
Defining Design Patterns for Pattern
Based Material Layering in Real-Time

Engines

Matthias Patscheider

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Digital Arts

in Hagenberg

im November 2018

© Copyright 2018 Matthias Patscheider

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, November 27, 2018

Matthias Patscheider

iii

Contents

Declaration iii

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Research Objective . 3
1.2 Structure of this Thesis . 5

2 Real-Time Rendering Definitions 6
2.1 Surface and Surface Area . 6
2.2 Texture . 6
2.3 Material and Shading . 7
2.4 Summary . 9

3 Material Layering 10
3.1 Definition . 11
3.2 Categorization . 12

3.2.1 Color Layering . 12
3.2.2 Pattern Layering . 13
3.2.3 BxDF Layering . 14
3.2.4 Illumination Lobe Based Layering 14

3.3 Summary . 17

4 The Material Layering Model 20
4.1 Inputs . 21

4.1.1 Parameters . 22
4.1.2 Scene Data . 22
4.1.3 Material Layer . 23

4.2 Material Container . 23
4.3 Masking Container . 24
4.4 Blending Module . 25

4.4.1 Blending Individual Parameters 26
4.4.2 Blending Modes . 27

4.5 Summary . 28

iv

Contents v

5 Material Layering in Unreal and Unity 30
5.1 UE4 A Shading System for Material Layering 30
5.2 Material Layering Implementation . 31

5.2.1 Node Based Shader Graphs . 31
5.2.2 UE4 Material Layering V1 . 32
5.2.3 UE4 Material Layering V2 . 33
5.2.4 Pre-existing Layered Material Shaders 33

5.3 Summary . 34

6 Design Patterns 36
6.1 Design Patterns Structure . 37
6.2 Summary . 38

7 Design Patterns for Pattern Layering 39
7.1 Pattern Layering . 40

7.1.1 DP 01: Pattern Layering . 40
7.1.2 DP 02: Hybrid Pattern Layering 44

7.2 Alternatives . 45
7.2.1 DP 03: Baked Texture Maps . 47
7.2.2 DP 04: Different Materials . 49

7.3 Shading Model . 52
7.3.1 Shader Implementation . 53

7.3.1.1 DP 05: Built-in Shader 53
7.3.1.2 DP 06: Custom Shader 55

7.3.2 Workflow . 57
7.3.2.1 DP 07: Uber Shader . 57
7.3.2.2 DP 08: Individual Shader 59
7.3.2.3 DP 09: Content Generated Shader 61

7.4 Material Container . 62
7.4.1 Granularity . 63

7.4.1.1 DP 10: Base Material 64
7.4.1.2 DP 11: Material Variation 65

7.4.2 Complexity . 66
7.4.2.1 DP 12: Full Material 67
7.4.2.2 DP 13: Modulation Layer 68

7.4.3 Creation . 69
7.4.3.1 DP 14: Input Based . 70
7.4.3.2 DP 15: Semi Procedural 71

7.5 Masking Container . 72
7.5.1 DP 16: Texture Based . 72
7.5.2 DP 17: Procedural . 74

7.6 Blending Module . 76
7.6.1 DP 18: Physical Material Blend 77
7.6.2 DP 19: Custom Material Blend 78

7.7 External Inputs . 79
7.7.1 Parameters . 80

Contents vi

7.7.1.1 DP 20: Textures . 80
7.7.1.2 DP 21: Variables . 81
7.7.1.3 DP 22: Scripted Parameters 82

7.7.2 Mesh Data . 83
7.7.2.1 DP 23: UV Coordinates 83
7.7.2.2 DP 24: Vertex Color . 85

7.7.3 Object Data . 86
7.7.3.1 DP 25: Vectors . 86

7.8 Summary . 88

8 Discussion 89
8.1 Limitations . 89
8.2 Conclusion . 90

A List of Design Patterns 91

References 93
Literature . 93
Audio-visual media . 94
Software . 95
Online sources . 96

Abstract

Current resources with regard to material layering (pattern layering) do not provide
information on how different layering methods affect all levels of a video game produc-
tion. They focus either on rendering algorithms and implementations or on how to solve
particular project specific problems.

In this work a catalog of pattern layering related design patterns is developed which
describes solutions to recurring problems in a standardized form. The individual ele-
ments form a structured language of interlinked patterns including all important infor-
mation of a problem within. They present how, when and why to use a certain pattern
and what the consequences to be expected are. The goal is to provide better information
before these decisions are made: which pattern layering method should be used and how
to include it into this particular project.

Solutions proposed in this catalog have been used in different huge video game
productions. Most of them have also been evaluated and tested in the VR experience
Letzte Worte (2019). In conclusion, this catalog can be used to improve information
based decision making with regard to pattern layering as well as input and inspiration
to create more user friendly tools.

vii

Kurzfassung

Um Entscheidungsprozesse in Hinblick auf Pattern Layering zu vereinfachen, wird in
dieser Arbeit ein Katalog an Design Patterns vorgestellt. Diese Patterns bilden die
Elemente einer vernetzten und abstrakten Spache zur Beschreibung und Lösung wie-
derkehrender Proleme.

Bisherige Arbeiten konzentrieren sich primär auf die technische Implementierung
oder auf problem- und projektspezifische Lösungsansätze. Diese berücksichtigen da-
bei kaum das große Ganze und welche Auswirkungen eine Entscheidung auf andere
Systeme haben kann. Diese Arbeit stellt ein Werkzeug zur Verfügung, um informierte
Entscheidungen zu ermöglichen, bevor man mit den Problemen der einzelnen Ansätze
konfrontiert wird.

Die hier dargestellten Lösungen stammen aus verschiedenen großen Videospielpro-
duktionen der letzten Jahre und wurden großteils auch im Masterprojekt Letzte Worte
(2019) eingesetzt und evaluiert. Dieser Katalog ist ein praktisches Hilfsmittel für den
Leser, um bessere Entscheidungen im Bezug auf Pattern Layering zu treffen.

viii

Chapter 1

Introduction

Any complex surface can be recreated by blending or layering an arbitrary number of
different less complex base materials.1 Material layering is becoming an increasingly
popular approach in recreating real world surface complexity for video games. Many
AAA games use this approach for their shading workflow (e.g., [34, 37, 41, 43, 44]).

The growing importance of material layering is accompanied by three big trends
within the video game industry. Content creation seems to shift more and more into
the game engines. The Coalition, Ready at Dawn and Epic Games transfer a big part
of the material pipeline into the engine [30, 17, 19]. Unreal Engine 4 (UE4) and Unity
provide many built in art tools (e.g., the shader graphs). Different 3rd party tools use
live links to visualize changes directly within the game engine (e.g., Motion Builder and
Substance Painter). Tools like Houdini and Substance Designer use plug-ins to enable
working from within the engine. Further, a physical plausible workflow is preferred over
a visual one. This improves consistency of assets across different lighting setups. It also
increases consistency across different artists. Nowadays most 3D applications support
a physically based rendering (PBR) shading workflow. Asset creation shifts more and
more towards procedural techniques [32].

There are many different approaches to layer and blend materials. Each one has its
own advantages and disadvantages. The different methods will be explained later in this
work. A major investigation focus for the analysis of the material layering methods for
interactive, virtual environments2 is about balancing visual appearance, technical con-
straints and limited production resources. Decomposing a complex surface into smaller,
manageable elements is good way to split a task into smaller, less complex parts. Figure
1.1 shows an example of how a complex material can be recreated by combining a set of
more generic materials. Splitting up a surface into smaller components can be beneficial
from an artistic, production and technical point of view. Subproblems can be handled
individually.

With this work, I will provide a proposal for material layering related design patterns,
to support the decision making process while creating layered materials. To further

1The term material can have a variety of different meanings within computer graphics and beyond,
see section 2.3.

2In this work an interactive, virtual environment is an artificial world provided by a computer. Its
goal is to provide for an completely immersive world that is different from the players physical location
[14, p. 9, 30][11, p. 743].

1

1. Introduction 2

Figure 1.1: Shading with pattern layering. This image illustrates the basic concept
of the pattern layering. Pattern layering represents the most relevant material layering
method for real-time applications. The fire hydrant is composed of 4 different tillable base
materials. These base materials (dirt, clean metal) are blended by using the masks on the
right. Image source: [31].

elaborate why material layering is an important technique for creating large scale virtual
environments, I will give a brief example. Looking at the ruins of an old castle, you might
see that there is a lot of complexity going on over a huge amount of space. There are
probably different layers of stones, plaster, color and moss and all these layers blend
together and show the history of the object. A real world example can be seen in figure
1.2.

The wall surface3 indicates the age, usage, interaction: Was it exposed to nature?
Was it taken care of or simply left to decay? Capturing this kind of object history is
more than just creating an interesting visual. It plays a major role in creating a deep,
interesting and appealing world. Decomposing the material into different independent
base materials and analyze how each material is blended with the others makes the
challenge much more manageable than trying to solve every problem at once. A side
effect of creating solutions to smaller, less specific problems is the possibility to reuse
and modify the components and share them. This is normally not possible for all-in-one
solutions as every subpart is heavily interlinked.

The visual appearance is only one part, a completely different thing is to make the
game run smoothly in real-time. The available resources—e.g., memory, bandwidth,
CPU, GPU etc.—are limited and have to be used efficiently to make this possible.
Depending on projects, requirements and hardware, different components will create a
bottleneck in the rendering pipeline. Staying with the example of a big castle wall, the
first approach might be to texture the huge surface by covering it entirely with huge
unique textures. This approach relies on giant texture files and is therefore risky to
create a bottleneck either by extending the available memory or bandwidth. Another
approach is to recreate the micro detail of the wall with actual 3D geometry. This
method might work for a few objects but soon result in an enormous polycount and

3The term surface is further specified in section 2.1.

1. Introduction 3

Figure 1.2: A challenging surface to recreate virtually. Recreating walls like this from
the Heidelberg Castle are a challenging task for 3D interactive environments. The main
challenge is the rich amount of detail and surface variation across such a huge area of
space. Recreating this richness of the surface with the stones in varying sizes, plaster, color
and dirt is challenging from an artistic as well as a technical point of view. This becomes
even more challenging as the player can move freely and seamlessly around, seeing the
castle walls from near and far. One solution is to split the surface into different more
generic base materials.

create a bottleneck in another part of the rendering pipeline. A probably better suited
solution might be to use material layering. One way to do material layering is to use
several tillable textures, blend and manipulate them with different methods and create
a complex, large scale surface. The Witcher 3: Wild Hunt [34] used a similar approach
to create wall materials as shown in figure 1.3.

1.1 Research Objective
The goal of this thesis is to collect answers for recurring decisions regarding material
layering in real-time applications. This thesis will cover bigger concepts behind com-
mon texture layering problems and is not intended as a step-by-step guide in how to
implement a certain design. It will provide users with a tool set of tested methods to
improve decision making concerning pattern based material layering. The different ap-
proaches to material layering are discussed in section 3. In the end, the design patters
should support game makers in populating a scene with a huge amount of appealing,
distinctive and complex objects without extending the technical limitations of a first
person real-time application. To do so, this work attempts to define design patterns to
answer recurring problems regarding pattern based material layering. As a template for
the pattern design I adopt the scheme presented by Erich Gamma et al. [10] and Jenifer
Tidwell [21]. According to this template, design patterns themselves should contain the
most important information like application, benefit and risk [10, p. 3]. See chapter 6
for further details on design patterns. Weta Digial evaluates new technologies and tools

1. Introduction 4

(a)

(b) (c)

Figure 1.3: Multitexture materials used for the buildings in Witcher 3 [34]. Figure (a)
shows the castle Kaer Morhen. The walls of the castle are textured by layering different
smaller scale textures, shown in figure (b). In combination with different masks, layering
and parametric methods, it is possible to ensure a high texel density even from a closer
view (c). Image source: [29].

according to three major aspect: “performance vs. correctness vs. artistic freedom” [22].
These same free factors play an essential role for evaluating the design patterns defined
in this work;
Artistic Freedom: To what extend does the technique enable artists to reach a visual

goal? What are the aesthetic limitations and downsides of the used method that
are to be expected?

Performance: What is the impact of the method on performance? Which bottlenecks
might the method lead to (e.g., memory, bandwidth, CPU, GPU). Might this
method solve a performance issue I already have?

Correctness: How versatile, flexible and robust is the used method? Does it support an
interactive, shared workflow and can sub-parts be reused, combined and shared?

All test cases are based on opaque, physically based,4 dielectric and metallic materials,
4The term physically based is used to describe methods that try to imitate the real world behavior

by following the laws of physics [20, p. 1]. In general, you can distinguish between physically correct and

1. Introduction 5

not including advanced shading concepts like translucency, transparency, subsurface
scattering and volumetrics. To make the results comparable, all test share a similar
aesthetic goal in creating a photorealistic5 and vivid environment. Most design patterns
were tested and evaluated in the production of Letzte Worte [42]. Neither the creation
process of textures, their blending in a texturing software with the result of a single,
baked texture nor the technical implementation are going to be part of the thesis.

1.2 Structure of this Thesis
Chapter 2 starts by defining the key terminology for this work. Chapter 3 provides
an overview of the current development and state of the art. It gives an overview of
the different concepts for material layering. Further, it discusses which methods are
already relevant for real-time applications and which might become interesting in the
near future. The thesis continues by defining an abstract description model for pattern
layering in chapter 4. This will be especially relevant to understand the structure and
categorization of the design patterns. Chapter 5 focuses on the implementation of the
previously theoretically described models. Before digging into the core of this work, a
short spin is made to discuss design patterns from other industries. Chapter 6 explains
how these concepts can be transposed to this work. Chapter 7 presents a detailed catalog
of design patterns. They are structured hierarchically and categorized thematically. This
helps to easily navigate to the problem relevant patterns. Finally, chapter 8 concludes
by presenting the results, limitations and prospects for future research.

physically plausible approaches. While the former tries to stay as close to reality as possible, the latter
deliberately chooses art-directability and performance before physical accuracy [5, p. 12][61, p. 2].

5The appearance of a photo realistic object should be close or indistinguishable from photographs.
As human perception is subjective, this may vary from person to person [20, p. 4][1, p. 99].

Chapter 2

Real-Time Rendering Definitions

The terms such as for example surface, texture and material have various meanings
depending on the context they are used in. Definitions from other scientific fields like
engineering, chemistry and physics will not necessarily cover the same needs as in com-
puter graphics. Defining a material as “[. . .] a substance that things can be made from.”
[62] does not make a lot of sense for the virtual concept of material in computer graphics.
Another issue is that even in computer graphics and across different 3D applications the
terminology is often used inconsistently. Even throughout the same applications (e.g.,
UE4) I found the use of the term material non-specific and referring to many different
concepts. It is therefore essential for the clarity of this work to define the terminology
used in this work first.

2.1 Surface and Surface Area
In the present work surface is used to describe the visual appearance of an object and the
way it interacts with lights rather than the most outer area of an object in a geometrical
sense. It refers to the different visual properties of an object like the age, history and
usage of the castle wall (see chapter 1). To refer to its secondary meaning of the “the
outside part or uppermost layer of something” [62], I will use explicitly the term surface
area to make a clear distinction between both terms.

2.2 Texture
A texture is often referred to as a color image that covers the surface area of an object,
while, in practice, textures can contain all kinds of information influencing the shading
equation. This work relies on the definition for texture defined by Thomas Akeninne-
Möller et al. [1, p. 32–36]: “[A texture] can be thought of as any large array of data.”
This statement already includes many properties that textures can influence. This array
of data can contain the color data that is to be projected onto the mesh, but it can also
contain all kinds of other shading information. Besides they are generally used to define
a vast variety of surface properties by affecting the shading equation [1, p. 180–181] of a
material. Most of all bigger surface shading description is stored in this way. Joe Wilson
[69] gives examples of surface properties that are most often—but not exclusively—

6

2. Real-Time Rendering Definitions 7

(a) (b) (c)

Figure 2.1: Using textures to manipulate UV coordinates. These images shows a less
obvious example for using textures. The texture is not used to define a surface property
but to manipulate the UV coordinates. Figure (a) shows a representation of the UV
coordinates. The red and green value represent the U and V coordinates reaching from
zero to one. Figure (b) shows a perlin noise texture that is used to manipulate the UV
Coordinates within the shader. Figure (c) shows the manipulated UV coordinates that
distorts the texture projection (e.g., base color, roughness) and can even be used to create
animated shader effects.

defined by textures:
Diffuse: These textures define the surface color and can be slightly different in name

and stored information data depending on the application and shading model they
are used for. The most commonly used names for diffuse textures in physically
based shading are base color, diffuse and albedo. This work uses the term base
color.

Microsurface structure: The two most commonly used maps to influence this prop-
erty are roughness and glossiness maps. They basically define how rough or smooth
a surface appears by influencing the shape of the specular reflection.

The amount of reflected light: The most important texture inputs to influence this
material property are metalness, specular and index of reflection [69].

As mentioned before, textures are not always projected onto an object but can also be
used as an object independent “stand-alone data table” [11, p. 462] as pointed out by
Jason Gregory. Matt Pharr et al. [20, p. 597] choose an even broader definition for a
texture:

[. . .] a texture is a fairly general concept: it is a function that maps points
in some domain (e.g., a surface’s (𝑢, 𝑣) parametric space or (𝑥, 𝑦, 𝑧) object
space) to values in some other domain (e.g., spectra or the real numbers).

2.3 Material and Shading
The terms material and shader are closely connected with one another. The use of both
terms seems inconsistent across different applications such as for example Unity and

2. Real-Time Rendering Definitions 8

UE4. It is therefore especially important to define what those terms mean in the course
of this work. Materials are defined by Akenine Möller et al. [1, p. 468] as follows:

A material is a complete description of the visual properties of a mesh.
This includes a specification of the textures that are mapped to its surface
and also various higher-level properties, such as which shader programs to
use when rendering the mesh, the input parameters to those shaders and
other parameters that control the functionality of the graphics acceleration
hardware itself.

The term shader does include all these shader programs: the input manipulation
within the shader code and shading graphs. This definition also allows to give state-
ments regardless of the underlying shading language and hardware. The terminology for
texture, material and shader within Unity applies to this work. A shader within Unity
is defined as follows [65]:

A Material specifies one specific Shader to use, and the Shader used deter-
mines which options are available in the Material.

This simplified definition of a shader will work for most parts within this work. Materials
within UE4 are defined as follows in contrast the prior definition [56]:

Materials are defined by a set of states that control how the material is
rendered (blend mode, two sided, etc.) and a set of material inputs that
control how the material interacts with the various rendering passes (Base
Color, Roughness, Normal, etc.).

Materials within UE4 can perform both functionalities of a shader as well as the
model specific descriptions—see definition above. An UE4 material can contain certain
descriptions of how to evaluate the shader equation, but it can also be applied to a
mesh directly. To avoid further confusion, this work will use a strict separation between
UE4 material instances and materials. UE4 materials are strictly used as shaders. The
material instances, on the other hand, are used as materials and contain the object
specific values and textures. This aligns with the distinction between shader and material
found in Unity. In terms of this work, UE4 materials will be strictly used and referred
to as shaders while material instances as materials. Other meanings for materials within
this work are:
Base Material: Base material refers to a distinctive part of a surface area that differs

in its physical properties. In contrast to material container, it describes the visual
and artistic categorization. A surface can be split into different generic base mate-
rials. These base materials can be used to recreate a similar surface to the initial
reference, for example. The granularity of splitting a surface into different base
materials is defined by the artist and the final purpose. In a complex environment
a base material may refer to cobblestone as well as the more detailed individual
layers such as stone, mud, pebbles etc.

Material Container: A material container is a technical component of the material
layering model (see chapter 4). In contrast to base material, it may not only
represent the entire surface properties but may only contain technical parameters
and variables.

2. Real-Time Rendering Definitions 9

2.4 Summary
The purpose of this chapter was to define the fundamental terminology for this work.
This is necessary as terms like texture, material and shader are used inconsistently
across different applications and scientific fields. For the purpose of this work, a texture
is defined as a stored set of data that can be mapped onto any object. It is used
to influence the shader equation within the rendering process. A texture is therefore
used to define certain surface properties like color, light interaction, blending mask or
texture mapping independent lookup tables.1 A shader defines which parameters are
available within a material. Every material has to specify one shader, while shaders can
be assigned to an infinite amount of materials. The shader defines which parameters
and textures are available within the material and how the material is processed and
rendered on the GPU. A Shader defines the available inputs and the different shader
programs used. Materials are directly applied to objects within the 3D scene and define
the object specific inputs.

1Lookup tables represent arrays of data. They are used in computer graphics to avoid heavy compu-
tation and use stored data with array indexing operations instead [68].

Chapter 3

Material Layering

This chapter is about the current state of material layering methods. The first part
provides a definition of material layering and a categorization for these methods. As the
the modern game rendering pipeline is a complex system of many interlinked stages, I
will try to see material layering in a larger context and not as an independent isolated
component. The methods presented in this work are applied in various stages of the
creation and rendering pipeline. This includes the asset creation process (e.g., modeling,
texturing, normals) as well as shading and rendering (e.g., vertex shader, pixel shader,
post processing).

(a) (b) (c)

Figure 3.1: Comparison of three different shading methods. Figure (a) and (b) show
different implementations of material layering: BxDF layering and pattern layering. Image
(c) shows the reference of using traditional baked texture maps. The shading was done in
Blender, model and textures are from the Substance Share website [46].

10

3. Material Layering 11

(a) (b)

Figure 3.2: Comparison of material blending (a) and material coating (b). In material
blending, masks are used to define where a base material is applied. They do not represent
the physical properties of layers stacked onto one another but rather a blend defining the
influence on the final output. Material coating (b) simulates an actual coating or stacking
of different layers onto one another. The purpose is to recreate the complex scattering of
light when passing through different layers. This is not taken into account in traditional
BxDF or rasterization shading models.

Similar visual results can be achieved with different methods. An example can be
found in figure 3.1. For this example, I recreated the material setup for Allegorithmics
fire hydrant using three different methods. The images show the different material lay-
ering methods: pattern layering and BxDF layering. Both will be explained later in this
chapter. The last image shows the reference image using pre-baked maps, i.e., there is
a single texture for the individual material parameter inputs already containing all the
information of the different base materials. The mesh and base textures used can be
downloaded from the Substance Share website [46].

3.1 Definition
This section provides a brief definition of what material layering means in the course of
this thesis as well as the various methods it can be referred to in different applications
and contexts. Material layering is the process of either blending distinctive base materi-
als or recreating the physical layers of real world surfaces, illustrated in figure 3.2. The
former is used to create variety in different surface types; the latter is used to recreate
the complex lighting effect within thin physical layers. It simulates the light scattering
on, between and within physical material layers. The approaches are not directly linked
to one another. Both ideas have different use cases, tools, algorithms and shaders. A
distinction between the two approaches is therefore essential.
Material Blending: It describes the process of blending two distinctive base materi-

als. This process does not take the complex process of scattering within the layers
or at the layer boundaries into account.

Material Coating: This approach simulates the complex effects going on when stack-
ing a—most probably translucent—layer on top of another layer. This means that
the output of the first layer affects the input of the next layer.

3. Material Layering 12

Figure 3.3: Color layering with two base materials. The process would look the same if
applied to more base materials. Either material may have independent textures, inputs
and shaders. The individual materials are computed independently from one another.
Finally, the rendered output layers are blended together by using the alpha channel as a
mask. If additional data like displacement is used, the blending process is more sophisti-
cated than simple alpha blending (e.g., blending displacements properly [63]).

3.2 Categorization
Davide Pesare—a senior software engineer—gives an overview of the commonly used
material layering methods on his webblog [63]. He distinguishes between four different
types of material layering: color layering, pattern layering, BxDF1 layering and illu-
mination lobe based layering. He provides a useful guide to better understand what
different approaches for layering materials exist and how they differ.

The most relevant one for this work is pattern layering as it is technically already
being used for real-time applications. BxDF layering is an approach that is highly con-
nected to ray tracing and therefore not yet applicable for the purpose or real-time ap-
plications. Nevertheless, they might become suitable for this in the future as hardware
is evolving and development in real-time ray tracing is already happening as shown by a
collaborative demo of Epic Games, NVIDIA and ILMxLAB [51]. A paper by Belcour [4]
has just recently been released showing an approach that makes illumination lobe based
layering suitable for real-time applications. More publications and implementations in
this direction might therefore follow in the next years.

3.2.1 Color Layering
Color layering was extensively used before physically based rendering (PBR) was in-
troduced. A set of different materials gets applied to the same object. An independent
RGBA layer is calculated for every material. These render layers contain the final object
color with all illumination baked in. Finally, the different render layers for each mate-

1The x in BxDF is a wildcard character and can stand for all kind of different BxDF functions; BSDF
(bidirectional scattering distribution function), BSSRDF (bidirectional scattering-surface reflectance
distribution function), BRDF (bidirectional reflectance distribution function) and BTDF (bidirectional
transmittance distribution function) [67].

3. Material Layering 13

Figure 3.4: Pattern layering with two base materials. Both base material are described
by independent inputs. In contrast to color layering, the parameter inputs are blended
instead of the shader outputs. A more detailed overview of how pattern layering works
can be found in chapter 4.

rial are blended together based on their alpha channel. Figure 3.3 shows the schematic
process of this material layering method. It can also be expanded to include advanced
shading information like displacement layering [63]. Color layering results in an object
being redrawn for every base material.

3.2.2 Pattern Layering
The idea behind pattern layering, in contrast to color layering, is to blend the material
inputs within the shader instead of their outputs. The inputs (e.g., base color, roughness,
metallic) get blended with one another. Finally, the blended parameters define how the
material effects the corresponding rendering pass (rasterization renderer) or illumination
lobe (for a ray trace renderer). This method assumes that all base materials use the
same illumination model. The inputs of the final shading programs are identical for the
materials. They can therefore be packed together and send to the GPU as single job.
This method reduces the material count drastically in comparison to color layering and
is therefore more efficient. The features for the individual materials are limited by the
shader; only inputs that are defined by the shader can be used for material layering [63].
To circumvent this issue, Epic and The Coalition have worked on systems that generate
a shader dynamically depending on the given inputs (see section 5.2.3). More detail on
how UE4 and Unity handle pattern layering and its constraints is provided in section
5.2.

Pattern layering is a flexible method. All kind of data types (e.g., textures, proce-
dural noises, meshes, scene data) can be used to blend and manipulate the individual
base materials. For recreating a surface that is partially covered by water, many ap-
proaches could be applied. Blending all texture maps for each and every render pass
is one possibility. Another approach is to use a procedural noise that influences the
roughness, base color and normal parameter inputs and creates a similar result. Pattern
layering does therefore not only refer to the combining of several base materials into a

3. Material Layering 14

layered material but also to manipulating input parameters to create a similar effect.
The blending of the different parameters can be complex and therefore easily produce
unintended values. Ensuring a proper blending of all inputs is the biggest challenge for
a pattern based material layering system. Common issues arising form pattern layer-
ing are: a wrong roughness and index of refraction (ior) accumulation, multiple values
that influence a single output and issues with blending normal vectors. These issues are
further discussed in section 4.4.1 on page 26.

3.2.3 BxDF Layering
Bxdf layering is highly related to ray tracing. The layering system provides the renderer
with the information related to which material covers which parts of the object. The
blending affects the probability density functions of the ray and is therefore independent
from the individual materials themselves. The probability density function defines the
probability with which an incoming ray hits a certain material. A black mask defines the
probability of 0% for a ray to hit the assigned material while a white mask is equal to
a probability of a 100%. Grey value represent a probability between a 0% and a 100%.
As shown in figure 3.5, the probability for the black masked area on the left side is a
100% to hit the blue MAT1. Going further and further to the right side of the object,
this probability shifts more towards the red material MAT2. The probability increases
until it is finally a 100% at the white masked areas.

According to Davide Pesare, the additional expanse for this approach will be mini-
mal compared to pattern layering when the light prediction algorithms for path tracer
improve [63]. In the fire hydrant example (see figure 3.1), when comparing both meth-
ods, the rendering time for BxDF layering increased dramatically compared to pattern
layering. The huge advantages of BxDF layering are: the individual materials are not
limited by the constraints of a single shader, the blending is physically more accurate
than pattern layering and the need for complex pipeline tools to assure the proper
blending of individual lobe inputs disappears. By only influencing the probability den-
sity function the materials are completely independent from one another. This removes
the technical issues for pattern layering—mentioned before—when blending different
materials. Although BxDF layering is more versatile and less complex than pattern lay-
ering, it is still not able to recreate complex stacking of different materials, as explained
by Andrea Weidlich et al. [22, p. 9]:

Materials (i.e., BRDFs) can be stacked, but only with an opacity channel;
they do not influence each other. This means that a rough surface on top of
a smooth surface will not increase the roughness of the underlying surface
(although this would happen in reality).

3.2.4 Illumination Lobe Based Layering
Before going into detail about illumination lobe based layering, I want to talk briefly
about lobes in the context of shading. A BxDF is composed of different lobes that
define how the material interacts with light. Figure 3.7 illustrates this fact. Pixars
PxrSurface is an Uber Shader dedicated to replicate all kinds of different materials. To

3. Material Layering 15

(a)

(b) (c)

Figure 3.5: BxDF layering with two base materials. Figure (a) shows a shaded sphere
with two BxDF materials blended together. They are combined using a linear gradient
from black to white as seen in figure (b), from the blue material Mat1 to the red material
Mat2. Rather than blending the output of both materials or the inputs, this method
influences the probability density function of the render equation for the incoming rays.
As shown in figure (c), the probability for the black masked area on the right side is a
100% to hit the blue MAT1. Going further to the right side of the object, this probability
shifts more towards the red material MAT2. The probability increases until it is finally a
100% at the white masked areas.

make this possible, the material properties are described by ten different lobes (e.g.,
diffuse, three specular, glass, subsurface etc.). For the basic BxDF shading these lobes
are mixed linearly together. The principle behind illumination lobe based layering is
to stack different base materials that use a different set of illumination lobes. These
lobes are than stacked onto one another by also replicating the physical thickness of a
material layer.

All the previously explained methods are able to yield astonishing results but fail
to simulate the light propagation in a physically plausible way. The illumination lobe

3. Material Layering 16

base layering is the only approach presented in this work that aims to imitate the real
world behavior of different, distinctive layers stacked on one another. Wenzel Jakob
provides some examples for surface properties that are not possible to recreate with the
traditional BxDF shading models. Some of these examples are: ceramic covered by glaze,
colored car paint with an additional layer of clear coat and biological layered materials
like skin or leafs [12, p. 1]. He further explains the challenging task of recreating this
complex real world materials in following paragraph from [12, p. 1]:

Simulating these types of layered materials in renderings is surprisingly diffi-
cult: when a quantum of light enters the top layer, it can undergo a complex
sequence of scattering events within individual layers and at layer bound-
aries; finally, the light is either absorbed or able to leave the material. The
details of this intermediate scattering process are important, since they de-
termine both the intensity and distribution of scattered light. [. . .] Even
the simplest nontrivial system, of a single medium bounded by a smooth
interface, is only roughly approximated by standard BRDF models [. . .].

Recreating this complex effect has been a subject of interest over the last years.
A lot of solutions have been proposed and adopted to recreate a really specific case.
Tencent and Epic Games have shown an astonishing result for a real-time skin shader
using an additional glossy specular layers stacked over the base shader and an additional
specular lobe underneath it in [64]. Estevez et al. [7, p. 1] propose an efficient method to
simulate the back scattering characteristics of fabrics by introducing an additional sheen
specular lobe. The current methods used for real-time productions are limited to one
specific kind of material, e.g., skin, fabric or coated paint. Therefore, a lot of research
has been going on to create an illumination lobe based material layering system that
works for arbitrary base materials and any number of layers.

One attempt do do so was developed by Jakob et al. [13]. They developed a frame-
work to compute layered materials for arbitrary isotropic and anisotropic layers with
smooth or rough boundaries of conductors and dielectrics. Their paper has been the
starting point for a lot of ongoing research. Their layered material system has just re-
cently been expanded by Zeltner et al. [23] to cover reflective, transmissive, anisotropic
layers as well. The limitations of these approaches are their heavy reliance on precom-
puted and stored data. These methods do not support varying texture materials inputs
as they rely on precomputed data.

Belcour has recently released a paper [4] containing a real-time compatible new
framework. This work targets a comparable visual quality to preview methods proposed
by Jakob et al. [13] and Zeltner et al. [23]. In contrast to their work, Belcour’s method,
presented in [4], does not rely as heavily on precomputed tabular data but relies rather
on statistical analysis and decomposes “light transport into a set of atomic operators
that act on its directional statistics”. Finally, also this approach relies on stored data but
with a much smaller footprint. The paper contains an implementation example for both
offline and real-time rendering. Both share the same code for the greatest extent. The
real-time implementation has some limitations (e.g., restricted to three base materials
and two output lobes) regarding the increase of efficiency. Other limitations common
to both renderer are: In cases with several glossy materials, the specular lobes of the
output gets inaccurate, anisotropic and subsurface scattering is not implemented, only

3. Material Layering 17

(a) (b)

Figure 3.6: Illumination Lobe Based Rendering in both a real-time (a) and offline ren-
derer (b). Image source: [4, p. 73:11].

Figure 3.7: A material composed of four different lobes. The orange line represents
the diffuse component, the three blue lines are additional lobes (e.g., specular lobes)
and the green line shows all the lobes combined that into the BRDF. This is a visible
representation of the reflectance at each and every point for every possible incoming and
outgoing angle. Image source: [8].

the GGX algorithm for the specular reflection is implemented and the approximation
that light enters and exits the material at the same point is made. Belcour specifies which
technical criteria a layered material approach has to fit to be suitable for production [4,
p. 73]:

A key difficulty is to provide a realistic model that works with an arbitrary
number of layers (possibly textured), accounts for multiple scattering, is en-
ergy conserving, requires little storage, has a short precomputation time,
supports good importance sampling and is symmetric with respect to light
transport evaluation (to be compatible with bidirectionnal rendering tech-
niques).

3.3 Summary
In this chapter, different methods of material layering were discussed. An important
differentiation was made between material blending and material coating. In contrast to

3. Material Layering 18

material blending, material coating is not used to blend different base materials but does
rather simulate the complex scattering of light happening between multiple thin layers.
A further categorization of material layering methods was made based on an article
by Davide Pesare [63]; color layering, pattern layering, BxDF layering and illumination
lobe based layering. Table 3.1 summarizes the key differences of these methods. Color
layering and illumination lobe based layering are not officially implemented in any of
the game engines. Color layering can be achieved by using custom render passes. This
is expensive as the material needs to be rendered several time. Therefore, it is not used
for material layering in real-time applications. Belcour proposes a method to implement
a simplified illumination lobe based layering system into a real-time engine in [4].

3. Material Layering 19

Table 3.1: Overview of the material layering methods.

Material Layer-
ing Method

M
at

er
ia

lC
oa

tin
g

G
am

e
En

gi
ne

Su
pp

or
t

Description

Color layering - ∼ Each material is rendered independently and stored
in an RGBA layer. The render layers are blended to-
gether by using the alpha channels. There are some
advanced techniques to account for complex shading
techniques like displacement blending.

Pattern layer-
ing

- X The idea behind pattern layering is to rather blend
the material inputs then their outputs. The different
inputs from one base material like base color, rough-
ness and metallic get blended with the inputs of an-
other base material and combined into one material by
the shader. Finally, these blended parameters define
how the material affects the corresponding rendering
passes.

BxDF layering - - BxDF layering does neither blend the inputs nor out-
puts of the base materials but rather influences the
probability density function within a ray tracer. This
means it influences the probability with which an in-
coming ray hits a certain material. The materials and
the blending process are independent from one an-
other.

Illumination
lobe base
layering

X ∼ Illumination lobe based layering is the only method
that accounts for the complex process of light pass-
ing through different layers and being manipulated by
them. It imitates the complex scattering and modu-
lation of light when passing through different layers
with a thickness and different physical properties.

Chapter 4

The Material Layering Model

The next chapters focus exclusively on pattern based material layering systems and
shaders. Therefore, material layering will always refer to pattern layering if not further
specified. For the purpose of this work I developed a theoretical and implementation
independent schematic model to describe material layering systems and shaders, the
Material Layering Model. This material layering model is inspired by the high level ma-
terial layering systems form UE4 5.2.3 and The Coalition [19]. It splits layered materials
in different encapsulated components that are responsible for specific tasks. The main
components of this material layering model are: Material Container, Masking Container
and Blending Module (see figure 4.1).
Material Container: The material container is an independent component in the ma-

terial layering model. It represents an encapsulated module that uses different
input data and outputs a material layer object.1 The computations taking place
within this component can be complex but do not influence the other components
of the material layering model. Like a class in programming, the implementation
can change without effecting other components as long as the inputs and outputs
stay the same. For most of this work it is enough to interpret a material container
as a blackbox that inputs different data, does some computation based on them
and exports a material layer object.

Masking Container: The masking container is responsible for generating a 0 to 1
mask that defines the influence intensity and area of the blending module. The
masking container can be seen as encapsulated module inputing arbitrary data
and optional material layer inputs. The masking container specifies the needed
inputs and the logic that is used to derive the 0 to 1 masking information.

Blending Module: The blending module is responsible for the actual blending process
of the individual material containers. The blending module inputs the material
layers from the material containers and the mask output from the Mask Container.
The blending module outputs a new material layer. As mentioned before, the 0
to 1 output of the masking container defines the area and intensity in which the
blending takes place. The blending module includes the information of how to
blend the individual material layer channels. The material layer output of the

1The material layer object is a data type that describes the standardized material properties by
defining the individual channel values influencing the corresponding render passes.

20

4. The Material Layering Model 21

Material Container 1

Material Container 2

Inputs

Scene Data

Geometry Data

Objec Data

Parameters

Blend Mode

MaskGeneration

Material
Layer

Figure 4.1: Material Layering Model.

blending module can represent the final Shader output, a new material container
for further layering or an intermediate result for further manipulation within the
shader.

As already mentioned before, this is a theoretical and schematic model to establish
a language that can be used for the design patterns in chapter 7. It is intended to work
for the different material layering systems within this work. It does neither define how
those systems are implemented on a technical level nor how material layering should be
implemented. The material layering Model works for either describing a layered material
shader or a layering system. In the former case, it represents the structure within the
shader that enables the layering of different base materials. In the latter, it represents
the structure of the system that is used to compute the final shader from the inputs.
Layered Material Shader: The shader defines the amount of components (e.g., ma-

terial containers) and the possible inputs. Adding additional inputs and options,
changing or replacing individual components or modifying the blending behavior
needs to be done manually on the shader level.

Layered Material System: Generally, the layered material system is implemented
as a tool—normally within the engine—that uses different encapsulated modules,
e.g., Material Layer (material containers) and Material Layer Blends (combining
mask containers and blending module) in UE4. These components can be com-
bined easily within the tool. The layered material system does generate the shader
code automatically in the background. Individual components can therefore be
added, replaced or changed easily without any additional work.

4.1 Inputs
Inputs define which data is accessible from within the different modules of the material
layering model. This section is mostly relevant for the material container and masking
container components. These components have full access to all input data exposed by
the engine: parameters, scene data, object data and mesh data. The material layering
model does not define inputs as an independent sub module but as inherent part of
the other modules. Which input data can be accessed from the shader is defined by
the shading language, engine and tool that is used to create the shader. An overview

4. The Material Layering Model 22

of all nodes and inputs for UE4 can be found in its documentation.2 A huge amount
of different data can be accessed, some of them are specific to special use cases. The
following sections do not include all possible inputs but, in my opinion, the most useful
and universal ones.

4.1.1 Parameters
Parameters are variables that get exposed from within the shader or layering system.
They can be set and modulated on a per material or component basis, depending on
the implementation. This enables the user to create multiple distinctive materials using
the same shader. These parameters can be global or specific to individual components.
The available data types for parameters are defined by the shading system. The shader
graphs of UE4 and Unity support different data sets. All supported and predefined
parameters available in UE4 shader graph can be found in the documentation.3 The
most important ones are: textures, vectors, scalars and booleans.

Textures are the most common way to store larger data sets for individual materials
including color information, information about the lighting interaction, vectors, masking
and many more. They are efficient in processing as they represent a simple data table
than can be read and does not need heavy computation. Algorithms and workflows,
like dynamic texture streaming, channel packing, mid mapping, compression and other
optimizations make it possible to load a huge amount of bigger textures into a 3D
scene. Nevertheless, the memory in the VRAM is limited and needs to be used carefully.
Sending and managing the data and render jobs to the GPU (draw calls) can lead to a
bottleneck on the CPU. It is therefore important not to go overboard with the amount
of textures and especially the texture resolutions. Vectors, scalars and booleans are
incredible versatile and powerful as they can be used to define, drive and influence
an infinite number of different operations. Vectors and scalars can be used to define
and manipulate colors, directions, normals, switches, remapping, intensities, rotations,
vertex positions, uv coordinates etc. Most of the parameters can be changed and assigned
at runtime. This works for all parameters that do not enforce the shader to recompile
(e.g., static switches in UE4).

4.1.2 Scene Data
Different data from the 3D scene can be accessed in addition to the previously mentioned
inputs. Some examples are are: mesh data using the corresponding material, data about
the object owning the material and different arbitrary scene data exposed by the engine.
Some examples for the latter are: data connected to cameras, lights, render passes.
The separation between object and mesh related inputs is important as the usages for
these data types are different. The mesh data is independent from the 3D scene. So for
instance, object related values like hierarchy, position, rotation, scale do not have any
influence on them. All of the identical meshes within the 3D scene share this data. All
the material inputs are the same for those meshes. Object related inputs, on the other

2See the list of all nodes and inputs accessible from within the UE4 shader graph: https://docs.
unrealengine.com/en-us/Engine/Rendering/Materials/ExpressionReference.

3See the documentation about parameter expressions: https://docs.unrealengine.com/en-us/Engine/
Rendering/Materials/ExpressionReference/Parameters.

https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/ExpressionReference
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/ExpressionReference
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/ExpressionReference/Parameters
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/ExpressionReference/Parameters

4. The Material Layering Model 23

Material ContainerInputs

Scene Data

Geometry Data

Objec Data

Parameters

Material
Layer

Multiple Inputs

Material Layer Output

Figure 4.2: Material Container.

hand, are related to the position and hierarchy within the 3D scene. Therefore, inputs
can be both influenced or independent from the mesh data.
Mesh Related: These inputs are only influenced by the mesh, e.g., UV coordinates,

face and vertex normals, objects space position and object space normal.
Object Related: In contrast to mesh related input, they may differ across objects

even by using the identical mesh, e.g., world space normals, world space position,
object position, rotation and scale. They can both be independent and influenced
by the assigned mesh data.

Scene Data: Contains additional information of different objects within the scene like
light vectors, camera position and distances to other objects.

4.1.3 Material Layer
The material layer is a data type that describes the standardized material properties
by defining the individual channel values influencing the corresponding render passes.
This standardized format makes it easy to blend and process base material information
in a generalized way. This input can be used to drive procedural processes within the
masking or material container. In the context of UE4, this concept corresponds to
Material Attributes.4

4.2 Material Container
This category describes the parts of the material layering system or shader graph that are
used to define the surface properties of a base material. A material container is defined
by different input data like textures, variables, mesh data, scene data or material layers
and the computation happening within. The material container outputs a standardized
material layer object. Figure 4.3 shows two base materials: a simple and a complex
one. A common workflow is to use textures to define the influence of the material
on the individual rendering passes. This is a proven approach and used across many
productions. The material container performs limited to no computation at all, except
combining those textures to a material layer object and pass it on. Another approach is
to use a more procedural workflow. In this case the material creation can react and adopt

4See the article about Material Attribute Expression in the UE4 documentation https://docs.
unrealengine.com/en-us/Engine/Rendering/Materials/ExpressionReference/MaterialAttributes.

https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/ExpressionReference/MaterialAttributes
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/ExpressionReference/MaterialAttributes

4. The Material Layering Model 24

(a) (b)

Figure 4.3: Example of independent material containers in UE4. These materials are
implemented as material functions in UE4. Both base materials use the same material
parameter outputs but differ in complexity: (a) simple base material, (b) complex base
material. Image source: [30].

Mask
Mask Container

Material Container 1

Material Container 2

Inputs

Scene Data

Geometry Data

Objec Data

Parameters

Multiple Inputs (obligatory)
Material Layer
Mask

Figure 4.4: Masking Container.

dynamically to different input data. This input data is used by procedural instructions.
This can be a position and height based gradient tint or time based offset of the UV
coordinates. The possibilities are limitless. As these instructions are usually calculated
at runtime, they do not use a lot of memory but rely heavily on computations. Using
parametric inputs in contrast to textures is usually a trade-off between memory and
computation time.

4.3 Masking Container
The masking container is responsible for controlling the affect area and intensity of the
blending module. It provides the same full access to the different inputs as the material
container. Nevertheless, texture masks are the most supported input type within mate-
rial layering systems. Texture masks are an intuitive and straight forward approach of
masking out areas. The value 1 (white) means that the texture is visible while the value
0 (black) means it is not. The values in-between allow partial blending between the in-

4. The Material Layering Model 25

puts and therefore allow to mix different values—in this case different material container
within the blending module. There are many different approaches to how to generate
and project those masks onto a mesh. Some applications like Substance Painter, DDO
Painter, Blender, 3D Coat, Mari allow to paint masks directly onto the mesh itself. This
provides a lot of control over the actual blending. Procedural processes or baked maps
can also be involved in the creation process of these texture masks. It is important to
keep in mind that the final texel density does not dependent on texture mask resolu-
tions. The texture resolution does only influence the resolution of the blending, i.e., the
transition between the affected material components. The higher the mask resolution
is the more detailed the transition between the textures appears. A 1k mask can be
used to blend two 4k textures. This means that the object texel density is sixteen times
higher than the texel density of the mask. For optimization and organization reasons
gray scale masks are often stored in different color channels within one single texture.
These textures are often called id maps. Each color channel (red, green, blue, alpha5)
represents another mask. The same rules as for the gray scale masks also apply to the
ones within the color channels. An additional one can be stored within the alpha chan-
nel. Other commonly used inputs to influence the masking generation are vertex color,
object and world position, object and wold space normal. Some of these inputs can be
used to create different results even though the meshes are instantiated and shared. The
different properties of these inputs can be used to achieve different behavior depending
on the desired result.

The masking container can use and combine different inputs to compute the final
mask output. Every input type has individual advantages and disadvantages. To get
the most out of the blending, it is useful to combine different input types and combine
texture based and procedural methods to generate the mask. Combining different inputs
and methods can also be used to create additional detail for the main mask. This allows
to either use methods that do not provide detailed masks (e.g., vertex color, world
position, world space normals) or textures that have a low resolution. Additional details
can be added later on by using additional inputs. An easy way to do so is to blend
the main mask with a secondary tillable texture mask. This secondary mask is used to
generate the small scale details. Using different blending modes (e.g., multiply, screen,
add) gives a lot of control. Another less common approach is to use procedural noises
as they are more expensive in terms of computation cost.

4.4 Blending Module
The blending module describes the part of the material layering model that is responsible
for the blending of the different base materials. There are many different ways to do
so. As mentioned in section 3.2.2, the blending of the individual material parameters is
not trivial. The first part of this section describes some of the common issues that need
to be taken into account when creating a layered material shader or using a material
layering system. It discusses issues on an implementation level of blending individual
parameters. The second part focuses more on a high level analysis of blending entire

5The alpha channel is expensive in terms of memory consumption. Using the alpha channel doubles
the used memory for this texture as UE4 changes the compression format from DXT1 to DXT5 [57].

4. The Material Layering Model 26

Blend Module

Material Container 1

Material Container 2

Mask Container

Multiple Inputs (obligatory)
Material Layer
Mask

Material
Layer

Figure 4.5: Blending Module.

material containers.

4.4.1 Blending Individual Parameters
The blending of the different parameters can easily produce unintended values. One of
these cases can appear by blending input parameters individually that affect the same
material input. Pesare [63] provides a small example to further illustrate this point in
his blogpost. By blending the colors A and B the average color should be achieved.
Color A is gray with the rgb values (0.4, 0.4, 0.4), a diffuse gain of 0.5 and a resulting
final color output of (0.2, 0.2, 0.2). Color B is a black with the rgb values (0, 0, 0), a
color gain of 0 and resulting final color output of (0, 0, 0). The final color is hoped to be
(0.1, 0.1, 0.1) as this is the average of the two final color outputs. What we get instead
is a color with an rgb value of (0.2, 0.2, 0.2), a color gain of 0.25 and a final color output
of (0.05, 0.05, 0.05)!

Another issue appears if the input parameter influences the output lobe in a non
linear way. This is a common issue across different parameters. Commonly used algo-
rithms to compute the specular lobes like Beckmann, GGX and GTR do not have a
linear behavior between input and the size of the specular output. Therefore, the in-
put values are not intuitive without remapping. They cause unexpected results when
blending shiny with rough materials [15, p. 7–10 and 14–15]. This fact can easily be
seen in figure 4.6. In practice, this issue is often taken care of by a careful shader de-
sign withing the 3rd party applications. The Disney principled BRDF and the physical
shading models of UE4 introduce a remapped quadratic roughness value to provide an
approximately linear 0 and 1 roughness propagation [5, p. 15][15].

Another issue is the blending of two or more normal maps as they contain vector
data. Simply adding or blending them does not bring the expected result. Jack Caron
[48] does compare different approaches of blending normal maps on his website and
provides some examples. To get a proper normal blending for the fire hydrant example
in figure 3.1, I used the approach proposed by Christopher Dutton in Correctly and
accurately combining normal maps in 3D Engines [6]. There are many different types
of data that need to be blended within a pattern layering system and every single one
has to be treated differently. The effort to ensure a proper blending from an artist or

4. The Material Layering Model 27

(a) (b)

Figure 4.6: Blending material properties with not linear value propagation. This can be
caused by the algorithm or multiple values influencing the same output lobe. In figure (a)
we can see that blending the inputs from Mat1 and Mat2 results in the expected output.
In figure (b), on the other hand, the output result of linearly interpolating between value
Mat1 and Mat2 results in a wrong value that is not on the output function.

tool’s perspective is huge.

4.4.2 Blending Modes
The blending modes for physically based material layering are just a few. There are
only a few possible ways how materials are combined in the real world. They are either
mixed together, stacked on top of one another or transition from one material into an
other. Recreating real world behavior is a common approach to build systems that work
intuitively and consistently for the user. Weidlich [22] explains that Weta Digital uses
a material layering system that tries to be highly physically accurate. The blending
modes for the material layering system are based on real world examples. Weta Dig-
ital includes two additional not physically plausible blending modes: one exclusively
for adding emission and the other, rarely used one, for some specific exceptions. The
following list contains the blending modes supported by the material layering system at
Weta Digital, which is an example for a physically plausible system [22]:
Mix BxDFs: Two substances are mixed and the physical properties get combined (e.g.,

ink in water).
Coating: This method simulates the complex scattering process of light passing differ-

ent thin material layers (e.g., water on ground, car paint).
Blending: Blending allows a transition between different base materials.
Adding: The adding of materials is only used for emissive materials as it breaks the

energy conversation law and therefore is not physically plausible. Emissive mate-
rials break the energy conservation law anyway by introducing additional energy
to the scene. It is therefore not relevant for them.

Subtract: Subtract does not correspond to any physical plausible combination of ma-
terials and is only used in few special cases.

4. The Material Layering Model 28

My first attempt to create layered materials for the project Letzte Worte was to
adopted this concept of using only a few physically plausible blending modes. During
my research I found examples that use a much more flexible way of blending mate-
rials. In Paragon [37] they use the same normal maps for several base materials and
blend only certain material properties to create material variation. This shows that the
demands to a blending module vary depending on its application. It makes sense to
use limited physically plausable layer blending modes in the context of a highly physi-
cally based rendering process. Whereas giving the user more control over the blending
process, allows for necessary performance optimization in high quality games. Texture
count and computation times can be reduced by allowing custom blending modes with
control over which material attributes are to blended and how. This represent a trade-
off between accuracy, usability and performance. Some material containers in Paragon
are only described by a few parameters, instead of using a full material description on
every material container. Instead of blending all material attributes, only the most im-
portant ones are blended. This decreases physically accuracy but increases performance
dramatically. A powerful material layering system for real-time application should there-
fore include different options of how to define different materials and how to blend them.
In the end, it is often a balancing act between physical accuracy, artistic freedom and
performance. Allowing the user to control if, how and which channels are supposed to
be blended puts the power and responsibility into the hand of the user. It provides an
active choice between performance, usability and accuracy.

UE4 offers different nodes to blend material containers, override specific material
layer attributes or get them individually. A list of these nodes can be seen in table 4.1.
They take care of proper blending of individual parameters and therefore prevent users
from tapping into issues correlated with pattern layering, discussed previously in section
4.4.1. It even offers different blending possibilities, e.g., the simple MaterialBlendNode
sacrifices accuracy for performance in comparison to the standard one.

4.5 Summary
In this chapter I introduced a schematic model to describe arbitrary material layering
systems or shaders, the material layering model. It consist of three components: the
material container, masking container and blending module. A material container has
arbitrary inputs defined in the shader or layering system and outputs a material layer
object. The material layer object contains all information necessary to describe the
rendering properties of a surface. The masking container can also access arbitrary inputs
defined by shader or layering system. It outputs a 0 to 1 mask that is passed on to
the blending module. The blending module is responsible for blending the material
containers. The intensity and area of effect are defined by the mask.

Moreover, this chapter discussed shader inputs as they are an inherent part of both
material container and masking container. To use and combine the distinctive properties
of the individual inputs individually increases the possibilities of a material layering
system. Finally, the blending modes and processes within the blending module were
discussed. When blending material containers, the propagation, data type and input
of individual parameters have to be considered. To simply interpolate linearly between
different normal, roughness or ior values can produce unintended results. Another point

4. The Material Layering Model 29

Table 4.1: Different Layered Material Blend Types in UE4. Source: [52].

Material Blend Mode Description
AO Blends an ambient occlusion (AO) map over the surface

to remove reflection.
BaseColorOverride Allows the Base Color to be replaced.
BreakBaseColor Outputs the Base Color from an incoming Material Layer.
BreakNormal Outputs the Normal from an incoming Material Layer.
Decal Blends a decal sheet over the Material using the 2nd UV

channel.
Decal_UV3 Blends a decal sheet over the Material Layer using the

3rd UV channel.
Emissive Blends an Emissive texture over the Material Layer.
GlobalNormal Blends a Normal texture over the Material Layer.
LightmassReplace Replaces the Base Color in Lightmass, allowing for

changes to indirect lighting results.
ModulateRoughness Multiplies the Material Layer’s Roughness by an incom-

ing texture. Useful for a “greasy” look.
NormalBlend Blends a Normal texture across the surface, but by way of

a mask texture, allowing for control of where the normal
will appear.

NormalFlatten Diminishes the effect of the Normal map.
RoughnessOverride Replaces the Roughness texture of a Material Layer.
Simple Provides a simple linear interpolation (Lerp) blending so-

lution for 2 Material Layers. Does not blend Normal; in-
stead, retains Normal of the Base Material.

Stain Blends the Top Material over the Base Material as a stain,
meaning that only the Base Color and Roughness values
from the Top Material are used.

Standard Blends all attributes of two Material Layers.
Tint Allows for tinting of a Material Layer by inputting a tint

color and a mask to control the tint’s location. Useful for
making partial color changes.

TintAllChannels Similar to Tint, but also affects Specular. This is a very
special case function; generally, you will not need it.

TopNormal Blends all attributes of both Materials but only uses the
Normal of the Top Material.

to consider is how much control and freedom is given to the user. Should the blending
module enforce accurate blending or concede the freedom to customize and optimize the
blending process. The next chapter will put these abstract concepts into practice and
will focus on the implementation of material layering methods into Unity and UE4.

Chapter 5

Material Layering in Unreal and Unity

UE4 as well as Unity include different approaches on how to work with material layering.
The chapter starts with an introduction of how Epic designed their node based shading
model for UE4 to work for material layering. This is an interesting point if you consider
implementing a shading model yourself or if you want to get a better understanding of
shading models in other software. The chapter continues by explaining which systems
already exist in order to create layered materials within the engines, how to access them
and how they work. The use cases, advantages and disadvantages of the individual
systems are described later in the design patterns category (see chapter 7).

5.1 UE4 A Shading System for Material Layering
In UE4, the ability to create a simple and efficient material layering system was an
essential requirement when recreating the shading model for the UE4. This shading sys-
tem uses a simplified and adopted model of the Disney’s principled BRDF [5] to fit the
requirements of a real-time engine [15, p. 9]. The unification of the shader model allows
the recreation of most real world materials by sharing the same parameters across all
shaders. This is a fundamental point for creating an efficient pattern layering workflow
as already mentioned in section 3.2.2. The UE4 developer removed some advanced shad-
ing techniques (e.g., subsurface scattering, transparency, clear coat) from the standard
shading model. For optimization reasons, they implemented individual shader models
for those special cases. They simply expanded them by some additional features. As
these shading models are almost identical, it is easy to change the shading model of a
shader later on.

Adaptations of the principled BRDF shading system are widely implemented in a
vast variety of other 3D packages such as the Substance Suite [60, p. 8], Blender [47],
Marmoset Toolbag and many more. Using similar input parameters for the shading sys-
tem makes a production pipeline between different softwares possible. Materials can
be previewed, created and manipulated in other softwares with minor changes in the
material inputs (e.g., textures and vertex attributes). Due to minor differences in the
implementation, it might be necessary to adapt the textures and material inputs to
achieve identical visual results. The Substance Suite includes presets to export the tex-
tures properly for the target applications likeUE4. All modifications are stored in presets

30

5. Material Layering in Unreal and Unity 31

and can therefore simply be exported when exporting the textures.
One simplification done in the shading model of UE4 was to treat advanced shader

instructions like subsurface scattering, anisotropy, clearcoat and sheen as special cases,
separately from the standard shading model. This was done to minimize the performance
overhead. The base shading model for UE4 contains base color, metallic, roughness and
cavity [15, p. 9–10]. To the best of my knowledge, the cavaty parameter is not an explicit
input parameter in the UE4 shader but rather a generated cavity map based on the
the normal map. This cavity map is used to create small scale shadows that could not
be produced by regular real-time shadows. This cavity map is then multiplied onto the
base color and the specular value. The specular value is set to 0.5 by default which
represents a constant f01 value of 0.04 for non dielectric materials [54]. This value can
be overwritten by the specular input.

5.2 Material Layering Implementation
Both game engines—UE4 as well as Unity—support different ways of working with
material layering. One method provided by both engines is to create custom shaders
using the shading language Cg/HLSL [55, 66]. Writing custom shader code requires much
experience and time but provides the most control. Additionally, both engines offer other
tools to customize shaders, for example the shader graph editors. They provide access to
a huge library of shader operation and input nodes. The system automates a lot of the
optimization work and creates automatically optimized shader code in the background.
Working in a node based workflow makes creating custom shaders more accessible and
user-friendly. This allows even less experienced users with less technical background to
create complex shaders. UE4 provides two additional systems to support and streamline
material layering. These systems provide a workflow to increase re-usability, flexibility
and efficiency. They are mainly workflow systems. Identical visual results could also be
achieved by using any of the other methods mentioned here. Figure 5.2 shows a simple
example that was recreated identically by using different approaches.

5.2.1 Node Based Shader Graphs
Both real-time engines—Unity and UE4—provide a node based way of authoring shaders
(see figure 5.1). These powerful tools provide access to a huge amount of shader opera-
tions, functions and inputs that can be used to create custom shaders as well as layered
material shaders. Both systems are flexible enough to create layered material shaders
using several base materials and complex masking and blending operations. The node
based design makes it easy and fast to iterate on shaders and adopt them constantly to
the project needs. All examples and tests were performed by using these shader graphs
and the specific layered material systems built on top of them (see section 5.2.2 and
section 5.2.3).

1Fresnel zero defines the percentage of specular light that is reflected on a surface directly facing the
camera [60, p. 10].

5. Material Layering in Unreal and Unity 32

(a) (b)

Figure 5.1: Unitys shader graph editor (a) and UE4 material editor (b). Both engines,
Unity and UE4, include a node based editor to create and manipulate custom shaders.
Image source: [49].

5.2.2 UE4 Material Layering V1
The first material layering system was implemented as an extension of the pre-existing
material function2 system [52]. The different parameters (base color, roughness, metallic,
etc.) of a base material—a material container—can be combined into one node by using
the Make Material Attributes node. This can be thought of as a container including all
parameters necessary to describe the surface properties of a material. All parameters of
the base material are now handled as a single output. This material container or layer
can also be easily moved out into a self contained sub-graph (a material function) and
be referenced into any other shader graph. The architecture of these material functions
allows reusing them as many times as wanted. This works for all kinds of different
shaders. Single material layers can be blended together in different ways by using pre-
defined Material Layer Blend functions. They provide different blending modes and
operations for splitting, combining and manipulating single parameters. Section 4.4
discusses the issue of blending single material attributes. It also shows how material
layering system can support the artist in blending them properly. In one of Epic’s live
streams introducing the newer material layering system [25], Alan Willard, Lauren Ridge
and Chris Bunner summarize the most important shortcomings of the material layering
system v1:
Clarity: Creating a master material using many different layers can end up in a huge

graph which might be difficult to understand at a later point in the project. This
issue becomes more urgent the more layers are added and the more material
instances and different combinations of layers are needed.

Flexibility: Adding a new layer or layer variation for certain objects result in the need
to update the shader graph. This can either be done by using static switches or
adding the changes to a new copy of the shader. The former results in a growing
node tree. Every change in the shader graph results in a re-evaluation of all mate-
rial instances. The latter results in big number of different shaders. Changes and

2 Material functions are parts of a shader graph that can be saved as independent sub-graphs. They
can contain complex shader graph networks. Material functions can be reused across different shader
graphs, stored in libraries and shared amongst artists.

5. Material Layering in Unreal and Unity 33

optimizations are not automatically propagated to all materials and need to be
added manually to all shader graphs if not contained within a material function.
A growing complexity within the shader graph of an increasing number of shader
graphs decreases flexibility and simplicity.

Functions: The material layering system relies on material functions and therefore
shares the issue of this system, like the difficulty in passing on parameters. Pa-
rameters need to be explicitly exposed from the material function to be accessible
from the surrounding shader. Parameters cannot be exposed directly from the
material function to the parameter windows of the material instances.

5.2.3 UE4 Material Layering V2
The new material layering system represents an entirely new workflow. The same re-
sults could be achieved with prior methods, but ease of use, flexibility and clarity have
been improved hugely. The material layering system has been streamlined and split into
different components: the Material Layers and Material Layer Blends [53]. This repre-
sent a logical separation between defining a layer and blending the independent layers.
A Material Layer is a material container defining a base material using an indepen-
dent shader graph. Material Layer Blends handles the blending between two arbitrary
input materials by defining masking as well as blending. The architecture of the Mate-
rial Layering V2 is similar to the schematic high level description presented in chapter
4. A Material Layer object in UE4 is equal to the concept of a material container.
The Material Layer Blend includes both the blending module as well as the masking
container.

In the old system, replacing a base material, cobblestone ground with concrete or
simply adding a new layer, would result in the need to add an additional base material
into the shader graph. As mentioned before, this introduces new switches and a growing
shader graph. Alternatively, a modified copy of the shader could be created. Anyway,
this results in an increasingly complex shader graph and the re-evaluation of all material
instances using this shader. In the new system a base material layer can simply be
swapped out without any need for manual change or the re-evaluation of all material
instances. This is possible because the material containers are not specified by the
shader. The material layering system creates the shader dynamically based on the used
Material Layers and Material Layer Blends. This logical separation of layer definition
and layer blending eliminates most of the former shortcomings mentioned in the section
before, such as flexibility, clarity and the need to re-evaluate all material instances.

5.2.4 Pre-existing Layered Material Shaders
Alegorithmic—a software developer specialized on texture authoring tools—provides a
layered material shader for Unity and UE4 that can be downloaded from Substance
Share website.3 This shader allows the blending of five or ten base materials that are all
defined exclusively by texture inputs. Additionally, it supports objects specific textures
like normal map and ambient occlussion. These shaders are not a blackbox. In both

3Download for UE4 https://share.allegorithmic.com/libraries/2125 and Unity https://share.
allegorithmic.com/libraries/2126).

https://share.allegorithmic.com/libraries/2125
https://share.allegorithmic.com/libraries/2126
https://share.allegorithmic.com/libraries/2126

5. Material Layering in Unreal and Unity 34

(a)

(b) (c) (d)

Figure 5.2: Identical visual result from different pattern layering systems. Figure (a)
shows the final object using material layering. Figure (b) shows a shader graph setup
without using material layers. The example on figure (c) shows the shader graph using
the Material Layering V1. As comparison, figure (d) shows the UI for the the Material
Layering V2 system. Image sources: [53, 63].

game engines Unity and UE4 the shader code or the shader graph setup can be modified.
Hugely modified versions of this material were used for some of the layered shaders in
the project Letzte Worte.

Unity gets shipped with a layered shader called LayeredLit as a part of the HDRen-
derPipeline package. This shader is designed for environment assets created by using
photogrammetry. Nevertheless, this shader could also be used for any other kind of as-
set. Creating an efficient, flexible and easy to use shader affords much time, expertise
and testing. Using this pre-existing layered shader can therefore be really useful. The
shader code is included in the HDRenderPipeline package and can easily be adopted
and modified to fit the specific project needs.

5.3 Summary
An interesting aspect of this chapter is how Epic already considered material layering
when redesigning its node base shading graph system for UE4. An important step hereby

5. Material Layering in Unreal and Unity 35

was to standardize the shading model. It uses the same shader parameters across all ma-
terials. For performance optimizations they introduced variations of the shading model
supporting advanced features (e.g., subsurface scattering, translucence, clear coat). The
individual shaders can easily be adopted to fit another shading model. The second im-
portant step was to use algorithms that propagate in a linear and proportional way.
Especially as regards the roughness value, this solves the issue of wrong roughness accu-
mulation on an engine level. Unity as well as UE4 implement different methods to use
material layering. Both enginges support custom shaders—written in Cg/HLSL—and
powerful in engine shader graph editors. On top of this node based shading system, UE4
implemented two dedicated systems to improve the material layering workflow. Before
passing on to material layering design patterns, I want to examine the approaches of
other authors to develop such catalogs for decision making.

Chapter 6

Design Patterns

The previous chapters mainly focused on technical aspects of material layering. This
chapter investigates the interdisciplinary concept of design patterns. The purpose and
goal of design patterns is described best by Christopher Alexander [2, p. 10]:

Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice.

Christopher Alexander et al. [2, 3] had a huge impact on many different disciplines.
Their books introduce a network of interlinked patterns. The patterns form a language
provided in a standardized format. This makes the individual patterns easily under-
standable. The purpose is to offer pragmatic solution to recurring problems. The pat-
terns should give an explanation for how and why to use them. They make it easy to
evaluate, analyze and modify them for the specific situation. Besides, they are inter-
connected and reference one another. Patterns are seen as modules of a language that
can easily be combined and cannot exist as isolated entities [2, p. 10–13]. Although this
concept of patterns was initially developed for architecture, it was adopted in many
other disciplines.

Another subject that adopted design patterns is software engineering. Erich Gamma
et al. [10] introduced a catalog of proven design patterns for object-oriented software
engineering. This book contains a collection of solutions that evolved over time and
could be applied to all kinds of applications and projects. Game Programming Patterns
by Robert [18] provides additional design patterns especially—but not only—for game
programming. Eric Freeman et al. [9] try to equip the readers with a more accessible
and practical insight into design patterns for object oriented programming. In contrast
to [10], it is more a step by step guide to different design patterns rather than a catalog.
Jenifer Tidwell [21] established design patterns for Interfaces in her book Designing
Interfaces: Patterns for Effective Interaction Design. This publication provides different
possibilities for creating UI elements and how to use them. These are just a few examples
of disciplines that adopted the idea of design patterns.

36

6. Design Patterns 37

Method Status
DP [Number]: Pattern
Name:

Unique number and name of the design pattern (DP).

Intent A brief statement of how the pattern works and the issue it is
supposed to fix.

Also Known As Is this approach known by other names as well?
Motivation Illustrates use cases by naming some practical scenarios.
Applicability Provides conditions where this pattern is appropriate.
Implementation Do different applications implement this pattern and how well?
Examples Showcases different examples from real projects.
Consequences What are the consequences of using this pattern?
Related Patterns Other pattern that are connected or dependent on this one.

Table 6.1: Design Pattern Template.

6.1 Design Patterns Structure
A really important part of defining design patterns is to find a way to organize them.
As seen before, design patterns are not supposed to be used as isolated, single solutions,
but as a part of a flexible and connected language. Christopher Alexander et al. [2]
organize the patterns in a sequence, going from big to small, from urban planning to
small architectural detail. Each of the patterns is connected to others with regard to
larger and smaller scale categories [2, p. 10–36]. Erich Gamma et al. [10] adopt a rather
functional approach for categorizing the design patterns which are defined by their
purpose (creational, structural or behavioral) and scope (classes or objects). Jenifer
Tidwell [21] uses thematic chapters to organize the patterns like organizing the content,
organizing the page, showcasing complex data and many more. The overall structure for
this work can be found in the next chapter 7.1. The individual design patterns presented
in this work use a uniform template similar to the ones from Erich Gamma et al. [10,
p. 16–18] and Jenifer Tidwell [21, p. 42–46]. This standardized format is supposed to
make it easier to extract important information, compare different design patterns and
take decisions. The template consists of following points presented in table 6.1.

Another important fact I want to point out here relates to the aspects these pat-
terns do not represent. These points are inspired by Jenifer Tidwell [21, p. 42–46]. The
following patterns are neither fundamental principles nor focused on a specific imple-
mentation. They are abstract enough to work in a variety of situations. They might
be adopted slightly to fit the special purpose. Some of the patterns might work across
different engines, applications and even for film productions; others might not. These
patterns are proposals. It is the user’s decision if these proposals make sense for the
specific project and pipeline. A pattern describes a relation between different compo-
nents. For instance, using a texture mask is not a design pattern at its own, but how
and when to use texture masks in the context of a blending Module is one.

6. Design Patterns 38

6.2 Summary
As described in this chapter, design patterns provide solutions to recurring problems in
a standardized form. The structure or the patterns in the following chapter is inspired by
other industries. They form a language of many interlinked objects. The template for the
patterns has been defined and contains all the important information. The standardized
format makes it easy to compare different patterns and choose between them. Finally,
this chapter defined what design patterns are not: they are neither high level abstract
principles nor do they define specific low level implementations.

Chapter 7

Design Patterns for Pattern Layering

This chapter contains a catalog of design patterns related to material layering. The
pattern catalog presents the core of this work and incorporates all previous results and
analysis. It combines the results of the previous research and presents them in practical
patterns. The patterns are categorized and structured in a hierarchical way. This is
supposed to simplify the process of finding design patterns related to the actual problem.
The patterns start from high level decisions of how and if to use pattern layering and
get more and more specific towards the end. Figure 7.1 shows the relationship and
categorization of the design patterns. A list of all patterns can also be found in appendix
A.

The pattern catalog starts with the most fundamental questions: Is a pattern layering
system the best solution for the particular asset, project and pipeline? Pattern DP 01:
Pattern Layering (section 7.1.1) and DP 02: Hybrid Pattern Layering (section 7.1.2)
illustrate the advantages and disadvantages of this workflow. Alternatives to pattern
layering are proposed in category Alternatives. Some of the most important alternatives
are further elaborated in patterns DP 03: Baked Texture Maps (section 7.2.1) and DP 04:
Different Materials (section 7.2.2). The second big question is how to incorporate pattern
layering in a specific project. Resources and expectations differ tremendously between
projects. The requirements in a pattern layering system for a AAA game are completely
different from those of a small indie team. The patterns DP 05: Built-in Shader (section
7.3.1.1) and DP 06: Custom Shader (section 7.3.1.2) discuss the best way how to utilize
pattern layering in a specific project. This is closely connected to how the shaders
are supposed to be organized. The patterns DP 07: Uber Shader (section 7.3.2.1), DP
08: Individual Shader (section 7.3.2.2) and DP 09: Content Generated Shader (section
7.3.2.3) present options on how to organize and structure them. The material layering
model discussed in chapter 4 provides the foundation for splitting pattern layering into
its sub-components. The first module is discussed in category Material Container. A
fundamental decision is how granular the individual base materials are represented.
Patterns DP 10: Base Material (section 7.4.1.1) and DP 11: Material Variation (section
7.4.1.2) discuss the approaches of either using a bigger number of generic base materials
or a smaller amount of more complex ones. This can be connected to the patterns DP
12: Full Material (section 7.4.2.1) and DP 13: Modulation Layer (section 7.4.2.2) and
the decision of how complex individual base materials should be. Finally, patterns DP
14: Input Based (section 7.4.3.1) and DP 15: Semi Procedural (section 7.4.3.2) discuss

39

7. Design Patterns for Pattern Layering 40

different ways of defining the surface properties of a material container. After deciding
on how to create and structure those base materials, the question of how to blend and
mask them arises. The category Masking Container is focused on how to create the
blending masks. The decision to either use texture based (see DP 16: Texture Based in
section 7.5.1) or procedural inputs (see DP 17: Procedural in section 7.5.2) influences the
workflow dramatically. Patterns DP 18: Physical Material Blend (section 7.6.1) and DP
19: Custom Material Blend (section 7.6.2) present different approaches to how to handle
the blending of different material containers and how to balance realism, usability and
performance within the blending?

Finally, the category External Inputs discusses different shader inputs further. Ex-
ternal refers to data that is not embedded within the shader. This data can be used to
drive computation in the material container or masking container. Parameters are one
fundamental input type. Patterns DP 20: Textures (section 7.7.1.1), DP 21: Variables
(section 7.7.1.2) and DP 22: Scripted Parameters (section 7.7.1.2) demonstrate how
these parameters can be used. Properties differ depending on input type. Patterns DP
23: UV Coordinates (section 7.7.2.1) and DP 24: Vertex Color (section 7.7.2.2) demon-
strate how mesh data can be used to achieve different results. Patterns DP 25: Vectors
(section 7.7.3.1) and DP 24: Vertex Color (section 7.7.2.2) discuss object related input
data.

7.1 Pattern Layering
This catalog starts off with two different approaches to include pattern layering into
your workflow. Patterns DP 01: Pattern Layering and DP 02: Hybrid Pattern Layering
present two different approaches to do so. The former introduces a pure pattern layering
shading. The latter proposes a hybrid method that combines pattern layering with more
traditional object specific approaches. These patterns in connection with the patterns
in category Alternatives will support you in taking the biggest decision connected with
this pattern catalog. Does pattern layering make sense for your specific project? The
second question that arises is whether pattern layering alone provides the desired result
or is a hybrid approach better suited.

7.1.1 DP 01: Pattern Layering
Intent: Use different generic and tileable material layers and combine them to recreate

the visual appearance of complex surfaces. Built a pipeline based on re-usable
components and tools (e.g., material library and parametric masking).

Also Known As: Parametric Layering, Material Masking System (MMS), Layered
Materials, Material Layering, Dynamic Material Layering

Motivation: Consider working on a huge scene for a first person shooter. Most areas
can be seen from both a further distance as well as from really close up. Remember
the castle wall example from chapter 1 that was composed of many different base
materials. Working with unique pre-baked texture maps would largely exceed the
memory if trying to achieve a consistent high texel density.
The asset and shading pipeline of the company or team you work for transitions
more and more into the engine. Different artists use different tools for the textur-

7. Design Patterns for Pattern Layering 41

Sh
ad

in
g

M
od

el
La

ye
rin

g
C

om
po

ne
nt

s

Shader
Implementation

Workflow

DP 03: Baked
Texture Maps

DP 04: Different
Materials

DP 06: Built-in
Shaders

DP 05: Custom
 Shaders

DP 07: Uber
 Shader

DP 08: Individual
 Shader

DP 09: Content
Generated Shader

Material
Container

Parameter

Granularity

Complexity

DP 10: Base
Material

DP 11: Material
 Variation

DP 12: Full
Material

DP 13:
Modulation Layer

Masking
Container

Al
te

rn
at

iv
es

Pa
tte

rn
 L

ay
er

in
g

DP 01:
Pattern Layering

DP 02: Hybrid
Pattern Layering

Blending

DP 18: Physical
Material Blend

DP 19: Custom
Material Blend

Ex
te

rn
al

 In
pu

ts

Mesh Data

Object Data

DP 20:
Textures

DP 21:
Variables

DP 23: UVs

Creation
DP 14:

Input Based

DP 15: Semi
Procedural

Creation

DP 16: Texture
Based

DP 17:
Procedural

DP 25:
Vectors

DP 24:
Vertex Color

DP 22: Scripted
 Parameters

Figure 7.1: The hierarchical structure of the design patterns presented in this work. The
primary element is Pattern Layering. The category Alternatives shares the same hierarchi-
cal level as it proposes equally valid alternatives. All of the other elements are descendants
of Pattern Layering (DP 01: Pattern Layering and DP 02: Hybrid Pattern Layering). The
categories Shading Model, Material Container, Masking Container,Blending Module and
External Inputs contain more specific and detailed patterns and progress from high level
workflow and organization decisions to specific low level features.

ing. The companies goal is to unify the material pipeline, create a central base
material library and use advanced shading instructions (e.g., real-time tessella-
tion, parallax occlusion mapping and vertex shader animation). These advanced
shading techniques cannot be reproduced and shared across different applications
easily.

Applicability:
• All base materials use the same shading model.

7. Design Patterns for Pattern Layering 42

• The shading system has to account for a huge, complex surface area where
different base materials are used. The transition of these base material is
smooth, geometry independent and most likely on a per pixel basis.

• The blending uses procedural components that respect any properties defined
in the material container. For instance, both base materials are blended ac-
cording to their height map so that base material B appears only in the
valleys of base material A.

• The masking and blending of the layers uses various information from the
scene, such as position, normal direction and so on.

• The blending of different base materials is modified dynamically at runtime.
Imagine peddles integrated into the material shader that respond to global
weathering systems within the game.

• A lot of different material variations of the same object are needed.
• The workflow is supposed to be iterative. Individual base materials can

change independently and are easy to be replace if desired.
• Base materials can be used and re-used across different objects, projects and

artists.
• The project uses a centralized art directed material library that can be shared

across different artist. Changes on the base materials are propagated down
to all assets using them. Working with a centralized art directed material
library also improves consistency across different assets.

Implementation: There are many different ways to implement a pattern layering (see
chapter 5). The user experience differs strongly according to which one is used.
The different approaches to implement a pattern layering system are to use either
built-in shaders (DP 05: Built-in Shader in section 7.3.1.1) or create custom ones
(DP 06: Custom Shader in section 7.3.1.2). Custom shaders can be implemented
using HLSL/Cg, shader graph editors or material layering systems.

Examples: Most of the patterns presented in this catalog were tested within the VR
experience Letzte Worte. A lot of these patterns arose from questions I had my-
self throughout the project. The suggestions found in different publications, talks,
articles and sample projects helped me take decisions on how to handle an indi-
vidual problem. All these practical experiences flowed back into these patterns. In
Letzte Worte I used pattern layering for all environment assets except detail props
like electronics, machines, books, lamps etc. Letzte Worte uses a wide variety of
different patterns presented in this catalog.

Consequences:
Visual Qualities:

• Pattern layering forces the artist to approach texturing in a technical
way.

• It allows the shading of huge interesting surface areas while still achieving
lot of surface variety. By using repeating tillable base materials, this
method enables a high screen-space texture resolution while obtaining
huge control over the blending.

7. Design Patterns for Pattern Layering 43

• The artistic process is limited by the layered material shader. The shader
defines a big part of the visual quality. A lot of artistic choices are taken
while creating it.

• A lot of the artistic process takes place on a shader level. To achieve the
best results, a good technical knowledge is needed.

• The approach to texturing is more technical than using 3D painting
applications.

• Using a base material library supports a good art directability. All artists
use the same materials. Changes on the base materials are propagated
down to all assets using them.

Performance:
• Using a layered material shader can have a big impact on performance,

especially depending on the complexity of the individual material layers.
The real-time rendering engine computes all layers for all pixels simul-
taneously and blends them afterwards. Even base materials that are not
visible for a certain pixel are computed [52].

• Texture memory can be decreased dramatically compared to traditional
alternatives, as for instance DP 03: Baked Texture Maps (section 7.2.1).
This is caused by the fact that texture maps can be used across different
materials and the individual texture resolution can be much smaller as
it is repeated multiple times over the surface area.

Pipeline (Workflow):
• It is hardly possible to exchange shading data with other applications.

To do so often requires other custom pipeline tools.
• Blending individual material parameters of two material layers is not a

trivial task. Either the pipeline or the artists have to account for the
complex process of blending (e.g., roughness, ior accumulation). Please
refer to section 4.4.1.

• Using custom shaders may require project specific tools and systems to
support an efficient workflow. See pattern DP 06: Custom Shader in
section 7.3.1.2.

• Creating a pipeline for material layering is time consuming. The devel-
opment and testing of shaders and pipeline tools are expensive and time
consuming.

• Working on Letzte Worte, I realized that using a highly customized shad-
ing workflow may cause issues with different features provided by the
engine (e.g., hierarchical LODs and lightmaps).

Related Patterns: This pattern represents a pure pattern layering based shading
workflow. DP 02: Hybrid Pattern Layering (section 7.1.2) proposes a more flexible
approach that includes features of other methods as well. The category Alterna-
tives contains alternative texturing approaches. Categories Shading Model (see
section 7.3), Material Container (see section 7.4), Masking Container (see section
7.5), Blending Module (see section 7.6), and External Inputs (see section 7.7) con-

7. Design Patterns for Pattern Layering 44

Figure 7.2: Different skins of Chrunch, a hero character from the MOBA Paragon. Pat-
tern layering was used to quickly iterate and create variations of different skins during
the production. This rendering was made by using the assets from the official Epic Mar-
ketplace [39].

tain further information on how to use and implement pattern layering in your
project.

7.1.2 DP 02: Hybrid Pattern Layering
Intent: In order to create small scale details, an object specific single texture for the

large scale variety and a more generic pattern layering workflow are to be com-
bined.

Motivation: Photogrammetry is a process to capture meshes and textures from real
world locations and objects. The data has to be optimized and cleaned for the use
in a real-time application. However, it provides high quality with less effort com-
pared to traditional methods. The advantages and disadvantages of using these
textures directly are eplained in pattern DP 03: Baked Texture Maps (section
7.2.1). Matching the scanned data by purely layering base materials is difficult,
time consuming and expensive. Even by matching the reference, it will most proba-
bly not be practical due to the huge amount of different layers and complex masks
for blending them. Therefore, this design pattern combines aspects from both
methods, i.e., object specific texture maps from pattern DP 03: Baked Texture
Maps (section 7.2.1) with additional generic, tileable and reusable base materials
as explained in pattern DP 01: Pattern Layering (section 7.1.1).

Applicability:
• The object fits all criteria for being shaded by using a pattern layering ap-

proach, but additional large scale information (e.g., photoscanned textures)
is available.

7. Design Patterns for Pattern Layering 45

• The artistic goal is not achieved by combining different generic base materials.
Additional object specific large scale variety is needed.

Implementation: The hybrid pattern layering shares the same technical implemen-
tation as other layered material methods. In the context of the material layering
model established in chapter 4, the additional object specific texture maps can
be seen as individual arbitrary material container. On the implementation level,
it can be treated like any other material container outputting an material layer
object. Finally, different blending modes can be used to add to the final shading
output.

Examples Figure 7.3 shows an example using pattern layering combined with object
specific photogrammetry textures [58]. This example illustrates that combining
real world captured object specific textures with pattern layering can be used
to achieve realistic results. It further allows reusing and sharing tileable base
materials across different assets. As shown in the image, this technique allows to
easily create different variations and supports an iterative workflow.

Consequences Hybrid pattern layering is identical to DP 01: Pattern Layering (sec-
tion 7.1.1) from a technical perspective. The additional object specific textures do
provide some artist friendly possibility for adding large scale variety. These texture
maps are not ideal to add small scale details as this would require huge texture
resolutions and therefore eliminate the advantages of DP 01: Pattern Layering
over DP 03: Baked Texture Maps.

Related Patterns This pattern combines aspects of DP 01: Pattern Layering (section
7.1.1) and more traditional methods like DP 03: Baked Texture Maps (section
7.2.1).

7.2 Alternatives
Before going over to how design and implement a pattern layering system, I want to
show alternative approaches to texturing and shading your objects. The Patterns DP
03: Baked Texture Maps (section 7.2.1) and DP 04: Different Materials (section 7.2.2)
contain workflows that are not necessarily associated with material layering. Neverthe-
less, they might be better suited for the particular requirements. Sometimes different
approaches can be mixed as well (e.g., DP 02: Hybrid Pattern Layering in section 7.1.2).

Other material layering approaches that might gain importance in the future are
BxDF layering (see section 3.2.3) and illumination lobe based layering (see section 3.2.4).
To the best of my knowledge, pattern layering is the only material layering approach
actively used for video game productions yet. Technologies like real-time ray tracing are
most likely going to take over. They will change many workflows used nowadays; one of
them will be the way how we handle material layering. I believe that BxDF layering (see
section 3.2.3) and illumination lobe based layering (see section 3.2.4) will replace many
use cases for pattern layering. This will be a huge game changer. As discussed in chapter
3, both techniques provide huge advantages as regards realism and usability. Another
approach to realize material layering could be color layering (see section 3.2.1). This
could be achieved by rendering multiple versions of the object and save the outputs in
additional buffers. The data could be blended together in the post-processing stage. This

7. Design Patterns for Pattern Layering 46

Figure 7.3: Combining 3D scanned texture data with smaller, generic and tileable base
materials. This approach makes it possible to obtain the large scale texture variety cap-
tured from the real world object while ensuring a high texel density using Pattern Layer-
ing. Using pattern layering allows to easily and quickly create variations. Image source:
[58, p. 6].

7. Design Patterns for Pattern Layering 47

approach is expensive in computation and memory. Further experimental investigation
needs to be done on this subject to see if there are any use cases for this approach.

7.2.1 DP 03: Baked Texture Maps
Intent: Use a pre-baked object specific single textures for the individual material inputs

(e.g., base color, normal and roughness) to define the object appearance in the
final render. Using object specific textures provides the most control over the final
appearance on a per pixel basis.

Motivation: Consider an object with a huge variety of different base materials. The
surface appearance is heterogeneous and it is really difficult to identify distinctive
base materials. This makes it difficult to recognize recurring patterns in masks and
base materials and recreate the surface by combining more generic base materials.
The specific asset plays a major role for either the gameplay or the plot of the
game. Therefore, the most artistic control is required. You are working on small
detail props for an office desk. These different assets (e.g., pencil, hole puncher,
paper clip and post-it note) are composed of many different base materials. The
list of base materials might look similar to this: rubber, plastic wood, painted
wood, aluminum and paper. These different base materials do have additional
variations. So for instance, there is a red and a blue pencil. The amount of base
materials for texturing these assets with DP 01: Pattern Layering (section 7.1.1)
is extremly high. As these assets are fairly small, they do not need a big texture
resolution to achieve a high texel density. Additionally, this pattern is not limited
by the amount of surface type variety in any way. It does not matter if a single
texture represents one or fifty surface types.

Applicability:
• A low texture resolutions is enough to achieve a high screen-space texture

resolution for the desired object. The necessary texture resolution does not
necessarily refer to the dimensions within the 3D scene but to the maximum
screen-space the object covers. A huge mountain located in a far distance can
be textured by low res textures and still have sufficient screen-space texture
resolution. A wall seen from close may exceed the screen size multiple times
and therefore need a much higher texel density.

• The used base materials are specific to this particular object. The surface
appearance cannot or hardly be recreated by combining more generic base
materials.

• The surface area of this object is heterogeneous and composed of a huge
amount of different surface materials. Splitting it into layers would result in
a huge amount of different base materials and masks.

• This object has a special significance for the experience and the maximum
amount of artistic control on a per pixel basis is required.

Implementation: Using baked texture maps is probably the most artist friendly shad-
ing workflow within 3D real-time applications. This workflow has existed for a long
time, the tools and workflow have been highly simplified and optimized. This ap-
plies for both usability and performance. Most modern creation tools provide a

7. Design Patterns for Pattern Layering 48

workflow where you immediately see an output close to the final product. Artists
coming from other fields can easily adapt to 3D painting tools, as they are struc-
tured similar to Photoshop. Especially since PBR has become a well established
standard, textures for the individual material inputs can easily be shared and
transfered throughout a pipeline. Content creation applications and real-time en-
gines do offer pre-existing shaders that have already been set up. The user does
only need to assign the textures to the proper material slot. Modern tools like
Substance Painter eliminate much of prior shortcomings in texture painting appli-
cations. For instance, Substance Painter provides the possibility to simply increase
the texture resolution even beyond the painting resolution. It enables the artist
to paint and work on several textures simultaneously (e.g., base color and rough-
ness). It provides pre-defined export presets to convert textures for the desired
render engine, i.e., it adjusts the roughness curve to correspond to the specular
algorithm used in the renderer.

Examples: Letzte Worte uses baked texture maps for all the detail assets. These assets
are composed of many different surface types. Using pattern layering would result
in an enormous amount of different base materials as well as their variations. These
assets are small enough to achieve a high texel density even by using medium
texture sizes. By combining a lot of these assets into one texture atlas and using
textures compression, texture streaming and channel packing,1 the memory usage
is still highly efficient. Additional details that require even more detail (e.g., fonts,
symbols, labels) use an additional UV set that provides the resolution where it is
needed.

Consequences:
Visual Qualities:

• Using pre-baked textures provides the highest artistic control on a per
pixel basis.

• It allows the use of an infinite amount of different surface types. There
are no limitations on surface variety within the capabilities of the shader.

• Textures can be unique for every material.
• It is difficult to achieve a consistent art style across different artists and

assets.
Performance:

• This method uses only a low amount of inputs. When packing different
assets into texture atlases and using channel packing the amount of draw
calls can be reduced.

• The engine provides many optimizations for handling textures like mid
mapping, compression and texture streaming. The texture data gets only
loaded when it is needed.

• The textures provide a lookup table containing complex surface descrip-
tions. This information can be passed on to the shader without further

1Channel packing refers to the process of combining different textures into one by saving them into
different color channels.

7. Design Patterns for Pattern Layering 49

(a) (b)

Figure 7.4: Different assets using pre baked textures. The assets from figure (a) are from
the game Letzte Worte. The textures are combined into a texture atlas to minimize draw
calls. Figure (b) shows the texture atlases for the following maps: the normal map, base
color and a channel packed texture (roughness, metalness and ambient occlusion).

computation. This keeps the shader complexity low even for complex
surfaces.

• A big amount of high texture resolutions can cause a bottleneck on the
VRAM which effects performance negatively.

Pipeline (Workflow):
• Baked textures are well integrated in different 3D applications.
• It is easy to transfer texture data across different applications. As most

modern software uses a PBR system, textures can be shared quite easily.
• Textures are often object-specific, and therefore they can not be reused

across different meshes.
• Changing the texture data means to re-export and import the maps from

the texturing application to the game engine.
• A lot of production effort is put into guaranteeing a consistent quality

and look across different assets.
• Creating object variations requires multiple textures.

Related Patterns: This pattern proposes an alternative to pattern layering, DP 01:
Pattern Layering (section 7.1.1). A combination of both methods results in a
hybrid form further explained in pattern DP 02: Hybrid Pattern Layering (section
7.1.2).

7.2.2 DP 04: Different Materials
Intent: Assign different materials to distinctive parts of the mesh to split the shading

into individual sub-tasks. These isolated materials can be assigned to different

7. Design Patterns for Pattern Layering 50

(a) (b)

Figure 7.5: Scene and assets from the Infinity Blade: Grass Lands map [36]. Figure (a)
shows the final scene. Figure (b) shows a selection of used assets. These assets use the
same materials, a tileable wall materials and a material using trim sheet textures. The
latter is used to texture details like the columns and the railings. Image source: [36].

shaders and use different inputs. They are completely independent from one an-
other.

Motivation: Consider a big architectural environment asset like a huge house. The
object is composed of different distinctive areas like walls, roofs and windows. By
splitting them into individual parts, material specific textures and shaders can
be used. While the windows use transparency, the roof might incorporate fuzz
shading for some mossy areas. Finally, the wall shader might use pattern layering
and utilize vertex colors to provide more control over blending the distinctive base
materials within the engine.

Applicability:
• The object can easily be divided into isolated areas representing different,

distinctive surface types. The individual shader can utilize pattern layering
or any other shading approach like pre-baked textures. The important re-
quirement is that the separation between the materials uses a clear cut. It
is not possible to create a smooth transition from one material to the other.
By utilizing advanced shading techniques (e.g., world space UV coordinate,
distance based normal interpolation or transparency), it is possible to make
the transition appear smooth. Nevertheless, they are still two distinctive ma-
terials. Different materials are assigned on a per face basis; the mesh topology
defines where a change in material can take place.

• Different parts of the object are highly different from a shading perspective
and more flexibility in changing or modifying individual areas is needed.

• Generic, reusable materials can be used to define certain areas of the mesh.
The material does not contain object specific data.

• The object is too complex or big to use one single material.
• The mesh uses different shading models for different areas, such as for exam-

ple opaque, translucent and subsurface scattering.
Implementation: Different material IDs can easily be assigned to an object from

within the 3D content creation application. The engine can use these IDs to as-

7. Design Patterns for Pattern Layering 51

sign engine materials to them. Guides on how to export and import meshes with
corresponding material IDs can be found in the documentations2 of both real-time
engines.

Examples: Splitting objects into different materials is a common technique seen in
almost any game. A particular example for utilizing different materials to shade
a scene is the 2014 Soul [27] demo, see figure 7.6. The location Soul: City can be
downloaded from the Unreal Marketplace.3 Figure 7.7 shows one of the environ-
ment assets. It uses 5 different materials, each to shade a distinctive surface type.
These materials are stored in a material library and are reused across all the differ-
ent city assets. Different city assets are merged together to further minimize draw
calls. In this particular example, the material count stays similar as the assets use
the same materials. Figure 7.7 shows one combined asset from the example files.
By reusing the materials and merging the assets, the amount of render jobs sent to
the GPU decreases dramatically. Instead of sending every material of every asset
independently, all parts sharing the material get batched and sent together.

Consequences:
Visual Qualities:

• The assignment of different materials can only happen on a geometry ba-
sis. Materials cannot be blended. There are some advanced and expensive
shading techniques that imitate the appearance of blended materials.

• Individual materials can use independent shaders and inputs.
• Materials defined by mesh independent inputs can be used across differ-

ent objects and batched together for rendering, see figure 7.7.
• Splitting an object to use different materials may decrease the complexity

of the shader.
Performance:

• Splitting objects to use several material may increases the number of
materials and therefore the number of draw calls. Different materials are
sent separately as individual draw calls to the GPU.

• An intelligent use of non mesh specific materials in combination with
merged objects decreases draw calls.

• Splitting a problem into sub component might decrease shader complex-
ity tremendously.

• It is generally more efficient to use several materials than using pat-
tern layering, see DP 01: Pattern Layering in section 7.1.1. The UE4
documentation states [52]: “In short, if you can apply multiple Materi-
als instead of using a Layered Material, then do so. If you must have
per-pixel control over where Materials are placed, then use a Layered
Material.”

2See https://docs.unrealengine.com/en-us/ for UE4 and https://docs.unity3d.com/Manual/index.html
for Unity.

3Epic published the map Soul:City [40] of their 2014 Soul demo on the Unreal Marketplace (see
https://www.unrealengine.com/marketplace/soul-city).

https://docs.unrealengine.com/en-us/
https://docs.unity3d.com/Manual/index.html
https://www.unrealengine.com/marketplace/soul-city

7. Design Patterns for Pattern Layering 52

Figure 7.6: The Soul: City map [40] using different reusable materials for shading. The
scene is highly optimized to run on mobile devices. Image source: [28].

Pipeline (Workflow):
• To exchange and replace individual materials within the engine is simple

and fast.
• Changing the material assignment within the 3D content creation appli-

cation is easy and fast. Re-exporting and importing are required though.
• The assignment of different material IDs cannot be done within the en-

gine without custom tools.
• Individual materials can be modified independently. Changes are propa-

gated to all meshes using the particular material.
Related Patterns: Splitting an object into individual materials to use different shaders

and split the shading process into sub-tasks is universal to all methods proposed
here: DP 01: Pattern Layering (section 7.1.1), DP 02: Hybrid Pattern Layering
(section 7.1.2) and DP 03: Baked Texture Maps (section 7.2.1).

7.3 Shading Model
After deciding to use pattern layering for your project, the next big questions arise:
How to implement and use pattern layering as well as how to structure and organize the
shaders and materials. The following categories Shader Implementation and Workflow
will provide patterns to help you making these high level decisions. They will help you to
evaluate the benefits and constraints of using pre-existing shaders. What opportunities
and dangers arise from creating a custom pattern layering shader or system? Is it better
to create a centralized all purpose shader or problem specific custom shaders for my
particular project?

7. Design Patterns for Pattern Layering 53

(a) (b)

Figure 7.7: Different assets sharing generic, reusable materials. These renderings are
made from Soul: City assets [40]. Figure (a) shows one of those assets. It is textured by
using five distinctive mesh independent materials. They are reused across all city assets.
Figure (b) shows different assets merged together. The material count increases only
slightly. All mesh parts using the same material can now be batched for rendering.

7.3.1 Shader Implementation
Resources, budgets and requirements differ from project to project. Patterns DP 05:
Built-in Shader (section 7.3.1.1) and DP 06: Custom Shader (section 7.3.1.2) propose
different approaches to include pattern layering into your workflow. They discuss the
benefits and limitations of pre-existing shaders and workflow as well as challenges when
creating a custom setup. These patterns will help weigh up the two possibilities with
regard to effort and benefit.

7.3.1.1 DP 05: Built-in Shader

Intent: Use pre-existing pattern layering solutions for your project and purpose. These
take care of the complex blending of individual base materials but limit the amount
of base materials, the kinds of inputs utilized to generate the base materials and
masks as well as the used blending modes.

Motivation: Consider a project utilizing photogrammetry. The layeredLit shader, in-
cluded in the HDRenderPipeline package, provides all the functionality needed.
Different sources explain the workflow in detail (e.g., webblogs and articles like
this one [58]) and facilitate the adaptation to the personal pipeline. The dead-
line to deliver the environment assets is in a few weeks. The texturing pipeline
is highly texture based and already utilizes the Substance Painter. The desired
visual quality and texel density cannot be achieved by pre-baked texture, DP 03:
Baked Texture Maps (section 7.2.1). Allegorithmics layered material shader for
Unity and UE4 provides tools and a predefined pipeline. This is an easy way to
incorporate pattern layering into your workflow. Because of its texture based base
material and masking workflow, it is easy to use and allows the shipping of the
final product in time.

7. Design Patterns for Pattern Layering 54

Applicability:
• The requirements for the shader are already met by pre-existing shaders (e.g.,

Unitys LayeredLit shader for photogrammetry data).
• There is no development budget to create and test custom shaders and

pipeline tools.
• In comparison to using custom shaders, see DP 06: Custom Shader (section

7.3.1.2), it affords less technical knowledge.
• The project does not require complete control over every single aspect of the

rendering process.
• You prefer spending time in creating assets and art to struggling with tech-

nical challenges and shaders.
Implementation: Unity ships with the LayerdLit and LayeredLitTessellation shaders.

When using the HDRenderPipeline, a new material can easily be created using
these shaders. They combine object specific textures with tilable base materials,
DP 02: Hybrid Pattern Layering (section 7.1.2). Other layered material shaders
can be downloaded from Allegorithmic’s Substance Share Website.4 These shaders
are available for both Unity and UE4. These are purely pattern based—DP 01:
Pattern Layering (section 7.1.1)—and rely entirely on texture based material in-
puts (see pattern DP 20: Textures in section 7.7.1.1). Further information on the
LayeredLit and Layered Material shaders can be found in section 5.2.4.

Examples: Different examples for built-in shaders can be found in section 5.2.4. Unity’s
Fontainebleau [45] demo illustrates the power of the previously explained Lay-
eredLit shader. Figure 7.8 shows an exterior scene using photogrammetry in com-
bination with a built-it pattern layering shader. The scene was created to represent
a real game level. It targets a frame rate of 30fps on a standard PlayStation 4.
Using a preexisting solution like this one can save months of development and
testing effort.

Consequences:
Visual Qualities:

• The possibilities are limited by the used shader.
• These shaders are normally designed for general purposes as they are

made to account for different situations and projects.
• They provide only a limited control over the amount of layers, inputs

used for the individual base materials and masks as well as the blending.
• Procedural inputs for manipulating masking, base material creation and

blending are most likely not implemented into the shader (e.g., vertex
color, world space normal and world position)

Performance:
• These shaders are already optimized and hopefully tested on multiple

platforms.
• They don’t provide any control for optimizing performance usage.

4The following website contains layered materials shaders for both UE4 and Unity: https://share.
allegorithmic.com/libraries?by_category_type_id=15.

https://share.allegorithmic.com/libraries?by_category_type_id=15
https://share.allegorithmic.com/libraries?by_category_type_id=15

7. Design Patterns for Pattern Layering 55

Figure 7.8: Fontainebleau [45], creating a realistic scene by combing photogrammetry
with pattern layering. Image source: [59].

Pipeline (Workflow):
• Built-shaders handle complex blending of the individual parameters be-

tween base materials automatically.
• They are already integrated into predefined pipelines. These pipelines

can easily adapted to the current project.
• They limit the possibilities layered materials offer dramatically.

Related Patterns: A Built-in shader is most probably implemented as a DP 07: Uber
Shader (section 7.3.2.1) and does only use texture based inputs for the base mate-
rial description and masking. This kind of shader is designed to fit many different
purposes and to be intuitive.

7.3.1.2 DP 06: Custom Shader

Intent: Create custom shaders to control every aspect of the material layering pro-
cess (e.g., material containers, masking containers and blending modules). This
provides huge control over accuracy and performance as well as the used num-
ber of layers, used masking methods and utilized inputs. However, it comes with
the cost of manually optimizing the performance, ensuring the proper blending of
individual materials and testing all aspects.

Motivation: You are assigned with the task of shading and texturing a huge exterior
scene. The scene consists of rocks surrounding a small lake. The moss is supposed
to cover the top of the rocks. Areas close to the water should be covered by more
moss than areas further away. Instead of creating individual masks for all the
objects, you can utilize procedural methods. Using world space normals enables
you to easily mask out areas facing to the top. Additional data, like world space
position and tileable texture masks, can be used to add further detail. This pro-
cedural approach enables rotating the individual assets and all the masks adapt
dynamically. Incorporating vertex color into the shader enables controlling the

7. Design Patterns for Pattern Layering 56

masking further. For instance, blue vertex color adds and red color removes areas
from the mask. Custom shaders provide the flexibility to implement systems like
this.

Applicability:
• Customs Shaders provide full flexibility in the amount and complexity of base

materials.
• Using custom shaders is most likely the only possibility to use procedural

methods for base material or mask definition within your material (e.g.,
masks based on world position normal or color tint depending on position).

• The masking between different base materials is not only based on texture
masks but also incorporates different parametric inputs and scene data.

• A budget to develop custom layered material shader and additional pipeline
tools exists.

• There is time to carefully test the layered material shader and its individual
parts.

• The complete control over performance usage and optimization is needed and
used.

Implementation: Unity and UE4 provide different possibilities for implementing pat-
tern layering. These methods are described in chapter 5. Both engines support the
shading languague HLSL/Cg and node based shader graphs. Additionally, UE4
provides two dedicated systems to create layered materials (see section 5.2.2 and
section 5.2.3).

Examples Huge AAA video game productions like [34, 37, 41, 43, 44]use custom shad-
ing solutions. This provides the developers with the maximum control over visual
appearance and performance. Letzte Worte uses custom shaders for most of the en-
vironment assets. Most of the patterns presented in this catalog were implemented
and evaluated within this project.

Consequences:
Visual Qualities:

• Custom Shaders provide the most artistic freedom in terms of what is
possible.

• A big part of the artistic process takes place while creating the shader.
• It represents a highly technical approach in the handling texturing.
• Shaders can be utilized to solve blending and material creation fully or

partially.
• This approach requires a ot of technical knowledge.

Performance:
• Custom shaders provide the full control over resource usage and perfor-

mance.
• Achieving good performance requires a lot of testing and optimization.
• Custom shaders are error prone for bad performance.

7. Design Patterns for Pattern Layering 57

Pipeline (Workflow):
• Iterating on different base materials and masks is fast.
• Iterations on the implemented shader are difficult and slow.
• Creating stable shaders is time consuming and requires a lot of experi-

ence.
• A lot of testing is needed, especially if the shader offers many different

switches and states.
• Shaders need to be tested on all applications the final product appears

on. Consoles and mobile devices may not support certain features the
shader uses.

• You have the power and responsability to take full controll over features,
performance and usability.

Related Patterns: Patterns DP 07: Uber Shader (section 7.3.2.1), DP 08: Individual
Shader (section 7.3.2.2), DP 09: Content Generated Shader (section 7.3.2.3) show
different ways to include custom shaders into the project pipeline. Patterns in the
categories Material Container, Masking Container and Blending Module provide
further information on how to design and implement the individual components.

7.3.2 Workflow
Organizing and structuring your assets are important tasks. The following patterns
discuss different methods on how to choose and design shaders and systems to fit into
what your workflow needs. DP 07: Uber Shader (section 7.3.2.1) illustrates a workflow
with few centralized multi-purpose shaders that cover most of the use cases within your
project. Changes, fixes and optimizations within the shader are global and apply to all
materials using this shader. Every additional feature increases the complexity of the
shader. DP 08: Individual Shader (section 7.3.2.2) demonstrates the opposite approach
to creating case specific shaders. Individual shaders do only incorporate the functionality
for a unique purpose and are therefore more lightweight.

7.3.2.1 DP 07: Uber Shader

Intent: Create shaders to fit all or most of the needs for a specific kind of objects,
like all environment assets or characters. This way, changes are propagated to all
materials.

Also Known As: Master Material
Motivation: Consider a project with many different interior scenes. The modular, wall

and floor assets are supposed to use pattern layering. The features required for the
shader are clear: UV or world position based texture mapping, the base materials
and masks are texture based. Additionally, it is possible to add a random tint. A
technical artist designs the shader. The shader is tested by the artists creating a
test scene and simultaneously optimized to work properly on all devices.

Applicability:
• When working with built-in shaders (DP 05: Built-in Shader in section

7.3.1.1), you are most likely using an Uber Shader as they are generally

7. Design Patterns for Pattern Layering 58

designed to fit general purposes.
• The shader is supposed to work for a wide variety of situations and probably

for different projects.
• A multi-purpose shader is created by a developer or technical artist, tested

extensively on all devices the project is developed for. The shader is handed
over to artists and not supposed to change dramatically.

• The feature requirements for the shader are limited. Most of the materials
need similar parameters.

Implementation: The implementation of an uber shader is not different from imple-
menting a individual shader, see DP 08: Individual Shader (section 7.3.2.2). The
difference is mainly in the design, i.e., which parameters are exposed to the indi-
vidual materials. Uber shaders and individual shaders can be used to complement
one another in the same project.

Examples: Many of the environment assets within Letzte Worte use the same uber
shader. Especially, the first location does almost exclusively use uber shaders to
define all materials. Figure 7.10 shows one of those assets. They were initially used
to unify the shading workflow and make it easy to change individual materials.
In the later stage of the production, I created more individual shaders to reduce
the texture count and to better incorporate procedural methods into the shader
creation.

Consequences: Visual Qualities:
• The visual posibilites are provided by the uber shader. Every feature

needs to be implemented in this shader. The visual variety and style is
therefore highly influenced by it.

Performance:
• Extensive testing is necessary to ensure an efficient performance.
• It shares all performance limitations of pattern layering (see DP 01:

Pattern Layering in section 7.1.1).
Pipeline (Workflow):

• Changes and modifications are propagated across all materials using this
uber shader, i.e., fixes as well as errors are applied to all materials in-
stantly.

• The shader can get really complex to account for all cases needed.
• Maintaining and sharing this shader with others can get complicated due

to its complexity.
• The shader may offer a lot of flexibility for the artist in enabling and

disabling shader features.
• Extensive testing is important because the shader has to account for

many different scenarios and later changes will influences all materials
using this shader.

Related Patterns: Built-in shaders, DP 05: Built-in Shader (section 7.3.1.1), are gen-
erally implemented as uber Shaders, due to their intent on fitting general purposes.

7. Design Patterns for Pattern Layering 59

Figure 7.9: The material layering shader provided by Allegorithmic for UE4. Image
source: [24].

Figure 7.10: An assets from Letzte Worte using a standardized Uber Shader.

Further, they generally use a full material properties description, see DP 12: Full
Material (section 7.4.2.1).

7.3.2.2 DP 08: Individual Shader

Intent: Create individual shaders to fit the requirements of unique or problem specific
needs. These are single purpose shaders and not intended to be used in many
different ways.

Motivation: Consider a hero object within your scene. The player triggers a game play
element by touching the object and so cause the object to change the material
state. The object material transitions from a clean golden metal into an old, aged
version covered with dirt and dust. This shading feature is unique to this particular
case. In an other example, a few objects within your scene are made of fur. The
shading requirements are really similar for all of them. You create a shader with

7. Design Patterns for Pattern Layering 60

custom fresnel, parallax occlusion mapping and other features specifically designed
for this fur shading.

Applicability:
• The shader does only need to cover one specific use case. It is unique in its

requirements. Incorporating this functionality into a uber shader would only
increase the complexity of the shader.

• It enables a more artistically driven shader creation. For instance, specific
shaders can be created to fit the artistic goal of an object.

Implementation: Individual shaders are implemented either as DP 01: Pattern Lay-
ering (section 7.1.1) or DP 02: Hybrid Pattern Layering (section 7.1.2) and use
most likely DP 06: Custom Shader (section 7.3.1.2)

Examples: Letzte Worte uses individual shaders for specific use cases. Figure 7.11
shows two of them. The carpet uses a specific shading feature and therefore uses
a special shader specifically designed to fit these requirements. The laptop is a
gameplay element the player can interact with. This individual shader provides
features like switching the screen on or off and changing the desktop of the screen.

Consequences:
Visual Qualities:

• An individual shaders offers lot of artistic freedom. The shader does only
need to fit the demands of few use cases.

• It is much less important to create a user friendly and predictable shader
than it is for an uber shader. Only parameters for this use cases need to
be exposed, and most likely only a few people will ever work with this
shader.

• The shader does not need to fit into the design of an uber shader and is
therefore more flexible.

Performance:
• These shaders share all performance limitations of other pattern layering

shaders. Testing is essential.
• As they are used only a few times within a project, performance is gen-

erally less important than for an uber shader that is used all over.
Pipeline (Workflow):

• Changes within the shader are only applied to the individual shader and
the few materials using it.

• The shaders are generally less complex than uber shaders as they do not
need to cover for all cases.

• The shader development is more artist driven.
• Aspects like performance and usability are not as important as for uber

shaders.
Related Patterns: The only difference to an uber shader, DP 07: Uber Shader (sec-

tion 7.3.2.1), is the different complexity and that their usage is limited to only a
few use cases.

7. Design Patterns for Pattern Layering 61

Figure 7.11: Using individual shaders for unique and specific requirements. Both the
carpet and the laptop use individual shaders as they have specific shader requirements:
the carpet uses parallax occlusion mapping for the hair while the laptop material changes
states depending on the player interaction (e.g., switching on by opening the laptop).

7.3.2.3 DP 09: Content Generated Shader

Intent: Use a tool to create automated custom shaders from user given material layers,
masks and parameters. The shader is generated automatically based on the inputs,
instead of the desired inputs being specified by the shader. This turns the regular
workflow—i.e., DP 08: Individual Shader (section 7.3.2.2) and DP 07: Uber Shader
(section 7.3.2.1)—around.

Also Known As: Material Masking System (MMS),Material Layers in UE4
Applicability:

• Writing your own tool will not be an option for most cases. Content gener-
ated shaders requires highly sophisticated tools. A huge amount of research,
development and testing runs into creating such a tool.

• An appropriate tool exists that works with the given real-time engine. The
tool is stable, has been tested and covers the needs for the given project.

• A shared, art directed material library does already exists or is planned to
be built.

• A huge variety is needed for combining different base materials, masks and
blending modes.

Implementation: Developing a custom tool is complicated as it has to create shader
code automatically from arbitrary material, masking and blending inputs. Addi-
tionally, the inputs cannot simply be linearly interpolated but need to be blended
differently depending on data types, parameters and shading algorithms (see sec-
tion 4.4.1 for further details). To the best of my knowledge, Unity does not provide
any system for this. UE4 has just recently implemented a corresponding system

7. Design Patterns for Pattern Layering 62

with their Material Layers (see section 5.2.3 for more details).
Examples: Gears of War 4 [44] uses a corresponding system for their material pipeline

[19]. See figure 7.12. Another tools is provided by UE4 as shown in figure 7.13.
Consequences:

Visual Qualities:
• The artistic freedom of contend generated shaders is dependent on the

system used. Generally, they allow to specify an arbitrary number of base
materials with utilizing different masking methods and blending modes
in a user friendly way. Additionally the system automates complicated
technical processes of properly blending.

• Individual shading features can be used for different assets.
Performance:

• Ideally the content generated shader does a lot of performance optimiza-
tion automatically.

• The tool creates input driven individual shaders. Please refer to DP 08:
Individual Shader (section 7.3.2.2) for further details.

Pipeline (Workflow):
• The tool provides an easy and fast way to combine and replace material

layers.
• Material layers can be replaced by materials using a completely different

structure.
• The system provides a modular way to define masking between individual

layers.
• It is user friendly as the individual components are completely indepen-

dent and can contain arbitrary data and computation.
Related Patterns: DP 09: Content Generated Shader is a system to create DP 08:

Individual Shaders (section 7.3.2.2) based on the base material inputs, utilized
masking method and blending mode.

7.4 Material Container
The following categories correspond to the material layering model defined in chapter
4. These components are: material container, masking container and blending module.
Each category will contain patterns on how to plan and design these components. This
first section focuses on the material containers. Core elements of every layered material
shader or system are the individual base materials. These base materials are described
in the material containers. They use different inputs, can do further computation within
the module and output a material layer. These material layers define the surface type
and appearance of the final object. The following sections deal with different methods of
how to organize and split a surface into individual base materials. They provide patterns
on how to define the complexity of individual material containers. Finally, they offer
patterns on how and why to use distinctive inputs from within the material container
to compute the final material layer.

7. Design Patterns for Pattern Layering 63

Figure 7.12: A scene from Gears of War 4. It was created by using their custom material
layering tool, the Material Masking System. Image source: [26].

Figure 7.13: The Material Layer system by UE4. Image source: [33].

7.4.1 Granularity
As mentioned before, patterns DP 10: Base Material (section 7.4.1.1) and DP 11: Ma-
terial Variation (section 7.4.1.2) describe different philosophies on how to split a surface
into individual base materials. DP 10: Base Material proposes to split a surface by dis-
tinctive generic surface types (e.g., metal, rubber, wood, painted wood). Most of the
complexity is created by blending those simpler base materials together. Pattern DP
11: Material Variation describes a method of using more complex base materials con-
taining different surface types and creating different variations of them. This enables
the creation of more complex surfaces with fewer base materials but also decreases the
use cases for individual base materials.

7. Design Patterns for Pattern Layering 64

7.4.1.1 DP 10: Base Material

Intent: Use individual generic base materials to emulate different surfaces and their
properties, such as wood, painted wood, steel, rubber etc. The individual base
materials should be generic enough to be reused across many different objects.

Motivation: You define a base material library within your project. Recurring base
materials like different kinds of wood, metal and fabric get stored in it. Whenever
you need a new material, you can add it to the library. The library grows over
time. You can texture a new asset by reusing all these generic materials you have
already created.

Applicability:
• Base materials are used to describe different surface types (e.g., wood, oak

wood, painted wood).
• The base materials are limited in their complexity. They represent one specific

surface type (such as rubber).
Implementation: If you use DP 10: Base Material or DP 11: Material Variation is

implementation independent. It is a primary a decision of workflow and how to
split a surface into base materials. These are rather workflow decisions that simply
define how to handle individual layers.

Examples: Letzte Worte has an exterior scene. See figure 7.14. A path leads from the
starting point to the top of the mountain. The environment is textured by reusing
the same base materials. These base materials are mainly: rock, moss, ground
and forest floor. Each base material represents a different surface type. They are
generic enough to be used across different objects.

Consequences: Visual Qualities:
• It is easy to change and reuse base materials as they represent surface

types.
• The number of different surface types is limited by the shader. Using

many base materials increases performance costs and is therefore limited
to a few. This decreases surface variety.

• Visual quality and diversity is highly controlled by blending, not neces-
sarily by the base materials.

• The blending quality is highly dependent on masking resolution.
Performance:

• Using a high amount of base materials increases performance costs.
Pipeline (Workflow):

• The base materials themselves can be really simple.
• Creating different variations of the shading is simple and fast. You can

simply swap two base materials.
Related Patterns: This pattern presents, additionally to DP 11: Material Variation

(section 7.4.1.2), a proposal for how to split your surface into different base ma-
terials.

7. Design Patterns for Pattern Layering 65

(a)

(b) (c) (d)

Figure 7.14: An exterior scene from Letzte Worte. This scene uses mainly these base
Materials: grass (b), forest ground(c) and rock (d).

7.4.1.2 DP 11: Material Variation

Intent: Rather than creating a set of different generic base materials representing dis-
tinctive surface types, create variations of more complex material.

Motivation: For instance, you want to create a kitchen scene. The walls are covered
with ceramic tiles. Some areas that are often used should appear dirties and have
small damages while other areas are supposed to look newer. To do so, you can
create both a new and clean version as well as an aged, slightly damaged and
dirtier one of the same base material. This enables you to have more surface
variety within the materials than by combining generic base materials. Further,
consider a cobblestone surface which could be recreated by combing stone, mud,
wood chunks, dirt and moss as base materials. Instead of combing them within
the engine, they are baked into textures and tiled across the surface area. Material
layering is afterwards used to create additional variations of this material.

7. Design Patterns for Pattern Layering 66

Applicability:
• The surface is extremely complex and composed of a huge variety of different

surface types.
• The purpose of the material layering system is to create a variety of the

surface types rather than blending completely different ones (i.e., it is used
to add aging and damage to certain areas).

• The masking does not need to be as precise as for DP 10: Base Material
(section 7.4.1.1). Therefore, the texture resolution can be reduced.

Implementation: This approach can easily be used with all pattern layering methods.
Examples: The first interior location in Letzte Worte (see 7.15) uses white wood ma-

terial across all doors and windows. Initially, I split the surface into its distinctive
surface types. The mask resolution was huge to achieve all the fine details, like
for instance scratches. Instead of splitting the surface by the surface type, I later
created two variations of the white wood material, a clean and a damaged one.
This results in a highly decreased mask resolution, compared to before. The tex-
ture atlas uses only a texture resolution of 1024 by1024 pixel for the final scene,
containing the mask for two doors and two windows.

Consequences:
Visual Qualities:

• This approach allows to have more distinctive surface types than using
DP 10: Base Material (section 7.4.1.1).

• Different aging or damaging stages of a material can be defined and
blendend afterwards.

Performance:
• This method requires less but more complex base materials in comparison

to DP 10: Base Material (section 7.4.1.1).
• The masking resolution can probably be reduced highly as it is rather

used for masking out areas instead of creating transition between dis-
tinctive surface types.

Pipeline (Workflow):
• Base materials are more specific and can be used across less different

objects.
• This approach can be used with basically all pattern layering systems.
• It does most likely built on texture data input.

Related Patterns: In addition to DP 10: Base Material (section 7.4.1.1), this pattern
presents an option in how to split your surface into different base materials.

7.4.2 Complexity
The patterns proposed in this category help you to define how much complexity and
data you want to put into a material container. Does every material container represent
a fully described material layer object defining all surface properties? Can material
containers be used to describe only a few material properties? DP 12: Full Material

7. Design Patterns for Pattern Layering 67

(a)

(b) (c)

Figure 7.15: Splitting a complex surface into either distinctive surface types or material
variations. Figure (a) shows the final scene from Letzte Worte. The doors are made by
blending material variations as seen in figure (b) rather than by combining two completely
different surface types as seen in figure (c).

(section 7.4.2.1) and DP 13: Modulation Layer (section 7.4.2.2) compare these two
distinctive workflows and will help you decide where to use which one. These patterns
are closely connected to the patterns in category Blending Module: DP 18: Physical
Material Blend (section 7.6.1)and DP 19: Custom Material Blend (section 7.6.2). The
design of the Blending Module needs to provide the functionality for either blending
only certain material properties or not. Section 4.4.2 contains further details how this
decision is closely connected to the blending module.

7.4.2.1 DP 12: Full Material

Intent: Create a base material by specifying all material parameters (e.g., base color,
roughness, metalness) so that it fully represents a real world surface.

Motivation: You use a physically plausible blending workflow as presented in pattern
DP 18: Physical Material Blend (section 7.6.1). You specify base materials that
represent real word surfaces and blend those.

Applicability: The intent is to work in a physically plausible way. Real world surfaces

7. Design Patterns for Pattern Layering 68

are composed of different surface types. Creating base materials that describe the
entire material properties of a certain surface type corresponds best to this idea.

Implementation: This approach can be used with all pattern layering systems.
Consequences: Visual Qualities:

• The number of different base materials is highly limited as every one
contains full surface description data.

• The results of blending two base materials with one another are pre-
dictable and therefore artist friendly.

• The workflow is intuitive if you are used to decomposing an object into
different base materials (e.g., a metal, partially covered with rust, paint
and dirt)

• The artistic process is much freer than DP 13: Modulation Layer (sec-
tion 7.4.2.2) as blending behaves consistently. Besides, you don’t have to
worry about how to blend which individual material parameter.

Performance:
• Blending many similar base materials may result in blending similar

roughness or normal values. By providing more control, this texture
count could be reduced without a significant impact on the visual quality.

Pipeline (Workflow):
• The blending between different base materials behaves in a consistent

way.
• The structure of all base materials is consistent. This makes it easy to

change and replace them.
.

7.4.2.2 DP 13: Modulation Layer

Intent: Enabling material containers to specify only a few material properties instead
of all makes them more lightweight but less predictive.

Motivation: The amount for blending fully described base materials is limited to only
a few. To increase the number of base materials that can be blended a more flexible
way of defining material containers is used. Instead of blending four wood base
materials, all fully described with all parameters, you can blend two fully described
base materials with partially described ones. Latter are used to modulate the
roughness and replace the base color channel. This decreases the texture count
from twelve (three per base material) to eight.

Applicability:
• You want more flexibility in if and how to blend the individual material

parameters.
• The amount of layers can be decreased by reducing the complexity of indi-

vidual base materials and the blending process.
Implementation: This approach requires the ability to influence the shader or shading

system. It is therefore not viable for DP 05: Built-in Shader (section 7.3.1.1). It

7. Design Patterns for Pattern Layering 69

also requires more control over the actual blending process. With this approach, a
material container does not represent an entire surface but only certain properties.
It will therefore not work for pattern layering shaders or systems that target a
physically plausible blending, DP 18: Physical Material Blend (section 7.6.1). For
this pattern to work, a pattern layering system is required that uses the following
patterns: DP 06: Custom Shader (section 7.3.1.2), DP 19: Custom Material Blend
(section 7.3.1.2) and DP 08: Individual Shader (section 7.3.2.2) or DP 09: Content
Generated Shader (section 7.3.2.3).

Examples: Figure 7.16 shows an interior location from Letzte Worte. The wall shader
is composed of different layers: the main plastered wall, some rougher wall and
three painted wall layers. These painted wall layers do not contain a full base
material: they only include a base color and a value to adjust the roughness.

Consequences:
Visual Qualities:

• This approach allows to use more layers, especially if the distinctive base
materials are supposed to be really similar.

• The considerations of how to blend which parameters, while considering
the trade-offs between using certain material parameters or not, might
hinder the artistic process.

Performance:
• Describing and blending base materials only partially makes them more

lightweight.
Pipeline (Workflow):

• This introduces an additional stage within the pipeline and increases
shading and pipeline complexity.

• The shader or shading system does require to fit certain defined criteria,
further explained above in Implementation.

Related Patterns: For this pattern to work, the blending module requires to be de-
signed according to pattern DP 19: Custom Material Blend (section 7.6.2).

7.4.3 Creation
The following patterns support you in defining the creation process of individual base
materials. I decided to categorize them into DP 14: Input Based (section 7.4.3.1) and
DP 15: Semi Procedural (section 7.4.3.2). In the former, the material properties are
defined by the inputs without much additional computation (e.g., texture maps defining
roughness, metalness and base color). The latter uses different inputs to drive procedural
material creation (e.g., color tint based on world position). This decision has huge impact
on the pipeline and way of working with base materials. These patterns can also be
combined to achieve the desired result.

7. Design Patterns for Pattern Layering 70

Figure 7.16: Blending partially described base materials to create surface variaty in
Letzte Worte. The orange wall does not use a full base material description. It defines
only individual properties to modulate the previous base material.

7.4.3.1 DP 14: Input Based

Intent: The surface properties of the base material are mostly defined by its inputs.
There is limited to no manipulation of this data before passing it on to the shader
or next component within the material layering module.

Motivation: You define the surface properties of the base materials within any 3rd
party painting tool. After exporting, importing and assigning them to the right
materials, you just want it to look the same as in the authoring tool.

Applicability:
• This works best in combination with other texture authoring applications.
• Values are set by either using textures or parameters.
• The result is predictable, highly controllable and well supported.

Implementation: An input defined base material creation is supported by any pat-
tern layering implementation or workflow. Shaders using DP 05: Built-in Shader
(section 7.3.1.1) require most likely input defined base materials.

Examples: The interior room from Letzte Worte in figure 7.17 uses mostly texture
inputs for the definition of the base materials. Only a few objects use procedural
shading, e.g., the color bottles, tubes and folders use procedural color randomiza-
tion.

Consequences:
Visual Qualities:

• This provides a control over the individual properties of a base material.
• Artists can focus on creating art and do not need to get technical.

Performance:
• It is efficient if textures are reused across a lot of different objects.

Pipeline (Workflow):

7. Design Patterns for Pattern Layering 71

Figure 7.17: A location from Letzte Worte using mainly input defined base materials.

• It uses an artist friendly workflow.
• Texture based workflows are widely integrated in the different pipelines.

Related Patterns: Input driven base material definition is commonly used across all
pattern layering worfklows and implementations. A DP 05: Built-in Shader (sec-
tion 7.3.1.1) is most likely limited to this input based workflow.

7.4.3.2 DP 15: Semi Procedural

Intent: Use input driven procedural methods to define and modulate the final base
material properties.

Motivation: Consider a modular level kit which already uses pattern layering for shad-
ing. The same wooden wall panel asset is located several times side by side. It is
noticeable that they share the same textures and UVs. An easy way to fix this is to
procedurally offset the UV coordinates for the wooden base material. All masking
and all other base materials stay in the same place. By offsetting the UVs on every
object differently based on the shader, it is much less obvious that they share the
same texture.

Applicability:
• Pseudo randomness is wanted from within the shader.
• Material properties need to interact with scene data (e.g., change of color

based on scene height).
• The shader uses shader based vertex animation.
• The shader is supposed to interact with the player or other dynamic objects

(e.g., interactive grass, white foam around objects in the water).
Implementation: The shader graph editors within Unity and UE4 provide access to

a huge variety of inputs and different operations for manipulating them.

7. Design Patterns for Pattern Layering 72

Examples: The color tubes and bottles shown in figure 7.18 use the same textures. A
semi procedural base material, combined with a mask, is used to randomize the
color of the bottles. Additional color splatters are placed on top. The UVs for the
bottles are randomized based on their world position so that each is covered differ-
ently with color splatters. This allows to generate an infinite number of distinctive
color bottles by still using the same inputs for all of them.

Consequences:
Visual Qualities:

• Procedural systems can be used to increase variety.
• They can be used to create a more reactive and immersive world (e.g.,

reacting vegetation).
• They can create global changes across different objects.

Performance:
• The performance cost depends highly on the operations and inputs used.
• UV manipulations and simple mathematical operations are cheap.
• Recreating complex surfaces procedurally is expensive. Generally, only

semi procedural methods are therefore used for creating photorealistic
surfaces for real-time productions.

Pipeline (Workflow):
• They are easy to use with shader graph editors.
• Simple procedural input manipulation can be recreated manually in most

content creation application like Maya and Blender for previewing.
Related Patterns: Using semi procedural base material definition can be used to cre-

ate huge variety, in contrast to DP 14: Input Based (section 7.4.3.1). The inputs
used are an important aspect for procedural creation. Please refer to category Ex-
ternal Inputs in section 7.7. The operations used are similar to those for procedural
masking DP 17: Procedural (section 7.5.2).

7.5 Masking Container
The masking container is responsible for generating the mask controlling influence and
area of the blending module. A mask can be generated in many different ways by
either using textures or procedural methods. Masking is a core element of any material
layering system. The following patterns, DP 16: Texture Based (section 7.5.1) and DP
17: Procedural (section 7.5.2), will help you planing and setting up your masks.

7.5.1 DP 16: Texture Based
Intent: Use textures to mask out areas.
Motivation: You are working on a wooden floor. You want to blend different variations

of the floor (e.g., new and clean, sun bleached, dirty and witch scratches) by using
texture masks. Within the painting application, you paint sunlight affected areas
red, areas that are supposed to have more scratches green and dirty areas in the

7. Design Patterns for Pattern Layering 73

Figure 7.18: Procedurally modified base materials. All these color bottles share the same
texture information (e.g., base color, normal, roughness). An additional mask channel is
used to define the area that is procedurally modified to use a pseudo random color based
on the position.

color blue. You import this mask into your game engine and use the individual
channels directly as mask for the blending of the base materials.

Applicability:
• The base materials are blended by using texture masks.
• A textures is either used to create high detail blends or mask out larger areas.
• The blending is uniform and can be described by a scalar value.
• The masking is supposed to be shared across all objects using the same

material.
Implementation: These inputs simply get exposed by the shader and set within the

editor in the materials panel. The kinds of available inputs are defined by the
shader. Using masks for blending within the shader graph editor is straightforward.
Different masks are often combined in a single texture by using different color
channels.

Examples: Most projects use texture based material masking. Figure 7.19 shows an
interesting example from Paragon as this uses two different texture masks. The
former defines bigger areas covered by a distinctive surface type. The second mask
is used for additional surface variation, like scratches and dirt.

Consequences:
Visual Qualities:

• It provides high control over the blending process on a per pixel basis.
• Using texture masks provides an artist friendly, consistent and predictable

way of using masks.
Performance:

• The impact on performance is highly dependent on number and reso-
lution of used texture masks. Please refer to pattern DP 20: Textures

7. Design Patterns for Pattern Layering 74

Figure 7.19: ID maps used as layer masks for a Paragon character. The right one defines
the distinctive base materials like rubber, metal and plastic. The left contains the ambient
occlusion map with additional detail masks for scratches and grime. Image source: [16,
p. 116].

(section 7.7.1.1) for further information.
Pipeline (Workflow):

• Textures are easily integrated into the pipeline and shaders.
• Generally, working with texture masks is artist friendly as they are used

to work with textures.
• Results can easily be shared across different applications.
• There are many different possibilities to create, generate and paint tex-

ture masks.
Related Patterns: More detail on why and how to use parameter inputs will be given

in pattern DP 20: Textures (section 7.7.1.1). DP 07: Uber Shader (section 7.3.2.1)
and DP 05: Built-in Shader (section 7.3.1.1) do most likely incorporate only tex-
tures based masks as they are designed to fit universal requirements.

7.5.2 DP 17: Procedural
Intent: Use procedural methods for the dynamic and automated generation of masks.
Motivation: You are presented a scenario of using procedural masking for exterior

environment scenes in pattern DP 06: Custom Shader (section 7.3.1.2). In that
example, procedural masking is used to generate moss on top of rocks. This can
be achieved by utilizing the mesh independent world space normal vector. A pro-
cedural setup that is independent from object specific data can be reused across
arbitrary objects without any additional manual work. A new rock assets can be
added to the scene. By assigning the proper material, it automatically uses the
proper masking. Further, additional features like vertex color can be implemented
to control the blending process further. Consider working on an exterior scene
and in the middle of the map is a small hill. To create a smooth transition from

7. Design Patterns for Pattern Layering 75

forest ground to greenfield, you incorporate a height based masking which blends
automatically between both ground base materials.

Applicability:
• Procedural approaches can be used to create a system solving recurring prob-

lems. Instead of painting the moss on top of all rocks, you can automate the
moss masking based on the world space normal.

• A requirement for the corresponding mask is to react to different inputs (e.g.,
height based base material blending).

• A dynamic masking system that can change at runtime (e.g., puddles reacting
to a global weathering system, dynamic changes between material states,
flickering emissive materials).

Implementation: Using and controlling procedural masks requires custom shaders,
DP 06: Custom Shader (section 7.3.1.2). UE4 and Unity provide with their shader
graph editors powerful tools. They enable you to easily access different input data
and utilize it to drive the procedural masking.

Examples: Figure 7.20 illustrates a layered rock shader using a procedural mask for
the moss. The moss covers automatically the top of the rock. This even works by
rotating the object within the 3D scene. It also works for different game objects
using the same mesh and material with different rotations. The moss will always
cover the top for all of them.

Consequences:
Visual Qualities:

• A lot of visual work is done within the shader.
• Working with huge amount of different parameter inputs to control the

masking might be unintuitiv.
• If and to what extent the artist is able to control the masking depends on

the shader. Does it enable the artist to control or influence the masking
process (e.g., by utilizing vertex paint within the engine)?

• This approach requires a rather abstract, logical and technical way of
thinking about artistic problems.

Performance:
• These masking instructions are calculated at runtime. The performance

depends highly on the amount and complexity of these procedural sys-
tems.

• As they are less reliant on stored data, they generally use less memory
than textures.

Pipeline (Workflow):
• The shading pipeline has to support custom shaders.
• Masks can be reused across different assets and projects.
• It includes all the advantages and disadvantages of a procedural work-

flow.

7. Design Patterns for Pattern Layering 76

(a) (b)

Figure 7.20: Procedural masking of moss. A procedural shader is used to create the
layer mask dynamically. The moss is blended automatically to cover the top of the rocks.
Different parameters can be used to control the masking amount, direction an sharpness:
less (a) and more (b) moss.

Related Patterns: To use flexible procedural masking, custom shader solutions are
required as explained in pattern DP 06: Custom Shader (section 7.3.1.2). This
pattern is often used in addition with pattern DP 08: Individual Shader (section
7.3.2.2). Using individual shaders enables to create problem specific procedural
masks. An easy way to include procedural masking is by using pre-existing con-
tent generated shaders as in DP 09: Content Generated Shader (section 7.3.2.3).
Procedural processes are to a large extent defined by the inputs. Patterns within
the category External Inputs, section 7.7, will be helpful in designing procedural
masks.

7.6 Blending Module
The blending module is the last component of the material layering model. It inputs the
material layers from the material containers and blends them based on a mask. Please
refer to 4.4.2 for further information on this module. The following patterns, DP 18:
Physical Material Blend (section 7.6.1) and DP 19: Custom Material Blend (section
7.6.2), illustrate two possible approaches for implementing such a blending module. The
pattern DP 18: Physical Material Blend (section 7.6.1) represents a rather rigid system.
It provides only a few blending modes. These blending modes try to be physically
plausible and provide blending operations that respect the energy conservation law
(except for adding emissive base materials). These blending modes define the mixing
of all material parameters. Therefore, they are predictable, user friendly but limiting.
The pattern DP 19: Custom Material Blend (section 7.6.2), on the contrary, does not
try to stay physically plausible but enables the user to blend the different parameters
of the material layers individually. The user defines exactly which material parameters
are skipped, blended and how they are blended. This enables the use of material layers
that describe the surface only partially, see pattern DP 13: Modulation Layer (section
7.4.2.2). This allows more flexibility in how to use the resources and thus makes the use
of additional layers possible. The advantage as well as disadvantage for the user is the
higher control and responsibility to weigh up performance versus accuracy and artistic

7. Design Patterns for Pattern Layering 77

freedom.

7.6.1 DP 18: Physical Material Blend
Intent: It uses a closed an rigid blending module that is limited to only a few modes.

These blending modes are designed to be physically plausible and and user friendly,
producing predictable and consistent results.

Motivation: Probably the easiest way to achieve realistic looking results is by imitating
real world behavior. Constraining the blending modes makes it easier to ensure a
proper blending (e.g., maintain the energy conservation law).

Applicability:
• This approach creates predictable and consistent results.
• Inputs are most probably mainly texture based.
• The goal is to use a physically plausible system.

Implementation: This design of the blending module can be used for all implementa-
tions. Almost any general purpose shader, see pattern DP 07: Uber Shader (section
7.3.2.1), uses a blending module based on this design as it is flexible enough to rep-
resent all kinds of base materials and does provide a good usability. It works best
with base materials using DP 12: Full Material (section 7.4.2.1). Other shaders
using pattern DP 13: Modulation Layer (section 7.4.2.2) do not work well for this
concept.

Examples: Figure 7.21 shows an asset from Letzte Worte. The material is composed
of different fully described base materials. These base materials are reused across
different assets in this location.

Consequences:
Visual Qualities:

• Using this physically plausable blending approach creates predictable
and consistent results. Therefore, it is easy to work with.

• The artistic process can focus mainly on creating appropriate base ma-
terials and the corresponding masks.

• It enables the artist to test different ideas and concepts out as materials
can easily be changed.

Performance:
• Every base material uses a full material properties description (see pat-

tern DP 12: Full Material (section 7.4.2.1))
• The performance cost is predictable as all the different options are lim-

ited.
Pipeline (Workflow):

• The workflow is straight forward. The energy can be spent on creating
base materials and masks.

• Base material complexity and definition stay consistent throughout the
project.

7. Design Patterns for Pattern Layering 78

Figure 7.21: An asset blending fully described base materials. This image shows an
early asset from Letzte Worte. All base materials use a full material description (e.g., base
color, metalness, roughness, ambient occlusion): wood, dirt, dust, fabric, used fabric, fine
plastered wall and rough plastered wall.

Related Patterns: The blending mode is highly connected with the complexity of
the base materials. This approach will not work for base materials only defined
partially, see DP 13: Modulation Layer (section 7.4.2.2).

7.6.2 DP 19: Custom Material Blend
Intent: This blending module design is much more open and provides the possibility

to define exactly which, if and how individual material parameters are blended. It
does not follow the constraints of trying to be physically plausible. This flexibility
allows to define more precisely how resources are used and where to sacrifice
accuracy for performance.

Motivation: Consider working on a complex layered material with a huge amount
of different surface types. Consider a brick wall that is partially plastered. Both
base materials use the pattern DP 12: Full Material (section 7.4.2.1) and are
described in all their properties. Additional layers are introduced to add variety.
For the plastered wall they are as follows: a water damaged variation, ground
dirt, a newly plastered part and a slightly damaged variety. For the brick the
following variations are added: a color variation and a water damaged version.
Considering three textures per base material results in eight base materials using
twenty-four textures. If we use only the base color texture for each variation and
simply subtract or add a small scalar to the roughness value depending on the
variation, the texture count gets divided by half. The result might not be physically
accurate but it pays off as far as performance increase: a lower amount of used
texture memory and computation instructions.

7. Design Patterns for Pattern Layering 79

Applicability:
• This approach is well suited for large amounts of similar base materials.
• It works well if only a single material property is replaced.
• Custom material blending works great creating surface variation, e.g., pud-

dles and water. Wetness can easily be achieved by manipulating the normal
map, darkening the base color and decreasing the roughness.

Implementation: To achieve this high control over how to blend which individual
material parameter, it is necessary to use custom shading solutions, DP 06: Cus-
tom Shader (section 7.3.1.2). Generally, this will require DP 08: Individual Shader
(section 7.3.2.2) as this provides most flexibility. Using DP 09: Content Generated
Shader (section 7.3.2.3) is the easiest way to incorporate this aspect into your
pipeline.

Examples: Figure 7.22 shows a small example for this design pattern. Using pattern
DP 18: Physical Material Blend (section 7.6.1) would result in either the need to
create a duplicate base material representing the floor wood surface covered with
water or need to to create an arbitrary blend mode that can combine an arbitrary
transparent base material stacked on top of another. The former is unflexible as
a wet material variation for any base materials needs to be created. The latter
is technically challenging and has probably a huge impact on performance (see
section 3.2.4 in chapter 3).

Consequences:
Visual Qualities:

• It enables the combination of a great number of different base materials.
• Blending is based on visual appearance rather than any physical plausi-

bility.
Performance:

• Reducing base material and blending complexity affects performance
positively.

Pipeline (Workflow):
• The pipeline needs to provide more control over if and how individual

material parameters get blended.
• The best way to incorporate this pattern into your project is by using

DP 09: Content Generated Shader (section 7.3.2.3).
Related Patterns: This approach works, in contrast to the previous DP 18: Physical

Material Blend (section 7.6.1), with all base materials well, both using DP 12:
Full Material (section 7.4.2.1) and DP 13: Modulation Layer (section 7.4.2.2).

7.7 External Inputs
This category presents different patterns associated with utilizing different external
inputs. In this case, external refers to data that is not embedded within the shader, like

7. Design Patterns for Pattern Layering 80

Figure 7.22: The water material layer is not described by all material properties. The
appearance of water on top of a surface is created by using custom blending of individual
properties.

parameters, mesh data, object data and scene data. These different inputs with their
distinctive advantanges and disadvantages will be discussed in the following categories.

7.7.1 Parameters
This category includes basically all parameters that can be exposed by the shader to be
set in the material (e.g., textures, vector and scalar paremeters). The following patterns
present different use cases for this kind of inputs. As textures play such a fundamental
role in shading, the design pattern DP 20: Textures (section 7.7.1.1) focuses entirely on
them. DP 21: Variables (section 7.7.1.2) present other types of parameter inputs, like
colors, position vectors, scalar value and switches. In pattern DP 22: Scripted Parame-
ters (section 7.7.1.3), I want to illustrate possibilities to utilize scripted parameters.

7.7.1.1 DP 20: Textures

Intent: Use textures as a data table to define different material properties, masks or
as input for procedural operations.

Motivation: Consider a project that targets a photorealistic art style. Textures are
ideal as they are perfect to store complex surface information of all kinds. Fur-
thermore, a wide variety of processes to generate textures exist (e.g., 3D scanning,
photo editing, baking of procedural or high detailed 3D data and painting). Spe-
cialized texture tools make it quite easy to generate realistic looking textures.

Applicability:
• Complex surface information can be stored within textures easily.
• Huge libraries of high quality textures exist and can be utilized for the current

project.
• Textures can be baked down from procedural approaches, vertex color or

different 3D data.
• Textures can be used to store arbitrary data.
• A lot of applications are especially designed to generate, create and paint

textures.

7. Design Patterns for Pattern Layering 81

• Artists are used to working with textures. It is a familiar workflow.
• Commercial engines like UE4 and Unity have already been well optimized

for working with a large number of bigger textures. They use technologies
like mid-mapping, texture streaming and advanced compressions.

• Textures are set per material. All assets using the same material share the
same textures.

Implementation: A wide variety of different tools and approaches exist to create
and generate textures. Textures can be created of photos, 3D scans or by using
procedural methods.

Consequences:
Visual Qualities:

• Complex surface data can easily be created and stored.
• Textures generally provide the most efficient way to store huge surface

data.
• Artists are used to working with textures. A lot of tools make working

with textures intuitive.
• A lot of tools exist to generate, create and paint textures.
• Textures are projected onto objects. This projection can be manipulated

to rotate, offset and scale textures. Textures can even be animated by
manipulating these projection coordinates.

Performance:
• Textures have already been highly optimized through technologies like

texture streaming, compression, mid-maping, filtering.
• Huge textures need a large amount of memory.
• The loading of large textures into the VRAM may take some time.
• The streaming of texture data has a huge impact on loading times.
• Methods like combining different objects into texture atlases and channel

packing reduce the amount of textures.
Pipeline (Workflow):

• Textures can easily be created in other applications.
• Texture data is easy to share between different softwares.
• They can be stored in libraries and easily be modified and reused.

Related Patterns: Textures are used across all different pattern layering implemen-
tations and workflows. They are used within material containers to define base
material properties directly or as an additional input to drive and manipulate
procedural methods. They play an vital role in creating mask.

7.7.1.2 DP 21: Variables

Intent: Variables can be set per material or per component on advanced material lay-
ering systems. The most common parameters are textures, vectors, scalar values,
booleans and switches.

7. Design Patterns for Pattern Layering 82

Motivation: You want to specify different colors for different materials using the same
shader. To do so, expose a color vector within the shader. This parameter can later
be specified in the materials panel of the individual material. In another example,
a procedural masking container uses the world position normals to mask areas
facing the top. To add more control, you can expose an additional vector that
enables you to influence the direction to be masked. In one material you want to
influence the opacity of an individual material layer. Therefore, you add a scalar
parameter to the shader and multiply it with the blend opacity of the material
layer. Within the material you can now influence the material layer blend opacity.

Applicability:
• You wish to influence colors, vectors, opacities, switches and features on a

per material basis.
• You expose parameters to control procedural processes.
• You want to tweak values in engine (e.g., adjust the roughness value slightly).

Implementation: In a DP 06: Custom Shader (section 7.3.1.2) you can simply define
which parameters should be exposed to be set in the individual materials. In a
DP 05: Built-in Shader (section 7.3.1.1) all available parameters are defined by
the shader and can not be changed.

Related Patterns: Custom parameters can easily be exposed within a DP 06: Custom
Shader (section 7.3.1.2)

7.7.1.3 DP 22: Scripted Parameters

Intent: Scripted parameters are regular material parameters accessed from within the
game code to either set or change them at runtime.

Motivation: Imagine a flickering light bulb. You could either create the flickering by
using procedural noises within the shader or by controlling certain parameters,
like emissive color or intensity, from a script.

Applicability:
• Surface properties are supposed to change at runtime.
• The game logic should influence certain material properties.
• You want to access additional information that cannot be accessed from

within the shader graph editor. Therefore, you want the game logic to set a
property within the material, e.g., you can pass on the position vector of an
arbitrary object within your scene to the shader using a vector parameter.

Implementation: UE4 provides an artist friendly visual coding environment, the
Blueprints Visual Scripting system. You can utilize this scripting environment
to set and manipulate parameters within your materials.

Related Patterns: This pattern uses regular parameter values DP 21: Variables (sec-
tion 7.7.1.2) that are set or manipulated at runtime by the game code.

7. Design Patterns for Pattern Layering 83

Figure 7.23: A Layered Material from Letzte Worte using scripted parameters. This
shader reacts to the player action. When triggered, the dark area grows to cover a big
portion of the wall. The parameters to control this expansion are set and animated from
the game code.

7.7.2 Mesh Data
The results of the previously mentioned input methods are applied globally to all meshes
using the same material. Changes in the input parameters, like changing an id map for
example, will inevitable effect all objects using this material instance. The inputs within
this category are only influenced by the mesh data (e.g., UV coordinates, object-space
normals and object space position). These inputs will be constant across all objects
using the same mesh. DP 23: UV Coordinates (section 7.7.2.1) and DP 24: Vertex
Color (section 7.7.2.2) show different methods to utilize these mesh specific properties
within the shading process. This kind of parameter can be used to create variety across
objects using the same material.

7.7.2.1 DP 23: UV Coordinates

Intent: Use the UV coordinates to influence, manipulate and animate the projection
of textures onto the object.

Motivation: You want to add ornamental panels and trims to your scene. The intent
is to combine them with pattern layering. The ornamental data for the panels and
trims is sculpted within zBrush and finally baked down to a texture. The first UV
set is set out nicely and does not have any overlapping areas. All UV islands stay
within the UV boundaries. This first UV set is used for the tileable base materials
as well as the object specific textures. The second one is arranged more freely to
project the ornamental parts onto different areas of the mesh. This second UV map
does not need to be set out as cleanly as the first (e.g., inconsistent texel density,
overlapping areas and UV islands exceeding the UV boundaries). It is neither used
to texture the entire object nor to generate the lightmap. You can duplicate this
object and use the second UV map to project different details onto the copy. This
allows to create variations by using the same materials in the engine. The mapping

7. Design Patterns for Pattern Layering 84

is changed by the UV set. As the first UV map is the same, object specific texture
data can still be shared across these objects.

Applicability:
• It is used for adding detail that is independent from the first UV set.
• The UV coordinates can be used to offset textures, for example base materials

to avoid repeating textures on the same object. This can be done by either
offsetting UV coordinates pseudo randomly from within the shader or by
exporting different meshes from the 3D content creation application.

• It can be used to blend different texture variations. Each variation is placed
on a grid; offsetting the UVs by this grid will switch the material properties
projected onto the object.

Implementation: 3D content creation software provides the functionality to add ad-
ditional UV sets. These UV sets can be modified independently and sent to the
game engine. It is important to ensure that the proper UV set is used to generate
the lightmap, otherwise ugly artifacts may appear.

Examples: Trim sheets are an excellent example on how the UV coordinates can be
used to influence shading. Figure 7.24 shows an example from Gears of War 4.

Consequences:
Visual Qualities:

• It provides high control where to put additional detail.
• This method allows to create highly detailed areas which can be sculpted

and be reused across different assets sharing the same style.
Performance:

• Creating variations by offsetting UV coordinates is easy and cheap.
• Animations done by manipulating the UV coordinates do not require

sprite sheets where every single frame is saved as a individual picture.
• Using multi UV sets in connection with normal maps may cause prob-

lems. In Letzte Worte, normal maps caused problems when using the
second UV set. The normal map effect appeared inverted for certain
areas on the objects.

Pipeline (Workflow):
• Working with multiple UV maps can be challenging.
• Some software does not support multiple UV sets (e.g., Substance Painter).
• Engine shaders need to be re-built within the 3D content creation appli-

cation to preview a similar result to the final in engine render.
Related Patterns: Different UV coordinates can be used in any DP 06: Custom

Shader. Especially with procedural methods, it provides a powerful tool to create
performance efficient variations, see DP 15: Semi Procedural (section 7.4.3.2) and
DP 17: Procedural (section 7.5.2).

7. Design Patterns for Pattern Layering 85

(a) (b)

Figure 7.24: A scene textured by combining pattern layering with trim sheets. Figure
(b) shows a location from Gears of War 4 combining pattern layering with trim sheets,
see figure (a). Image source: [26].

7.7.2.2 DP 24: Vertex Color

Intent: Use vertex attributes to create per object variety independent from the mate-
rial.

Motivation: Consider an often recurring object that might even be located side by side.
This could be a fence, a book, a wall, a tree. Visible repeating patterns between
the objects are noticeable because they use the same texture maps as a mask
input for the material layering. Creating individual bitmap masks or materials
is not really an option because of performance issues regarding draw calls and
memory limitations. This problem can be solved by using vertex attributes. The
vertex attributes are independent from the material and can be different for every
object. This is also true if the objects share the same mesh or material. Each
vertex has a vertex color attribute that stores RGBA values. These values can be
retrieved as an input parameter within the shader and be used to manipulate the
material parameters. The vertex color can be used directly to color the object or
indirectly, for example as a mask. The value between each color channel can be
used to mask out a material. Coloring and blending with vertex color is unique to
a single object, in contrast to the id map method as mentioned before [50]. One
huge constraint of vertex color is its limitation in resolution. The vertex paint
resolution is directly connected to the vertex count of the mesh. To create sharp
masks, a huge vertex count is necessary. This method alone is therefore mostly
used to mask out bigger areas or in connection with other methods like height
warp and brush maps.

Applicability:
• The used base materials do not change between the instances.
• The material blending takes place at a larger scale and not in detail space.

Implementation: The vertex color can be used as a mask to blend the different tex-

7. Design Patterns for Pattern Layering 86

tures. This method is really powerful. The vertex shader normally implements four
channels, rgba, which enables the artists to blend between five base materials.

Examples: Figure 7.25 from the Unity project Fontainebleau [45] shows how vertex
color can be used to control the masking in pattern layering system.

Consequences:
Visual Qualities:

• Vertex colors can be painted within the engine.
• Generally, you can paint immediately adopting the final shader.
• The painting resolution depends on the geometry. Higher vertex count

results in a larger painting resolution.
• It works great for masking out areas but not for painting really detailed

small scale areas.
• Additionally, other techniques can be used to create more detailed tex-

tures (e.g., height warp, brush maps).
Pipeline (Workflow):

• Some engines do already provide vertex painting tools built-in, e.g., UE4.
• The masking takes place in the engine with the final shader.
• Vertex color can either be imported from the 3D content creation ap-

plication or be overwritten from within the engine. By overwriting it in
engine, re-importing changed mesh data, may destroy the painted masks.

7.7.3 Object Data
While inputs connected to the mesh data are independent from other objects and their
location within the 3D scene, object specific inputs are influenced by them. Object
related values like hierarchy, position, rotation, scale are object data inputs.

7.7.3.1 DP 25: Vectors

Intent: Use different vectors to manipulate the material based on location, scale and
rotation.

Motivation: These vectors can be used to manipulate the other material parameter
inputs. They could be used to manipulate an object depending on its position,
rotation or scale. One possible use case for this can be to add a pseudo random
variation—like random tint—to objects, depending on there position in space.
The possible use cases are infinite as these vectors can be used to manipulate
any parameter from color, saturation, roughness to UV coordinates. This kind
of use does not work with moving object because the values update dynamically
at runtime. Changing the translation, rotation or scale would therefore directly
affects the material appearance at runtime.

Applicability:
• The objects have different location, scale or rotation values to drive proce-

dural functions within the shader.

7. Design Patterns for Pattern Layering 87

(a)

(b) (c)

Figure 7.25: Using vertex paint to influence the base material blending and create surface
variety. Image source: [58, p. 31–32].

• The specified vector does not change (e.g., If the random color is linked to
the object position, the object should not be movable).

• Objects cannot be merged because it would combine them into one single
object, with shared location, rotation and scale vectors. Therefore, all variety
would be lost.

Implementation: Unreal Engine 4 allows to access the object position, orientation
and bounding box data really easily within the material editor.

Consequences:
Visual Qualities:

• This method provides an easy, fast and cheap way to create pseudo
random values.

7. Design Patterns for Pattern Layering 88

Performance:
• It is cost efficient as it represents a simple vector based input in the

shader graph.
Pipeline (Workflow):

• It is easy to implement.
• Using different object vectors to drive pseudo random values is unstable.

For instance, combining the object does destroy this effect.
• Changing the position of an object does change its look, which might be

an unintended side effect.
Related Patterns: This pattern can easily be implemented in an DP 06: Custom

Shader (section 7.3.1.2)

7.8 Summary
The patterns presented in this chapter cover huge areas connected to pattern layer-
ing. They provide different possibilities on how to incorporate pattern layering into
your pipeline and how to structure and organize the single components. Besides, they
illustrate what alternatives exist to pattern layering. This chapter provided different
solutions on how to implement the individual components: material container, masking
container and blending module and how to utilize different input types. The potential
for further work in this field will be presented in the next chapter.

Chapter 8

Discussion

The main goal of this work was to create a catalog of design patterns to support in-
formed decision making in regard to material layering. Therefore, the patterns in this
work contain all the necessary information concerning possibilities for application, ex-
pected benefits and consequences. They further provide answers to the most important
questions of why, when and how to use different pattern layering methods. Most re-
search focuses on new tools and algorithms [4, 19, 23] but fails to provide answers to
the questions stated above.

The most important question within this catalog is whether to use a pattern layering
method or not. Therefore, two additional non pattern layering design patterns were
introduced. The individual patterns were developed and tested during the production
of Letzte Worte and correspond to my observation in different source files and projects
such as [34–40, 43–45].

The research and experiments revealed that pattern layering is often used in produc-
tion to fit the trends of a modern pipeline. Game production seems to develop towards
the following tendencies: the asset production is shifting more into the engine [37, 44],
the importance of physically plausible shading and blending is growing, procedural and
cooperative pipelines are increasing to enable efficient and iterative workflows. This
finding does not correspond to from my earlier expectation of performance as main
motivation for using pattern layering.

8.1 Limitations
The design patterns within this work were designed for interactive applications with
free player movement, i.e., objects can be seen from different distances and angles.
This applies for most first person shooters. The requirements in other applications, for
instance with static cameras, may differ from those presented in the catalog. Therefore,
the catalog may only be applicable partially. Further, all test were done on PC and with
Unity1 and UE4.2 The patterns are supposed to be largely implementation and platform
independent. Nevertheless, there might be certain features that are not supported by
either the engine or the platform. For instance, an engine might not support all shader

1All test cases were realized in Unity version 2018.13.f1.
2The test cases from Letzte Worte use UE4 version 4.19.2. All other examples use UE4 version 4.20.3.

89

8. Discussion 90

inputs discussed in section 7.7 of the pattern catalog and so render parts of the catalog
irrelevant. If the engine does not support custom shaders or any built-in material layering
solutions, the entire catalog might be irrelevant for that specific case. The catalog does
focus exclusively on pattern layering, as other layering methods are not used for video
game productions yet. A lot of the patterns might work for other layering methods such
as BxDF layering as well, but especially the consequences will be different.

8.2 Conclusion
The design patterns presented in this work provide a practical guide to support informed
decision making with regard to pattern layering. Available scientific resources do mainly
focus on new technologies, algorithms and tools. Industry specific resources—like docu-
mentations, tutorial and articles—do mainly focus on problem specific solutions. They
generally fail to explain the long term consequences of your decision making.

This pattern catalog tries to comprehend pattern layering as a universal and largely
pipeline independent approach. I have introduced an abstract, implementation indepen-
dent description model for pattern layering, the Material Layering Model which provides
the language necessary to do achieve the former goal.

This pattern catalog represents a first step towards simplifying the decision making
process of using and creating pattern layering systems and workflow. Future work should
focus on automating this decision making process further and transfer the technical
complexity from the artist to the software.

Appendix A

List of Design Patterns

DP 01: Pattern Layering p. 40
DP 02: Hybrid Pattern Layering p. 44
Alternatives

DP 03: Baked Texture Maps p. 47
DP 04: Different Materials p. 49

Shading Model
Shader Implementation

DP 05: Built-in Shader p. 53
DP 06: Custom Shader p. 55

Workflow
DP 07: Uber Shader p. 57
DP 08: Individual Shader p. 59
DP 09: Content Generated Shader p. 61

Layering Components
Material Container

Granularity
DP 10: Base Material p. 64
DP 11: Material Variation p. 65

Complexity
DP 12: Full Material p. 67
DP 13: Modulation Layer p. 68

Creation
DP 14: Input Based p. 70
DP 15: Semi Procedural p. 71

Masking Container
Creation

91

A. List of Design Patterns 92

DP 16: Texture Based p. 72
DP 17: Procedural p. 74

Blending Module
DP 18: Physical Material Blend p. 77
DP 19: Custom Material Blend p. 78

External Inputs
Parameters

DP 20: Textures p. 80
DP 21: Variables p. 81
DP 22: Scripted Parameters p. 82

Mesh Data
DP 23: UV Coordinates p. 83
DP 24: Vertex Color p. 85

Object Data
DP 25: Vectors p. 86

References

Literature

[1] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-time Rendering.
3rd ed. Boca Raton: CRC Press, 2008 (cit. on pp. 5, 6, 8).

[2] Christopher Alexander. A Pattern Language: Towns, Buildings, Construction.
New York: Oxford University Press, 1977 (cit. on pp. 36, 37).

[3] Christopher Alexander. The Timeless Way of Building. Vol. 1. New York: Oxford
University Press, 1979 (cit. on p. 36).

[4] Laurent Belcour. “Efficient Rendering of Layered Materials using an Atomic De-
composition with Statistical Operators”. In: ACM Transactions on Graphics.
Vol. 37. 4. ACM. May 2018, 73:1–73:15 (cit. on pp. 12, 16–18, 89).

[5] Brent Burley. “Physically-Based Shading at Disney”. In: Practical Physically
Based Shading in Film and Game Production (Los Angeles). Ed. by Stephen
McAuley, Stephen Hill, and Naty Hoffman. Vol. 2012. New York: ACM SIG-
GRAPH, 2012, pp. 1–7 (cit. on pp. 5, 26, 30).

[6] Christopher Dutton. “Correctly and accurately combining normal maps in 3D
engines”. The Computer Games Journal 2.1 (2013), pp. 41–54 (cit. on p. 26).

[7] Alejandro Conty Estevez and Christopher Kulla. “Production Friendly Microfacet
Sheen BRDF”. Technical Report: Sony Imageworks (2017). url: https://blog.self
shadow.com/publications/s2017-shading-course/imageworks/s2017_pbs_imagewor
ks_sheen.pdf (cit. on p. 16).

[8] Randima Fernando. GPU Gems: Programming Techniques, Tips and Tricks for
Real-Time Graphics. Boston: Addison-Wesley Professional, 2004 (cit. on p. 17).

[9] Eric Freeman et al. Head First Design Patterns: A Brain-Friendly Guide. Newton:
O’Reilly Media, Inc., 2004 (cit. on p. 36).

[10] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Boston: Addison-Wesley, 1994 (cit. on pp. 3, 36, 37).

[11] Jason Gregory. Game Engine Architecture. 2nd ed. Boca Raton: CRC Press, 2015
(cit. on pp. 1, 7).

[12] Wenzel Jakob. “layerlab: A computational toolbox for layered materials”. In: SIG-
GRAPH 2015 Courses. SIGGRAPH ’15. New York, NY, USA: ACM, 2015. url:
https://rgl.epfl.ch/publications/Jakob2015Layerlab (cit. on p. 16).

93

https://blog.selfshadow.com/publications/s2017-shading-course/imageworks/s2017_pbs_imageworks_sheen.pdf
https://blog.selfshadow.com/publications/s2017-shading-course/imageworks/s2017_pbs_imageworks_sheen.pdf
https://blog.selfshadow.com/publications/s2017-shading-course/imageworks/s2017_pbs_imageworks_sheen.pdf
https://rgl.epfl.ch/publications/Jakob2015Layerlab

References 94

[13] Wenzel Jakob et al. “A Comprehensive Framework for Rendering Layered Mate-
rials”. ACM Transactions on Graphics 33.4 (2014), 118:1–118:14 (cit. on p. 16).

[14] Jason Jerald. The VR Book. Human-Centered Design for Virtual Eeality. Willis-
ton: Morgan & Claypool, 2015 (cit. on p. 1).

[15] Brian Karis and Games, Epic. “Real Shading in Unreal Engine 4”. SIGGRAPH
Physically Based Shading in Theory and Practice course (July 2013), pp. 621–
635. url: https://blog.selfshadow.com/publications/s2013-shading-course/ (cit. on
pp. 26, 30, 31).

[16] Mike Kime. “Character Art Pipeline for Paragon” (Apr. 2017). url: https://repl
ay.unrealsummit.co.kr/data/summit2017/unrealsummit004.pdf (cit. on p. 74).

[17] David Neubelt, Matt Pettineo, and Ready At Dawn Studios. “Crafting a Next-
Gen Material Pipeline for The Order: 1886”. Physically Based Shading in Theory
and Practice (2013). url: https://blog.selfshadow.com/publications/s2013-shadin
g-course/rad/s2013_pbs_rad_slides.pdf (cit. on p. 1).

[18] Robert Nystrom. Game Programming Patterns. Genever Benning, 2014 (cit. on
p. 36).

[19] Colin Penty and Ian Wong. “Gears of War 4: Creating a Layered Material System
for 60fps”. In: ACM SIGGRAPH 2017 Talks. ACM, July 2017, pp. 1–2. url: h
ttps : //dl . acm.org /citation . cfm? id=3085026&dl=ACM&coll=DL (visited on
11/06/2018) (cit. on pp. 1, 20, 62, 89).

[20] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering.
From Theory to Implementation. 3rd ed. Burlington: Morgan Kaufmann, 2016
(cit. on pp. 4, 5, 7).

[21] Jenifer Tidwell. Designing Interfaces: Patterns for Effective Interaction Design.
2nd ed. Sebastopol: O’Reilly Media, Inc., 2010 (cit. on pp. 3, 36, 37).

[22] Andrea Weidlich and Alexander Wilkie. “Thinking in layers: modeling with layered
materials”. In: SIGGRAPH Asia 2011 Courses (Hong Kong). 20. ACM. New York,
2011. url: https://dl.acm.org/citation.cfm?id=2077450 (cit. on pp. 4, 14, 27).

[23] Tizian Zeltner and Wenzel Jakob. “The Layer Laboratory: A Calculus for Ad-
ditive and Subtractive Composition of Anisotropic Surface Reflectance”. ACM
Transactions on Graphics (TOG) 37.4 (2018), 74:1–74:14 (cit. on pp. 16, 89).

Audio-visual media

[24] Allegorithmic. Material Layering - UE4 shader. 2016. url: https://share.allegorit
hmic.com/libraries/2125 (visited on 11/14/2018) (cit. on p. 59).

[25] Amanda Bott et al. 4.19 Material Layers Preview. Youtube, Feb. 2018. url: htt
ps://www.youtube.com/watch?v=2dfkedfW1yI&t=1674s (visited on 03/26/2018)
(cit. on p. 32).

[26] Clinton Crumpler. Gears of War 4: DLC Content. https://www.artstation.com/a
rtwork/4dEOl. Sept. 2016 (cit. on pp. 63, 85).

https://blog.selfshadow.com/publications/s2013-shading-course/
https://replay.unrealsummit.co.kr/data/summit2017/unrealsummit004.pdf
https://replay.unrealsummit.co.kr/data/summit2017/unrealsummit004.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/rad/s2013_pbs_rad_slides.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/rad/s2013_pbs_rad_slides.pdf
https://dl.acm.org/citation.cfm?id=3085026&dl=ACM&coll=DL
https://dl.acm.org/citation.cfm?id=3085026&dl=ACM&coll=DL
https://dl.acm.org/citation.cfm?id=2077450
https://share.allegorithmic.com/libraries/2125
https://share.allegorithmic.com/libraries/2125
https://www.youtube.com/watch?v=2dfkedfW1yI&t=1674s
https://www.youtube.com/watch?v=2dfkedfW1yI&t=1674s
https://www.artstation.com/artwork/4dEOl
https://www.artstation.com/artwork/4dEOl

References 95

[27] Epic Games, Inc. Soul TechDemo. Youtube, Apr. 2014. url: https://www.youtub
e.com/watch?v=jzGRbGb-fog (visited on 10/10/2018) (cit. on p. 51).

[28] Epic Games, Inc. Soul: City. Jan. 2018. url: https://www.unrealengine.com/mar
ketplace/soul-city (visited on 11/14/2018) (cit. on p. 52).

[29] Jacek Maj. The Witcher 3 Architectural Material. 2016. url: https://www.artsta
tion.com/artwork/keXwn (visited on 06/07/2018) (cit. on p. 4).

[30] Harrison Moore. Paragon Character Texturing Pipeline. Epic Games, Inc., 2017.
url: https://www.youtube.com/watch?v=nVes6OUyzdw (cit. on pp. 1, 24).

[31] Jeremie Noguer. The Next Frontier of Texturing Workflows. Apr. 2016. url: ht
tps://www.allegorithmic.com/blog/next- frontier- texturing-workflows (visited on
06/08/2018) (cit. on p. 2).

[32] Andrew Price. The Next Leap: How A.I. will change the 3D industry. Blender
Conference. Oct. 2018. url: https://www.youtube.com/watch?v=FlgLxSLsYWQ
&t=1521s (cit. on p. 1).

[33] Jeff Wilson. Unreal Engine 4.19 Released! Mar. 14, 2018. url: https://www.un
realengine.com/en-US/blog/unreal-engine-4-19-released (visited on 10/28/2018)
(cit. on p. 63).

Software

[34] CD Project RED. The Witcher 3: Wild Hunt. Microsoft Windows PlayStation 4
Xbox One. 2015 (cit. on pp. 1, 3, 4, 56, 89).

[35] Veselin Efremov, Silvia Rasheva, and Torbjorn Laedre. Book of the Dead. https
://assetstore.unity.com/packages/essentials/tutorial-projects/book-of-the-dead-env
ironment-121175. Jan. 2018 (cit. on p. 89).

[36] Epic Games, Inc. Infinity Blade: Grass Lands. https://www.unrealengine.com/ma
rketplace/infinity-blade-plain-lands. Sept. 2015 (cit. on pp. 50, 89).

[37] Epic Games, Inc. Paragon. Microsoft Windows, PlayStation 4. 2016 (cit. on pp. 1,
28, 56, 89).

[38] Epic Games, Inc. Paragon: Agora and Monolith Environment. https://www.unr
ealengine.com/marketplace/paragon-agora-and-monolith-environment. Mar. 2018
(cit. on p. 89).

[39] Epic Games, Inc. Paragon: Crunch. https://www.unrealengine.com/marketplace/p
aragon-crunch. Mar. 2018 (cit. on pp. 44, 89).

[40] Epic Games, Inc. Soul: City. https://www.unrealengine.com/marketplace/soul-city
. Jan. 2018 (cit. on pp. 51–53, 89).

[41] Naughty Dog. Uncharted 4: A Thief’s End. [CD-ROM]. 2016 (cit. on pp. 1, 56).
[42] Patscheider, Matthias and Povolny, Samantha and Zankl, Bianca. Letzte Worte.

HTC Vive, Oculus Rift. 2019 (cit. on p. 5).
[43] Ready at Dawn and SCE Santa Monica Studio. The Order: 1886. PlayStation 4.

2016 (cit. on pp. 1, 56, 89).

https://www.youtube.com/watch?v=jzGRbGb-fog
https://www.youtube.com/watch?v=jzGRbGb-fog
https://www.unrealengine.com/marketplace/soul-city
https://www.unrealengine.com/marketplace/soul-city
https://www.artstation.com/artwork/keXwn
https://www.artstation.com/artwork/keXwn
https://www.youtube.com/watch?v=nVes6OUyzdw
https://www.allegorithmic.com/blog/next-frontier-texturing-workflows
https://www.allegorithmic.com/blog/next-frontier-texturing-workflows
https://www.youtube.com/watch?v=FlgLxSLsYWQ&t=1521s
https://www.youtube.com/watch?v=FlgLxSLsYWQ&t=1521s
https://www.unrealengine.com/en-US/blog/unreal-engine-4-19-released
https://www.unrealengine.com/en-US/blog/unreal-engine-4-19-released
https://assetstore.unity.com/packages/essentials/tutorial-projects/book-of-the-dead-environment-121175
https://assetstore.unity.com/packages/essentials/tutorial-projects/book-of-the-dead-environment-121175
https://assetstore.unity.com/packages/essentials/tutorial-projects/book-of-the-dead-environment-121175
https://www.unrealengine.com/marketplace/infinity-blade-plain-lands
https://www.unrealengine.com/marketplace/infinity-blade-plain-lands
https://www.unrealengine.com/marketplace/paragon-agora-and-monolith-environment
https://www.unrealengine.com/marketplace/paragon-agora-and-monolith-environment
https://www.unrealengine.com/marketplace/paragon-crunch
https://www.unrealengine.com/marketplace/paragon-crunch
https://www.unrealengine.com/marketplace/soul-city
https://www.unrealengine.com/marketplace/soul-city

References 96

[44] The Coalition. Gears of War 4. Microsoft Windows, Xbox One. 2016 (cit. on pp. 1,
56, 62, 89).

[45] Unity, Inc. Fontainebleau. Photogrammetry Demo Project. https://drive.google.c
om/file/d/1qwjyjlG1Ys8engyaPR_XCb3o7Pgz9t5K/view. 2018 (cit. on pp. 54, 55,
86, 89).

Online sources

[46] Allegorithmic. Substance Painter - Fire Hydrant. 2017. url: https://share.allegor
ithmic.com/libraries/2890 (visited on 11/19/2018) (cit. on pp. 10, 11).

[47] Blender Foundation. Principled BSDF. 2018. url: https://docs.blender .org/m
anual / en / dev / render / cycles / nodes / types / shaders / principled . html (visited on
05/12/2018) (cit. on p. 30).

[48] Jack Caron. Normal Map Blending in Unreal Engine 4. Nov. 2014. url: http
://www. jackcaron .com/techart/2014/11/14/ue4- normal - blending (visited on
11/15/2018) (cit. on p. 26).

[49] Tim Cooper. Introduction to Shader Graph: Build your shaders with a visual ed-
itor. Feb. 27, 2018. url: https://blogs.unity3d.com/2018/02/27/introduction- t
o-shader-graph-build-your-shaders-with-a-visual-editor/ (visited on 01/28/2018)
(cit. on p. 32).

[50] Epic Games, Inc. Asset vs. Instance. 2018. url: https://docs.unrealengine.com/e
n-us/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor/AssetVsInstance
(visited on 05/18/2018) (cit. on p. 85).

[51] Epic Games, Inc. Epic Games Demonstrates Real-Time Ray Tracing in Engine 4
with ILMxLAB and NVIDIA. Mar. 2018. url: https://www.unrealengine.com/en
-US/blog/epic-games-demonstrates-real-time-ray-tracing-in-unreal-engine-4-with-il
mxlab-and-nvidia?sessionInvalidated=true (visited on 05/10/2018) (cit. on p. 12).

[52] Epic Games, Inc. Layered Materials. 2015. url: https://docs.unrealengine.com/en
-us/Engine/Rendering/Materials/LayeredMaterials (visited on 03/10/2018) (cit. on
pp. 29, 32, 43, 51).

[53] Epic Games, Inc. Material Layers. 2018. url: https://docs.unrealengine.com/en
-US/Engine/Rendering/Materials/MaterialLayers (visited on 11/15/2018) (cit. on
pp. 33, 34).

[54] Epic Games, Inc. Physically Based Materials. 201. url: https://docs.unrealengine
.com/en-us/Engine/Rendering/Materials/PhysicallyBased (visited on 05/12/2018)
(cit. on p. 31).

[55] Epic Games, Inc. Shader Development. 2018. url: http : / / api . unrealengine . c
om / INT / Programming / Rendering / ShaderDevelopment / index . html (visited on
10/23/2018) (cit. on p. 31).

[56] Epic Games, Inc. Shaders and Materials. 2018. url: https://docs.unrealengine.c
om/en-US/Programming/Rendering/ShaderDevelopment (visited on 10/22/2018)
(cit. on p. 8).

https://drive.google.com/file/d/1qwjyjlG1Ys8engyaPR_XCb3o7Pgz9t5K/view
https://drive.google.com/file/d/1qwjyjlG1Ys8engyaPR_XCb3o7Pgz9t5K/view
https://share.allegorithmic.com/libraries/2890
https://share.allegorithmic.com/libraries/2890
https://docs.blender.org/manual/en/dev/render/cycles/nodes/types/shaders/principled.html
https://docs.blender.org/manual/en/dev/render/cycles/nodes/types/shaders/principled.html
http://www.jackcaron.com/techart/2014/11/14/ue4-normal-blending
http://www.jackcaron.com/techart/2014/11/14/ue4-normal-blending
https://blogs.unity3d.com/2018/02/27/introduction-to-shader-graph-build-your-shaders-with-a-visual-editor/
https://blogs.unity3d.com/2018/02/27/introduction-to-shader-graph-build-your-shaders-with-a-visual-editor/
https://docs.unrealengine.com/en-us/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor/AssetVsInstance
https://docs.unrealengine.com/en-us/Engine/UI/LevelEditor/Modes/MeshPaintMode/VertexColor/AssetVsInstance
https://www.unrealengine.com/en-US/blog/epic-games-demonstrates-real-time-ray-tracing-in-unreal-engine-4-with-ilmxlab-and-nvidia?sessionInvalidated=true
https://www.unrealengine.com/en-US/blog/epic-games-demonstrates-real-time-ray-tracing-in-unreal-engine-4-with-ilmxlab-and-nvidia?sessionInvalidated=true
https://www.unrealengine.com/en-US/blog/epic-games-demonstrates-real-time-ray-tracing-in-unreal-engine-4-with-ilmxlab-and-nvidia?sessionInvalidated=true
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/LayeredMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/MaterialLayers
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/MaterialLayers
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PhysicallyBased
https://docs.unrealengine.com/en-us/Engine/Rendering/Materials/PhysicallyBased
http://api.unrealengine.com/INT/Programming/Rendering/ShaderDevelopment/index.html
http://api.unrealengine.com/INT/Programming/Rendering/ShaderDevelopment/index.html
https://docs.unrealengine.com/en-US/Programming/Rendering/ShaderDevelopment
https://docs.unrealengine.com/en-US/Programming/Rendering/ShaderDevelopment

References 97

[57] Epic Games, Inc. Texture Support and Settings. 2018. url: https://docs.unrealen
gine.com/en-us/Engine/Content/Types/Textures/SupportAndSettings (visited on
11/10/2018) (cit. on p. 25).

[58] Sébastien Lachambre and Sébastien Legarde. Photogrammetry Workflow Layered
shader. 2017. url: https://unity3d.com/files/solutions/photogrammetry/Unity-Ph
otogrammetry-Workflow-Layered-Shader_v2.pdf (visited on 10/23/2018) (cit. on
pp. 45, 46, 53, 87).

[59] Sebastien Legarde. Photogrammetry in Unity: Making Real-World Objects into
Digital Assets. Mar. 2018. url: https ://blogs .unity3d .com/2018/03/12/phot
ogrammetry - in- unity - making- real - world- objects - into- digital - assets/ (visited on
11/14/2018) (cit. on p. 55).

[60] Wes McDermott. The PBR Guide by Allegorithmic - vol. 1. Apr. 2018. url: http
s://www.allegorithmic.com/pbr-guide (visited on 01/21/2018) (cit. on pp. 30, 31).

[61] Wes McDermott. The PBR Guide by Allegorithmic - vol. 2. Apr. 2018. url: http
s://www.allegorithmic.com/pbr-guide (visited on 01/21/2018) (cit. on p. 5).

[62] Oxford University Press. surface. 2018. url: https://en.oxforddictionaries.com/de
finition/surface (visited on 06/01/2018) (cit. on p. 6).

[63] Davide Pesare. MATERIAL LAYERING. 2017. url: https://dakrunch.blogspot.c
o.at/2017/10/material- layering.html (visited on 05/05/2018) (cit. on pp. 12–14,
18, 26, 34).

[64] Mike Seymour. Epic’s State of Unreal + Virtual Human: GDC Day 2: Part 1.
Mar. 2018. url: https://www.fxguide.com/featured/epics-state-of-unreal-virtual-h
uman-gdc-day-2-part-1/ (visited on 06/10/2018) (cit. on p. 16).

[65] Unity Technologies. Materials, Shaders and Textures. 2017. url: https://docs.un
ity3d.com/2018.1/Documentation/Manual/Shaders.html (visited on 03/10/2018)
(cit. on p. 8).

[66] Unity Technologies. Shading Language used in Unity. 2018. url: https://docs.u
nity3d.com/Manual/SL- ShadingLanguage.html (visited on 10/24/2018) (cit. on
p. 31).

[67] Wikipedia contributors. Bidirectional scattering distribution function. 2018. url:
https : / / en . wikipedia . org / wiki / Bidirectional _ scattering _ distribution _ function
(visited on 03/10/2018) (cit. on p. 12).

[68] Wikipedia contributors. Lookup table — Wikipedia, The Free Encyclopedia. 2018.
url: https://en.wikipedia.org/wiki/Lookup_table (visited on 11/04/2018) (cit. on
p. 9).

[69] Joe Wilson. Physically-Based Rendering, And You Can Too! 2015. url: https://w
ww.marmoset.co/posts/physically-based-rendering-and-you-can-too/ (visited on
03/04/2018) (cit. on pp. 6, 7).

https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures/SupportAndSettings
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures/SupportAndSettings
https://unity3d.com/files/solutions/photogrammetry/Unity-Photogrammetry-Workflow-Layered-Shader_v2.pdf
https://unity3d.com/files/solutions/photogrammetry/Unity-Photogrammetry-Workflow-Layered-Shader_v2.pdf
https://blogs.unity3d.com/2018/03/12/photogrammetry-in-unity-making-real-world-objects-into-digital-assets/
https://blogs.unity3d.com/2018/03/12/photogrammetry-in-unity-making-real-world-objects-into-digital-assets/
https://www.allegorithmic.com/pbr-guide
https://www.allegorithmic.com/pbr-guide
https://www.allegorithmic.com/pbr-guide
https://www.allegorithmic.com/pbr-guide
https://en.oxforddictionaries.com/definition/surface
https://en.oxforddictionaries.com/definition/surface
https://dakrunch.blogspot.co.at/2017/10/material-layering.html
https://dakrunch.blogspot.co.at/2017/10/material-layering.html
https://www.fxguide.com/featured/epics-state-of-unreal-virtual-human-gdc-day-2-part-1/
https://www.fxguide.com/featured/epics-state-of-unreal-virtual-human-gdc-day-2-part-1/
https://docs.unity3d.com/2018.1/Documentation/Manual/Shaders.html
https://docs.unity3d.com/2018.1/Documentation/Manual/Shaders.html
https://docs.unity3d.com/Manual/SL-ShadingLanguage.html
https://docs.unity3d.com/Manual/SL-ShadingLanguage.html
https://en.wikipedia.org/wiki/Bidirectional_scattering_distribution_function
https://en.wikipedia.org/wiki/Lookup_table
https://www.marmoset.co/posts/physically-based-rendering-and-you-can-too/
https://www.marmoset.co/posts/physically-based-rendering-and-you-can-too/

Check Final Print Size

— Check final print size! —

width = 100mm
height = 50mm

— Remove this page after printing! —

98

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Research Objective
	Structure of this Thesis

	Real-Time Rendering Definitions
	Surface and Surface Area
	Texture
	Material and Shading
	Summary

	Material Layering
	Definition
	Categorization
	Color Layering
	Pattern Layering
	BxDF Layering
	Illumination Lobe Based Layering

	Summary

	The Material Layering Model
	Inputs
	Parameters
	Scene Data
	Material Layer

	Material Container
	Masking Container
	Blending Module
	Blending Individual Parameters
	Blending Modes

	Summary

	Material Layering in Unreal and Unity
	UE4 A Shading System for Material Layering
	Material Layering Implementation
	Node Based Shader Graphs
	UE4 Material Layering V1
	UE4 Material Layering V2
	Pre-existing Layered Material Shaders

	Summary

	Design Patterns
	Design Patterns Structure
	Summary

	Design Patterns for Pattern Layering
	Pattern Layering
	DP 01: Pattern Layering
	DP 02: Hybrid Pattern Layering

	Alternatives
	DP 03: Baked Texture Maps
	DP 04: Different Materials

	Shading Model
	Shader Implementation
	DP 05: Built-in Shader
	DP 06: Custom Shader

	Workflow
	DP 07: Uber Shader
	DP 08: Individual Shader
	DP 09: Content Generated Shader

	Material Container
	Granularity
	DP 10: Base Material
	DP 11: Material Variation

	Complexity
	DP 12: Full Material
	DP 13: Modulation Layer

	Creation
	DP 14: Input Based
	DP 15: Semi Procedural

	Masking Container
	DP 16: Texture Based
	DP 17: Procedural

	Blending Module
	DP 18: Physical Material Blend
	DP 19: Custom Material Blend

	External Inputs
	Parameters
	DP 20: Textures
	DP 21: Variables
	DP 22: Scripted Parameters

	Mesh Data
	DP 23: UV Coordinates
	DP 24: Vertex Color

	Object Data
	DP 25: Vectors

	Summary

	Discussion
	Limitations
	Conclusion

	List of Design Patterns
	References
	Literature
	Audio-visual media
	Software
	Online sources

