opponent models, historical data from games against human
players was used and stored in an artiĄcial neural network. In the end, the
system was able to predict the next action (fold, call, raise) of the opponent
with an accuracy up to 60%. The most popular Poker bot which includes
an opponent modeling system is called Poki [5, 6]. Although there has been
some progress in creating an opponent model for Poker, there are still some
factors which were not taken into account. Davidson et al. [6] state that there
can be improvement of the opponent model when it comes to a showdown
by making inference about the playersŠ actions after the cards are known.

Schauenberg [20] mentions in ŞOpponent Modelling and Search in PokerŤ
that Poker is an excellent testbed for opponent modeling as it is possible to
include knowledge about the opponent players from previous games. That is
because when playing Poker, all players usually play more than one session
against the same opponents. Hence, information about the behavior of the
players from the previous games can be easily included in the classiĄcation
process for the following games.

2.3 Video games

In Weber et al. [27], opponent strategies for the Real-time strategy (RTS)
game StarCraft1 were identiĄed with a data mining approach. The main goal
of this research was to create a general model of expert StarCraft gameplay.
The domain knowledge was extracted from a large amount of replay data
which is available for StarCraft. When analyzing expert play, rules for certain
strategies can be extracted and used for classifying the opponentsŠ strategy.
Algorithms from an open-source data mining software called ŞWekaŤ [33]
were used for the classiĄcation.

Synnaeve et al. [25] introduced a Bayesian model in order to infer the
opponentsŠ opening strategy in RTS games. The testings were also done in

1 developed by Blizzard EntertainmentTM
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the RTS game StarCraft. The idea here is to predict the opponents strategy
during the game phase where the players do not see the actions of each other
as they are covered beyond the fog of war2. The opening timespan includes
the Ąrst 5 to 15 minutes of the game. For the training of the Bayesian model
Synnaeve et al. used the labeled replay data from Weber et al. [27]. For
clustering the data, k-means was implemented. In the end, the implemented
bots by Synnaeve et al. were able to predict the opening strategy of the
opponent with an accuracy of about 65% after the Ąrst Ąve minutes. After
ten minutes, this prediction even reached an accuracy up to 94% in some
cases. Furthermore, Synnaeve et al. state, that their approach is robust
against noise if there are some observations missing.

Avontuur [1] compared the performance of diferent classiĄcation meth-
ods in the RTS game Wargus. The testing was done with the help of the
previously mentioned Weka toolkit. Among the tested classiĄcation methods
was the Naive BayesŠ classiĄer, the Ibk algorithm, which uses the nearest-
neighbor approach and also an implementation of the C4.5 algorithm which
uses a decision tree. All possible actions in the game were used for the
classiĄcation. When doing so, also unnecessary or overĄtting information is
included. Hence, it is clear that the results of the testings were not particu-
larly outstanding.

Another approach for predicting opponent behavior can be found in
Rashad [18] where the classiĄcation is done with the help of rough sets
and neural networks. After identifying the main features of the game, rough
sets are used to extract the relevant data to reduce the complexity to a
minimum. This is done in order to overcome the disadvantages of neural
networks, like the slow learning rate, which occurs if the dimension of the
input data is large.

In the book AI Game Programming Wisdom 3 in the chapter ŞPrefer-
ence-based player modelingŤ a description of how opponent models are built
with the help of preference functions can be found [8]. Preference-based
player models were created for the turn-based strategy game Civilization IV
(CIV4) [19, 23]. As in CIV4 games can be won in peace or war, the main
goal of these researches was to determine if the players prefer to Ąght or
not. The training data upon which the opponent models were built was
gathered from 1 vs. 1 battles where AI bots played against each other.
Unfortunately, the results of the player model were not accurate enough as
CIV4 is a large game with many diferent features. Furthermore, preferences
of human players could be predicted only if the player stuck to a certain play
style.

Van Der Heijden et al. [26] used the information about the opponent
to change the formation of the units dynamically in the Open Real-Time

2The fog of war refers to an area in the game which is unknown until the player moves
units to it.
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Strategy (ORTS) game environment. In this research they built diferent
opponent models and counter strategies for each model. By classifying the
opponentsŠ strategy the most suitable model was determined considering
the given game observations. With this technique also new and unknown
opponents could be classiĄed. The BayesŠ theorem was used for the classi-
Ącation. Hence, the model with the highest likelihood given the observed
feature values was determined.

Besides the opponent modeling in RTS games, it can also be found in Ąrst
person shooters or multi-agent systems. Hladky and Bulitko [13] introduce
in their research a possibility to predict the opponents position in the Ąrst
person shooter Counter-Strike: Source (developed by Valve Software). For
this prediction, they used a modiĄed hidden Markov model approach and
particle Ąlters. Ledezma et al. demonstrate in their research that opponent
modeling can be even added to a soccer game of robots (RoboSoccer) [15].

To sum up, opponent modeling is possible, however not always easy, for
diferent types of games. An AI which is able to identify the strategy of its
opponent and uses this information to adapt its play style can make a game
more attractive, provided the modeling is done correctly. In some of the
previous work toolkits with the implemented data mining algorithms were
used for the testings. Furthermore, opponent modeling was added to games
with online logs or available replay data where models were built according to
large amount of training data. Hence, there has already been some research
on this topic, however, there is still much room for improvement.



Chapter 3

The Game

The environment for testing diferent opponent modeling strategies is a small
turn-based strategy game. This test environment was developed during the
master program subjects: ThesisProject I and II. Basically, it is a two-player
zero-sum game with a fully observable environment. Each player controls
units, which can be moved between the platforms. The goal of the game is
to send these units to special platforms in the game world to gain a com-
petitive advantage over the opponent. Figure 3.1 displays a mock-up of the
game world. The main idea of capturing platforms originates from the game
Biotix (BIOTIX:PHAGE GENESIS developed by TEN PERCENT RED)
which is a fast-paced real-time strategy (RTS) game for mobile devices.
Further inĆuences to the gameplay come from turn-based games like Sid
MeierŠs Civilization V(published by Take-Two Interactive Software and its
subsidiaries) and the board game Risk(© 2000 Hasbro International Inc.).

The following sections cover the overall game setup, like the rules of the
game and some implementation details. In order to be able to test diferent
opponent modeling strategies, static AIs were implemented and take the role
of stable opponents. These AIs as well as their implemented strategies will
be explained in section 3.2.2. At the end of this chapter, some information
about the game balance is provided.

3.1 Rules of the Game

One crucial factor of being able to play a game well is to know and under-
stand the rules of the game. For the small test environment there are just
a few of them. As mentioned before, it is a two-player game. In order to
diferentiate between the players, diferent colors are assigned to them. The
game world consists of platforms. Paths between these platforms allow the
players to move units along the paths to the platforms. Each path is divided
into steps. At the beginning of the game, each player owns a base platform
and two units. These units are placed on the base. Additionally, the player

10
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Figure 3.1: Game mock-up: The game is turn-based, two player and zero-
sum. Diferent platform types allow the players to make strategic decisions.

may move units Ąve steps per turn. The core rules of the game are as follows:

1. Turn-based: players do not play simultaneously but take turns.

2. Each turn a player is allowed to perform a certain amount of moves.

3. Units belonging to the player can be moved from one platform to
another along the given paths.

4. Platforms are obtained when moving units to them.

5. Owning a platform: the player receives beneĄts for obtaining a plat-
form at the playerŠs next turn.

6. Win the Game by destroying the enemy base, or

7. win the Game by taking over the special platform called Castle (de-
tailed description see section 3.1.2).

3.1.1 Units

In the game, the player owns units. These can be moved around. For the
sake of convenience, the units in this game are visualized as circles colored
in their ownersŠ color. The strength of a unit is equal to its hit points (HP).
Meaning, when there is a Ąght between two units with equal HP they cancel
each other out. If a unit attacks an enemy unit with less HP, the enemy
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unit gets destroyed, however the attacking unit also loses HP. Units can be
upgraded when owning the platform of type C (see section 3.1.2)

In addition to the playersŠ units, there are also neutral units in the game.
These units are static during the whole gameŮthey do not move because
they do not belong to a player. When there are neutral units on a platform,
they have to be destroyed Ąrst, before a player can take over the platform.

3.1.2 Types of Platforms

Beside the playerŠs base there are four other types of platforms in the game.
Figure 3.2 displays how these diferent types are visualized. These platforms
do not just grant their owner advantages during the play, but also give the
players the possibility to make diferent strategic decisions. In the following,
these four types are described in detail.

Platform A

When owning a platform of type A, a new unit spawns directly on this
platform in the next round. New units are created as long as the platform
belongs to a player (number of units on the platform is greater than zero).
Owning a platform of type C will prevent new units from spawning. If there
are neutral units on a platform of type A, no units are spawned on it.

Platform B

Positioning units on a platform of type B grants the owner of the units
extra moves in the next round. For example, if a player sends Ąve units to a
platform of type B, the player is allowed to do Ąve extra moves at the next
turn (provided the units on this platform stay alive).

Platform C

When a player owns a platform of type C, all platforms of type A belonging
to the same player will stop spawning new units. After ten rounds, all units
of the player receive extra HP. In addition to that, the playerŠs moves per
turn are permanently increased by three.

Castle

The special platform called Castle is occupied by 15 neutral units. A player
has to defeat these units Ąrst, before the platform can be taken over. How-
ever, when a player has taken over the Castle, the game is over and that
player wins.
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(a) (b)

(c) (d)

Figure 3.2: This Ągure displays the diferent types of platforms in the game.
Most of the platforms are visualized as basic shapes. The square in (a) repre-
sents platforms of type A, the rectangle in (b) platforms of type B, the circle
in (c) platforms type C and the shape in (d) visualizes the special platforms
Castle. The number inside the platform indicates the current number of units
on it. When a player owns a platform, the outline is colored with the playerŠs
color.

3.2 Implementation

The game was implemented in the computer programming language Java
during the master program subjects: ThesisProject I and II. The open source
game development framework libGDX1 was used for the visualization. In
order to build a proper architecture with lose coupling, a messaging system
in connection with an entity-component system was implemented. These
systems are explained in detail in the section 3.2.1.

The game loop2 saves a list of tasks which are executed once per frame.
Everything in the game, which needs to be updated during the game loop,
implements the interface Task. The following code displays how this interface
is written in Java and the three methods, initialize, execute and cleanup,

1http://libgdx.badlogicgames.com
2The game loop is sometimes called the heartbeat of a game, as it is responsible for

keeping the game alive.
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which are known by the game loop:

1 public interface Task {

2 public void initialize();

3

4 // return true if this task has finished, false otherwise
5 public boolean execute();

6

7 public void cleanup();

8 }

The initialize method is called when a new task is added to the game loop.
Inside this method general jobs for initialization are done. For example,
memory is allocated for lists and hash maps, the class subscribes to explicit
messages from the messenger, etc. As mentioned before, the game loop calls
the execute method of the stored tasks every frame. The return value of
this method indicates if this task has Ąnished its work or if it needs to be
executed again. When a task is not needed any more, e.g., an entity in the
game got destroyed, the task is removed from the game loopŠs list of tasks
and its cleanup method is called. The task then frees any resources used.
With this generic interface, any task can be executed by the game loop3.

3.2.1 Architecture

In a game, everything with which the programmer can interact is called an
entity. In the book Introduction to Game Development by Rabin [17] an
entity is deĄned as Şa self-contained piece of logical interactive contentŤ. For
this game the entities are units, platforms and players. An entity consists
of several components and dependencies. Figure 3.3 shows how the entity
for units is composed. Small components are easily exchangeable and can
be reused for diferent entities. For example, there is a component in the
game which stores the information about the owner of an entity. Another
component is responsible for the movement along a given path, a third one
saves HP, and the last one saves the position in a coordinate system. All these
components together can be used to create a unit entity. Additionally, the
component with the information about the owner, as well as the knowledge
about the position can be used for the platform entity too.

A class called EntityManager takes care of all the entities. It provides
methods to add and remove entities from the game. Additionally, there are
other managers inside the game logic. The GameManager adds the AIs to
the game and handles the turns. The UnitManager creates and destroys the
unit entities and passes the information to the EntityManager, etc.

Inside the update method of the components continuous computations,
like the movement of a unit, take place. The results are wrapped in messages
and sent to the messaging system (messenger). Each message is labeled with

3See a similar approach in [17].
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Figure 3.3: UnitEntity: Dependencies: For the position update a depen-
dency to the Timer, a class which stores the delta time (= the timespan
between two updates), is needed. The Messenger is used to inform the view
about changes of the position. Components: The PathComponent stores the
information of the path the unit should follow (a list of points). It also saves
the current position of the unit. The DynamicPathFollowingComponent uses
this information to move the unit along the path. The LifeCycleComponent
is responsible for sending messages when the unit is initialized, updated and
destroyed.

a public type to which any class can subscribe. Furthermore, the class needs
to implement an interface Receiver. By doing this, the class implements a
method which handles the subscribed message. The messenger stores the
information about all the classes (receivers) which subscribed to a certain
message. Incoming messages are then passed to the receivers either instantly,
or during the next update of the game loop. Figure 3.4 visualizes which
messages are sent when a new unit is created. The messaging system, helps
to minimize the coupling between the logic and the view and also between
the entities. The messenger is an example of a dependency which can be
added to an entity. With the help of dependency injection there is no need
to pass a reference of the messenger, other components of the entity can just
use it. In this way, position updates of a unit, or changes of the ownership of a
platform are directly managed by their components. Managers, components
and entities are part of the game logic.

The view is responsible for displaying the entities. In other games, the
view also takes care of user input. This part is not needed for this game as it is
played by AI agents and runs automatically. Furthermore, the visualization
was just needed during the programming phase to test if the implementation
was correct. For testing the opponent modeling methods, a debug log is
suicient.
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Figure 3.4: Each new turn (NextTurnMessage sent by the GameManager),
platforms of type A which belong to the current player send a Create-
UnitMessage. The UnitManager handles this message and creates a new unit
entity. When adding it to the EntityManager, it gets initialized. Hence, all
components of the entity are initialized too. The LifeCycleComponent sends
a SpawnUnitMessage on initialization. The view handles this message and
shows the unit on the platform. Inside the game logic there are some di-
rect references, here visible between the UnitManager an the EntityManager.
However, between the logic and the view, only messages are passed.

3.2.2 The Static AIs

In this game, the static AIs are goal-oriented, meaning they have several
goals they strive to reach. The priority of a goal is determined by the AI
itself. During the game, the AIs use a utility-function to choose the goal
which is currently the most feasible. This function is deĄned for each goal
extra. The idea is to use the information about the current game state in
addition to the priority of the goal, in order to decide which action to do
next. For example, the utility function of the goal to destroy the enemy base
includes the path costs, as well as the number of enemies along the path. If
there are too many enemy units in the way, this goal is infeasible. The goal to
take over a platform of type A additionally calculates the ratio between the
owned platforms of this type after the next move and those which are still
available. This value tells the AI if the planned move increases the number of
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owned platforms of type A. With this knowledge, the AI can decide whether
to execute the move, or if an other one is more proĄtable.

As paths connect the platforms, the game world can be described as a
graph with nodes (= the platforms) and edges (= the paths). Hence, the
algorithms Dijkstra and A* (pronounced as ŞA starŤ) were implemented
for pathĄnding4. The AIs use these algorithms either to Ąnd the nearest
platforms of a special type, or to Ąnd the shortest path to the castle or the
enemy base.

In a game, where opponent modeling should be implemented, it is im-
portant that there is no dominant strategy. Considering, there is one strat-
egy which ensures the player to win the game, there is no need to Ąnd
out the opponentŠs strategy. Therefore, the game needs balanced strategies,
where a strategy is good against one, but defeated by an other. The game
ŞRoshamboŤ, a.k.a. rock-paper-scissors, is an excellent example in this case.
It does not matter if the player picks rock, paper or scissors, the chances
of winning or losing the game are equal. For this game, three major strate-
gies were identiĄed and implemented for diferent AIs. Each strategy faces
a counter.

Strategy 1: Rush

The Ąrst AI uses a strategy called Rush. The plan is to produce many units
with little efort to charge the enemy early in the game. In RTS games this
strategy is better known as ŞZerg RushŤ. This name comes from the popular
game StarCraft® (developed and published by Blizzard Entertainment™),
as the cheapest unit in this game, which is available at the very beginning
of the game, is called Zerg. This strategy is good against an enemy who
saves resources for better units. Here, this strategy defeats the enemy who
tries to upgrade the units (see Strategy 3). The main goal of strategy 1
is to destroy the enemyŠs base. To accomplish this goal as soon as possible,
the shortest path from each unit to the enemy is calculated. This is done
with the pathĄnding algorithm A*. For this calculation also the number of
enemies along this path are taken into account, as the path with the lowest
movement costs is infeasible if there are too many enemies to Ąght against.
Another goal of this strategy is to take over platforms of type A and B along
the path. In this way, the AI gathers units and extra moves while moving
its units towards the enemy. Figure 3.5 displays the static AI when playing
strategy 1.

Strategy 2: Defend

A counter to the Ąrst strategy is to defend all the possible paths around
the own base. This goal is reached by taking over platforms of type A next

4A detailed description of these algorithms as well as pseudo-code can be found in [16].
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Figure 3.5: This Ągure displays a screenshot of the implemented game,
where a static AI, owning the base on the left side of the game, is playing
strategy 1. When doing so, the static AI sends its units along the shortest
path to the enemyŠs base. The small platforms between the special platforms
indicate the path costs along the path. The number of units of the static
AI increase each turn for each platform of type A the AI has captured.
Furthermore, the static AIŠs number of moves are increased by two, as it
has positioned two units on platforms of type B. In order to visualize the
strategy best, the player on the right side, who owns the second base, is not
performing moves.

to the base. By doing so, new units are spawned on these platforms and a
defensive border or wall is created. The second goal of this strategy is to
win the game by taking over the platform Castle. In the game world there
exists a path from the playerŠs base to this platform. It was designed this
way to ensure that the enemy player can not reach the same platform of type
Castle. Otherwise it would be possible to ŞstealŤ the victory, by waiting for
the enemy to destroy the neutral units. In the beginning of the game the AI
starts building the wall of units around the base. When there are enough5

units on a platform, further units are sent to the AIŠs base and in the next
step to the Castle. Figure 3.6 displays the static AI when playing strategy 2.

5A fixed threshold is defined.
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Figure 3.6: This Ągure displays a screenshot of the implemented game,
where a static AI, owning the base on the left side of the game, is playing
strategy 2. When doing so, the static AI builds a defensive wall around its
base Ąrst. Afterwards, it sends units to the special platform Castle which is
occupied by neutral units at the beginning of the game. The small platforms
between the special platforms indicate the path costs along the path. The
number of units of the static AI increase each turn for each platform of
type A the AI has captured. Furthermore, the static AIŠs number of moves
are increased by 26, as it has positioned 26 units on platforms of type B.
When the static AI succeeds in taking over the special platform Castle, the
AI wins the game. In order to visualize the strategy best, the player on the
right side, who owns the second base, is not performing moves.

Strategy 3: Tech Rush

The third AI implements a strategy called Tech Rush. At Ąrst, a defensive
wall is built like during the strategy of the second AI. Next, one unit is sent
to a platform of type C where it stays for ten rounds. During this time no
units are created on the AIŠs platforms of type A and the AI is vulnerable
to attacks. Hence this strategy is weak against the Rush. However, after the
ten rounds, all remaining units experience a technical upgrade. Additionally,
the AI may perform extra moves per turn. In the next step, the AI starts
to attack the enemy base. As the units are stronger than the enemy units
with no upgrade, they are able to break through the wall of units of the pure
defensive strategy. Figure 3.7 displays the static AI when playing strategy 3.
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Figure 3.7: This Ągure displays a screenshot of the implemented game,
where a static AI, owning the base on the left side of the game, is play-
ing strategy 3. When doing so, the static AI Ąrst builds a defensive wall
around its base. Afterwards, it sends one unit to the special platform C. Af-
ter ten rounds, the AI and its units are upgraded and ready to attack the
enemyŠs base. The small platforms between the special platforms indicate
the path costs along the path. The number of units of the static AI increase
each turn for each platform of type A the AI has captured. Furthermore, the
static AIŠs number of moves are increased by 31, as it has positioned 31 units
on platforms of type B. In order to visualize the strategy best, the player on
the right side, who owns the second base, is not performing moves.

3.3 Game Balance

Balance is a term of game design and deĄned as Şthe concept and the practice
of tuning a gameŠs rulesŤ [29]. For this game, the goal of balancing was to
prevent one strategy from being dominant. In order to reach this goal, the
following parts of the game were tuned:

• game world,

• initial number of player moves per turn,

• time for next upgrade on special platform C,

• type of upgrade on special platform C,

• number of neutral units on special platform Castle.
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The game world was designed symmetrically. The paths from one base to
the other are equal for both players. Also the number of special platforms
and the paths to those platforms are equal on both sides.

At the beginning of the game, each player may perform Ąve moves per
turn. The shortest path from one base to the other is 16. Hence, at least
four turns are necessary for one player to rush its enemyŠs base when no
platforms of type B are captured. This time is considered suicient for a
player playing strategy 2 in order to build a defensive wall.

When playing strategy 3, one goal is to upgrade all units as well as the
playerŠs number of moves by capturing a platform of type C for a certain time
span. The duration for this upgrade was set to ten rounds. On the one hand,
this timespan time is necessary in order to give strategy 1 the chance to win
the game by rushing the enemyŠs base. On the other hand, the defensive
strategy needs more time to win and can still be defeated. Nevertheless,
ten rounds is a long time. Consequently, the upgrade afterwards increases
the number of moves of the player and the strength of the playerŠs units.

Finally, there are 15 neutral units on the special platform Castle. This
number was chosen in order to allow an enemy playing strategy 3 to break
the defensive wall of a player playing strategy 2. When competing against
strategy 1 this number is not relevant. The enemy is not able to reach the
base with the normal units, no matter how long the game takes.

As explained earlier in this section, balanced strategies are important
when opponent modeling should be included. Tuning the game is a diicult
but necessary task for every game and requires a lot of testing.



Chapter 4

The Opponent Modeling AI

Besides knowing the rules of the game, the goal of an Opponent Model-
ing AI (OM AI) is to analyze its enemiesŠ actions and identify the oppos-
ing strategies. The identiĄcation or classiĄcation can be done with pattern
recognition. While this seems to be a simple task for a human being, as it
is done automatically, it is not a trivial task for a computer program. This
is because training is not easy as even simple things are sometimes diicult
to describe, or many diferent descriptions match for the same object. For
example, when describing a chair simply as an object where someone can
sit on. Then it is clear that many other objects will be misclassiĄed as a
chairŮe.g. the Ćoor. Consequently, a more detailed description is needed.
However, when describing an object with too many details, classiĄcation
may be incorrect as well. For example, when describing the chair by having
four legs, a barstool with only one leg or a laboratory chair with springs and
wheels are not considered as chairs anymore. Describing an object with too
many details is called overfitting. It is a known problem of pattern classiĄ-
cation. All in all, adjusting the complexity of classifying is a diicult, but
major part of this task.

In this game, the OM AI is playing in a turn-based setup against static
AIs. For the identiĄcation of the opponentŠs strategy, diferent pattern classi-
Ącation methods were implemented. To become familiar with the particular
strategies in the game, the classiĄers use labeled training data1. This data
was collected while letting the static AIs play 30 games against each other
(each AI played 10 games). For the game setup explained in chapter 3, three
diferent classiĄers were tested. How each classiĄer uses the training data
to identify the opponentŠs strategy is explained in detail in the following
sections.

Figure 4.1 visualizes the general workĆow of the OM AI. Once the static
AI has Ąnished its turn, the OM AI observes the values of prior deĄned

1Using already classified data which is labeled with the corresponding class/strategy
is a.k.a. learning from example.

22
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Figure 4.1: Opponent Modeling AI - WorkĆow: Before strategy classiĄ-
cation can take place, the AI needs to be trained with labeled data from
test games (for this setup 30 test games were used). This data includes all
known strategies. During the game, the OM AI passes observation data to
the classiĄer. The training data, as well as the observations are used for the
classiĄcation. If a strategy could be identiĄed, the AI reacts by playing the
counter strategy. At the end of the game, the results are evaluated.

game features. Then this information, as well as the labeled data from the
test games, is passed to the classiĄers. As a result, the classiĄers return for
each strategy the probability of facing it. In the end, the OM AI chooses to
play the counter strategy to the one with the highest probability.

Knowledge about the domain is necessary in order to choose the ap-
propriate features for the classiĄcation. This process is also called feature
extraction. Certainly, not all the information of the game is needed for the
identiĄcation of the opponentsŠ strategy. Hence, the following four game-
features were selected:

1. number of special platforms,

2. number of attacks,

3. shortest distance between a unit and the special platform C,

4. shortest distance from a unit to the special platform Castle.

These features were chosen, as the values of them difer for the diferent
strategies. For example, when playing strategy 1 (Rush) the number of at-
tacks is high, compared to the defensive strategy. Furthermore, the distance
to the special platform C will only decrease, when the opponent tries to
upgrade its units and hence follows the third strategy. The values of each
feature are observed after each playerŠs turn. There were more features in
the game which could have been used for the identiĄcation of the strategies,
like the number of units, or the distance to the enemyŠs base. However, these
features turned out to have just a small impact on the correct classiĄcation.

The implemented classiĄers are: Naive BayesŠ, CART and k-nearest-
neighbor (kNN). The basics of these classiĄers are described in the following
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sections. Further details on the implementation of the classiĄers can be found
at the end of this chapter. The performance of the tested classiĄers is eval-
uated in chapter 5. The main ideas as well as the mathematical background
for the implemented classiĄers were taken from Duda et al. [9]. The OM AI
and the classiĄers were implemented in Java.

4.1 Naive Bayes’ Classifier

The Ąrst classiĄer uses the BayesŠ rule,

� (� ♣ �) =
� (� ♣ � ) ≤ � (� )

� (�)
,

to calculate the probability of a certain state of nature � (in this case strat-
egy 1, 2 or 3), given observed values � (features). This probability � (� ♣ �)
is also called the a posteriori probability (or posterior). It can be determined
by multiplying the class-conditional probability density function (or likeli-
hood) � (� ♣ � ) with the a priori (or prior) probability � (� ) and dividing
the result by the evidence factor � (�),

posterior =
likelihood ≤ prior

evidence
.

When playing against an opponent for the Ąrst time, there is no prior knowl-
edge about the opponentŠs tendency for choosing a speciĄc strategy. There-
fore the a priori probability of each state of nature � (�i) is considered equally
distributed and hence 1/3 for each strategy. Adding up � (�1), � (�2) and
� (�3) results to one2. This prior knowledge about the strategies could be
updated after a few games, playing against the same opponent.

The likelihood � (�j ♣ �i) describes the probability of observing a cer-
tain feature value �j , given the strategy �i played. For example: � (�1 ♣ �1)
and � (�1 ♣ �2) determine the diference between the number of special plat-
forms when playing the Ąrst strategy and the second one. For calculating the
likelihood of a feature given a certain strategy, the labeled data from test
games has to be prepared. This is done by using binningŮa data cluster-
ing mechanism, where the given data is sorted in ranges, so-called bins[11].
Once a new value is added to the test data, the counter of the bin with
the corresponding range is increased. With these bins, the likelihood of each
feature given a certain strategy can be evaluated. Figure 4.2 shows how the
data of round 15 and feature one (number of special platforms) is prepared
and the likelihood is calculated. DeĄning an appropriate size of the bins is
important. If the range is too small, there is the danger of overfitting the
bins to the test data. If the range is deĄned too big, the results may be not

2Assuming that the identified strategies are the only ones in this game and further
ones are just similar to them.
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Figure 4.2: Binning feature one, in round 15: The values from the test
games are sent to ranged bins. There are bins for each strategy. The ranges
of each bin are Ąxed ([0-2], [3-5], . . . ). The class-conditional probability den-
sity function is determined by reading the value from the bin with the re-
quired range and dividing it by the total count of values of the corresponding
strategy. For example: � (�1 = 11 ♣ �1) = 0

10
, � (�1 = 11 ♣ �2) = 1

10
and

� (�1 = 11 ♣ �3) = 3

10
.

accurately enough. After examining the test data properly, the ranges of the
bins were set to three values each.

As the features are considered to be independent, the likelihood for all
feature values given a certain strategy can be easily calculated. The strat-
egyŠs prior probability is multiplied by the individual likelihoods of the fea-
tures given the strategy:

� (�1, �2, �3, �4 ♣ �i) = � (�1 ♣ �i) ≤ � (�2 ♣ �i) ≤ � (�3 ♣ �i) ≤ � (�4 ♣ �i).

The so-called evidence factor is the probability for the combined occurrence
of the feature values � (�1, �2, �3, �4). It is calculated by summing over the
product of the likelihood of the features, given a certain strategy and its
prior probability. � represents the number of strategies in the game3:

n︁

i=1

� (�1, �2, �3, �4 ♣ �i) ≤ � (�i).

The evidence factor is responsible for scaling the results to make the poste-
rior probabilities sum to one. To decide which strategy is more likely when
certain feature values are observed, the evidence factor is not needed.

3For this setup n = 3.
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Putting all together, it is possible to calculate the probability of each
strategy after observing certain independent feature values, the posterior
probability � (�i ♣ �1, �2, �3, �4), by inserting into BayesŠ rule,

� (�i ♣ �1, �2, �3, �4) =
� (�1, �2, �3, �4 ♣ �i) ≤ � (�i)

� (�1, �2, �3, �4)
.

Each round the OM AI observes the current feature values of the oppo-
nent. This information is passed to the BayesŠ classiĄer. Once the pos-
terior probability for each strategy is calculated, the OM AI can decide
which counter strategy to play. For simplicity let � = ¶�1, �2, �3, �4♢. If
� (�1 ♣ � ) > � (�2 ♣ � ) ∧ � (�1 ♣ � ) > � (�3 ♣ � ) the opponent is probably
playing the Ąrst strategy. If � (�2 ♣ � ) > � (�1 ♣ � ) ∧ � (�2 ♣ � ) > � (�3 ♣ � ),
the OM AI decides that its enemy is playing strategy 2. Otherwise, the
opponent is most likely to play strategy 3.

4.2 CART Classifier

The second classiĄer builds a decision tree in order to Ąnd out which strategy
the OM AI is facing. As the name might already tell, the tree consists of
query or decision nodes. At each node, the decision about which branch
to follow is made. Branches or links lead from one node to its descendent
nodes. Decisions are made directional from the root node (at the top) to a
leaf node4 (at the bottom). This also implies that decisions that are made
earlier in the tree do have an efect on the subsequent decisions. The simplest
form of a decision node is a binary node with just two branches.

As stated in Duda et al. [9] decision trees have some advantages com-
pared to other classiĄcation mechanisms. On the one hand, classiĄcations,
performed by traversing a decision tree, are easy to interpret. This is because
each decision for a certain strategy represents a conjunction of all decisions
made from the root to the leaf node. On the other hand, classiĄcation can
be done very quickly, as no diicult calculations have to be performed (es-
pecially when the tree consists of binary nodes only). Furthermore, expert
knowledge about the environment can be included when building the deci-
sion tree. This often leads to quick and reliable classiĄcation.

The ClassiĄcation and Regression Trees (CART) algorithm is used to
build the tree by Ąnding the best split at each decision node. Again the
four features, speciĄed at the beginning of this chapter, are used for the
classiĄcation. In this case, they are used as query nodes. Figure 4.3 displays
how the tree can look. The subsequent nodes of a feature are determined
by hand. Here, expert knowledge about the domain is included. The Ąrst
split at level one in the query tree is the feature one (number of platforms).
If the resulting subset of the Ąrst level contains values of strategy 1, the

4A node which does not have any subsequent nodes.
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Figure 4.3: This is an example of a decision tree, built with the four
features as query nodes. The variables w, x, y and z indicate the split values
at the nodes. After the observation of the opponents feature values, the tree
is traversed by answering the queries. At the leaf nodes, the decision for a
particular strategy is made. This is done with the help of the labeled test
data, which is reduced after each split. For example, when observing a small
number of platforms (�1 ⊘ w), the decision is made to follow the left branch
of the tree. Hence, the test data with a value of the feature one greater than
w can be dismissed.

query node of the second level is the feature three (distance to platform C).
Otherwise, the query node is the feature two (number of attacks). At the
third level of the decision tree, the query node is chosen similarly. When
there are still values of the Ąrst strategy in the subset after splitting the test
data twice, the query node is the feature two. Else, the split at level three
is done for the fourth feature (distance to platform Castle).

In order to determine the best split at each query node and to decide
which strategy to choose at a leaf node, the labeled test data is needed. The
best split value of a feature is evaluated by calculating the sum-of-squared
errors (SSE) for each possible split between two values of the test data
(visualized in Figure 4.4). This has to be done, as the values of the features
are numerical5.

As the split should be binary, the data � is partitioned at each possible
split into two subparts �1 and �2 with counting �i values. Then the mean

5The calculation would be different for categorical values.
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Figure 4.4: Determine the best split w0 for the feature one (number of
platforms), by calculating the sum-of-squared errors (SSE) at each possible
split. The above values are taken from the test data in round 15.

mi of both parts is determined by

mi =
1

�i

︁

x∈Di

x. (4.1)

In a next step, the SSE can be calculated by

�e =

c︁

i=1

︁

x∈Di

‖ x ⊗ mi ‖2, (4.2)

where � = 2 as there are only two subparts. When determining the SSE, the
total squared error of the � samples x1, . . . , xn is calculated by summing the
squared lengths between x and the mean vector mi in �i. As stated before,
the SSE is calculated at each possible split. At the end, the one with the
smallest SSE is selected as the best split of the corresponding feature. The
best splits for all features can be determined before the game starts. Hence,
when the OM AI observes the values of the features, the decision tree can
be traversed immediately. Afterwards, the remaining values in the test data
are counted and the strategy with the most values is determined. The tree
can be pruned earlier, if there is just one strategy remaining in the resulting
subset after splitting.

Classifying with CART is known to be a greedy method, as the decisions
are optimized locally at the nodes and not globally for the whole tree. This
can result in big trees. However, that is just an issue if the branches are
determined automatically, which is not the case for this testing (as expert
knowledge was included).
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4.3 kNN Classifier

The last tested classiĄer uses the k-nearest-neighbor (kNN) rule for deter-
mining the strategy of the opponent. In this process, the values of the test
data, as well as the observed values are mapped to a four-dimensional space.
The distances to all neighbors of the observed values are evaluated next. The
variable k denotes the number of nearest neighbors which are Ąltered from
the test data. At the end, the strategy with the most values in the subset
of nearest neighbors is identiĄed as the strategy of the OM AIŠs opponent.
Figure 4.5 visualizes this process for a speciĄc round. Classifying with the
kNN rule is simple and explained in the tutorial of Teknomo [32] by the
following Ąve steps:

1. Set the number of k neighbors for the classiĄcation.

2. Calculate the distance between the observed values and those from the
test data.

3. Determine the k neighbors with the smallest distance to the input
values.

4. Count the number of instances in the subset for each strategy.

5. Label the observed values with the strategy with the most instances
in the subset.

When determining the variable k it is important to choose a value which
avoids ties. Therefore a value, which is not a multiple of the available classes
(in this case: k /∈ ¶3, 6, 9, . . . ♢), needs to be selected.

Before calculating the distance between the test data and the input val-
ues, the test data needs to be prepared again. If the pure values of the test
data would be used, some features would have more impact on the distance
than others. This is because the values of each feature do have diferent
ranges, e.g. the distance to platform C is usually between 0 and 7, whereas
the distance to the Castle is at the beginning 33. Hence, the test data, as
well as the observed values, are standardized before the distances are calcu-
lated. For the standardization, the mean for each round and feature mi is
determined by

mi =
1

�

︁

x∈fi

x.

Next, the standard variance ài is calculated with the help of mi by

ài =
1

�

︁

x∈fi

‖ x ⊗ mi ‖2,

for each feature and round. Finally, each value of the features the standard-
ized value

x ⊗ mi

ài

, (4.3)
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Figure 4.5: The symbols ÷, △ and � represent all values of the test data
belonging to a certain strategy. Each symbol denotes values of the four fea-
tures observed in a test game in the same round. When the OM AI observes
values of its opponent in the speciĄed round, here visualized with the symbol
⋆, the k-nearest-neighbors (here: Ąve) are determined. The incoming values
are then labeled with the strategy of the majority of its nearest-neighbors.
In this case, ⋆ will be labeled with strategy 3 (�).

is determined. Here, x denotes a value of feature �. The mean mi is sub-
tracted and the resulting value is then divided by the featureŠs standard
variance ài. After the standardization, all feature values do have their mean
at zero and a standard derivation of one.

In order to evaluate the distance between the test data and the new
values, the Euclidean distance is calculated [30]. For an easy and fast calcu-
lation, the squared distance is used. Let F =(�1, �2, �3, �4) be a point of the
test data in the Euclidean n-space and O =(�1, �2, �3, �4) another point rep-
resenting the observed values. Then the squared distance � can be calculated
by

�(F, O) = �(O, F) = (�1 ⊗ �1)2 + ≤ ≤ ≤ + (�n ⊗ �n)2

=

n︁

i=1

(�i ⊗ �i)
2,

where � = 4 as there are four features used for the classiĄcation.
After determining the distances between all values, the subset of the

k-nearest-neighbors is built. In the last step, the strategy with the most
instances in the subset is selected as the strategy of the OM AIŠs opponent.
Hence, the AI is then able to adopt its own strategy.
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4.4 Implementation Details

Each classiĄer needs some training data before any classiĄcation can be done.
While the Naive BayesŠ classiĄer uses the data for calculating the posterior
probability for each strategy, the CART classiĄer determines the best split
at each node of the decision tree. Finally, the kNN classiĄer computes the
Euclidean distance between the incoming values and the labeled ones from
the training data. As mentioned before, the test data is gathered by letting
the static AIs play games against each other6.

During training, the AIs send a message (StatisticsMessage) with the
values of the features and their strategyID to the class StrategyStatistics.
This is done for each turn. The values of a feature are stored in an instance
of the class named FeatureValues. The class Round stores four instances of
this class. Furthermore, the identiĄer of the strategy (strategyID), played
when observing the certain values, is stored in a list in Round as well. The
class StrategyStatistics saves a list of Round instances, one instance for each
game round. The following code lines show the three classes which store the
information about the features:

public class StrategyStatistics implements Serializable, StatisticsReceiver {

private List<Round> dataPerRound;

@Override

public void handleStatisticsMessage(StatisticsMessage message) {

// create new Round or store values for existing Round
// call insertValues method of Round with the values and
// the corresponding strategyID as parameters

}

}

public class Round implements Serializable {

private List<FeatureValues> features;

private List<Integer> strategyIDs;

public static int featureCnt = 4;

// expects an double[ ] of size featureCnt
public void insertValues(double[] values, int strategyID) {

// call insertValue method for each FeatureValue instance
// save strategyID for current inserted values

}

}

public class FeatureValues implements Serializable {

private List<Double> values;

public void insertValue(double value) { ... }

}

To be able to load the data eiciently when it is needed, it is serialized and
saved in a Ąle. Hence, the classes StrategyStatistics, Round and FeatureValues

6For this setup, each static AI played ten games in total.
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Figure 4.6: The NextTurnMessage stores the information about the current
player. The FeatureObservationMessage contains the playerŠs current values
of the four features (number of special platforms, number of attacks, shortest
distance to special platform C and shortest distance to platform Castle). Both
messages are sent after each turn. The public property TYPE is used by the
Receivers to subscribe to messenger in order to receive these methods.

implement the Java interface Serializable.
The communication between the OM AI and its environment (the game)

is done via messages. The NextTurnMessage and the FeatureObservation-
Message are the most important messages the AI listens to. Figure 4.6 dis-
plays the two classes. The Ąrst one contains the information about the cur-
rent player. It is sent whenever a player is done with moving units around.
The FeatureObservationMessage is also sent after a playerŠs turn. It provides
information about the four feature values. The OM AI uses the observations
of its opponent to identify the strategy. Both messages do have a public
property TYPE. Classes, which implement the corresponding interface (like
the OM AI), use this property to subscribe to the messenger in order to
receive the messages.

As described in section 4.1, the test data is prepared for the Naive BayesŠ
classiĄer by putting the values into bins with ranges. The range of a bin is
Ąxed to three7. During the game, the classiĄer receives the current feature
values from the OM AI. The likelihoods of each feature value given a cer-
tain strategy can be looked up in the prepared bins. These likelihoods are
multiplied with the a priori probability of the strategy (� (�i) = 1/3). Doing
this for all three strategies and summing up the results yields the evidence
factor. The last step is to insert the parts into the BayesŠ formula and deter-
mine the strategy with the greatest posterior probability. Plain Java Lists
and Arrays were used for the data structure of the bins.

For the implementation of the CART classiĄer, the decision tree for
each round is built in advance. For the Ąrst level of the tree, the best split
for the Ąrst feature is determined. This is done by calculating the SSE for
each possible split8 between the distinct values of the sorted test data. For

7This range was chosen after gaining experience with the test values.
8split = value1 + (value2 - value1) / 2
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determining the SSE, the values of the test data are split and stored in two
separate lists. The values to the left side of the split as well as the values to
the right side of the split are summed and counted in order to determine the
mean (see equation 4.1) of each list. Next, for each value in the two lists, the
squared errors are determined with the corresponding mean and summed at
the end (equation 4.2). The result is the SSE of the test data for feature one
of a split. Doing this for all possible splits, the best split (with the smallest
SSE) can be determined.

As mentioned before, the subsequent query nodes are inĆuenced by the
decisions made earlier. Hence the second level is built by using the resulting
lists after splitting the test data. If there are only values of one strategy
left in a list, the node at this branch becomes a leaf node. Otherwise, the
feature for the query node of the second level is determined. If a list still
contains values of strategy 1, the next feature used as query node is the
third one (distance to platform C). Else, the query node at level two will be
the feature Şnumber of attacksŤ. Again, the best split is determined for the
selected feature. Afterwards, the lists of the new branches are built.

The third level of the tree is built similarly to the second level. If only
values of one strategy are left in a list, leaf nodes are created. If there are
more strategies left, and one of those is strategy 1, the query node of the
third level is the second feature (number of attacks). Otherwise, the fourth
feature (distance to platform Castle) becomes the new query node. Once
more, the best split is calculated and the new branches are established. As
the tree structure is determined by hand, there are no more levels after the
third split.

During the game, the OM AI passes the observed features to the CART
classiĄer. The predeĄned tree of the current round is then traversed by
comparing the values with the best splits of the features at the speciĄc levels.
At the leaf nodes, the strategy with the greatest amount of values remaining
in the list is determined as the current strategy of the AIŠs opponent. Hence,
the OM AI starts to play the counter to this strategy.

As mentioned in section 4.3, the test data needs to be prepared diferently
for the kNN classiĄer. First, for each feature and round, the mean mi and
standard derivation ài is calculated. These values are used to standardize
the test data (see equation 4.3). When the game begins, the OM AI passes
the observed values to the kNN classiĄer. These values are then standardized
with the featureŠs corresponding mean and standard derivation, like the test
data before. In a next step, the Euclidean distances between all values from
the test data and the observed ones are calculated. The distance and the
corresponding label of the test data (the strategy) are stored in a class called
FeatureDistance. Afterwards, the list of FeatureDistance instances is sorted
by the static method Collections.sort(featureDistances). This is possible, as
the class FeatureDistance implements the Java interface Comparable and
its function compareTo. Figure 4.7 shows the class in the UniĄed Modeling
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Figure 4.7: The class FigureDistance holds the Euclidean distance, calcu-
lated between the feature values of the current round of a test game and
the observed values. Furthermore, the strategyID of the strategy which pro-
duced the test values is stored as well. The class implements the interface
Comparable in order to be able to sort instances of FigureDistance.

Language. In the end, the Ąrst k elements are taken from the list. As they
are labeled, the strategy with the majority can be determined. In Duda et
al. [9] it is mentioned, that a large value of k efectively can reduce the error
rate, however only if there is a lot of training data available. If the value of
k is chosen too small, there might be misclassiĄcation due to noise9 in the
data. Hence, determining the appropriate value for k requires at least some
testing.

All three classiĄers do have an abstract superclass which is responsible
for the AIŠs initialization, and cleanup tasks. Furthermore, NextTurnMes-
sages are handled and the current strategy is executed. The subclasses, which
implement a speciĄc classiĄer, listen to the previously mentioned Feature-
ObservationMessage. Once the subclasses identify the strategy of the AIŠs
opponent, the information is passed to the superclass. As a result, the cor-
responding counter strategy is played.

9Noise in this game appears due to some randomness of the specific strategies during
actual game play.



Chapter 5

Tests and Evaluation

The classiĄers, which were explained in chapter 4, were tested by playing
games against static AIs. The subsequent sections deal with the results of
the testings. Each classiĄer is evaluated individually Ąrst. At the end of this
chapter, their performance is compared. The scope of the testing consists of
the following points:

1. Simplicity:

Was it easy to understand the classiĄer?

Where there diiculties in the implementation?

2. Performance:

Did the OM AI win the games?

How accurate was the classiĄcation per round?

What are the reasons for misclassiĄcation?

Whereas the performance measures can be taken from the results of the
games, the simplicity of the classiĄers is a subjective perception of the au-
thor. Furthermore, this point is also dependent on mathematical background
knowledge and programming skills.

The OM AI in this game is used to challenge its opponents and to encour-
age them to alter their strategy. Otherwise, if they stick to one play-style,
the OM AI is able to identify the strategy and win the game. In fact, the
implemented OM AI will never outperform a human player, or a dynamic
enemy (somebody who switches strategies). However, that is not the goal
here. The requirements of the classiĄcation methods for this game are clear:
the OM AI should be able to win any game against the static AIs. Further-
more, the decision for playing a speciĄc counter strategy has to be clear and
misclassiĄcation minimal. Nevertheless, as classiĄcation is not a trivial task
it might not always be correct or accurate enough.

For testing the performance of the classiĄers, the OM AI used them to
classify its opponents in games against static AIs. As mentioned in chapter 4,
the classiĄers were trained with data from 30 games, labeled with the correct

35
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strategies. The goal of the classiĄer was to Ąnd out which of the three possible
strategies (explained in detail in chapter 3) the OM AI is most likely facing.
In order to measure the performances individually, only one classiĄer was
used to identify the opponentŠs strategy per game. In total, a classiĄer was
tested in 15 games, Ąve against each strategy. The results were written to a
simple Comma-separated values (CSV) Ąle for further evaluation. Of course,
the information about the winners of the games is stored. Additionally, the
intermediate results per round were written to the CSV Ąle as well. Such a
result consists of:

• round number,

• observed feature values,

• calculated probability for each strategy,

• identiĄed strategy and

• actual strategy.

The results are now evaluated in detail for each classiĄer separately.

5.1 Naive Bayes’ Classifier

For a classiĄer using the BayesŠ Rule it is important that the required prob-
abilities are known. If that is not the case, the probabilities have to be
estimated from test data. This is the Ąrst challenge in order to fully un-
derstand how the classiĄer works. In this setup, the test data was gathered
from games of all diferent classes/strategies. The a priori probability of
each strategy is more or less easy to determine. If all possible strategies are
known and equally dominant and the opponent is unknown, the probability
for each strategy is equally distributed too. If there is data from previous
games against the same opponent available, the a priori probability can be
updated by including information about the favored strategy of the oppo-
nent.

For calculating the likelihood of the observed feature values, given a
certain strategy, the test data needs to be structured. In this setup, the
data was organized in ranges/bins. The challenge here was to determine the
ŞbestŤ size of the ranges in order to prevent overĄtting or inaccurate results.
DeĄning appropriate ranges requires knowledge about the feature values. For
this game the sizes of the ranges were set to three after gaining experience
with the data and some testings with other ranges. For more accuracy, the
best size could also be determined by calculating the SSE (see equation 4.2)
for diferent ranges and choosing the one with the smallest result. However,
for a small game like the one presented here, estimating the ŞbestŤ size is
perfectly Ąne.

Determining the right data structure for the structured feature values
was the only challenge when implementing the Naive BayesŠ classiĄer. As
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mentioned before, the values were organized in bins. This was done for each
feature individually. A bin for a speciĄc range and strategy became a sim-
ple Integer value. This value represents the number of values which were
observed inside the range and for one strategy. Hence, the bins for a spe-
ciĄc range are organized in an Array of Integer values, where the size of the
Array is three, as there are three strategies. All ranges are then stored in
a Java List. The Ąrst entry in the list represents the observed values zero,
one and two. The second one, the values three, four and Ąve, and so on.
Additionally, the total number of observed values for each strategy is stored
too. This value is used to determine the likelihood of observing a value by
dividing the value from the bin of a strategy by the total number of observed
values of the same strategy.

The rest of the implementation was rather simple. The probabilities were
inserted into the formula and the strategy with the greatest posterior prob-
ability was determined.

When using the Naive BayesŠ classiĄer for identifying the strategy of the
opponent, the OM AI did win all 15 games. Besides this excellent result,
the classiĄcation was not correct for every round. Table 5.1 visualizes the
intermediate classiĄcation results. The classiĄer was able to identify the
Ąrst strategy in 90% of all rounds. It never misclassiĄed the strategy for
an other one. However, in 10% of the rounds it was not able to identify
any strategy. When playing against strategy 2, the classiĄer performed just
slightly worse. In almost 83% of all rounds the classiĄcation was correct.
There were some misclassiĄcation for strategy 1 and 3. Again, the classiĄer
was sometimes not able to classify any strategy. Facing the third strategy
seemed most challenging for the classiĄer, as it was only able to correctly
identify the opponentsŠ strategy in about 62% of all rounds. In the most
cases of misclassiĄcation, the classiĄer identiĄed strategy 1 (ca. 24%).

Having a closer look at the test data it is clear that the values of the
features of all strategies do not difer much during the Ąrst few rounds.
Hence, the misclassiĄcation for an other strategy mainly occurred at the
beginning of the game. Table 5.2 visualizes the intermediate results without
the Ąrst Ąve rounds. Except for some misclassiĄcation for strategy 2 when
playing against the third one, the output shows that the classiĄer performed
better after the Ąrst Ąve rounds.

The fact, that the classiĄer is sometimes not able to identify any strat-
egy may have diferent reasons, as the number of misclassiĄcation did not
decrease after the Ąrst rounds. When considering the example in Ągure 5.1,
the source of error in the displayed round seems to be the feature one. In
this game, the OM AI played against strategy 3. In round 10 the classiĄer
was not able to identify any strategy. On the one hand, the feature itself
could turn out to be less informative than the other ones. In that case, the
process of feature extraction should be reviewed. On the other hand, the
size of the ranges of the bins could have been not Ątting. As visible in the
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Table 5.1: Average intermediate classiĄcation results of the Naive BayesŠ
classiĄer per game. The games against strategy 1 lasted about 38.2 rounds,
those against strategy 2 28.2 rounds and playing against strategy 3 took
about 15.2 rounds. The rows indicate the actual strategy and the columns
represent the classiĄed strategies. Values in the last column (X) indicate that
the classiĄer was not able to identify any strategy. The bold values in the
diagonal display the correct classiĄcations.

Average intermediate results per game:

Strategy 1 Strategy 2 Strategy 3 X

Strategy 1 34.6 0.0 0.0 3.6

Strategy 2 1.4 23.2 0.2 3.6

Strategy 3 3.6 0.6 9.4 1.6

Average intermediate results per game in percentage:

Strategy 1 Strategy 2 Strategy 3 X

Strategy 1 90.58 0.00 0.00 9.42

Strategy 2 4.93 81.69 0.70 12.68

Strategy 3 23.68 3.95 61.84 10.53

Table 5.2: Average intermediate classiĄcation results of the Naive BayesŠ
classiĄer per game without the Ąrst Ąve rounds. The rows indicate the actual
strategy and the columns represent the classiĄed strategies. Values in the last
column (X) indicate that the classiĄer was not able to identify any strategy.
The bold values in the diagonal display the correct classiĄcations.

Average intermediate results per game:

Strategy 1 Strategy 2 Strategy 3 X

Strategy 1 29.6 0.0 0.0 3.6

Strategy 2 0.0 19.8 0.0 3.6

Strategy 3 0.0 0.6 8.0 1.6

Average intermediate results per game in percentage:

Strategy 1 Strategy 2 Strategy 3 X

Strategy 1 89.16 0.00 0.00 10.84

Strategy 2 0.00 84.62 0.00 15,38

Strategy 3 0.00 5.88 78.43 15.69



5. Tests and Evaluation 39

Figure 5.1: Here the misclassiĄcation in a game in round 10 playing against
strategy 3 is visualized. The marked bins are the ones where the likelihoods
for calculating the probabilities are taken from, as the observed feature values
are inside the binsŠ ranges. It is clear, that the error for identifying the correct
strategy occurs at feature one as the likelihood of observing value 11 given
strategy 3 is zero. As a result, the posterior probability of strategy 3, given
all the observed values is zero too. Additionally, the posterior probabilities
of the other strategies are zero as well. That is because the likelihood for
strategy 1 and feature one with value 11 and the likelihood of strategy 2 and
feature four with value 33 result in zero.

example in the Ągure, the observed values just slightly drop out from the
bins where classiĄcation would have been possible. The observed value for
feature one is 11. The next bin with values for strategy 3 starts at value 12.

As the OM AI wins the game in the end, some misclassiĄcation is of
little relevance here. However, if the OM AI would lose according to this
error, it needs to be resolved. Another cause of this error might be that the
test data for training the classiĄer is to one-sided or too little. This error
could be Ąxed by including more test games in the training.

5.2 CART Classifier

Identifying the opponent with a decision tree seems an easy task once the
tree has been built. However, building the tree and determining the best split
at each node was a bit more diicult than gathering probabilities from test
data. Therefore the main challenge of this classiĄer was rather to understand
the creation of the decision tree, than the implementation of the formulas.

As mentioned in the previous chapter, the decision which feature should
be used for a node was done by hand. Besides using expert knowledge about
the domain, several arrangements were tested in order to produce clear re-
sults. That there can be a relevant diference in choosing to split at one
feature before an other is visualized in Ągure 5.2. For better understanding,
just two features were selected for this example. The values of round 15
from the test data of the Ąrst (number of special platforms) and the second
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(a) (b)

Figure 5.2: Determining at which node/feature to split early in the tree
requires some testing when this is done by hand. The coordinate systems
in (a) and (b) hold the combined values of feature one (number of special
platforms) and two (number of attacks) from the test data in round 15. The
shapes denote the corresponding strategies which played when these values
were observed. The symbol ÷ denotes the combined values of strategy 1, △
values of strategy 2 and � indicates values of strategy 3. The x-axes holds
values of feature one, the y-axes those of feature two. When splitting Ąrst
at feature one (a), a pure subset of values of strategy 1 can be Ąltered. The
second subset does not contain values of strategy 1. Splitting Ąrst at feature
two (b), more than one split is necessary in order to receive a similar result.
Note: Jitter added to improve graphical representation of discrete values.

feature (number of attacks) were mapped to a two dimensional coordinate
system. If splitting the values by feature one Ąrst, the resulting subset on
the left side contains values of strategy 1 only. Furthermore, the second re-
sulting subset contains only values of strategy 2 and 3. If deciding to split
the values Ąrst by feature two, further splits are necessary to receive the
same ŞpureŤ result.

For the implementation of the CART classiĄer a tree data structure was
built for holding the best split at each node. As this was done in advance for
each round, the structures were stored in a Java List. Besides deĄning the
appropriate structure for traversing the tree quickly, there were no major dif-
Ąculties at the implementation. For the best split the formula of calculating
the mean of a subset (see equation 4.1) and the one for the SSE (see equation
4.2)were implemented. Hence, determining the best split programmatically
was not diicult either.

When having a look at the average performance of the classiĄer during
the games, there is just little misclassiĄcation. Table 5.3 displays the aver-
age classiĄcation results during a game in numbers and percentage. Some
misclassiĄcation can be reduced if the Ąrst Ąve rounds are not considered in
the results (see table 5.4).
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Table 5.3: Average intermediate classiĄcation results of the CART classiĄer
per game. The games against strategy 1 lasted about 38.8 rounds, those
against strategy 2 28.4 rounds and playing against strategy 3 took about 16.0
rounds. The rows indicate the actual strategy and the columns represent the
classiĄed strategies. Values in the last column (X) indicate that the classiĄer
was not able to identify any strategy. The bold values in the diagonal display
the correct classiĄcations.

Average intermediate results per game:

Strategy 1 Strategy 2 Strategy 3 X

Strategy 1 38.2 0.6 0.0 0.0

Strategy 2 2.0 25.2 1.2 0.0

Strategy 3 1.8 0.2 13.8 0.2

Average intermediate results per game in percentage:

Strategy 1 Strategy 2 Strategy 3 X

Strategy 1 98.45 1.55 0.00 0.00

Strategy 2 7.04 88.73 4.23 0.00

Strategy 3 11.25 1.25 86.25 1.25

Table 5.4: Average intermediate classiĄcation results of the CART classiĄer
per game without the Ąrst Ąve rounds. The rows indicate the actual strategy
and the columns represent the classiĄed strategies. Values in the last column
(X) indicate that the classiĄer was not able to identify any strategy. The
bold values in the diagonal display the correct classiĄcations.

Average intermediate results per game:

Strategy 1 Strategy 2 Strategy 3 X

Strategy 1 33.2 0.6 0.0 0.0

Strategy 2 1.0 22.2 0.4 0.0

Strategy 3 0.0 0.2 11.0 0.2

Average intermediate results per game in percentage:

Strategy 1 Strategy 2 Strategy 3 X

Strategy 1 98.22 1.78 0.00 0.00

Strategy 2 4.24 94.07 1.69 0.00

Strategy 3 0.00 1.75 96.49 1.75
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Table 5.5: The values here represent the average number of splits performed
by the CART classiĄer during the games against the three diferent strategies.
The values for one and two splits indicate that the decision for a speciĄc
strategy is made early in the tree and pruning was possible. As the tree was
built by hand, traversing the whole decision tree caused three splits at a
maximum.

Average results per game:

Strategy 1 Strategy 2 Strategy 3

One split: 18.8 0.2 0.4

Two splits: 10.0 13.4 0.4

Three splits: 10.0 14.8 15.2

Total number of splits: 68.8 71.4 46.8

Avg number of rounds: 38.8 28.4 16.0

Avg splits per round: 1.8 2.5 2.9

As visualized in the results, in only one round out of all rounds in the
15 games the classiĄer was not able to identify any strategy. In total, the
classiĄer succeeds to correctly classify the strategy of its enemy in almost
95% of the cases after the Ąrst few rounds. This result implies, that the
arrangement of the features in the tree is properly done. If the results would
be signiĄcantly worse, a rearrangement of the nodes should be considered.
Furthermore, mistakes during the feature extraction process can also cause
poor results if the features are not expressive enough.

Also interesting are the results of the traversed tree visualized in ta-
ble 5.5. On average, 1.8 splits are performed per round when playing against
strategy 1. In almost 50% of the rounds (18.8 out of 38.8), the decision tree
could be pruned after the Ąrst split. In another 24% of the cases, pruning
was possible after the second split. When playing against strategy 2 or 3,
there was less pruning than for the Ąrst one. The decision tree for this setup
is with its three levels a rather small tree. Hence, there is not much difer-
ence in time performances with or without pruning. However, the fact that
there is pruning shows that the right order of the features can increase the
performance of the classiĄer signiĄcantly, even for a simple tree.

All in all, the CART classiĄer did perform very well. The identiĄcation of
the opponents strategy for each round was mainly correct and the decision
tree kept minimal. Hence, the OM AI did win any game played against the
static AIs when using the CART classiĄer for classiĄcation.
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5.3 kNN Classifier

The kNN classiĄer was, out of the three tested classiĄers, the easiest one
to understand and implement. The idea here is to put all values in an n-
dimensional space, where n denotes the number of features used for the
classiĄcation. When there are new values observed, the ones in the space
that are closest to the new values are considered to be most likely of the same
class. Hence, the only challenge for this classiĄer is to determine the distance
between the input values and those of the labeled test data. The Euclidean
distance is a reasonable measurement for distances in space and therefore
matches perfectly for this task. For quicker calculations, the squared distance
was determined.

Some features may have more impact on the result than others, as the
ranges of the features are not equal. Therefore, it is not advisable to use the
pure values of the features. For this setup, all values were transformed by
standardizing them before the distances are calculated.

There were no diiculties in implementing the formulas of this classiĄer.
For the data structure simple Java Lists were used. In this implementation
the lists were sorted in order to determine the k-nearest-neighbors. Another
possibility would be to use a PriorityQueue where the neighbors are auto-
matically sorted ascending according to the implemented Comparator or the
natural ordering of the used data type of the distance.

When testing the kNN classiĄer the OM AI succeeded to defeat its en-
emy in 14 out of 15 games. The OM AI lost one game against a static AI
playing strategy 1 due to misclassiĄcation early in the game. As mentioned
in chapter 3, the goal of the Ąrst strategy is to rush the enemyŠs base in the
beginning of the game. Hence, if the classiĄer fails to identify this strategy
during the Ąrst few rounds, a loss is inevitable.

The results in table 5.6 display the average performance of the classiĄer
during the game. Table 5.7 shows the average results of the same games
without the Ąrst Ąve rounds. Comparing the values, it is clear that some
misclassiĄcation results from the similarity of the data in the beginning of
the game. When playing strategy 2 as a counter to strategy 1, one game
lasted longer than all the test games. Hence, in a few rounds the classiĄer
was not able to detect any neighbors and as a consequence it was not able
to identify any strategy.

MisclassiĄcation when using kNN mainly occurs when the value of k is
not appropriately chosen. Determining k for a setup where just two cate-
gories are possible is quite simple. Ties can be easily avoided by choosing an
uneven value for k. In this game there are three categories/strategies present
in the test data. Hence, not every uneven value k is the appropriate choice.
For example, multiples of the number of the categories may also result in
ties. Hence, deĄning the appropriate value for k is not a trivial task and
requires at least some testing.
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Table 5.6: Average intermediate classiĄcation results of the kNN classiĄer
per game. The games against strategy 1 lasted about 35.0 rounds, those
against strategy 2 28.8 rounds and playing against strategy 3 took about 16.2
rounds. The rows indicate the actual strategy and the columns represent the
classiĄed strategies. Values in the last column (X) indicate that the classiĄer
was not able to identify any strategy. The bold values in the diagonal display
the correct classiĄcations.

Average intermediate results per game:

Strategy 1 Strategy 2 Strategy 3 X

Strategy 1 30.8 1.8 0.4 2.0

Strategy 2 0.4 28.0 0.4 0.0

Strategy 3 2.0 0.8 13.4 0.0

Average intermediate results per game in percentage:

Strategy 1 Strategy 2 Strategy 3 X

Strategy 1 88.00 5.14 1.14 5.71

Strategy 2 1.39 97.22 1.39 0.00

Strategy 3 12.35 4.94 82.72 0.00

Table 5.7: Average intermediate classiĄcation results of the kNN classiĄer
per game without the Ąrst Ąve rounds. The rows indicate the actual strategy
and the columns represent the classiĄed strategies. Values in the last column
(X) indicate that the classiĄer was not able to identify any strategy. The
bold values in the diagonal display the correct classiĄcations.

Average intermediate results per game:

Strategy 1 Strategy 2 Strategy 3 X

Strategy 1 27.2 0.8 0.0 2.0

Strategy 2 0.0 23.8 0.0 0.0

Strategy 3 0.8 0.2 10.2 0.0

Average intermediate results per game in percentage:

Strategy 1 Strategy 2 Strategy 3 X

Strategy 1 90.67 2.67 0.00 6.66

Strategy 2 0.00 100.00 0.00 0.00

Strategy 3 7.14 1.79 91.07 0.00
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5.4 Combined Results

The duration of the games were quite diferent for the particular strategies.
On average, a game lasted about 38 rounds when playing against strategy 1.
When facing strategy 2, each player made about 28 turns. Games against
the third strategy were won after about 16 rounds. These values are easily
explained. When correctly identifying strategy 1, the OM AI starts to play
the counter, which is strategy 2. As this is the defensive one, the OM AI
Ąrst captures platforms to protect its base platform. In the next phase, the
OM AI needs to send 16 units to the special platform Castle in order to win
the game1. Hence, it is quite obvious that games against an enemy playing
the Ąrst strategy can take a while.

When correctly identifying that the opponent is playing strategy 2, the
OM AI can send a unit to the special platform C. After ten rounds the
OM AI receives a speed boost which allows the AI to move its units more
steps per turn. Additionally, all units of the OM AI are upgraded. With
this advantage the OM AI is able to attack the enemyŠs base and win the
game. As the upgrade lasts ten rounds and usually two or more upgrades are
necessary for breaking the defensive wall of the enemy playing strategy 2,
the average of 28 rounds is quite reasonable.

Finally, when facing strategy 3, the game needs to be won quickly. The
OM AI therefore decides to play strategy 1 and ŞrushŤ the enemyŠs base. If
the classiĄer fails to identify that the opponent is playing strategy 3, or if it
identiĄes it too late in the game, the opponent can easily destroy the OM
AIŠs base platform with the upgraded units.

In fact, the OM AI always plays the counter to its opponentŠs strategy
if the classiĄcation was correct. Hence, it is no surprise that these games
sometimes last longer than the test games. As a result, the classiĄer is not
able to identify any strategy, or there is misclassiĄcation for a diferent one.
The Ąrst case can be solved by relying on the last classiĄcation result. For
example, when there is no test data available for a round, the OM AI sticks to
the previously classiĄed strategy and its currently executed counter strategy.
Another approach would be to choose the one which was identiĄed the most
during the past rounds.

Solving the error of misclassiĄcation for a diferent strategy due to miss-
ing test data is a bit more diicult. One solution might be to check if the last
classiĄed strategy is available in the data set of the current round. If that is
not the case, the OM AI could proceed similarly to the solutions proposed
for the case when there is no data available for a round.

MisclassiĄcation in the Ąrst few rounds is reasonable but can have bad
consequences, in the worst case: losing the game. This case occurred for the

1There are 15 neutral units on the platform Castle, which need to be defeated before
the platform can be taken.
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kNN classiĄer when playing against strategy 1 and the enemy rushes the
base as the strategy was not classiĄed correctly. A possible way to avoid
a loss due to misclassiĄcation at the beginning of the game is to protect
the base platform Ąrst. Hence, playing strategy 2 in the Ąrst few rounds
in order to be ready for early attacks. ClassiĄcation can take place in the
background, but should not have an impact on the played strategy. The test
results for all classiĄers show that misclassiĄcation at the beginning of the
game happens mainly during the Ąrst Ąve rounds. Therefore, it is reasonable
to use the classiĄcation results after this Ąve rounds.

Comparing the performance of the three classiĄers, all of them were able
to fulĄll the given task (not mentioning the one exception which could have
been avoided by implementing the proposed solution above). The CART
classiĄer was able to identify the opponents strategy more accurately than
the other two. The kNN classiĄer was the easiest to understand and imple-
ment. The performance of the Naive BayesŠ classiĄer was not as accurate
as the other classiĄers. However, the classiĄer would perform better, if the
probabilities are given and need not be determined from a small data set.



Chapter 6

Conclusion and Outlook

6.1 Lessons Learned

In this research, three diferent pattern classiĄcation methods were described
and tested in detail. Furthermore, ideas how to implement those methods
are provided. It is shown, that the methods can be used without replay data
or game logs from expert play.

A small two-player, turn-based strategy game was developed in order
to test the diferent opponent modeling methods. The goal of the game is
to capture special platforms in order to gain an advantage over the enemy
player. There are paths between the platforms. The players can move their
units from one platform to an other along the given paths. Each player is
able to move units Ąve steps per turn. The game can be won if the base
platform of a player is destroyed by the opponent. Another possibility is
to use all resources (units and moves) to capture a special platform called
Castle. When one player succeeds in doing so, the game is over and the
player with units on this special platform wins the game.

Three diferent strategies were identiĄed in the game. Each strategy is
strong against one, but weak against the other. Hence, there is a counter
to each strategy. Static AIs were implemented to use the strategies (one
for each strategy). The goal of strategy 1 is to destroy the enemies base as
quickly as possible. When playing strategy 2, the AI is acting defensively
and tries to win the game by capturing the special platform Castle. This
strategy is strong against the Ąrst one, as the AI gathers units around the
base in order to protect it (the AI builds a defensive wall). The third strategy
sends one unit to another special platform which causes a technical upgrade
for the AI and its units after a few rounds. Strategy 3 can beat a player
playing the second strategy as the upgraded units can break the defensive
wall. However, when facing strategy 1, the AI playing the third one will
lose the game as the technical upgrade takes some time and makes the AI
vulnerable to attacks.

47
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For testing the opponent modeling methods, another AI was created.
This AI is trained with data from test games of the static AIs playing
against each other. In total, there was data from 30 test games available for
the training of the opponent modeling AI. The tested classiĄcation meth-
ods were: Naive BayesŠ, the decision tree implementation CART, and the
k-nearest-neighbors algorithm. These methods were tested in 45 games, 15
games per classiĄer. The classiĄers played Ąve games against each strategy.

The Naive BayesŠ uses the test data in order to calculate the posterior
probability of the opponent to play a certain strategy given the observations
in the game. When using the Naive BayesŠ for classiĄcation, the opponent
modeling AI did win any game against the static AIs. During the games, the
classiĄer performed best when facing strategy 1. However, in more than 20%
of all rounds it was not able to identify strategy 3. Hence, the Naive BayesŠ
classiĄer was sometimes not able to produce accurate results.

The second classiĄer which was tested, was the CART classiĄer. It uses a
decision tree in order to identify the opponentŠs strategy. The most diicult
part here was to build the decision tree. First, the order of the nodes in
the tree was deĄned. For this small setup, the order was determined by
hand. Hence, some testing was necessary before the order was Ąxed. Second,
the best split at each node needed to be determined. This was done by
calculating the SSE for each possible split and for all nodes. When testing
the performance of the CART classiĄer, the opponent modeling AI did win
any game against the static AIs. The accuracy of the classiĄer was above
94% when playing against strategy 2 and even higher when facing strategy 1
or 3.

The kNN classiĄer was the last one which was tested in this research. It
was the easiest to understand and implement. For this classiĄer, the data
was put into an n-dimensional space and the Euclidean distance was calcu-
lated between the training data and the observed one. After identifying the
k-nearest-neighbors, the strategy, which appears most often in the selected
subset, is the one the opponent modeling AI is most likely facing. When
using the kNN classiĄer the opponent modeling AI did win 14 out of 15
games. Due to misclassiĄcation at the beginning of the game, the AI lost
one game against a static AI playing strategy 1.

The results of the testing show, that the opponent modeling AI can
be improved by Ąxing its strategy at the beginning of the game to the
defensive strategy. The advantage in doing so is clear. During the Ąrst few
rounds, the test data does not difer much between the three strategies.
Hence, the classiĄers are prone to misclassiĄcation in this phase. When Ąxing
the strategy to protect the base of the AI at the beginning, and starting to
classify the opponent afterwards prevents the AI from losing the game due
to misclassiĄcation in the early game.

The approach of Ąxing the strategy in the Ąrst few rounds is also advis-
able when having a game with imperfect information. In this case, the AI
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can start playing defensively and change its strategy after gathering enough
information about its opponent. Another possibility would be to play the
Nash equilibrium strategy Ąrst, which means, choosing randomly which of
the three strategies to play.

The most important lesson learned is that including opponent modeling
in a game is not easy and requires expert knowledge about the game in
order to select appropriate features for the classiĄcation process. Opponent
modeling is used in order to improve the game AI and make it more chal-
lenging and more exciting to play against. An AI which is able to identify
its opponentŠs strategy and react upon it should be fair and not cheating.
Furthermore, a well-balanced game is necessary if opponent modeling should
be included.

6.2 Outlook

With the help of the implemented game, further pattern classiĄcation meth-
ods can be tested and evaluated. For example, the classiĄcation with hidden
Markov models (HMMs). As in a game, all actions in time � are dependent
on moves the player performed in the state � ⊗ 1, HMMs can be used for
classiĄcation. Inferences can be made from previous states as they do have
a direct inĆuence on the current one. Certainly, the second playerŠs actions
also have an inĆuence on the Ąrst playerŠs moves. Hence, the diicult part
here is to determine the conditional probabilities of a transition between
the strategies. Implementations of the expectation maximization (EM) al-
gorithm, like the Baum-Welch algorithm, are used for the learning of these
probabilities from sample sequences. A detailed description of HMMs and
the pseudocode of the Baum-Welch algorithm can be found in Duda et al. [9].
An implementation of the HMM approach can be found in [7]. The model
was implemented for the RTS game StarCraft. In this research Dereszynski
et al. used games from expert play in order to train the HMMs.

The available strategies in the implemented turn-based strategy game
were identiĄed by the designer. In large games it is sometimes necessary to
automatically identify those strategies. However, game logs or replay data
is needed for this identiĄcation. Etheredge et al. [10] use cluster analysis in
order to determine the diferent player types in their own game. Clustering
algorithms are used, when the given sample data for training is not labeled
with the available classes or strategies in the game. This automated process
is also called unsupervised learning. Applying automatic identiĄcation of
the diferent strategies in a game can save much time and efort of collecting
labeled data, or labeling data by hand. Furthermore, unsupervised learning
can also be used for Ąnding appropriate features for the classiĄcation. The
greatest risk, when including clustering algorithms, is that the result may
be not able to determine all classes, if the number of clusters is not known in
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advance. The clustering may also be not accurate, when diferent classes are
very similar. For example, for the presented game the features of strategy 2
and 3 do not difer much during the early and the mid game.

As stated in section 4.2, the decision tree for the classiĄcation with CART
was built by hand. For games with more features this solution may be infea-
sible as it requires a lot of testing in order to Ąnd an appropriate order of the
nodes. A solution for automating this process is to calculate the informa-
tion gain for each node and select the one which leads to ŞpureŤ descendent
nodes. A node is ŞpureŤ if the classiĄcation for one class is clear, meaning
the subset of this node does not contain data of other classes and no further
splits are needed. For the calculations of the information gain, a common
technique is to determine the impurity of the nodes. The most common
mathematical measures of impurity are entropy and gini impurity. When
building decision trees automatically, the most important factor is to deĄne
when to stop splitting. This is because there is the danger of overĄtting, if
the tree is built until only pure leaf nodes are left. One approach of deciding
when to stop splitting is cross-validation. By using this technique, the tree is
trained with 90% of the training data and the rest is used for validation. An-
other possibility would be to set a certain threshold value for the information
gain, or for the number of samples left in the resulting subset (for example
5% of the total training set). Instead of deciding when to stop splitting, the
tree can be built completely, and afterwards be pruned. This technique is
recommendable, if the decision trees are small, as the computational costs
are not too high.

To sum everything up, the implemented game environment was used to
test three diferent classiĄcation methods and can be used to test further
ones. Additionally, the presented methods can be extended for eicient usage
in bigger environments.
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Content CD-ROM

A.1 PDF Files

Path: /

Mayrhofer_Melanie_2015.pdf Master Thesis

Path: /images

A.pdf . . . . . . . . . . Vector graphic of platform of type A

B.pdf . . . . . . . . . . Vector graphic of platform of type B

binning.pdf . . . . . . . Vector graphic displaying the binning
mechanism for data preparation

C.pdf . . . . . . . . . . Vector graphic of platform of type C

cartSplit1.pdf . . . . . . Vector graphic displaying splitting data at
one feature

cartSplit2.pdf . . . . . . Vector graphic displaying splitting data at
two features.

Castle.pdf . . . . . . . . Vector graphic of platform of type Castle

CreateUnitWorkFlow.pdf Vector graphic of the workĆow when creating
a new unit

decisionTree1.pdf . . . Vector graphic of a sample decision tree

decisionTree2.pdf . . . Vector graphic of splitting at a node of the
decision tree

featureDistance.pdf . . Vector graphic of the class FeatureDistance

flow.pdf . . . . . . . . . Vector graphic displaying the game Ćow

MessageClass.pdf . . . Vector graphic of the class NextTurnMessage

MessageClass2.pdf . . . Vector graphic of the class
FeatureObservationMessage

mockup.pdf . . . . . . . Vector graphic of the game mockup

51

/
Mayrhofer_Melanie_2015.pdf
/images
A.pdf
B.pdf
binning.pdf
C.pdf
cartSplit1.pdf
cartSplit2.pdf
Castle.pdf
CreateUnitWorkFlow.pdf
decisionTree1.pdf
decisionTree2.pdf
featureDistance.pdf
flow.pdf
MessageClass.pdf
MessageClass2.pdf
mockup.pdf


A. Content CD-ROM 52

nearestNeighbors . . . . Vector graphic displaying the nearest
neighbor approach

OMAI.pdf . . . . . . . . Vector graphic displaying the workĆow of the
opponent modeling AI

strategy_1.pdf . . . . . Graphic displaying a screenshot of the game
when the AI is playing strategy 1

strategy_2.pdf . . . . . Graphic displaying a screenshot of the game
when the AI is playing strategy 2

strategy_3.pdf . . . . . Graphic displaying a screenshot of the game
when the AI is playing strategy 3

testingBayes.pdf . . . . Vector graphic of a test result while using
the Naive BayesŠ classiĄer

UnitEntity.pdf . . . . . Vector graphic of the class UnitEntity

A.2 Executable JAR Files and Dependencies

Path: /build

BAYES.jar . . . . . . . Executable JAR Ąle where the opponent
modeling AI uses the Naive BayesŠ classiĄer
for the identiĄcation of the static opponentsŠ
strategies.

CART.jar . . . . . . . . Executable JAR Ąle where the opponent
modeling AI uses the CART classiĄer for the
identiĄcation of the static opponentsŠ
strategies.

KNN.jar . . . . . . . . . Executable JAR Ąle where the opponent
modeling AI uses the kNN classiĄer for the
identiĄcation of the static opponentsŠ
strategies.

strategyStatistics.ser . . Serialized data for training the classiĄers.

A.3 Test Results

Path: /statistics

LOG_BAYES.csv . . . . Test results of the Naive BayesŠ classiĄer
playing 15 games against static AIs

LOG_CART.csv . . . . Test results of the CART classiĄer playing 15
games against static AIs

LOG_KNN.csv . . . . . Test results of the kNN classiĄer playing 15
games against static AIs

nearestNeighbors
OMAI.pdf
strategy_1.pdf
strategy_2.pdf
strategy_3.pdf
testingBayes.pdf
UnitEntity.pdf
/build
BAYES.jar
CART.jar
KNN.jar
strategyStatistics.ser
/statistics
LOG_BAYES.csv
LOG_CART.csv
LOG_KNN.csv
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