
Developing a framework-concept to
evaluate and present car-telemetries to
support users in fuel- and time-saving

driving

Reichart Robert

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Juni 2014

© Copyright 2014 Reichart Robert

All Rights Reserved

ii

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, June 25, 2014

Reichart Robert

iii

Contents

Declaration iii

Abstract vi

Kurzfassung vii

1 Motivation 1

2 Related Work 3
2.1 Fuel-saving driving . 3

2.1.1 AndroWi . 3
2.1.2 GreenR . 4

2.2 Time-saving driving . 5
2.2.1 Google Maps for Android/iOS 5
2.2.2 Osmand+ . 6

3 The Concept 8
3.1 Requirements . 8

3.1.1 Server . 8
3.1.2 Client . 11

3.2 Result . 12
3.2.1 Server . 13
3.2.2 Database . 15
3.2.3 Client . 16

4 Implementation 23
4.1 Smartphone operating systems 23

4.1.1 Android . 23
4.2 Server . 28

4.2.1 Main . 28
4.2.2 Network manager . 31
4.2.3 Module manager . 32
4.2.4 Mailmanager . 38
4.2.5 EventManager . 39

iv

Contents v

4.2.6 Graphical user interface 40
4.3 Client . 42

4.3.1 Implementation . 42
4.3.2 Main . 42
4.3.3 Network manager . 45
4.3.4 User manager . 46
4.3.5 Telemetry manager . 48
4.3.6 View manager . 48

4.4 Protocol . 53

5 Conclusion 56
5.1 Benefits and Drawbacks . 56

5.1.1 Benefits . 56
5.1.2 Drawback . 57

5.2 Result . 57

6 Future Work 58
6.1 Connecting an Android device to the car 58

6.1.1 Problems gaining car telemetries using OBD2 59
6.2 iPhone client . 59

6.2.1 Connecting an Apple device to the car 60
6.3 Motivating drivers . 60

A CD-ROM Content 61
A.1 PDF-Files . 61
A.2 Source Code . 61

References 62
Literature . 62
Online sources . 62

Abstract

In this thesis a framework and a client are implemented which support users
in fuel- and time-saving driving. To do so users have to create an account
using a valid email address to which a activation code gets sent. When
the account is activated users are able to add cars to their cars list by
using the cars manufacturer, model, engine, and build date range. While
driving, the cars telemetry which contains the current fuel consumption,
speed, and location are sent to the server using a self-implemented JSON
based protocol, compared against other users car telemetries and responded
to the client which shows the current users location, speed and the speed
the user would may drive to reach the destination as fast as possible while
not having to handle the circumstance of too much fuel consumption. The
implemented framework should be modular, high scaleable and easy to be
customized and configured.

vi

Kurzfassung

In dieser Masterarbeit werden ein Framework und eine Benutzeranwendung
entwickelt, um Anwender beim sprit- und zeitsparenden Fahren zu unter-
stützen. Um dies zu erreichen müssen Anwender mit einer gültigen E-Mail
Adresse (an welche später ein Aktivierungscode geschickt wird) einen Ac-
count erstellen. Sobald der Account aktiviert worden ist, können Anwender
Autos zu ihrer Autoliste hinzufügen in dem sie den Hersteller, das Model, die
Motorleistung sowie die Datumsspanne der Produktion angeben. Während
der Fahrt werden die Telemetriedaten des gefahrenen Autos (welche den
momentanten Spritverbrauch, Geschwindigkeit und die Position des An-
wenders beinhalten) mittels eigenentwickelten und JSON basierten Pro-
tokoll an den Server gesendet, welcher diese mit den Telemetriedaten der
anderen Anwender vergleicht und zur Benutzeranwendung (welche dem An-
wender seine aktuelle Position und seine Geschwindigkeit sowie die maximale
Geschwindigkeit die er fahren kann ohne gravierierende Spriteinbußen hin-
nehmen zu müssen) zurückgibt. Das entwickelte Framework soll modular
und hoch skalierbar sein sowie einfach angepasst und konfiguriert werden
können.

vii

Chapter 1

Motivation

Since the last decade the fuel price in Germany and Austria is more and
more increasing. While one liter of super fuel in Germany has cost in average
1.05e in 2002, the average price in 2012 was 1.60e (see Figure 1.1).

Figure 1.1: Development of the super-fuel price per liter in Germany and
Austria. Data taken from [31] and [32].

A way to prevent car drivers from spending too much money on fuel is to
change their driving habit. This can be achieved by giving car drivers direct
feedback to their actual driving behavior. To do so the cars dashboard can be
used, which is already done by modern cars. Another way, which is also useful
for older cars, is using smartphones which are widely distributed nowadays.
A first cheap solution for needing less fuel while driving is to drive as slow
as possible and allowed which is described by Figure 1.2.

1

1. Motivation 2

3,5

5,5

7,5

9,5

11,5

13,5

15,5

80 100 130 150

Fu
e

l c
o

n
su

m
p

ti
o

n
 in

 l/
10

0k
m

Speed in km/h

Fuel Economy at Higher Speeds

Mercedes4C41804K Toyota4Prius VW4Golf4GT41.44TSI VW4Golf4GT42.04TDI

BMW4530i4Touring BMW4535d4Touring Opel4Zafira41.8 Opel4Zafira41.94CDTI

Figure 1.2: Fuel economy at higher speeds. Data taken from [14].

A disadvantage for using this method is that a car driver will not reach
the destination as fast as possible. In this master thesis a solution should
be discussed which takes care about needing as little fuel as possible while
reaching a destination as fast as possible.

Chapter 2

Related Work

In order that this thesis does not only look into one specific field, two types
of related work have to be differed. On the one hand, related work which is
handling fuel saving driving, and on the other hand related work which is
handling time saving driving.

2.1 Fuel-saving driving
There are two concepts of applications described in this thesis which should
support and motivate users in fuel saving driving. Both concepts receive their
car data from the OBD2 [16] diagnose interface which has to be installed in
every car since 2001 [39].

2.1.1 AndroWi

AndroWi [2] is using a very simple collaborative concept. As Figure 2.1
illustrates, a user is building a Vehicular Adhoc Network. By using this
network a user is connected to other cars in a given distance. In AndroWi’s
case the WiFi-Direct protocol is used. If the user receives a ’better’ (based
on ’fuzzy logic’ which is mentioned but not more detailed described in [2])
driving data from the connected cars in his area, the driving data gets shown
to the user.

3

2. Related Work 4

Figure 2.1: Concept of AndroWi by using a VANET.

2.1.2 GreenR

GreenR [23] which is developed by Josef and Stefan Wasserbauer is an iOS
application to motivate users in fuel saving driving. The concept which is
described by Stefan Wasserbauers master thesis from 2012 [6] is that all
users are collaborating to paint the streets green on the map shown by the
application (see Figure 2.2). To do so the current driving data of the car
gets evaluated. If the user is driving economically which means that the car
driver is not accelerating too quickly, the driven path will be painted green
otherwise it is painted blue.

Figure 2.2: Concept of GreenR. Image is taken from [24].

2. Related Work 5

2.2 Time-saving driving

2.2.1 Google Maps for Android/iOS

Google Maps which is available for Android [35] and iOS [20] is a server-side
based navigation application which guides users on the fastest and there-
fore most time-saving way to their destination. Its download and usage is
completely free. To start navigating a user has to enter the starting location
(which can automatically be replaced with the current location) and end
location. This data gets sent to the server which responds at least one suit-
able route (in most cases three) and the corresponding precalculated trip
time, length and warnings if a route for example has a toll (see Figure 2.3a).
In navigation mode the screen is simple and provides all information in a
non disturbing way (see Figure 2.3b). The instructions are also provided
via audio. Because it’s a server-side application, the map and the driving
instructions have to be downloaded which can lead to a lot of traffic for
mobile devices like smartphones.

(a) Possible Routes (b) Navigation Mode

Figure 2.3: Google Maps: Routing and Navigation.

2. Related Work 6

2.2.2 Osmand+

Osmand+ [43] which is only available for Android is another navigation
application which guides users on the fastest way to their destination too.
Contrary to Google’s Maps application it has to download and store maps
on the device which makes it to a client-side application. The maps which
can be downloaded by Osmand+ are provided by OpenStreetMap [41]. In
the free version a user can only download maps and additional packages for
ten times. The full version which can be downloaded for e6.99 provides un-
limited content support. To start navigating a destination has to be set. To
set a destination its country has to be selected at first. After the destinations
country has been selected, the desired town, street and house-number are
selectable too (see Figure 2.4a). If the distance between the current location
and the destination location is below 200 km the route will automatically
be calculated, otherwise an alert is shown that no valid route can be found
(see Figure 2.4b) which can either be accepted or an option selected which
makes it possible to find a route which might not be optimal in meanings
of the trip time. While navigating the screen of Osmand+ is not offensive
or disturbing which is illustrated by Figure 2.5. All directions can clearly be
seen and are also provided via audio if a suitable package is downloaded.

(a) Adress Input (b) Trip length alert

Figure 2.4: Osmand+: Routing.

2. Related Work 7

Figure 2.5: Osmand+: Nagivation Mode.

Chapter 3

The Concept

In this chapter of the thesis a concept should be presented which supports
multiple users in fuel- and time-saving driving. This can be achieved by
using a client-server structure. To design a concept which is suitable to
such a client-server structure, the requirements shown in section 3.1 have
to be collected and evaluated which leads later on to the results shown in
section 3.2.

3.1 Requirements
Because of the above mentioned client-server structure the requirements for
the server (shown in section 3.1.1) and the client (shown in section 3.1.2)
have to be collected and evaluated. The results which are discussed in sec-
tion 3.2 are showing the final concept.

3.1.1 Server

The servers requirements are that it has to be modular, high scaleable, per-
sistent and secure because of the data sent to and received from the clients.
In addition to that it must be able to receive and respond car telemetries,
distinguish different cars and users and must be able to calculate routes from
a given location to a given destination. All requirements mentioned before
are more detailed described below.

Modularity

To make it easy for developers to extend a framework it has to be easily
to be extended and configured. This can be achieved by modularity. The
idea behind modularity in this case is that modules can easily be added or
removed by developers. All modules are later loaded by the framework in
its start-up phase.

8

3. The Concept 9

High scaleability

In the worst case the concept has to deal with all car drivers in the area
where the concept should be available. For example, in Germany and Austria
a total count of 67.88 million cars were registered at the end of 2013 (see [7]
and [50]). In the case that only 5% of Germany’s and Austria’s car drivers
will use the concept it has to handle the connections and network-traffic
of approximately 3.4 million car drivers. To handle such a big amount of
connections the framework has to create a bunch of threads/processes which
can lead to a slow or crashing server. To prevent such a circumstance a
thread- or process-pool should be used.

Providing/Receiving car-telemetry

Car drivers can be supported in time- and in fuel-saving driving if they are
supported with information where to drive (more detailed described in sec-
tion "Navigating" on page 11), how fast to drive and which gear to use.

Due to the fact that there will be too much time effort and too much data
to store to provide car telemetries of every location to guide a user to his
destination as fast as possible while driving as economically as possible, the
mathematics behind the concept described in this paper calculates a score
for each dataset received from the user. The best data, which means the
data with the lowest score, gets provided.

Mathematics
A users current location defined by his latitude and longitude can be mapped
to a position on the worlds map. If this position meets certain requirements,
in this case if the location is an intersection (which means that it is an
element of the group of all intersection locations L), the user reached the
end of a section 𝑠, which is described by

𝑠 = [𝑙start, 𝑙end] , where 𝑙start, 𝑙end ∈ L . (3.1)

A users dataset 𝑑𝑖 which is described by the time Δ𝑡𝑖 the user has needed
to get from the sections start to the sections end, the needed average fuel
consumption Δ𝑓𝑖, the driven average speed 𝑣𝑖 and the average gear 𝑔𝑖, such
that

𝑑𝑖 = {Δ𝑡𝑖, Δ𝑓𝑖, 𝑣𝑖, 𝑔𝑖} (3.2)

can be gained by collecting the users car-telemetries in short and regular
intervals.

3. The Concept 10

For each dataset 𝑑𝑖 a score 𝑆𝑖 can be calculated by the sum of the per-
centage difference of the users used time and average fuel to the average
time Δ𝑡0 = 1

𝑛

∑︀𝑛
𝑖=1 𝑡𝑖 and average average fuel 𝑓0 = 1

𝑛

∑︀𝑛
𝑖=1 Δ𝑓𝑖 of all users

such that
𝑆𝑖 = Δ𝑡𝑖

Δ𝑡0
+ Δ𝑓𝑖

𝑓0
= Δ𝑡𝑖

1
𝑛

𝑛∑︀
𝑖=1

Δ𝑡𝑖

+ Δ𝑓𝑖

1
𝑛

𝑛∑︀
𝑖=1

Δ𝑓𝑖

. (3.3)

Over all scores 𝑆𝑖 ∈ S of section 𝑠 there is now at least one minimal score
𝑆min which underlying data 𝑑𝑟 defined by

𝑑𝑟 = {𝑆min ∈ 𝑆|𝑆min ≤ 𝑆𝑖} (3.4)

gets returned to the specific user.

A big drawback of the above mathematics is that it does not take care
about different car fuel consumption averages. For example a Smart fortwo
has a much lower fuel consumption average Δ𝑓 than a Chrysler 300 C Tour-
ing which is shown by Table 3.1.

Manufacturer & Model Δ𝑓

Chrysler 300C Touring 10.8
Porsche Panamera 8.4
Volkswagen Polo III Variant 6.2
Kia Cee’d 6.0
Mini One 5.4
Smart fortwo 4.2

Table 3.1: Average fuel consumption of different cars: Data taken from [9].

To take care about different car types using the mathematics above, the sys-
tem has to distinguish which datasets to take into the score calculation. One
solution to achieve this is to combine each dataset with its corresponding
car type (more detailed described below).

User Management

As mentioned above, different fuel consumption averages of cars have to
be distinguished. A solution to such a problem can be user management.
This means that every user has to register to get his own account. Now
taking this account, users have the possibility to add cars (provided by the
server) to their list of driven cars and select a car for driving. Whenever
the users data is now sent to the server, the corresponding car gets added

3. The Concept 11

automatically which makes it possible for the server to distinguish the users
data by different car fuel averages.

Navigating

The route with the shortest trip time has to be calculated to make it easier
for car drivers to take an optimal route to their destination and therefore
driving time-saving. This is already done by navigation systems mostly using
the Dijkstra [3]- or A* [5]-algorithm, but also needs to be done in this concept
to get a one device system to not depend on other applications and to not
disturb users while driving.

Persistency

A lot of data (see section 3.1.1) has to be managed and handled. By making
it persistent with the drawback to a delay due to reading it from disc to
memory can prevent it from being lost due to an server shut-down, restart
or crash.

Security

Due to the user management, sensitive data (like a persons email address,
password, current location or the driven cars) has to be sent to the server. To
make it hard for third parties to get this data it has to be secured. This can
be achieved by securing the connection to the clients using SSL. Another
important point of security is not to store passwords and other personal
informations in human readable form.

3.1.2 Client

A part of the above mentioned requirements to the server of the client-
server structure are also suitable for the client. These include that the client
has to provide a way to show and receive car-telemetry as well as a user
management and security. An additional point is that the client must be
able to show the users current location on a map.

Providing maps and car-telemetries

Because of users should be navigated to their destination to drive as time-
saving as possible, a map should be shown which shows the users current
location and in which direction he should drive. Additional information
which has to be provided to users while driving are car-telemtries (which
are more detailed described in the servers requirements in section 3.1.1) to
make it possible for users to drive as fuel-saving as possible. To receive car-
telemetries, the users current car-telemetry has to be gained and sent to the
server.

3. The Concept 12

User management

The server must be able to distinguish different car types, therefore the client
has to provide information about which kind of car the user is currently
driving. To do so the user must be able to add his driven cars to a list and
select the car which he is currently driving. This can be achieved by using
user management.

Security

Because of a lot of sensible user data (like the users alias and password) is
sent to the server the connection has to be secured to not make it easy for
third parties to gain this information. As mentioned in the server-requirements
(see section 3.1.1) the connection should therefore be SSL-secured. Another
point in security is that the users alias and password should not be stored
in human readable form whenever they are stored on the users device.

3.2 Result
Taking all of the above mentioned requirements into account leads to the
concept described below. As mentioned in section 3.1 the preferred structure
is a client-server-structure which is combined with a database and a SSL
secured connection to match the security and persistency requirements (see
Figure 3.1).

Users/Applications

DatabaseServer

SSL-Secured

Figure 3.1: The concepts Client-Server structure.

3. The Concept 13

3.2.1 Server

As Figure 3.2 shows the server of the concept is divided into different man-
agers. The network manager whose task is connection handling, the event
manager which makes it possible for modules to fire and handle events and
the module manager which holds and loads the user module, tracking mod-
ule, database module and other modules which may be provided.

Server

Network manager Module manager Event manager

Figure 3.2: Server overview

Network manager

The network managers first task on server start-up is to open a port on
the server on which the framework can listen on to handle SSL connection
establishment. As a second task the network manager has to handle all the
clients’ incoming connections and delivered messages (see Figure 3.3). To
achieve this a thread-pool which is mentioned in section "High scaleability"
of page 9 is used (because a lot of threads can be created on server start-up
where they can not cause any harmful delay) where every connection to a
client is handled in its own thread.

NetworkManager

ClientConnection

Users/Applications

SSL-Secured

Figure 3.3: Network manager

3. The Concept 14

Module manager

As seen in Figure 3.4 the module managers simple task is to load and hold
the user module, the tracking module, the database module and all other
modules which may be provided by the developer. New modules, which are
not currently part of the framework can easily be added or exchanged by
following a few guidelines which are described in detail in chapter 4.

Module manager

User module Tracking module Database module

Figure 3.4: Module manager

User module
The requirements described in section "User management" of section 3.1.1
are fulfilled by the user module. Its tasks are creating, deleting and updat-
ing user accounts. Objectives which are part of updating user accounts are
changing passwords and adding, deleting or selecting cars which are cur-
rently driven.

Tracking module
Receiving car data, calculating the car data’s score (which includes distin-
guishing between different fuel average consumptions), providing the car-
telemetry with the lowest score and calculating routes are fulfilled by the
tracking module by using the database module.

Database module
The database module has to be implemented in a special way because it
represents the database which is described in section 3.2.2. The database
module has to provide methods to create, update or delete objects in the
database. By using the database module, for the server it is not necessary to
know to which specific type of database it is connected to. This could either
be a MySQL-database or another type of database.

3. The Concept 15

3.2.2 Database

As described above the type of the database is free to choose but in this
concept and its subsequent implementation a MySQL-database is used which
contains all information needed to enable user management and to be able
to compare car telemetries without any redundancy (see Figure 3.5).

user

idPS

email

passwordhash

cars

idPS

manufacturer

model

engine

averageFuelConsumption

usercars

caridFK

useridFK

tracks

idPS

useridFK

caridFK

sectionidFK

time

fuel

gear

speed

sections

idPS

start

endproductionStart

productionEnd

Figure 3.5: Database model

3. The Concept 16

User and Cars

The least amount of data which has to be stored to enable user management
is the users e-mail address, password and driven cars. To uniquely identify a
car the cars manufacturer, model, engine (horsepower and fuel consumption
average) and the cars production date range have to be stored.

Sections and Tracks

While only a sections start- and end-point is needed to store a in Equa-
tion 3.1 defined section, much more informations are needed to store a users
track. As described in Equation 3.2 and Equation 3.3 the data which has
to be saved to store a track are the tracks section, the users id, the users
needed time, the used car, the fuel consumption average, the used speed
average and the used gear average.

3.2.3 Client

As seen in Figure 3.6 the client consists of several managers. The network
manager which handles the connection to the server, the view manager which
provides different views, the user manager which is used for user manage-
ment and the telemetry manager which includes the locationmanager and
carmanager to gain the needed car telemetries.

Client

Network
manager

Telemetry
manager

Location
manager

Car
manager

View
manager

User
manager

Figure 3.6: Client structure

Network manager

The clients network managers task is to establish and handle the connection
to the server. Because of sensitive user data is sent to the server, SSL is used
to secure the connection against third parties.

3. The Concept 17

User manager

The task of the user manager is to create and manage the users account.
This means that the manager has to be able to add cars to the users cars
list and delete them if necessary. Another task of the user manager, is to
make it easy for users to select which car they are driving.

Telemetry manager

Collecting car specific data which is relevant to be sent to the server is the
telemetry managers task. Therefore the car managers task is to collect the
users current speed, gear and fuel consumption average. To gain the cars
current speed, gear and fuel consumption average it has to be connected
to the cars diagnose interface described below. The current users location
might not be direct a car telemetry data but has to be sent to the server
too to make it possible for the server to achieve on which section the user
actually drives. To get the users current location, the locationmanager is
used.

OBD2
As described in an article of the Air Resources Board from the California
Environmental Protection Agency [16], OBD2 is an acronym for On-Board
Diagnostic II which is the second generation of an on-board self-diagnostic
system which has to be installed in every car which is sold in California since
1996. In Germany the OBD2 system has to be installed in every super fuel
car which is sold since 2001 and every diesel fuel car which is sold since 2004
(see [39]). The shape and bit configuration of the OBD2 interface which is
shown by Figure 3.7 and Table 3.2 is regulated in Germany by ISO 15031-3.
Which protocol to use, is free to the cars manufacturer choice. The J1850
protocol is mostly used by American cars, while K-Line is used in European
cars. Since 2007/2008 the CAN protocol has to be supported in America
and Europe.

To request specific values by using the CAN protocol, hex-coded codes have
to be sent to the interface. The first byte specifies the mode to be used (see
Table 3.3) while the second byte specifies the parameter ID (see Table 3.4)
if it has to be used for the chosen mode. For example to request the current
engine coolant temperature in °C the hex-coded request 0105 [39] has to
be sent to the OBD2 interface. More but not all modes and parameter IDs
which can be sent to the interface are shown by Table 3.3 and Table 3.4.
The hex-coded response can be calculated to the real temperature by using

𝑉 = 𝐻

256 · [𝑀 − 𝑚] + 𝑚, (3.5)

3. The Concept 18

where 𝑉 , 𝐻, 𝑀 and 𝑚 are the calculated value, the returned hex-coded
value and the maximum and minimum value of the requested parameter. As
described in [39] at first the returned hex-coded value has to be converted
to a decimal-coded value. Later on it has to be divided by 1 · 28 bit as it is
a 1 byte value. Because of this byte is a normalised value for a given range
and offset the byte has to be multiplied by the the range and the offset has
to be added. For example the hex-coded return value 66 using Equation 3.5
results in

66hex
256 · [215 − (−40)] + (−40) = 102

256 · [215 − (−40)] + (−40) = 61.60 (3.6)

(see [39]) which means that the returned engine coolant temperature is round
about 62°C.

Figure 3.7: The shape of the OBD2 Interface. Image taken from [10].

Pin Description
2 J1850+ Protocol
4 Ground
5 Ground
6 CAN-H Protocol
7 K-Line Protocol
10 J1850- Protocol
14 CAN-L Protocol
15 L-Line Protocol
16 Battery Voltage

Table 3.2: OBD2 interface pin configuration by ISO 15031-3.

3. The Concept 19

Mode Description
01 Live Data
02 Freeze Frames
03 Stored Trouble Codes
04 Clear/Reset Stored Emissions Related Data
05 Oxygen Sensors Test Results
06 On-Board System Tests Results
07 Pending Trouble Codes
08 Control of On-Board Systems
09 Vehicle Information
0A Permanent Trouble Codes

Table 3.3: Possible OBD2 Modes: Data taken from [46].

PID DBR Description Min Max
05 1 Engine coolant temperature −40 °C +215 °C
06 1 Short term fuel % trim Bank 1 −100 % +99,22 %
07 1 Long term fuel % trim Bank 1 −100 % +99,22 %
08 1 Short term fuel % trim Bank 2 −100 % +99,22 %
09 1 Long term fuel % trim Bank 2 −100 % +99,22 %
0A 1 Fuel pressure 0 kPa 765 kPa
0B 1 Intake manifold absolute pressure 0 kPa 255 kPa
0C 1 Engine RPM 0 1/min 16383,75 1/min
0D 1 Vehicle speed 0 km/h 255 km/h
0E 1 Timing advance −64 ° 63,5 °

Table 3.4: Possible OBD2 Codes defined by SAE J1979 where DBR are the
Data bytes returned: Data taken from [46], [38] and [40].

View manager

Because of the client has to provide a various of information (like the users
cars list, location, where to drive, current speed, current gear, which speed
to drive and which gear to use) to the user and the client will be used on a
smartphone installed in a car, the clients design has to be simple, fit on a
little screen and should not be disturbing. To achieve this a lot of different
views will be used and therefore a view manager is needed.

3. The Concept 20

Navigating
As seen in Figure 2.3b there is already a non-disturbing design to navigate
users to their destination by just providing the information on top of the
map. By customizing this user interface the information how fast the user is
driving, how fast the user should drive, which gear the user is already using
and which gear the user should use can simply be displayed. In this concepts
case it is simply shown by little arrows beside the users speed and gear if
the user should drive faster or slower or if the user should shift up or down
(see Figure 3.8a). A simple button leads to a menu where the user can fill in
his destination (see Figure 3.8b). If the destination can not be found by the
server it responds at least one possible solution. If a destination is chosen,
the destination gets sent to the server which responds a possible route which
gets displayed on the applications map (see Figure 3.8a).

Showing Maps
There are two ways of showing maps on the users devices. Maps can be
stored on the Server or on the clients device itself:
Offline

To deploy maps on user devices the raw data of the maps which can be
rendered on the users device has to be stored on the server. To make
it easy for users to access and download this data a user interface has
to be created. An application which uses this type of providing map
data is Osmand+ (see section 2.2.2). A drawback of using this type
of showing maps is that it needs a lot of space to store the maps on
the users device. For example the maps of Bavaria and Austria used
by Osmand+ are consuming a space of approximately 1001 MB.

Online
Another way of showing maps which does not take as much as space
as the method described above but needs a proper internet connection
is by downloading and caching only the needed map for showing the
users current location like it is done by Google Maps (see section 2.2.1).

User manager
To provide a simple user management the user has to register an account
which can simply be done by the users email address and password (see
Figure 3.9). Later on users have to log-in with their credentials if it is not
done automatically when the users credentials are not stored on the device.

3. The Concept 21

Car manager
If the user is logged in, the cars list and an easy way to add new cars (like
by choosing the cars manufacturer, model, engine and build year), show a
cars details, select the currently driven car and delete existing cars have to
be provided (see Figure 3.10).

(a) (b)

Figure 3.8: Navigating

3. The Concept 22

(a) (b)

Figure 3.9: User manager

(a) (b)

Figure 3.10: Car manager

Chapter 4

Implementation

In this chapter of the thesis, the server (discussed in section 4.2) and a suit-
able client (discussed in section 4.3) shall be implemented. Because of the
server should be able to to run on most machines the programming language
Java is used. Connections to clients are handled by using ServerSockets and a
self-implemented and JSON based protocol which is more detailed described
in section 4.4. A graphical user interface is implemented too by using the
Standard Widget Toolkit to make it easier for programmers and users to
start and configurate the server.

To reach as many smartphone users as possible, a client for the smartphone
operating system with the most market share in the third quarter of 2013
is implemented (see section 4.1).

4.1 Smartphone operating systems
As seen in Table 4.1 there are a lot of available smartphone operating sys-
tems. To reach as many smartphone users as possible the smartphone oper-
ating system with the most market share of the third quarter of 2013 was
chosen.

4.1.1 Android

As described in Stephan Brähler’s paper ”Analysis of the Android Architec-
ture” [51] and in an article from an Android Blog [11], Android is a Linux
based smartphone operating system whose five level software stack (see Fig-
ure 4.1) contains parts implemented in C++ (green parts) as well as parts
implemented in Java (blue parts).

23

4. Implementation 24

Operating System 3Q13 Units 3Q13 Market Share %
Android 205,022,700 81.9
iOS 30,330,000 12.1
Microsoft 8,912,300 3.6
Blackberry 4,400,700 1.8
Bada 633,300 0.3
Symbian 457,500 0.2
Others 475,200 0.2
Total 250,231,700 100.0

Table 4.1: Worldwide Smartphone Sales to End Users by Operating System
in 3Q13. Source: Gartner (November 2013) [18].

Developing

Eclipse [15] is preferred to be used as development environment because
debugging and deploying is much more easier than by using the command
line which is besides the Netbeans development environment the only al-
ternative to it. To make a basic Eclipse environment work together with
Android phones, the Android Developer Tools Plugin [26] has to be used. A
bundle which contains the Eclipse development environment and an already
installed Android Developer Tool Plugin can be downloaded in the ADT
Bundle section from the Android developer site [47].

Testing and Debugging

To test and debug applications on a Android device, it has to be connected
to the Android Debug Bridge. This could either be a real device where USB
debugging is activated and which is connected via USB, a so called Android
Virtual Device (see Figure 4.2), or a virtual machine running a Android
System which is installed through an image from the AndroidX86 project
[13] (see Figure 4.3).

Graphical User Interfaces

Graphical User Interfaces in Android are created by using Java code or a
Android Layout XML. The layouts and elements which could be used are
shown by Figure 4.4. For example to create a simple HelloWorld application
the Java code of program 4.2 or the XML code of program 4.1 could be
used.

4. Implementation 25

Figure 4.1: Android software stack. Image taken from [11].

Figure 4.2: Android Virtual Device running Android 4.3.

4. Implementation 26

Figure 4.3: Oracle VirtualBox running Android 4.3 from the AndroidX86
project [13] given a custom resolution.

1 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"

2 xmlns:tools="http://schemas.android.com/tools"
3 android:layout_width="match_parent"
4 android:layout_height="match_parent"
5 tools:context="${packageName}.${activityClass}" >
6
7 <TextView
8 android:layout_width="wrap_content"
9 android:layout_height="wrap_content"

10 android:textSize="25sp"
11 android:text="Hello World!" />
12 </RelativeLayout>

Program 4.1: HelloWorld application generated by using XML.

4. Implementation 27

1 RelativeLayout layout = new RelativeLayout(this);
2 LayoutParams layoutLp = new LayoutParams(
3 LayoutParams.MATCH_PARENT,
4 LayoutParams.MATCH_PARENT
5);
6
7 TextView textView = new TextView(this);
8 textView.setText("Hello World!");
9 textView.setTextSize(25);

10 layout.addView(textView);

Program 4.2: HelloWorld application generated programatically.

(a) Linear Layout (b) Relative Layout (c) Web View

(d) Button (e) Label (f) Slider (g) Textfield

(h) SwitchButton (i) Checkbox (j) RadioButton

Figure 4.4: Android Layouts and Elements: (a) A layout that organizes its
children into a single horizontal or vertical row. It creates a scrollbar if the
length of the window exceeds the length of the screen. (b) Enables you to
specify the location of child objects relative to each other (child A to the left
of child B) or to the parent (aligned to the top of the parent). (c) Enables
you to specify the location of child objects relative to each other (child A to
the left of child B) or to the parent (aligned to the top of the parent). Images
and Descriptions taken from [54].

4. Implementation 28

4.2 Server
Figure 4.5 shows a low detailed overview where only the packages and main
classes are visible while section 4.2.1 to section 4.2.6 give a more detailed
view.

4.2.1 Main

As seen in program 4.3 and program 4.6 the main class of the so called
FuelTime-Framework handles the start-up and shutdown phase of the server.
On start-up it loads the configuration and initializes the different managers
which are described in detail in section 4.2.2 to section 4.2.4 and lines 65 to
69 of program 4.3). If an error occurs while starting up or the server gets
shut down, the server ends its managers (see lines 102 to 104 of program 4.6)
and displays the occurred error. The logger which is configurated by the
log4.properties file has to be loaded before starting the server. Therefore the
method defined by program 4.5 is used.

Configuration

To make it easy for developers to configurate the server and that the server
must no be re-compiled to use a new configuration, the configuration of all
managers is saved in a single XML file (see program 4.4) which is located
inside of the Config folder. Another file which lays in the Config folder is
the log4j.properties file to configure Log4J which is used for logging.

58 public void start() throws Exception{
59 log("FuelSaveGame Server 1.0");
60 log("Design and Implementation: Robert Reichart (S1210629016)");
61 log("");
62 log("Starting FuelSaveGame Server");
63 log("--");
64 try{
65 loadSettings();
66 initEventManager();
67 initMailSender();
68 initModuleManager();
69 initNetworkManager();
70 }catch(Exception ex){
71 stop(ExceptionUtils.getMessage(ex));
72 throw ex;
73 }

82 }

Program 4.3: The method used for starting the server.

4. Implementation 29

FuelTimeFrameworkServer

Location

Section

Track

User

Car

Module

DBModule

TrackingModule

Route

Intersection

MapData

UserModule

CarModule

MySQLDatabaseModule

MailManager

MailSendCallback

NetworkManager

ClientConnection

ModuleManager

EventManager

Figure 4.5: The structure of the implemented server.

4. Implementation 30

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <Server>
3 <NetworkManager>
4 <Port>2000</Port>
5 <ThreadPool>
6 <Type>Cached</Type>
7 <MaxCount>null</MaxCount>
8 </ThreadPool>
9 </NetworkManager>

10 <MailSender>
11 <ThreadPool>
12 <Type>Cached</Type>
13 <MaxCount>5</MaxCount>
14 </ThreadPool>
15 <SMTPStartTLS>No</SMTPStartTLS>
16 <SMTPHost>smtp.gmail.com</SMTPHost>
17 <SMTPPort>587</SMTPPort>
18 <SMTPAuth>true</SMTPAuth>
19 <SMTPUser>reichart.robert@gmail.com</SMTPUser>
20 <SMTPPassword>AngelikaPeter</SMTPPassword>
21 <From></From>
22 <ReplyTo></ReplyTo>
23 </MailSender>
24 <MySQLDatabase>
25 <Host>localhost</Host>
26 <Database>fuelsavegame</Database>
27 <User>fuelsavegame</User>
28 <Password>PRO2</Password>
29 </MySQLDatabase>
30 <Modules>
31 </Modules>
32 </Server>

Program 4.4: server.xml

84 public void loadLog4J() throws Exception{
85 Properties properties = new Properties();
86 properties.load(new File(CONFIG_PATH + "log4j.properties"));
87 PropertyConfigurator.configure(properties);
88 log = Logger.getRootLogger();
89 }

Program 4.5: The method used for loading Log4J.

4. Implementation 31

91 public void stop(String error){
92 if(error!=null){
93 if(!error.trim().equals("")){
94 error = "\nERROR MESSAGE:\n" + error;
95 }
96 }else{
97 error="";
98 }
99

100 log("==");
101 log("Server is shutting down");
102 try{mailSender.shutdown();}catch(Exception ex){}
103 try{networkManager.shutdown();}catch(Exception ex){}
104 try{moduleManager.unloadModules();}catch(Exception ex){}
105 log(error);
106 log("==");
107 log("Server ended");
108 isRunning=false;
109 }

Program 4.6: The method used for stopping the server.

4.2.2 Network manager

As seen in Figure 4.6 and described in section 3.1.1 and section 3.2.1 the
SSL secured connection to the clients is established by the network manager
using a threadpool. The threadpool can be created in Java by using the
ExecutorService. This can either be a cached threadpool
42 executorService = Executors.newCachedThreadPool();

which creates new threads on demand or a fixed threadpool
45 executorService = Executors.newFixedThreadPool(maxThreadCount);

which creates the given number of threads when it is created.

NetworkManager

ClientConnection

Users/Applications

SSL-Secured

Figure 4.6: Network manager

4. Implementation 32

In Java to establish a connection to a client which should be SSL secured
the so called SSLServerSocketFactory is used. It contains the method create-
ServerSocket(int port) which returns a traditional Java ServerSocket which
can be cast to a SSLServerSocket. Once the secured socket has been created
its cipher suites have to be enabled.
45 sslServerSocket = (SSLServerSocket) serverSocketFactory.

createServerSocket(PORT);
46 sslServerSocket.setEnabledCipherSuites(sslServerSocket.

getSupportedCipherSuites());

If now a client connects to the server the returned Socket object from the
SSLServerSocket’s accept() method can be cast to a SSLSocket. Giving the
SSLSocket to a Runnable which is executed by the ExecuterService using its
execute(Runnable runnable) method makes it possible to handle every client
in its own thread.
97 SSLSocket sslSocket = (SSLSocket)sslServerSocket.accept();
98 executorService.execute(new ClientConnection(this,sslSocket));

ClientConnection

As seen in the lines of the above shown code-snippet, for every client which
connects to the server a ClientConnection object gets created. The lines
below show the main part of the ClientConnection. Whenever a client sends a
message, a JSONObject [30] gets created and is given to the module manager
(see section 4.2.3) which passes it to the loaded modules and returns a
JSONArray (containing one JSONObject per module) which then gets sent
back to the client.
62 JSONObject request = new JSONObject(inputLine);
63
64 JSONArray response = moduleManager.getResponse(socket,request);
65 output.write(response.toString()+"\n");
66 output.flush();

4.2.3 Module manager

The main part of the module manager loads all modules and handles in-
coming messages from clients by passing them through to every module
which is registered for the specific type specified in the clients request (see
program 4.7).

4. Implementation 33

The user module, tracking module and MySQL-database module which are
described below and which are provided by the framework, follow specific
guidelines described below to get automatically loaded by the module man-
ager:
Folder

All modules must lay inside the modules folder or one of its sub folders.
Naming

Databasemodule
Every databasemodules name has to end with ’DatabaseModule’
to be loaded as a database module.

Generic Modules
A module whose name ends with ’Module’ is automatically rec-
ognized as a module. Otherwise its name has to be saved in the
configuration file described in section 4.2.1.

Abstract Class
A module has to extend the abstract class ’Module’ (see program 4.8).
A databasemodule has to extend the abstract class ’DatabaseModule’
(see program 4.9).

130 public JSONArray getResponse(Socket socket, JSONObject request){
131 JSONArray response = new JSONArray();
132
133 for(Module module: modules.get(request.getString("TYPE"))){
134 response.put(module.handle(socket,request));
135 }
136
137 return response;
138 }

Program 4.7: Module manager

9 public abstract class Module {
10 public Module(FuelTimeFrameworkServer server){}
11
12 public abstract void stop();
13 public abstract String getType();
14 public abstract JSONObject handle(Socket socket, JSONObject toHandle);
15 }

Program 4.8: Module Interface

4. Implementation 34

13 public abstract class DatabaseModule {
14 public DatabaseModule(FuelTimeFrameworkServer server){}
15 public abstract void stop();
16
17 public abstract User getUserById(int id);
18 public abstract User getUserByEmail(String email);
19 public abstract void saveUser(User user);
20 public abstract void deleteUser(User user);
21
22 public abstract Car getCarById(int id);
23 public abstract Car getCarByDetails(String manufacturer,String model,

String engine, long buildFrom, long buildTo);
24 public abstract ArrayList<String> getCarManufacturers();
25 public abstract ArrayList<String> getCarModels(String manufacturer);
26 public abstract ArrayList<String> getCarEngines(String manufacturer,

String model);
27 public abstract ArrayList<HashMap<String,String>>

getCarProductionDates(String manufacturer, String model, String
engine);

28
29 public abstract void saveTrack(Track track);
30 public abstract ArrayList<Track> getTracksBySectionID(long id);
31
32 public abstract Section getSectionByRoadID(int id, Location

startLocation);
33 public abstract ArrayList<Section> getSectionsByStartPoint(Location

startLocation);
34 }

Program 4.9: DatbaseModule Interface

User module

The user module manages the creation which means registering and acti-
vating of a user. Another part of the user module is adding and deleting
cars from the users cars list. To create an account a user has to register
(using a valid email address and password) and activate the account using
the activation code which is sent by email by using the mail manager which
is particularly described in section 4.2.4.

Whenever a user gets created or the users data changes, the user is saved in
a database using the MySQL-database module described in section 4.2.3.

4. Implementation 35

Trackingmodule

As described in section 3.2.1 the tracking module which lays in the tracking
folder inside the modules folder, handles the main work of the framework
which is receiving and responding car telemetries.

In a first step the users location conditions have to be determined to give
clients suitable car telemetries corresponding to their current location. In
this implementations case the condition to the users location are retrieved
using the overpass-api [45] (see program 4.12). In the case that the users
location can be assumed as a streets intersection the tracking information
of all users from this streets section (defined by Equation 3.1 and the users
current location as end location 𝑙end) using a car with similar fuel consump-
tion average to the clients car is taken into account to calculate the users
"score" using Equation 3.3 (see program 4.10).

To give the user time to react, the user must be provided with car teleme-
tries of the section which is in front. To predict which street the user will
drive next and to support users in time saving driving, the server has to be
able to calculate a route to the users destination (defined by its latitude and
longitude). This can be achieved by using the graphhopper library [21] (see
program 4.11).

A way which is used in this implementation to get an addresses latitude
and longitude is by using a nominatim service (see 4.13).

356 //Calculating the average time and fuel of all tracks
357 double averageTimeSum = 0;
358 double averageFuelSum = 0;
359 for(Track track: tracks){
360 averageTimeSum+=track.getDeltaTimeInSeconds();
361 averageFuelSum+=track.getFuelAverage();
362 }
363 double averageTime = averageTimeSum/tracks.size();
364 double averageFuel = averageFuelSum/tracks.size();
365
366 //Calculating each tracks score
367 for(Track track: tracks){
368 double percentTimeDiff = (track.getDeltaTimeInSeconds()/averageTime);
369 double percentFuelDiff = (track.getFuelAverage()/averageFuel);
370 double score = percentTimeDiff + percentFuelDiff;
371 track.setScore(score);

377 }

Program 4.10: Calculating track scores.

4. Implementation 36

176 GHRequest routeRequest = new GHRequest(
177 start.getLatitude(),
178 start.getLongitude(),
179 end.getLatitude(),
180 end.getLongitude()
181);
182 GHResponse routeResponse = graphhopper.route(routeRequest);

Program 4.11: Calculating a route using the Graphhopper library [21].

329 private MapData getMapData(Location location, double meters) throws
Exception{

330 try {
331 final String QUERY = "<query type=\"way\"><around lat=\""+location.

getLatitude()+"\" lon=\""+location.getLongitude()+"\" radius=\""+
meters+"\"/></query><union><item/><recurse type=\"down\"/></union><
print/>";

332
333 HttpClient httpclient = HttpClientBuilder.create().build();
334 HttpPost httppost = new HttpPost("http://overpass-api.de/api/

interpreter");
335
336 List<NameValuePair> nameValuePairs=new ArrayList<NameValuePair>(1);
337 nameValuePairs.add(new BasicNameValuePair("data", QUERY));
338 httppost.setEntity(new UrlEncodedFormEntity(nameValuePairs));
339
340 ResponseHandler<String> responseHandler=new BasicResponseHandler();
341 String responseBody = httpclient.execute(httppost, responseHandler);
342 return new MapData(responseBody);
343 } catch (Exception e) {
344 return null;
345 }
346 }

Program 4.12: Retrieving MapData using the Overpass API.

4. Implementation 37

211 URI uri = new URIBuilder()
212 .setScheme("http")
213 .setHost("nominatim.openstreetmap.org")
214 .setPath("/search.php")
215 .setParameter("q", new String (request.getString("ADDRESS").getBytes()

,"UTF-8"))
216 .setParameter("format", "json")
217 .setParameter("polygon", "1")
218 .build();
219
220 CloseableHttpResponse httpResponse = HttpClients.createDefault().execute

(new HttpGet(uri));

Program 4.13: Getting a adressess latitude and longitude using a nomina-
tim service.

MySQLDatabaseModule

The MySQLDatabaseModule extends the abstract class ’DatabaseModule’
shown by program 4.9 such that the server can call the specified methods
without knowing anything about the database structure behind. To connect
to the database the JDBC-Driver [37] and the configuration entries in the
configuration file (see program 4.4) are used.

Because of the users email address and password should not be stored in
human readable form they have to be encrypted. To encode human readable
data the method shown by program 4.14 is used while the method shown
by program 4.15 is used to decode encrypted data to human readable form.
Before encoding or decoding the cipher has to be initialised by using pro-
gram 4.16. The encryption used in this thesis is based on [12].

34 public static String encode(String plainText){
35 init();
36 try{
37 byte[] cleartext = plainText.getBytes("UTF8");
38 Cipher cipher = Cipher.getInstance("DES");
39 cipher.init(Cipher.ENCRYPT_MODE, key);
40 return base64encoder.encode(cipher.doFinal(cleartext));
41 }catch(Exception ex){ex.printStackTrace();return null;}
42 }

Program 4.14: Method used for encoding a String.

4. Implementation 38

46 public static String decode(String cipherText){
47 init();
48 try{
49 byte[] encrypedPwdBytes = base64decoder.decodeBuffer(cipherText);
50 Cipher cipher = Cipher.getInstance("DES");
51 cipher.init(Cipher.DECRYPT_MODE, key);
52 byte[] plainTextPwdBytes = (cipher.doFinal(encrypedPwdBytes));
53 return new String(plainTextPwdBytes, "UTF-8");
54 }catch(Exception ex){ex.printStackTrace();return null;}
55 }

Program 4.15: Method used for decoding a String.

16 private static void init(){
17 if(keyFactory==null){
18 try{
19 keyFactory = SecretKeyFactory.getInstance("DES");
20 }catch(Exception ex){ex.printStackTrace();}
21 }
22 if(keySpec==null){
23 try{
24 keySpec = new DESKeySpec("RobertReichartS1210629016".getBytes("

UTF8"));
25 }catch(Exception ex){ex.printStackTrace();}
26 }
27 if(key==null){
28 try{
29 key = keyFactory.generateSecret(keySpec);
30 }catch(Exception ex){ex.printStackTrace();}
31 }
32 }

Program 4.16: Initializing the cipher.

4.2.4 Mailmanager

The main task of the MailManager is to send the activationcode to newly
created users. As seen in program 4.4 the MailManager is configurated by the
configuration file. To send a mail by using JavaMail [29], a session is needed.
The session gets created by passing the mail servers’ login credentials as an
argument. After the session has been created, the transport object has to be
created using the transport method as argument. Once the transport object
is created, it is connected to the mail server using the earlier provided login
credentials (see lines 62 to 64 of program 4.17). In a final step, the email
itself which is handled as a message gets sent to its recipients using the
earlier created transport object (see lines 146 to 159 of program 4.17).

4. Implementation 39

62 session = Session.getDefaultInstance(sessionProperties, null);
63 transport = session.getTransport("smtp");
64 transport.connect(HOST,USER,PASSWORD);

146 Message message = new MimeMessage(session);
147 message.setFrom(new InternetAddress(from));
148 message.setReplyTo(InternetAddress.parse(replyTo));
149 message.setRecipients(Message.RecipientType.TO, InternetAddress.parse(

recipient));
150 message.setSubject(subject);
151 message.setText(text);

159 transport.sendMessage(message, message.getAllRecipients());

Program 4.17: Sending a mail using JavaMail.

4.2.5 EventManager

The Eventmanager shown by program 4.18 handles the registration and
deleting of EventListeners as well as the directing of Events (which are
only containing the constructor to set the events type, message and data
object and getters to access those values) to the EventListeners which were
registered to the events type (see Table 4.2).

Value Name
1 USER_CREATED
2 USER_ACTIVATED
3 CLIENT_CONNECTED
4 CLIENT_DISCONNECTED
5 EMAIL_SENT

Table 4.2: Event types

4. Implementation 40

25 public void handle(FuelTimeFrameWorkEvent fuelTimeFrameWorkEvent){
26 if(listeners.get(fuelTimeFrameWorkEvent.getType())!=null){
27 for(FuelTimeFrameWorkEventListener listener: listeners.get(

fuelTimeFrameWorkEvent.getType())){
28 listener.onEvent(fuelTimeFrameWorkEvent);
29 }
30 }
31 }
32
33 public void addEventListener(int eventType,

FuelTimeFrameWorkEventListener listener){
34 if(listeners.get(eventType)==null){
35 listeners.put(eventType, new ArrayList<

FuelTimeFrameWorkEventListener>());
36 }
37 listeners.get(eventType).add(listener);
38 }
39
40 public void removeEventListener(FuelTimeFrameWorkEventListener listener)

{
41 for(ArrayList<FuelTimeFrameWorkEventListener> list: listeners.values()

){
42 list.remove(listener);
43 }
44 }

Program 4.18: Event manager

4.2.6 Graphical user interface

Figure 4.7 and Figure 4.9 are showing the server’s final graphical user inter-
face which makes it easier for administrators to use and configure the server.
The application is implemented by using the Standard Widget Toolkit (SWT)
and changes the log4j properties in a way that whenever a manager or mod-
ule writes to the log a new tabular with only the managers or modules
output gets opened and no output is written to the console.

As shown by Figure 4.8 to Figure 4.9c the server can easily be configured
by using the graphical user interface such that the servers configuration file
must not be edited by hand which could cause problems.

4. Implementation 41

Figure 4.7: Graphical User Interface

Figure 4.8: Module Classnames

4. Implementation 42

(a) Mailsender

(b) Network

(c) Database

Figure 4.9: Mailsender, Network and Database settings.

4.3 Client

4.3.1 Implementation

Figure 4.10 shows a low detailed (only packages and classes) overview while
section 4.3.2 to section 4.3.6 give a more detailed view.

4.3.2 Main

The clients main part (see Figure 4.11 and program 4.19) which is located
inside the FuelTimeFrameworkClient class initializes the network manager
(see section 4.3.3), the user manager (see section 4.3.4), the telemetry man-
ager (see section 4.3.5) and the view manager (see section 4.3.6).

4. Implementation 43

FuelTimeFrameworkClient

Utilities

UserManager

NetworkManager

RequestResponseThread

RequestResult

ViewManager Animations

ViewInitializer AbstractInitializer

ActivateViewInitializer AddCarsViewInitializer

CarsViewInitializer LoginViewInitializer

MainViewInitializer RegActLogViewInitializer

RegisterViewInitializer RouteViewInitializer

MapViewInitializer OptimalTelemetryUpdaterCarManager

CustomLocationManager

TelemetryManager

Figure 4.10: The implemented Client structure.

4. Implementation 44

FuelTimeFrameworkClient

Network
Manager

Telemetry
Manager

View
Manager

User
Manager

Figure 4.11: The main part of the client: Initializing all used managers.

54 networkManager = NetworkManager.getInstance(IP,PORT);
55 userManager = UserManager.getInstance(this);
56 telemetryManager = TelemetryManager.getInstance(this);
57 viewManager = ViewManager.getInstance(this);
58 viewManager.addViewInitializer(new MainViewInitializer(this));
59 viewManager.addViewInitializer(new MapViewInitializer(this));
60 viewManager.addViewInitializer(new CarsViewInitializer(this));
61 viewManager.addViewInitializer(new RegActLogViewInitializer(this));
62 viewManager.addViewInitializer(new RegisterViewInitializer(this));
63 viewManager.addViewInitializer(new ActivateViewInitializer(this));
64 viewManager.addViewInitializer(new LoginViewInitializer(this));
65 viewManager.addViewInitializer(new AddCarsViewInitializer(this));

Program 4.19: The main part of the client: Initializing all used managers.

NetworkManager

RequestResponseThread

RequestResult

Server

SSL-Secured

Figure 4.12: Network manager

4. Implementation 45

4.3.3 Network manager

The task of the network manager shown in Figure 4.12 is to secure the con-
nection to the server SSL and handle the requests to and responses from
the server (described in section 3.1.1 and section 3.2.3). To do so in Android
the servers address and listening port are passed to the SSLServerSocket-
Factory which creates a Socket which can be cast to a SSLSocket. Once the
SSLSocket is created, its cipher suites have to be enabled.
51 sslSocket = (SSLSocket)socketFactory.createSocket(IP, PORT);
52 sslSocket.setEnabledCipherSuites(sslSocket.getSupportedCipherSuites());

The previous established connection can now be used to send messages to
and receive messages from the server. In Android this has to be done in a
extra thread because of the possible blocking reading and writing methods of
the socket, otherwise the method calls would end in an exception. To handle
writing and reading in a synchronous way while using an extra thread, the
methods wait() and notify() could be used (see program 4.20).

158 public JSONArray requestResponse(JSONObject request,int timeout) throws
IOException{

159 String ticketName = generateTicketName();
160 new RequestResponseThread(this,ticketName,request,timeout);
161 while(!requestResponseTickets.containsKey(ticketName)){
162 synchronized(this){
163 try{wait();}catch(Exception ex){}
164 }
165 }
166 RequestResult result = requestResponseTickets.remove(ticketName);
167 if(result.isValid()){
168 return result.getResult();
169 }else{
170 throw result.getException();
171 }
172 }
173
174 protected void setRequestResult(String ticket, RequestResult result) {
175 requestResponseTickets.put(ticket, result);
176 synchronized(this){notifyAll();}
177 }

Program 4.20: Handling asynchronous requests in a synchronous way.

4. Implementation 46

4.3.4 User manager

The user manager provides methods for user account management. This
includes registering, activating and login into an account. To automatically
login, the account credentials should be stored on the device. To achieve this
in Android the SharedPreferences could be used. To read from there, they
have to be loaded by following line of code.
24 sharedPreferences = main.getPreferences(Context.MODE_PRIVATE);

By using a getType method to request a value of the SharedPreferences a
default value has to be passed which gets returned if the requested value
cannot be found (see following code).
37 return Encryption.decode(sharedPreferences.getString("user_email", ""));

To store data in the shared preferences the editor object has to be used
which can be got by calling the edit() function from the SharedPreferences
object. After the data has been created or updated the commit() method
has to be called to take effect.
98 editor.putString("user_email", Encryption.encode(email));
99 editor.putString("user_password", Encryption.encode(password));

100 editor.commit();

Because of the users email address and password should not be stored in
human readable form they have to be encrypted. To encode human readable
data the method shown by program 4.21 is used while program 4.22 is used
to decode encrypted data to human readable form. Before encoding or de-
coding the cipher has to be initialized by the method shown in program 4.23.
The encryption used in this thesis is based on [12].

34 public static String encode(String plainText){
35 init();
36 try{
37 byte[] cleartext = plainText.getBytes("UTF8");
38
39 Cipher cipher = Cipher.getInstance("DES");
40 cipher.init(Cipher.ENCRYPT_MODE, key);
41 return Base64.encodeToString(cipher.doFinal(cleartext),Base64.

DEFAULT);
42
43 }catch(Exception ex){Log.e("Encryption","",ex);return "";}
44 }

Program 4.21: Method used for encoding a String.

4. Implementation 47

46 public static String decode(String cipherText){
47 init();
48 try{
49 byte[] encrypedPwdBytes = Base64.decode(cipherText,Base64.DEFAULT);
50
51 Cipher cipher = Cipher.getInstance("DES");// cipher is not thread safe
52 cipher.init(Cipher.DECRYPT_MODE, key);
53 byte[] plainTextPwdBytes = cipher.doFinal(encrypedPwdBytes);
54
55 return new String(plainTextPwdBytes, "UTF-8");
56 }catch(Exception ex){
57 Log.e("Encryption","",ex);
58 return "";
59 }
60 }

Program 4.22: Method used for decoding a String.

16 private static void init(){
17 if(keyFactory==null){
18 try{
19 keyFactory = SecretKeyFactory.getInstance("DES");
20 }catch(Exception ex){Log.e("Encryption","",ex);}
21 }
22 if(keySpec==null){
23 try{
24 keySpec = new DESKeySpec("RobertReichartS1210629016".getBytes("

UTF8"));
25 }catch(Exception ex){Log.e("Encryption","",ex);}
26 }
27 if(key==null){
28 try{
29 key = keyFactory.generateSecret(keySpec);
30 }catch(Exception ex){Log.e("Encryption","",ex);}
31 }
32 }

Program 4.23: Initializing the cipher.

4. Implementation 48

4.3.5 Telemetry manager

The telemetry manager shown by Figure 4.13 acts as a facade to the Car-
Manager and the CustomLocationManager.

To gain the current users location, the CustomLocationManager is used.
It simply acts as a LocationListener to the Androids built-in LocationMan-
ager. Because the locations should be as precise as possible, only locations
retrieved by GPS are used.

The implementation of the CarManager contains until now only setter and
getter methods for the actual speed, gear and fuel consumption. Later on it
should retrieve information about the cars telemetry using the cars OBD2
diagnose interface (see section 6.1).

CarManagerCustomLocationManager

TelemetryManager

Figure 4.13: TelemetryManager

4.3.6 View manager

The methods of the view manager (shown by Figure 4.14 and program 4.25)
make it possible to transit between different views. This is achieved by using
Androids ViewFlipper which behaves like an array of views where views can
easily be added (shown by line 46) or removed (shown by line 61). While
lines 47 to 49 show the few steps which are needed to switch to the next
view lines 58 to 60 show how to switch to the previous view. The lines shown
by program 4.24 can be used to create a simple animation where the next
view slides in from the right hand side.

4. Implementation 49

10 public static Animation inFromRightAnimation(){
11 Animation inFromRight = new TranslateAnimation(
12 Animation.RELATIVE_TO_PARENT, +1.0f,
13 Animation.RELATIVE_TO_PARENT, 0.0f,
14 Animation.RELATIVE_TO_PARENT, 0.0f,
15 Animation.RELATIVE_TO_PARENT, 0.0f
16);
17 inFromRight.setDuration(ANIMATION_LENGTH);
18 inFromRight.setInterpolator(new AccelerateInterpolator());
19 return inFromRight;
20 }

Program 4.24: Method used for generating a in from right Animation.

Utilities

ViewManager Animations

ViewInitializer AbstractInitializer

ActivateViewInitializer AddCarsViewInitializer

CarsViewInitializer LoginViewInitializer

MainViewInitializer RegActLogViewInitializer

RegisterViewInitializer RouteViewInitializer

MapViewInitializer OptimalTelemetryUpdater

Figure 4.14: ViewManager

4. Implementation 50

34 public void addViewInitializer(ViewInitializer viewInitializer){
35 viewInitializerByRootLayoutID.put(viewInitializer.getRootLayoutID(),

viewInitializer);
36 viewInitializerByLayoutResourceID.put(viewInitializer.

getLayoutResourceID(), viewInitializer);
37 if(viewInitializerByRootLayoutID.size()==1){
38 viewFlipper.addView(inflater.inflate(viewInitializer.

getLayoutResourceID(), null));
39 try{viewInitializer.initialize();}catch(Exception ex){}
40 viewFlipper.showNext();
41 }
42 }
43
44 public void showNext(int layoutID) throws Exception{
45 viewInitializerByRootLayoutID.get(viewFlipper.getChildAt(viewFlipper.

getChildCount()-1).getId()).deinitialize();
46 viewFlipper.addView(inflater.inflate(layoutID, null));
47 viewFlipper.setInAnimation(Animations.inFromRightAnimation());
48 viewFlipper.setOutAnimation(Animations.outToLeftAnimation());
49 viewFlipper.showNext();
50
51 viewInitializerByLayoutResourceID.get(layoutID).initialize();
52
53 }
54
55 public void showPrevious() throws IOException{
56 viewInitializerByRootLayoutID.get(viewFlipper.getChildAt(viewFlipper.

getChildCount()-1).getId()).deinitialize();
57 viewInitializerByRootLayoutID.get(viewFlipper.getChildAt(viewFlipper.

getChildCount()-2).getId()).initialize();
58 viewFlipper.setInAnimation(Animations.inFromLeftAnimation());
59 viewFlipper.setOutAnimation(Animations.outToRightAnimation());
60 viewFlipper.showPrevious();
61 viewFlipper.removeViewAt(viewFlipper.getChildCount()-1);
62 }

Program 4.25: ViewManager

MapView

On Android devices, creating a map which shows the users current location
can be done by using the Osmdroid library [44]. The library provides a
simple map using map-tiles and data from OpenStreetMap [41]. Because
maps from OpenStreetMap are collected by users and do not underlay any
license, they are free to use.

4. Implementation 51

Following lines could be used to initialize a map which is created by Androids
layout XML.

MapView mapView = (MapView)main.findViewById(R.id.mapView);
mapView.setTileSource(TileSourceFactory.MAPQUESTOSM);

Changing the maps current location, orientation and zoom level can be done
with the lines below.

mapView.getController().setZoom(mapView.getMaxZoomLevel());
mapView.setMapOrientation(mapOrientation);
mapView.getController().animateTo(new GeoPoint(location));

User Interface

Figure 4.15, Figure 4.16 and Figure 4.17 are showing screenshots of the fin-
ished Android client user interface.

(a) Registration (b) Activation (c) Login

Figure 4.15: User Registration, Activation and Login View.

4. Implementation 52

(a) Overview (b) Car details (c) Adding a car

Figure 4.16: Carlist, car details and adding a car.

(a) Navigating (b) Add Route (c) Destinations

Figure 4.17: Navigating, adding a route and available destinations.

4. Implementation 53

4.4 Protocol
In this implementation of the concept, a stateless and request/response
based protocol is used because clients are most of the time connected via
mobile internet which can easily break down and has a limited traffic.

Whenever a request should be sent to the server, a JSONObject contain-
ing uppercase values for at least the uppercase keys ’TYPE’, ’METHOD’,
’EMAIL’ and ’PASSWORD’ has to be sent. The servers response to each
request consists of a JSONArray containing one JSONObject per module
which is registered to in the request specified type.

Figure 4.19 shows some special responses to given requests of type ’USER’.
Figure 4.18 shows the most common requests while Figure 4.20 shows the
most common responses.

Key Value
TYPE

METHOD
EMAIL

PASSWORD
MANUFACTURER

MODEL
ENGINE

BUILDFROM
BUILDTO

USER
ADDCAR

test@user.com
encryptedPass

Volkswagen
Polo

1.4 44
1997-05-01
2001-09-01

Key Value
TYPE

METHOD
EMAIL

PASSWORD
CARID

USER
DELETECAR

test@user.com
encryptedPass

1

Key Value
TYPE

METHOD
EMAIL

PASSWORD
CARID

LOCATIONPRECISION
LAT
LON
FUEL

TRACK
TRACK

test@user.com
encryptedPass

5
6

47.7688291
12.9568041

7.3
GEAR 3
SPEED 50

Key Value
TYPE

METHOD
EMAIL

PASSWORD
STARTLAT
STARTLON

ENDLAT
ENDLON

TRACK
GETROUTE

test@user.com
encryptedPass

48.089330
11.640600
48.368930
14.513594

Figure 4.18: Most common requests.

4. Implementation 54

Key Value
STATUS ERROR

ERROR

INVALID_
EMAIL_PASSWORD_
ACTIVATIONCODE_

COMBINATION

Key Value
STATUS OK

Key Value
STATUS ERROR
ERROR EMAIL_EXISTS

Key Value
STATUS ERROR
ERROR CAN'T_SEND_MAIL

Key Value
STATUS OK

Key Value
TYPE

METHOD
EMAIL

PASSWORD

USER
ACTIVATION

test@user.com
encryptedPass

ACTIVATIONCODE activationcode

Key Value
TYPE

METHOD
EMAIL

PASSWORD

USER
REGISTER

test@user.com
encryptedPass

Key Value
TYPE

METHOD
EMAIL

PASSWORD

USER
GETMYCARS

test@user.com
encryptedPass

Key Value

Key Value

5

Key Value
CARID

MANUFACTURER
MODEL
ENGINE

AVERAGEFUEL
BUILDFROM

BUILDTO

5
Mini

One Clubman
1.6 72

5.5
2010-09-01
0000-00-00

Figure 4.19: Special responses to special requests of type ’USER’.

4. Implementation 55

Key Value
STATUS ERROR

ERROR INVALID_EMAIL_PASSWORD_COMBINATION

Key Value
STATUS ERROR
ERROR INTERNAL_SERVER_ERROR

Key Value
STATUS ERROR
ERROR ACCOUNT_NOT_ACTIVATED

Key Value
STATUS ERROR
ERROR ACCOUNT_NOT_REGISTERED

Key Value
STATUS OK

Figure 4.20: Most common responses.

Chapter 5

Conclusion

As seen in section 2.1.1 and section 2.1.2 there are concepts to support users
in fuel-saving driving as well as there are concepts to support users in time-
saving driving (see section 2.2.1 and section 2.2.2), but concepts which can
support users in fuel- and time-saving driving cannot be found. Therefore,
this thesis is a main part in the field of driving fuel- and time-saving.

5.1 Benefits and Drawbacks
The benefits which came up while designing the concept to the framework
and implementing it are that the framework can easily be extended, cus-
tomized, setup and used (more detailed discribed in section 5.1.1).

The drawback which has to be handled is that the concept as well as the
framework are not motivating drivers to drive fuel-saving (more detailed
described in section 5.1.2).

5.1.1 Benefits

Easily to be extended and customized

As described in section 4.2.3, modules can easily be added by just following a
few guidelines. For example by replacing the provided MySQLDatabaseMod-
ule another type of database can be used without recompiling or changing
parts from the source code of the server.

Easily to be setup and used

Because of Java which is used for implementing, the server can be run at
every machine containing a Java runtime environment.

56

5. Conclusion 57

The provided graphical user interface which must not be used makes it
possible to configure the server in an easy way without causing any harm
which could prevent the server from starting.

5.1.2 Drawback

The only but crucial drawback of the concept is the feedbacks quality which
falls an rises by the count of users. Because of the feedback is generated by
comparing the users car telemetry (see section 3.1.1) a lot of users are needed
to give a good advise. Another point why the quality rises and falls with
the user count is, that the users car telemetry is compared to other users
cars telemetries with an relatively close fuel consumption average, therefore
the less user take part, the probability of users with relatively close fuel
consumption averages falls and therefore the less data can be compared.

5.2 Result
Taking the above described benefits and drawbacks into account leads to
the result that if there will be a lot of users, especially experts in fuel- and
time-saving driving, the concept and its implementation could be a gain to
support users in fast and economic driving.

Chapter 6

Future Work

As seen in chapter 3 and chapter 4 the connection of an Android device
to the users car diagnose-interface OBD2 was mentioned but not discussed
(see section 6.1). Another part which has to be solved in future work is to
implement and connect and iPhone client to reach even more smartphone
users (see section 6.2). The last but not least step to do in future is to design
and evaluate a concept to motivate drivers in fuel-saving driving by using
the framework described and discussed in this thesis (see section 6.3).

6.1 Connecting an Android device to the car
Because of it will be a too big topic to be discussed in this thesis the con-
nection of a Android device to the cars OBD2 interface was not shown.

The theoretical way of connecting a Android device to a cars diagnostic
interface is at first to find a way in which the Android device can connect to
the interface. This can be achieved by using a OBD2-to-Bluetooth adapter
(see Figure 6.1).

Figure 6.1: Lescars OBD2-Bluetooth Adapter. Image taken from [33].

58

6. Future Work 59

6.1.1 Problems gaining car telemetries using OBD2

As seen in Table 3.4 there is no way to get information about the current
used gear. One way to solve this problem is by ignoring it because it does
not affect the mathematics used to calculate the score of the received car
telemetries (see section 3.1.1). The cars current gear could just be an optional
value because the user could just use the highest gear possible while driving
the returned speed.

6.2 iPhone client
After implementing a Android Client and to reach as many as possible
smartphone users, a iOS Client should be implemented. Referring to Apples
iOS application development starting guide [48] a mac computer running at
least OS X 10.8 (Mountain Lion), XCode [56] and the iOS SDK are needed.
Mostly, the iOS SDK is already included in XCode which can be found in
Apple’s AppStore. To test applications on Apple’s smartphone device a real
device (where a development certificate is needed [55]) or a iOS Simulator
[28] (see Figure 6.2) which is already included in XCode can be used.

Figure 6.2: iPhone simulator. Image taken from [28].

6. Future Work 60

6.2.1 Connecting an Apple device to the car

To connect a iPhone device to the cars diagnose interface a OBD2-Wifi-
Adapter [34] which is shown in Figure 6.3 can be used. Referring to the man-
ufacturers requirements the OBD2-Bluetooth interface [33] will not work.

Figure 6.3: Lescars OBD2-Wifi Adapter. Image taken from [34].

6.3 Motivating drivers
A part which is missing in the concept (described in chapter 3) and imple-
mentation (described in chapter 4) and which is the main part of GreenR
[23] described in section 2.1.2 is motivating the users to drive in a fuel-saving
way. To motivate car drivers to drive in a fuel-saving way by using the con-
cept described in this thesis is by setting it up as game where all registered
drivers can win prizes by driving as economically and fast as possible. To fi-
nance the prizes the implemented clients could be sold or commercials could
be shown.

Appendix A

CD-ROM Content

Format: CD-ROM, Single Layer, ISO9660-Format

A.1 PDF-Files
Path: /Thesis

MasterThesisReichart.pdf This thesis

Path: /Thesis/Images
*.pdf Images used in this thesis
FuelTimeFramework.pdf FuelTimeFramework logo (same as icon in

the Server GUI and Android launcer icon)

Path: /CD
MasterThesisCDLabel.pdf CD-Label
MasterThesisCDCover.pdf CD-Cover

A.2 Source Code
Path: /SourceCode

workspace Eclipse workspace of the FuelTimeFramework
server, the server GUI and the Android client

61

/Thesis
MasterThesisReichart.pdf
/Thesis/Images
*.pdf
FuelTimeFramework.pdf
/CD
MasterThesisCDLabel.pdf
MasterThesisCDCover.pdf
/SourceCode
workspace

References

Literature
[2] VíctorCorcoba Magaña and MarioMuñoz Organero. “AndroWI: Col-

laborative System for Fuel Saving Using Android Mobile Devices”. In:
Ambient Intelligence - Software and Applications. Ed. by Ad Berlo et
al. Vol. 219. Advances in Intelligent Systems and Computing. Springer
International Publishing, 2013, pp. 49–55. url: http://dx.doi.org/10.
1007/978-3-319-00566-9_7 (cit. on p. 3).

[3] D. Medhi. Network Routing: Algorithms, Protocols, and Architectures.
The Morgan Kaufmann Series in Networking. Elsevier Science, 2010
(cit. on p. 11).

[5] L. Steinke. Spieleprogrammierung. Das bhv-Taschenbuch. bhv, 2007
(cit. on p. 11).

[6] S. Wasserbauer. Eco-Feedback im Automobil: Eine Analyse kontem-
porärer Eco-Feedbacks in Kraftfahrzeugen und Entwicklung eines Eco-
Feedback Simulators. AV Akademikerverlag, 2012. url: http://books.
google.de/books?id=1xMrLgEACAAJ (cit. on p. 4).

Online sources
[7] 61,5 Millionen: So viele Fahrzeuge wie nie in Deutschland. url: http:

//www.rp-online.de/leben/auto/news/615-millionen-so-viele-fahrzeuge-
wie-nie-in-deutschland-aid-1.4090173 (cit. on p. 9).

[9] ADAC - Autodatenbank. url: http : / / www . adac . de / infotestrat /
autodatenbank/default.aspx (cit. on p. 10).

[10] Allgemeines - OBD-2.net - Das Fahrzeugdiagnose Informationsportal.
url: http://www.obd-2.de/obd-2-allgemeine-infos.html (cit. on p. 18).

[11] Android Architecture – The Key Concepts of Android OS. url: http:
//www.android - app- market . com/android - architecture .html (cit. on
pp. 23, 25).

62

http://dx.doi.org/10.1007/978-3-319-00566-9_7
http://dx.doi.org/10.1007/978-3-319-00566-9_7
http://books.google.de/books?id=1xMrLgEACAAJ
http://books.google.de/books?id=1xMrLgEACAAJ
http://www.rp-online.de/leben/auto/news/615-millionen-so-viele-fahrzeuge-wie-nie-in-deutschland-aid-1.4090173
http://www.rp-online.de/leben/auto/news/615-millionen-so-viele-fahrzeuge-wie-nie-in-deutschland-aid-1.4090173
http://www.rp-online.de/leben/auto/news/615-millionen-so-viele-fahrzeuge-wie-nie-in-deutschland-aid-1.4090173
http://www.adac.de/infotestrat/autodatenbank/default.aspx
http://www.adac.de/infotestrat/autodatenbank/default.aspx
http://www.obd-2.de/obd-2-allgemeine-infos.html
http://www.android-app-market.com/android-architecture.html
http://www.android-app-market.com/android-architecture.html

References 63

[12] Android Cipher encrypt/decrypt - Stack Overflow. url: http : / /
stackoverflow.com/questions/14022934/android-cipher-encrypt-decrypt
(cit. on pp. 37, 46).

[13] Android-x86 - Porting Android to x86. url: http : / / www . android -
x86.org/ (cit. on pp. 24, 26).

[14] Der AUTO BILD Verbrauchs-Test - autobild.de. url: http://www.
autobild.de/artikel/der-auto-bild-verbrauchs- test-55631.html (cit. on
p. 2).

[15] Eclipse - The Eclipse Foundation open source community website. url:
https://www.eclipse.org/ (cit. on p. 24).

[16] Frequently Asked Questions (FAQ) About On-Board Diagnostic II
(OBD II) Systems. url: http://www.arb.ca.gov/msprog/obdprog/
obdfaq.htm (cit. on pp. 3, 17).

[18] Gartner Says Smartphone Sales Accounted for 55 Percent of Overall
Mobile Phone Sales in Third Quarter of 2013. url: http : / / www .
gartner.com/newsroom/id/2623415 (cit. on p. 24).

[20] „Google Maps“ für iPhone, iPod touch und iPad im App Store von
iTunes. url: https : / / itunes . apple . com / de / app / google - maps /
id585027354?mt=8 (cit. on p. 5).

[21] GraphHopper Road Routing in Java with OpenStreetMaps. url: http:
//graphhopper.com (cit. on pp. 35, 36).

[23] GreenR - Economic Car Driving | Wassx’s Blog. url: http://wassx.
wordpress.com/green-street (cit. on pp. 4, 60).

[24] GreenR - Economic Car Driving | Youtube. url: http://www.youtube.
com/watch?v=3NoFM9uIs4A (cit. on p. 4).

[26] Installing the Eclipse Plugin | Android Developers. url: http : / /
developer.android.com/sdk/installing/installing-adt.html (cit. on p. 24).

[28] iOS Simulator User Guide: Getting Started in iOS Simulator. url:
https : / / developer . apple . com / library / ios / documentation / IDEs /
Conceptual/ iOS_ Simulator_ Guide/GettingStartedwithiOSStimulator/
GettingStartedwithiOSStimulator.html (cit. on p. 59).

[29] JavaMail API Reference Implementation: Wiki: Home — Project Ke-
nai. url: https : // java .net/projects/ javamail /pages/Home (cit. on
p. 38).

[30] JSON. url: http://www.json.org/java/index.html (cit. on p. 32).
[31] Kraftstoff-Durchschnittspreise. url: http : / / www . adac . de /

infotestrat/ tanken- kraftstoffe - und- antrieb/kraftstoffpreise/kraftstoff-
durchschnittspreise/default.aspx?ComponentId=51587&SourcePageId=
185107 (cit. on p. 1).

http://stackoverflow.com/questions/14022934/android-cipher-encrypt-decrypt
http://stackoverflow.com/questions/14022934/android-cipher-encrypt-decrypt
http://www.android-x86.org/
http://www.android-x86.org/
http://www.autobild.de/artikel/der-auto-bild-verbrauchs-test-55631.html
http://www.autobild.de/artikel/der-auto-bild-verbrauchs-test-55631.html
https://www.eclipse.org/
http://www.arb.ca.gov/msprog/obdprog/obdfaq.htm
http://www.arb.ca.gov/msprog/obdprog/obdfaq.htm
http://www.gartner.com/newsroom/id/2623415
http://www.gartner.com/newsroom/id/2623415
https://itunes.apple.com/de/app/google-maps/id585027354?mt=8
https://itunes.apple.com/de/app/google-maps/id585027354?mt=8
http://graphhopper.com
http://graphhopper.com
http://wassx.wordpress.com/green-street
http://wassx.wordpress.com/green-street
http://www.youtube.com/watch?v=3NoFM9uIs4A
http://www.youtube.com/watch?v=3NoFM9uIs4A
http://developer.android.com/sdk/installing/installing-adt.html
http://developer.android.com/sdk/installing/installing-adt.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSStimulator/GettingStartedwithiOSStimulator.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSStimulator/GettingStartedwithiOSStimulator.html
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSStimulator/GettingStartedwithiOSStimulator.html
https://java.net/projects/javamail/pages/Home
http://www.json.org/java/index.html
http://www.adac.de/infotestrat/tanken-kraftstoffe-und-antrieb/kraftstoffpreise/kraftstoff-durchschnittspreise/default.aspx?ComponentId=51587&SourcePageId=185107
http://www.adac.de/infotestrat/tanken-kraftstoffe-und-antrieb/kraftstoffpreise/kraftstoff-durchschnittspreise/default.aspx?ComponentId=51587&SourcePageId=185107
http://www.adac.de/infotestrat/tanken-kraftstoffe-und-antrieb/kraftstoffpreise/kraftstoff-durchschnittspreise/default.aspx?ComponentId=51587&SourcePageId=185107
http://www.adac.de/infotestrat/tanken-kraftstoffe-und-antrieb/kraftstoffpreise/kraftstoff-durchschnittspreise/default.aspx?ComponentId=51587&SourcePageId=185107

References 64

[32] Kraftstoffpreise in Österreich. url: http : / /
www . oeamtc . at / media . php ? id = , , , ,
ZmlsZW5hbWU9ZG93bmxvYWQlM0QlMkYyMDExLjAxLjI3JTJGMTI5N%
20jEzNjU1Ny5wZGYmcm49S3JhZnRzdG9mZnByZWlzZSUyMGluJTIwJUQ%
202c3RlcnJlaWNo (cit. on p. 1).

[33] Lescars OBD2-Profi-Adapter mit Bluetooth-Übertragung für An-
droidgeräte. url: http ://www.pearl .de/a- NX3014- 1523.shtml (cit.
on pp. 58, 60).

[34] Lescars OBD2-Profi-Adapter mit WiFi für iPhone/iPad. url: http:
//www.pearl.de/a-NX3027-1523.shtml (cit. on p. 60).

[35] Maps - Android-Apps auf Google Play. url: https://play.google.com/
store/apps/details?id=com.google.android.apps.maps (cit. on p. 5).

[37] MySQL :: Download Connector/J. url: http : / / dev . mysql . com /
downloads/connector/j/3.1.html (cit. on p. 37).

[38] OBD II PIDs | Hangas. url: http ://hangas .com/?p=128 (cit. on
p. 19).

[39] OBD on CAN - emotive GmbH & Co. KG. url: https://www.emotive.
de/doc/car-diagnostic-systems/protocols/dp/obd-on-can (cit. on pp. 3,
17, 18).

[40] OBD-II PIDs »OBD-II Resource. url: http://obdcon.sourceforge.net/
2010/06/obd-ii-pids/ (cit. on p. 19).

[41] OpenStreetMap. url: http://www.openstreetmap.org (cit. on pp. 6,
50).

[43] Osmand+. url: https://play.google.com/store/apps/details?id=net.
osmand.plus (cit. on p. 6).

[44] osmdroid - OpenStreetMap-Tools for Android - Google Project Hosting.
url: https://code.google.com/p/osmdroid (cit. on p. 50).

[45] Overpass API. url: http://overpass-api.de (cit. on p. 35).
[46] Programmierer Tips - OBD-2.net - Das Fahrzeugdiagnose Informa-

tionsportal. url: http://www.obd-2.de/programmierer-tips.html (cit.
on p. 19).

[47] Setting Up the ADT Bundle | Android Developers. url: http : / /
developer.android.com/sdk/installing/bundle.html (cit. on p. 24).

[48] Start Developing iOS Apps Today: Setup. url: https://developer.apple.
com/library/iOS/referencelibrary/GettingStarted/RoadMapiOS/index.
html (cit. on p. 59).

[50] STATISTIK AUSTRIA - Kraftfahrzeuge - Bestand. url: http : / /
www . statistik - austria . at / web _ de / statistiken / verkehr / strasse /
kraftfahrzeuge_-_bestand/index.html (cit. on p. 9).

http://www.oeamtc.at/media.php?id=,,,,ZmlsZW5hbWU9ZG93bmxvYWQlM0QlMkYyMDExLjAxLjI3JTJGMTI5N%20jEzNjU1Ny5wZGYmcm49S3JhZnRzdG9mZnByZWlzZSUyMGluJTIwJUQ%202c3RlcnJlaWNo
http://www.oeamtc.at/media.php?id=,,,,ZmlsZW5hbWU9ZG93bmxvYWQlM0QlMkYyMDExLjAxLjI3JTJGMTI5N%20jEzNjU1Ny5wZGYmcm49S3JhZnRzdG9mZnByZWlzZSUyMGluJTIwJUQ%202c3RlcnJlaWNo
http://www.oeamtc.at/media.php?id=,,,,ZmlsZW5hbWU9ZG93bmxvYWQlM0QlMkYyMDExLjAxLjI3JTJGMTI5N%20jEzNjU1Ny5wZGYmcm49S3JhZnRzdG9mZnByZWlzZSUyMGluJTIwJUQ%202c3RlcnJlaWNo
http://www.oeamtc.at/media.php?id=,,,,ZmlsZW5hbWU9ZG93bmxvYWQlM0QlMkYyMDExLjAxLjI3JTJGMTI5N%20jEzNjU1Ny5wZGYmcm49S3JhZnRzdG9mZnByZWlzZSUyMGluJTIwJUQ%202c3RlcnJlaWNo
http://www.oeamtc.at/media.php?id=,,,,ZmlsZW5hbWU9ZG93bmxvYWQlM0QlMkYyMDExLjAxLjI3JTJGMTI5N%20jEzNjU1Ny5wZGYmcm49S3JhZnRzdG9mZnByZWlzZSUyMGluJTIwJUQ%202c3RlcnJlaWNo
http://www.pearl.de/a-NX3014-1523.shtml
http://www.pearl.de/a-NX3027-1523.shtml
http://www.pearl.de/a-NX3027-1523.shtml
https://play.google.com/store/apps/details?id=com.google.android.apps.maps
https://play.google.com/store/apps/details?id=com.google.android.apps.maps
http://dev.mysql.com/downloads/connector/j/3.1.html
http://dev.mysql.com/downloads/connector/j/3.1.html
http://hangas.com/?p=128
https://www.emotive.de/doc/car-diagnostic-systems/protocols/dp/obd-on-can
https://www.emotive.de/doc/car-diagnostic-systems/protocols/dp/obd-on-can
http://obdcon.sourceforge.net/2010/06/obd-ii-pids/
http://obdcon.sourceforge.net/2010/06/obd-ii-pids/
http://www.openstreetmap.org
https://play.google.com/store/apps/details?id=net.osmand.plus
https://play.google.com/store/apps/details?id=net.osmand.plus
https://code.google.com/p/osmdroid
http://overpass-api.de
http://www.obd-2.de/programmierer-tips.html
http://developer.android.com/sdk/installing/bundle.html
http://developer.android.com/sdk/installing/bundle.html
https://developer.apple.com/library/iOS/referencelibrary/GettingStarted/RoadMapiOS/index.html
https://developer.apple.com/library/iOS/referencelibrary/GettingStarted/RoadMapiOS/index.html
https://developer.apple.com/library/iOS/referencelibrary/GettingStarted/RoadMapiOS/index.html
http://www.statistik-austria.at/web_de/statistiken/verkehr/strasse/kraftfahrzeuge_-_bestand/index.html
http://www.statistik-austria.at/web_de/statistiken/verkehr/strasse/kraftfahrzeuge_-_bestand/index.html
http://www.statistik-austria.at/web_de/statistiken/verkehr/strasse/kraftfahrzeuge_-_bestand/index.html

References 65

[51] Stephan Brähler: Analysis of the Android Architecture. url: http://os.
ibds.kit.edu/downloads/sa_2010_braehler-stefan_android-architecture.
pdf (cit. on p. 23).

[54] User Interface | Android Developers. url: http://developer.android.
com/guide/topics/ui/index.html (cit. on p. 27).

[55] Xcode Overview: Run Your App. url: https : / / developer . apple .
com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_
Overview/RunYourApp/RunYourApp.html (cit. on p. 59).

[56] Xcode - What’s New - Apple Developer. url: https://developer.apple.
com/xcode/ (cit. on p. 59).

http://os.ibds.kit.edu/downloads/sa_2010_braehler-stefan_android-architecture.pdf
http://os.ibds.kit.edu/downloads/sa_2010_braehler-stefan_android-architecture.pdf
http://os.ibds.kit.edu/downloads/sa_2010_braehler-stefan_android-architecture.pdf
http://developer.android.com/guide/topics/ui/index.html
http://developer.android.com/guide/topics/ui/index.html
https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/RunYourApp/RunYourApp.html
https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/RunYourApp/RunYourApp.html
https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/RunYourApp/RunYourApp.html
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/

Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

Breite = 100 mm
Höhe = 50 mm

— Diese Seite nach dem Druck entfernen! —

66

	Declaration
	Abstract
	Kurzfassung
	Motivation
	Related Work
	Fuel-saving driving
	AndroWi
	GreenR

	Time-saving driving
	Google Maps for Android/iOS
	Osmand+

	The Concept
	Requirements
	Server
	Client

	Result
	Server
	Database
	Client

	Implementation
	Smartphone operating systems
	Android

	Server
	Main
	Network manager
	Module manager
	Mailmanager
	EventManager
	Graphical user interface

	Client
	Implementation
	Main
	Network manager
	User manager
	Telemetry manager
	View manager

	Protocol

	Conclusion
	Benefits and Drawbacks
	Benefits
	Drawback

	Result

	Future Work
	Connecting an Android device to the car
	Problems gaining car telemetries using OBD2

	iPhone client
	Connecting an Apple device to the car

	Motivating drivers

	CD-ROM Content
	PDF-Files
	Source Code

	References
	Literature
	Online sources

