
Gathering Contextual Information About
Users of Mobile Applications

Matej Rajtár

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Juni 2019

© Copyright 2019 Matej Rajtár

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, June 14, 2019

Matej Rajtár

iii

Acknowledgements

I would like to thank my supervisor, Prof. Dr. Michael Haller, whose guidance and
expert suggestions have been invaluable and made this work possible. I also wish
to extend my gratitude to the team at bluesource - mobile solutions, especially to
DI Karin Scheiblhofer for her great patience and insightful advice throughout all stages
of the work. In addition, I would like to express a special thanks to my family for their
constant help and support.

iv

Contents

Declaration iii

Acknowledgements iv

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and Contributions . 3
1.3 Challenges . 3
1.4 Outline . 4

2 Usability in Contexts 5
2.1 Comparative Definition . 5
2.2 Influences on Usability . 5
2.3 Supportive Usability Metrics . 7
2.4 Types of Context . 7

3 Related Work 9
3.1 Research Projects . 9

3.1.1 AUToMAte . 9
3.1.2 AWARE . 9
3.1.3 CenceMe . 10
3.1.4 CoConUT . 10
3.1.5 EgoSENSE . 10
3.1.6 Mobile Context Toolbox . 11
3.1.7 UEProject . 11
3.1.8 Where-How-What Am I Feeling (WHWAIF) 11

3.2 Commercial Tools . 12
3.2.1 Amplitude . 12
3.2.2 Appsee . 12
3.2.3 Apptimize . 12
3.2.4 Flurry Analytics . 13
3.2.5 Google Analytics . 13

v

Contents vi

3.2.6 Localytics . 13
3.3 Discussion and Comparison . 13

4 Implementation 15
4.1 Overview . 15
4.2 Technical Design . 17
4.3 Activity Detection . 18
4.4 Handedness Detection . 23
4.5 Environment Detection . 25

4.5.1 Indoor and Outdoor Conditions 25
4.5.2 Lighting Conditions . 29

4.6 Sound Detection . 29
4.7 Weather Detection . 31
4.8 Usability Metrics . 32
4.9 Data Export . 33
4.10 Information Management . 33
4.11 Demo Application Development . 35
4.12 Integration to the Application mobile-pocket 37
4.13 Testing . 39

5 Evaluation 44
5.1 User Study . 44
5.2 Data Analysis . 47
5.3 Reporting the Results . 50
5.4 Discussion and Summary . 51

6 Conclusion 52
6.1 Limitations . 53
6.2 Future Work . 54

A Algorithm Flow Charts 55

B CD-ROM Contents 60
B.1 Context Information Toolkit . 60
B.2 Demo Application . 60
B.3 Datasets . 60
B.4 Visualization . 61
B.5 Thesis . 61

References 62
Literature . 62
Online Sources . 69

Abstract

Research shows that distraction from sound, movements, mobility, lighting, and differ-
ent ways of interaction with devices in real-life conditions impact user’s performance
in terms of usability measures, such as error rate and delay. However, while in-vitro
usability evaluations do not provide authentic data about user’s context and often face
shortcomings of an unrealistic laboratory setting, in-situ field studies with actual users
can be challenging to budget or schedule and may lead to only limited results. Addi-
tionally, such analyses do not truly capture the dynamic character of constantly varying
environments and might mislead mobile application development. Therefore, the main
goal is to find a solution that can be used continuously after deployment, to gather data
for evaluation of the contextual parameters, and subsequently provide insights to mobile
application developers. The aim is to leverage algorithms from the field of ubiquitous
computing, in combination with smartphone sensors that are present on most devices,
in order to generate contextual datasets, helping developers to learn more about the
typical user’s setting, as well as the way of holding and interacting with the device. As
a result, mobile applications should be easier to learn, easier to use, and aesthetically
more pleasing, leading to their higher usability and acceptance. Based on latest work
in ubiquitous computing, algorithms from the following research domains were selected:
activity, handedness, indoor/outdoor condition, sound levels, weather detection.

vii

Kurzfassung

Die Forschung zeigt, dass Ablenkung durch Geräusche, Bewegungen, Mobilität, Be-
leuchtung und verschiedene Interaktionen mit Geräten unter realen Bedingungen die
Leistung des Benutzers im Bezug auf Usability-Aufzeichnungen wie Fehlerrate oder
Verzögerung beeinflusst. In-vitro-Usability-Versuche liefern keine authentischen Daten
zum Benutzerkontext und weisen häufig Mängel einer unrealistischen Laborumgebung
auf. In-situ-Feldstudien mit echten Benutzern sind jedoch schwierig zu finanzieren und
zu planen und liefern eventuell nur begrenzte Ergebnisse. Darüber hinaus erfassen solche
Analysen den dynamischen Charakter sich stetig ändernder Umgebungen nicht wirklich
und können die Entwicklung mobiler Anwendungen in die falsche Richtung lenken. Das
Haupziel besteht daher darin, eine Lösung zu finden, die nach der Veröffentlichung ver-
wendet werden kann, um Daten für die Auswertung von Kontextparametern zu sammeln
und anschließend Entwicklern mobiler Anwendungen einen Einblick in den Benutzerkon-
text zu gewähren. Ziel ist es, Algorithmen aus dem Bereich des Ubiquitären Computings
in Kombination mit Smartphonesensoren, die auf den meisten Geräten vorhanden sind,
zu nutzen, um kontextbezogene Datensätze zu generieren und Entwicklern dabei zu hel-
fen, mehr über die typischen Benutzerumgebungen und die Art des Haltens und der
Interaktion mit dem Gerät herauszufinden. Infolgedessen sollten mobile Anwendungen
leichter zu erlernen, einfacher zu verwenden und ästhetisch ansprechender sein, was
zu einer höheren Benutzerfreundlichkeit und Akzeptanz führt. Basierend auf aktuellen
Arbeiten im Bereich Ubiquitäres Computing wurden Algorithmen aus dem folgenden
Forschungsbereichen ausgewählt: Aktivität, Händigkeit, Innen- und Außenbedingungen,
Schallpegel, Wettererkennung.

viii

Chapter 1

Introduction

1.1 Motivation
Since the beginning of the era of computers they have been used in diverse environments
for different tasks. However, it has not been until the paradigm of mobile computing that
one device would be constantly changing the context of use. With the mobile platform
currently reported to account for approximately a half of the global market share, based
on the internet traffic [85], the effect of context on device usage appears to be a more
prominent interface usability factor than ever before. As the research on this topic shows
that typical usability measures such as error rate and delay are strongly influenced by
context in real-life conditions [24, 33, 50], Tsiaousis et al. explain that it is the both
task and distractions concurrently demanding the limited user resources, which may
diminish user performance and thus usability [70]. For instance, according to the study
by Lin et al. [39], when on the move, visual resources are split between interacting with
the mobile devices and maintaining awareness of the surrounding environment. Besides
that, the user interaction with mobile devices can be also negatively affected by a vast
number of other contextual factors [59], generally coined by Sears et al. as situational
impairments [66]. Usage situations vary, and so the general mobile applications ought
to be designed with their use in various circumstances in mind [25]. Also the ISO
organization describes the usability as the extend to which a product can be used with
effectiveness (number/percentage of completed tasks within allotted time, number of
errors), efficiency (time to complete a task) and satisfaction (subjective user attitude)
in a specified context of use [27]. But despite of the fact that the analysis of usability has
become a standard part of mobile development, the situational impairments are often
misleadingly not taken into consideration during UX evaluations. While user studies
in a laboratory (in-vitro) face shortcomings of an unrealistic setting by definition, field
(in-situ) studies are challenging to budget and schedule, complicate data collection, and
reduce experimental control [50].

The evolution of smartphones has seen a significant increase in the amount of em-
bedded sensors, as can be observed from the clear upwards trend in Figure 1.1. Current
mobile devices typically offer a wide range of built-in detection components, utilized al-
ready numerous times in the past in order to create novel and useful mobile applications
[36]. Mainstream smartphones are commonly equipped with a majority of the following:

1

1. Introduction 2

Galaxy S S2 S3 S4 S5 S6 S7 S8 S9+ S10+

0

2

4

6

8

10

12

14

16

18

20

3G 3GS 4 4S 5 5S 6 6S 7+ 8+ X

B
u
il
t
-i

n
 s

e
n
s
o
r
s

Samsung Galaxy S-series Apple iPhone

Figure 1.1: Number of sensors in smartphones in selected flagship smartphone models
produced by Samsung and Apple, ordered by release date (2009-2019).

accelerometer, gyroscope, microphone, image sensor, GPS, light sensor, magnetometer,
temperature, proximity, and pressure sensors. These can be very effective tools to under-
stand one’s context [25], which can in turn help developers to make mobile applications
easier to learn and easier to use. This is important because given the limited space on
the saturated consumer market, usability can be even considered as one of the most
important attributes that determine the success of a mobile application [43].

Although context abstraction from raw sensor data has been subject to research in
the field of ubiquitous computing for many years, the main purpose typically concerned
health monitoring [31], alternative input development [21, 41], or performance improve-
ments [11, 19] and ignored the advantages in the field of UX design. One solution to
the problem with context not taken into the account could be therefore to gather data
for evaluation also from real users in post-release phases, and using the aforementioned
wide variety of sensors included in current mobile devices to detect context. The ulti-
mate aim is then to combine the data of traditional usability evaluation techniques and
the data generated by sensing, to be able to improve results of the both supervised and
unsupervised usability evaluations. Similarly, as in the related research by Thurnher
et al. [69], who used a few external sensors attached to an early smartphone device in
order to measure context, it is argued that context information measured by modern
smartphones’ internal sensors adds value to usability evaluations, as it provides many
additional facts to explain the behavioral data. The novelty of the resulting project code
implementation lies thus not on its detection abilities individually, but instead on their
collective use to abstract situational context.

1. Introduction 3

1.2 Goals and Contributions
This section specifies the set goals in the order as they were accomplished.

Firstly, to talk about context and be able to cherry-pick detection algorithms from
the current state-of-art ubiquitous computing field, the initial goal inherently had to
be the identification of context types. Moreover, due to the fact that various authors
approach already the mere context definition differently and produce separate classifi-
cations, the integral part of this process was also further literature review to compose
a comparative definition.

Secondly, the research fields that abstract meaning from sensor data, such as ubiq-
uitous computing, usually offer multiple algorithms with miscellaneous resulting success
rates and computational requirements. Because of the limitations that stem from mobile
computing, the goal was to find such solutions that prioritize efficiency over the highest
possible accuracy, and that for every selected kind of context.

Thirdly, as the scientific papers on the topics were mainly published without provided
testable software implementations of the discussed algorithms and often even excluding
the pseudo-code (or in case of machine learning the trained models), the goal was a
re-implementation of the described formulas into a reusable Java library for Android,
called Context Information Toolkit (CIT). One of the requirements was that apart from
the algorithms it would also contain export of the sensed data into a CSV file format
for later analysis.

The implementation process was further followed by the empirical part of the re-
search and involved two phases: the pilot testing and the user study. In the first phase,
a preliminary usability test of a sample application was conducted, so to test the func-
tionality of the created library, as well as to describe key usability issues of the app
for later reference. Afterwards, the experiment involved two small-sample groups both
performing the same task under different conditions. The aim was to showcase results
possible to achieve with the library and gather the evaluation data.

Lastly, with the objective to present the generated data spreadsheets in a visual form,
the D3 JavaScript library was used to develop an interactive exploratory visualization.

1.3 Challenges
A major challenge was to recognize the context parameters, which are not only confirmed
by substantial and relevant research to have an influence on user’s behaviour, but at
the same time such that can be detected by embedded smartphone sensors and are
meaningful in terms of studying usability. For example, while social contexts, e.g. nearby
people are known to considerably influence the user’s behavior, this detection is hardly
feasible in terms of privacy once used in production of mainstream applications. On the
other hand, inferring temporal context does not pose a threat to privacy, but in most
cases neither straightforwardly influences human performance.

Another challenge was to correctly understand and transform into code the refer-
enced works on ubiquitous computing. It had happened multiple times throughout the
project that the explanations contained in the sources were too scarce to advance with
the re-implementation, or the resulting code did not show to be nearly as accurate as
declared, and thus had to be later replaced with another approach.

1. Introduction 4

Challenging was also the development of an easy-to-read visualization consisting of
high-dimensional time-stamped data, as only its joined implication describes the overall
context. In addition, another requirement was to display at the same time the user-
flow through the test scenario, hence it was also necessary to cope with the screen-size
limitations.

1.4 Outline
This chapter briefly introduces the theoretical background, motivation, challenges and
goals of this thesis. Chapter 2 explains the main terms used throughout the text, states
the research problem and summarizes different types of context. The related research
projects and commercial products, as well as their comparison to this work is contained
in Chapter 3. In Chapter 4 the developed concept is presented in detail and further shows
the ways of its implementation into other projects. Chapter 5 describes the two sepa-
rately performed evaluations and reports all the discovered results. Finally, Chapter 6
explains the limitations of the presented system, proposes future work and concludes
the thesis.

Chapter 2

Usability in Contexts

This chapter defines the fundamental terminology, gives an overview of how other rele-
vant research refers to user’s context, and identifies its types across classifications.

2.1 Comparative Definition
The topic with only three words, ‘context of use’ implies different things to different re-
searchers. While the term is often simply abbreviated to ‘context’, the ISO organization
offers the following definition [27]:

. . . users, tasks, equipment (hardware, software, and materials), and
the physical and social environments in which a product is used.

As a systematic approach Jumisko-Pyykkö and Vainio [29] distinguish nearly the
identical categories but in addition mention the temporal and information aspect, as
well as the properties of mobile context (level of magnitude, dynamism, pattern, and
typical combinations). Väätäjä [72] specified numerous subcategories of each of these
components and eventually characterized the context of use in mobile work. This helps
to better understand the core principles behind the term, while still focusing on its
concrete implications. Using their design sketch, Savio and Braiterman [61] place the
information context into the category of existing user’s goals and further outline the
aspect of internet and cellular connection’s speed, reliability, and cost. Other, less spe-
cific definitions include: any information that may influence the user [32] or characterize
their situation [2, 69], a set of interaction-influencing conditions or user states [8], visual,
auditory, and social cues under a form of distractions [71], and the circumstances under
which the activity takes place [57].

2.2 Influences on Usability
The influence of context on user’s performance has been established by research already
numerous times, but each scientific study naturally focuses just on a subset of context
types. Tsiaousis et al. [70] observed effectiveness and efficiency in using a mobile website
to be influenced by sound semantics, level of light, and motion of nearby objects. Hum-
mel et al. [23] measured decreased performance of users in terms of higher error rates

5

2. Usability in Contexts 6

and delays once exposed to similar environmental changes, but also additionally tested
for temperature and humidity fluctuations with inconclusive results. Larsen et al. [36]
did conclude that the contextual information offers valuable insights with implications
in mobile UX, while investigating the behavior in regards to the proximity to other
users (social aspect) and location. The results of Barnard et al. [8] indicated that the
contextual changes in motion and lighting had a strong impact on behavior and per-
formance, measured in task completion times, and error rates. Lettner and Holzmann
[37] found that the context-awareness on mobile phones is an important aspect, which
should be taken into account, when evaluating usability. Bevan et al. [10] pointed out
that any context may influence or even change the usability of a product, mostly if these
conditions were not considered during the product design and evaluation. Kaasinen [30]
claims that device’s mobility itself introduces a great variability to the context of use,
which might even change during a session.

Other studies verified the difference between testing in the actual content-rich envi-
ronments versus in idealized laboratory conditions. In their research, Pedell et al. [52]
argue that context of use has to be accounted for in the evaluations, as the mobile use
involves much more than the interaction of a user with a device. They discovered that
the metadata sensed in realistic conditions provide a deeper understanding of usability
issues and help to detect problems that did not even appear during test in a laboratory.
The need for realistic user studies is further directly supported by Brewster [13], who
noted that a realistic environment can change the interaction, which must be consid-
ered when designing and testing mobile devices. Furthermore, Hertzum [22] shows that
conducting unsupervised field studies is cheap and does not require much preparation.

The limitation of a study that omits distractions arises mainly from the negative
effect of distractions on performance and information processing [6]. Attention span
and short-term memory (working memory) are constrained by cognitive load [5], which
refers to the total amount of mental activity imposed on working memory at an instance
in time [49]. An example of this can be the work of Coursaris et al. [16], who proved
that distractions had a significant negative impact on the efficiency and effectiveness of
mobile device use.

Since all of the context types may have an impact on the final UX of mobile systems,
this information should be attractive to app creators, in order to improve the usability
on mobile devices. What is more, the definition of context-aware computing says that
it is the ability of a mobile user’s applications to discover and also react to changes
in the environment they are situated in [63]. Therefore, all of the identified contexts
should be thought of also in a broader spectrum than just usability evaluation, for
example additionally offering developers the advantage of triggering a relevant change
in the interface. Finally, the collected contextual data can enable stakeholders to learn
more about the users together with finding out more about the quality of the interface.
Based on the previously stated state-of-art research on the topic, the following research
questions have been formulated:

1) Which ubiquitous computing methods can identify contextual states of a smart-
phone user that are helpful at uncovering potential usability issues?

2) Is there a correlation between user-error rate and time-on-task in relation to the
distraction of a user, detected by measured contextual parameters?

2. Usability in Contexts 7

2.3 Supportive Usability Metrics
To make use of the measured contextual data and put it into perspective of simple
interactions, it is essential to simultaneously record or log the happening interaction.
But seeing the whole chronological (ideally in average correct) user path through the
task scenario might not be enough. To discover problems with an interface it is important
to identify the incorrect patterns known as cognitive friction. Table 2.1 offers an insight
into those, seen in the data recorded during this project, including suggested solutions.

This friction occurs once a user is confronted with an interface or affordance that
seems to be intuitive but delivers unexpected results, which will in turn cause frustration
and impair the user experience [82]. These issues appear in session data generally as ran-
dom actions coming from the user. Lettner et al. [38] claim that these dynamic metrics
can identify unused components, misleading localization, and navigation glitches.

Friction pattern – user’s actions Possible solution
Visits and immediately leaves a screen due to
a navigational error.

Improve navigation and the app structure,
icons or their labeling.

Performs a gesture with no assigned action. Assign a suitable action to the gesture.
Misses UI-Element they intended to touch. Increase the element’s touch area.
Repeatedly touches UI-element despite of no
assigned functionality.

Assign a suitable functionality or correct
the provided affordances.

Switches back and forth between two views
multiple times.

Try to place all the needed information on
one screen or allow for scrolling.

Touches a UI-element accidentally. Increase the spacing between elements.
Long inactivity between actions. Decrease the interface’s complexity.

Table 2.1: Friction patterns observed during the empirical parts of the project.

2.4 Types of Context
As the Table 2.2 presents, during this project overall seven different types of context have
been identified that have, in stronger or weaker ways, an impact on the final usability in
mobile computing. In total, these types consist of 31 components, which group related
concepts together for easier comprehension. There is undoubtedly an overlap between
some of the categories, such as people surrounding the user (bystanders), who could
be apart from social aspect further considered also as an influence from the physical
surroundings. However, in these edge cases the ultimate classification was made based on
the strongest distraction impact. For instance, person standing by a user causes larger
cognitive dissonance when engaging in a conversation with this user, rather than merely
as a physical object in the environment. Furthermore, the column ‘Example’ aims to
provide a non-exhaustive list of properties, to which the respective components can
equal. The last column ‘Detection from’ shows literature review results and contains
some potential ways of detecting specific contextual data describing the situation, in
that the interaction takes place. In case of the physical type, these context assumptions
are detectable exclusively via device sensors, which is the main interest of this thesis.

2. Usability in Contexts 8

Type Component Example Detection from
User Identity Status, job, personality, age Registration

Goal Entertainment, communication, work User flow
Attention Continuous, partial, full, intermittent Delay
Motivation Intrinsic (curiosity), extrinsic (re-

ward)
Result

Skills Technology experience, multi-tasking Questionnaire
Task Complexity Number of steps, decision difficulty (App-dependent)

Regularity Daily, yearly, during other activity Usage history
Interdependence Conditioned by registering first (App-dependent)
Urgency Security-code valid for 2 minutes (App-dependent)

Technical Hardware Device model recency, camera quality,
display resolution, available resources,
current battery level

System API

Software OS, familiarity, capabilities System API
Connection Speed, reliability, cell, internet System API
Carrier Pricing model, services System API

Physical Activity Sitting, standing, walking, running,
driving, eating, shopping

Accelerometer,
gyroscope, GPS

Movements Raising hand, standing up, walking
stairs, jumping

Accelerometer,
gyroscope

Mobility Traveling by vehicle, plane, skate-
board

Accelerometer,
gyroscope, GPS

Grip Holding/interacting hand, fingers Touchscreen
Lighting Direct sun, shadow, night, artificial Luminosity sen.
Environment Indoor, outdoor, spaciousness Magnetometer,

Cell sig., GPS,
Luminosity

Location Spatial, geographical GPS
Sound Ambient noise, music, talking Microphone
Artefacts Physical objects, such as laptop Camera
Proximity To artefacts, other people, charger Proximity sen.
Encumbrance Carrying a bag, backpack, artefact Accelerometer
Weather Temperature, humidity, wind speed,

pressure, raining, snowing
Thermometer,
GPS, Barometer

Social Other users Online, in virtual environments (App-dependent)
Bystanders Strangers, researchers during a test Bluetooth, Wifi
Culture Language, religion, law, etiquette Location

Temporal Duration length of interaction, activity, delay Logging
Time currently available, of a day, of a year System API

Information Knowledge user name, password, search query Input form

Table 2.2: Summary of all types of context of use discovered during the project, partially
based on the works of Jumisko-Pyykkö and Vainio [29] and Väätäjä [72].

Chapter 3

Related Work

This chapter examines the related work in commercial and research domain. The soft-
ware tools and frameworks were scrutinized in regards to the methods, which they use
for collecting data that support investigating usability. Whereas some research projects
do this by determining innovative contexts, the commercial tools tend to target the
analysis and visualization of more traditional user statistics, such as conversion rates,
A/B testing, and in-app behaviour.

3.1 Research Projects

3.1.1 AUToMAte

AUToMAte1 (automated usability testing of mobile applications) is a logging toolkit for
keeping track of context information and mobile device usage on Android devices [86].
It can gather the data without having access to any application’s source code with the
help of accessibility service on OS-level. The built-in contextual capabilities contain:
tracking of light conditions surrounding the device via luminosity sensor, monitoring
the device’s battery status, and logging basic device information including the current
screen rotation. However, the framework is published open-source and developed to be
extendable, thus any additional feature can be added easily. In comparison to this work,
it cannot be used as a code library for an existing application and neither work without
permissions, which were originally intended only for the services directly benefiting
user’s with disabilities.

3.1.2 AWARE

Aware2 is an open platform, developed by Ferreira et al. [18] for context measuring,
inference, logging and sharing. As a feature-rich Android application, it enables an easy
conduct of context-aware user studies. The collected data is stored locally in a database
in case of local user studies and can be uploaded to a remote server for large-scale
research. Optional plugins can be installed, making Aware extendable even by a user.

1http://mint-hagenberg.github.io/automate-documentation/
2http://www.awareframework.com

9

http://mint-hagenberg.github.io/automate-documentation/
http://www.awareframework.com

3. Related Work 10

Unfortunately, most of them are in the current state outdated and not working on the
recent Android versions until further update. From the contextual perspective, it claims
to offer plugin modules for measuring ambient noise levels, detect weather conditions
based on location data and recognize mode of transportation from Google Location
API3. In contrast to the proposed CIT, this framework cannot be implemented into
other apps to record user interactions, such as the order of opened screens and performed
gestures. At the present time it neither supports computing interior/exterior condition,
activity without location information, and handedness.

3.1.3 CenceMe

CenceMe4 middleware, engineered by Miluzzo et al. [45], senses physical and social
context and shares this information through network applications. Activity, mobility,
indoor/outdoor, and conversation classifiers work together to detect high-level contexts.
Its focus is partially on identifying user habits, such as gym and shop visits. These are
subsequently kept as historical data for evaluation of life patterns. Another aim is to
provide more texture to interpersonal communication by informing the nearby network
users about self-presence. The data are captured locally and the recognition takes place
either directly on the device or on remote back-end servers. The resulting estimated
context is meant to be posted for friends on social media, hence is not used for usability
evaluation.

3.1.4 CoConUT

CoConUT5 [65] is an Android application for collecting frequency of interactions, as
well as the mobile context during usability studies using sensor data. It tries to measure
components from multiple context types, in order to abstract a more complex mean-
ing. Regarding physical context it focuses on movement from GPS location, brightness
detection with a luminosity sensor, and noise levels with the device’s microphone. Tem-
poral context is identified by time-stamps and social context by the number of nearby
devices communicating via bluetooth connection. Since this framework aims to be used
during experiments with present researchers, technical and task contexts are left to be
recorded manually. Moreover, compared to the presented library, CoConUT is a stan-
dalone solution and cannot be used as a module for another application.

3.1.5 EgoSENSE
Framework developed by Milic and Stojanovic [44] is a context-aware service able to
collect data from both built-in sensors (location, temperature, accelerometer), as well as
external sensors (pulse, blood pressure). Selected events are presented as a notification
and sent to the remote server for further processing. Instead of usability, EgoSENSE is
particularly relevant for health care applications, as actions are designed to be dealt with
in a safe and reliable way, simultaneously informing the user and other parties about a

3https://developers.google.com/maps/documentation/directions/intro
4http://cenceme.org/
5https://play.google.com/store/apps/details?id=at.ac.univie.cosy.coconut

https://developers.google.com/maps/documentation/directions/intro
http://cenceme.org/
https://play.google.com/store/apps/details?id=at.ac.univie.cosy.coconut

3. Related Work 11

potential alarming situation related to the user’s health condition. The framework can
be also used for non-invasive monitoring of everyday patient’s life, offering doctors a
more accurate and honest lifestyle overview.

3.1.6 Mobile Context Toolbox
The MCT [35], similarly as other works, derives higher-level user context from mul-
tiple sensors that provide low-level information. In order to observe users, while they
are using mobile devices and applications in a real-world setting, it uses accelerome-
ter, bluetooth, GPS, Wi-Fi and GSM technology. The sensor readings were compared
to the ground truth, labelled single time manually by a user. This approach enabled
the researchers to identify concrete locations, such as home or work and activity, eg.
having dinner or working. The authors consider the main potential of the toolbox in
self-management, health monitoring, and providing the collected information to other
installed applications. The toolbox was created for Symbian OS, hence for older devices
without a touchscreen, which is the biggest difference from this work.

3.1.7 UEProject
Contextual data collection framework by Kronbauer et al. [33] used accelerometer for
detection of horizontal and vertical position, GPS for location, luminosity sensor to
capture the environment’s lighting, and microphone in order to find out the noise levels.
Besides that, they also utilized the Experience Sampling Method (ESM), based on the
collection of users’ feelings through questions. The assessment of the combined data
enabled the researchers to phrase more specific assumptions about the behaviour of the
test users. This work, published in 2012, is regarding the primary intention possibly
one of the most similar projects to the proposed library. However, the key difference
is the level of context abstraction from the sensor data that each of the solutions aims
for. While UEProject only logs the sensor outputs, our work uses intelligent ubiquitous
algorithms to analyze and process the data further, assuming more complex contextual
scenarios.

3.1.8 Where-How-What Am I Feeling (WHWAIF)
The work by Filho et al. [17] presents a toolkit for automatic unsupervised app evalu-
ation. Apart from other functionality it also detects relevant user context information,
such as moving/stationary status, location, weather conditions and data connection
availability. Additionally, it also uses a camera sensor to infer facial expressions and
abstract adverse and positive emotional events. This toolkit differs from the work de-
scribed in this thesis mainly in the types of context it infers and in the complexity of
the registered usability metrics. Whereas the Where-How-What Am I Feeling logs only
tap interaction for simplicity, our aim is to capture all types of interactions, as well as
time-on-task and time-on-screen.

3. Related Work 12

3.2 Commercial Tools
There are numerous products on the market for mobile application analytics, although,
these frameworks serve mainly as marketing tools. They focus either on user statistics,
such as user growth, demographics, and behavioral analytics or commercial metrics, e.g.
in-app purchases, conversion funnels, and engagement. Some offer displaying a combi-
nation of various data and might contain additional features, including crash statistics,
traffic attribution, and sending push notifications. Several of these solutions aim to also
automate usability tests, but typically ignore emotional feedback and user context.

3.2.1 Amplitude

Amplitude6 is a product analytics for both web and mobile applications. The offered
analysis of user behavior allows product owners to predict and visualize new user re-
tention and engagement, and further breakdown the user base on smaller groups, based
on actions taken. The clustered user profiles can be then provided with personalized
customer experience, to optimize conversion rates and increase profits. Despite of pro-
viding not only statistical views, but also detailed interactions of every single user, the
generated data do not contain contextual information.

3.2.2 Appsee

Appsee7 is a real-time mobile app analytics that features user interaction recordings
presented as video, aggregated touch heatmaps to provide visual data on how users
interact with different parts of an app UI, as well as conversion funnels, action cohorts,
and retention analytics. All these are meant to provide in-depth view on a mobile app
user behavior. The authors promise the developers and marketers to get fundamentally
different and personalized insights, since they have the opportunity to actually observe
the user’s actions remotely. However, this analysis is not supported by any contextual
data.

3.2.3 Apptimize

Apptimize8 is a mobile A/B testing and release management toolkit that allows the
developers to try multiple versions of a mobile app, without the need to release all its
versions to production. By comparing the conversion rates and other user statistics,
the superior version can be later pushed to the whole user base. Similarly to other
commercial frameworks, neither the analysis from Apptimize is placed in context, in
which the users interact with different app versions.

6http://www.amplitude.com/
7http://www.appsee.com/
8http://www.apptimize.com/

http://www.amplitude.com/
http://www.appsee.com/
http://www.apptimize.com/

3. Related Work 13

3.2.4 Flurry Analytics

One of the aims of Flurry9 is to offer information about audience perception and detect
the app’s user base. It delivers usage statistics, for example new users per week or
average daily users. Besides the collection of demographic information, i.e. age or gender,
the framework also tracks custom events to analyze user interaction behavior. These
events can be triggered by any user action inside an app, but have to be implemented
programmatically. An additional possibility is to track app crashes and identify the
underlying issues to find the cause. Flurry Analytics is a powerful tool for improving
user experience of mobile apps but it does not provide any way to collect contextual
data.

3.2.5 Google Analytics

The analytical platform from Google10 for both mobile and desktop advertisers, pub-
lishers and mobile app developers provides a tight integration with other products, such
as AdWords, AdSense, Google Display Network and others. The list of features includes
data collecting across websites, apps and internet-connected (IoT) devices, data access
via mobile app, configurable APIs, email notifications, multiple levels of user access
controls, and more. The platform contains a so called Google Context API, offering the
developers seven context signals that are not primarily intended for improving applica-
tion usability, but rather for context-aware app’s, which may react to context changes.
The signals include time, location, places (place type such as restaurant, based on lo-
cation), beacons (nearby bluetooth and wifi devices), headphones (connection state),
activity (low-power sensors), and weather (based on current time and location).

3.2.6 Localytics

Localytics11 primarily focuses on measuring key metrics, such as new users, OS being
used, drop off rates, geographic breakdown and collecting other similar datasets, used in
mobile app marketing for increasing the engagement with a company. This solution offers
targeting various marketing campaigns on different subgroups of recognized customer
profiles. The ultimate intention is hence to help reaching a desired ROI by adequate
market segmentation, rather than improving usability of mobile interfaces.

3.3 Discussion and Comparison

From the analysis of existing solutions (summarized in Table 3.1) there appears to be
a market gap. In contrast to the available research work, the commercial platforms do
not offer measuring of user context. The current state-of-art algorithms provided by
ubiquitous computing research can help better explain the reasons behind a specific
user behavior and yet they are not included in the solutions on the market. In terms
of context measuring, the analytical software from Google appears to be the the most

9http://www.flurry.com
10http://www.google.com/intl/de/analytics/
11http://www.localytics.com/

http://www.flurry.com
http://www.google.com/intl/de/analytics/
http://www.localytics.com/

3. Related Work 14

Implementable
as a module

Context
measuring

Interaction
measuring

Focus on
usability Domain

AUToMAte research
AWARE research
Amplitude commercial
Appsee commercial
Apptimize commercial
CenceMe research
CoConUT research
EgoSENSE research
Flurry commercial
Google Analytics commercial
Localytics commercial
MCT research
UEProject research
WHWAIF research
CIT (this work) research

Table 3.1: Comparison of selected tools for mobile application analysis. The first column
‘Implementable as a module’ describes the property if a project can be used as a library,
when developing a new standalone application. The property in column ‘Interaction mea-
suring’ expresses if the project contains features for registering and logging user’s actions,
such as tapping on buttons, switching apps, and others. = yes, = partially, = no

advanced from the offered services, but it currently lacks more advanced usage of the
low-power sensors and measurements of usability.

On the other hand, while research until now presented apps for collecting usability
metrics and contextual data of surroundings, these have to be installed in addition to the
monitored app, in case the developer decides to collect context. The Context Information
Toolkit provided in this thesis is a library, which enables an easy implementation into
an existing application that is then ready to measure context right after installation.
The scientific projects with the most similar aims are either outdated or do not compute
higher-level contexts presented in this work, such as activity, interior/exterior condition,
and handedness.

Chapter 4

Implementation

This chapter first introduces the proposed solution consisting of five different types of
context detection algorithms. The technical design, as well as the main ideas behind
algorithms are presented. Then, the usability metrics module and data exporting is
briefly explained. Later, the chapter describes notable parts of the concept implementa-
tion and its integration into a demo application. Finally, the testing procedure is shown,
involving a commercial app mobile-pocket.

4.1 Overview
A team of developers is working on an Android app that provides healthy cooking
recipes. During market and user research they collected and included lots of features for
the initial release, such as categorical searching or video instructions. To be successful
on the market, they strive for good usability and previously conducted a user study
that helped to shape the product. With the arrival to the Android application distri-
bution service Play Store1, they decided to implement an analytical framework, such
as Amplitude (described in Section 3.2.1) with its behavioral platform, to help them
understand their user base and target the marketing campaigns effectively. They now
see the user flows, sessions, and usage of different features, but get inconsistent results.
A part of their users seems to a have hard time navigating the interface, performing
more repetitive actions, unresponsive gestures, and other input issues, in spite of that
none of their test users showed such behavior. What their data do not show is that
there are perhaps two user groups, which differ in their typical context. The satisfied
user group might interact with the application mainly while cooking at home, with the
device placed horizontally on the kitchen desk. The other group, unable to see and tap
the too small navigational elements, may use the app in a shop or on their way there,
looking for the ingredients to buy in hurry, distracted by the surrounding circumstances.

In such cases as in this considered example scenario, the developers have multiple
options that will provide them with the needed information. Since the root of the issue
is variability in the user group, it is possible to conduct field or diary studies and user
interviews. However, the cheapest and the most permanent solution, considering also
dynamic user habits, would be seeing the contextual data among the other analytics

1https://play.google.com/store/apps

15

https://play.google.com/store/apps

4. Implementation 16

in an overview. More specifically, knowing the user’s mobility state, sound levels, and
environment type, in addition to other metrics used in the described scenario, would
enable the application developers distinguish the user groups and adapt app design.

Inspired by the existing use cases and lack of solutions (compared in Section 3.3), the
following describes Context Information Toolkit (CIT)2, a reusable context detection
framework in form of an Android library, consisting of a variety of algorithms from
ubiquitous computing. The context abstraction over raw data supports evaluation of
user behavior, namely by providing an estimate of disturbance levels. Furthermore, the
resulting code is supplementing interaction analytics with data describing the situation
that can help to identify friction in regards to usability issues in an interface. As Barnard
et al. [8] mention, context is a multifaceted construct by nature, and thus it cannot
be defined by specific components independently, but must be considered as a whole.
Therefore, the proposed concept strives to provide the developers with as variate context
insights from device sensors as possible.

All of the context types shown in the Table 2.2 can be possibly detected by an
intelligent algorithm. However, it is the category of physical context that is the most
suitable for detection by smartphone sensors. These calculations influence the battery
life differently, vary in terms of detection accuracy and in the affected levels of user’s
privacy. On these three properties were based also the main criteria when choosing from
the range of available algorithms (ordered by priority):

1. The lowest attainable demands on computing power, subsequently the battery.
2. The highest achievable accuracy in an average session.
3. The lowest possible intrusion into the user’s privacy.
The first requirement is crucial, since combined context detectors might rapidly in-

crease app’s computational requirements. This puts machine learning approaches into
disadvantage due to their typical high battery consumption [26, 55], mostly during fea-
ture calculation [67]. Performing constant statistical analysis on real-time sensor data
is computationally intensive and offloading the calculations to the cloud compromises
user’s privacy [78]. As a result, the methods depicted in this thesis avoid using machine
learning, even though these approaches were also surveyed and are mentioned in the re-
spective sections. The second requirement was evaluated by the detection success rates
claimed in the source research, although the high accuracy was verified by observation
during the development and pilot usability study. The third requirement was judged
based on the permissions that Android considers as dangerous3. Nevertheless, this cri-
teria had the lowest priority, since the level of intrusion into user’s privacy strongly
depends on the concrete mobile application, attitude of the developers, and usage situa-
tion. One of the CIT’s use cases is to be employed during unsupervised usability studies,
when the custom app version can be distributed among only a sample of acquainted
test users. Thus, it is meaningful for the library to also contain algorithms that require
access to sensors, which would not be potentially used with the whole user base, such as
location and microphone. What is more, if the nature of the app requires permissions
considered as dangerous anyways (for the purposes of other features included in the
app), the access to this data can be reused by CIT, in order to improve the usability.

2The word ‘cit’ means ‘a feeling’ in Slovak language.
3https://developer.android.com/guide/topics/permissions/overview#permission-groups

https://developer.android.com/guide/topics/permissions/overview#permission-groups

4. Implementation 17

As a compromise of the stated requirements, the produced code consists of the fol-
lowing five physical context detection components, profiting from available sensor data.
The sensing of the current user’s activity, in terms of its classification among multiple
different states, which is based on the feedback provided from built-in accelerometer
and gyroscope (Section 4.3). The detection of the hand used to interact with the device,
taking an advantage of the performed scroll gestures on the touchscreen (Section 4.4).
The calculation of whether the device is located in interior or exterior, combining mag-
netometer, cellular network, and luminosity sensor (Section 4.5). The noise detection
measuring noise levels in decibel units utilizing microphone (Section 4.6) and weather
detection assuming the temperature, humidity, and other conditions from location and
time (Section 4.7). This unique combination of contextual factors provides versatile data
to a wide spectrum of application developers and is further supported by a sixth com-
ponent, offering to log user’s actions (Section 4.8) for identification of friction patterns.

Consequently, as a first step, the envisioned workflow involves the developer imple-
menting CIT into their Android application. It is to be decided, if the new app version
will measure the context in a supervised or unsupervised usability evaluation, hence if
it will store the log files locally or should upload them to a remote server, respectively.
Once the data are collected, they can be visualized using the provided tool and inspected
for the correlation of usability measures (such as user-error rate, time-on-task, or fric-
tion patterns) with the determined contextual information. Following the evaluation,
UX teams may be able to answer questions including:

• How many users of the app are accomplishing a specific task when walking?
• What number of users performs unresponsive gestures when in noisy environment?
• What is the proportion of users that open the left menu drawer with left hand?
• What percentage of users interacts with the application outside when a strong

light shining on the screen is detected, or when it is cold and raining?
• Many users are tapping on the white space and make navigational errors, but

this behaviour was not observed in previous in-vitro usability studies. Are they
possibly distracted by context? Does increasing the text size help reducing errors?

4.2 Technical Design
The structure of CIT as visualized in Figure 4.1 describes all existing classes. In the left-
most branch of Events, the low-level helper classes are defined. The main detection logic
is located in the components named ‘managers’, as inspired by AUToMAte framework
[86]. Each manager is extended by a corresponding TransmissionEvent class that serves
as a shell for measured data, before passed to FileExportManager to be logged in
CSV files. The data are apart from being logged also locally-broadcasted back to the
application for processing. This twofold informing about the data enables the main app
to directly react on the detected context, if necessary. The main class AwareManager
instantiates all the other manager classes, deals with registering the sensor listeners and
also receives the touchscreen events for re-routing them to the HandManager. Moreover,
at the end of the life-cycle it takes care of cleaning up the registered listeners and
shutting down the continuous data export to CSV files. The code is easily extendable
by adding further managers and registering them in the main class. The library requires

4. Implementation 18

Figure 4.1: Context Information Toolkit composition, including in total 22 Java classes
divided into eight separate parts. The arrows do not express dependencies, rather the
hierarchical folder structure.

at minimum the Android smartphones with API 19 (4.4 KitKat) and later, which at
the time of writing represents approximately 95.3% of all Android devices.4

The whole implementation requires only instantiating the main class AwareManager
and starting the automatic process of recording contextual data. One single exception
is the additional UsabilityMetricsManager class, which assumes a deeper connection
with the parent application, if measuring also the supportive usability metrics (as further
elaborated in Section 4.8).

4.3 Activity Detection

Coursaris et al. [16] found that among others, motion distractions have a significant
negative impact on the perceived efficiency and effectiveness of mobile device use. For
instance, walking has been found to have adverse effects on mobile interaction in com-
pleting typing and target acquisition tasks [20, 46] and cause deterioration in text legibil-
ity [60], cognitive performance, and reading comprehension [8]. The study by Ljungberg
et al. [40] adds that mostly in combination with other visual or auditory distractions,
walking will impact user’s performance in a negative way.

Hence, it would be of considerable interest to mind the user activity when exploring
measured usability data. Specifically, the following four elementary states (Figure 4.2)
and the transitions between them were identified as the most common and relevant,
regarding to everyday interaction with smartphones:

4https://developer.android.com/about/versions/android-4.4.html

https://developer.android.com/about/versions/android-4.4.html

4. Implementation 19

Figure 4.2: Identified activity states. From left to right: smartphone placed on a table
during the interaction, smartphone held in hand during standing, walking, and running.

• Stationary state, when the device is statically placed on a relatively flat surface
during interaction.

• Still states, such as sitting and standing, when the user is holding the device in
hand but is not additionally moving.

• Walking, in various paces but excluding stairs or steep surfaces.
• Running, as an extreme case that might be possibly interesting to the developers

of sport applications.
Logging these states can serve as support during a field study, registering the data

automatically instead of the researchers. More importantly, when used continuously
after deployment, the data might provide insights, such as that a user made more errors
and/or took longer to accomplish a task, which was related to their mobility state.

Activity recognition became a popular problem to be solved with machine learning.
For example, Cakmakci and Laerhoven [73] leveraged an external accelerometer and
Kwapisz et al. [34] embedded accelerometer sensor to detect various user motions, such
as walking or climbing stairs. Lu et al. [42] used accelerometers to create a machine
learning model able to distinguish between walking, race walking, and running condi-
tion. Filios et al. [19] additionally considered the states of sitting and lying. Reddy et
al. [56] combined the motion detection with GPS receiver to reach an accuracy of 90%
and higher, when deciding between stationary, walking, running, biking, or motorized
transport states. Other researchers analyzed the data from different sensor combinations
[67], device placements [15], and classifiers [76] to evaluate the impact on device’s bat-
tery and detection accuracy. Moreover, Nikolic and Bierlaire [51] reviewed more then a
dozen of transportation mode detection approaches, based on statistical tools or pattern
recognition classification models. These works can have a good application in medicine,
when monitoring the patients health, similarly as proposed by Ryder et al. [58]. How-
ever, for the purpose of usability studies, recognizing many various types of activities
with a high precision is not a must, what is more, to protect user’s privacy it might
not even be desirable. Due to the use on mobile devices, more importance should be
probably given to low battery consumption, so simpler algorithms that are using fast
decision trees are more suitable for the needs of this thesis.

4. Implementation 20

Using such approach, Schmidt et al. [64] tried to identify, in addition to user move-
ment, whether a device is held in the hand, is on a table, or is in a suitcase. They
employed basic signal processing, such as average (mean), standard deviation, quartile
distance, base frequency, and first derivative to build a simple decision tree, based on
thresholding. A similar but more robust approach can be seen in the work of Moreno
et al. [47], who proposed an unsupervised decision tree based classification method to
detect the user’s postural actions. In their work, they claim to identify user states, such
as sitting, standing, walking, and running by analyzing the data from a smartphone
accelerometer sensor. This was also the method initially tried for this project. Their
detection procedure starts by retrieving the three-axial acceleration data per a chosen
sampling rate into a sliding window with an overlap of 50%. Afterwards, the current
time frame of the sliding window is compared with the previous one, on values calculated
from each of these time frames. These values, eventually resulting in a decision between
states, are gained by multiple subsequent mathematical operations, such as normal-
ization, cross-correlating the different accelerometer axes, Euclidean distance analysis,
range search, integration, derivation, and mean absolute deviation (MAD). The authors
claim that this signal processing is sufficient to differentiate between the individual
states with an above 90% overall accuracy. However, apart from the mentioned mathe-
matical foundation, they do not provide an application, code, and neither pseudo-code,
which would be helpful to verify this claim. Despite of the efforts to re-implement this
method and reproduce their experiment, in which one of the early smartphone models
was used, the method did not show an accuracy better than 50%, when distinguishing
between the calm states (sitting, standing) and active states (walking, running). This
might have been caused by using a different device and other experimental conditions
than those used in the original work, or by an incorrect code implementation. Never-
theless, it was necessary to replace the detection algorithm, in order to obtain a higher
accuracy.

A subcategory of activity recognition are step detection algorithms. The step detec-
tion can serve as a hint, when to transition into a state of walking or running, thus can
also be partially used to perform activity recognition. Kang et al. [31] used a phone’s
gyroscopic sensor to detect walking motion and count steps. Brajdic and Harle [12] eval-
uated common accelerometer-based walk detection and step counting algorithms and
discovered that the best performing ones were calculating standard deviation and signal
energy, despite of that none of the tested algorithms was reliable in all situations. This
work implements one of such solutions that is based on signal energy, a Privacy Friendly
Pedometer App [87] developed open-source by Karlsruhe Institute of Technology. The
algorithmic logic, depicted in Algorithm 4.1 (for a simplified diagram see Figure A.1 in
Appendix A), lies in computing the total acceleration value, in every given moment de-
fined by the sensor’s sampling rate. At first, this value is checked for its sign (direction
on axis) to determine, whether it is the same as the previous value’s sign, otherwise
it represents a peak (change of direction). Later, it is tested for significance against a
threshold value and for similarity in signal energy to the time of the previous valid step.
Lastly, the step’s frequency is investigated, as in the context of other identified steps it
should not be unrealistically fast and neither slow, and at the same time it should be
regular over time. In this way, the detected step event functions as a trigger, suggesting
that the user’s state transitioned into walking or running.

4. Implementation 21

Algorithm 4.1: Step detection algorithm, invoked by an update from the accelerometer
sensor. The result is given in the current number of identified steps.

1: procedure StepDetection()
2: 𝑠𝑖𝑔𝑛, 𝑎𝑐𝑐, 𝑡𝑖𝑚𝑒𝑝𝑟𝑒𝑣, 𝑣𝑎𝑙𝑖𝑑_𝑠𝑡𝑒𝑝𝑠← 0.0
3: 𝑠𝑖𝑔𝑛𝑎𝑙_𝑒𝑛𝑒𝑟𝑔𝑦_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑← 0.65
4: 𝑠𝑖𝑔𝑛𝑝𝑟𝑒𝑣 ← 1.0
5: 𝑎𝑐𝑐𝑝𝑟𝑒𝑣 ← 𝑎𝑐𝑐
6: 𝑎𝑐𝑐𝑥, 𝑎𝑐𝑐𝑦, 𝑎𝑐𝑐𝑧 ← get current acceleration per axis
7: 𝑎𝑐𝑐← 𝑎𝑐𝑐𝑥 + 𝑎𝑐𝑐𝑦 + 𝑎𝑐𝑐𝑧

8: 𝑠𝑖𝑔𝑛← signum(acc)
9: if 𝑠𝑖𝑔𝑛 ̸= 𝑠𝑖𝑔𝑛𝑝𝑟𝑒𝑣 then ◁ if equal, not a peak, keep waiting

10: if 𝑎𝑐𝑐 > 𝑠𝑖𝑔𝑛𝑎𝑙_𝑒𝑛𝑒𝑟𝑔𝑦_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then ◁ if smaller, not significant
11: 𝑎𝑐𝑐Δ ← |𝑎𝑐𝑐𝑝𝑟𝑒𝑣 − 𝑎𝑐𝑐|
12: if 𝑎𝑐𝑐𝑝𝑟𝑒𝑣 · 0.8 < 𝑎𝑐𝑐 < 𝑎𝑐𝑐𝑝𝑟𝑒𝑣 · 1.2 then ◁ 80% and 120%
13: 𝑡𝑖𝑚𝑒← get current time
14: if 𝑡𝑖𝑚𝑒𝑝𝑟𝑒𝑣 > 0 then
15: 𝑡𝑖𝑚𝑒Δ ← get current time− 𝑡𝑖𝑚𝑒𝑝𝑟𝑒𝑣 ◁ time between steps
16: if 500ms < 𝑡𝑖𝑚𝑒Δ < 3000ms then
17: if 𝑡𝑖𝑚𝑒Δ ±20% to previous 𝑡𝑖𝑚𝑒Δ’s then
18: if 𝑎𝑐𝑐Δ ±20% to previous 𝑎𝑐𝑐Δ’s then
19: 𝑣𝑎𝑙𝑖𝑑_𝑠𝑡𝑒𝑝𝑠← 𝑣𝑎𝑙𝑖𝑑_𝑠𝑡𝑒𝑝𝑠 + 1 ◁ increase step count
20: add 𝑡𝑖𝑚𝑒Δ and 𝑎𝑐𝑐Δ to data structure for comparison
21: end if
22: end if
23: end if
24: 𝑣𝑎𝑙𝑖𝑑_𝑠𝑡𝑒𝑝𝑠← 0
25: end if
26: 𝑠𝑖𝑔𝑛𝑝𝑟𝑒𝑣 ← 𝑠𝑖𝑔𝑛
27: 𝑡𝑖𝑚𝑒𝑝𝑟𝑒𝑣 ← 𝑡𝑖𝑚𝑒
28: 𝑎𝑐𝑐𝑝𝑟𝑒𝑣 ← acc
29: end if
30: end if
31: end if
32: end procedure

The complete activity detection in Algorithm 4.2 (for a simplified diagram see Fig-
ure A.2 in Appendix A) is then initiated with every update of accelerometer data from
device’s sensor in ActivityManager component. To decide between walking and run-
ning, a threshold of average acceleration magnitude is applied. The average value is
first computed from the current sliding window per each of the three accelerometer
axes. Then, the magnitude is calculated from those three resulting values by consid-
ering them as vector coordinates. The combination of registered steps with slow to
medium acceleration magnitude implies the walking state and fast movements with
steps mean the running state. In addition, to prevent frequent changes between walking
and running, when the acceleration is similar to the threshold, the dynamic adjustment

4. Implementation 22

Algorithm 4.2: Activity detection algorithm, invoked by an update from the ac-
celerometer sensor. The result is one of the activity states.

1: procedure ActivityDetection()
2: 𝑠𝑖𝑧𝑒← 50
3: 𝑠𝑙𝑖𝑑𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤 ← [] ◁ instantiate data structure
4: 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦, 𝑓𝑙𝑎𝑡, 𝑠𝑡𝑖𝑙𝑙, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0.4, 0.3, 1.35, 7.5 ◁ decision thresholds
5: 𝑎𝑐𝑐𝑥, 𝑎𝑐𝑐𝑦, 𝑎𝑐𝑐𝑧 ← get current acceleration per axis
6: if 𝑠𝑙𝑖𝑑𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤.𝑠𝑖𝑧𝑒 =< 𝑠𝑖𝑧𝑒 then
7: 𝑠𝑙𝑖𝑑𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤 add [𝑎𝑐𝑐𝑥, 𝑎𝑐𝑐𝑦, 𝑎𝑐𝑐𝑧]
8: if 𝑠𝑙𝑖𝑑𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤.𝑠𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒 then
9: for 𝑖← 1 to 𝑠𝑙𝑖𝑑𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤.𝑠𝑖𝑧𝑒 do

10: 𝑠𝑢𝑚← 𝑠𝑢𝑚 + |𝑠𝑙𝑖𝑑𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤[𝑖]| ◁ per axis
11: end for
12: end if
13: else
14: 𝑠𝑢𝑚← 𝑠𝑢𝑚− |𝑠𝑙𝑖𝑑𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤[0]| ◁ per axis
15: remove 𝑠𝑙𝑖𝑑𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤[0] ◁ per axis
16: 𝑠𝑙𝑖𝑑𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤 add [𝑎𝑐𝑐𝑥, 𝑎𝑐𝑐𝑦, 𝑎𝑐𝑐𝑧]
17: 𝑠𝑢𝑚← 𝑠𝑢𝑚 + |𝑠𝑙𝑖𝑑𝑖𝑛𝑔_𝑤𝑖𝑛𝑑𝑜𝑤[𝑠𝑖𝑧𝑒− 1]| ◁ per axis
18: 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒← Sqrt[(𝑠𝑢𝑚𝑥/size)2 + (𝑠𝑢𝑚𝑦/size)2 + (𝑠𝑢𝑚𝑧/size)2]
19: if 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 < 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 then
20: 𝑔𝑦𝑟𝑜𝑥, 𝑔𝑦𝑟𝑜𝑦 ← get current gyroscope data per axis
21: if 𝑔𝑥 < 𝑓𝑙𝑎𝑡 and 𝑔𝑦 < 𝑓𝑙𝑎𝑡 and for at least one second then
22: send_intent(stationary) ◁ report the information
23: end if
24: else if 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 < 𝑠𝑡𝑖𝑙𝑙 then
25: send_intent(still) ◁ report the information
26: else if steps detected then
27: if 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 < 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 then
28: send_intent(walking) ◁ report the information
29: 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 ← 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 + 1 ◁ increase walking threshold
30: else
31: send_intent(running) ◁ report the information
32: 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 ← 𝑤𝑎𝑙𝑘𝑖𝑛𝑔 - 1 ◁ decrease walking threshold
33: end if
34: end if
35: end if
36: end procedure

is applied. That means the threshold value is decreased after reaching the running state,
and conversely increased with the walking state.

The identification of calmer situations is simpler. Gyroscope sensor is used to mon-
itor current tilt on the two axes, which are parallel to the device’s display. If the device
is in a roughly horizontal orientation with the screen facing up, and simultaneously
the current acceleration magnitude is approximately zero (within a sensor measurement

4. Implementation 23

error), this is recognized, after a short delay, as a stationary state. The delay is imple-
mented as a prevention against a rapid switching of the states, in cases the device is not
placed on an entirely solid surface, or when a user slightly moves the device during touch-
screen interaction. The still state is then chosen as no steps are detected and neither the
acceleration values are close to zero. Because the transition to each of the states is con-
ditioned by one or several fulfilled premises, the latest state is assumed until replaced by
the next one. Once a state is determined, this is sent as a ActivityTransmissionEvent
to FileExportManager and exported to CSV file. Furthermore, the state is also locally
broadcasted to the parent app. Both of these are additionally supplemented with raw
aggregated linear acceleration data for more insight, when viewing the activity data.

4.4 Handedness Detection
The size of contemporary smartphones makes them not well suitable for single handed
usage. What is more, interface designers are often forced to place navigational elements
to corners of the screen because of the visual design guidelines. Unfortunately, this in
turn restricts the number of grips and gestures one can perform using single hand; to
reach objects on the far side of the screen, one has to resort to using both hands. For
instance, Wobbrock et al. [75] argue that the user’s hand posture, while manipulating
a mobile device, is a significant contextual factor affecting usability. To make usability
research more aware of the interaction with the device, it might employ grip and hand-
edness detection. When used with real application users, these algorithms might inform
design teams, about better placement of screen elements and avoid the need for some
A/B tests. During usability testing in a laboratory is generally all interaction recorded
on camera, but handedness and grip detection might be still of help in field studies, en-
abling unobtrusive interaction monitoring and precise logging with time-stamps. Besides
that, in terms of context-aware applications that are adjusting to the usage situation,
apps may provide slightly different interface layouts dependent on the current grip.

Taylor and Bove [68] implemented Graspables, which used capacitive touch sensors
to differentiate between numerous grips. Despite of a high detection accuracy, their sys-
tem embodied a physical set of sensors attached to various objects and devices, which
would not be feasible for a use outside of supervised testing conditions. Goel et al. lever-
aged built-in accelerometer, gyroscope, and touchscreen to propose GripSense, a system
able to detect the user’s interacting hand. Their approach used machine learning and
in a controlled study they were able to achieve over 80% accuracy. Similarly, Löchte-
feld et al. trained a model that is able to correctly distinguish one- and two-handed
usage as well as left- and right hand during unlocking process, in over 98% of cases.
However, Nelavelli et al. [48] show that a comparable task can be accomplished also
without knowing any a priori information and statistical models. Instead of approach-
ing the problem as a machine learning classification task, they use geometric curves
during swipe events for hand identification. They claim correct results for 99.53% of
their data, collected from swipes done by fingers on both-hands. Since the device is
already collecting touchpoints, no additional battery consumption from sensors takes
place, and thus this solution is superior to the other works based on machine learning.
Additionally, the algorithm works within linear time complexity and so is well suitable
for the implementation in this project. As an adaptation, the detection in this work

4. Implementation 24

Algorithm 4.3: Handedness detection algorithm, invoked on screen touch and in case
of a relevant swipe event and results in a binary decision meaning left or right hand.

1: procedure HandednessDetection()
2: 𝑒← get touchscreen event
3: 𝑑← 60 ◁ minimal relevant swipe distance in pixels
4: switch 𝑒 do
5: case 𝑎𝑐𝑡𝑖𝑜𝑛_𝑑𝑜𝑤𝑛 ◁ finger touches the screen for the first time
6: 𝑝𝑜𝑖𝑛𝑡𝑠← initialize empty array
7: case 𝑎𝑐𝑡𝑖𝑜𝑛_𝑚𝑜𝑣𝑒 ◁ finger moves across the screen
8: 𝑝𝑜𝑖𝑛𝑡𝑠← append touchpoint from e
9: case 𝑎𝑐𝑡𝑖𝑜𝑛_𝑢𝑝 ◁ finger stops touching the screen

10: 𝑛← points.length ◁ point count
11: if 𝑛 > 2 then ◁ disregard taps
12: if 𝑝𝑜𝑖𝑛𝑡𝑠[0]− 𝑝𝑜𝑖𝑛𝑡𝑠[𝑛] > d then ◁ disregard too short swipes
13: 𝑐← quadratic_regression(𝑝𝑜𝑖𝑛𝑡𝑠) ◁ curve’s third coefficient
14: if 𝑐 < 0 then
15: send_intent(Left hand) ◁ report the information
16: else
17: send_intent(Right hand) ◁ report the information
18: end if
19: end if
20: end if
21: end procedure

receives the touchpoints already transformed according to the device’s orientation in
the hands of a user. That enables independence from the way the device is rotated and
recognizes the interacting hand in portrait, as well as horizontal display mode.

The determination process exploiting touchscreen swipe events is based on multiple
concepts, and therefore a number of steps needs to be performed, as seen in Algo-
rithm 4.3 (for a simplified diagram refer to Figure A.3 in Appendix A). First of all, the
swipe gesture itself needs to be identified and saved as a series of touchpoints. This can
be easily done by extending existing Android gesture class GestureDetectorCompat5.
In order to prevent false results, it is appropriate to continue with the detection process
further, only if the swipe event consists of more than a certain number of touchpoints
or covers longer distance than a threshold. Secondly, the gathered points have to be
described by a characteristic polynomial function. To do this, it is possible to employ
the curve fitting method called polynomial regression. Specifically, implementation of
this method using the Least Squares algorithm is recommended for its low complexity.
The basic idea of the least squares is to minimize the sum of the squares, defined as the
square distance between a data point and the sought line.

When this has been done, the resulting curve already provides the information about
handedness as follows. Due to the typical swipe shape, it can be assumed that the curve
will certainly be parabolic, hence described by a standard equation. The coefficient

5https://developer.android.com/reference/android/support/v4/view/GestureDetectorCompat

https://developer.android.com/reference/android/support/v4/view/GestureDetectorCompat

4. Implementation 25

(a) (b)

Figure 4.3: Performing swipe gesture with the right index finger (a) and the left thumb (b).

of the leading term (the term with the highest degree) in this equation can be either
positive or negative, thus distinguishing between the two states. Finally, by comparing
the orientation of the curve to the natural way of holding the phone, a conclusion can
be made regarding the hand which is used to hold the smartphone.

This approach works due to the anatomy of a human hand, more specifically because
of the way human fingers bend in its metacarpophalangeal joints6 (see Figure 4.3).
However, the method is limited to vertical scrolling. Once a user performs a swipe that
is rotated to their orientation by more than 45° and so is identified by the application
as a horizontal swipe (for example to open a side menu drawer), the detection can be no
more considered truly valid. This limitation was empirically observed and arises from
the fact that once a user performs a horizontal swipe, the imaginary arc drawn by a
finger can randomly differ in the direction of its bend.

4.5 Environment Detection

4.5.1 Indoor and Outdoor Conditions
Environment type might influence user experience from multiple standpoints. The dif-
ference in lighting between indoor (Figure 4.4 (a)) and outdoor (Figure 4.4 (b)) places
has an impact on readability of the fonts on displays. This directly affects the decision
about font size used in an application, depending on a typical or major conditions in
user’s setting during interactions. Other example can be unavailable cell signal in (usu-
ally underground) indoor locations, such as metro or tunnels, or unavailable wireless
internet connection in case of remote outdoor locations, which limits the smartphone’s

6Joints situated between the bones in the hand at the palm with rounded ends, and the first finger
bones shaped as caves.

4. Implementation 26

(a) (b)

Figure 4.4: Indoor (a) and outdoor (b) environment.

capabilities. UX design teams that understand the average surroundings of their target
group can make more informed conclusions, and therefore increase usability. Bisio et al.
[11] exploited ultrasounds to detect indoor/outdoor condition, which despite of its high
accuracy does not fit the purpose of this work due to its obtrusiveness. A more realistic
approach appears to be using magnetometer, as well as cell signal and luminosity sensor
[53, 74], in some cases supplemented also by other sensors such as Wi-Fi and GPS [3, 4,
54]. Naturally, this detection might be the most useful when used to gather data from
continuous production, as during the supervised user studies this condition is clear.

Anagnostopoulos et al. [4] created an application for easy collection and tagging of
environmental sensor data, later used for training of a statistical model. Having access
to information from user’s activity, pressure, lighting, accelerometer, magnetometer,
and number of surrounding WiFi points, they were able to achieve almost 93% accu-
racy in distinguishing between the places the device was exposed to during the data
collection. However, their model is stateful, meaning it is not able to adapt to unseen
patterns, which makes it unsuitable for a use in unsupervised conditions and in this
project. Ali et al. [3] proposed SenseIO framework that differentiates more complex
environments, including rural and urban areas and underground locations. Similarly,
Wang et al. [74] identify open outdoor, semi-outdoor, light indoor, and deep indoor con-
ditions and Radu et al. [54] categorize campus area, city center, and residential (indoor)
area. Although the methods in these works are an improvement to the first mentioned,
since they are stateless and work in unfamiliar circumstances, they also entirely rely
on previously collected datasets and subsequent computationally-intensive fine-grained
pattern recognition. In comparison, Zhou et al. [53] demonstrate with IODetector that
in order to determine a basic indoor/outdoor condition with a sufficient accuracy, no
pre-collected data is necessary and it can be performed using fast decision trees and
probabilistic weighting. Due to this, it is the most suitable algorithm for the implemen-
tation in this project. Their technique involves intelligently aggregating the light-weight
sub-detectors, i.e. light sensor, cellular module, and magnetism sensor. If the device
is inside pocket or bags, the light detector cannot provide accurate detection results,

4. Implementation 27

but in this project’s case that is not a limitation, as the data is always measured only
during the interaction with a turned-on display. The authors claim a consistent above
88% detection precision, which should be satisfactory for discovering the average user
conditions during app usage.

The approach requires computing of certain data in advance of the detection for
correct calculations. The first are approximate sunrise and sunset times at the user’s
location, to be aware of when to use and when to exclude the impact of the light sensor
on the final decision. During the dark hours the algorithm then uses the probabilistic
weighting narrowed to only cell signal and magnetism. These times and resulting day-
light duration can be precisely deducted after knowing the user’s location. But since
for this rough estimate merely knowing the region or country of the user might suffice,
other possibilities than directly requesting location permission also exist. One option
might be to utilize Android Locale7 for gathering the set user’s country and/or timezone
as general location. Another option would be to fall back to the last known location in
case the application does have location access but the GPS is currently not running.
As the latitude and longitude gained in this way and resulting sunrise and sunset times
might not be very accurate, a joined approach with a time offset compensation for this
inaccuracy should provide a rough estimate. Once the location is obtained, this work im-
plements the calculation of the sunset and sunrise times, with the help of the algorithmic
logic provided by the Twilight Service in Android [83]. The second needed information
is related to the magnetic sensor. In order to precisely account for the changes in a
magnetic field surrounding the device, the mean value of the magnetic field’s strength
at the users location should be retrieved from a database. For simplicity, the described
model uses the mean value of the magnetic field at the magnetic equator on the Earth’s
surface, which is a constant [79].

Once the the required values are known, the Algorithm 4.4 (for a simplified diagram
see Figure A.4 in Appendix A) starts every time one of the sensors provides an update.
Then, the values are processed using a simple infinite impulse response low-pass filter
[80], which helps to smooth out extremes from the raw data. Each of the three inputs
is further converted to the binary probability based on the thresholds as in the original
work and they are eventually aggregated.

• The luminosity in the exterior is brighter than common artificial lighting in the
interior, even in cloudy or rainy conditions. The more extreme bright or extreme
dark the measurement is, the more it is to set to influence the final decision.

• The cellular signal inside of buildings is typically weaker than outside, due to the
walls and other parts of the construction blocking the radio waves. Analogically to
the previous example, the closer the strength of the current signal is to a possible
minimum or maximum, the bigger is its impact.

• Magnetic field shows a high variance across places near and inside buildings, be-
cause of the disturbance from steel structures and electric appliances. On the
contrary, it is rather stable in the open space where the only fluctuations are
caused by the Earth’s magnetic field. Therefore, in this case the probabilities are
calculated from the signal’s variability over time, rather then direct values. Highly
volatile or completely stable magnetic field influences the result the most.

7https://developer.android.com/reference/java/util/Locale

https://developer.android.com/reference/java/util/Locale

4. Implementation 28

Algorithm 4.4: Environment detection algorithm, invoked every time one of the rele-
vant sensors provides an update and results in a binary decision meaning either inside
or outside condition.

1: procedure EnvironmentDetection()
2: 𝛼← 0.5 ◁ smoothing factor of the exponential average
3: 𝑙, 𝑐, 𝑚, 𝑚Δ← 0.0
4: 𝑚𝑎𝑔 ← 31.2 ◁ mean value of magnetic field on the Earth’s surface
5: 𝑛𝑜𝑤 ← get current time
6: 𝑡𝑙, 𝑡𝑐, 𝑡𝑚 ← 2500, 50, 20 ◁ decision values (thresholds)
7: 𝑝← 0.5
8: if daytime(now) then
9: 𝑙𝑝𝑟𝑒𝑣 ← l

10: 𝑙← get current light level
11: 𝑙← 𝛼 · 𝑙𝑝𝑟𝑒𝑣 + (1.0− 𝛼) · 𝑙
12: if l < 𝑡𝑙 then 𝑝← 𝑝 + 1
13: else 𝑝← 𝑝− 1
14: end if
15: end if
16: 𝑐𝑝𝑟𝑒𝑣 ← c
17: 𝑐← get current cell signal strength
18: 𝑐← 𝛼 · 𝑐𝑝𝑟𝑒𝑣 + (1.0− 𝛼) · 𝑐
19: if c < 𝑡𝑐 then 𝑝← 𝑝 + 1
20: else 𝑝← 𝑝− 1
21: end if
22: 𝑚𝑝𝑟𝑒𝑣 ← m
23: 𝑚← get current total magnetic field ◁ sum of the mag. fields on each axis
24: 𝑚← 𝛼 ·𝑚𝑝𝑟𝑒𝑣 + (1.0− 𝛼) ·𝑚
25: 𝑚Δ𝑝𝑟𝑒𝑣 ← mΔ ◁ magnetic field variability
26: 𝑚Δ← 𝛼 ·𝑚𝑝𝑟𝑒𝑣Δ + (1.0− 𝛼) · abs(𝑚−𝑚𝑎𝑔)
27: if 𝑚Δ < 𝑡𝑚 then 𝑝← 𝑝− 1
28: else 𝑝← 𝑝 + 1
29: end if
30: 𝑝𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ← mean from the five latest p values
31: if 𝑝𝑎𝑣𝑒𝑟𝑎𝑔𝑒 < 0.5 then
32: send_intent(outside) ◁ report the information
33: else
34: send_intent(inside) ◁ report the information
35: end if
36: end procedure

In the end, the last five aggregated probabilities are averaged to the final result,
to prevent fast changes to the states in cases of ambiguous conditions. The delay of
this detector is on the account of slow environmental changes longer than with other
algorithms in this work, hence is the most suitable for apps with complex use cases.

4. Implementation 29

4.5.2 Lighting Conditions
In addition to the detection of environment type, luminosity sensor provides useful
information also on its own. Research [77] showed that when lighting levels increase,
users are forced to re-position themselves or the device to avoid glare, which can affect
usability. It might even be as difficult to return to performing a task after such visual
distractions as after an auditory distraction [9]. Therefore, for a later evaluation, the
EnvironmentManager offers the option to log separately also the light levels surrounding
the device.

4.6 Sound Detection

Regarding the distractions caused by sound, Thrift [1] detected more cognitive load in
a general noisy environment as opposed to the quiet environment. Sarsenbayeva et al.
[60] observed significant effects of the urban outdoor noise on participant’s performance.
Similarly, Cassidy et al. [14] showed a significant negative effect of outdoor urban ambi-
ent noise on free, immediate, and delayed recall tasks when compared to no noise. The
results of Banbury and Berry [7] demonstrated that also office noise and speech can
disrupt performance on memory for mental tasks, and that the effect is independent of
the meaning of the sound.

On the contrary, some studies have found that the variance and semantics of a sound
are more powerful distractions than intensity or duration [28]. When considering sounds
generated by surrounding people, performance on task was slower in the experiments
by Hummel et al. [24]. Finally, Tsiaousis et al. [70] claim that the extent of the distrac-
tion may be related to a number of sound properties, such as volume, semantics, and
duration.

As a result, it might be reasonable to distinguish between multiple sound properties,
when evaluating usability data collocated with these audio measurements. For purpose
of detecting the sound semantics, AWARE framework [18] offers a plugin that identifies
conversation from recorded sound. Such algorithm might be useful for usability studies
or (with acquired consent) even for research conducted in the field. But despite of
not storing the raw audio, it is unlikely such analysis could potentially be part of an
assessment of real users without violating their privacy. Already for the mere sound
detection on a sensor level, permissions to the microphone considered dangerous by
Android platform are necessary. As a compromise implemented in this work, CIT offers
the possibility of measuring the sound levels from a buffered unsaved audio8 after it
acquired run-time microphone permissions by polling the user, but does not go further
by analyzing its meaning and neither conversation durations. This way it is possible
for developers to distinguish between noisy (Figure 4.5 (a)) and quiet (Figure 4.5 (b))
environments.

Once the parent application is turned on, the audio volume detection algorithm,
provided in Algorithm 4.5 (for a simplified diagram refer to Figure A.5 in Appendix A)
starts in a separate thread. This thread is invoked once per second to avoid constant
demands on the processing resources. As a first step in the thread, the microphone sen-

8Android offers the possibility to set the output file of the recording feature MediaRecorder to null,
resulting in the audio only buffered in random access memory.

4. Implementation 30

(a) (b)

Figure 4.5: Taking pictures in the noisy environment of a music festival (a) and using navigation
in the quiet environment of a forest (b).

Algorithm 4.5: Sound detection algorithm.

1: 𝑜𝑢𝑡𝑝𝑢𝑡← ’/dev/null/’ ◁ string
2: 𝑟 ← new mediaRecorder(𝑜𝑢𝑡𝑝𝑢𝑡)
3: 𝑚𝐸𝑀𝐴← 0.0 ◁ average amplitude
4: 𝐸𝑀𝐴_𝑓𝑖𝑙𝑡𝑒𝑟 ← 0.6 ◁ exponential moving average
5: procedure SoundDetection()
6: 𝑎𝑚𝑝← get maximum amplitude from r
7: 𝑚𝐸𝑀𝐴← EMA_filter · amp + (1.0− EMA_filter) ·mEMA
8: 𝑣𝑜𝑙𝑢𝑚𝑒← 20 · log10(𝑚𝐸𝑀𝐴)
9: send_intent(volume) ◁ report the information

10: end procedure

sor is polled for the maximum detected audio amplitude that was sampled since the last
call. Next, this amplitude is processed with a low-pass filter using exponential moving
average. In order to get a value in decibels from the amplitude, a conversion formula9

is used, similarly as in other popular open-source noise level meter applications10 pub-
lished on the Android application distribution platform. Since decibels are a relative
unit, the feature cannot serve to an unambiguous evaluation of the audio levels in com-
parison to other situations on other devices. However, it is argued that the varying levels
throughout the session or historical data from the same device might be helpful when
considered in respect to other data, such as user errors and time-on-task.

9https://en.wikipedia.org/wiki/Decibel#Field_quantities
10https://github.com/Arpapiemonte/openoise-meter

https://en.wikipedia.org/wiki/Decibel#Field_quantities
https://github.com/Arpapiemonte/openoise-meter

4. Implementation 31

Figure 4.6: Influence of weather conditions on smartphone interaction. From left to
right: strong sunlight, rain, and snow (user wearing gloves).

4.7 Weather Detection
It has been established by research that weather in terms of temperature and humidity
as an environmental factor might affect distraction level of the users [24]. Ultimately,
higher error rates or above average time-for-task measurements might be more likely
viewed as acceptable, in case of unfavorable weather conditions (Figure 4.6) at the place
of interaction, including rain or low temperatures. To assume weather conditions, the
easiest method appears to be using user’s location and time, matched with a call to
an API providing historical weather data. Similar approach [81] can be found among
the plugins11 for AWARE framework. This work reads the weather data from a public
Openweather12 API using a free key registered at the service provider. Because of the
necessary location permission, gathering of contextual data of this type might be the
most suitable for those applications that are already allowed to access the user’s loca-
tion, such as fitness trackers and navigation systems. The pseudocode can be seen in
Algorithm 4.6 (for a simplified diagram refer to Figure A.6 in Appendix A).

After acquiring the location, the first step of the algorithm is to contact the API
server with an HTTP request. The program waits until it receives a reply or the con-
nection is stopped with a timeout. The response is returned as raw data that need to
be parsed for further processing. The used service provides information about a large
number of meteorological parameters, from which the following are extracted, logged,
and locally broadcasted to the parent application: temperature, humidity, wind speed,
cloudiness, rain, and snow. For simplicity, all of the parameters are left in the original
units, while rain- and snowfall are converted to a boolean value. Similarly, as with the
sound detection, this algorithm also needs to run in a separate thread. That is mainly
due to the asymmetric task of waiting for the remote server response.

11https://awareframework.com/plugins/
12https://openweathermap.org/

https://awareframework.com/plugins/
https://openweathermap.org/

4. Implementation 32

Algorithm 4.6: Weather detection algorithm. The invocation happens after receiving
the access to the user’s location and results in a list of weather parameters.

1: procedure WeatherDetection()
2: 𝑘 ← weather service API key
3: 𝑡← maximum allowed timeout in milliseconds
4: 𝑤 ← [6] ◁ data array (temperature, humidity, wind, cloudiness, rain, snow)
5: 𝑙← get current location
6: while 𝑙 = null do listen for location update
7: end while
8: 𝑜𝑏𝑗𝑒𝑐𝑡← HTTP_request(𝑙, 𝑘)
9: while 𝑜𝑏𝑗𝑒𝑐𝑡 = null and elapsed time < t do listen for server response

10: end while
11: if 𝑜𝑏𝑗𝑒𝑐𝑡 = null then
12: print(timeout)
13: return
14: else
15: 𝑤 ← parse(𝑜𝑏𝑗𝑒𝑐𝑡) ◁ unpack raw server response object
16: for 𝑖← 1 to 𝑤.𝑙𝑒𝑛𝑔𝑡ℎ do
17: send_intent(w[i]) ◁ report the information to be logged separately
18: end for
19: end if
20: end procedure

4.8 Usability Metrics
Based on the friction patterns mentioned in Section 2.3, the framework offers meth-
ods for a convenient measuring of various usability metrics. The methods located in
UsabilityMetricsManager need to be called from the parent application at the screens
and in the activities of interest, thus in comparison to other CIT features, these require
a more complex implementation. The main idea stems from logging the user-flow, sav-
ing the order of performed actions and visited screens in a time-stamped manner for
a possibility of its later visualization and analysis. At the initiation of the applica-
tion, the method sessionStart is to be called. This step saves the time of the app
opening and instantiates all the variables, as well as the logging process. Defining the
start and end of a task was also considered, but due to the emphasis on generality,
this was omitted, since complex tasks (and task times) in some applications might be
anyways discovered only by analyzing the whole user-flow. In case the user interacts
with the touchscreen, the method registerGesture is automatically called with the
performed gesture type passed as a parameter. The class also contains the method
unresponsiveGesture, which is meant to be called by the parent app, in case a user
touches an element without an associated action, such as whitespace. Due to the com-
plicated implementation of this functionality, the other offered option is inverse: the
parent application calls the method registerGesture every time it registers an action
coming from the user. Hence, in the resulting log will always be a pair of the identical
actions (once registered automatically by CIT and once by the parent application), un-

4. Implementation 33

less the gesture will not be identified by the app and so unresponsive. Analogically to
the registered gestures, the method sessionChanged is meant to be called with every
visited screen, in order to capture the whole user session. Similarly, by the methods
appFocusChanged and displayConditionChanged, the user exiting the app and the
turned off display during the session are registered, respectively. Finally, the method
sessionEnd is to be called at the end of applications life-cycle to log the end of the
session.

4.9 Data Export
The export of the logged contextual and usability data is inspired by the AUToMAte
Framework [86]. Every implemented manager class generates a separate CSV13 file in the
device’s memory. Default location of the stored files is in the downloads folder, grouped
in a separate folder, since this can be accessed in a majority devices by pre-installed file
explorer applications and the files can be gathered easily at the end of eventual usability
studies. Each file has a predefined name, header with column values, and a linked
TransmissionEvent class. Each entry in each of the files is saved with a corresponding
time-stamp. The logs are continuously filled with real-time data to prevent data loss
and the last output streams are flushed at the end of the applications life-cycle (with
the dump of the main AwareManager class). The saved files are readable in spreadsheet
software, such as Excel or directly presentable by the developed interactive visualization
(described in Section 5.2) in web browsers.

4.10 Information Management
The communication between CIT and the implementing application is solved through
sending intents14. According to the official Android documentation, they serve as a
bridge between application’s activities. If at one part of the code an intent is broad-
casted, any interested component might register to receive it. Every intent can carry
arbitrary data defined by the sender. In case of the proposed library, the detected states
are sent from respective detection components to the rest of the system, such as the
parent application. This creates a unidirectional pipeline, using which CIT may deliver
new information every time it is available, without the constant polling from the main
application.

The code snippet in Program 4.1 shows the actual Java code, which is a part of the
library. First, a new intent is initialized by defining its name. Next, the data later carried
by the intent are attached. Each piece of information is added to the intent separately,
defining the information’s name in the process. Finally, the prepared intent, containing
the attached data, is broadcasted to the system for other parties.

13comma-separated values
14https://developer.android.com/reference/android/content/Intent

https://developer.android.com/reference/android/content/Intent

4. Implementation 34

1 Intent intent = new Intent("activity");
2 intent.putExtra("message", currentState);
3 intent.putExtra("magnitude", String.format(java.util.Locale.US,"\%.2f", magnitude));
4 intent.putExtra("steps", Integer.toString(stepsTaken));
5 LocalBroadcastManager.getInstance(context).sendBroadcast(intent);

Program 4.1: Sending an intent that contains current activity state, acceleration mag-
nitude, and the number of detected steps.

1 LocalBroadcastManager
2 .getInstance(this)
3 .registerReceiver(mMessageReceiver, new IntentFilter("activity"));

Program 4.2: Component registering for receiving intents of the specified type.

1 private BroadcastReceiver mMessageReceiver = new BroadcastReceiver() {
2 @Override
3 public void onReceive(Context context, Intent intent) {
4 String msg = intent.getStringExtra("message");
5 if ((msg != null)&&(intent.getAction() != null)) {
6 switch (intent.getAction()) {
7 case "activity":
8 String magnitude = intent.getStringExtra("magnitude");
9 String steps = intent.getStringExtra("steps");

10 textViewActivity.setText(msg);
11 textViewActivityMagnitude.setText(magnitude);
12 textViewActivitySteps.setText(steps);
13 }
14 }
15 }
16 }

Program 4.3: Overridden method as part of the instantiated BroadcastReceiver, re-
sponsible for catching the respective intents and their processing.

1 if (thread == null) {
2 thread = new Thread(){
3 public void run() {
4 while (thread != null) {
5 try {
6 Thread.sleep(1000);
7 } catch (InterruptedException ex) {
8 return;
9 }

10 double noise = getVolume();
11 }
12 }
13 }
14 }

Program 4.4: A thread polling the microphone once per second.

4. Implementation 35

Each application component that wants to receive the intents of a specific type needs
to explicitly declare it as in Program 4.2. This is by definition performed using an in-
stantiated LocalBroadcastManager15 class. However, in order to process the received
data, the component is also requested to instantiate a BroadcastReceiver16. This in-
stance handles every incoming message and gives the opportunity to process the data
further. In case of the application example in Program 4.3, the data is extracted from
the caught intent by the defined information names and eventually displayed as text.

Since some parts of the CIT’s code are dependent on the updates from sensors or
a remote server, these specific actions need to be executed asynchronously in separate
threads. Each thread is given valuable processor time only for a very short time of
processing the update and then suspended for a given delay. In Program 4.4 is depicted
the instantiation of a sound detection thread, which polls the microphone once per
second. After the received value is saved to a variable, the thread is stopped and set to
wait until its next turn.

4.11 Demo Application Development
In order to showcase the accuracy and combined context-awareness of the concept pre-
sented in this chapter, as a second part of the project a demo application for Android
was developed. This app is highly simplified and its main purpose is the implementation
of CIT to display the detected values on screen in real-time. It consists of one activity
class ensuring the access to the necessary sensors (permission control), receiving and
processing local broadcasts sent from the library, and updating the interface elements
with relevant information. Additionally, it dispatches the registered touch events further
to the library for identification of the correct hand, in case a user decides to preform
a swipe gesture anywhere on the screen. It also offers an option to temporarily pause
and then continue the detection to keep a static snapshot of all the data displayed.
The application (see Figure 4.7), same as CIT, was created for Android devices with
minimum API 19 (4.4 KitKat) and later.

Since the application requires multiple different permissions, as a fail-proof solution
the requesting happens in three phases. Firstly, each of the permissions, listed in a string
array, is verified separately as in Program 4.5. If any of the permissions are not granted,
these are collectively requested from the user using the command in Program 4.6. This
way, the app also avoids redundant asking for the already granted access. In case, the
user rejects to grant some of these permissions, due to an error or on purpose, these are
requested again (as shown in Program 4.7), with the only alternative of quitting the
application. The reason for this is the safety during run-time with no further obligation
to add a verifying condition before every statement using the access.

Once the process of acquiring the permissions is finished, the main class of CIT
is instantiated and application starts receiving detected updates through the registered
MessageReceiver component as intents. Each of the intents carries attached data, which
is later unpacked and their content is pushed as an update to the textView interface
elements, in order to be displayed.

15https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager
16https://developer.android.com/reference/android/content/BroadcastReceiver

https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager
https://developer.android.com/reference/android/content/BroadcastReceiver

4. Implementation 36

1 public static boolean hasPermissions(Context context, String... permissions) {
2 if (context != null && permissions != null) {
3 for (String permission : permissions) {
4 if (ActivityCompat.checkSelfPermission(context, permission) !=
5 PackageManager.PERMISSION_GRANTED) {
6 return false;
7 }
8 }
9 } return true;

10 }

Program 4.5: Checks if defined permissions, such as WRITE_EXTERNAL_STORAGE are
granted to the application (adapted from [84]).

1 private void requestPermissions() {
2 if(!hasPermissions(this, PERMISSIONS)){
3 ActivityCompat.requestPermissions(this, PERMISSIONS, PERMISSION_ALL);
4 } else {
5 awareManager = new AwareManager(this);
6 }
7 }

Program 4.6: Main method for permissions requesting called before any user-granted
access. The variable PERMISSIONS is a string list and PERMISSION_ALL equals to 1.

1 public void onRequestPermissionsResult(int requestCode, String[] permissions, int[]
grantResults) {

2 boolean permissions_granted = true;
3 switch (requestCode) {
4 case 1:
5 for (int result : grantResults) {
6 if (result != PackageManager.PERMISSION_GRANTED) {
7 permissions_granted = false;
8 }
9 }

10 if (permissions_granted) {
11 awareManager = new AwareManager(this);
12 } else {
13 requestPermissions();
14 }
15 break;
16 default:
17 super.onRequestPermissionsResult(requestCode, permissions, grantResults)
18 }
19 }

Program 4.7: Listens for the result of the permission-requesting process. Since the
request code can be chosen arbitrarily, switch construction is used for easy extensibility.

4. Implementation 37

(a) (b)

Figure 4.7: Showcase application with the view scrolled to the top (a) and to the bottom (b).

4.12 Integration to the Application mobile-pocket
To test CIT in conditions for which it was developed, it was implemented in mobile-
pocket17, a commercial Android application with multiple features. Its main purpose is
to serve as a wallet, storing loyalty, bonus, benefit, club, family, and any other cards
from a bar-code, QR code, or a customer number. The application has a built-in list
of numerous businesses, such as grocery stores, restaurants, and pharmacies, or other
organizations, including libraries, and educational institutions. The user is able to search
this list and add cards using their code, either by scanning them with the device’s camera
or by entering the bar-code digits manually. At the end of this process, the app is able
to generate and display the codes on its own, which can be presented at the cash desk
during a payment. Hence, the user does not have to carry the original cards with them
and can conveniently own a higher number of these cards at the same time. Furthermore,
users are able to create an account, where the cards are subsequently stored, protect
the application with a password, receive exclusive deals with integrated coupons, and
perform similar related tasks. In this thesis, the application is considered as a tool
for quality evaluation of CIT proposed in this chapter. At first, the implementation
of the library into the app is discussed. Later, this adjusted version is evaluated in a
supervised study, confirming the CIT’s functionality and discovering possible usability
issues of mobile-pocket in the process. Finally, the results are reported.

17https://www.mobile-pocket.com

https://www.mobile-pocket.com

4. Implementation 38

(a) (b)

Figure 4.8: Application mobile-pocket: main activity with the card list (a) and the main activity
with an overlay of the opened side drawer (b).

The code implementation was realized with help of bluesource18, the company af-
filiated with development of mobile-pocket. In comparison to the implementation into
the demo application described in Section 4.11, here the permissions management was
resolved, but the task involved apart from merely running the AwareManager detection
core, also making more complex connections for measuring usability parameters. Indi-
vidual methods of UsabilityMetricsManager were set to be called at the respective
locations in code. For instance, start of the session was defined as initialization of the
main activity (pictured on Figure 4.8 (a)) and transitions to other screens were bound
to the respective navigation buttons. Some interface elements, such as search icon in the
top right corner and secondary screens, including Help and Terms of Use section were
ignored in this process, because they were not of interest in the subsequent usability
testing. However, some actions that were needed, were not as straightforward and easy
to implement. For example, in order to open of the left-side drawer (Figure 4.8 (b)),
user has multiple options: pressing the hamburger-menu icon in the top left corner or
performing a swipe gesture from the left edge of the screen to the right. Eventually, a
decision was made to call the method sessionChanged during the drawer sliding an-
imation, which occurs in both cases. As this action is an animation with a specified
duration, this unfortunately led to numerous triggering of the method and the collected
data had to be inspected for duplicate rows before analysis. Therefore, to assure correct
results, it is crucial to consider all the possible times the hooked method will be called.

18https://www.bluesource.at/

https://www.bluesource.at/

4. Implementation 39

4.13 Testing
As an early empirical confirmation that the Context Information Toolkit is working
correctly, a usability testing with the application described in Section 4.12 in various
contextual conditions was conducted. The secondary goal of this pilot study was to es-
tablish a list of usability issues, which could be later used for evaluation of the second
research question (stated in Section 2.2). Moreover, the discovered problems with us-
ability were later reported along with suggested improvements and the contextual data
recorded by the library.

As a first step, the application was inspected with the expert review19 method
for any possible friction in a typical user-flow. Based on the gained experience and
conclusions, three user testing scenarios were formulated. These tasks were designed to
be fairly short, reflecting the simple nature of the application and, what is more, the
time constraints posed by the usability testing event. Each of the scenarios pertains to
a specific predicted usability problem or problems and is presented in a form of a short
story:

1. Imagine you are in XXXLutz20 to make a big purchase. Unfortunately, you forgot
your loyalty card at home. In order not to lose your customer points, someone
from home sent you the bar-code number of the card. In the application, create a
new XXXLutz card with the bar-code number and display the generated code to the
cashier.

2. Your entire purchase has already been scanned by the cashier. You are asked to
quickly present him the bar-code of your loyalty card. Find the PENNY Markt20

card from the list and display the bar-code in full screen mode.
3. You want to add your new customer card from Germany to the app. Find and

change the setting that enables it to you.
Every one of these scenarios can be correctly accomplished only by performing a

specific set of actions in a specific order (also called a ‘sunny case’ scenario). Tapping
on any other interface element or drawing a different gesture results in increasing the
time-on-task, confusion regarding the next step, and in some cases also in not being
able to reach the goal without starting over. The specific steps per scenario, which the
users are required to take, are stated in Figure 4.9.

As the Table 4.1 presents, in total six people (one woman) were asked to participate
in the testing, for 12 minutes each. Every participant was requested to fill in a screening
form, complete all three test scenarios, and answer a number of questions in a post-test
interview. In average, the participants used the smartphone one to three hours a day
and owned some loyalty cards. A half of the participants owned an Android device while
the other half used iOS. The age mean of the sample was 27.3 years, and whereas four
participants used devices with bigger screens (approx. six inches), the other two claimed
smaller screen size (approx. four inches). None of the testers used mobile-pocket before.

19https://www.nngroup.com/articles/ux-expert-reviews/
20Popular physical retail chain with the pilot study participants.

https://www.nngroup.com/articles/ux-expert-reviews/

4. Implementation 40

ID Age Gender Platform used Size Usage Loyalty cards
1 31 male Android 6" 1-3h 0
2 23 male iOS 4" 1-3h 0
3 35 male Android 6" 3+h 4-5
4 24 male iOS 6" 1-3h 4-5
5 20 male Android 6" 3+h 2
6 31 female iOS 4" 0.5-1h 4-5

Table 4.1: Summary of participant’s details, based on the filled screening forms. Size
refers to the diagonal screen size of the device typically used by the participant and the
usage specifies the time spent interacting with a smartphone per day.

Choose XXXLutz list item.

Type XXXLutz (or its part).

Press Search button.

Press Add new card button.

Main screen with the cards list.

Scenario

Choose PENNY Card item.

1.

2.
3.

Press Bar-code button.

Press Manual entry button.

Select Bar-code input field.

Type the bar-code digits.

Press Save button. Choose XXXLutz card item. Press Bar-code button.

Choose Settings list item.

Choose Country filter button.

Scroll downwards.

Choose Germany list item.

Press Back button.

Swipe from left
Press

Menu button

Open side drawer.

Figure 4.9: Concrete steps that are necessary to be accomplished inside of the mobile-
pocket application to reach the goal of the described scenarios from the main screen
(depicted in Figure 4.8 (a)). All of them begin on the same main screen and a user has a
choice between two interchangeable actions, when opening the side drawer.

4. Implementation 41

To capture the contextual parameters with CIT and to avoid the learning curve bias
in data, the test scenarios altered between being accomplished while sitting by a table
and walking. The walking took place in a long corridor in an ordinary pace defined
by the participant. However, in case it was noticed that they started slowing down,
they were requested to speed up. After each task scenario was completed, the log files
containing the contextual data were backed up.

The setup involved two devices, namely Nexus 4 with 4.7" 1280 × 768 px display
running Android 7.1.2 (Nougat) and HTC One with 4.7" 1080×1920 px display running
Android 4.4.2 (KitKat). The two devices were interchangeably used to speed up the
process between two task scenarios that involved saving the measured data. Apart from
the testing devices, the setup also included a webcam, a multi-directional microphone,
a laptop for making the recordings while sitting, and an additional smartphone for sound
recording of the tasks performed during walking. The moderation was mostly done by
the facilitator, the notes and recordings by the observer.

The participants were briefed about the reason for testing and were explained that
the session will be recorded. After they filled and signed the screening form, they were
asked the introductory questions, including if they use or heard of mobile-pocket and
how many loyalty cards they own. Besides that, they were also inquired about the hand
they normally use to interact with their smartphone. The participants were further
asked to perform the described tasks in a randomized order, as depicted in Table 4.2,
one at a time. The first task, demanding that the participant will enter a code from
the card manually, consisted of them reading the number off a sticker placed over the
smartphone screen.

P1 P2 P3 P4 P5 P6
1: walking 1: walking 2: walking 2: sitting 3: sitting 3: walking
2: sitting 3: walking 1: walking 3: walking 1: sitting 2: walking
3: sitting 2: sitting 3: sitting 1: sitting 2: walking 1: sitting

Table 4.2: Scheduled order of six participants (P1-P6), their assigned task number (1,
2, or 3), and activity scenario (sitting by a table or walking) performed during the task.

To deepen the understanding of the cognitive friction points observed, and to receive
qualitative feedback, the participants were asked the following questions at the end of
the session:

• What would help you to work with the app easier?
• What do you think about the size of elements, such as buttons or symbols?
• How do you like the text in the app? Is it readable?
• How did you find the layout and organization of the app? Were the elements, such

as buttons where you expected them to be?
• How do you find the difficulty of this task compared to when you could sit at the

table / if you had to walk?21

• How would you find the app to be controlled just with one hand at all times?
21The participant was asked about the alternative, which they did not perform, for each task.

4. Implementation 42

(a) (b)

Figure 4.10: Edit card screen (a) and the keyboard overlay opened (b).

Apart from one task with one participant, all were accomplished successfully. How-
ever, from 18 tasks performed in total, the facilitator had to assist six times and that
mainly with the task 3 (four times) and task 1 (two times). The assistance was in form of
a verbal hint, once the participant got confused, e.g. constantly looked for the scenario
solution in a wrong place. In general, there was a couple of repeating issues with the
mobile-pocket. In total, 14 unique usability problems were identified.

For the purposes of this thesis, only those issues from this pilot study are discussed,
which are relevant to the formulation of the experimental task used in the following
user study (see Section 5.1). One recurring problem was related to the card edit screen
(Figure 4.10 (a)), when the tested participants would consistently overlook the save
button (in the top right corner with the checkmark icon) and subsequently not save
the edits made. Its bad visibility was later confirmed in the post-test interviews, since
the symbol received negative feedback for its narrow font weight and small size. The
situation was worsened by the order of actions a user generally performs on this screen.
Firstly, the size of the two ‘card image’ elements caused that the input field for entering
the card number was beyond the bottom fold. Therefore, the user had to find the
input field by scrolling down. Secondly, once a user successfully entered the code, it was
very often the case that they confirmed the action by pressing the blue enter key on
the keyboard (Figure 4.10 (b)). However, this caused scrolling action and moving the
cursor to the latter Infos field. The user had hence the suggestion to fill in this input
field as well, as if it was mandatory, while finally expecting the confirm button at the
very bottom. This distracted the user from looking for the form confirmation elsewhere.

4. Implementation 43

(a) (b)

Figure 4.11: Card detail screen (a) and a pop-up dialog (b).

Some of the participants encountered similar troubles already on the screen proceed-
ing the card editing. The card detail screen (see Figure 4.11 (a)) features similarly placed
and sized icon buttons to the aforementioned checkmark button. The tested users had
primarily problems with identifying the meaning of the edit button (the pencil shaped
symbol in the top right corner on the left) and thus also finding the way of editing the
card’s properties. Additionally, even after recognizing its meaning, the users sometimes
missed the small button area when tapping, which mainly occurred during the walking
contextual condition. This, in the cases when the adjacent delete button was pressed,
invoked a dialog window (see Figure 4.11 (b)) asking for a delete confirmation.

As a result of the pilot testing, it was clear that the task of editing a card’s prop-
erties contained multiple friction points, with some of them possibly being negatively
influenced by the activity a user is performing during the interaction. Another of the dis-
covered outcomes was that recording of the time-on-task and time-on-screen parameters
makes the complete sense only in usability testing that does not use the ‘think out loud’
protocol22. This is due to the increased cognitive load, typically posed on the partici-
pants in supervised usability studies, when they are, apart from performing the task,
also further distracted by the usability facilitators asking questions. Key takeaways,
regarding the context detection algorithms used, were that the observed detection accu-
racy was on the levels declared in the source research papers, and that walking activity
takes several seconds to be recognized, thus in the subsequent experiment, the testers
should be asked to start walking already before beginning the scenario.

22Method, when participants are asked to simultaneously describe the performed actions with words.

Chapter 5

Evaluation

In this chapter the presented concept, its workflow, and logging capabilities are evaluated
based on a conducted experiment. The acquired data are analyzed using a custom-
developed visualization tool and the results are summarized.

5.1 User Study

Considering the usability issues, which the pilot study (described in Section 4.13) had
uncovered in the tested application, and the interest of the second stated research ques-
tion about the relationship of usability metrics to context, an experiment was conducted.
By focusing on the discovered friction points and comparing them in two contrasting
context conditions detected by CIT, the context distinction might be visible also with
a small test sample. Moreover, the experiment results may serve as a motivation to use
the proposed detection algorithms later in a larger study, or even in production. The
two context conditions compared in the experiment were:

• Calm environment with no audio or visual distractions, where the participant is
sitting and the device is laying statically in front of them on a table throughout
the whole task.

• Busy environment of a grocery store with typical noise levels, visual distractions
in form of static obstacles and moving people, where the participant is forced to
keep walking throughout the whole task (on a path with turns).

While formulating the experiment task, multiple factors were taken into consider-
ation. On one hand, the resulting data from the experiment had to be complex, as
otherwise it would not sufficiently demonstrate the differences in participants’ perfor-
mance in the two testing environments. On the other hand, data too complex may cause
this distinction to become hardly visible or cause the test participants to lose interest
in finishing the experiment that is too difficult. Another factor influencing the task
formulation were the quantifiable values, on which the difference in experimental con-
ditions can be shown. As the framework is capable of measuring the interaction times
and various types of friction patterns, such as navigational errors, accidental touches, or
unresponsive gestures, the two typical usability metrics time-on-task and error rate were
considered. Specifically, instead of measuring both during the whole task, the following
continuous scenario was chosen to record each independently, one after the other:

44

5. Evaluation 45

Find the Tesco Clubcard1 from the list by scrolling and display it in detail.
Then, change the current name of the card to ‘TESCO 2019’.

All the substeps the scenario required from participants are in Figure 5.1. The first
sentence talks about the part of the task, in which the time was measured. In order to
be able to properly compare the time differences in various contexts, this searching part
of the scenario was made on purpose more difficult, than it would be during regular
application usage. The participants had to search for the correct card among 74 others
and were instructed not to use the search functionality. The wanted card was located
nearly at the bottom of the list. Once a participant found and selected the correct card,
the subsequent task of changing the cards name (described in the second sentence) was
no longer timed, but instead the number of errors was counted. Whereas measuring
the number of errors in the first part would not be meaningful (unless for an unlikely
scenario of a participant selecting an incorrect card that would be excluded from the
final dataset), measuring time in the second part would be skewed by the participant’s
typing speed. This way, the scenario, which was accomplished by each participant in
only one type of context, transitioned naturally between the two usability metrics.

Press Save button.

Type space and „2019“.

Select Card name input field.

Press Edit card button.

Choose TESCO list item.

Scroll downwards and find the wanted card.

Main screen with the cards list.

Figure 5.1: Six steps, necessary for the test participant to accomplish, in order to reach
the goal of the assigned scenario. The task begins on the main application screen (depicted
in Figure 4.8 (a)) and finishes once the participant saves the card being edited.

1Loyalty card of a physical retail chain popular with the test participants.

5. Evaluation 46

(a) (b)

Figure 5.2: Experiment setup of the busy condition (a) and the calm condition (b).

In total, ten individuals were recruited for the experiment, five of which were male
and five female. Four of the individuals were between 50 and 65 years of age. The
remainder of the participants were between the ages of 20 and 30. All of the participants
had at least some university or college education. A half of the participants submitted
that they had a high technological comfort level, while the rest were either medium or
low. Nine of the participants used a smartphone device at least once per day. None of the
participants had used the mobile-pocket application before the experiment took place
and neither they had been acquainted with it in advance. However, before the start of
the experiment it was assured that all participants were familiar with the design, color
combination, and brand logo of the specified loyalty card. All the experiment sessions
were conducted on a Nexus 4 device with 4.7" 1280 × 768 px display running Android
7.1.2 (Nougat). One half of the testers absolved the task in a usual large supermarket
during busy hours (Figure 5.2 (a)) and the other half was tested in a calm environment
of a quiet room (Figure 5.2 (b)).

As a result of the experiment, seven log files2 containing data were downloaded
from the device per participant, which means 70 in total. One complete experiment
session (including the second part) was in average 36.5 seconds long and during that
time the Context Information Toolkit exported approximately 73 kilobytes of text data.
It is argued that this is a negligible size, which can be easily transferable to a remote
server and does not influence the user’s mobile data plan, mostly after a suitable file
compression. What is more, these log files can be further processed and transferred only
as average periodic statistics or in case of actually detected usability friction patterns.

2Activity, environment, handedness, light condition, linear acceleration, sound level, and usability
metrics.

5. Evaluation 47

5.2 Data Analysis
The raw time-stamped logs provided only little insight to the recorded sessions sepa-
rately and in a textual form. To gain a better perception of the merged dataset, and
in order to offer a similar automatically generated view to any developer using CIT
in the future, a decision was made to program an interactive visualization supporting
the library. This would later help to evaluate the files generated in the experiment, the
results of which are reported in the Section 5.3. One of the requirements was to make
a chart that is showing the log files and is displayable in an internet browser, which
concurrently enables its compatibility with web-servers and online dashboards. As a
popular web-oriented JavaScript visualization library, D3.js3 was chosen for the project.
It offers the possibility of preprocessing the data and mapping them to a timeline, based
on the assigned time-stamps. The ultimate goal was to show all the measured param-
eters per testing session on a single screen, with the option to turn showing the data
from specific detectors on or off. It is argued that this way the interacting user gets the
opportunity to explore the dataset on their own, discovering relevant correlations and
their implications on the app being developed.

Preprocessing data and categorizing them to correct data structures was the first
necessary step to be accomplished. As mentioned in Section 4.12, some duplicate values
needed to be eliminated. Several data points were excluded, based on a filter of extreme
values. Moreover, the code-generated application screen aliases were renamed to corre-
sponding names and contextual states were associated with numeric values as elaborated
further. After the data were processed, it was possible to display first elements.

The timeline (x-axis) boundaries, relevant for the session being viewed, were given
by some of the measured parameters. It can be assumed that the scenario starts after the
main screen of the application is loaded. More specifically, to avoid taking any possible
delay into consideration, the time-stamp that marks the timeline’s beginning was set to
equal the very first time a user interacts with the touchscreen. Conversely, the end time
was given by the last step of the scenario, which is in case of the experiment described in
Section 5.1 the action of pressing the save button on the edit card screen (Figure 4.10).
Once the timeline (x-axis) was calculated, y-axis was set to an arbitrary interval from 0
to 100, since all the contextual parameters are in different units and needed to be placed
on the graph recalculated to the same range. Besides that, the merged dataset contains
various value types. Whereas luminosity, sound volume, and linear acceleration are
continuous ratio data types, the rest including activity, handedness, and environment are
of a discrete nominal type. This additionally complicated the overlapping representation
on one timeline. The presented solution divides these two groups and displays only the
ratio data on the scale, while showing the continuous changes in the nominal data
throughout the scenario in the upper area, where the ratio values only rarely reach.
Furthermore, for the group of nominal data, visualized as lines, also a dot representing
every time-stamped entry (condition change) was added for better visibility.

In addition to the contextual parameters in the chart, screenshots from the appli-
cation were positioned over the graph area to the places, where the respective screen
change was detected. The images are sized only as thumbnails, but it is argued that
this allows for a quick orientation in the scenario, while not obstructing the view of

3https://d3js.org/

https://d3js.org/

5. Evaluation 48

the actual data. Next, the gestures, performed by the participant during the session
on the touchscreen, were mapped to a series of black icons and those were positioned
on the timeline at the corresponding time-stamps. The majority of gestures performed
were scrolling and tapping, although some of the participants tried interacting with the
application also by double tapping and the long press gesture.

In the background of the chart, a dark gradient symbolizes another information.
The order of screens, visited by the test participant, is compared to the sunny case
scenario of the experiment task. The part of the interval, where these two do not align,
thus the tester made a navigational error, is highlighted as a grey gradient area. This
enables a fast comparison of the error-free sessions to the ones, where the participants
encountered problems.

Since the concrete parameter values are not displayed on the y-axis, as that would
cause their overlapping, an overlaying vertical line following the mouse cursor was im-
plemented. Next to this dynamic line, the measured states and numerical values, which
correspond to the specific point in time, are shown.

Above the chart and screenshots, the visualization settings are located. A series of
checkboxes depicted in the corresponding colours enable to hide or reveal any of the
visualization’s parts. In the top left corner, the interacting user is able to change the
displayed session by choosing different source data from the drop-down menu. In the
top right corner the total length of the session, currently mapped on the timeline, is
written in seconds.

The scenario depicted in Figure 5.3 shows a recording of a participant’s interaction
in the busy condition. The numeric values, including luminosity (green), sound volume
(yellow), and linear acceleration (pink) are, according to the expectations, strongly
variable, as the physical circumstances in the user’s environment were quickly shifting
during the walk through the supermarket. The nominal data from environment (dark
blue) were correctly evaluated to the interior condition and activity (light blue) was
correctly identified as walking, with a short exception near the end of scenario. The
brief change to the still activity condition can be possibly assumed to be a result of the
participant slowing down shortly after a navigational error occurred. Handedness (red)
changed throughout the scenario, since the tester interacted with the device holding it
in both hands and using fingers from left, as well as right hand, sometimes also altering
the grip. This might have been caused by the long time necessary for the participant
to identify the wanted card from the list, as can be seen from the numerous scrolling
gestures recognized in the first half of the recorded scenario. In addition to the scrolling
on the main screen, the tap gestures can be also seen appearing later in the session and
the scrolling action for the second time on the edit card screen. There the obvious aim
of the participant was to reveal the content of the form, located beyond the bottom fold.
This information can be assumed from the combination of the data about performed
gestures and current screens, immediately visible from the screenshots and icons on the
visualization.

Overall, the visualization is intended for large displays with a high resolution, due to
the total amount of displayed data. However, the layout is able to adjust also to smaller
displays, where it can be used mostly with lower number of parameters enabled at the
same time.

5. Evaluation 49

F
ig

ur
e

5.
3:

D
3

vi
su

al
iz

at
io

n
pr

ov
id

in
g

an
ov

er
vi

ew
of

th
e

ca
pt

ur
ed

se
ss

io
n.

O
ve

rla
pp

in
g

im
ag

es
ca

n
be

so
rt

ed
on

z-
ax

is
by

th
e

us
er

.

5. Evaluation 50

5.3 Reporting the Results
All the ten recruited participants accomplished the assigned scenario successfully. In
contrast to the pilot study, no hints from the facilitator were provided. Once a par-
ticipant encountered a usability issue, they were instructed to continue trying to find
the task solution on their own. As the participants were also not instructed to verbally
describe their actions, this allowed for insights from nearly realistic usage situations.
Therefore, the results show varied types of usability friction, such as navigational errors
when locating the edit card or save actions, accuracy errors when targeting the buttons,
and delays in proceeding through the task, when looking for other interface elements.

As can be seen from the Table 5.1, majority of the participants (4) performing the
task in a calm setting did not encounter a usability problem and only one had an issue
with finding the action for card editing. More specifically, this participant tried tapping
on the card image and the card’s name in the title, before noticing the edit card button
in the top right corner. Conversely, in case of the busy setting in a supermarket, a single
user was able to complete the task without issues, but majority of the testers (4) did
face difficulties. Two participants expected the edit card action to be associated with the
card image. Furthermore, one tester had a problem with locating the save button in the
edit card form and another incorrectly tapped on the delete card button when aiming for
the adjacent edit card action. Participant 7 encountered two navigational errors during
their session, both while searching for the action of editing the card: tapping on the
card image and card name in the title, and eventually returning to the main screen and
trying to find it there.

ID Condition Time-on-task Error count Problems with
1 calm 22.3 0 -
2 calm 23.2 1 finding the edit card button
3 calm 12.4 0 -
4 calm 16.2 0 -
5 calm 15.7 0 -
6 busy 11.1 1 tapping on the edit card button
7 busy 39.7 2 finding the edit card button
8 busy 41.0 0 -
9 busy 75.9 1 finding the edit card button
10 busy 107.5 1 finding the save button

Table 5.1: Results of the experiment, where half of the participants absolved the scenario
in a calm context (1-5), while the other half in a busy contextual condition (6-10). Time-
on-task is in seconds and concerns the first part of the task, from the beginning until the
participant was able to find and select the correct card.

Searching for the correct card from the list of others might also show the difference
between the two conditions. Whereas the time-on-task mean in the calm environment
was 17.96 seconds, the same task took the participants in the busy conditions on average
more than twice as long, 55.06 seconds. That is, despite of including the participant 6
with the fastest time-on-task result from the whole experiment.

5. Evaluation 51

5.4 Discussion and Summary
Following the pilot study with the outcome of a list of usability issues in the mobile-
pocket application, an experiment with ten participants was performed, comparing the
impact of some of these issues in different contextual conditions. In spite of the small
sample size the results suggest a likely correlation of the contextual parameters, mea-
sured by CIT, and the popular usability metrics time-on-task and user error-rate. It
appears that with increase in device’s linear acceleration and larger variations in sound
volume and lightness levels, detected by the implemented algorithms, the time a user
needs for accomplishing a task also increases and users make more errors. What is more,
this connection seems to be multiplied in case the application contains usability issues
or unclear friction points that make the user insecure about the intended steps leading
towards their goal.

Due to dynamics of the detected contextual conditions and low accuracy and sam-
pling rate in most of the devices, a concrete assignment in a specific moment of time
to an occurrence of a friction pattern cannot be easily made. However, the comparison
of calmer and busier, stress inducing conditions can be clearly visible from the data.
Using the created visualization, application developers can observe the aforementioned
correlation in detail, enabling them to judge the contextual influence per parameter and
per user interaction, down to the task level. Aware of the the context, in which their
users spend most of the time, they might conduct usability studies, which are closer to
the realistic interaction and make more informed design decisions.

For instance, Schildbach and Rukzio [62] suggested that the negative effect of dif-
ferent mobility states on target selection can be compensated by increasing the target
sizes. Other researchers have also shown that adaptive text entry and providing audio
guidance can compensate the negative effect of situational impairments [60]. Hence, the
developers of mobile-pocket might, for example, consider increasing the size of the edit
card and delete card buttons on the detail screen and the save button on the edit screen.

Similarly, noticing that in relation to situations with a busy context, many users
tap on the card picture and then within a second return, might suggest the UX team
that the action of showing the card image in full screen mode is not what is expected.
Since in calm states, when the user is not distracted, it seems to occur only rarely,
the scale of this issue or this usability problem entirely may be possibly overlooked in
laboratory usability studies that exclude context. However, having the data from the
proposed contextual library might help to reveal that the resulting action of tapping
on the card should be exchanged. That is, either for a one determined by further user
interviews or directly the one, which users usually perform as the next in the recorded
user flow.

Finally, even though in case of mobile-pocket, the experiment scenario of searching
the right card among a plethora of others is not realistic, it clearly shows that CIT
is able to signalize an increased time-on-task in busy contexts, in comparison to what
might have been the time measured in a traditional usability study without distractions.
Subsequently, the measured datasets can be helpful in determining the typical user
conditions and optimizing for them, not just in terms of effectiveness but also efficiency.

Chapter 6

Conclusion

This thesis presented Context Information Toolkit, a library supplementing interaction
analytics with data describing the situation. At first, the motivation behind the work
and ways of measuring different types of context were explained. Then, the related re-
search projects and commercial tools were reviewed, resulting in an identified gap in the
available solutions. Building on the algorithms developed in the field of ubiquitous com-
puting, the main concept and structure of the project was proposed. Its computational
logic was illustrated using flowcharts and examples. The implementation chapter also
answered the first research question about which ubiquitous computing methods can
identify contextual states of a smartphone user that are helpful at uncovering potential
usability issues.

Subsequently, CIT was created according to the initially defined aims and fulfills
the set requirements. It contains the functionality needed for logging contextual data
from five components and additionally allows for measuring the usability metrics. It
was implemented in Java programming language for the possibility to be used as an
Android application module. The project code was refactored, is heavily commented
and divided into separate files contributing to overall clarity. The library was tested
in various situations and conditions and does not contain bugs or other unpredictable
behavior.

The whole implementation was later described in detail, providing explanations of
noteworthy code snippets and proposed usages in a sample application, as well as in a
commercial mobile-pocket app. Afterwards, two conducted empirical studies and their
results were reported, demonstrating the CIT’s usefulness and the options it offers.
More specifically, this confirmed how the solution is able to help better understand
real behavioural patterns during the interactions in both supervised and unsupervised
usability studies, since the context information from the session containing usability
friction enables to better classify the cause of usability issues.

Finally, the generated datasets were analyzed with the help of the programmed gen-
eral visualization tool, positively answering the second stated research question. More-
over, the provided tool created the same evaluation possibility to the future application
developers that would decide to include CIT in their application. Benefiting from the
depicted contextual parameters on a timeline, they might estimate the distraction level
of their users or participants in usability studies and link interface issues to different
kinds of circumstances.

52

6. Conclusion 53

6.1 Limitations
As aimed, the used detection algorithms prioritize low battery overhead over high de-
tection accuracy, where possible. While the average user conditions measured by the
toolkit correspond with reality, each device contains sensors with different precision and
there are many edge cases in the contextual conditions. For instance, in environmental
detection there are, apart from interior and exterior states, also grey zones, such as semi-
outdoor passages and semi-indoor terraces. When considering activity detection, a user
can be moving very slowly and irregularly in a queue in a shop, or in case of handedness
they might constantly exchange thumbs when scrolling. This must be accounted for in
evaluation and the collected data should be always compared to average values from all
sessions. Furthermore, despite of the low computational requirements, the calculations
done by CIT in the background naturally add to the total demands on the device’s
processor and battery. Hence, the cost-benefit ratio needs to be considered, regarding
when the implemented library should be active, mostly in cases the application itself is
meant to run for longer period at a time.

Figure 6.1: Example of a possible consent request dialog window in Android.

It has been shown what types of data CIT collects, what is more, since it is pub-
lished open-source, this can be easily verified. In spite of that, the developers still need
to make a decision, whether to limit the deployment to participants in user studies, or
also profit from the datasets generated by the real users and in what scale. In the latter
case, the users should be always informed about the statistical usage data collection by
a telemetry warning (as in Figure 6.1) before the library is initialized, or before any data
are sent to remote servers. Declining to give consent should disable the implemented
library, while allowing for the application to continue running normally. Receiving in-
formation about the user base cheaply from the users themselves might be supported
by various incentives and rewards.

6. Conclusion 54

6.2 Future Work
Even though the Context Information Toolkit supports the detection of five physical
contextual types that were considered the most suitable also for their popularity in
previous research, there are further identified context components, which might be in-
teresting for the developers. Measuring all types of context would help to get an even
bigger picture about users and may bring many novel implications, because as has been
observed during this project, the contextual data are strongly interrelated.

Another step of future development could be detection accuracy improvement of
the already included algorithms. Mostly in the field of machine learning many works
promise better results than the simple decision trees. In case of successfully implement-
ing a solution with low computational requirements during feature recognition, it might
be lucrative alternative to the current implementation. Additionally, machine learn-
ing might bring new possibilities to easily recognize also higher level contexts, such as
complex activities, environments, or ways of holding the device. It is argued that with
sufficient advantages for the end-user and responsible approach from the developer,
collecting only anonymous statistical data, this privacy trading would be still equally
beneficial for both sides.

Similarly, measuring other usability metrics, such as long inactivity between actions
could be added. Automatic friction pattern recognition is also a promising research
direction that would enhance the developer experience. However, in this case the gen-
erality of the solution seems to be the biggest obstacle, considering the highly diverse
application market.

For the applications that do not communicate with any remote servers it would be
useful to provide a built-in feature of uploading the generated log files by the library to
the cloud. This was out of the scope of this thesis, as excluding it significantly simplified
the development, but in the future work it could be one of the most straightforward
ways to improve the code’s universality.

Besides the technical part of this project, future work could focus on further explor-
ing the relationship of context and mobile devices. Although this work has referred to
numerous research papers on the influence of context on users and their performance,
there is currently still lack of research on its final impact on usability and counter-
measures. Thus, for example a larger study comparing the two experiment conditions
mentioned in this thesis should be conducted with a larger participant sample, in order
to confirm some of the findings presented.

The provided visualization currently supports displaying only individual recorded
sessions. Those are mainly interesting for UX teams, but by further preprocessing the
data into statistically aggregated forms, the results could be more comprehensible for
stakeholders. In the future work the visualization could get also other capabilities, such
as zooming, panning, and scrolling to support its exploratory nature. Apart from that,
an option could be added to manage the displayed source files and directly compare
multiple separate sessions.

Finally, a major opportunity to extend the CIT’s detection capabilities would be to
incorporate signals from external devices, such as wearables. Fitness trackers, smart-
watches, augmented reality glasses, or e-textiles with their built-in sensors could open
new horizons for product usability improvement through physical context detection.

Appendix A

Algorithm Flow Charts

Accelerometer update

Calculate current total acceleration value.

current acc sign = previous acc sign?

acc < threshold?

acc ≈ previous acc

min < step frequency < max

similar time differences between steps?

similar signal strength between steps?

RESET STEP COUNTER

Yes No

Yes

Yes

Yes

NOT A PEAK,
KEEP WAITING

Yes

COUNT A VALID STEP

Yes

No

No

No

Figure A.1: Decision tree for step detection and counting. The algorithm is invoked
by an update from the accelerometer sensor, the result given in the current number of
identified steps. The shortcut ’acc’ stands for the computed acceleration value.

55

A. Algorithm Flow Charts 56

Accelerometer update

Update sliding window,
calculate mean value per axis,

calculate magnitude.

mag ≈ 0

device horizontally?
(gyroscope)

mag < walking threshold

STATIONARY
STILL mag < running threshold

steps detected? steps detected?

WALKING RUNNING

Yes
No

No

No

Yes Yes

Yes

Yes Yes

Figure A.2: Decision tree for activity detection. The algorithm is invoked by an update
from the accelerometer sensor, the result is one of the activity states. The shortcut ’mag’
stands for magnitude.

A. Algorithm Flow Charts 57

Touch event detected

touch event = swipe?

array length > threshold

swipe distance > threshold

leading term coefficient < 0

RESET STEP COUNTER

Yes

Yes

Yes

No

No

No

Save touchpoints from the event in an array.

Describe points by a polynomial
(Least Squares algorithm).

LEFT HAND RIGHT HAND

Yes No

Figure A.3: Decision tree for hand detection. The algorithm is invoked every time a user
touches the touchscreen and in case of a relevant swipe event results in a binary decision
meaning either left or right hand.

A. Algorithm Flow Charts 58

Luminosity sensor, magnetometer,
 or cell signal strength update

Apply low-pass filter on the signal.

sensor type?

current time =
daylight?

luminosity
< threshold?

magnetic variance
< threshold

celular signal strength
< threshold

Magnetometer

Cell signal Luminosity

Daylight times
calculated from

location.

Yes

Increase the outside probability,
decrease the inside probability.

Increase the inside probability,
decrease the outside probability.

Aggregate weighted probabilities from all the sensors.

Average over the last five probabilities = INSIDE?

INSIDE OUTSIDE

Yes No

Yes

No

No Yes
No

Yes

Figure A.4: Decision tree for environment detection. The algorithm is invoked every time
one of the relevant sensors provides an update and results in a binary decision meaning
either inside or outside condition.

A. Algorithm Flow Charts 59

Initialize media recorder with null as output

Get current maximum amplitude.

Apply exponential moving average filter.

Convert the signal strength do decibels.

SOUND LEVEL

Figure A.5: Sound detection algorithm. The media recorder is polled once per second
when active.

Location received

Send HTTP request to Openweather API.

response received?

Parse response object, convert the dataSERVICE TIMEOUT

TEMPERATURE HUMIDITY WIND SPEED CLOUDINESS RAIN SNOW

No Yes

Figure A.6: Weather detection algorithm. The invocation happens after receiving the
access to the user’s location and results in a list of weather parameters.

Appendix B

CD-ROM Contents

B.1 Context Information Toolkit

/
Context Information Toolkit

Java source
cit.aar . compiled Android library

This folder is comprised of the Android Studio project from the library develop-
ment and a compiled version of CIT that can be implemented to any other Android
application.

B.2 Demo Application

/
Demo application

Java source
cit-demo.apk . compiled Android demo application

The compiled demo application developed to showcase the CIT’s functionality and
its source Android Studio project are included in this folder.

B.3 Datasets

/
Datasets

Pilot study datasets .csv data per session
Experiment datasets

Sitting . csv data from sitting scenario per session
Walking .csv data from walking scenario per session

In this Datasets folder are the generated experiment data in CSV file format. These
are openable in a spreadsheet software, such as Excel, or in the produced visualization.

60

B. CD-ROM Contents 61

B.4 Visualization

/
Visualization

JavaScript source . executable in a web browser

This folder contains the D3.js visualization source files, that can be opened in a web
browser, either using a local server or by hosting the project online.

B.5 Thesis

/
Thesis

LATEX source
thesis.pdf

A digital copy of this thesis, as well as the source code written in LATEX.

References

Literature

[1] Brady A. Thrift. “The Effects of Distraction on Usability Testing Results in a Lab-
oratory Environment”. Master Thesis. Guelph, Ontario, Canada: The University
of Guelph, 2012 (cit. on p. 29).

[2] Gregory Abowd et al. “Towards a Better Understanding of Context and Context-
Awareness”. In: Handheld and Ubiquitous Computing. Ed. by Hans-W Gellersen.
Vol. 1707. Lecture notes in computer science. Berlin, Heidelberg: Springer-Verlag
Berlin Heidelberg, 1999, pp. 304–307 (cit. on p. 5).

[3] Mohsen Ali, Tamer ElBatt, and Moustafa Youssef. “SenseIO: Realistic Ubiqui-
tous Indoor Outdoor Detection System Using Smartphones”. In: IEEE Sensors
Journal. Vol. 18, pp. 3684–3693 (cit. on p. 26).

[4] Theodoros Anagnostopoulos et al. “Environmental exposure assessment using in-
door/outdoor detection on smartphones”. Personal and Ubiquitous Computing
21.4 (2017), pp. 761–773 (cit. on p. 26).

[5] Alan Baddeley. “Working memory,” Applied Cognitive Psychology 2.2 (1988),
pp. 166–168 (cit. on p. 6).

[6] M. A. Baker and D. H. Holding. “The effects of noise and speech on cognitive
task performance”. The Journal of general psychology 120.3 (1993), pp. 339–355
(cit. on p. 6).

[7] Simon Banbury and Dianne C. Berry. “Disruption of office-related tasks by speech
and office noise”. British Journal of Psychology 89.3 (1998), pp. 499–517 (cit. on
p. 29).

[8] Leon Barnard et al. “Capturing the effects of context on human performance
in mobile computing systems”. Personal and Ubiquitous Computing 11.2 (2007),
pp. 81–96 (cit. on pp. 5, 6, 16, 18).

[9] Stefan Berti and Erich Schröger. “A comparison of auditory and visual distrac-
tion effects: behavioral and event-related indices”. Cognitive Brain Research 10.3
(2001), pp. 265–273 (cit. on p. 29).

[10] Nigel Bevan and Miles Macleod. “Usability measurement in context”. Behaviour
& Information Technology 13.1-2 (1994), pp. 132–145 (cit. on p. 6).

62

References 63

[11] Igor Bisio, Alessandro Delfino, and Fabio Lavagetto. “Poster: Detecting if a Smart-
phone is Indoors or Outdoors with Ultrasounds”. In: Proceedings of the 13th An-
nual International Conference on Mobile Systems, Applications, and Services -
MobiSys ’15. Ed. by Gaetano Borriello et al. New York, USA: ACM Press, 2015,
pp. 475–475 (cit. on pp. 2, 26).

[12] Agata Brajdic and Robert Harle. “Walk detection and step counting on uncon-
strained smartphones”. In: Proceedings of the 2013 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing - UbiComp ’13. Ed. by Friede-
mann Mattern et al. New York, USA: ACM Press, 2013, pp. 225–234 (cit. on
p. 20).

[13] Stephen Brewster. “Overcoming the Lack of Screen Space on Mobile Computers”.
Personal and Ubiquitous Computing 6.3 (2002), pp. 188–205 (cit. on p. 6).

[14] Gianna Cassidy and Raymond A.R. MacDonald. “The effect of background mu-
sic and background noise on the task performance of introverts and extraverts”.
Psychology of Music 35.3 (2007), pp. 517–537 (cit. on p. 29).

[15] Doruk Coskun, Ozlem Durmaz Incel, and Atay Ozgovde. “Phone position/place-
ment detection using accelerometer: Impact on activity recognition”. In: 2015
IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP). IEEE, 2015, pp. 1–6 (cit. on p. 19).

[16] Constantinos K. Coursaris et al. “The impact of distractions on the usability and
intention to use mobile devices for wireless data services”. Computers in Human
Behavior 28.4 (2012), pp. 1439–1449 (cit. on pp. 6, 18).

[17] Jackson Feijó Filho, Wilson Prata, and Juan Oliveira. “Where-How-What Am
I Feeling: User Context Logging in Automated Usability Tests for Mobile Soft-
ware”. In: Design, User Experience, and Usability: Technological Contexts. Ed.
by Aaron Marcus. Vol. 9748. Lecture notes in computer science. Cham: Springer
International Publishing, 2016, pp. 14–23 (cit. on p. 11).

[18] Denzil Ferreira, Vassilis Kostakos, and Anind K. Dey. “AWARE: Mobile Context
Instrumentation Framework”. Front. ICT 2 (2015), pp. 1–9 (cit. on pp. 9, 29).

[19] Gabriel Filios, Sotiris Nikoletseas, and Christina Pavlopoulou. “Efficient Parame-
terized Methods for Physical Activity Detection using only Smartphone Sensors”.
In: Proceedings of the 13th ACM International Symposium on Mobility Manage-
ment and Wireless Access - MobiWac ’15. Ed. by Mirela Sechi M.A Notare, Ángel
Cuevas Rumín, and Miguel Lopez-Guerrero. New York, USA: ACM Press, 2015,
pp. 97–104 (cit. on pp. 2, 19).

[20] Mayank Goel, Leah Findlater, and Jacob Wobbrock. “WalkType: Using Ac-
celerometer Data to Accommodate Situational Impairments in Mobile Touch
Screen Text Entry”. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems - CHI 2012. New York, USA: Association for Computing
Machinery, 2012, pp. 2687–2696 (cit. on p. 18).

References 64

[21] Mayank Goel, Jacob Wobbrock, and Shwetak Patel. “GripSense: Using Built-In
Sensors to Detect Hand Posture and Pressure on Commodity Mobile Phones”. In:
Proceedings of the 25th Annual ACM Symposium on User Interface Software and
Technology. Ed. by Rob Miller. New York, USA: ACM, 2012, pp. 545–554 (cit. on
p. 2).

[22] Morten Hertzum. “User Testing in Industry: A Case Study of Laboratory, Work-
shop, and Field Tests”. In: User interfaces for all. Ed. by Alfred Kobsa and
Constantine Stephanidis. Vol. GMD–74. GMD Report. Sankt Augustin: GMD
- Forschungszentrum Informationstechnik, 1998, pp. 59–72 (cit. on p. 6).

[23] Karin A. Hummel, Andrea Hess, and Thomas Grill. “Environmental context sens-
ing for usability evaluation in mobile HCI by means of small wireless sensor net-
works”. In: Proceedings of the 6th International Conference on Advances in Mobile
Computing and Multimedia. Ed. by Gabriele Kotsis. New York, USA: ACM Press,
2008, pp. 302–306 (cit. on p. 5).

[24] Karin Anna Hummel, Thomas Grill, and Andrea Hess. “On Context-Sensitive
Usability Evaluation in Mobile HCI”. Journal of Mobile Multimedia 5.4 (2009),
pp. 351–370 (cit. on pp. 1, 29, 31).

[25] Sinisa Husnjak et al. “Identification and Prediction of User Behavior Depending
on the Context of the Use of Smart Mobile Devices”. In: Proceedings of the 26th
International DAAAM Symposium 2016. Ed. by Branko Katalinic and Branko
Katalinic. DAAAM International Vienna, 2016, pp. 462–469 (cit. on pp. 1, 2).

[26] Andrey Ignatov et al. “AI Benchmark: Running Deep Neural Networks on Android
Smartphones”. In: Computer Vision – ECCV 2018 workshops. Ed. by Laura Leal-
Taixé and Stefan Roth. Vol. 11133. Cham, Switzerland: Springer, 2019, pp. 288–
314 (cit. on p. 16).

[27] International Organization for Standardization, Geneva, Switzerland. Ergonomics
of Human-System Interaction – Part 210: Human-Centred Design for Interactive
Systems. 2010. url: https://www.iso.org/standard/52075.html (cit. on pp. 1, 5).

[28] Dylan Jones. “Recent advances in the study of human performance in noise”.
Environment International 16.4-6 (1990), pp. 447–458 (cit. on p. 29).

[29] Satu Jumisko-Pyykkö and Teija Vainio. “Framing the Context of Use for Mobile
HCI”. International Journal of Mobile Human Computer Interaction 2.4 (2010),
pp. 1–28 (cit. on pp. 5, 8).

[30] Eija Kaasinen. User acceptance of mobile services: Value, ease of use, trust and
ease of adoption. Vol. 566. VTT Publications. Espoo: VTT, 2005, pp. 11–12 (cit.
on p. 6).

[31] Xiaomin Kang, Baoqi Huang, and Guodong Qi. “A Novel Walking Detection
and Step Counting Algorithm Using Unconstrained Smartphones”. Sensors 18.1
(2018), pp. 1–15 (cit. on pp. 2, 20).

[32] Hoyoung Kim et al. “An empirical study of the use contexts and usability prob-
lems in mobile Internet”. In: Proceedings of the 35th Annual Hawaii International
Conference on System Sciences. Ed. by Ralph H. Sprague. 2002, pp. 1767–1776
(cit. on p. 5).

https://www.iso.org/standard/52075.html

References 65

[33] Artur H. Kronbauer, Celso A. S. Santos, and Vaninha Vieira. “Smartphone Ap-
plications Usability Evaluation: A Hybrid Model and Its Implementation”. In:
Human-Centered Software Engineering. Ed. by Marco Winckler, Peter Forbrig,
and Regina Bernhaupt. Vol. 7623. LNCS sublibrary. SL 2, Programming and soft-
ware engineering. Heidelberg: Springer, 2012, pp. 146–163 (cit. on pp. 1, 11).

[34] Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore. “Activity Recognition
Using Cell Phone Accelerometers”. ACM SIGKDD Explorations Newsletter 12.2
(2011), pp. 74–82 (cit. on p. 19).

[35] Jakob Eg Larsen and Kristian Jensen. “Mobile Context Toolbox: An Extensible
Context Framework for S60 Mobile Phones”. In: Smart Sensing and Context.
Ed. by Payam Barnaghi. Vol. 5741. Lecture notes in computer science. Berlin:
Springer, 2009, pp. 193–206 (cit. on p. 11).

[36] Jakob Eg Larsen et al. “Observing the context of use of a media player on mo-
bile phones using embedded and virtual sensors”. In: NordiCHI 2010: Extending
Boundaries : Workshop on Observing the Mobile User Experience. Ed. by Ben-
jamin Poppinga et al. 2010, pp. 33–36 (cit. on pp. 1, 6).

[37] Florian Lettner and Clemens Holzmann. “Automated and unsupervised user in-
teraction logging as basis for usability evaluation of mobile applications”. In:
MoMM2012. Ed. by Ismail Khalil et al. ICPS: ACM international conference pro-
ceeding series. New York, USA: ACM, 2012, pp. 118–127 (cit. on p. 6).

[38] Florian Lettner and Clemens Holzmann. “Usability Evaluation Framework: Auto-
mated Interface Analysis for Android Applications”. In: Computer Aided Systems
Theory - EUROCAST 2011. Ed. by Roberto Moreno-Dîaz, Franz Pichler, and
Alexis Quesada-Arencibia. Vol. 6928. Lecture notes in computer science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 560–567 (cit. on p. 7).

[39] Min Lin et al. “How do people tap when walking? An empirical investigation
of nomadic data entry”. International Journal of Human-Computer Studies 65.9
(2007), pp. 759–769 (cit. on p. 1).

[40] Jessica Ljungberg, Gregory Neely, and Ronnie Lundström. “Cognitive perfor-
mance and subjective experience during combined exposures to whole-body vi-
bration and noise”. In: International Archives of Occupational and Environmental
Health. Vol. 77. 2004, pp. 217–221 (cit. on p. 18).

[41] Markus Löchtefeld et al. “Detecting users handedness for ergonomic adaptation
of mobile user interfaces”. In: Proceedings of the 14th International Conference on
Mobile and Ubiquitous Multimedia - MUM ’15. Ed. by Clemens Holzmann and
René Mayrhofer. New York, USA: ACM Press, 2015, pp. 245–249 (cit. on p. 2).

[42] Yonggang Lu et al. “Towards unsupervised physical activity recognition us-
ing smartphone accelerometers”. Multimedia Tools and Applications 76.8 (2017),
pp. 10701–10719 (cit. on p. 19).

References 66

[43] Neeraj Mathur, Sai Anirudh Karre, and Y. Raghu Reddy. “Usability Evaluation
Framework for Mobile Apps using Code Analysis”. In: Proceedings of the 22nd
International Conference on Evaluation and Assessment in Software Engineering
2018 - EASE’18. Ed. by Austen Rainer, Stephen G. MacDonell, and Jacky Keung.
New York, USA: ACM Press, 2018, pp. 187–192 (cit. on p. 2).

[44] E. M. Milic and D. Stojanovic. “Egosense: A Framework For Context-Aware Mo-
bile Applications Development”. Engineering, Technology & Applied Science Re-
search 7.4 (2017), pp. 1791–1796 (cit. on p. 10).

[45] Emiliano Miluzzo et al. “CenceMe – Injecting Sensing Presence into Social
Networking Applications”. In: Smart Sensing and Context. Ed. by Gerd Ko-
rtuem. Vol. 4793. LNCS sublibrary. SL 5, Computer communication networks
and telecommunications. Berlin and New York: Springer, 2007, pp. 1–28 (cit. on
p. 10).

[46] Sachi Mizobuchi, Mark Chignell, and David Newton. “Mobile text entry: Rela-
tionship between Walking Speed and Text Input Task Difficulty”. In: MobileHCI
05. Ed. by Manfred Tscheligi, Regina Bernhaupt, and Kristijan Mihalic. ACM
International conference proceeding series. New York, USA: The Association for
Computing Machinery, 2005, pp. 122–128 (cit. on p. 18).

[47] W. Moreno, O. Yurur, and C.-H. Liu. “Unsupervised posture detection by smart-
phone accelerometer”. Electronics Letters 49.8 (2013), pp. 562–564 (cit. on p. 20).

[48] Kriti Nelavelli and Thomas Ploetz. “Adaptive App Design by Detecting Handed-
ness” (2018), pp. 1–10 (cit. on p. 23).

[49] D. B. Nicholson et al. “Using Distraction-Conflict Theory to Measure the Effects of
Distractions on Individual Task Performance in a Wireless Mobile Environment”.
In: Proceedings of the 38th Annual Hawaii International Conference on System
Sciences. IEEE, 2005, pp. 1–9 (cit. on p. 6).

[50] Christian Monrad Nielsen et al. “It’s worth the hassle!” In: Mobile Human-
Computer Interaction - MobileHCI 2004. Ed. by Stephen Brewster and Mark
Dunlop. Lecture notes in computer science, 0302-9743. Berlin: Springer, 2004,
pp. 272–280 (cit. on p. 1).

[51] Marija Nikolic and Michel Bierlaire. “Review of transportation mode detection
approaches based on smartphone data”. In: 17th Swiss Transport Research Con-
ference. Ascona, Switzerland, 2017, pp. 1–18 (cit. on p. 19).

[52] Sonja Pedell et al. “Mobile Evaluation: What the Data and the Metadata Told Us”.
In: Proceedings of the Australian Conference on Computer-Human Interaction -
OZCHI ’03. 2003, pp. 96–105 (cit. on p. 6).

[53] Pengfei Zhou et al. “IODetector: A generic service for indoor outdoor detection”.
In: Proceedings of the 10th ACM Conferenceon Embedded Network Sensor Systems
- SenSys 2012. New York, USA: Association for Computing Machinery, 2012,
pp. 113–126 (cit. on p. 26).

References 67

[54] Valentin Radu et al. “A semi-supervised learning approach for robust indoor-
outdoor detection with smartphones”. In: Proceedings of the 12th ACM Conference
on Embedded Network Sensor Systems - SenSys ’14. Ed. by Ákos Lédecz, Prabal
Dutta, and Chenyang Lu. New York, USA: ACM Press, 2014, pp. 280–294 (cit. on
p. 26).

[55] Xukan Ran et al. “DeepDecision: A Mobile Deep Learning Framework for Edge
Video Analytics”. In: IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications. Piscataway, NJ: IEEE, 2018, pp. 1421–1429 (cit. on p. 16).

[56] Sasank Reddy et al. “Determining transportation mode on mobile phones”. In:
ISWC 2008. Piscataway NJ: IEEE Computer Society and IEEE, 2008, pp. 25–28
(cit. on p. 19).

[57] Virpi Roto. Web browsing on mobile phones: Characteristics of user experience.
Vol. 49. TKK Dissertations. Espoo: Helsinki University of Technology, 2006 (cit.
on p. 5).

[58] Jason Ryder et al. “Ambulation: A Tool for Monitoring Mobility Patterns over
Time Using Mobile Phones”. In: 2009 International Conference on Computational
Science and Engineering. IEEE, 2009, pp. 927–931 (cit. on p. 19).

[59] Zhanna Sarsenbayeva et al. “Challenges of situational impairments during inter-
action with mobile devices”. In: Proceedings of the 29th Australian Conference on
Computer-Human Interaction - OZCHI ’17. Ed. by Alessandro Soro et al. New
York, USA: ACM Press, 2017, pp. 477–481 (cit. on p. 1).

[60] Zhanna Sarsenbayeva et al. “Effect of Distinct Ambient Noise Types on Mobile
Interaction”. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiq-
uitous Technologies 2.2 (2018), pp. 1–23 (cit. on pp. 18, 29, 51).

[61] Nadav Savio and Jared Braiterman. “Design Sketch: The Context of Mobile Inter-
action”. International Journal of Mobile Marketing 2.1 (2007), pp. 66–68 (cit. on
p. 5).

[62] Bastian Schildbach and Enrico Rukzio. “Investigating selection and reading per-
formance on a mobile phone while walking”. In: MobileHCI ’10 Proceedings of the
12th International Conference on Human computer Interaction with Mobile De-
vices and Services. Ed. by Marco de Sá, Luís M. Carriço, and N. Correia. New
York, USA: Association for Computing Machinery, 2010, pp. 93–102 (cit. on p. 51).

[63] B. N. Schilit and M. M. Theimer. “Disseminating active map information to mobile
hosts”. IEEE Network 8.5 (1994), pp. 22–32 (cit. on p. 6).

[64] Albrecht Schmidt et al. “Advanced Interaction in Context”. In: Handheld and
Ubiquitous Computing. Ed. by Hans-W Gellersen. Vol. 1707. Lecture notes in
computer science. Berlin and London: Springer, 1999, pp. 89–101 (cit. on p. 20).

[65] Svenja Schröder, Jakob Hirschl, and Peter Reichl. “CoConUT- Context Collec-
tion for Non-Stationary User Testing”. In: Proceedings of the 18th International
Conference on Human-Computer Interaction with Mobile Devices and Services
Adjunct - MobileHCI ’16. Ed. by Fabio Paternò and Kaisa Väänänen. New York,
USA: ACM Press, 2016, pp. 924–929 (cit. on p. 10).

References 68

[66] Andrew Sears et al. “When Computers Fade: Pervasive Computing and
Situationally-Induced Impairments and Disabilities”. In: Universal Access in HCI.
Ed. by Constantine Stephanidis. Human factors and ergonomics. Mahwah, N.J.
and London: Lawrence Erlbaum, 2003, pp. 1298–1302 (cit. on p. 1).

[67] Muhammad Shoaib et al. “Resource consumption analysis of online activity recog-
nition on mobile phones and smartwatches”. In: 2017 IEEE 36th International
Performance Computing and Communications Conference (IPCCC). Piscataway,
NJ: IEEE, 2017 (cit. on pp. 16, 19).

[68] Brandon T. Taylor and V. Michael Bove. “Graspables: Grasp-Recognition as a
User Interface”. In: The 27th annual CHI conference on Human Factors in Com-
puting Systems. Ed. by Saul Greenberg. New York, USA: Association for Com-
puting Machinery, 2009, pp. 917–925 (cit. on p. 23).

[69] Bettina Thurnher et al. “Exploiting Context-Awareness for Usability Evaluation
in Mobile HCI”. In: Proceedings of Usability Day IV. Pabst Science, 2006, pp. 109–
113 (cit. on pp. 2, 5).

[70] Alexandros S. Tsiaousis and George M. Giaglis. “An Empirical Assessment of
Environmental Factors that Influence the Usability of a Mobile Website”. In:
Ninth International Conference on Mobile Business and 2010 Ninth Global Mobil-
ity Roundtable (ICMB-GMR), 2010. Piscataway, NJ: IEEE, pp. 161–167 (cit. on
pp. 1, 5, 29).

[71] Alexandros S. Tsiaousis and George M. Giaglis. “Evaluating the Effects of the
Environmental Context-of-Use on Mobile Website Usability”. In: Proceedings of
7th International Conference on Mobile Business (ICMB 2008). Barcelona, Spain,
pp. 314–322 (cit. on p. 5).

[72] Heli Väätäjä. “Characterizing the Context of Use in Mobile Work”. In: Hu-
man work interaction design. Ed. by Jose Abdelnour-Nocera et al. Vol. 468.
IFIP Advances in Information and Communication Technology, 1868-4238. Cham:
Springer, 2015, pp. 97–113 (cit. on pp. 5, 8).

[73] K. van Laerhoven and O. Cakmakci. “What shall we teach our pants?” In: The
fourth international symposium on wearable computers. 2000, pp. 77–83 (cit. on
p. 19).

[74] Weiping Wang et al. “Indoor-Outdoor Detection Using a Smart Phone Sensor”.
Sensors 16.10 (2016), pp. 1–15 (cit. on p. 26).

[75] Jacob O. Wobbrock, Brad A. Myers, and Htet Htet Aung. “The performance
of hand postures in front- and back-of-device interaction for mobile computing”.
International Journal of Human-Computer Studies 66.12 (2008), pp. 857–875 (cit.
on p. 23).

[76] Zhibin Xiao et al. “Identifying Different Transportation Modes from Trajectory
Data Using Tree-Based Ensemble Classifiers”. ISPRS International Journal of
Geo-Information 6.2 (2017), pp. 57–79 (cit. on p. 19).

References 69

[77] Ji Soo Yi et al. “Context awareness via a single device-attached accelerometer
during mobile computing”. In: MobileHCI 05. Ed. by Manfred Tscheligi, Regina
Bernhaupt, and Kristijan Mihalic. ACM International conference proceeding se-
ries. New York, USA: The Association for Computing Machinery, 2005, pp. 303–
306 (cit. on p. 29).

[78] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. “Deep Learning in Mobile
and Wireless Networking: A Survey”. IEEE Communications Surveys & Tutorials
(2019), pp. 1–67 (cit. on p. 16).

Online Sources

[79] Wikipedia contributors. Dipole model of the Earth’s magnetic field — Wikipedia,
The Free Encyclopedia. 2018. url: https://en.wikipedia.org/wiki/Dipole_model_o
f_the_Earth%27s_magnetic_field (visited on 06/16/2019) (cit. on p. 27).

[80] Wikipedia contributors. Low-pass filter — Wikipedia, The Free Encyclopedia.
2019. url: https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_im
pulse_response_filter (visited on 06/16/2019) (cit. on p. 27).

[81] Denzil Ferreira. AWARE: OpenWeather plugin. 2019. url: https://github.com/de
nzilferreira/com.aware.plugin.openweather (visited on 05/10/2019) (cit. on p. 31).

[82] Interaction Design Foundation. What is Cognitive Friction? 2019. url: https://ww
w.interaction-design.org/literature/topics/cognitive-friction (visited on 05/07/2019)
(cit. on p. 7).

[83] Google. The Android Open Source Project: TwilightService.java. 2019. url: http
s://android.googlesource.com/platform/frameworks/base/+/kitkat-release/servic
es/java/com/android/server/TwilightService.java (visited on 06/16/2019) (cit. on
p. 27).

[84] James McCracken (https://stackoverflow.com/users/868492/james-mccracken).
Android 6.0 multiple permissions. 2019. url: https://stackoverflow.com/questi
ons/34342816/android-6-0-multiple-permissions (visited on 05/21/2019) (cit. on
p. 36).

[85] StatCounter. Desktop vs Mobile Market Share Worldwide. 2019. url: http://gs.st
atcounter.com/platform-market-share/desktop-mobile/worldwide/#monthly-20090
1-201904 (visited on 05/03/2019) (cit. on p. 1).

[86] Research Group Mobile Interactive Systems. automate toolkit. 2019. url: https
://mint.fh-hagenberg.at/?page_id=579 (visited on 05/10/2019) (cit. on pp. 9, 17,
33).

[87] Karlsruhe Institute of Technology. Privacy Friendly Schrittzähler App. 2019. url:
https ://secuso.aifb.kit .edu/Schrittzaehler .php (visited on 06/04/2019) (cit. on
p. 20).

https://en.wikipedia.org/wiki/Dipole_model_of_the_Earth%27s_magnetic_field
https://en.wikipedia.org/wiki/Dipole_model_of_the_Earth%27s_magnetic_field
https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter
https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter
https://github.com/denzilferreira/com.aware.plugin.openweather
https://github.com/denzilferreira/com.aware.plugin.openweather
https://www.interaction-design.org/literature/topics/cognitive-friction
https://www.interaction-design.org/literature/topics/cognitive-friction
https://android.googlesource.com/platform/frameworks/base/+/kitkat-release/services/java/com/android/server/TwilightService.java
https://android.googlesource.com/platform/frameworks/base/+/kitkat-release/services/java/com/android/server/TwilightService.java
https://android.googlesource.com/platform/frameworks/base/+/kitkat-release/services/java/com/android/server/TwilightService.java
https://stackoverflow.com/questions/34342816/android-6-0-multiple-permissions
https://stackoverflow.com/questions/34342816/android-6-0-multiple-permissions
http://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/#monthly-200901-201904
http://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/#monthly-200901-201904
http://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/#monthly-200901-201904
https://mint.fh-hagenberg.at/?page_id=579
https://mint.fh-hagenberg.at/?page_id=579
https://secuso.aifb.kit.edu/Schrittzaehler.php

	Declaration
	Acknowledgements
	Abstract
	Kurzfassung
	Introduction
	Motivation
	Goals and Contributions
	Challenges
	Outline

	Usability in Contexts
	Comparative Definition
	Influences on Usability
	Supportive Usability Metrics
	Types of Context

	Related Work
	Research Projects
	AUToMAte
	AWARE
	CenceMe
	CoConUT
	EgoSENSE
	Mobile Context Toolbox
	UEProject
	Where-How-What Am I Feeling (WHWAIF)

	Commercial Tools
	Amplitude
	Appsee
	Apptimize
	Flurry Analytics
	Google Analytics
	Localytics

	Discussion and Comparison

	Implementation
	Overview
	Technical Design
	Activity Detection
	Handedness Detection
	Environment Detection
	Indoor and Outdoor Conditions
	Lighting Conditions

	Sound Detection
	Weather Detection
	Usability Metrics
	Data Export
	Information Management
	Demo Application Development
	Integration to the Application mobile-pocket
	Testing

	Evaluation
	User Study
	Data Analysis
	Reporting the Results
	Discussion and Summary

	Conclusion
	Limitations
	Future Work

	Algorithm Flow Charts
	CD-ROM Contents
	Context Information Toolkit
	Demo Application
	Datasets
	Visualization
	Thesis

	References
	Literature
	Online Sources

