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Abstract

With storage capacities and transfer speeds increasing also the way people
take photos to document their experiences has changed. Nowadays, people
often take multiple shots of the same scene to later assemble it into some-
thing richer than just a photo. This way multiple photos can be stitched into
a panorama or fused to conceals mistakes. Another technique is to combine
multiple images of the same scene into an animation, very much like a stop-
motion video. In contrast to videos the individual frames are not timed in
short and regular intervals and so the motion appears clipped and irreg-
ular. When taken with a hand-held camera these animations are close to
unwatchable without stabilization techniques.

The objective of this thesis is to find and evaluate algorithms to process
image sequences into stabilized animations. The thesis begins by specifying
the problem and presents two different approaches: One is feature-based and
tracks SIFT features to calculate a linear mapping that is later used to stabi-
lize the image sequence. The other uses block-motion analysis to determine
and correct the motion-vectors and render a new stabilized image sequence.
Both approaches are described in detail and the respective algorithms are
explained in this thesis. For each approach one ImageJ plugin has been im-
plemented to test the effectiveness of the algorithms. The implementations
have been evaluated using three different metrics and the results suggest
that the algorithms are very effective. Both plugins can be used indepen-
dently, but it is suggested to use them subsequently with the feature-based
plugin first and the block-motion plugin second for a maximum stabiliza-
tion effect. The source code for the implementations can be found on the
CD that is enclosed with this thesis. In the end the thesis suggest possible
improvements and applications for the algorithms.
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Kurzfassung

Durch die ständige Weiterentwicklung der Speichermedien und dem da-
raus resultierenden Anstieg an Speicherkapazität und Übertragungsraten
hat sich unser Umgang mit ebenjenen Medien verändert. Dieser Wandel ze-
ichnet sich auch in der Photographie – in der Art wie wir unsere Erlebnisse
dokumentieren – ab. Durch die Größe der Speichermedien ist es heutzutage
gängige Praxis eine Vielzahl von Photos von einzelnen Szenen aufzunehmen,
wodurch sich neue Anwendungsfälle ergeben. So können mehrere Photos
kombiniert werden, um ein Panorama zu erstellen oder Fehler im Nach-
hinein zu retuschieren. Eine weitere Technik ermöglicht dem Benutzer eine
Animation aus mehreren Photos derselben Szene zu erzeugen. Der Effekt
erinnert an Stop-Motion Filme, mit dem Unterschied, dass die einzelnen
Photos in unterschiedlichen und relativ langen Zeitabständen anstatt mit
einer konstanten Bildrate aufgenommen wurden. Dadurch erscheint die Be-
wegung ruckartig und ungleichmäßig – ein Effekt der sich ungleich verstärkt,
wenn die Kamera ohne Stativ verwendet wird. Ohne nachträgliche Stabil-
isierung sind solche Animationen durch die verstärkte Kamerabewegung ver-
wirrend und schwer anzusehen. Das Ziel dieser Arbeit ist die Erforschung
und Evaluierung von Algorithmen zur Umwandlung von Bildsequenzen in
stabilisierte Animationen.

Zu Beginn der Thesis werden zwei verschiedene Ansätze präsentiert: Der
Erste verwendet SIFT Features um lineare Abbildungen zu berechnen die
später auf die Bildsequenz angewandt werden um diese zu stabilisieren. Der
zweite Ansatz berechnet und analysiert die Bewegungsvektoren von Bild-
blöcken um eine stabilisierte Animation zu generieren. Beide Ansätze wer-
den in der Thesis zusammen mit den notwendigen Algorithmen detailliert
beschrieben. Die Ansätze wurden als ImageJ Plugins implementiert und
getestet. Für die Evaluierung der Implementierungen wurden drei Metriken
verwendet. Die Resultate sprechen für die Effektivität der Algorithmen. Die
Plugins können unabhängig voneinander verwendet werden, es wird allerd-
ings empfohlen diese nacheinander anzuwenden um ein möglichst stabiles
Ergebnis zu erzielen. Der Quellcode für die Implementierungen befindet sich
auf der beigelegten CD. Zum Abschluss werden mögliche Verbesserungen
und Anwendungsmöglichkeiten der Algorithmen diskutiert.

vii



Chapter 1

Introduction

1.1 Motivation
Today storage space even on mobile devices like smartphones and cameras
is no longer an issue and so people tend to take many photos instead of
carefully handling their cameras to time perfect shots. But with this trend
also new applications became reasonable for end-users. By taking many shots
of a scene users can compose panoramas or fuse multiple photos to combine
the best parts of each photo.

Another application reminds of the time of multi-shot action cameras
that took multiple shots of a scene to capture motion even if all they did
was exposing alternating areas of the photographic film. Taking the idea
further stop-motion animations can be created by playing multiple images
of a scene as a continuous sequence to suggest motion. Using digital cameras
and software this technique is simple but can give remarkable results. How-
ever, when using handheld devices just playing back the image sequences is
not quite sufficient. Since the shots are usually taken in irregular and long
time-intervals camera movements lead to shaky animations up to the point
were it gets unwatchable. It is essential to stabilize these animations.

The potential of stabilized stop-motion animations is high as they are a
medium between simple photos and rich videos. For example Google Photo
impressively shows how these stop-motion animations can be used to create
living photo books, an experience that neither still photos nor engrossing
videos can provide. The charm of stop-motion animations is their timeless-
ness and casualness, appearing like photos but still capturing the motion of a
scene. The objective of this thesis is to create such animations by stabilizing
image sequences taken from handheld devices.

1



1. Introduction 2

1.2 Problem specification
The problem this thesis approaches is the stabilization of image sequences—
especially sequences with a low and irregular frame rate which implies a
large and varying time offset between subsequent frames. The typical use
case would be a sequence of pictures taken from a handheld camera.

Given an image sequence an algorithm should automatically process and
create a stabilized animation. The images can contain noise and significant
warps of the camera viewport as they would occur in a sequence of photos
taken with a conventional camera without using a tripod or other tools to
stabilize the device. The task is to create a smooth animation with a min-
imum of jitter. An assumption is that parts of the scene contain a static
background without significant motion and that the sequence contains no
large camera motions like a camera pan. However, the scene may contain
moving objects and motion and the camera viewport may be warped ir-
regularly between subsequent frames as long as the images still intersect
significantly. A further assumption is that the camera does not move into
the scene. However, the camera zoom may vary between images.

The resulting animation should be stabilized in a way that the motion
of the static background of the scene is minimized. This can be measured by
comparing the amount of motion before and after stabilization. The amount
of motion can be measured based on the optic flow or motion detection
techniques like frame differencing.

1.3 Thesis structure
The content of the thesis is organized into four main chapters, an evaluation
chapter and a final summary. The first chapter is about the motivation and
objectives and defines the problem the thesis tries to solve and how the thesis
is structured. The second chapter discusses the state of the art at the time
the thesis was written and discusses different approaches. The third chapter
presents the two approaches that have been selected based on the state-of-
the-art analysis and the algorithms that have been designed to utilize the
approaches to solve the initial problem. The fourth chapter presents the
implementation of the algorithms and how they perform with real test data.
The evaluation chapter presents and applies three metrics to determine the
effectiveness of the algorithms. The final chapter summarizes the work and
its results. The Appendix describes all symbols used in the thesis and the
contents of the CD.



Chapter 2

State of the Art

The main challenge in the stabilization task is finding out how the images
are related to each other and to draw conclusions about their viewports in
the global scene. The problem is known as image registration/alignment in
terms of panorama stitching. Brown and Gottesfeld [3] give an overview of
different approaches for image registration. The process calculates the trans-
formation parameters for each image of the sequence. The parameters are
required to map every image to the global scene. The transformations are
further limited to linear transformations which are also referred to as linear
mappings. In case of a projective transformation/mapping this is also called
the plane-projectivity or homography. Approaches to calculate the trans-
formation parameters divide into intensity- and feature-based approaches.
Intensity-based approaches try to calculate the transformation parameters
while optimizing a similarity measure that is calculated based on the pixel
values of the images. Feature-based approaches first detect features in the
images and try to find matching features between two images to calculate
the transformation parameters based on the feature translations. Feature-
based approaches are recommended by Zitová and Flusser [17] for images
with distinctive and easily detectable objects. This is usually the case in pho-
tographs. On the other hand medical applications might benefit more from
a intensity-based approach. However this thesis focuses on feature-based
image registration.

For the feature detection one approach is using the SIFT algorithm [12]
which is state-of-the-art and sufficiently accurate. Alternative algorithms
would be SURF [1] and ORB [13], both performing faster than SIFT at
comparable accuracy. Given the features in all images, matches between the
features of two subsequent images of the sequence can be calculated and
used as correspondence points to calculate the transformation parameters.
Zhang describes in [15] how the projective transformation parameters can
be calculated from a number of point correspondences. However, not all
feature matches are correct and features detected in dynamic parts of the

3



2. State of the Art 4

scene have to be excluded. A RanSaC approach is described by Dung et
al. [5] to find the best projective mapping given a set of feature matches.
Based on the calculated mapping the features can be evaluated to filter
features that may contain to dynamic parts of the scene. Having calculated
the mapping for each image, the mappings are applied to the images to
map them to the global scene. The algorithm then determines the biggest
intersecting rectangular area that is contained in all mapped images of the
sequence. The rectangle is used to crop the mapped images to avoid empty
areas in the final image sequence. The result is a stabilized and cropped
animation.

While this approach can prove very effective it is limited by the projective
mapping used to align the images. This is most obvious in scenes with high
depth variation i.e. with objects close to the camera. Simple projective map-
ping is insufficient to accurately align images of a three dimensional scene.
The registration methods try to stabilize the image sequence by aligning the
images in 2D. While the SIFT features would allow for sub-pixel accuracy
the projective mapping calculated from the feature tracks ignores the depth
of the scene and can therefore never fully align images of scenes with a high
amount of depth disparity. There are more sophisticated approaches (e.g.,
Kopf et al. [10] that try to estimate the camera position and orientation in
3D. This also requires 3D reconstruction of the scene and rendering. This
exceeds the scope of this thesis. A simpler approach to further improve the
stability is to stabilize the image sequence based on block-motion vectors.

For the second approach the basic problem remains unchanged, but we
assume that the background of the input image sequence is already stabilized
up to a certain degree. Jitters and perspective warps that disturb the sta-
bility of the animation are allowed, but the sequence may not contain large
camera shakes, panning motions or zooming. The goal is to further increase
the visual stability in the scene. This involves detection of motion and stabi-
lization of the scene background. The main problem is to estimate the optical
flow between subsequent images. Beauchemin et al. [2] give an overview of
different approaches to calculate the optical flow. The approaches split in
block-based, differential (e.g., the Horn–Schunck method [8]), phase correla-
tion and discrete optimization methods (Glocker et al. [7]). Given its relative
simplicity at promising performance the block-based method was chosen for
determining the optical flow. Every image is divided into a grid of blocks
and for each block a motion vector is estimated using cross-correlation in the
𝑛-pixel neighbourhood of a reference image. The motion vectors are used to
classify the blocks in foreground and background blocks. This information
is used to generate the output image sequence: The background blocks are
used to extract a stable background and the foreground blocks are corrected
and rendered over the stable background. The result is an animation with a
perfectly stable background and a stabilized foreground. This approach has
been designed and employed within the framework of the thesis and will be
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further referred to as block-motion stabilization. The approach uses ideas
from Huang et al. [9] and Vella et al. [14].



Chapter 3

General Concept

This chapter outlines two algorithms that follow different approaches to
stabilize an image sequence. While the first algorithm uses a feature-based
approach the second algorithm applies block-motion stabilization. Both al-
gorithms are described in detail. Due to their respective nature both ap-
proaches are explained differently in the thesis document. The first one relies
more on formal notation while the second is explained in steps and makes
more use of illustrations. While both algorithms aim for the same result—
a stabilized image sequence—the feature-based approach can handle more
motion in the scene, especially when it comes to large camera shakes. The
block-motion approach can be seen as a refinement on the results of the
feature-based approach as it is less tolerant to large camera shakes but can
potentially achieve more stability than the feature-based approach. Each of
both algorithms is explained in detail in the next two sections.

3.1 Feature-based stabilization algorithm
This section is about the algorithm developed using the feature-based stabi-
lization approach. The idea is to track SIFT features through the animation
to determine the relative transform between the images. Since tracking is
not reliable and the scene can contain dynamic elements (moving objects,
motion) the algorithm tries to filter those features that were tracked cor-
rectly and probably do not belong to dynamic parts of the scene. Using the
filtered features the algorithm calculates a linear mapping for each image
that describes how the image has to be transformed to fit in the global
scene. As a final step the sequence is cropped to an intersecting area be-
tween all mapped images to avoid empty regions in the animation. The
result is a stabilized animation. Algorithm 3.1 outlines the basic steps of
the animation stabilization process. The four main steps are represented
by the function calls ExtractFeatures, TrackFeatures, EstimateMapping and
WarpImages. Each step will be further described in the following sections.

6



3. General Concept 7

For the algorithm we assume a given vector of 𝑁 images,

Algorithm 3.1: Overview of the stabilization algorithm.
Data: ℐ in, a vector of images.
Result: ℐout, a vector of images.
begin

𝒮 ← ExtractFeatures(ℐ in)
𝒯 ← TrackFeatures(𝒮)
ℳ← EstimateMappings(𝒯 )
ℐout ←WarpImages(ℐ in, ℳ)
return ℐout

end

ℐ in = (𝐼0, 𝐼1, . . . , 𝐼𝑁−1). (3.1)

In the first step we calculate a set of SIFT features for each image. 𝑆𝑖 is a
set of SIFT features where each feature 𝑠𝑗 = ⟨𝑥𝑗 , 𝑦𝑗 , 𝜎𝑗 , 𝜃𝑗 , 𝑓𝑗⟩. The elements
𝑥𝑗 , 𝑦𝑗 are the coordinates, 𝜎𝑗 the scale, 𝜃𝑗 the orientation and 𝑓𝑗 the SIFT
feature vector. For each 𝐼𝑖 ∈ ℐ in we calculate the associated feature set 𝑆𝑖

and append it to the vector 𝒮 using the function ExtractFeatures, i.e.,

𝒮 = (𝑆0, 𝑆1, . . . , 𝑆𝑁−1). (3.2)

The next step is to calculate feature tracks from 𝒮. A feature track is a fea-
ture of 𝑆0 tracked through all subsequent 𝑆𝑖>0. A track 𝑡𝑗 can be represented
as a vector of features with one entry for each 𝑆𝑖, i.e.,

𝑡𝑗 = (𝑠𝑗,0, . . . , 𝑠𝑗,𝑁−1 | 𝑠𝑗,𝑘 ∈ 𝑆𝑘). (3.3)

The set of feature tracks 𝒯 is calculated using the function TrackFeatures,
i.e.,

𝒯 = {𝑡0, 𝑡1, . . . }. (3.4)

What follows is the estimation of the mapping between the images. All
images 𝐼𝑖 ∈ ℐ in are mapped to the first image 𝐼0 using the information in
𝒯 . The function EstimateMappings calculates a mapping 𝑀𝑖 for each image
𝐼𝑖 and stores it in a vector of linear mappings ℳ. Any mapping 𝑀𝑖 maps
the image 𝐼𝑖 to 𝐼0, i.e.,

ℳ = (𝑀0, 𝑀1, . . . , 𝑀𝑁−1). (3.5)

The final step is to warp the images using the estimated mappings. The
function WarpImages warps each image 𝐼𝑖 ∈ ℐ in and stores it in a vector of
images ℐout.
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3.1.1 Extracting features

Algorithm 3.2 describes the function ExtractFeatures that is used by the
stabilization algorithm. For a vector of images it calculates a vector of sets
of SIFT features for each image. For the feature detection we assume a func-
tion GetSiftFeatures that is provided by an external library and returns a
set of SIFT features for a given image.

Algorithm 3.2: Extract a set of SIFT feature from a vector of images.
Data: ℐ in, a vector of images.
Result: 𝒮 = (𝑆0, 𝑆1, . . . , 𝑆𝑁−1), a vector of sets of SIFT features.
begin

𝒮 ← {}
forall 𝐼 ∈ ℐ in do

𝑆 ← GetSiftFeatures(𝐼)
𝒮 ← 𝒮 ‖ 𝑆

end
return 𝒮

end

3.1.2 Tracking features

Algorithm 3.3 describes the function TrackFeatures that is used by the stabi-
lization algorithm. For a vector of sets of SIFT features it calculates a vector
of feature tracks where each track 𝑡𝑗 is a vector of features (𝑠𝑗,0, . . . , 𝑠𝑗,𝑁−1 |
𝑠𝑗,𝑖 ∈ 𝑆𝑖) with one matched feature for each feature set 𝑆𝑖.

The features 𝑠𝑗,𝑖 are matched subsequently through all 𝑆𝑖 to form a
feature track. Therefore, for each 𝑠𝑗,𝑖 ∈ 𝑆𝑖 the algorithm finds a 𝑠𝑗,𝑖+1 ∈ 𝑆𝑖+1.
In case the algorithm fails to match a 𝑠𝑗,𝑖, 𝑠𝑗,𝑖+1 gets assigned 𝑛𝑖𝑙 and 𝑠𝑗,𝑖

is used to find a match in 𝑆𝑖+2 and so forth until a new match is found.
This way the algorithm can compensate for temporary obscured features.
However, the algorithm requires a feature to be present in 𝑆0 to form a
feature track. For the matching process we assume a function 𝑚𝑎𝑡𝑐ℎ(𝑎, 𝑏)
that matches features of two feature sets 𝑎 and 𝑏 and returns a set of matched
pairs {⟨𝑠𝑎, 𝑠𝑏⟩, . . . }. We further assume that the function only returns a pair
with the single best match 𝑠𝑏 for each 𝑠𝑎 or no match if there is none.

In the following algorithm Anchors and Affiliations are associative maps.
Anchors is used to store the latest match for each feature track. Affiliations
maps a feature of the current set of features to the feature that represent
the respective feature track. 𝒯 is the return value that contains all feature
tracks.
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Algorithm 3.3: Track features through a vector of sets of features.
Data: 𝒮 = (𝑆0, 𝑆1, . . . , 𝑆𝑁−1), a vector of sets of SIFT features.
Result: 𝒯 = {𝑡0, 𝑡1, . . . }, a set of feature tracks where each track 𝑡𝑗

is a vector of features.
begin

Anchors ← {}
Affiliations ← {}
𝒯 ← {}
forall 𝑠𝑗 ∈ 𝑆0 do

set(Anchors, 𝑠𝑗 , 𝑠𝑗)
set(Affiliations, 𝑠𝑗 , 𝑠𝑗)
𝒯 ← 𝒯 ∪ (𝑠𝑗)

end
forall 𝑖← 0, . . . , 𝑁 − 1 do

𝑎← keys(Anchors)
𝑏← 𝑆𝑖

forall ⟨𝑠𝑎, 𝑠𝑏⟩ ∈ match(𝑎, 𝑏) do
𝑠′

𝑎 ← get(Affiliations, 𝑠𝑎)
set(Anchors, 𝑠′

𝑎, 𝑠𝑏)
forall 𝑡𝑗 ∈ 𝒯 | 𝑠𝑗,0 = 𝑠′

𝑎 do
𝑡𝑘 ← 𝑡𝑘 ‖ (𝑠𝑏)

end
end
Affiliations ← {}
forall 𝑡𝑗 ∈ 𝒯 do

if size(𝑡𝑗) < 𝑖 then
𝑡𝑗 ← 𝑡𝑗 ‖ nil

end
set(Affiliations, get(Anchors, a), 𝑠𝑗,0 | 𝑠𝑗,0 ∈ 𝑡𝑗)

end
end
return 𝒯

end

Estimation of mappings

Algorithm 3.4 describes the function EstimateMappings that is used by the
stabilization algorithm. For a set of feature tracks the algorithm calculates
a vector of mappings where each mapping 𝑀𝑖 can be used to warp the
respective image 𝐼𝑖 to 𝐼0. The mappings describe how the images have to be
transformed to best match the first image 𝐼0.

The core of the algorithm is an iterative loop that calculates the map-
pings and keeps track of the quality of the current batch. If the quality de-
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creases the loop ends. For the calculation of the quality Φ of a vector of map-
pings the function CalculateQuality(𝒯 , ℳ) is used. Also the tracks used for
the calculation of the mappings are filtered in every iteration using the func-
tion FilterTracks(𝒯 , ℳ). The mappings are calculated using a RanSaC ap-
proach. The algorithm extracts a set of pairs of features 𝑎 = {⟨𝑠𝑗,0, 𝑠𝑗,𝑖⟩, . . . }
where each pair consists of a 𝑠𝑗,0 ∈ 𝑆0 and a 𝑠𝑗,𝑖 ∈ 𝑆𝑖 of the same track 𝑡𝑗 .
The RanSaC algorithm loops for 𝐾 times and keeps track of the mapping
𝑀𝑖 with the best quality 𝜔. The function select𝑐 is used to randomly select
𝑐 pairs from the set 𝑎. The result is stored in 𝑠𝑎 and used by the function
calculateMapping to calculate a mapping. Depending on the configuration
possible mappings are affine or projective mappings. The quality of the map-
ping 𝜔 is the quotient of the size of 𝑎 and the summed absolute distances
between mapped (𝑠𝑗,0 = 𝑝[0] mapped by 𝑀𝑖) and observed (𝑠𝑗,𝑖 ∈ 𝑝[1]) fea-
ture coordinates for all pairs 𝑝 ∈ 𝑎. We assume a function apply(𝑀, 𝑠) maps
the coordinates of a feature 𝑠 by a mapping 𝑀 and returns a feature 𝑠′.
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Algorithm 3.4: Estimate projective mappings based on feature
tracks.

Data: 𝒯 = {𝑡0, 𝑡1, . . . }, a set of feature tracks where each track 𝑡𝑗 is
a vector of features.

Result: ℳ = (𝑀0, 𝑀1, . . . , 𝑀𝑁−1), a vector of mappings.
begin

ℳ← (Identity | 𝑁)
𝒯 ′ ← 𝒯
Φ← 0 // Best overall mapping quality
𝑄𝑢𝑖𝑡← False
while ¬Quit do

ℳ′ ← (Identity)
forall 𝑖← 1, . . . , 𝑁 − 1 do

𝑎← {⟨𝑠𝑗,0, 𝑠𝑗,𝑖⟩ | 𝑠𝑗,0 ∈ 𝑡𝑗 ∧ 𝑠𝑗,𝑖 ∈ 𝑡𝑗 ∧ 𝑡𝑗 ∈ 𝒯 }
𝜔 ← 0 // Best sample mapping quality
𝑀𝑖 ← Identity
forall 𝑘 ← 1, . . . , 𝐾 do

𝑠𝑎 ← select𝑐(𝑎)
𝑀 ′

𝑖 ← calculateMapping(𝑠𝑎)
𝜔′ ← (size(𝑎))/(

∑︀
𝑝∈𝑎 distance(𝑝[1], apply(𝑀 ′

𝑖 , 𝑝[0])))
if 𝜔 < 𝜔′ then

𝑀𝑖 ←𝑀 ′
𝑖

𝜔 ← 𝜔′

end
end
ℳ′ ←ℳ′ ‖𝑀𝑖

end
Φ′ ← CalculateQuality(𝒯 ′, ℳ′)
if Φ′ ≤ Φ then

Quit ← True
else

ℳ←ℳ′

𝒯 ′ ← FilterTracks(𝒯 ′, ℳ)
end

end
return ℳ

end

Quality of a mapping

The following section describes the calculation behind the function Calcu-
lateQuality that is used by the function EstimateMappings. For a set of fea-
ture tracks and a vector of mappings the function returns a number Φ ∈ R+
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that indicates the quality of the specified mappings. First we define an error
𝑒(𝑡𝑗) for a track 𝑡𝑗 that is the sum of the squared distances between the
mapped (𝑠𝑗,0 = 𝑡𝑗 [0] mapped by 𝑀𝑖) and observed (𝑠𝑗,𝑖 ∈ 𝑡𝑗) features that
belong to the track, i.e.,

𝑒(𝑡𝑗) =
∑︁

𝑠𝑗,𝑖∈𝑡𝑗

[︀
distance(apply(𝑀𝑖, 𝑡𝑗 [0]), 𝑠𝑗,𝑖)

]︀2
. (3.6)

The reliability 𝑟(𝑡𝑗) of a track is defined as the quotient of the size of the
track (all features belonging to the track, not counting nil entries) and the
product of the error 𝑒(𝑡𝑗) of the track and the size 𝑁 of the image vector,
i.e.,

𝑟(𝑡𝑗) =
size(𝑡𝑗 [1])
𝑒(𝑡𝑗) ·𝑁 . (3.7)

The quality of a vector of mappings Φ is calculated as the sum of the relia-
bilities 𝑟(𝑡𝑗) of all 𝑡𝑗 ∈ 𝒯 , i.e.,

Φ =
∑︁
𝑡𝑗∈𝒯

𝑟(𝑡𝑗). (3.8)

The quality Φ is used to rate a specific mapping, keep track of the best
mapping and also to stop filtering tracks when there is no significant im-
provement in quality anymore.

Filtering tracks

The following section describes the function FilterTracks that is used by
the function EstimateMappings. The idea is to only take reliable tracks into
account for the generation of new mappings. First we define a vector 𝒯sort
that contains all tracks 𝑡𝑗 ∈ 𝒯 sorted by their reliability 𝑟(𝑡𝑗) in descending
order. The filtered Tracks 𝒯 ′ are then selected using a threshold 𝜏Filter where
0 < 𝜏Filter < 1. The threshold determines how many percent of the original
tracks are filtered. Since the vector is sorted the algorithm just copies the 𝑛
first elements. We define the filtered tracks as

𝒯 ′ = {𝑡𝑗 | 𝑡𝑗 ∈ 𝒯𝑠𝑜𝑟𝑡 ∧ 𝑗 < 𝑠𝑖𝑧𝑒(𝑇 ) · 𝜏Filter}. (3.9)

3.1.3 Warping of images

Algorithm 3.5 describes the function WarpMappings that is used by the sta-
bilization algorithm. The function is used to warp a vector of images ℐ in by
a vector of mappings ℳ where every 𝐼𝑖 ∈ ℐ in has a respective 𝑀𝑖 ∈ ℳ.
We assume that a library function handles the actual mapping and cre-
ates a mapped image 𝐼 ′

𝑖 for every 𝐼𝑖. The resulting image vector ℐout is
the stabilized animation. However, since the mapped images have different
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boundaries it is important to crop the images to the biggest intersecting
rectangle to avoid empty spaces. The biggest intersecting rectangle can be
found by mapping the corner coordinates of the images. The vector b de-
scribes the rectangle of the intersecting area with minimum and maximum
values for 𝑥 and 𝑦 coordinates. The corners are set assuming that all images
have the same height ℎ and width 𝑤. The following algorithm calculates the
bounds of the intersection:

Algorithm 3.5: Calculate the bounds of the output image sequence.
Data: height ℎ and width 𝑤 of the image sequence,

ℳ = (𝑀0, 𝑀1, . . . , 𝑀𝑁−1): a vector of mappings.
Result: b, the bounds of the intersecting rectangle.
begin

𝑥𝑚𝑖𝑛 ←∞
𝑦𝑚𝑖𝑛 ←∞
𝑥𝑚𝑎𝑥 ← −∞
𝑦𝑚𝑎𝑥 ← −∞
Corners ← {(0, 0), (0, ℎ), (𝑤, 0), (𝑤, ℎ)}
forall (𝑥, 𝑦) ∈ Corners do

forall 𝑀𝑖 ∈ℳ do
(𝑥′, 𝑦′)← apply(𝑀𝑖, (𝑥, 𝑦))
𝑥𝑚𝑖𝑛 ← min(𝑥𝑚𝑖𝑛, 𝑥′)
𝑦𝑚𝑖𝑛 ← min(𝑦𝑚𝑖𝑛, 𝑦′)
𝑥𝑚𝑎𝑥 ← max(𝑥𝑚𝑎𝑥, 𝑥′)
𝑦𝑚𝑎𝑥 ← max(𝑦𝑚𝑎𝑥, 𝑦′)

end
end
b ← (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥)
return b

end

3.2 Block-motion stabilization algorithm
This section is about the algorithm developed using the block-motion sta-
bilization approach. The idea is to calculate the motion of individual blocks
of every image and analyze it to split the scene into background, dynamic
and foreground segments. The segments are processed differently depending
on the type and the motion is corrected to reduce jitters and distortions.

The algorithm starts by dividing every image of the sequence into a grid
of blocks. To calculate the motion vector for every block normalized cross-
correlation is used in the 𝑛-pixel neighbourhood of a block in the reference
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Figure 3.1: An overview of the steps of the stabilization algorithm.

image. The reference image is generated by calculating the temporal median
for every pixel over the entire sequence and smoothing the result by applying
an averaging filter. This way short occlusions and jitter are eliminated and
a stable representation of the background is created. The motion vectors
indicate the offset of a block in an image to the same block in the refer-
ence image. For the calculation of the cross-correlation values of the blocks
smoothed versions of the input image and the reference image are used.

Based on the motion vectors the blocks are classified by analyzing how
the motion vectors correlate over the sequence and with their neighbouring
blocks. Blocks are also classified by the certainty of their motion vectors
based on the correlation value and that value being a unique local maxi-
mum in the 𝑛-pixel neighbourhood or not. Blocks classified as background
blocks have certain motion vectors that also correlate with their neighbour-
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ing blocks. Blocks classified as foreground blocks have unreliable motion vec-
tors indicating motion in the scene rather than a camera shake. Foreground
blocks that are not unique local maxima are classified as dynamic blocks
that indicate motion in unstructured parts of the scene. Once all blocks
have been classified, the images can be segmented for further processing.
The motion vectors are smoothed in segments of background blocks. The
motion vectors in segments of dynamic or foreground blocks are corrected
by taking the surrounding background blocks into account.

For the final image sequence a stable background image is constructed
from the background blocks and the foreground segments are rendered onto
that background image using the corrected motion vectors. The result is an
image sequence with a perfectly stable background and a stabilized fore-
ground. The algorithm is split into ten main steps. Each step extracts in-
formation that is used in the subsequent steps and finally for rendering the
output sequence. Figure 3.1 shows the steps of the algorithm and their in-
dividual results. For the algorithm we assume a given vector of 𝑁 images,

ℐin = (𝐼0, 𝐼1, . . . , 𝐼𝑁−1). (3.10)

The result of the algorithm is another vector of the same size that holds the
stabilized images,

ℐout = (𝐼0, 𝐼1, . . . , 𝐼𝑁−1). (3.11)

Now in order to generate ℐout from ℐ in each image is divided into a grid of
blocks with 𝑃 columns and 𝑄 rows that are later analyzed. The following
sections will refer to these blocks through ℬ as a set of blocks where a block
𝑏𝑝,𝑞 represents any block at position (𝑝, 𝑞) at any image of the sequence, i.e.,

ℬ = {𝑏𝑝,𝑞 | 𝑝 ∈ [0, 𝑃 ) ∧ 𝑞 ∈ [0, 𝑄)}. (3.12)

Parallel to ℬ we define sets 𝐵𝑖 that hold blocks 𝑏𝑖,𝑝,𝑞 at position (𝑝, 𝑞) for a
specific image 𝐼𝑖 of the sequence, i.e.,

𝐵𝑖 = {𝑏𝑖,𝑝,𝑞 | 𝑝 ∈ [0, 𝑃 ) ∧ 𝑞 ∈ [0, 𝑄) ∧ 𝑖 ∈ [0, 𝑁)}. (3.13)

Therefore, we also differentiate between 𝑏𝑖,𝑝,𝑞, a block at position (𝑝, 𝑞) in
a specific image 𝐼𝑖 and 𝑏𝑝,𝑞, a block representative of all 𝑏𝑖,𝑝,𝑞 | 0 ≤ 𝑖 < 𝑁 .
We refer to 𝑏𝑝,𝑞 for attributes that affect the block over the entire sequence
and to 𝑏𝑖,𝑝,𝑞 for attributes concerning one specific image. The most important
attribute of a block 𝑏𝑖,𝑝,𝑞 is its motion vector x𝑖,𝑝,𝑞. Also each block has a class
attribute class𝑖,𝑝,𝑞 that can be set to Unspecific, Foreground, Background or
Dynamic and defaults to Unspecific. The following sections will define several
predicate functions that will act as attributes of a block. Some will refer to
the neighbourhood 𝒩𝑖,𝑝,𝑞 indicating the set of neighbouring blocks adjacent
to block 𝑏𝑖,𝑝,𝑞. We define a predicate Adjacent that determines whether two
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coordinates are adjacent, i.e.,

Adjacent((𝑝, 𝑞), (𝑝′, 𝑞′)) := (𝑝′, 𝑞′) ̸= (𝑝, 𝑞) ∧ |𝑝− 𝑝′| ≤ 1 ∧ |𝑞 − 𝑞′| ≤ 1.
(3.14)

With the predicate Adjacent we define the Neighbourhood 𝒩𝑖,𝑝,𝑞 of a block
𝑏𝑖,𝑝,𝑞 as

𝒩𝑖,𝑝,𝑞 = {𝑏𝑖,𝑝
′
,𝑞

′ | 𝑏𝑖,𝑝
′
,𝑞

′ ∈ 𝐵𝑖 ∧Adjacent((p, q), (p′, q ′))}. (3.15)

Parallel to 𝑏𝑝,𝑞 there is also 𝒩𝑝,𝑞 that refers to the block over the entire
sequence, i.e.,

𝒩𝑝,𝑞 = {𝑏𝑝
′
,𝑞

′ | 𝑏𝑝
′
,𝑞

′ ∈ ℬ ∧Adjacent((p, q), (p′, q ′))}. (3.16)

Based on the predicates the algorithm classifies the blocks and divides each
image into three sets of spatially connected segments of blocks 𝒮Fg (fore-
ground), 𝒮Dy (dynamic) and 𝒮Bg (background) each holding the segments
𝑆𝑇,𝑖,𝑗 of a type 𝑇 of τ, i.e.,

τ = {Fg, Bg, Dy}, (3.17)
𝒮T = {𝑆𝑇,𝑖,𝑗 | 𝑇 ∈ τ}. (3.18)

Each segment 𝑆𝑇,𝑖,𝑗 is a subset of 𝐵𝑖. These segments are then analyzed to
correct the motion vectors of their member blocks. In the end the sequence
ℐout is rendered from ℐ in using the classified blocks and their corrected
motion vectors. Figure 3.1 lists the individual steps of the final algorithm and
their results. The full algorithm will be explained in detail in the following
sections. Each individual step of the algorithm as illustrated in Figure 3.1
is described in a separate section.

3.2.1 Preprocessing

In the first step the input image sequence ℐ in is processed to generate a
smoothed image sequence ℐsm and a reference image 𝐼ref. This information is
necessary for the motion estimation step. ℐsm is generated by calculating the
average for every pixel in its 3× 3 neighbourhood. This way high frequency
noise is attenuated which proved beneficial for the motion estimation step.

The reference image 𝐼ref is generated by calculating a temporal median
over the entire image sequence. The temporal median is an easy way to sta-
bilize the background and eliminate the foreground in a scene with motion.
Figure 3.2 and 3.3 show the temporal median generated from two sample
image sequences. In Figure 3.2 the moving cars entirely disappeared from
the resulting median image while in Figure 3.3 there remains some noise
where the mountaineers moved through the scene. It is essential that the
background is already stabilized to a certain degree or the result will be a
highly distorted image as shown in Figure 3.4.
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Figure 3.2: Four images from a sample sequence (city) and the correspond-
ing temporal median (bottom).
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Figure 3.3: Four Images from a stabilized sample sequence (climbing) and
the corresponding temporal median (bottom).
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Figure 3.4: Resulting temporal median from a sample sequence (climbing)
that has not been stabilized in advance.

In general the temporal median works well as long as the moving objects
occlude the background only for a fraction of the time. Foreground objects
that remain still for a long time may get part of the reference image. However
artifacts in the reference image not necessarily affect the final result as it is
used for motion estimation only, specifically to determine stable background
segments. The reference image 𝐼ref generated using the temporal median
is used to calculate the motion vectors for the blocks. Since the temporal
median preserves the structure of background regions it works better than
for example a temporal mean filter. After calculating the temporal median
the image 𝐼ref is smoothed with the same 3 × 3 average filter as it is used
for ℐsm.

3.2.2 Motion estimation

In this step block-motion estimation is used on the preprocessed image se-
quence. First each image of ℐsm is divided in a grid of blocks 𝐵𝑖 with 𝑃
columns and 𝑄 rows where each block 𝑏𝑖,𝑝,𝑞 is associated with 𝑛 × 𝑛 pixels
at pixel position (𝑢, 𝑣) = (𝑛 · 𝑝, 𝑛 · 𝑞) in the source image 𝐼sm, i.

The motion vector x𝑖,𝑝,𝑞 for each block 𝑏𝑖,𝑝,𝑞 is then estimated by finding
the maximum normalized cross-correlation value 𝑣1 in the 𝑤×𝑤 neighbour-
hood of position (𝑢, 𝑣) in the reference image 𝐼ref. Also the second highest
value 𝑣2 is determined to check whether the maximum value is a unique
local maximum. Based on this information a first classification is applied to
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Figure 3.5: Result of the first classification. Foreground blocks are marked
red, unspecified blocks black. The motion vectors are green for all blocks that
satisfy the predicate Certain or else pink.

the blocks. We define two predicates

Motion(𝑏𝑖,𝑝,𝑞) := 𝑣1 > 𝜏motion (3.19)

and

Certain(𝑏𝑖,𝑝,𝑞) := 𝑣2 < 𝑣1 · (1− 𝜖certain) | 0 < 𝜖certain < 1. (3.20)

The default threshold values used in the implementation are 0.995 for 𝜏motion
and 0.005 for 𝜖certain. Motion indicates whether a block is affected by mo-
tion in a specific image and Certain indicates whether its motion vector
estimation is assumed to be correct in a specific image.

3.2.3 Anchor detection

In this step anchor points are determined by calculating the correlation be-
tween motion vectors of neighbouring blocks. The correlation is calculated
pairwise between the source block 𝑏𝑝,𝑞 and its neighbours 𝒩𝑝,𝑞. The normal-
ized cross-correlation value is calculated by correlating the motion vectors of
two blocks over all images of the sequence. The final neighbourhood correla-
tion value 𝑐𝑝,𝑞 is the mean value of the cross-correlation values calculated for
all neighbouring blocks. With this information we define two more predicates

Stable(𝑏𝑝,𝑞) := 𝑐(𝑏𝑝,𝑞) > 𝜖stable (3.21)
and

Unreliable(𝑏𝑝,𝑞) := 𝑐(𝑏𝑝,𝑞) < 0. (3.22)
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Figure 3.6: Result of the anchor detection step. Anchor blocks are marked
blue, foreground blocks red.

A typical value used in the implementation would be 0.35 for 𝜖stable. Stable
indicates that a blocks motion correlates with the motion of its neighbours
and therefore is likely to be a stable background block and on the same depth
layer as its neighbours. While Stable indicates that a block is generally stable
over the entire sequence the block could still be affected by motion in some
images of the sequence. We define another predicate

Anchor(𝑏𝑖,𝑝,𝑞) := Stable(𝑏𝑝,𝑞)∧ ‖ x𝑖,𝑝,𝑞 − x̄𝑖,𝑝,𝑞 ‖< 𝜖anchor (3.23)

that indicates that a block in a particular image of the sequence is stable.
For this we compare the motion vector x𝑖,𝑝,𝑞 with the mean motion vector of
the neighbouring blocks x̄𝑖,𝑝,𝑞. The implementation uses 1 for 𝜖anchor. Figure
3.6 visualizes the anchor detection step.

3.2.4 Background detection

Having detected stable anchor blocks for every image a first detection run
processes the sequence in order to identify background blocks. Starting with
the anchor points, a region growing approach classifies and recursively pro-
cesses all neighbours 𝑏𝑖,𝑝

′
,𝑞

′ ∈ 𝒩𝑖,𝑝,𝑞 of the current block 𝑏𝑖,𝑝,𝑞 that suffice the
condition

¬Motion(𝑏𝑖,𝑝
′
,𝑞

′)∧ ‖ x𝑖,𝑝,𝑞 − x𝑖,𝑝
′
,𝑞

′ ‖< 𝜖grow. (3.24)

The implementation uses a default value of 1 for 𝜖grow. Figure 3.7 visualizes
the result of background detection step.
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Figure 3.7: Result of the background detection step. Background blocks are
marked in magenta.

3.2.5 Foreground detection

At this point most of the background blocks have been identified and also
the foreground blocks that contain motion are known. However, the block-
motion estimation as it is used in the project is not accurate enough and
many of the background blocks that are near foreground blocks contain
motion at their borders. In order to avoid visual artifacts the foreground
segments are extended in this step. For every background block we check
whether it has a neighbouring block that belongs to the foreground and
suffices the condition Certain and change it to a foreground block. Also any
block that has a neighbour that suffices the condition Motion in the current
or in an adjacent image of the sequence (i.e. the previous or next image)
is classified as foreground. Figure 3.8 visualizes the result of the foreground
detection step.
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Figure 3.8: Result of the foreground detection step. Foreground blocks are
marked in yellow or red in case they also suffice the condition Motion.

3.2.6 Remainder classification

With the foreground and background blocks classified there are still some
remaining blocks that are not yet specified. These blocks might be gaps in
the background segments with incorrect motion vectors or belong to dy-
namic segments. Dynamic segments contain stochastic motion or just lack
the structure necessary for reliably determining the motion vectors. For
example the sky or the surface of the sea would be classified as dynamic
segments. These segments are distinguished from foreground segments to
employ different processing techniques in the following steps. For the re-
mainder classification every block 𝑏𝑖,𝑝,𝑞 that has not yet been specified is
tested whether more then half of its neighbouring blocks 𝒩𝑖,𝑝,𝑞 are back-
ground blocks. In this case the block is classified as a background block and
its motion vector is corrected to the average motion vector of its neighbour-
ing background blocks. Otherwise it is classified as a dynamic block. Figure
3.9 visualizes the result of the foreground detection step.
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Figure 3.9: Result of the remainder classification step. Dynamic blocks are
marked in grey or orange in case they also suffice the condition Unreliable.

3.2.7 Segmentation

Having classified all blocks each image can now be divided into segments of
blocks of the same type. This is done by a simple region growing algorithm
that iteratively expands a new segment from every block of the image that
does not yet belong to a segment until all blocks have been processed. The
result is a set of spatially separate segments for every block type and for
every image. We define three sets 𝒮Fg (foreground), 𝒮Dy (dynamic) and 𝒮Bg
(background) where each element 𝑆T, i, j is a segment of spatially connected
blocks of the corresponding block type 𝑇 ∈ τ in a specific image 𝐼𝑖 of the
sequence. The Figure 3.10 visualizes the different segments detected in one
image.

Figure 3.10: The foreground (left), background (middle) and dynamic
(right) segments.
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Figure 3.11: Visualization of segment tracks. The segments of subsequent
images are checked for intersections (red lines).

3.2.8 Tracking segments

With the images of the sequence analyzed and split into three sets of seg-
ments this step detects tracks of segments through subsequent images. This
is done by intersecting segments of subsequent images that have the same
type 𝑇 and calculating a directed graph that represents the connections
between the segments. Figure 3.11 visualizes the concept of segment tracks
over a sequence of 5 images. Having calculated a graph for the feature tracks
the graph is filtered to eliminate all foreground and dynamic segments be-
longing to tracks that span over less than 𝑡min tracks. The filtered segments
are converted to background segments. This is done to remove short mo-
tion sequences that are most likely incorrectly classified and would disturb
the visual flow. In the implementation the default value for 𝑡min is 4. Figure
3.12 visualizes the segment track graph before and after the filtering process.
Figure 3.13 shows an image where some of the segments have been filtered
and converted to background.

3.2.9 Segment correction

At this point, the images of the sequence have been divided into three final
sets of segments. Now the segments can be analyzed to correct the motion
vectors. This is most important for dynamic and foreground segments where
the motion vectors are very likely to be incorrect, but also for background
segments to smoothen the motion and filter outliers. While the background
segments can be corrected by simply setting the motion vector of each block
to the mean motion vector in its block neighbourhood the foreground and
dynamic segments are corrected by spreading the motion vectors of the sur-
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Figure 3.12: Top: Visualization of the original segment tracks. Bottom:
The segment tracks after the filtering process. All foreground and dynamic
segments belonging to tracks spanning over less than four images have been
converted to background segments.

rounding background blocks into these segments. Both is done at once by
an iterative algorithm that corrects all remaining blocks 𝑏𝑖,𝑝,𝑞 that have one
or more neighbouring blocks 𝒩𝑖,𝑝,𝑞 that are classified as background blocks
or have been corrected in a previous iteration by the mean motion vector of
mentioned blocks. This way the surrounding motion vectors smoothly spread
into foreground segments. The algorithm finishes in one iteration for back-
ground segments since all blocks have at least one neighbouring background
block. Figure 3.14 demonstrates the algorithm for a foreground segment,
Figure 3.15 visualizes the motion vectors before and after the correction.
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Figure 3.13: Visualization of a filtered image. The cyan blocks have been
filtered and converted to background.

Figure 3.14: Visualization of the segment correction process. The back-
ground block iteratively spread their motion vectors into the remaining seg-
ment. The foreground segment is marked yellow, the corrected blocks blue
and the background magenta.

3.2.10 Rendering

Having classified the blocks and corrected their motion vectors in every
image of the sequence the output sequence ℐout is rendered using this infor-
mation. First a stable background image 𝐼bg is extracted from the sequence.
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Figure 3.15: The blocks and their motion vectors before (left) and after
(right) the segment correction.

Figure 3.16: The stable background of two sample sequences: climbing (left)
and city (right).

This is done by finding the first anchor block min𝑖(𝐴𝑛𝑐ℎ𝑜𝑟(𝑏𝑖,𝑝,𝑞)) for every
block 𝑏𝑝,𝑞 or the first background block min𝑖(𝑏𝑖,𝑝,𝑞 ∈ 𝑆Bg,𝑖,𝑗) in case there
is no anchor block and copy its pixel content to 𝐼bg. Notice that the cor-
rected motion vector x𝑖,𝑝,𝑞 is used to translate translate the blocks source
pixel coordinates. Blocks that never are part of a background segment are
not rendered and appear black in the background image. We define a pred-
icate Known that indicates whether a block 𝑏𝑝,𝑞 has been rendered to the
background image. Figure 3.16 shows the background images of two sample
sequences. Parts of the dynamic and foreground segments remain black in
the background image since their is no background representation. Notice
that the different illumination of the source images causes visible artifacts in
the background image. With the background image 𝐼bg extracted it is copied
to all 𝐼out,𝑖. What is left is to render the foreground and dynamic segments
to the output sequence. At some point there was the decision whether to
keep the motion of dynamic segments or to eliminate it. A future imple-
mentation could feature the option to eliminate the dynamic segments and
only show the stable background for those segments. This would require an
adaption of the background extraction part. However, for the project the
motion of dynamic segments is preserved and thus the dynamic segments
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Figure 3.17: Final result of the stabilization algorithm for a sample sequence
(climbing).

Figure 3.18: Left: Frame differencing applied on the original sequence—
the red areas indicate intensity differences above a threshold 0 < 𝜏 < 1
(which is 0.04 in the sample). Right: The same operation applied to the
stabilized sequence. Notice how the background segments contain no motion.
The suggested improvements to reduce artifacts would further reduce the
total amount of motion.

are treated just like foreground segments. For every output image 𝐼out,𝑖 the
dynamic segments 𝑆𝐷𝑦,𝑖,𝑗 and foreground segments 𝑆𝐹 𝑔,𝑖,𝑗 are rendered us-
ing their corrected motion vectors. Figure 3.17 shows the result for a sample
sequence. Notice that the visible artifacts are caused by different lighting
conditions throughout the source image sequence. To remove these artifacts
photometric stabilization and blending techniques could be applied. The
effect of the stabilization algorithm becomes obvious when comparing the
results of a frame differencing operation (which compares the difference in
pixel intensity over subsequent frames) on the sequence before and after (see
Figure 3.18) the stabilization.



Chapter 4

Implementation

This chapter is about the implementation of the algorithms described in
chapter 3. The source code was written in Java since it is a widely used and
platform independent programming language that allows for flexible and
dynamic coding. Reusability and adaptivity were two main objectives for
the implementation. Independent tasks were encapsulated in specific classes
and generalization was applied whenever it seemed reasonable and viable in
terms of performance. The algorithm was split into two independent mod-
ules that were implemented as standalone plugins. While the first plugin
runs feature-based stabilization the second plugin runs block-motion stabi-
lization.

The two plugins have different requirements regarding the input image
sequence, but they operate similar as they process a input sequence and
create a stabilized output sequence. Both plugins allow customization of
their respective parameters to allow for flexible and effective testing. ImageJ
was chosen as an environment as it supports Java plugins and provides an
extensive image manipulation library. Plugins can be easily implemented
as Java classes and executed on imported image data loaded in the ImageJ
software. Results can be easily viewed and exported to different formats and
the library provides simple means to visualize debug information.

As explained in Figure 4.1 the two plugins are meant to be executed
successively with the feature-based plugin providing a rough stabilization
and the motion-based plugin improving the results to gain a maximum of
stability in the image sequence. Each of the following two sections describes
one of the plugins.

30
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Figure 4.1: Both plugins can be used independently on any input image
sequence. However, since the block-motion stabilization algorithm requires a
stabilized input image sequence it is rather an additional processing step on
the results of the feature-based stabilization algorithm.

4.1 Feature-based stabilization plugin
The feature-based algorithm described in chapter 3 has been implemented
in Java using the Imagingbook Library from [4] and the software ImageJ.
The most important classes and their methods are outlined in Figure 4.2.

• AdvancedStabilizerPlugin: The core class that implements the ImageJ
interface PlugInFilter what allows ImageJ to load and run the class
as a plugin. The method setup is called by ImageJ to pass the start
parameter and the ImagePlus instance the plugin was called on. The
ImagePlus instance is used to gain access to the ImageStack object that
represents the input image sequence. The method run runs the actual
stabilization algorithm encapsulated in the class AdvancedStabilizer on
the ImageStack object.

• AdvancedStabilizer: The main class that encapsulates the actual algo-
rithm. It uses SiftSequence to extract the SIFT descriptors and passes
the instance to SiftTracker to find feature tracks. The tracker instance
is later used in a loop to calculate linear mappings using the class

Figure 4.2: An overview of the most important classes of the feature-based
stabilization plugin and their relevant methods.
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SiftMapper. With the mapping the tracks are filtered and a quality
measure is calculated. In each iteration the quality improves until the
exit conditions are sufficed.

• SiftSequence: Represents 𝒮 as it contains a list of SIFT features for ev-
ery image in the input image sequence. The class uses the SiftDetector
class from the Imagingbook library to detect features in every image
and stores it internally. The class is used by several other classes to
access the SIFT features.

• SiftTracker: Represents 𝒯 as it contains a list of feature tracks as-
sociated with 𝒮. The class analyses the SIFT features stored in a
SiftSequence instance to find the feature tracks. Each track is stored
in a map with the first feature of a track serving as the key and an
ordered list of all subsequent features of the track as the value of ev-
ery tuple. The method trackFeatures runs the actual analysis and
extracts the feature tracks. The class also calculates the reliability of
each feature track based on a linear mapping with a call of the method
evaluate. Based on the reliability value and other options like an ROI
or feature density the tracks can be filtered using the method filter.
The method calculateQuality calculates the quality of a linear map-
ping Φ.

• SiftMapper: Represents ℳ as it contains a list of linear mappings, one
for each image in the input image sequence. The class uses an instance
of SiftTracker to calculate a linear mapping for each input image based
on the filtered feature tracks. The method calculate starts the actual
calculation of the mappings that are stored internally and can be ac-
cessed with the methods getMapping and getInverseMapping where
the later one returns the inverse mapping 𝑀 -1

𝑖 for a mapping 𝑀𝑖. The
method getQuality returns the average of the best sample quality 𝜔
for each image. The value of 𝜔 is calculated when calling calculate
and is stored in the instance.

• SiftRenderer: Renders the output image sequence using the linear map-
pings of a SiftMapper instance to transform the input image sequence
and crops it to the largest intersecting rectangle when the crop argu-
ment is set. The class also features various methods to visualize SIFT
features, feature tracks and more that were used for testing.

4.1.1 Application

The implementation is an ImageJ plugin and can executed on any loaded im-
age stack. The source code is organized in a package advancedStabilizer.
The class AdvancedStabilizerPlugin is used to run the program as a Im-
ageJ plugin while the actual logic is implemented in the class AdvancedStabilizer
and several helper classes.
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Figure 4.3: Having loaded any image stack in ImageJ, the plugin can be
executed on that image stack using „ImageJ“→ „Compile and Run...“ and
selecting the AdvancedStabilizerPlugin.java source code file.

Figure 4.4: The configuration dialog that appears when the plugin is exe-
cuted.

The plugin allows the user to adjust a number of options:
• filter minimum: Sets the minimum number of feature tracks to filter.

In sequences with a low amount of stable feature track this can be
reduced, otherwise a higher amount generally leads to better results.

• mapping: Either Projective or Affine. While projective mapping is the
default, affine mapping can yield better results for low-feature se-
quences, especially when the camera moves slightly into the scene.
Projective mapping may be more accurate most of the times, but
sometimes introduces incorrect rotations in these cases whereas affine
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mapping may be more stable.
• enforce ROI: The algorithm uses only those features that are within

the selected region of interest.
• spatial bias: Introduces an additional metric that is used in the calcu-

lation of the track reliability values. The bias specifies how much the
spatial metric affects the entire reliability calculation (0 = 0%, 1 =
100%).

• spatial: Either ROI, Spread or Dense. Determines the calculation of the
spatial metrics. ROI favours all features within the region of interest,
Dense favours features that are in feature-dense areas and Spread the
other way round exactly.

• show tracks: When enabled the plugin will show the filtered feature
tracks for every iteration.

• show warps: When enabled the plugin will show the warped result for
every iteration.

• crop warps: In combination with show warps will crop the warped re-
sults.

• stop early: The algorithm will stop iterating when the quality does
not improve anymore. Otherwise the iterations continue until filter
Minimum is reached.

• debug: When enabled the plugin will show debug messages.
• reduce tracks: This will reduce the number of feature tracks for perfor-

mance reasons—only for feature-intense sequences.
• reduce tracks: This will reduce the number of features detected in every

image of the sequence—only for feature-intense sequences.
The resulting image stack created by the plugin can be exported to various
formats by ImageJ.

4.1.2 Test cases

This section describes three test cases that test the performance of the im-
plementation of the feature-based algorithm and discusses the results.

Test case “Mountain peak”

This test case uses the plugin on a image sequence consisting of 12 handheld
shots of a mountain peak. The delay between every subsequent image is
about two seconds what causes the clouds to move in significant speed. The
content of the scene is quite distant what minimizes the parallax effect.
Figures 4.5, 4.6 and 4.7 show the results for the test case.

The resulting animation is perfectly stabilized. The algorithm success-
fully filters unstable feature tracks and the parts of the scene that contain
motion do not disturb the stabilization. Only the part of the scene that
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Figure 4.5: The sequence with the result of the first tracking iteration.
The SIFT features are in magenta, the green lines indicate the position of a
feature in the previous frame.

is near the camera—i.e., the snowy path on the right side—slightly jitters
due to the parallax effect that cannot be fully eliminated with a projective
transformation.
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Figure 4.6: A sample slice of the final iteration with the filtered feature
tracks. The SIFT features are in magenta, the green lines indicate the position
of a feature in the previous frame.
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Figure 4.7: Visualization of the stabilized animation (warped but not
cropped). The black area is void space created by warping the images.
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Figure 4.8: The sequence with the result of the first tracking iteration.
Shows every third image only. The SIFT features are in magenta, the green
lines indicate the position of a feature in the previous frame.

Test case “Mountaineers”

This test case uses the plugin on a image sequence consisting of 27 handheld
shots of two mountaineers going down a snow field. The delay between the
every subsequent image is about 3 seconds. The scene splits in a near part
with the mountaineers on the snow field and a very distant part of the sur-
rounding mountainside what causes a considerable parallax effect. Figures
4.8, 4.9 and 4.10 show the results for the test case.

The resulting animation is perfectly stabilized. The algorithm success-
fully filters unstable feature tracks and the parts of the scene that contain
motion do not disturb the stabilization. However on the edge between the
near and distant part of the scene there is considerable jitter due to the par-
allax effect. However, the result is as good as it gets using only a projective
mapping.
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Figure 4.9: A sample slice of the final iteration with the filtered feature
tracks. The SIFT features are in magenta, the green lines indicate the position
of a feature in the previous frame.

Figure 4.10: Visualization of the stabilized animation (warped but not
cropped). Shows every third image only. The black area is void space created
by warping the images.
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Test case “Speedboat”

This test case uses the plugin on a image sequence consisting of 16 hand-
held shots of a moving speedboat. The camera is actually also on a moving
speed boat. The delay between each shot is less than 1/10 seconds, however
the motion in the scene is quite fast. This sample is a stress test for the
algorithm: The jitter of the camera is huge, there is a considerable amount
of motion, the intersection between the images is relatively small and there
is a considerable parallax effect. This is pretty much a worst case scenario
for the algorithm. Figures 4.11, 4.12, 4.13 and 4.14 show the results for the
test case.

The resulting animation is quite stable. There are a few jitters in the
resulting animation, but given the fact that there is generally a low amount
of features and a lot of errors in the feature tracks the filtered tracks are
really good. The result is as good as it gets given the parallax effect.

Figure 4.11: The sequence with the result of the first tracking iteration.
The SIFT features are in magenta, the green lines indicate the position of a
feature in the previous frame.
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Figure 4.12: A sample slice of the final iteration with the filtered feature
tracks. The SIFT features are in magenta, the green lines indicate the position
of a feature in the previous frame.
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Figure 4.13: Visualization of the stabilized animation (warped but not
cropped). The black area is void space created by warping the images.
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Figure 4.14: Visualization of the stabilized animation (warped and
cropped).
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4.2 Block-motion stabilization plugin
Very much like the implementation of the feature-based algorithm the block-
motion stabilization algorithm described in chapter 3 has been implemented
in Java using the Imagingbook Library from [4] and the software ImageJ.
The most important classes of the block-motion stabilization plugin and
their methods are outlined in Figure 4.15.

• BlockMotionAnalysis: The core class that implements the ImageJ in-
terface PlugInFilter. It is loaded and called by ImageJ when the plugin
is executed. The method setup passes the start parameters and the
ImagePlus instance to the program which is necessary to obtain the
ImageStack object that contains the input image sequence. The run
method runs the actual program as it first creates a config object and
passes it with the ImageStack object to a BlockAnalyzer instance to
analyze the sequence and later render the corrected animation to a
new ImageStack instance that is finally displayed.

• BlockAnalyzer: The main class that encapsulates the block-based algo-
rithm. The analyze method executes the block-based algorithm where

Figure 4.15: An overview of the most important classes and their relevant
methods.
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the separate steps shown in Figure 3.1 are further encapsulated in spe-
cific operation classes. The animation data that is processed by these
classes is stored in a BlockAnimation instance. The operation classes
have to implement one of the interfaces BlockOperation, BlockFrame-
Operation or BlockAnimationOperation and are executed on the analysis
data using its process method. The method draw is used to visualize
the analysis results for testing purposes. The method render creates
the stabilized output image sequence based on the data from the anal-
ysis.

• BlockConfiguration: Contains the parameter values for the algorithm
and is shared throughout all classes that cover parts of the algorithm.
The method setParameter shows the configuration dialog that is il-
lustrated in Figure 4.16 and enables the user to adjust the parameters.

• BlockAnimation: Represents the block-motion analysis data for the ani-
mation. It contains a two dimensional array of rows × columns (𝑃×𝑄)
BlockMotion objects that represent ℬ and an AnimationData instance.
The class features multiple process overloads that can be used to
execute an operation on the analysis data. The operation must be im-
plemented in a class implementing one of the interfaces BlockOpera-
tion, BlockFrameOperation or BlockAnimationOperation and it is either
called on each BlockMotion object, each BlockMotion object in each
frame of the animation or once for the entire animation.

• BlockMotion: Represents a single block 𝑏𝑝,𝑞 and stores the analysis
data for it. The class contains both evaluation results of predicates
associated with the block over the entire animation and predicates
associated with a block in a specific frame. For example the type and
motion vectors are stored for every frame of the animation while the
results for the Stable and Unreliable predicates are stored only once.

• AnimationData: Represents the input image sequence (ℐ in) and as-
sociated data. The class holds a smoothed version of the image se-
quence (ℐsm) and the temporal median from both the original and the
smoothed image sequence. The calculation of this data corresponds
to the first step of the algorithm 3.2.1. It also provides access to at-
tributes like the pixel-width (𝑤) and -height (ℎ) of the images and the
number of frames/images (𝑁) in the sequence.

• BlockSegment: Represents a segment 𝑆𝑇,𝑖,𝑗 of type 𝑇 in image 𝐼𝑖. The
block members 𝑏𝑝,𝑞 are stored in a hash set using their grid indices 𝑝
and 𝑞. The class also stores the frame number (𝑖) and the type (𝑇 ) of
the segment and is used by the BackgroundSegmenter class to process
the segments.

• BlockOperation: An interface that allows the BlockAnimation class to
execute an operation on each block of the animation. The class imple-
menting this interface has to implement its operation in its process
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method.
• BlockFrameOperation: An interface that allows the BlockAnimation class

to execute an operation on each block of the animation once for ev-
ery frame. The class implementing this interface has to implement its
operation in its process method.

• BlockAnimationOperation: An interface that allows the BlockAnima-
tion class to execute an operation on a BlockAnimation instance. The
class implementing this interface has to implement its operation in its
process method.

• BackgroundCalculator: This class implements a region growing algo-
rithm used by both the BackgroundFiller and BackgroundSegmenter
class.

• BlockMotionCalculator: Encapsulates the second step of the algorithm
3.2.2 as it calculates the motion vectors for each block. The class also
evaluates the Motion and Certain predicates for each block.

• NeighbourCorrelationCalculator: Encapsulates the third step of the al-
gorithm 3.2.3 as it correlates the motion vectors of each block with
the motion vectors of its neighbours to evaluate the predicates Stable,
Unreliable and finally Anchor.

• BackgroundSegmenter: Encapsulates part of the fourth step of the al-
gorithm 3.2.4 as it uses a region growing algorithm implemented in its
base class BackgroundCalculator to grow background segments from
the anchor blocks.

• BackgroundExtender: Encapsulates part of the fourth step of the algo-
rithm 3.2.4 as it spreads background blocks across subsequent frames.
This step is not mentioned in the algorithm as it is optional and per
default disabled.

• ForegroundExtender: Encapsulates the fifth step of the algorithm 3.2.5
as it extends the foreground segments.

• BackgroundFiller: Encapsulates the sixth step of the algorithm 3.2.6 as
it inspects unspecified blocks and classifies them.

• Foreground correcter: Encapsulates the seventh, eight and ninth step of
the algorithm (3.2.7, 3.2.8 and 3.2.9) as it segment the blocks based
on their type, tracks segments across subsequent images and corrects
the motion vectors of the segments.

• BlockRenderer: Encapsulates the tenth step of the algorithm 3.2.10 as
it uses the analysis data to calculate ℐout from ℐ in.

• BlockVisualizer: The class is used to visualize the analysis data and can
be used at any step of the algorithm to inspect the current state of
the analysis.
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Figure 4.16: The configuration dialog that appears when executing the
plugin.

4.2.1 Application

The implementation is an ImageJ plugin and can be executed on any loaded
image stack. However, as mentioned, in order to work properly the back-
ground of the input image sequence should stable up to a certain degree.
The class BlockMotionStabilizer is used to run the program as an Im-
ageJ plugin. The plugin allows the user to adjust a number of parameter
(see Figure 4.16):

• Cross-correlation window: Corresponds to the 𝑤 × 𝑤 neighbour-
hood that is searched for every block in order to determine its motion
vector. Increasing it will directly and dramatically affect the perfor-
mance, however a higher value can deal with larger camera shakes.

• Block size: the 𝑛× 𝑛 pixel area associated with each block.
• Motion threshold: the threshold value used to detect motion based

on the cross-correlation value (𝜏motion).
• Epsilon certain: the factor used to determine whether the cross-

correlation value is a unique local maximum (𝜖certain).
• Epsilon anchor: the threshold value used to determine whether the

motion vector of a block is similar to its neighbours (𝜖anchor).
• Epsilon stable: the threshold value used to determine whether the

motion vectors of a block correlate with its neighbours motion vectors
over the entire sequence (𝜖stable).

• Epsilon grow: A threshold value used for the region growing algo-
rithm, like 𝜖anchor it determines whether a neighbours motion vector is
similar enough to include it in the region.

• Neighbour correlation window: An additional parameter in the im-
plementation used for the neighbourhood correlation. Instead of using
only the direct neighbourhood of a block the user may specify a larger
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value to include more neighbours.
• Minimum track length: A limit for the minimum length of segment

tracks. Segments belonging to a track shorter then this value will be
filtered and converted to background segments (𝑡min).

The resulting image stack created by the plugin can be exported to a number
of formats.

4.2.2 Test cases

The step-by-step explanation of the algorithm already discussed the results
of the algorithm for one particular sequence (climbing) to illustrate the re-
sults of each step. This section describes three additional test cases that test
the performance of the implemented algorithm and discusses the results.

Test case “City”

The first sample is a sequences of 15 images of a city landscape (see Figure
4.17a). The sequence was stabilized in advance using the stabilization algo-
rithm described in the first part and contains little to no perspective warp
and jitters. However, the sequence contains a lot of pixel noise. Also cars and
pedestrians are moving through the sequence. The block-motion stabiliza-
tion algorithm is very effective eliminating the pixel noise as a comparison
of Figure 4.17b and Figure 4.17c reveals. The algorithm correctly identifies
most of the moving objects (see Figure 4.17e), however it has problems with
very small or thin objects (e.g., pedestrians) located between block bound-
aries. Some of the objects where incorrectly added to the background image
(see Figure 4.17d).

Test case “Leaves”

The second sample is a sequences of 12 images of a group of people throw-
ing leaves (see Figure 4.18a). The sequence was stabilized in advance using
the stabilization algorithm described in the first part but still contains a
considerable amount perspective warp in the background. Like the previous
sequence this sequence contains a lot of pixel noise. The sequence contains
motion of big objects (people) and very small objects (leaves). The block-
motion stabilization algorithm is effective eliminating the pixel noise as a
comparison of Figure 4.18b and Figure 4.18c reveals. The algorithm correctly
identifies the group of people (see Figure 4.18e), however it has problems
with the background—especially the tree next to the building. However, the
background image contains no errors, even though some parts of the group
of people that did not move at all were integrated (see Figure 4.18d).
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(a) (b)

(c) (d)

(e)

Figure 4.17: Test case “City”. (a) Original input sequence. (b) Frame dif-
ferencing operation applied on the original sequence. (c) The same operation
applied to the stabilized sequence. (d) Stable background extracted from the
sequence. (e) Final result of the block classification.

Test case “River”

The third sample is a sequences of 24 images of a river landscape (see Fig-
ure 4.19a). The sequence was stabilized in advance using the stabilization
algorithm described in the first part. The sequence contains little pixel noise
and perspective warps but large illumination differences caused by the shad-
ows of clouds. The sequence contains objects (the ship and the leaves). The
block-motion stabilization algorithm is effective eliminating the pixel noise
and perspective warps as a comparison of Figure 4.19b and Figure 4.19c
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(a) (b)

(c) (d)

(e)

Figure 4.18: Test case “Leaves”. (a) Original input sequence. (b) Frame dif-
ferencing operation applied on the original sequence. (c) The same operation
applied to the stabilized sequence. (d) Stable background extracted from the
sequence. (e) Final result of the block classification.

reveals. Also it completely eliminates the clouds shadows. The algorithm
correctly identifies the moving objects (see Figure 4.19e). The background
image contains no errors (see Figure 4.19d).
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(a) (b)

(c) (d)

(e)

Figure 4.19: Test case “River”. (a) Original input sequence. (b) Frame dif-
ferencing operation applied on the original sequence. (c) The same operation
applied to the stabilized sequence. (d) Stable background extracted from the
sequence. (e) Final result of the block classification.



Chapter 5

Evaluation

This chapter evaluates the two algorithms described in chapter 3 based on
three metrics. The two plugins implementing the algorithms are executed
subsequently in two steps as described in Figure 4.1. Therefore, the fol-
lowing figures will refer to three data sets: Original, Stabilized and Final.
Original stands for the original image sequences before any stabilization
has been applied. Stabilized refers to the stabilized image sequences gener-
ated by the first (feature-based) stabilization plugin. Final are the image
sequences generated by the second (block-motion) stabilization plugin using
the sequences from Stabilized as input. The metrics are calculated before
and after each stabilization step. By relating the metrics to the initial value
the improvement in stability is evaluated as a percentage number. This way
the effectiveness of both algorithms is measured.

5.1 Metrics used
This section defines and visualizes the three different metrics used to evalu-
ate the algorithms. Each metric tries to measure the stability of an images
sequence in a different way.

5.1.1 Difference metric

For the difference metric we define the intensity value of a pixel as |𝐼𝑖,𝑢,𝑣|,
where 𝑖 refers to the image 𝐼𝑖 and 𝑢, 𝑣 to the pixel position (𝑢, 𝑣). We define
the difference metric as

𝑚Δ = 1
(𝑁 − 1) · 𝑤 · ℎ ·

𝑁−1∑︁
𝑖=1

𝑤−1∑︁
𝑢=0

ℎ−1∑︁
𝑣=0

⃒⃒⃒
|𝐼𝑖,𝑢,𝑣| − |𝐼𝑖−1,𝑢,𝑣|

⃒⃒⃒
. (5.1)

This corresponds to the average intensity difference calculated as the sum
of the absolute intensity differences of every pixel pair at the same position

52
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Figure 5.1: The effects of the stabilization algorithms visualized by frame
differencing. The Figure shows three sample sequences (Leaves, Town A
and Climbing) each in a column with a difference frame for each step. The
first row represents the original sequence, the second row the sequence after
the feature-based stabilization and the last row the final sequence after the
motion-based stabilization. Note that the motion-based stabilization was ex-
ecuted on the results of the feature-based stabilization. The difference was
calculated as the pixel-intensity difference of two subsequent frames.

(𝑢, 𝑣) and of two subsequent images 𝐼𝑖 and 𝐼𝑖−1 divided by the number of
pixel pairs (𝑁 − 1) · 𝑤 · ℎ.

The metric is inspired by the frame differencing technique that is com-
monly used to detect motion. Figure 5.1 visualizes the effect of frame differ-
encing on three sample sequences before and after each stabilization step. It
demonstrates how the stabilization algorithm reduces the amount of motion
as the magnitude of intensity differences decreases. One problem with the
metric is that it directly depends on the intensity values and the contrast
created by motion. A bright object moving over a dark background would
therefore generate more motion than a dim object. However, since we use
the metric on different versions of the same content (before and after each
stabilization step) the consequences should be sustainable.

5.1.2 Threshold metric

Based on the difference metric that defines the stability of an image sequence
as the average pixel intensity difference the threshold metric is defined as
the percentage of pixels affected by motion. The absolute pixel-intensity
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difference is calculated just as it is for the difference metric, but the value
of each pixel pair is thresholded by a value 𝜏m and every pair exceeding the
threshold value is masked. The metric is defined as relation of the count of
masked pixel-pairs to the total count of pairs. Thus the threshold metric is
defined as 1

𝑚𝜏 = 1
(𝑁 − 1) · 𝑤 · ℎ

𝑁−1∑︁
𝑖=1

𝑤−1∑︁
𝑢=0

ℎ−1∑︁
𝑣=0

[︂⃒⃒⃒
|𝐼𝑖,𝑢,𝑣| − |𝐼𝑖−1,𝑢,𝑣|

⃒⃒⃒
> 𝜏m

]︂
. (5.2)

Figure 5.2 shows the thresholded version of the difference images from Figure
5.1. By thresholding the difference images the metric gets less dependent on
the magnitude of intensity differences. However, the metric is not unaffected
by intensity and a foreseeable problem is that parts of the motion may
not affect the metric if the intensity difference caused by it is below the
threshold. The choice of the threshold value 𝜏m is essential for significance
of the metric. For the evaluation a value of 10 percent (of the maximum
intensity difference) was used.

1The [] operator used in equation 5.2 evaluates the contained Boolean predicate and
returns either 1 if it is satisfied or else 0.
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Figure 5.2: The effects of the stabilization algorithms visualized by thresh-
olded frame differencing. The Figure shows three sample sequences (Leaves,
Town A and Climbing) each in a column with a thresholded difference frame
for each step. The first row represents the original sequence, the second row
the sequence after the feature-based stabilization and the last row the final
sequence after the motion-based stabilization. Note that the motion-based
stabilization was executed on the results of the feature-based stabilization.
The threshold value was set to 10% and applied on the magnitude of the
intensity difference.

5.1.3 Motion vector metric

The third metric is calculated very differently from the other two as it relies
on block-motion estimation. The metric is defined as the sum of the magni-
tude of all motion vectors of every image in the sequence. Since block-motion
estimation as it is used in the implementation chapter would not work well
for the original image sequences as they contain too much camera movement
this metric is evaluated only on the sequences of the Stabilized and Final
data sets. Thus the metric is defined as

𝑚𝑥 =
𝑁−1∑︁
𝑖=0

𝑃 −1∑︁
𝑝=0

𝑄−1∑︁
𝑞=0
|𝑥𝑖,𝑝,𝑞|. (5.3)

One flaw of the metric is that it relies on the correctness of the motion vectors
what can not be guaranteed. Nevertheless, the metric should be sufficient
for the evaluation since it always compares different versions (before and
after block-motion stabilization) of the same input sequence.
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5.2 Test data
The evaluation was conducted using ten different sample input image se-
quences. Based on the sequences the data sets Original, Stabilized and Fi-
nal have been generated using the plugins as described at the beginning of
this chapter. The sequences show very different scenes and provide various
challenges for both algorithms. Figure 5.3 shows all sample sequences. The
sequences Climbing, Juggler and Mountain show people moving through a
scene and contain huge camera motion. Leaves and Seaguls contain an exten-
sive amount of complex motion as multiple objects move through the scene.
Peak and Sea contain primarily unstructured motion (the sea, clouds) and
Sea challenges the algorithms with a perspective warping effect in the far
background of the scene caused by the camera moving back. While River,
Town A and Town B show only tiny jitters they contain many small moving
objects.
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Climbing Juggler Leaves

Mountain Peak River

Sea Seaguls Town A

Town B

Figure 5.3: The sample sequences used for evaluation.

5.3 Results
This section discusses the results of the evaluation. Each of the three metrics
has been evaluated for all sample image sequences in the data sets Original,
Stabilized and Final. The charts below visualize the improvement of each
sample sequence over the processing steps. Note that the values in the charts
are not absolute but relative to the result of the leftmost data set (which is
in turn 100%). Since all metrics measure the amount of motion a decrease
of the value marks improved stability.

Figure 5.4 shows the chart for the difference metric. The plugins always
achieve an improvement with shaky sample sequences faring better in the
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Figure 5.4: The improvement in stability of the sequence after each sta-
bilization step measured with the difference metric. The values are relative
to the result for the original sequence. The average for the stabilized se-
quences is 43.2% with a standard deviation 𝜎 of 16%. The average for the
final sequences is 26.8% with a 𝜎 of 18.2%.

first stabilisation step compared to still sample sequences and sequences with
small moving objects yielding better results than sequences with widespread
and complex motion in the second stabilization step.

Figure 5.5 shows the chart for the threshold metric. The plugins achieve
improvements with one exception (Mountain) at the second stabilization
step. While the first stabilization step always achieves significant improve-
ments with better results for sequences with small areas of motion the second
stabilization step seems to have no consistent effect in terms of this metric.

Figure 5.6 shows the chart for the motion vector metric with all sequences
yielding significant improvements after the block-motion stabilization step.
Based on these results it is reasonable to state that the algorithms are suc-
cessful in stabilizing image sequences with the feature-based stabilization
achieving reliable and significant improvements in stability and the block-
motion stabilization adding additional refinement.
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Figure 5.5: The improvement in stability of the sequence after each stabi-
lization step measured with the threshold metric. The values are relative to
the result for the original sequence. The average for the stabilized sequences
is 21.3% with a standard deviation 𝜎 of 22.3%. The average for the final
sequences is 19.6% with a 𝜎 of 21.9%.
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Figure 5.6: The improvement in stability of the sequence before and after
the block-based stabilization step measured with the motion vector metric.
The values are relative to the result before the block-motion stabilization.
The average for the final sequences is 18.2% with a standard deviation 𝜎 of
9.1%.



Chapter 6

Summary

The aim of the thesis was to design and implement algorithms to stabilize
image sequences. The result is two ImageJ plugins that stabilize sequences
using two different approaches. While the first one is based on SIFT features
the second utilizes block-motion analysis to stabilize image sequences. The
stabilization results of the first plugin are comparable to the solution Google
offers for its Google Photo auto-animation stabilization. The implementation
even succeeds for sequences that Google Photo fails to create an animation
for.

However the method is limited by the projective mapping used to align
the images. This is most obvious in scenes with high depth variation i.e. with
objects close to the camera. Simple projective mapping proves insufficient
to accurately align images of a three dimensional scene. The SIFT features
would allow for sub-pixel accuracy, but the projective mapping calculated
from the feature tracks ignores the depth of the scene. This is why it can
never fully align images of scenes with a high amount of depth disparity.

While the second plugin is not as tolerant as the first one in terms of
the input data it is capable of dramatically reducing the amount of motion
and noise in an animated sequence to create a sequence that appears much
more visually stable to the viewer. The plugin assumes that the background
of the input image sequence is already stabilized up to a certain degree. The
algorithm divides the images of the sequence in foreground, background
and dynamic segments and processes them separately to correct or mask
the motion. The implementation allows to adjust parameters to deal with
different scenarios.

However there is still much potential for improvements. In terms of qual-
ity the algorithm lacks a strategy to deal with artifacts caused by different
lighting through the images. Also the accuracy of the motion detection us-
ing normalized cross-correlation only is not optimal, especially at the blocks
borders. Alternative means to create a reference image other than the tem-
poral median could yield better results (e.g., [6]). Also blending techniques
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could reduce the artifacts at segment borders (e.g., [11]). Another important
point is the background extraction part where a more sophisticated approach
could yield more reliable background images. A possible improvement would
be to take the correlation between background blocks into account to select
the best block.

In terms of performance the implementation would benefit from faster
techniques for the block-motion estimation part (e.g., [16]). The implemen-
tations of both algorithms still have a lot of potential for optimization. How-
ever, as a proof-of-concept the plugins succeeded and are able to generate
quite impressive results. The evaluation confirms this statement as all three
metrics show significant improvements in terms of stability after applying
the plugins.

The conclusion of this thesis is that feature-based and block-based ap-
proaches are very effective for stabilization and can be applied to automat-
ically process image sequences. The algorithms implemented in this thesis
could be used for practical applications, however additional work in auto-
matic parametrization would be necessary to achieve optimal results. The
block-motion stabilization algorithm still has much potential for improve-
ments and performance is yet an issue. These points aside the algorithms
could very well benefit services like Google Photo: The algorithms could be
part of an online service and be executed automatically on images of the
same scene in the users photo library (as Google Photo does it), be im-
plemented in a smartphone app to create animations of manually selected
photos taken by the user or to enhance features like Living Images on Lu-
mia devices to stabilize a captured sequence. The resulting stabilized stop-
motion animations could be viewed in an animated photo book or be played
by digital photo frames.
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Chapter 7

Appendix

7.1 Symbols used

Symbol Description
ℐ in the input image sequence.
ℐout the output image sequence.
ℐsm the smoothed input image sequence.
𝐼ref the reference image used for motion estimation.
𝐼bg the background image containing the stable

background of the scene.
𝐼𝑖 the image at index 𝑖 in the input image sequence.
|𝐼𝑖,𝑢,𝑣| the intensity value of the pixel at position (𝑢, 𝑣)

in image 𝐼𝑖.
𝑠 a SIFT feature.
𝑆 a set of SIFT features.
𝒮 a vector of sets of SIFT features.
𝑡 a feature track.
𝒯 a set of feature tracks.
𝑀 a linear mapping.
ℳ a vector of linear mappings.
ℬ all blocks, a set of 𝑏𝑝,𝑞.
𝐵𝑖 a set of blocks associated with the image 𝐼𝑖.
𝑏𝑝,𝑞 the block at position 𝑝 and 𝑞 with no reference

to a specific image.
𝑏𝑖,𝑝,𝑞 the block at position 𝑝 and 𝑞 in the image 𝐼𝑖.
𝒮Fg the set of foreground segments.
𝒮Dy the set of dynamic segments.
𝒮Bg the set of background segments.
τ Set of all defined segment types: Fg (fore-

ground), Bg (background) and Dy (dynamic).
𝑇 a type of segment, either 𝐹𝑔 (foreground), 𝐵𝑔

(background), or 𝐷𝑦 (dynamic).
𝑆𝑇,𝑖,𝑗 a segment of blocks of type 𝑇 in image 𝐼𝑖.
nil nothing, used to mark an empty entry.
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𝐾 number of iterations for the RanSaC loop.
𝑁 the number of images in the input image se-

quence.
𝑤 pixel height, same for all images.
ℎ pixel width, same for all images.
𝑃 number of columns in the block grid.
𝑄 number of rows in the block grid.

𝑒(𝑡𝑗) error measure for a specific feature track 𝑡𝑗 .
𝑟(𝑡𝑗) quality measure for a specific feature track 𝑡𝑗 ,

indicating the reliability of 𝑡𝑗 .
size(𝑣) the size of a vector or set 𝑣.
keys(𝐴) returns a set of all keys in an associative map.

𝑝 used to reference a key/value pair in an associa-
tive map.

x𝑖,𝑝,𝑞 the motion vector of block 𝑏𝑖,𝑝,𝑞.
class𝑖,𝑝,𝑞 the class of block 𝑏𝑖,𝑝,𝑞. Either Unspecific,

Foreground, Background or Dynamic.
𝑣1 the highest cross-correlation value in the neigh-

bourhood.
𝑣2 the second highest cross-correlation value in the

neighbourhood.
𝑐𝑝,𝑞 the neighbourhood correlation value of block

𝑏𝑝,𝑞.
𝒩𝑝,𝑞 the neighbouring blocks of block 𝑏𝑝,𝑞.
𝒩𝑖,𝑝,𝑞 the neighbouring blocks of block 𝑏𝑖,𝑝,𝑞.

Motion(𝑏𝑖,𝑝,𝑞) a predicate that indicates whether a block is af-
fected by motion in a specific image 𝐼𝑖.

Certain(𝑏𝑖,𝑝,𝑞) a predicate that indicates whether the motion
vector is assumed to be correct in a specific im-
age.

Stable(𝑏𝑝,𝑞) a predicate that indicates whether a block is con-
sidered stable background throughout the entire
sequence.

Unreliable(𝑏𝑝,𝑞) a predicate that indicates whether a blocks mo-
tion vectors are considered unreliable through
the entire sequence.

Anchor(𝑏𝑖,𝑝,𝑞) a predicate that indicates whether a block qual-
ifies as an anchor block.

Known(𝑏𝑝,𝑞) a predicate that indicates whether a block has a
background representation in 𝐼bg.
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Φ used as a quality measure, particularly to mea-
sure stability of feature tracks.

𝜔 used as a quality measure, particularly the corre-
spondence achieved with a linear mapping map-
ping one point set to an other.

𝜏m a threshold value used for the threshold stabil-
ity metric. The value is used to threshold pixel-
intensity differences.

𝜏Filter threshold value used to filter a certain percent-
age of feature tracks in each iteration.

𝜏motion a threshold value for Motion(𝑏𝑖,𝑝,𝑞) used on 𝑣1.
𝜖certain a threshold value for Certain(𝑏𝑖,𝑝,𝑞) that deter-

mines when 𝑣1 is considered a unique local max-
imum.

𝜖stable a threshold value for Stable(𝑏𝑝,𝑞) used on the
neighbourhood correlation value 𝑐𝑝,𝑞.

𝜖anchor a threshold value for Anchor(𝑏𝑖,𝑝,𝑞) used on the
difference between motion vector of block 𝑏𝑖,𝑝,𝑞

and its neighbours motion vectors.
𝜖grow a threshold value used for the region growing al-

gorithm in the background detection step. Indi-
cates the maximum difference in motion vectors
between neighbours of the region.

𝑡min minimum length of a dynamic or foreground seg-
ment track.

7.2 Structure of the CD-ROM
The CD enclosed with this thesis contains the source code of the implemen-
tations and the sample sequences used for the evaluation and testing. In the
folder Implementation there are two subfolders Plugin1 and Plugin2 that
contain the source code of the feature-based and block-motion stabilization
plugins. The folder Samples contains each sample sequence organized in a
subfolder. The sequences are stored in the TIF format and can be imported
by ImageJ, which is necessary to compile and run the plugins. Chapter 4
explains how to execute the plugins on a sample sequence.
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