
Mobile Device Usage in Interactive,
Co-located Presentations

Iris M. Schaffer

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2016

© Copyright 2016 Iris M. Schaffer

This work is published under the conditions of the GNU General Public
License 3.0 (GPLv3) – see https://www.gnu.org/licenses/gpl-3.0.en.html.

ii

https://www.gnu.org/licenses/gpl-3.0.en.html

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, September 26, 2016

Iris M. Schaffer

iii

Contents

Declaration iii

Acknowledgments vii

Abstract viii

Kurzfassung ix

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Structure . 3

2 Related Work 5
2.1 Classroom-Related . 5
2.2 Office Environments . 7
2.3 General Presentations . 9

3 Requirements and Design Goals 11
3.1 Factors . 11

3.1.1 Audience Size . 11
3.1.2 Presentation Environment 13
3.1.3 Speaker and Audience 13

3.2 Resulting Mechanisms . 14
3.2.1 Remote Control . 14
3.2.2 Following Slides . 15
3.2.3 Paths . 16
3.2.4 Audience Questions 16
3.2.5 Polls . 17
3.2.6 Reactions . 17
3.2.7 Content Sharing . 17

4 Application Design 19
4.1 Application Flow . 19

iv

Contents v

4.2 General Interface . 21
4.3 General Interaction Principles 22
4.4 Polls . 24
4.5 Reactions . 25
4.6 Content Sharing . 26

5 Implementation 28
5.1 Project Scope . 29
5.2 Server Architecture . 30
5.3 Front End Technologies . 32

5.3.1 ECMAScript2015 and Babel 32
5.3.2 Reactive Programming 33
5.3.3 React . 35
5.3.4 unveil.js . 37

5.4 Project Structure . 39
5.5 Extended unveil.js . 40
5.6 Network Synchronisation Layer 41
5.7 Interactive Extension . 43

5.7.1 Speaker Presenter . 43
5.7.2 Reactions . 44
5.7.3 Content Sharing . 44
5.7.4 Voting . 45

6 Results 47
6.1 Application . 47

6.1.1 Voting . 48
6.1.2 Content Sharing . 49

6.2 User Study . 50
6.3 From a Developer’s Perspective 52

6.3.1 Setup . 53
6.3.2 Building a Presentation 53
6.3.3 Customisation and Extension 54

7 Discussion 56
7.1 User Study . 56
7.2 From a Developer’s Perspective 58
7.3 Architecture . 59

8 Conclusions and Future Work 60
8.1 Future Work . 61

A DVD Contents 63
A.1 General . 63
A.2 Copies of Online References 63

Contents vi

A.3 Graphics . 64

References 68
Literature . 68
Software and Libraries . 72
Online sources . 73

Acknowledgments

At this point, I would like to express my gratitude to everyone who has joined
me on the venture of my masters degree, may it be actively or passively.
Those who offered advice and guidance when in doubt, those who motivated
and inspired me to always strive for more and those who listened to me and
let me spark their interest. In particular, my thank goes to my parents
who have always supported me in whatever it was I set my mind on, both
financially and with advice. My friends, for both sitting me down in front
of my computer when I lost motivation and for taking my mind off work
when sinking into it too deeply. Special thanks to Leandro Ostera and his
enthusiasm, for lifting my spirits, but also for all the theoretical as well as
practical advice and involvement in this project.

Moreover, I want to express my gratitude to my supervisor Dr. Michael
Haller for providing me with ideas, feedback and the necessary flexibility to
write this thesis remotely, from Sweden. On this note, I want to also thank
Oakwood Creative AB for supporting their employee’s dreams and visions
and for giving me the possibility to test the developed system in meetings
as well as Monday morning presentations. Thanks also to my colleagues, for
their constant feedback and patience with my Swedish, as well as to every
last stranger, in Sweden, Austria and elsewhere, I had the pleasure of telling
about my research.

Finally, my admiration and appreciation go out to all developers and
companies driving the course of open-source forward. Despite mostly not sci-
entifically publishing their results, this community has given birth to some
of the most exciting and most widely used technologies, libraries and frame-
works on the market. Without the work of these never-resting individuals,
this thesis and project would never have come into existence in their current
form. To pay tribute to this vibrant community, all the work involved in this
thesis was also open-sourced and published on GitHub1.

1https://github.com/irisSchaffer/

vii

https://github.com/irisSchaffer?tab=repositories

Abstract

Mobile devices such as smartphones, tablets and laptops have become our
every day companions and can act as an endless source of information,
knowledge and inspiration. However, despite studies having demonstrated
the benefits of targeted smartphone use in classrooms and meetings, they
are still perceived as impolite and disturbing during presentations. These,
on the other hand, are often still one-man endeavours, from slide prepara-
tion, giving the talk to lastly follow-up work such as hand-outs. In an effort
to destigmatise mobile devices usage and make presentations more memo-
rable, engaging, and collaborative, a prototype of an extensible JavaScript
presentation ecosystem with a multitude of interactive mechanisms was im-
plemented. These functionalities are the result of the analysis of several
types of presentations and their weaknesses and, amongst others, include
the possibility for the audience to browse and follow slides on any mobile
device to account for individual learning-pace, as well as spontaneous reac-
tions via emoji and votes on polls (both prepared and created on-the-fly)
to more reliably estimate ones crowd’s mood and background knowledge.
Moreover, to truly involve audience members in shaping the presentation,
the functionality to alter the 2-dimensional slide-sets in real time was re-
alised. This way, listeners can share related multi-media content as well as
questions and comments as new main or sub-slides.

An early user study has been conducted and showed positive and promis-
ing results. All features were understood by the users, with the voting mech-
anism sparking most interest and excitement among listeners. The observa-
tion of the usage of the tool has moreover given way to further research
projects and ideas.

viii

Kurzfassung

Mobile Geräte wie Smartphones, Tablets und Laptops sind unsere täglichen
Wegbegleiter und dienen als endlose Quellen an Information, Wissen und
Inspiration. Obwohl Studien die positiven Effekte von zielgerichtetem Ein-
satz von Smartphones in Klassenzimmern und Meetings bewiesen haben, gilt
die Verwendung dieser in Präsentationen noch immer als störend und un-
höflich. Präsentationen, andererseits, sind von der Vorbereitung der Folien,
dem Vortragen bis hin zur Nachbereitung von Hand-Outs meist immer noch
die alleinige Aufgabe der Präsentatoren. In einem Versuch das Stigma um
mobile Geräte zu wenden und Präsentationen ansprechender, einprägsamer
und kollaborativer zu gestalten, wurde der Prototyp einer erweiterbaren Ja-
vaScript Präsentationsumgebung mit mehreren interaktiven Mechanismen
implementiert. Die entwickelten Funktionen bauen auf der Analyse unter-
schiedlicher Präsentationsformen und ihrer Schwächen auf und umfassen un-
ter anderem die Anzeige und Synchronisierung der Folien auf persönlichen
Geräten um auf individuelles Lernverhalten einzugehen, sowie momenta-
ne Reaktionen auf Präsentationsinhalte mit Emoji und das Abstimmen auf
vorbereitete und während der Präsentation angelegte Umfragen, um das Ab-
schätzen des Vorwissens und der Stimmung des Publikums zu erleichtern.
Des Weiteren werden Zuhörer_innen aktiv in die Gestaltung der Präsen-
tation miteinbezogen indem es ihnen ermöglicht wird Fragen, Kommentare
und andere multimediale Inhalte als neue Haupt- und Subfolien mit der
Präsentation zu teilen.

Eine frühe Benutzerstudie wurde durchgeführt und zeigte überaus po-
sitive und vielversprechende Resultate. Alle Mechanismen wurden von den
Benutzer_innen verstanden, und besonders der Voting-Mechanismus weckte
das Interesse des Publikums und konnte dieses begeistern. Die Beobachtung
der Verwendung der geschaffenen Werkzeuge konnte außerdem neue Ideen
inspirieren und hat mögliche weitere Forschungsprojekte aufgezeigt.

ix

Chapter 1

Introduction

1.1 Motivation
Mobile phones, tablets and laptops have become our every day compan-
ions. We take them with us wherever we go, may it be the classroom or
meetings, lately they have even made an appearance in courtrooms [16].
Especially during presentations mobile device usage is still perceived as im-
polite and can be a source of distraction [2, 3, 23], although studies indicate
that lecture-relevant phone use in classrooms can actually be beneficial for
information-recall [22].

Presentations, on the other hand, have remained largely unchanged since
the launch of PowerPoint in the late 1980s [42]. In fact, some of the features
overhead projectors innately offered, namely the annotation of transparen-
cies during the presentation and sorting and choosing slides before presenting
them, have effectively been lost with the introduction of presentation soft-
ware. While the amount of presentations given has continuously risen, the
modus of presenting has stayed untouched: In most cases, there is one pre-
senter and a group of co-located listeners. The speaker prepares slides prior
to a presentation and has the responsibility of educating, fascinating, inspir-
ing and keeping the audience awake, while catering the presented contents
to the respective listeners. Although interactive elements in presentations
have proven to be twice as effective at engaging listeners and beneficial to
information-recall [81], presentations have largely remained a static endeavor
for the speaker alone.

Mobile phones, tablets and laptops, however, hold the potential of chal-
lenging this status quo. Their growing computing power as well as ubiqui-
tousness make them suitable candidates for interacting with presentation
software, thus transforming presentations into a more collaborative effort.
Instead of banning modern technologies, incorporating mobile devices has
proven to foster collaboration and connection between attendees in meetings
[3] and has the potential of promoting participation and helping introverts

1

1. Introduction 2

Slide

down
current slide

right

Slide

Figure 1.1: Unveil presentation in action: the projector displays the current
slide, listeners can follow and interact with presentations on their personal
devices and listeners can control the presentation using theirs.

overcome the hurdle of speaking out loud [4]. At the core of this thesis there-
fore stands the question: How can mobile devices be integrated into presen-
tation workflows to engage and involve the audience, while transforming the
stigma around mobile phones into something positive?

1.2 Goals
The main objective of the project consequently is the exploration of different
ways of incorporating personal devices in presentations efficiently and pro-
ductively. This involves both the conception of such mechanisms, as well as
their implementation in an online presentation tool. Due to the high number
of different settings and contexts in which talks can be given, and since we
feel meetings and other business-related presentations with small numbers of
attendees offer the perfect playground and most possibilities for interactive
mechanisms, this thesis focuses on presentations in business-settings.

The proposed presentation software includes device-independent altering
of pre-defined 2-dimensional slide-sets by listeners and presenters in real
time. It allows audience members to view slides on their personal devices,
either navigating freely or synchronised with the presenter (see figure 1.1).
Additionally, the developed libraries offer support for real-time voting, as
well as voting creation on-the-fly. Instantaneous audience reactions via emoji
and different paths through the presentation were also realised.

As far as the implementation is concerned, it was our declared goal to
create a modular ecosystem other developers can tap into, reuse, overwrite

1. Introduction 3

and extend. Since the web was chosen as a platform for its rapid prototyping
and iteration cylce possibilities, it was paramount to make the application
feel as fast and responsive as possible, to give it the look and feel of a native
application [8]. Therefore the user interface and interaction design were at
the core of the project with the overall objective of creating an interface that
works across all devices, without feeling unnatural.

Finally, the developed mechanisms were tested and evaluated in an early
user study by a group of digital marketing professionals.

In total, our contribution can be summarised as follows:
• Analysis of presentations, finding design recommendations for interac-

tive mechanisms
• Implementation of presentation software following these recommenda-

tions
• Study and evaluation of the implemented software
• Creation of modular, open-source ecosystem which can be used and

extended by other developers

1.3 Structure
This thesis is organised into eight main chapters. First of all, we want to
establish the context around the present work by introducing the reader
to existing research and projects in the field of interactive presentations in
chapter 2. Since an overwhelming number of studies have been conducted in
educational settings, the chapter is further divided into classroom (section
2.1) and office (section 2.2) related approaches as well as general presenta-
tions (section 2.3).

In chapter 3, different types of presentations are analysed for their short-
comings and suitable solutions are developed. These are formulated into dis-
tinct interactive mechanisms for which clear requirements are established.
Based on these requirements, chapter 4 goes into details on the interface and
interaction design of the application as a whole and each of its interactive
mechanisms. The general flow and setup of the proposed software are also
discussed.

Chapter 5 lays out the entire implementation of the libraries involved in
the presentation tool. It first defines the scope of the project (section 5.1)
to then cover the server setup (section 5.2), before offering more insight into
the underlying front end technologies used (section 5.3). Finally the general
project structure (section 5.4), as well as all developed libraries are discussed
in detail.

Chapter 6 looks at the results of our work from a user’s and developer’s
perspective. First we discuss the final application and present screenshots
of it, to then talk about the conducted user study. Since we pride ourselves
in having developed an entirely open-sourced presentation ecosystem which

1. Introduction 4

we want others to explore, reuse and extend, we then shortly address the
usage of the resulting libraries from a developer’s perspective.

Chapter 7 outlines the results of our informal evaluation and observation
of the system in regards to its usability 7.1 and the creation of presentations
7.2, to then reflect on the chosen architecture 7.3. Finally, we briefly talk
about the conclusions we draw from this project in chapter 8 and give an
outlook on future work.

Chapter 2

Related Work

The idea of using electronic devices to foster group interaction in meetings
and presentations is not new. Stefik et al. [38] already experimented with the
use of personal computers in meeting rooms as early as 1987 and Myers et al.
[31] developed a collaboration tool which could be used to annotate Power-
Point slides from PDAs in 1998. Since then, digital whiteboards, telepresence
systems, productive multi-user web applications and other computer-aided
collaboration tools have become a common sight and we choose to carry
smart devices around wherever we go. Surprisingly little research, however,
has covered the use of these mobile devices in the context of presentations.
Most of these studies were conducted in the educational sector and usu-
ally aim at quizzing students, which is why an own sub section is dedicated
to classroom related approaches. While most relevant research has concen-
trated on one aspect, such as real-time polling [19] or remote-controlling [9],
no system known to us has combined as many interactive mechanisms in one
application as ours and allowed seemless integration between them, which
sets the present approach apart.

2.1 Classroom-Related
As growing class-sizes have caused student participation to sink drastically
[4], researchers have tried to deploy mechanisms to make lectures more inter-
active and engaging. The first approaches in this field of student-response-
systems (SRS) utilised so-called clickers (see figure 2.1) – remote-control-like
devices, connected to a receiver station via radio frequency technology [83]
which can be used for tasks like taking attendance and voting [7]. Using
these clicker systems has shown to “yield a strong and positive relationship
with student learning” [7]. However, the limitations of clickers – the need
for proprietary hardware and the limited interface consisting only of a few
buttons – lead researchers to experiment with personal mobile devices as
input instead. In 2007, Lindquist et al. [27] presented a system integrated

5

2. Related Work 6

Figure 2.1: i>clicker devices, used in [7]. Image source [74].

with the University of Washington’s Classroom Presenter software, which
lets students submit answers to assignments and in-class quizzes via SMS
and MMS or using their laptops. Although the mobile phone users strug-
gled with the input of longer messages, they perceived the ubiquity and
concenience of using a light-weight personal device as an advantage. Most
students, however, were worried about the costs of using SMS or MMS as
a requirement in class – a concern modern devices with internet access and
cheap data plans dispel. The first of these web-based approaches were ex-
plored around the same time. Esponda [13] for example describes a system
in which iPods and other wifi-enabled devices can be used to answer ques-
tions during class. What is interesting about her approach is not only the
technology used, but also that questions do not have to be prepared in ad-
vance, but can also be created on-the-fly, using a pen-based tablet, resulting
in more lively and spontaneous student-teacher-interaction.

The creators behind i>clicker1, the clicker system used in [7], have also
recognised the shortcommings of their hardware-approach and now build
mobile apps for students’ personal devices. Like [13], their application makes
it possible for lecturers to prepare quizzes beforehands or create polls on-the-
fly to monitoring the students’ knowledge, understanding and progress. Al-
though also available as iOS and Android app, like most modern approaches,
the i>clicker software also has a web version, making use of modern browsers’
possibilities and the device-independence of the web as a platform.

The tool ASQ [40] lets lecturers create HTML5 presentations with im-
press.js [68] which are then distributed to listeners via a link. Students fol-
low the presentations on their mobile devices, and can submit questions
connected to the current slide to the speaker. Quizzes (both open ques-
tions and multiple-choice) can be embedded in the slides by the teacher.
These quizzes can either be graded automatically (for coding assignments
and multiple-choice questions), corrected by teaching assistants or by the
students in self or peer-assessment. While this project has put a lot of effort

1http://www1.iclicker.com/

http://www1.iclicker.com/

2. Related Work 7

into the server-side and administration of slidesets, the present work con-
centrates more on the client-side and does not provide slide management
tools. In contrast to our implementation, however, this approach lacks An-
other interesting approach is presented by Cheng et al. [10], who propose
a system which generates HTML presentations from Microsoft PowerPoint
slides and lets viewers add their own content (either additional material or
questions) as vertical sub-slides. This way a tree-like structure is created in
which teachers and students collaborate in interactive presentations. This
architecture also inspired the sub-slide based presentation space deployed in
this software.

Another popular application, with richer audience-speaker-interaction
and an emphasis on listener-listener-interaction is Backstage [59]. As digital
backchannels like Twitter can foster the sense of community within the au-
dience, but are usually hard to follow for presenters, Bry et al. [4] developed
a backchannel specifically for large classrooms. Students can post messages
publicly and send private messages to their colleagues. These public posts
can be up or down-voted, as well as marked as unrelated. Together with
an ageing-algorithm, this community feedback is used to estimate a post’s
relevance. Important feedback is then presented to the lecturer, to allow him
or her to get a better sense for the audiences’ opinion and understanding.
Additionally, small quizzes and polls serve as performance feedback to the
teacher and students. Though one of the most mature systems studied for
this thesis, having been developed specifically for classrooms, the use of the
software in other scenarios is not ideal. Moreover, most of the features con-
centrate on listener-listener-interaction, while the present thesis focuses on
mechanisms strengthening the speaker-audience-interaction.

Like Backstage, most of these approaches sound promising but are tightly
bound to an educational context. The project discussed in this thesis, how-
ever aims for a broader field of application and concentrates on business-
settings.

2.2 Office Environments
In contrast to classroom-related presentations, meeting-related ones usually
have an significantly lower amount of participants, as well as a smaller gap
between the speaker and the audience. Another difference lies in the polling,
surveying and quizzing functionality most of the presented projects offer:
while these usually have only one correct answer in educational settings,
to grade students [4, 27, 40], the goal in meeting environments is to make
decisions and collect ideas, without judgment and often anonymously.

The systems we want to quickly introduce all have a focus on mobile
devices and their usage in meetings and office-related presentations and cu-
riously were all developed by Microsoft Research. Böhmer et al. [3], as well

2. Related Work 8

(a) (b)

Figure 2.2: Crowd Feedback [39] used during a presentation (a): The bar
next to the slides shows one dot per participant in the meeting, the dots can
be controlled with the app (b). The feedback dots fade out over time. Image
source [39].

as examining the perception of smartphone use in meetings, present the mo-
bile application Meetster. The study finds that although people primarily
use their phones for meeting or work-related tasks, they tend to think their
colleagues use theirs for private purposes. Unlike the present thesis, in which
mobile devices should be used in the context of presentations, Meetster was
developed to help getting to know other meeting attendees in a playful way.
This changed the perception of using one’s smartphone during the meeting
and was described as “fostering social interactions”. While the findings of
the study conducted as part of this publication legitimise our approach, this
thesis presents a more practical approach, more relevant to the presentation
itself, instead of just connecting meeting attendees through a game.

A system concentrating more on presentations directly is Crowd Feed-
back [39], a piece of software which allows listeners to give a speaker con-
tinuous, real-time feedback, using their personal devices. A responsive web
application with a like and dislike button controls the feedback-system. The
participants’ reactions are shown with a red (dislike) or green (like) dot for
each attendee in a sidebar next to the presentation slides (see figure 2.2).
An evaluation of the system showed that the participants felt more engaged
with the presentation and connected to other listeners. Many users stated
only having the possibility to like or dislike did not reflect enough options
and that a button related to the speech pace might have helped. It was also
noted that the sidebar was perceived as disturbing and made it harder to
pay close attention to the presentation. This study and its conclusions have
inspired the implementation of an instant feedback mechanism for listeners
in the present work, however, instead of only having the binary like and
dislike, the reactions are based on emojis, allowing for more insightful and
faceted feedback.

The third study is concerned with the navigation through slides: Of-
fice Social [9], a PowerPoint plugin with companion smartphone app, allows

2. Related Work 9

Figure 2.3: Office Social [9]’s smartphone app interface. A preview of the
slide is shown on top, followed by big buttons for navigating between slides.
In the left picture, the application is in review mode, where a local copy of
the slides can be navigated through. By pressing a button in the interface
the interaction mode is activated, allowing listeners to navigate through the
master slides (right). Image source [9].

presenters and listeners to navigate through PowerPoint slides using their
mobile phones (see figure 2.3). Members of the audience can either browse
the slides privately, or take over the control of the presented slides, allowing
them to effictively steer the presentation or discussion. As in the present
approach, Chattopadhyay et al.’s software allows members of the audience
to review the slides privately, making it possible for latecomers to catch up
and to generally estimate the length and direction of the talk [9]. However,
as their interface focuses on the navigation between slides, the preview of
the slides is fairly small. Our approach tries to focus on the content of the
slide and instead of offering big buttons to navigate around, makes use of
intuitive swipe gestures, which can potentially be used eye-free more easily
[32]. Another disadvantage is the overhead of having to download a smart-
phone application before the start of a presentation, as well as the limitation
of the application only being available for Windows Phones.

2.3 General Presentations
Since lectures and meetings both are very specific forms of presentations, a
few paragraphs should also be dedicated to general approaches in this third
section. One publication, which concentrates on polls and their real-time
evaluation and rendering is [19]: Inoue et al. present a system which dis-
tributes Microsoft PowerPoint presentations using modern web-technologies
while making it possible to alter and update the slides in presentation
mode. This way questionnaires can be answered and their results displayed
in real-time. Additionally, members of the audience can add annotations

2. Related Work 10

(both handwritten and digital) to slides. Although this approach seems very
promising, pictures, videos and other types of media are ignored entirely.
Moreover the interface seems too complicated for small devices and is there-
fore only usable on laptops and maybe tablets.

Two more products, though not subject to scientfic research and more
commercial than the approaches presented so far, are Mentimeter [52] and
sli.do [67]. Both tools are web applications with real-time polling support,
usable in any presentation. Both systems work very similarly: listeners go to
the respective website and enter a presentation code to then be connected to
the live voting. A handy feature Mentimeter offers is to query the device’s
location to determine the right presentation. Sli.do on the other hand also
supports questions from the audience, which can be up-voted by the lis-
teners, making it easy for speakers and participants in podium-discussions
to answer the most relevant questions. Moreover, additionally to multiple-
choice polls, sli.do also supports open questions and ratings. While the cre-
ators of Mentimeter provide a PowerPoint plugin, sli.do is not directly linked
to any presentations. However, the popular canvas-based presentation-tool
prezi [60], offers seamless integration with the application. It is worth noting
that prezi itself already offers mobile features out of the box: Presentations
can be controlled remotely from the speaker’s phone or tablet as well as be
viewed and followed by members of the audience in real time, using a mobile
application.

More web-based presentation tools include Google Slides [50] and Pow-
erPoint Online2. While PowerPoint Online seems to only offer a simplyfied
version of the desktop application online, Google Slides also provides mo-
bile features such as editing and authoring slides on phones or tablets and
controlling them remotely.

To conclude this chapter, a few words should also be said about the
JavaScript presentation library reveal.js [46] and its accompanying visual
edior slides [66]. Reveal.js offers features such as remote controlling slides
for the speaker and following presentations on personal devices for members
of the audience. However, the installation to achieve the latter so-called mul-
tiplexing functionality, is fairly complex and involves setting up a socket-io
server, running the master-presentation statically and locally and upload-
ing a client version of the presentation to a publicly accessible server. Re-
veal.js offers a reliable online presentation library and could have served
as a starting-point for the project presented in this thesis. However, due
to their closed environment, tightly coupled code and lacking support for
extensibility, we decided to instead implement an own presentation library
(see chapter 5, section 5.3.4).

2http://office.live.com/start/PowerPoint.aspx

http://office.live.com/start/PowerPoint.aspx

Chapter 3

Requirements and Design
Goals

In a first step of identifying possible mechanisms which could make presen-
tations more engaging and interactive, we analysed different types of pre-
sentations to find their weaknesses and possible counter measures. In this
chapter we will shortly introduce the reader to the considered factors. The
most prominent issues are then stated and solutions, which serve as require-
ments for the interactiv mechanisms, are proposed. Finally, these functions
are defined and their design goals are discussed.

3.1 Factors
While many factors could be taken into consideration, we constrained our-
selves to the following three:

• Audience Size: Differences between small and big crowds.
• Presentation Environment: Presentation setting and purpose.
• Speaker and Audience: Traits, personalities and inter-attendee rela-

tionship.
The goal was to find and formalise the main issues with each of the presenta-
tion types and from there define requirements for the interactive mechanisms
introduced in the second part of this chapter. An overview of our findings
can be found in table 3.1.

3.1.1 Audience Size

One aspect which plays an important role in the type of presentation and
thereby the interactive mechanisms applicable is the size of the audience.
Different challenges present themselves depending on the amount of listen-
ers: While there might be a debate between speaker and audience in small

11

3. Requirements and Design Goals 12

Table 3.1: Overview of analysed factors and main requirements.

Factor Main Requirements
Audience size

• Big audiences: connecting audience and presenter;
estimation of mood and knowledge for speaker.

• Small groups: introducing anonymous channels.

Presentation
Environment • Fostering collaboration between attendees (in

Meetings).
• Informational presentations: re-visiting and indi-

vidually browsing slides (at own pace).
• Emotional presentations: involving audience more

actively for more personal experience.

Speaker and
Audience • Audience: making introverts heard.

• Speaker: enabeling/disabling mechanisms to avoid
stress.

• Flat-hierarchies: allowing multiple presenters.

group sizes, it is hard for audience members to directly communicate with a
speaker during conferences or in large lecture halls. Shy or introvert atten-
dees might remain unheard [4] and only a usually randomly chosen subset
of people get the opportunity to ask audience questions after talks in confer-
ences. At the same time estimating the audience’s knowledge and interest as
well as the general mood gets increasingly difficult both for the presenter and
attendee as the number of participants rises. Additionally to the interaction
between speaker and audience, another important factor is listener-listener
interaction [29]. Group-dynamics largly depend on the audience size and
smaller groups usually perform better than big ones [35]. The general con-
clusion therefore is that big audiences struggle to connect and interact with
the speaker and each other and interactive tools must aim to strengthen
the bidirectional bond between presenter and listeners. In smaller groups,
on the other hand, the focus should be put on supporting the already ex-
isting dialogue and exchange between all participants of the presentation.
As peer-pressure might rise in smaller groups and the better listeners know
each other, ways of anonymously contributing to the outcome or flow of a
presentation become more important.

3. Requirements and Design Goals 13

3.1.2 Presentation Environment

The environment of a presentation is described by all factors surrounding
the presentation. One of them is the setting a talk is given in, in other words,
if it is embedded in a meeting, a talk at a conference or a lecture at school
or university. Other aspects worth considering are whether the audience is
co-located or distributed and which technologies are available. As this work
concerns itself only with mobile devices in the context of co-located presen-
tations, difficulties added through remote presentations as well as missing
technical equipment will be disregarded in this section. Instead, a closer
look will be taken at the setting: In a lecture, it is desirable to measure the
students’ participation and engagement, as well as their understanding of
a topic. In meetings, on the other hand, interactive mechanisms are more
likely to aim for the promotion of collaboration between all participants.
Conferences might search to foster the interactivity between attendees, to
support networking. Instead of taking all possible scenarios into considera-
tion, this work concentrates on business-related settings and explores mech-
anisms which foster collaboration.

Another part is the purpose of a presentation: McClain [28] identifies
four major types: informational, motivational, pursuasive and sales. Accord-
ing to him, informational presentations search to educate the listeners, while
motivational speeches try to inspire the audience to take action. Pursuasive
talks usually present new ideas or directions and have the goal of making
the listeners re-think old approaches and consider or even embrace new ones.
Sales presentations, lastly, often use elements of the other three categories
with the aim of “obtaining a decision at the presentation’s end” [28]. While
motivational, pursuasive and to some extend sales presentations often oper-
ate on an emotional level in the present moment, informational talks often
include a way for listeners to re-visit the taught material through tran-
scripts, lecture notes or handouts. Moreover, motivational, pursuasive and
sales presentations focus on the goal of getting the audience to take action
and therefore put more emphasise on the listeners than content-centric in-
formational speeches. This creates two very distinctive needs for interactive
mechanisms: on one side the ability for the audience to actively shape the
path of the presentation, on the other hand the possibility to re-visit pre-
sentation slides (potentially including notes and additional material), after
the end of a talk.

3.1.3 Speaker and Audience

The last factor taken into consideration in this chapter are the speaker and
listeners themselves. Depending on the individual interest, but also charac-
ter traits such as introversion, listeners will be more or less likely to engage
in a presentation actively [4]. The inter-attendee relationship as well as the

3. Requirements and Design Goals 14

relationship between attendees and speaker also plays a role in which mecha-
nisms are appreciated and which are not [29]: while it is common for listeners
to jump into the role of the presenter in meetings with flat-hierarchies, the
same behaviour is a rare sight in lectures or might even be deemed inap-
propriate or impolite in more formal settings. When taking the speaker into
consideration, the set of tools needed are more sophisticated than the ones
necessary to only follow a presentation: Foremostly, speakers need a way of
navigating through slide decks. It is desirable to have an overview of the
entire presentation and while listeners only concentrate on the current slide,
many speakers rely on notes or use timers, which also need to be placed
in the interface. Moreover, the presenter’s personal traits, experience and
bluntly talent, play a central role in the successful deployment of interac-
tive mechanisms: the flexibility, confidence and technological expertise of
a presenter all determine how distracting or even stressful certain features
are perceived as and whether a speaker is able to react to these spontan-
iously [41]. It is therefore crucial to give speakers the ability to turn said
mechanisms on and off. An important challenge which also arises with this
question is how to design these mechanisms in a way that is neither per-
ceived as intrusive nor interrupting (this will be discussed in more detail
in chapter 4). To summarise, when developing interaction tools, it is vital
to take a participant’s personality and their relationship to other ones into
consideration. In the context of presentations, shy listeners should be given
tools to make them heard; presenters need full control of the mechanisms
provided.

3.2 Resulting Mechanisms
With these aspects and challenges in mind, a multitude of different mecha-
nisms can be derived. Although many more are thinkable, this section con-
centrates on the ones implemented in course of the thesis project. However,
we will try to point out other possible features and provide resources to
projects focusing on these. One point to keep in mind is that not all of the
presented mechanisms work equally well in every environment but instead
have scenarios they are best suited for and others in which they are practi-
cally rendered redundant. The ideal settings and key advantages of each of
these mechanisms are summarised in table 3.2.

3.2.1 Remote Control

One mechanism of special importance for speakers is the ability to control
slides and navigate through them. As many presentations involve more than
just one speaker and can profit from sharing control over slides with others
[9], any amount of presenters should be able to be connected at any given
point. Controlling should be possible from any personal device, may it be a

3. Requirements and Design Goals 15

Table 3.2: Overview of resulting mechanisms, with their key advantages
and optimal usage scenarios.

Mechanism Improvements Ideal Scenario
Remote Control More flexibility for presen-

ter(s)
Any, especially mutli-
speaker presentations

Following Slides Accounts for individual
pace; can replace hand-outs

Any, especially informa-
tional presentations for later
revision

Paths Interactivity and flexibility Any, especially informa-
tional

Audience Ques-
tions

Anonymity; possibility to be
heard in big crowds

Big audiences; small groups
for anonymity

Polls Bond between speaker and
audience by querying lis-
teners’ interest, mood and
knowledge

Usage with paths; big au-
diences; small groups for
anonymity

Reactions Speaker-audience and
listener-listener interaction

Big audiences

Content Sharing Possibility to shape presen-
tation for audience

Small groups

laptop, tablet or mobile phone, giving the speakers maximal freedom. Suit-
able interaction metaphors therefore have to be found for different devices.

3.2.2 Following Slides

For members of the audience, one important feature is to be able to indi-
vidually and independently navigate through and follow slides. This makes
it possible to re-visiting slides after a presentation, accommodate individ-
ual learning paces [10] and even give late-comers a chance to catch up with
the presentation [9]. Displaying and navigating through slides should again
be possible on any personal device and focus on the slide content in a way
that maintains the readibility of all text. The mechanism can be designed
in many different ways and could even allow listeners to remote control the
presentation [9], our implementation however only provides individual slide
navigation on the personal device. Additionally, the progress of the presen-
tation should always be synchronised with the individual devices, allowing
listeners to truely follow along. This basic mechanism can be extended to
offer features such as turning the synchronisation on and off (effectively al-
lowing to navigate freely and jump back to the presenter’s state) or to only
allow listeners to see the last slide the presenter has already shown.

3. Requirements and Design Goals 16

3.2.3 Paths

Also connected to navigation and following slides is the possibility to offer
different paths through the presentation. Especially in informational talks
these can account for different backgrounds and levels of knowledge in the
audience, they however, also make it possible to get listeners more involved
in shaping the presentation. Paths should both be accessible to each audience
member individually (for further reference or to catch up on a topic), as well
as on the projector (e.g. by polling, as discussed in the next subsection).
The possibility to flexibly navigate through a presentation has proven to be
one of the biggest advantages of canvas-based presentations [26] and has a
wide field of application. The scenarios this thesis concentrates on are the
following: On one hand, the paths can cover different levels of details (e.g.
overview, regular and detailed), as well as providing a way of skipping certain
slides without having to navigate through all of them (e.g. skipping the
introduction). Another option would be to let the audience decide between
entirely different topics, depending on their personal interest. While canvas-
based presentation tools like Prezi innately offer this flexibilty, slide-based
tools often only make this behaviour possible by manually skipping over
slides, which can interrupt the flow of the presentation [11]. PowerPoint
extensions enabeling advanced forms of navigation, as well as the presenter
looking through slides before projecting them are discussed in [11], [33] and
[37], the latter, however, will not be part of our implementation.

3.2.4 Audience Questions

A feature well-suited for informative talks, is the possibility for members of
the audience to ask questions. Another scenarios are big crowds, in which
it is hard to be heard as an individual. A tool specifically designed for such
settings is sli.do, which was already introduced in chapter 2 section 2.3.
More generally, such mechanism should enable members of the audience to
submit questions for the presenter to answer. These questions should either
be displayed directly, or collected for the presenter to go through at the
end of the presentation, depending on their preference and flexibility. This
mechanism also highly depends on the presentation environment: In a class-
room, questions should be answered immediately, while conferences usually
only allow them at the end of talks. Questions could moreover only be visi-
ble to the presenter, or every participant. Concentrating on business-related
settings, we propose a question feature which allows audience members to
submit questions at any point of the presentation. These should be accessi-
ble for every attendee, to spark others’ interest and participation. From the
presenter’s point of view, questions should be displayable instantly, at the
end of the talk or any time inbetween, leaving the decision when to react to
questions to each individual speaker.

3. Requirements and Design Goals 17

3.2.5 Polls

Another possibility to ask questions is polling. Although polls might also
be generated by listeners, we propose a mechanism which lets the speaker
create them. To give presenters more flexibility and because questions often
only arise during talks [13], these surveys should be creatable in the prepara-
tion for a speech as well as on-the-fly, during presentations. This mechanism
can help getting to know ones listeners (relationship between listeners and
speaker), as well as estimate a crowd’s mood (big audiences) and is especially
useful in combination with paths. If supporting anonymous voting, relying
on electronical aids instead of raising hands can also be benificial in smaller
groups [13]. While a big number of different polling mechanisms are conceiv-
able (open questions, ratings, multiple choice, as well as different ways of
visualising the results), single choice voting and visualisation in a bar-chart
serve as a starting point for our approach. Another detail lies in when the re-
sults are presented: they can either be rendered as soon as a user chooses his
or her answer or only after everybody has given their votes. To summarise,
the identified requirements for such mechanism are creation beforehands and
during the presentation, real-time polling and data-visualisation as well as
anonymity of the voting process.

3.2.6 Reactions

As described before, especially bigger crowds suffer from a lack of interaction
possibilities between speaker and audience but also between members of the
audience. While the latter is discussed in [4], the present work focuses on the
interaction between speaker and listeners. Besides the difficulity of asking
questions, which was already covered, the main problem for the presenter is
to estimate the crowd’s mood, which is why we suggest a mechanism that lets
attendees send real-time feedback to the speaker. This functionality is based
on [39]; as highlighted by Teevan et al., however, their simplistic approach
of just offering likes and dislikes is not faceted enough to represent the full
range of emotions listeners can feel during a presentation. It is therefore
important to provide more detailed feedback. These reactions can either be
displayed only to the speaker, or to the entire audience. The latter might
distract listeners [39], however, also holds the potential to encourage others
to also react to the current slide and strenghten listener-listener bonding.
While this mechanism is expected to work well in bigger crowds, it will likely
introduce an unnecessary technical burden to smaller groups, in which it is
easier to estimate the attendees’ mood.

3.2.7 Content Sharing

In contrast to live reactions and questions, content sharing is especially
suited for smaller audiences. As discussed before, tools for smaller groups

3. Requirements and Design Goals 18

should strengthen the already possible dialogue between all participants.
These scenarios make it possible for listeners to actively get involved in the
presentation and not only shape the path through, but also the content of
such. While adding subslides to a slide deck after a presentation [10] and
text-based annotations [19, 31] during talks have already been discussed in
previous work, to our knowledge, no other study has concerned itself with
the possibility of adding listener-generated slides and multi-media content in
live presentations. While being an exciting opportunity to explore a widely
untouched research subject, this mechanism empowers listeners and trans-
forms presentations entirely by combining classic slides with brainstroming-
like interactions and related multi-media content. While the potential of this
mechanism will be further discussed in chapter 8, the requirements for this
functionality should shortly be defined: It should be possible for any listener
to add their own content to any slide. This content includes text, web-
sites (per link), videos and uploaded images (e.g. taken with their personal
devices). Presenters should have a way of deciding whether to accept the
contribution and if it should be added as a subslide or main slide. Moreover,
this mechanism requires a lot of flexibility from the speaker, which is why it
is important to allow them to turn off or silence the functionality, providing
sensible fallbacks. While content sharing can transform a presentation into
an interactive and collaborative effort in smaller groups, the functionality
will likely lead to chaos in big groups without further interface changes.

Now that the implemented mechanisms are clarified and their require-
ments defined, the next chapter deals with the design and user experience
of the application.

Chapter 4

Application Design

After defining the mechanisms which will be implemented, in a next step,
the design of the application will be discussed. First, the general setup and
usage of the application will be covered. For this, we introduce a presenter
called Amy, as well as a listener called Greg. These personas will also be used
to describe the interaction with the presentation in the following chapters.
Then, the general interface of the application for listeners, speakers and on
the projector will be examined on the basis on several wireframes. Screen-
shots of the applications can be found in chapter 6. Finally, we will talk
about the interaction principles applied in the project and offer an insight
into the user experience design of each of the previously defined interactive
mechanisms.

Although all features identified in chapter 3 can be turned on or off, in
the following it is assumed that all of them are enabled. The authoring and
creation of slides will not be covered in this chapter, but is instead part of
chapter 6.

4.1 Application Flow
To depict the typical setup of an unveil presentation, we assume a speaker
called Amy, who has already prepared her presentation, and a listener called
Greg who wants to follow the slides from his smartphone. The slides are
generally hosted on a server. This can either be a publicly accessible one or,
if all participants are in the same network, locally from Amy’s computer. We
assume Amy is serving the slides from her laptop, which is also connected to
a projector, moreover she is using her smartphone to navigate through the
slide-set (see figure 4.1). At the beginning of the presentation, Greg and all
other listeners navigate their mobile devices’ browsers to the set up address
(usually a combination of IP address and port). To make this step easier,
Amy has added a QR code pointing to the address on the first slide and sent
out an e-mail with the link to all participants.

19

4. Application Design 20

Slide

Figure 4.1: Unveil presentation setup. All devices are connected to one
central server, in this case the presenter’s laptop (red). The projector (violet)
displays the current slide, listeners use their smartphones (green) to follow
and interact with the presentation and the presenter’s smartphone (orange)
serves as a remote control.

The software supports three different modes out of the box: listener,
speaker and projector mode. Depending on the mode, a certain set of fea-
tures is activated, allowing Amy to have a different interface and more con-
trols than Greg. Modes are activated via query parameters in the url: Amy
navigates her laptop’s browser to the url of the presentation and adds the
query parameter mode=projector. On her smartphone, which she will use
to remotely control the presentation, the mode is set to speaker. If no
query parameter is given, the application defaults to the listener mode, so
Greg simply types in the address or follows the link in the url or QR code.
Unveil generally offers a two-dimensional slide space, consisting of master
slides (left to right) and subslides (top to bottom). Devices in speaker mode
(in this example Amy’s smartphone) can remote-control the presentation
and navigate through said slides. All other devices (the laptop in projector
mode and Greg’s phone) are synchronised with the state of Amy’s phone
and automatically follow along in real-time.

4. Application Design 21

Reactions for Current Slide

Figure 4.2: Wireframe of slide in projector mode, as seen on a projector.
No visual controls are shown, only the current slide and listener reactions are
displayed. The presentation progresses through the presenter mode’s remote
controlling feature.

Share functionality Navigation Reactions

Tap

Figure 4.3: Wireframes of general interface in listener mode for mobile
phones and desktops. Both offer buttons to share media, links and questions
with the presenter, arrow buttons to navigate through the presentation and
a possibility to react to the current slide. On mobile this feature is revealed
with a tap on the reaction button, to not cluster the interface.

4.2 General Interface
To not restrict Amy and Greg in their choice of device, the general require-
ment for the interface of the application is to work in all three modes and
on every device from mobile phones to desktops and even projectors. When
in projector mode, only the content of the current slide, as well as listener
reactions are shown (see figure 4.2). In listener mode, the interface is a lot
richer and additionally features buttons for sharing media, links and asking

4. Application Design 22

Controls Speaker Notes Reactions for Current Slide

Figure 4.4: Wireframes of general interface in speaker mode for mobile
phones and desktops. The interface consists of a preview of the current slide,
the next main slide (right) and the next subslide (down), as well as showing
presenter notes. It also offers buttons to toggle muting of incoming requests
and creation of new polls.

questions, as well as six different reactions (see figure 4.3), which will be
discussed in more detail in section 4.5. It also offers small arrow buttons, to
navigate between slides. The speaker interface is the most intricate: Besides
showing the current slide, we believe it should also include a preview of the
upcoming slides in 𝑥 (master slide) and 𝑦 (subslide) direction, as well as
speaker notes. Additionally to this interface, already familiar from Power-
Point or similar presentation software, buttons to mute incoming requests
(media, link and questions) and to create new polls are provided (see figure
4.4). Since we expect presenters to switch between devices more often than
listeners for more typing-intense tasks such as creating new polls, the mobile
interface is as similar as possible to the desktop one and only re-arranges the
displayed information to fit on smaller screens. The main difference between
the mobile and desktop version of the listener interface is the design of the
reactions: While desktop computers and tablets offer ample space for the
placement of all six emoji, these are hidden behind a button in the mobile
interface and only slide up upon a tap on said button.

4.3 General Interaction Principles
As far as the interaction design of the application is concerned, the main
requirement technically is for all state changes to take immediate effect or in
other words, for the software to work in real-time. This is true for interactions
with the server as well as all internal state changes within the application.
All transitions and animations last 200ms, a value which is both usable
on mobile phones and desktops and, according to Google’s Material Design

4. Application Design 23

Figure 4.5: Wireframes of modal interface in speaker mode for mobile
phones and desktops. The shown modal allows the presenter to add a listener-
submitted video as a new main or subslide or dismiss the request. It pops up
as soon as a listener wants to share content with the slide.

Guide [18] “fast enough that it doesn’t cause waiting, but slow enough that
the transition can be understood”. An easing curve with low outgoing and
high incoming velocity is used.

The general aim for the interaction design of the application is to be
as easy and intuitive to use as possible on any device, for both presenters
and listeners. Especially the speaker’s view has a lot of information to dis-
play and many ways of interacting with the interface. From the speaker’s
point of view, the main reason for negative presentation experiences stems
from technical difficulties and problems [41]; we therefore decided to design
a presenter interface similar to the one already known from PowerPoint,
Keynote, Google Slides or reveal.js (see figure 4.4) and employ familiar vi-
sual metaphors and interaction mechanisms such as buttons and modals (see
4.5).

Another important consideration when it comes to mobile and desktop
environments is the question of supported inputs. While mouse and keys
are a natural and intuitive way of navigating through desktop applications,
swiping gestures are faster, more accurate [25] and require less time looking
at the screen on mobile devices [32], making them the ideal candidate for
the remote-controlling feature. For this reason, additionally to providing
visual arrow-buttons for navigation, arrow-keys and swipe gestures are also
supported. The interaction with buttons is controlled by mouse clicks or
taps, respectively and common visual metaphors are used to symbolises
their state (pressed, hovered, disabled), as shown in figure 4.6.

Now that the general interaction principles are covered, a more detailed
look is taken at the most interesting parts of the implemented features.

4. Application Design 24

(a) (b) (c)

Figure 4.6: Button states, (a) normal, (b) hovered or active and (c) disabled.

(a) (b)

Figure 4.7: Details of polling interface for listeners before voting (a) and
poll result after voting (b).

4.4 Polls
The first mechanism looked at in more detail is the polling feature. Polls can
either be prepared before the start of the presentation or can dynamically be
created during the presentation through the presenter interface. When Greg
and the other listeners navigate through the presentation, they will already
see the poll, they however cannot vote until Amy activates the voting by
navigating to the slide with the poll. Polling again works in real-time: As
soon as Greg chooses an option and presses the Vote button, the presenter,
projector and all listener interfaces will be updated with his vote imme-
diately. Every listener is only allowed to vote once per poll and the only
currently supported poll type is single choice (see figure 4.7). As soon as
Greg has voted, he is presented with the current results of the voting. These
are displayed in horizontal bar charts (see figure 4.7), which are animated.
This means, as soon as a new vote is registered, the bars will dynamically
adjust their width as the percentages are updated. These results are avail-
able on the presenter and projector interfaces as well and also change in
real-time. While the voting is enabled (by Amy navigating to the slide with
the poll and until she navigates away from it again), all other navigation
is frozen. This means, in this time, all listener navigation is disabled to en-
sure everybody is on the same slide and exercises their right to vote; this,
however, is not mandatory and listeners can also choose not to vote.

To create a new poll, the presenter presses or clicks the new poll button
in the controls section of the speaker interface, which opens a modal (see
chapter 6 for screenshots). In the beginning, a question and two answer
fields are provided, more answers can be added using the + button. Once

4. Application Design 25

the question and answer options are entered, pressing the Create Voting
button will generate a new poll and add it as the next main slide.

4.5 Reactions
Although binary digital reactions in presentations are not an entirely new
idea [39], versatile feedback that goes beyond positive and negative, to our
knowledge, has not yet been explored. The way this mechanism was imple-
mented, our listener Greg can press a button to react to what the speaker
Amy said or presented. The reactions are collected on a per-slide basis, al-
lowing Amy to re-visit the slides afterwards, analysing which slides sparked
most feedback. When Greg reacts to a slide, the feedback will immediately
be displayed in the presenter view, as well as – if enabled – the projector
interface.

Greg by default can choose from six pre-defined reactions: From the
evaluation in [39] and [20] and from observing presentations and meetings, a
pool of possible reactions has been narrowed down three emotions (approval,
laughter, boredom) and three request types (louder, speed up, slow down)
(see figure 4.8). The reason behind the missing disapproval on one hand
is that test subjects in [39] felt less comfortable giving negative feedback,
the button was generally used less than the positive one and it also included
feedback such as boredom or speed up and slow down, which we have included
own reactions for. On the other side, we hope this will encourage more
elaborate feedback of disapproval using the content sharing functionality
instead. This holds the potential of sparking a discussion instead of merely
showing disagreement with the presented content.

The biggest challenge with displaying non-binary reactions was to find an
intuitive and familiar visualisation which would not take up too much space
on smaller screens. Since the introduction of emoji on Apple’s keyboard
in 2011 and on Android’s one in 2013, emoji have become a ubiquitous,
language-independent means of communication [5, 73]. Instagram has found
that almost half of its comments and captions nowadays include emoji [73]
and with Google [80] and Bing [79] adding support for emoji-search and
companies such as Facebook [77] and GitHub [76] offering emoji-based re-
action systems, it is safe to assume the majority of regular internet users
is familiar with the concept and meaning of emoji [6]. Although it would
be possible to include a complete emoji-keyboard to allow for even more
versatile feedback, we feel it is easier for less technology-oriented users to be
provided only with a sub-set including a short description of each reaction
(see figure 4.8). However, it is worth noting that this sub-set can easily be
extended or overwritten by the presenter.

When it comes to displaying the reactions sent by the audience, as the
presentation of feedback in [39] was perceived as a distraction from the pre-

4. Application Design 26

Figure 4.8: All six possible reactions and their emoji (from left): approval,
laughter, boredom, louder, speed up and slow down.

(a) (b)

Figure 4.9: Details of visualisation of reactions (a) with number of reactions
as found in the presenter view and optionally the projector and (b) reaction
in listener interface with (right) and without hover-state (left).

sentation, the feedback mechanism proposed in the present work is either
only shown to the presenter or displayed without any animations, in the
lower-right corner of the projector interface, with only a small badge sym-
bolising how many people have sent this reaction for the current slide (see
figure 4.9(a)). On the side of the listener, one detail worth mentioning is the
styling of the hover-state. Especially on computers it is important to offer
intuitive hover-states, to give the user a sense of what they are pointing at
and if they can interact with the currently focused element [72]. The hover-
state designed for this purpose includes a magnifying-effect as well as a light
shadow around the emoji (see figure 4.9(b)).

4.6 Content Sharing
The last big module developed for the present thesis is the content sharing
functionality. At the time of writing, the software allows for sharing photos
(via links or from the computer or phone), websites, youtube videos and free
text (including questions). In an earlier iteration, only one sharing button
was available in the interface, but feedback cycles with other web developers
and designers have shown that it was not clear and intuitive enough which
kind of content could be shared, which is why the functionality was now
separated into three buttons: Media, Link and Question. Coming back to
Greg and Amy, Amy has just talked about functional programming and
Greg wants to share a related video. He opens the youtube app on his
phone, searches for the video he wants to share and copies its link into
the provided text field. When pressing the Share button, Amy will receive a
pop-up in which she can review the request and then accept it as a new main
or subslide or dismiss it (see figure 4.5). The If she accepts, the video will
be inserted in a new slide relative to the slide Greg sent the request from.

4. Application Design 27

Youtube videos and links to websites are embedded into the presentation,
similarly to images and links to images, which are also directly included into
the created slide. Text is simply displayed as a second-order heading.

What was important to be able to include personal notes, is the ability
to take photos and upload them to the presentation. This is possible in
the Media part of the content sharing feature and makes use of the mobile
operating system’s native file uploads. Screenshots can be found in chapter
6.

Since such mechanisms can be fairly stressful for the presenter [39, 41],
we also built a feature to mute incoming requests. When muted, requests
are automatically added as subslides to the slide the request was sent from,
allowing all contributions to be collected without disturbing the flow of the
presentation for the speaker [11].

Chapter 5

Implementation

This chapter dives into the technical implementation details, gives an over-
view of the used technologies and explains why these were chosen over others.
In summary, four libraries were developed in course of this project. The
base presentation library, unveil, was extended for this purpose, moreover a
layer for network synchronisation and communication with the server was
developed. The interactive mechanisms described in the last chapter were
then implemented in an interactive extension (see figure 5.1).

Like many other projects in this area [4, 10, 13, 19, 39, 40], this project
is realised using the web as a platform. This has many advantages, from
modern web technologies’ quick prototyping capabilities to the web’s gen-
eral cross-platform and cross-device nature, the project has benefitted from
the dynamicity of the internet and the rapid evolvement of JavaScript over
the past years. Although native sharing features of smartphones cannot be
used due to the choice of platform, we believe, the merits that come with
this decision outweigh the disadvantages for both users and developers. As
no app has to be downloaded, it is easier to bring the audience to use the
developed application [40]. The major advantage for developers on one hand
is the ability to only focus on one platform instead of developing different
applications for different operating systems, on the other hand the web is
built for rapid prototyping as it is extremely easy and fast to roll out new
updates without having to distribute them through the App Store or Play
Store and without the need for users to manually update them. Since the
JavaScript render layer this software was developed with [47] also offers a li-
brary which can cross-compile JavaScript applications to different operating
systems [48], the core code could potentially stay almost untouched, should
the application be ported to other platforms in the future.

Finally, a few words should also be said about the distribution of this
project. Without the vibrant open-source community, many of the frame-
works and libraries used in this project would not exist. For this reason,
and to give back to the community, all the libraries developed during this

28

5. Implementation 29

Unveil
App

Navi-
gator Router Slides Con-

trols
Pre-
senter

Socket
Helper

Socket
Sender

Socket
Receiver

Voting Content
Sharing Reactions Speaker

Presenter

Presentation A …

unveil.js base library

network synchronisation layer

interactive extension

Figure 5.1: Overview of created libraries and their components. Arrows in-
dicate dependencies. At the bottom, the extended version of unveil provides
all base functionality. The network synchronisation layer adds support for
WebSocket communication with the server, building upon which the inter-
active extension adds all interactive mechanisms. Any presentation can then
use the created libraries.

project have been published as open-source on GitHub1 and are freely avail-
able for anyone to use. We concentrated on creating an extensible system for
any developer to customiste, adapt, plug into and build interactive presen-
tations with; the only requirement being basic HTML, CSS and JavaScript
knowledge.

5.1 Project Scope
Before jumping into technical details, the scope of the project should be
discussed. As the aim of the present work is to explore ways of incorpo-
rating mobile devices into presentation workflows, the goal of the project
was to build the mechanisms described in the previous chapters on top of a
JavaScript presentation library. As the focus was placed on the interaction
possibilities between speaker and audience, the creation of the presenta-
tion (e.g. using a graphical user interface) or the management of slides and
presentations were out of scope. As with most JavaScript presentation li-
braries, the resulting application is mainly aimed towards developers, both
to extend the libraries further as well as to create presentations, as at least

1https://github.com/irisSchaffer/

https://github.com/irisSchaffer?tab=repositories

5. Implementation 30

Web Socket and
Web Server

Presenter's Laptop

Listener A

Listener B

Listener C

Projector

Figure 5.2: Example application setup. A server serves the presentation
and connects all clients (presenter devices, listener devices and projector)
through WebSockets.

basic knowledge of HTML and CSS is necessary to build slides.
In total, a front end heavy system was created which features several

ways of interacting with a presentation, both from mobile and desktop de-
vices. Emphasise was put on mobile-optimised views and navigation possi-
bilities. The end product consists of several, highly customisable libraries
which can be combined to a presentation library which synchronises nav-
igation state and state changes between listeners and speaker(s), includes
three distinct interfaces for listeners, speakers and projects and offers the
possibility to dynamically add content during the presentation. In the fol-
lowing, the general architecture and technologies used in the project will
be analysed and described to then discuss implementation details, problems
and solutions for the main features.

5.2 Server Architecture
In general, the application consists of two parts: the front end web applica-
tion, run on every client, as well as a web server (see figure 5.2). As described
in chapter 4, this server is either publicly-accessible or – if all listeners have
access to the same network – run on any computer on the local network.
While special attention was paid to the front end libraries developed, the
server was kept as simple as possible, allowing any developer to work with
their own servers and technology stacks. However, the limitation of having
such a lightweight and dumb server, is that in the current iteration of the
prototype all state changes are only persisted on the client-side. although
good for testing purposes, as a reset is only a page-reload and clearing of
local storage away, this means audience members joining the presentation
after any additional slides were added, will not have the same state of the
presentation.

5. Implementation 31

Program 5.1: Very simple, possible implementation of a server running
this project with Node.js and Express. Wildcard support can be added to
socket.io as described in [84].

1 var express = require('express'); var app = express();
2 var server = require('http').createServer(app);
3 var io = require('socket.io')(server);
4
5 // directory ’client’ will be served by server
6 app.use(express.static(__dirname + '/../client/'));
7
8 io.on('connection', function(socket) { // setting up socket io
9 socket.on('*', function(event, data) {

10 io.emit(event, data);
11 });
12 });
13
14 server.listen(9000, function () {
15 console.log('Unveil server listening on port 9000!');
16 });

The server’s two only requirements are on one hand to serve the static
web application to all clients, and on the other hand to connect all of
these clients to enable the interaction and synchronisation between them
using WebSockets. This technology was chosen as low response times for
all network-requests were paramount and since the technology has already
been successfully leveraged in the real-time features of other presentation
tools [19, 40]. In our server implementation, the presentation is run from a
Node.js [55] server, using Express[54] as a framework. WebSocket support
is added using the popular library socket.io [61], which a few more words
will be said on in section 5.6. To again emphasise how low the requirements
for such a server are, a working example implementation can be found in
program 5.1. Additionally to this, the server developed for this project also
includes a lastState, which holds the last client state which is emitted
whenever a new client joins. Once the connection between client and server
is established, the server starts broadcasting all incoming requests from any
client to all other ones (see figure 5.3). These requests are then processed on
the clients locally, taking into consideration the mode they are currently in.
Wherever possible, the clients optimistically update the interface instead of
waiting for the response from the server, to make the application feel even
faster.

5. Implementation 32

ServerPresenter's Laptop

Listener A

Listener B

Projector

WebSocket Request

WebSocket Data

WebSocket Data

WebSocket Data
Optimistic Update

WebSocket Data

Figure 5.3: Client-server communication. The server receives the request
from the client and forwards it to all clients.

5.3 Front End Technologies
The project generally follows modern best-practices in web development and
utilises modern CSS3 and JavaScript features and frameworks. The software
is written in ECMAScript2015, makes use of the node package manager
(short npm [56]) for managing dependencies and Babel [51] to transpile
the code to ECMAScript 5. Additonally to relying on CSS3 features, this
project also uses Sass [44] as a CSS pre-processor. The listener-interface was
developed mobile-first and the speaker-view with mobile in mind; media-
queries allow for these optimisations.

The JavaScript library React [47] serves as the render framework of
choice, additionally applying the reactive programming paradigm using RxJS
[53] to create a simpler interface for event-driven and asynchronous opera-
tions. These technologies will now be introduced to the reader shortly, to
establish the knowledge-base necessary to understand the then following
technical implementation details.

5.3.1 ECMAScript2015 and Babel

JavaScript undoubtly is an integral part of front end web development and
since the emergence of server-side JavaScript with Node.js and its package
manager npm, has developed into a programming language widely used by
web developers [24]. Both PYPL2 and TIOBE3 programming language in-
dices rank JavaScript among the top 10 programming languages (PYPL at

2http://pypl.github.io/PYPL.html
3http://www.tiobe.com/tiobe_index

http://pypl.github.io/PYPL.html
http://www.tiobe.com/tiobe_index

5. Implementation 33

5, TIOBE at 7 at the time of writing) [24]. Stack Overflow’s 2015 Developer
Survey even places JavaScript as the number 1, most-used programming lan-
guage with 54.4% and JavaScript, Node.js and AngularJS [49] all three rank
amongst the top 5 languages developers expressed an interest in developing
with [82].

However, like any front end technology, JavaScript suffers from slow end
user adoption, as a multitude of browser versions exist for different de-
vices and operating systems and many people still do not auto-update their
browsers. Another factor is the time it takes for browser-vendors to im-
plement new ECMAScript standards (the standard behind JavaScript) and
roll out said updates. This is exactly what is happening with the new EC-
MAScript standard, ECMA-262, commonly known as ECMAScript 2015 or
ES6: Although the General Assembly has adopted the new standard in June
2015 [12], Kangax’ ECMAScript compatibility tables4 still show a fairly low
level of support, especially among mobile browsers. ES6 makes JavaScript
easier and more efficient to write by providing new semantics for default
values, arrow-functions, template-literals, the spread operator or object de-
structuring [75]. It also makes JavaScript safer to develop with and easier to
understand with the introduction of block-scoped variables (let and const)
and finally offers native support of modules and promises [75]. As these fea-
tures are all included in the new ECMAScript standard, it is safe to assume
browser-vendors will implement them in the near future. Until then, devel-
opers who want to already make use of them, can transpile ECMAScript
2015 code to ECMAScript 5, which is exactly what Babel does. With al-
most 750,000 downloads in April 2016 [69] and companies such as Facebook,
Netflix, Mozilla, Yahoo or PayPal using this transpiler [70], Babel is the de
facto standard in transpiling to ECMAScript 5 and was also chosen for this
project.

5.3.2 Reactive Programming

Another problem with JavaScript, although integral part of the reason for its
high popularity, is its asynchronous nature. Especially when working with
highly interactive parts, the prime example being user interfaces, sequential
programming quickly gets too inflexible to handle complex, event-driven
applications [1]. The same is true for the server where the possibility to con-
currently serve a multitude of different clients is paramount. In these cases
JavaScript offers asynchronous callbacks. These, however, oftentimes exe-
cute more asynchronous code and in turn have to wait for another callback
to fire, and another one, and another one..., which can result in something
known and dreaded by most any JavaScript developer: Callback Hell (see
programm 5.2). Since this project has to fulfill many asynchronous tasks and

4https://kangax.github.io/compat-table/es6/

https://kangax.github.io/compat-table/es6/

5. Implementation 34

Program 5.2: Callback Hell – Nested asynchronous callbacks to create a
file upload.

1 onFileChange(event) {
2 fileReader.readAsDataURL(event.file, (content, error) => {
3 uploadFile(content, (response, error) => {
4 this.refs.modal.close(() => {
5 updateSuccessMessage(response)
6 })
7 })
8 })
9 }

Program 5.3: Promises – File upload example using ECMAScript 2015
promises.

1 onFileChange(event) {
2 fileReader
3 .readAsDataURL(event.file)
4 .then(uploadFile)
5 .then((response) => {
6 this.refs.modal.close(() => promise.resolve(response))
7 })
8 .then(updateSuccessMessage(response))
9 }

is heavy on the user-interface and thereby JavaScript’s event system, it was
crucial to find a way of handling this code gracefully. In the following, differ-
ent ways of handling asynchronous programming are described, the example
of an imaginary file upload will be used to demonstrate the differences on
code-level:

1. A file is chosen by the user
2. The file is read by FileReader
3. The file is uploaded
4. The file upload modal is closed with an animation
5. As soon as the animation is over, a success message is rendered

Different approaches have been employed to lower the hurdle of writing
asynchronous code, one of them being promises: A promise is a value, yet to
be computed [21]. A promise can be a) pending (if it has not been assigned
a value yet), b) resolved (if it has been assigned a value) or c) rejected (if an
error occurred). With ECMAScript 2015 promises, these objects can then be
queued using the then keyword, to execute asynchronous code in a certain
sequence (see programm 5.3).

5. Implementation 35

Program 5.4: RxJS – File upload example with reactive programming in
RxJS.

1 Observable.fromEvent('change', fileInput)
2 .pluck('file') // pluck event.file
3 .map(fileReader.readAsDataURL)
4 .map(uploadFile)
5 .do(() => this.refs.modal.close)
6 .subscribe(updateSuccessMessage)

However, promises can still create nested callbacks, especially when chaining
promises that rely on other promises’ resolution [21]. This is where reac-
tive programming shines: The reactive programming paradigm works with
streams of events, in which every event is handled as a new value and all
other parts depending on that value are re-computed upon arrival of such
new value. Bainomugisha et al. [1] use the illustrative example of a simple
addition to demonstrate this: In sequential programming, 𝑐 the expression
𝑐 = 𝑎 + 𝑏 with 𝑎 = 1 and 𝑏 = 2 will always be 3, until assigned a dif-
ferent value. With reactive programming, however, should 𝑎 or 𝑏 change,
the value of 𝑐 is automatically re-computed. JavaScript does not directly
support reactive programming, but more functional languages like Elm [45]
which can be transpiled to JavaScript, do. Another way of adding reactive
programming concepts to JavaScript is using a library, such as Bacon.js [58]
or the one chosen for this project, ReactiveX5. ReactiveX provides libraries
for a multitude of different programming languages, C#, C++, Java and of
course JavaScript among them. The latter, called The Reactive Extensions
for JavaScript or short RxJs [53], allows for the processing of event streams
(Observables) as if they were simple JavaScript arrays. Instead of writing
sequential code, method after method, if asynchronous or not, is applied to
every element in the incoming event stream, using the array-methods such
as, most notably and well-known, map (to apply a method to every element
in the incoming stream) and filter (to only let a subset of events pass)
(see programm 5.4).

Additionally to Observables, RxJs also knows Subjects, which combine
both a source of events and a consumer of such. Subjects are Observables
but at the same time also Observers and can be used to broadcast values to
several consumers [53].

5.3.3 React

As this project focuses on the front end, a mature JavaScript library for
front end rendering was needed. After previous experience with the big and

5http://reactivex.io/

http://reactivex.io/

5. Implementation 36

Program 5.5: Example code snippet using properties and state in a React
component. Whenever the text input changes (i.e. a user types something),
the state will be updated and the component re-rendered. The component
can be used in other components as <HelloWorld greeting=”Hi”/>.

1 export default class HelloWorld extends Component {
2 static propTypes = { greeting : PropTypes.string }
3 static defaultProps = { greeting : 'Hello' }
4
5 constructor(props) {
6 super(props)
7 this.state = { name : 'World' }
8 }
9

10 const render = () => (
11 <div>
12 <h1>{this.props.greeting} {this.state.name}!</h1>
13 <input value={this.state.name} onChange={(name) => this.setState({

name })} />
14 </div>
15)
16 }

complex but slow AngularJS, and because of promising performance bench-
marks [78] and simply to explore new JavaScript libraries, React was chosen
for the rendering layer of this application. Since Facebook started developing
React in 2013, it has challenged existing approaches and set new standards
in front end web development [17]. Instead of creating an entire MVC frame-
work for the front end, React really concentrates on the view by offering a
way of creating independent, lightweight view components. This gives React
the huge advantage of beating other front end frameworks in performance
benchmarks by far [78]. Moreover, React Native [48], which uses the same
component-based system, makes it possible to port applications to different
mobile operation systems.

To define how each of these re-usable, lightweight components is dis-
played, they implement a render method, returning JSX [15]. The commu-
nication with other components happens through properties (props), which
are passed into the component as XML attributes. Their own internal state,
which can be manipulated e.g. through user interactions, is maintained in
the state member [14]. Every state (internal) or property (external) change
causes a re-render of the component, an example HelloWorld component
can be found in program 5.5. These updates, as well as construction and
destruction of components are handled in lifecycle methods [14].

As an end note on React, and a transition to the core presentation li-
brary, it should be added that React components can be nested arbitrarily

5. Implementation 37

deep, effectively creating semantic XML syntax which is directly linked to
the rendering of the components. To make it as easy as possible for other
developers to use the created libraries and components, presentations are
built just as a usual HTML page, using these semantic XML tags, as will
be shown in chapter 6.

5.3.4 unveil.js

Although not initially planned, due to several shortcomings of other presen-
tation libraries, this project builds upon the open-source JavaScript library
unveil.js [57], which we developed prior to this project and extended and
adapted in an own fork [65] during the project. While other alternatives,
such as impress.js [68] or the popular reveal.js [46], exist, extensive research
showed that neither of the two libraries offers the flexibility necessary to
easily implement the discussed interactive mechanisms. They both were not
built unleashing modern web technologies’ full potential and practically con-
sist of one big file of JavaScript, handling all functionality. We therefore
decided to build our own presentation platform.

Generally, unveil.js, like impress.js and reveal.js, is a library with which
online presentations can be built. All three do not require a web server
and can therefore be statically, and also locally served. Instead of building
the presentation using a graphical user interface, all slides, transitions and
styling are defined in HTML and CSS, meaning the presenter has to be
familiar with basic front end web development techniques. Thanks to the use
of React, unveil.js, in contrast to reveal.js and impress.js, however, does not
depend on the usage of class names to identify the slide structure, but instead
can make full use of semantically-named components, such as <Slide/> or
<Notes/>. More details about the usage of unveil will be covered in chapter
6.

Like reveal.js, unveil.js operates on a 2-dimensional slide-space: Every
slide can have a next and previous slide in 𝑥 (main slide), as well as in
𝑦-direction (sub-slide). To generate the 𝑦 axis, slides are nested in other
slides. To be able to identify slides from a URL, slides have an optional
unique name as well as an index in the slide-tree. Both the index and the
name can be used to link to a certain slide, making it possible to share not
only a whole presentation but also a certain slide.

The core of unveil.js is UnveilApp, which all slides and sub-slides are
nested in. This component configures and sets up the entire application
based on optional configuration passed in as properties. There are a few
concepts we introduced jn unveil.js to allow for maximal extensibility and
adaptability, namely presenters, controls and modes:

• Presenters define the way the current slide is rendered, e.g. where to
display controls, if to show notes, or whether to rencer upcoming slides.

• Controls control a part of the application. One example would be the

5. Implementation 38

Presenter

UnveilApp UnveilApp

Navigator

Router

key press event

re-renders application - updates browser history
- maps indices to strings
- redirects to string path
- sends new router event

- filters key input
- processes key input

- validates move
- gets next indices

- adds query parameters
 (such as mode)

Event "right"

target : [1],
query : {...}

directions: [...],
indices: [1],
keys: [1],
path: 'problem',
pathname: '/1',
query : {...}

[1]

Figure 5.4: Navigation pipeline from user’s key press to re-render of the
presentation. The monospaced text next to the arrows symbolises the data
transmitted. KeyControls listen for key events and process them, to then
send a navigation request to go right to the Navigator. This component
then maps the direction to the next slide’s indices (1). UnveilApp then adds
other information necessary for the Router, which then is responsible for
updating the browser history, mapping the indices back to a human readable
url and sending out a new router event. In the end UnveilApp receives this
event and re-renders the presentation.

navigating from one slide to the next using the arrow keys on the
keyboard.

• Modes are what allow a speaker to have a different presenter and con-
trols from an audience member. Each mode defines its own presenter
and set of controls, the mode is determined by the url query parameter
mode.

This allows anybody using unveil.js to define or overwrite modes, presenters
and controls and thereby extend the base library as they wish. A few of
these are already defined in the base library, namely a default Presenter,
UIControls to navigate using buttons, KeyControls to navigate using the
keyboard and TouchControls to navigate with swipe-gestures on touch
screens. In chapter 6, modes for the audience (default), the speaker (speak-
er) and for use on the projection device (projector) will be set up.

For these controls and the entire presentation to be navigatable, Unveil-
App is responsible for the creation of two very important classes: Router
and Navigator. These can be defined outside and passed into UnveilApp
as properties, allowing other developers to customise their navigation logic.
The Router is the class handling everything connected to the current url.
It receives the slide-tree and can compute the indices of a slide by its name
and vice versa. Whenever the browser history changes, the router finds the

5. Implementation 39

corresponding slide-indices, computes an array of possible directions to go
into from this slide and propagates the event to UnveilApp, which can then
re-render the application. Navigator, in turn, receives these directions and
is responsible for the mapping of directions (left, right, up, down) to slide-
indices. Controls know the navigator and can push new directions to the
navigator subject, thus starting the navigation process described in detail
in figure 5.4.

5.4 Project Structure
As the puropose of this project was not only to experiment with different
ways of interacting with presentations using mobile devices, but also to
create something worthwhile and contribute back to the vibrant open-source
community, the project is enitrely open-source and separated into different
repositories. These can be installed using npm, therefore allowing developers
to rely only on the parts they really need. An overview can be found in the
beginning of this chapter in figure 5.1.

Extended unveil.js: As discussed in section 5.3.4, the project is based
on the library unveil.js [57]. During the development of the project, certain
parts of the base library were improved to allow for even easier extensibility
and new presentation logic was added. This happened in a fork of the original
library, which will be examined in section 5.5.

Network Synchronisation Layer: The first library of direct importance
for the interaction between speaker and audience through personal devices is
unveil-network-sync [64]. This rather small library relies on unveil.js and is
responsible for connecting the client and the server through web sockets and
enables the synchronisation of the current slide displayed between speaker,
audience and projector. The implementation of the features will be discussed
in detail in section 5.6.

Interactive Extension: As the name already suggests, this library is
at the core of the present thesis: It includes a dedicated presenter for the
speaker, implements the insertion of additional slides and subslides and by
that allows the audience to share content with the presentation. Reactions,
the voting mechanism, as well as the creation of new votings on-the-fly, also
live within this library. The repository, called unveil-interactive [63] relies on
unveil-network-sync for the socket-interaction and will be covered in section
5.7 of this chapter.

Server and Example Presentation: The last repository connected to
this thesis [62] includes a simple server as well as a real-world example of a

5. Implementation 40

PresenterUnveilApp

Controls

Slide

renders

renders

renders

Figure 5.5: Overview over the render-flow of the application in the extended
version of unveil.js. UnveilApp renders the presenter, which then takes care
of rendering the (current) slide and all controls.

presentation. In this chapter, one section was already dedicated to the server
(5.2), a short introduction into the usage of the developed library will be
given in chapter 6.

5.5 Extended unveil.js
The biggest adaptions and additions were necessary in the main compo-
nent UnveilApp. A state subject was added to allow all components in
the presentation to interact with the application. This subject receives an
event with type and data and depending on this type starts a certain state
change. Two of these state events are the state/navigation:enable and
state/navigation:disable events, which set a state-variable navigatable
to true or false. This variable is used in the controls to determine navigata-
bility, therefore making it possible to keep the audience locked to a slide, e.g.
during votings. To make it possible for the audience to add subslides, as well
as to dynamically add votings on-the-fly, another event is state/slide:add.
It includes what slide to add (content), how (subslide or main slide) and
where (under or after which slide). On occurence of this event, the slide-
tree has to be re-built, the router and navigator re-started and the whole
presentation re-rendered, which the library also had to be prepared for. A
complete list of all state events and who they are emitted by and listened
to can be found in figure 5.6 and 5.8.

Another adaption in UnveilApp is the introduction of the context ob-
ject: Additionally to state and properties, there is a third way of commu-
nicating between components in React, called context. Instead of having to
pass properties from one nested component to the other, every child com-
ponent can access the context of its parents. The navigator, needed in the
controls, was formerly passed from UnveilApp to the controls through sev-
eral layers. Using context, UnveilApp now defines a number of different vari-
ables which are available through context, including current slide and router
state, navigator, mode and the state subject discussed in the last paragraph.

5. Implementation 41

SynchronisableNavigation Receiver,
NavigationReceiver

listen to socket
 state:change

NavigationSender

emit to socket
 state:change

listen to socket
 state:change

Figure 5.6: State and socket events sent and consumed by controls in the
network synchronisation layer.

This makes it easy for new controls and presenters to access the data they
need without other layers knowing about them or having to define them.
This adaption was partly due to a change in the render hierarchy: Formerly,
UnveilApp itself rendered the presenter (which rendered the current slide)
and the controls. However, the presenter needs to be able to also control
the rendering of controls (see figure 5.5), adding another layer between the
rendering of controls and UnveilApp.

Another part that was added to the unveil.js base library is the Notes
component. It allows adding speaker notes to each slide (see program 6.2).
These, however, are not rendered by the slide, but by the presenter, as will
be shown in section 5.7. One more important new feature is the possibil-
ity to configure the next slide in a certain direction (left/right/up/down)
and therefore allow for jumping into different branches of the presentation,
thus making a presentation even more interactive. The following code, for
example

1 <Slide name="start" left={[0]}>
2 ...
3 </Slide>

means a navigation left (left arrow key pressed, swipe left etc.) will not go
to the previous slide defined in the slide-tree, but rather jump to the first
slide (of index 0).

5.6 Network Synchronisation Layer
As mentioned before, the network synchronisation layer is responsible for
the communcation between server and client using WebSockets. These are
created using socket.io, a library which also provides fallbacks for browsers
that do not support WebSockets yet. However, the library also has a few
drawbacks, especially when it comes to corporate networks. As Rob Britton
describes in [71], socket.io seems to have problems getting through firewalls
and can be blocked by some anti virus applications. As mobile browser sup-
port was essential for this project, after some consideration, we still decided
in favour of this library.

5. Implementation 42

Presenter

Presenter

Server

Listener
Projector

NavigationSender

WebSocketSocketIO
Helper

NavigationReceiver

server
communication

WebSocket
singletonnavigation change

navigation change

Figure 5.7: Navigation synchronisation flow. NavigationSender emits a
navigation change, which is sent to the server via WebSockets using the
SocketIO helper and played back to the NavigationReceiver which is ac-
tivated on all clients by default.

The socket is created by the speaker in the main entry point of the pre-
sentation by passing the IP-address of the WebSocket server to the function
createSocket, which is directly exposed by unveil-network-sync. Inter-
nally the socket connection to the server is established and the then exposed
as a singleton, so every component uses the same connection. Inside all con-
trols communicating with the socket server, this connection can be imported
through SocketIO, which internally retrieves the singleton:

The connection can then be used to listen to events or to emit them.
Like the state subject events, the socket.io events used in this library fol-
low the naming convention of scoping the object targeted in by the event
separated by slashes, followed by a colon and the name of the action, e.g.
state:change or state/slide/voting:start. The list of all current socket
events, together with state events can be found in figure 5.6.

Besides providing a way of connecting to the server, this library also of-
fers the components NavigationSender and NavigationReceiver for syn-
chronising the navigation state of the presentation between speaker and
audience. As the names already say, the sender broadcasts the state update,
while the receiver is waiting for state updates and starts the navigation
process. By default, the latter is active in all modes (default, speaker and
projector), whereas the sender is only added to the speaker mode, effectively
only broadcasting the speaker’s navigation changes (see figure 5.7). To make
sure the sender does not end up in an infinite loop of sending and receiving
their own state changes, the last received state is stored and only navigation
events going to a different slide are processed further.

This mechanism, though relatively simple, already enables the audience,
and with that our listener Greg, to follow the presentation and the speaker
Amy to use her phone or laptop as remote control for any number of con-

5. Implementation 43

ReactionSender

emit to socket
 state/slide:reaction

ReactionReceiver

listen to socket
 state/slide:reaction

VotingReceiver

emit to state subject
 state/slide/voting:add

listen to socket
 state/slide/voting:add

VotingCreator

emit to socket
 state/slide/voting:add

VotingController

emit to socket
 state/slide/voting:start
 state/slide/voting:end

VotingNavigatableSetter

listen to socket
 state/slide/voting:start
 state/slide/voting:end
emit to state subject
 state/navigation:disable
 state state/navigation:enable

MediaReceiver

emit to state subject
 state/slide:add

listen to socket
 state/slide:add

MediaSender, QuestionSender,
LinkSender

emit to socket
 state/slide/add:accept

MediaAcceptor

emit socket
 state/slide:add

listen to socket
 state/slide/add:accept

Figure 5.8: Overview of state and socket events sent and consumed by
controls in the interactive extension.

nected projectors. Optionally, the SynchronisableNavigationReceiver,
makes it possible to navigate entirely independently for listener and adds a
button in the interface to switch back to the current presenter state.

5.7 Interactive Extension
The interactive library includes several parts which will be discussed here:
a speaker presenter (section 5.7.1) and different components connected to
reactions (section 5.7.2), sharing content (section 5.7.3), and voting (section
5.7.4).

5.7.1 Speaker Presenter

The speaker presenter, like the normal presenter, is responsible for rendering
controls and slides. In speaker mode, where this presenter is used, notes as
well as the upcoming slides (right and down) are also shown. This means
the presenter has to find these next slides, using the router’s information
about the navigatable directions, and render them in a designated area. As
mentioned before, special attention was paid to mobile stylesheets to make
the presenter view usable on mobile devices. This ensures that everything is
big enough to be readable and all buttons are clickable (see figure 6.1).

5. Implementation 44

5.7.2 Reactions

As with most other unveil library extensions described in here, the compo-
nents for reactions also consist of a sender and a receiver: ReactionSender
and ReactionReceiver. The principle is the same as with network syn-
chronisation (see figure 5.7): When a listener chooses to send a reaction by
clicking or tapping on an emoji, a state/slide:reaction is sent through
the WebSocket. On the other side, the receiver is listening for the event and
remembers which reactions have been sent on which slide, to display them.
As a default, the sender is active in listener mode and the receiver is added
to speaker and projector mode. On mobile, where the reactions are hidden
behind a button and only slide in when tapping said button, a state-variable
is responsible for storing the status of the reaction-picker. This works using
CSS3 animations on the ‘max-height‘ attribute of the container.

5.7.3 Content Sharing

Another responsibility of the interactive extension is the possibility for au-
dience members to share content with the presentation. For this to work,
five different controls were created: MediaAcceptor, MediaReceiver and the
three senders MediaSender, QuestionSender and LinkSender. The senders
are used in listener mode so members of the audience can share their con-
tent, the acceptor is enabled in speaker mode, to accept or reject incoming
content and the receiver in the end handles the creation of a new slide if
the content was accepted and is therefore necessary in all modes (see fig-
ure 5.9). As incoming content requests could disrupt the presentation flow
and distract the speaker, an option to mute the requests was built into the
application. If the do not disturb mode is turned on, slides will silently be
added as subslides, without causing the acceptor modal to open. This way
the audience’ additions can be re-visited after the end of the presentation.
Generally, this feature can be used to either copy and paste a link to a pic-
ture, website or youtube video, for text input (i.e. questions) or to upload
images directly from the listener’s device. This works through the introduc-
tion of the presentation components Media and IFrame, which, depending
on the shared content, render an image-tag, blockquote or IFrame. The dif-
ferentiation of these is carried out using regular expressions. The native file
upload works through the HTML5 File API, using FileReader [30]. Once
the file is uploaded, its contents are encoded as base64 data url and sent
through the WebSocket.

As far as the implementation of the other controls is concerned, like the
already discussed ones, they make use of the SocketIO helper to communi-
cate with the server (see figure 5.8). Additionally they use the UnveilApp’s
state subject to start the process of adding a new slide. The sent state/
slide:add event includes details regarding where to add the new slide, its

5. Implementation 45

Presenter
Listener

Presenter
Listener

Projector

Presenter
Listener Projector

MediaSender

MediaReceiverUnveilApp

MediaAcceptor
socket:
state/slide/add:accept

socket:
state/slide:add

state subject:
state/slide:add

creates request

- validates request
- opens modal
- accepts/rejects request

- receives request
- builds state subject event

- adds slide
- re-renders application

Figure 5.9: Flow of adding content, monospaced text symbolises type and
name of events. First the MediaSender of the listener mode sends a request,
which the speaker mode’s MediaAcceptor listens to. If the request is accepted
by the speaker or requests are muted, another socket event is broadcast,
which the MediaReceiver waits for. This component is enabled in all modes
and emits the state subject event to add a new slide, which UnveilApp finally
reacts to.

content, as well as how to add it (main or sub-slide). UnveilApp then in-
serts the new slide into the slide tree, re-computes the slide-map for the
router and re-renders the entire presentation. The flow of the process is also
outlined in figure 5.9.

The controls used for sharing content are also responsible for render-
ing the all necessary buttons and modals. The three senders render one
share button each, which toggles a sharingMode state variable and opens
and closes the respective sharing modal. Something similar happens in the
MediaAcceptor, which uses the render() method to display the mute but-
ton and controls the modal for accepting new content, listening for incoming
data. If a request arrives while another one has not yet been dealt with by
the speaker, the request will be queued in the acceptor’s interal state.

5.7.4 Voting

The last group of components connected to the interactive extension covered
in this chapter allows speakers to create votings – both during in the prepa-
ration of the presentation and on-the-fly – and members of the audience to
vote.

The main presentational component involved in the voting process is
Voting, which keeps track of the current voting scores and has a Question
and a number of Answer components as children. Voting also remembers if
the current user has already voted and if so, displays the Results instead
of the form. In speaker and projector mode these results are shown at all

5. Implementation 46

times.
The audience can start submitting their votes as soon as the speaker

navigates to the slide with the voting and until then the vote button is
not rendered. Once the voting has started the possibility for all audience
members to navigate to a different slide is disabled. The VotingController
is active in speaker mode and checks the currently displayed slide for votings.
If a new voting is active, the voting start event is emitted via the WebSocket.
On the side of the audience, the VotingNavigatableSetter listens for this
event as well as the voting end event and uses the state subject to enable
and disable navigation in the presentation.

Once the voting has started, internally, the Voting component remem-
bers which answer the user has clicked and once the submit button is pressed,
fires a state/slide/voting:answer socket event. These in turn are used
in the Voting components of the other clients to update the internal vot-
ing statistics. As the results of the voting should be available throughout
the whole presentation and not be reset when leaving the slide, Voting also
handles the communication with local storage, to persist the current results
and voting status (voted or not). This happens in the update and mount
lifecycle methods of the component using the name of the voting to identify
the stored results. For votings created with the VotingCreator, this name is
automatically created using the current timestamp. This component again
renders a button in the speaker interface which toggles a modal. The creator
internally stores a question and an array of answers, which can be filled in
and added through the dialogue clicking the “Create Voting” button (see fig-
ure 6.2 in chapter 4). This fires a socket event which the VotingReceiver is
listening for to create a new slide from the sent details and start the adding
process using unveil’s state subject.

After discussing all important components of the developed application,
it is time to have a look at how the library can be used and customised from
the speaker’s point of view.

Chapter 6

Results

This chapter offers insight into the outcome of our work. First, the final
presentation system is presented, to then cover the results of our early user
study. Since one of our objectives was to create a re-usable set of libraries,
the usage of the unveil ecosystem from a developer’s point of view will also
be part of this chapter.

6.1 Application
In course of this thesis, we have developed three designated interfaces, one
for the listener, one for the speaker and one for the projector. While the
projector interface does not have any specific requirements, both the listener
and presenter view (see figure 6.1) were optimised for devices with small
screens.

Our system offers several ways of interacting with a presentation using
ones personal, mobile devices:

• remote controlling slides,
• following slides,
• different paths through presentations,
• voting and voting creation (on-the-fly),
• instantaneous reactions and
• multi-media content sharing.

With these mechanisms in place, presenters can navigate through slides with-
out the need for proprietary hardware and capture the mood of the crowd
through emoji. This is especially useful with increasing audience sizes, as
it gets harder to address every participant. The same is true for votings,
which can help the speaker to get an idea of the audience’ knowledge and
interest. When combined with different paths through the application, the
progress of a talk or meeting can be controlled by the listeners, tailoring the
experience to their needs. Due to our anonymous polling implementation,

47

6. Results 48

(a) (b)

Figure 6.1: Speaker Presenter on mobile (a) and desktop (b).

Figure 6.2: Poll creation modal in presenter mode on tablets, laptops and
desktops.

votings also offer an advantage over hand-raising in smaller audiences. In
these settings, the content sharing mechanism shines: by inserting new main
and sub-slides, listeners are given full control over the development of a pre-
sentation. Related content, notes, questions and comments can all be added
by members of the audience, making presentations a collaborative effort. As
all these features can be stressful for the speaker, all of them can be enabled
or disabled, to their liking. As the reaction feature of the application has
already been covered in detail in chapter 4 and the other mechanisms are
fairly self-explanatory, we will now take a detailed look at the voting and
content sharing functionality.

6.1.1 Voting

Votings can be prepared beforehands or on-the-fly – during the presentation
in the speaker interface (see figure 6.2(a)). After the creation of a poll, the
voting starts with the presenter navigating their browser to it. To ensure as
many listeners as possible use their right to vote, all participants are locked

6. Results 49

(a) (b)

Figure 6.3: Sharing of a youtube video. Request from listener on a phone
(a) and accepting-modal in presenter-view on a computer (b).

to the voting screen for the time of the voting (i.e. until the speaker navigates
away from the slide again) and cannot navigate individually anymore. Once a
listener votes (see figure 6.2(b)), they are presented with the current voting
results, which are also displayed on the projector. Currently, only single-
choice votings are supported by the system, however, free-text or mutliple-
choice questionnairs as well as any other kind of form elements could easily
be added in the future.

6.1.2 Content Sharing

The seemingly biggest mechanism implemented in course of this thesis is
the multi-media sharing feature. Three types of content can be shared in
the current implementation:

• free text (comments and questions),
• links (to websites, youtube videos or images) and
• images from the filesystem.

The last also includes access to the camera and camera roll on smartphones
(see figure 6.4) and through that offers a simple interface for uploading
hand-written presentation notes, sketches and other related material.

The general process of sharing content is as follows: When a user presses
one of the three content sharing buttons in the interface, a modal opens with
a text area (free-text and link) or a file-upload (media). After filling in the
necessary information, pasting a link or choosing a picture and confirming
the action, the presenter instantely receives a content request (see figure
6.3). If the speaker enables the do not disturb mode, incoming requests will
automatically be added as subslides to the page the request came from.
Otherwise a modal will open in the speaker interface, displaying the content
and offering to add the content as main slide, subslide or not at all. If the

6. Results 50

(a) (b) (c)

Figure 6.4: Sharing of a picture from an iPhone’s browser (Google Chrome
on iOS 9.3.4) in listener mode. First, the listener opens the Media sharing
feature (a). Then a file can be chosen from different sources, such as the
camera roll, or a new picture can be taken (b). In a last step, the picture is
uploaded to the application and can then be shared (c).

presenter chooses to accept the new content, a new slide will be added with
a quote (free text), embedded video or website, or an image.

In our opinion, all these mechanisms combined offer a good starting point
for creating more interactive and engaging presentations. The potential of
the developed features will be discussed in the next section.

6.2 User Study
To measure the result of our work, we deployed the developed system in a
presentation at the digital agency Oakwood Creative AB in Stockholm and
asked the listeners to fill out a questionnaire (which can be found in the
appendices). The results are summarised in figure 6.5, a discussion follows
in chapter 7.

The information gathered from the questionnaire consisted of general
information about the device(s) the participants used, statements regarding
the different mechanisms, which were weighted on a 5-point Likert scale, as
well as an area for general feedback for each feature. The given presentation
had all interactive mechanisms activated and included a poll about how rude
the listeners perceived smartphone use in meetings and presentations. There
was, however, only one path through the presentation, so this mechanism was
not covered in the user study. The entire questionnaire can be found in the
appendices. In total 9 people, all working in digital marketing, participated
in the study. 7 of them used an iPhone to follow the presentation, one used
a laptop. One participant interacted with the presentation both on a laptop
and an iPhone. Most of the participants chose Safari as their browser on the
phone (7 out of 8) and both laptop users chose Chrome.

6. Results 51

It was easy and intuitive to use the application.

The application felt fast and responded instantaneously.

GENERAL

I feel I could browse the slides at my own pace.

Navigating through the slides was intuitive.

I could see all necessary slide content on my device(s).

FOLLOWING SLIDES

Using the polling mechanism was intuitive.

I felt more connected to other listeners through the voting.

I felt more connected to the speaker through the voting.

I felt more engaged in the presentation.

POLLING

I was familiar with the emoji and understood their meaning.

Reactions make it easier to give the presenter feedback.

REACTIONS

Sharing content was intuitive.

I understood the distinction between sharing links, text and pictures.

I felt more engaged in the presentation.

I felt like I could actively shape the presentation.

CONTENT SHARING

strongly agree agree neutral disagree strongly disagree

Figure 6.5: User study results, per mechanism. Participants were asked
to report their agreement or disagreement to given statements on a 5-point
Likert scale.

6. Results 52

The vast majority of users agreed or strongly agreed that the application
was generally easy and intuitive to use (88.89%). 77.78% of the listeners
also agreed or strongly agreed that the application felt fast and responded
instantaneously. These results confirm the design of the user interface and
our choice of technologies.

As far as following the slides on the mobile devices is concerned, the
participants came to a similar conclusion: 75% agreed (or strongly agreed)
following the slides was intuitive, moreover 88.89% reported they were able
to see all necessary slide content on their devices. Furthermore, 77.78% of
the participants agreed or strongly agreed the mechanism made it possible
for them to browse the slides at their own pace, which was the objective of
this feature.

The polling feature received the most positive feedback: All users agreed
(44.44%) or strongly agreed (55.56%) that the mechanism was intuitive to
use, moreover participants reported feeling more connected to other listeners
(55.55%) and the speaker (77.78%). In total, almost 80% of the listeners felt
more engaged in the presentation through this mechanism (77.78%), which
confirms our approach.

The user acceptance of the instant reaction feature was also overwhelm-
ingly positive: 87.5% of the listeners (strongly) agreed the mechanism made
it easier to give the presenter feedback. Moreover, we were initally concerned
about the users’ understanding of the emoji used. With 12.5% of the par-
ticipants agreeing and 87.5% strongly agreeing they were familiar with the
emoji and understood their meaning, this worry did not prove true.

Somewhat surprising results, however, were recorded with the content
sharing feature. While 71.43% understood the distinction between sharing
links, text and images, only 57.14% said they felt more engaged in the pre-
sentation and like they could actively shape the presentation, with 28.57%
respectively 42.86% feeling indifferent. 85.71% however, thought the mech-
anism was intuitive to use, which shows at least the user interface was well
designed.

6.3 From a Developer’s Perspective
Since one of our declared goals was the creation of reusable, extensible pre-
sentation libraries, a few words should also be spent on the usage of the
system by other developers. This chapter will therefore go into details of
how to set up an unveil presentation (section 6.3.1), use the components
(section 6.3.2) and lastly ways of customising, overwriting and extending
behaviour (section 6.3.3). The code-examples of this chapter are based on
the unveil-client-server repository [62].

6. Results 53

6.3.1 Setup

Since the entire created code is available on npm, the first step in set-
ting up an unveil presentation is to require the necessary libraries unveil,
unveil-network-sync and unveil-interactive. In the entry point of the
presentation (usually index.html), all bundled JavaScript and CSS-files are
included and an HTML document is created which offers a tag that can be
used to render the presentation (e.g. a div with the class unveil). For lower
the page loading time [85], script tags should generally placed in the body
tag, usually before closing said tag. As soon as this initial page is set up,
the actual presentation can be built in an JavaScript file which should also
be included here. In this file, we will call it index.js from now on, all nec-
essary libraries and components are imported: React, ReactDom, as well as
all unveil components that should be used. If any libraries which rely on the
communication with the WebSocket server should be used in the presenta-
tion, the SocketIO singelton also has to be configured with the address of
the server:

1 import { createSocket } from 'unveil-network-sync'
2 createSocket('http://192.168.0.17:9000')

6.3.2 Building a Presentation

Once all libraries are imported, the actual presentation can be created. The
most important component in this context is UnveilApp, which is imported
from unveil. This component holds all the Slides and is responsible for the
configuration of the application (see section 6.3.3). Inside the Slide compo-
nents, all content of the slide and the Notes are placed. Each of the slides
will be rendered as common HTML and can include any number of other
HTML tags and custom React components (see programm 6.2). Although
strictly-speaking not necessary, it is recommended to give slides (unique)
names, since their name will be the id of the rendered HTML component
and makes it possible to style components with CSS (see programm 6.1).
Additionally, if provided, unveil uses the name of the current slide as the
url, allowing for text-based rather than index-based routes.

Other than that, slides can have a left, right, up and down property
to allow for several paths through a presentation: All slides are provided as
normal slide-sets, but the left and right attributes of the first and last
slide of each path point to the previous and next slide shared by the entire
presentation. Links (available in the unveil-interactive package) can be
used to access the first slide of each path. Additionally, the interactive ex-
tension also offers the components for preparing votings: Voting, Question
and Answer (see programm 6.3). The only necessary property for Votings
is the name attribute, which uniquely identifies the voting, as well as exactly
one Question-child and an arbitrary number of Answers.

6. Results 54

Program 6.1: Example styling unveil slides using Sass. In this particular
piece of code, the font family of all slides is set and a background image is
added to the slide of name start.

1 .slide
2 font-family: 'Open Sans'
3 #start
4 background-image: url('../img/explore.jpg')

Program 6.2: Creation of a presentation. Sets up two slides as an example.
The DOM will be attached to the element of id unveil in the base HTML
document.

1 ReactDOM.render((
2 <UnveilApp modes={modes}>
3 <Slide name="start">
4 <h1>Unveil</h1>
5 <h2>a meta presentation</h2>
6 </Slide>
7 <Slide name="intro">
8
9 <Notes>Explain initial situation</Notes>

10 </Slide>
11 ...
12 </UnveilApp>
13), document.getElementById('unveil'))

Program 6.3: Creation of votings in unveil. The necessary components have
to be imported from unveil-interactive.

1 <Voting name="like">
2 <Question>Do you like these slides?</Question>
3 <Answer value="yes">Yes</Answer>
4 <Answer value="no">No</Answer>
5 </Voting>

6.3.3 Customisation and Extension

Thanks to unveil’s base architecture, it is possible for speakers to entirely
customise the entire presentation logic. The most important step is to define
the available modes and the presenter and controls which should be loaded
in each of them (see figure 6.4). Additionally to the existing controls in
unveil and its current extensions, new (presentation) logic can be added
by defining ones own React components and assigning them to modes. To
interact with the WebSocket server, SocketIO is available from the network

6. Results 55

Program 6.4: Mode definition for setting up an unveil.js presentation. De-
fault (i.e. listener) and speaker modes are omitted to keep the example short,
but generally follow the same pattern as the projector mode.

1 const modes = {
2 default: {...},
3 speaker: {...},
4 projector: {
5 controls : [
6 NavigationReceiver, MediaReceiver, ReactionReceiver,
7 VotingNavigatableSetter, VotingReceiver
8],
9 presenter: Presenter

10 }
11 };

synchronisation layer. Data such as the current router state or slide, and the
navigator or state subject are accessible through UnveilApp’s context. For
examples of existing controls and presenters, the reader is adviced to refer
to the implementation of the components discussed in chapter 5 [63–65].

Moreover, the Router and Navigator can also be entirely replaced by
providing ones own functionality as router and navigator properties in
UnveilApp. They only have to follow the same interface as the default im-
plementations. If any additional configuration should be necessary (such as
with setting the address of the WebSocket server or customising emoji),
singletons or static methods of the components can be used.

Chapter 7

Discussion

In chapter 6 we layed out the results of our work. In this chapter we now want
to discuss the results of the user study as well as the usage of the library for
developers. Additionally this chapter offers insight into some architectural
consideration and lessons learned.

7.1 User Study
A system such as the one developed in course of this thesis can be evalu-
ated in many ways: The performance of the software can be quantified by
measuring response times of the application, as happened in [34] or [19],
the usability can be assessed quantitatively through usability tests, measur-
ing error rates and time to complete certain tasks and qualitatively using
loud thinking and interviews [36]. If the expectations lied out in chapter 3
were actually met, if listeners feel more engaged and whether the percep-
tion of phone usage in presentations has changed with unveil can also be
estimated using qualitative and quantitative evaluation methods. We con-
ducted a quantitative study and offered the users a free text field to give more
faceted feedback. We feel, however, that valid results can only be achieved
observing the usage of the presented tool over a longer period of time and
involving control groups.

Throughout the process of developing the different libraries, several in-
formal presentations and meetings have been held using unveil, both in aca-
demic and business settings. This allowed for several iterations of the design,
as well as the gradual introduction of more and more interactive mechanisms.
The final study, presented in chapter 6, was then conducted using the final
prototype with all mechanisms enabled.

We were pleased to see that all listeners understood the base interface of
the application, both on their phones and on the laptop. We have however
not had a single tablet user and all participants used iPhones and MacBooks
with Safari or Chrome as browsers. During one of the earlier trials, some

56

7. Discussion 57

users experienced glitches in the navigation of the slides in Safari and could
scroll within them, moreover local storage is disabled in Safari’s private
mode (thus making it impossible to persist voting results). On bright side,
initial concerns regarding the usage of socket.io have not come true, since
the presentations were always held in networks we had full control over (so
corporate firewalls did not play a role).

As far as the response time of the application is concerned, with up to
30 concurrent users, no noticable declines in performance have been experi-
enced so far and the real-time features feel instantaneous. During the user
study, one participant even programatically sent 10,000 clicks on a reaction
to the server. We were pleased to see that despite the high amount of re-
quests, only one participant reported that the application did not feel fast.
This was probably due to the use of an older generation iPhone (4s), which
did not offer the performance necessary. The only interaction which is not
instantaneous is the transmission of base64-encoded media content through
the WebSocket. Since the delay is between listener and speaker, however,
the transmission time is not critical for the application to feel responsive.
Another point connected to sharing media is the absence of a native sharing
feature for phones, which was an anticipated limitation of creating a web
application over a mobile one.

The implemented functionalities were generally received well by the users
and all participants of our study seemed to understand the interface and
found the usage of the mechanisms intuitive. This, however, might be due
to the subjects all being digital marketing professionals and therefore techni-
cally versed. One participant wrote: “Could be a better experience if you add
more animations making it [the application] smoother”, which is something
we want to investe more time in in the future.

Despite our expectations and previous experience using the tool, in the
user study, participants did not use the content sharing mechanism much.
Instead, the polling feature received overwhelmingly positive feedback. One
participant wrote: “the possibility of giving your anonymous opinion makes
the results more trustworthy”, another one states “[...] it was somehow com-
forting to know my opinion was shared by most people [...]’. Two participants
note that the voting could consist of only one step instead of two (the choice
of the option and the submission).

As far as the sharing mechanism is concerned, in our trials, we expe-
rienced a large amount of test-data being sent through the mechansisms,
especially in the beginning of the presentation. We therefore advice others
to provide one or two empty slides in the beginning of the presentation if the
audience is new to the software, so the application and its functionality can
be explored. Since some users mixed textual content with links in the early
tests, we separated media upload, link sharing and questions (or other text)
into distinct buttons. Although we did not receive any negative feeback, the
feature was not as accepted as well as the other ones. One participant noted

7. Discussion 58

the interface could be styled more, most did not include feedback though.
The reasons why this mechanism was not perceived as engaging by more
participants will have to be studied further. We were very pleased to see
that some of the people who had used unveil, actively mentioned wanting
to have the ability to share links and thoughts in meetings without the
technology. Resulting from this feedback, an unexpected way of using the
software emerged: Instead of enriching an existing presentation, an empty
slide was provided, allowing anyone in a meeting to add their own content
in the 2-dimensional space in a brainstorming-like fashion.

The reaction system was also understood by the participants and they
stated being familiar with the used emoji. The feedback though positive,
included that the reactions for laughter, boredom and approval were “fun”,
but at times redundant. The other ones, however, were perceived as useful
ways of interacting with the presenter.

Another observation we made, is that although listeners generally reacted
exceedingly positively to QR-codes (linking to the address of the presenta-
tion), it was usually faster for them to type the address into their browsers
directly. This usually caused a few minutes of interruption, which should be
accounted for.

The biggest weakness of unveil for most users was the inability for the
presentation to be permanently altered. Especially in meetings and informa-
tional presentations, many listeners asked for a link to the collaboratively
created presentation afterwards, some users were forced to reload the web-
site due to cross-browser compatibility issues in earlier trials and lost the
current state of the slides, late-comers also did not have the possibility to
jump into an already altered presentation. This will make it necessary to
create a more intelligent and opinionated back end in the future.

7.2 From a Developer’s Perspective
Most of the feedback we have collected about unveil over the last months
came from listeners. This has two reasons: Firstly, the creation of presen-
tations requires knowledge and experience with front end web development
technologies, secondly, we have not started promoting the resulting libraries
yet, as we feel the system is not stable and mature enough to be used out-
side our internal settings. However, external developers have provided us
with their feedback regarding the syntax used for defining slide decks and
seem to not have had any problems understanding the usage of the libraries.
This validates our decision to choose semantically-named tags rather than
HTML class names to identify different components. On the downside, we
seem to have overestimated the level of knowledge necessary to create own
presentations, as a few developers were not entirely familiar with the new
ES6 syntax and the process of bundling JavaScript and CSS files, so an eas-

7. Discussion 59

ier way of importing all necessary libraries should be provided in an example
presentation. In the long run, this product will only be able to increase its
popularity if a visual editor for authoring slides, as well as a system to man-
age (i.e. host) them will be available. Some users also raised the question of
how and if it was possible to import PowerPoint presentations, to be able to
use the created mechanisms in connection with already existing software.

7.3 Architecture
Generally, it has to be said that the project is still only a prototype and
does not provide the stability necessary for us to feel confident promoting
the product. One particular problem we have been experiencing seemingly
randomly is the navigation getting stuck in an infinite redirect loop when
two or more connected presenters try to navigate at the same time. Moreover
we have so far ignored security concerns such as adding password protection
to the presenter mode. Although the chosen architecture allows for a lot of
flexibility and freedom for developers and in that sense fulfils the criteria
impress.js and reveal.js did not, we have discovered more powerful, stream-
lined and widespread patterns when working with React over the last half
year. Since we had no experience with React prior to the start of the de-
velopment, best practices oftentimes only became apparent throughout the
project and through the work on and with other React applications. To make
the libraries yet easier to use and extend and more easily debuggable, future
iterations of unveil will likely be based on Redux [43], with the presentation
state globally accessible. This will make it easier to decouple components
from each other through the introduction of a centralised state container.

Chapter 8

Conclusions and Future
Work

In this thesis, we present unveil: an extensible JavaScript presentation eco-
system with a multitude of interactive mechanisms, aiming to make pre-
sentations more engaging, memorable and collaborative. At its core stand
four React libraries, connecting presenters, listeners and projectors through
a WebSocket server, making it possible for both audience and speakers to
alter 2-dimensional slide-sets in real time. Different types of presentations
were analysed to find their weaknesses and establish ways of enhancing the
presentation experience: To make it easier to esitmate the listeners’ level
of knowledge, a real-time voting mechanism was implemented, allowing for
both prepared polls and ones created on-the-fly during the presentation.
Furthermore, the audience can instantaneously react to slides via emoji,
giving the speaker an impression of the current mood. To account for indi-
vidual learning-pace and late-comers, members of the audience can more-
over browse and follow the slides on their personal devices as well as send
questions to the presenter. These questions, along with other multi-media
content, such as pictures and links to websites and youtube videos, can then
be embedded into the presentation as new main or sub-slides, effectively
enabeling the audience to truely shape he presentation using nothing but
the mobile devices they carry on them. This holds the potential of engaging
listeners in the presentation, steering it towards certain topics, connecting
members of the audience with each other and the speaker and adding related
content for further reference.

Despite making presentations more memorable for the audience, this ap-
proach poses new challenges and requires more flexibility from the speaker.
For this reason, all realised mechanisms can easily be activated an deacti-
vated by the creator of the presentation. Since the created libraries were
generally designed for other developers to re-use, modify and extend, we
moreover offer ways of tailoring and configuring every last detail, from the

60

8. Conclusions and Future Work 61

routing logic over the emoji displayed to the mechanisms enabled for each
user group (presenter, listener, projector).

8.1 Future Work
Although long-term studies will be necessary to fully evaluate our approach
and verify and quantify their success, the early user study of the system
showed promising results. The users understood the interface and were es-
pecially excited about the voting mechanism. The initial evaluation of our
prototype also showed room for improvement, amongst others, the persis-
tence of the created presentation as well as the missing graphical user inter-
face to create presentations. In future iterations of the libraries, the stability
and testability of the platform will be improved as well as offering a way of
permanently altering the presentation.

For the presenter to profit even more from the new possibilities of in-
teractive presentations, we would like to provide some analytics: When did
the audience interact with the presentation most? When exactly were which
reactions triggered? Which slides provoked the most input or questions and
how long did audience members stay on each slide when browsing through
them individually?

As far as the interactive mechanisms implemented in this project are
concerned, initial study has shown potential for improvement as well: the
content sharing tool was used seldomly and the wish for a commenting
or annotating functionality was mentioned by some users. Votings could
offer several types (e.g. multiple choice, open questions, ratings), as well as
different ways of visualising the results (e.g. pie charts, stars, clusters of
answers). They could moreover be more tightly linked to paths through the
presentation, so the result of a voting could directly link to a path. Reactions
generally need more testing and although we are content with the current
functionality for the scope of this thesis, analytics for the presenter and time-
based rather than slide-based display of reactions are desireable. Overall,
more animations could make the presentation feel even more responsive and
offer a more native feel for mobile users [18].

From an architectural point of view, it is our declared objective to de-
liver a stable first version of the unveil ecosystem within the coming months.
Redux and even further separation of concerns will make it easier to auto-
matically test the application and add new features, such as the persistence
of presentation state to local storage or a database. Moreover, porting the
existing system to React Native and adding native sharing possibilities is
worth a consideration. While one of the presentations held with unveil so far
has been remote, the possibilities of using this project with distributed au-
diences has yet to be studied. However, the opportunity of reacting to slides
as well as adding content (potentially after a talk or meeting) are a promis-

8. Conclusions and Future Work 62

ing foundation for remote presentations [10, 20] and should be examined
further.

A possibility not at all touched in the present work is the development
of an authoring and hosting tools for unveil presentations. This would make
it easier to create slide decks and render the necessity for front end de-
velopment knowledge obsolete; effectively giving anyone a tool to create
interactive presentations. This would also be possible offering imports of
PowerPoint presentations or even re-building the interactive mechanisms as
PowerPoint plugins.

Another opportunity which arose from the users’ desire to share to a
blank presentation during meetings as well as questions about annotations,
would be to follow a canvas-based rather than a slide-based approach in fu-
ture projects. That way meeting participants could effectively use the plat-
form as a tool of collaboratively creating and sharing content, to brainstorm
and take notes from any device in a shared working space.

Finally, more formal observations and long-term studies will be necessary
to quantify the success of the developed mechanisms. Currently, the tool is
mostly in use for informal Monday morning presentations with other digital
professionals; the acceptance and usability of the application will have to be
re-visited and re-evaluated when assessed with less technologically versed
users.

Appendix A

DVD Contents

A.1 General
Path: /

_DaBa.pdf Master Thesis
questionnaires.pdf User Study Questionnaires
questionnaires.xlsx User Study Results

A.2 Copies of Online References
Path: /references/

about-iclicker.pdf About i>clicker [74].
babel-users.pdf See who’s using Babel [70].
bing-emoji.pdf Do You Speak Emoji? Bing Does [79].
creative-bloq-hover.pdf . Hover is dead, long live hover [72].
cu-clickers-faq.pdf CUClickers / i>clickers - FAQ [83].
ecma-262.pdf ECMAScript 2015 Language Specification

[12].
facebook-reactions.pdf . Reactions Now Available Globally [77].
github-reactions.pdf . . . Add Reactions to Pull Requests, Issues, and

Comments [76].
google-emoji.pdf Google now also allows you to search using

emoji characters [80].
instagram-emoji.pdf . . . Emojineering Part 1: Machine Learning for

Emoji Trends [73].
jsx-specification.pdf . . . Draft: JSX Specification [15].
mozilla-file-api.pdf Using files from web applications [30].
npm-babel.pdf npm’s babel package page [69].

63

/
_DaBa.pdf
questionnaires.pdf
questionnaires.xlsx
/references/
about-iclicker.pdf
babel-users.pdf
bing-emoji.pdf
creative-bloq-hover.pdf
cu-clickers-faq.pdf
ecma-262.pdf
facebook-reactions.pdf
github-reactions.pdf
google-emoji.pdf
instagram-emoji.pdf
jsx-specification.pdf
mozilla-file-api.pdf
npm-babel.pdf

A. DVD Contents 64

prezi-presentations.pdf . The Science of Effective Presentations [81].
react-benchmarks.pdf . . More Benchmarks: Virtual DOM vs Angular

1 & 2 vs Mithril.js vs cito.js vs The Rest [78].
sm-es6.pdf ECMAScript 6 (ES6): What’s New In The

Next Version Of JavaScript [75].
so-developer-survey.pdf . 2015 Developer Survey [82].
socketio-problems.pdf . . Why We Ditched Socket.IO [71].
socketio-wildcards.pdf . . Answer to Stack Overflow Question

“Socket.io Client: respond to all events with
one handler?” [84].

yahoo-performance.pdf . Best Practices for Speeding Up Your Web
Site [85].

A.3 Graphics
Path: /graphics/

screenshots/* Screenshots of unveil
wireframes/*.pdf Annotated Wireframes
wireframes/*.png Original Balsamiq Wireframes
*.jpg, *.png Original Raster Graphics
*.pdf Original Vector Graphics
*.sketch Original Sketch Files
*.ai Original Illustrations

prezi-presentations.pdf
react-benchmarks.pdf
sm-es6.pdf
so-developer-survey.pdf
socketio-problems.pdf
socketio-wildcards.pdf
yahoo-performance.pdf
/graphics/
screenshots/*
wireframes/*.pdf
wireframes/*.png
*.jpg, *.png
*.pdf
*.sketch
*.ai

MOBILE DEVICE USAGE IN INTERACTIVE, CO-
LOCATED PRESENTATIONS
USER STUDY 1/3

DEVICE

Which of these devices did you use?
Smartphone Tablet Laptop

Which browser(s) did you use?
Smartphone:

Tablet:

Laptop:

Chrome Firefox Safari Other:

Chrome Firefox Safari Other:

Chrome Firefox Safari Other:

Which operating systems do these devices run?
Smartphone:

Tablet:

Laptop:

iOS Android Other:

iOS Android Other:

OSX Windows Other:

FOLLOWING SLIDES

1. Navigating through the slides was intuitive.
STRONGLY DISAGREEDISAGREENEUTRALAGREESTRONGLY AGREE

2. I could see all necessary slide content on my device(s).
STRONGLY DISAGREEDISAGREENEUTRALAGREESTRONGLY AGREE

3. I feel I could browse the slides at my own pace.
STRONGLY DISAGREEDISAGREENEUTRALAGREESTRONGLY AGREE

ONLY FILL OUT IF YOU USED THIS MECHANISM

GENERAL

1. It was easy and intuitive to use the application.
STRONGLY DISAGREEDISAGREENEUTRALAGREESTRONGLY AGREE

2. The application felt fast and responded instantaneously.
STRONGLY DISAGREEDISAGREENEUTRALAGREESTRONGLY AGREE

MOBILE DEVICE USAGE IN INTERACTIVE, CO-
LOCATED PRESENTATIONS
USER STUDY 2/3

REACTIONS VIA EMOJI ONLY FILL OUT IF YOU USED THIS MECHANISM

1. I was familiar with the emoji and understood their meaning.
STRONGLY DISAGREEDISAGREENEUTRALAGREESTRONGLY AGREE

2. Reactions make it easier to give the presenter feedback.
STRONGLY DISAGREEDISAGREENEUTRALAGREESTRONGLY AGREE

CONTENT SHARING ONLY FILL OUT IF YOU USED THIS MECHANISM

1. Sharing content was intuitive.
STRONGLY DISAGREEDISAGREENEUTRALAGREESTRONGLY AGREE

2. I understood the distinction between sharing links, text and pictures.
STRONGLY DISAGREEDISAGREENEUTRALAGREESTRONGLY AGREE

3. I felt more engaged in the presentation.
STRONGLY DISAGREEDISAGREENEUTRALAGREESTRONGLY AGREE

4. I felt like I could actively shape the presentation.
STRONGLY DISAGREEDISAGREENEUTRALAGREESTRONGLY AGREE

POLLS

1. Using the polling mechanism was intuitive.
STRONGLY DISAGREEDISAGREENEUTRALAGREESTRONGLY AGREE

2. I felt more connected to other listeners through the voting.
STRONGLY DISAGREEDISAGREENEUTRALAGREESTRONGLY AGREE

3. I felt more connected to the speaker through the voting.
STRONGLY DISAGREEDISAGREENEUTRALAGREESTRONGLY AGREE

4. I felt more engaged in the presentation.
STRONGLY DISAGREEDISAGREENEUTRALAGREESTRONGLY AGREE

ONLY FILL OUT IF YOU USED THIS MECHANISM

MOBILE DEVICE USAGE IN INTERACTIVE, CO-
LOCATED PRESENTATIONS

Thank you for your participation!

USER STUDY 3/3

POLLS FEEDBACK ONLY FILL OUT IF YOU USED THIS MECHANISM

REACTIONS FEEDBACK ONLY FILL OUT IF YOU USED THIS MECHANISM

FOLLOWING SLIDES FEEDBACK ONLY FILL OUT IF YOU USED THIS MECHANISM

GENERAL FEEDBACK

CONTENT SHARING FEEDBACK ONLY FILL OUT IF YOU USED THIS MECHANISM

References

Literature

[1] Engineer Bainomugisha et al. “A Survey on Reactive Programming”.
ACM Computing Surveys (CSUR) 45.4 (Aug. 2013), 52:1–52:34 (cit.
on pp. 33, 35).

[2] R. Bajko and D. Fels. “A comparative analysis of meeting participant
perception and use of smartphones and other mobile devices during
meetings”. In: Proceedings of the Professional Communication Con-
ference (IPCC), 2013 IEEE International. July 2013, pp. 1–6 (cit. on
p. 1).

[3] Matthias Böhmer, T. Scott Saponas, and Jaime Teevan. “Smartphone
Use Does Not Have to Be Rude: Making Phones a Collaborative Pres-
ence in Meetings”. In: Proceedings of the 15th International Confer-
ence on Human-computer Interaction with Mobile Devices and Ser-
vices. MobileHCI ’13. Munich, Germany: ACM, 2013, pp. 342–351
(cit. on pp. 1, 7).

[4] François Bry, Vera Gehlen-Baum, and Alexander Pohl. “Promot-
ing awareness and participation in large class lectures: The digital
backchannel backstage”. Proceedings of the IADIS International Con-
ference e-Society 2011 (2011), pp. 27–34 (cit. on pp. 2, 5, 7, 12, 13,
17, 28).

[5] Spencer Cappallo, Thomas Mensink, and Cees G.M. Snoek. “Im-
age2Emoji: Zero-shot Emoji Prediction for Visual Media”. In: Proceed-
ings of the 23rd ACM International Conference on Multimedia. MM
’15. Brisbane, Australia: ACM, 2015, pp. 1311–1314 (cit. on p. 25).

[6] Spencer Cappallo, Thomas Mensink, and Cees G.M. Snoek. “Query-
by-Emoji Video Search”. In: Proceedings of the 23rd ACM Interna-
tional Conference on Multimedia. MM ’15. Brisbane, Australia: ACM,
2015, pp. 735–736 (cit. on p. 25).

68

References 69

[7] Albert T. Chamillard. “Using a Student Response System in CS1 and
CS2”. In: Proceedings of the 42nd ACM Technical Symposium on Com-
puter Science Education. SIGCSE ’11. Dallas, TX, USA: ACM, 2011,
pp. 299–304 (cit. on pp. 5, 6).

[8] Andre Charland and Brian Leroux. “Mobile Application Development:
Web vs. Native”. Communications of the ACM 54.5 (May 2011),
pp. 49–53 (cit. on p. 3).

[9] Debaleena Chattopadhyay et al. “Office Social: Presentation Interac-
tivity for Nearby Devices”. In: Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems. CHI ’16. Santa Clara, Cal-
ifornia, USA: ACM, 2016, pp. 2487–2491 (cit. on pp. 5, 8, 9, 14, 15).

[10] Yufeng Cheng, Jiayu Sun, and Junfeng Hu. “TOPT: A Tree-based
Online Presentation Tool”. In: Proceedings of the 2015 ACM Confer-
ence on Innovation and Technology in Computer Science Education.
ITiCSE ’15. Vilnius, Lithuania: ACM, 2015, pp. 342–342 (cit. on pp. 7,
15, 18, 28, 62).

[11] Andreas Dieberger, Cameron Miner, and Dulce Ponceleon. “Support-
ing Narrative Flow in Presentation Software”. In: Proceedings of the
2001 CHI Conference on Human Factors in Computing Systems. CHI
EA ’01. Seattle, Washington: ACM, 2001, pp. 137–138 (cit. on pp. 16,
27).

[12] Ecma International. ECMAScript 2015 Language Specification. 6th ed.
Copy available on DVD (File /references/ecma-262.pdf). June 2015.
url: http://www.ecma-international.org/ecma-262/6.0/ (cit. on pp. 33,
63).

[13] Margarita Esponda. “Electronic Voting On-the-fly with Mobile De-
vices”. In: Proceedings of the 13th Annual Conference on Innovation
and Technology in Computer Science Education. ITiCSE ’08. Madrid,
Spain: ACM, 2008, pp. 93–97 (cit. on pp. 6, 17, 28).

[16] Graham Farrell et al. “Trial by Tablet: User Evaluation of the Digital
Courtroom”. In: Proceedings of the 25th Australian Computer-Human
Interaction Conference: Augmentation, Application, Innovation, Col-
laboration. OzCHI ’13. Adelaide, Australia: ACM, 2013, pp. 325–328
(cit. on p. 1).

[17] Cory Gackenheimer. Introduction to React. Apress, 2015. url: https:
//books.google.se/books?id=NZCKCgAAQBAJ (cit. on p. 36).

[19] Ryota Inoue et al. “Visualizing Real-Time Questionnaire Results to
Promote Participation in Interactive Presentations”. In: Proceedings
of the 3rd International Conference on Advanced Applied Informatics
(IIAIAAI), 2014. Aug. 2014, pp. 64–69 (cit. on pp. 5, 9, 18, 28, 31,
56).

http://www.ecma-international.org/ecma-262/6.0/
https://books.google.se/books?id=NZCKCgAAQBAJ
https://books.google.se/books?id=NZCKCgAAQBAJ

References 70

[20] Ellen A. Isaacs, Trevor Morris, and Thomas K. Rodriguez. “A Fo-
rum for Supporting Interactive Presentations to Distributed Audi-
ences”. In: Proceedings of the 1994 ACM Conference on Computer
Supported Cooperative Work. CSCW ’94. Chapel Hill, North Carolina,
USA: ACM, 1994, pp. 405–416 (cit. on pp. 25, 62).

[21] Kennedy Kambona, Elisa Gonzalez Boix, and Wolfgang De Meuter.
“An Evaluation of Reactive Programming and Promises for Structur-
ing Collaborative Web Applications”. In: Proceedings of the 7th Work-
shop on Dynamic Languages and Applications. DYLA ’13. Montpellier,
France: ACM, 2013, 3:1–3:9 (cit. on pp. 34, 35).

[22] Jeffrey H. Kuznekoff, Stevie Munz, and Scott Titsworth. “Mobile
Phones in the Classroom: Examining the Effects of Texting, Twitter,
and Message Content on Student Learning”. Communication Educa-
tion 64.3 (2015), pp. 344–365 (cit. on p. 1).

[23] Jeffrey H. Kuznekoff and Scott Titsworth. “The Impact of Mobile
Phone Usage on Student Learning”. Communication Education 62.3
(2013), pp. 233–252 (cit. on p. 1).

[24] Kyriakos-Ioannis D. Kyriakou, Ioannis K. Chaniotis, and Nikolaos
D. Tselikas. “The GPM meta-transcompiler: Harmonizing JavaScript-
oriented Web development with the upcoming ECMAScript 6 “Har-
mony" specification”. In: Proceedings of the 12th Annual IEEE Con-
sumer Communications and Networking Conference (CCNC) 2015.
Jan. 2015, pp. 176–181 (cit. on pp. 32, 33).

[25] Jianwei Lai and Dongsong Zhang. “A Study of Direction’s Impact on
Single-handed Thumb Interaction with Touch-screen Mobile Phones”.
In: Proceedings of the 2014 CHI Conference on Human Factors in
Computing Systems. CHI EA ’14. Toronto, Ontario, Canada: ACM,
2014, pp. 2311–2316 (cit. on p. 23).

[26] Leonhard Lichtschlag et al. “Canvas Presentations in the Wild”.
In: Proceedings of the 2012 CHI Conference on Human Factors in
Computing Systems. CHI EA ’12. Austin, Texas, USA: ACM, 2012,
pp. 537–540 (cit. on p. 16).

[27] David Lindquist et al. “Exploring the Potential of Mobile Phones
for Active Learning in the Classroom”. In: Proceedings of the
38th SIGCSE Technical Symposium on Computer Science Education.
SIGCSE ’07. Covington, Kentucky, USA: ACM, 2007, pp. 384–388
(cit. on pp. 5, 7).

[28] Gary R. McClain. Presentations: Proven Techniques for Creating Pre-
sentations That Get Results. Adams Media, 2007. url: https://books.
google.se/books?id=bBnb6zFw7pEC (cit. on p. 13).

https://books.google.se/books?id=bBnb6zFw7pEC
https://books.google.se/books?id=bBnb6zFw7pEC

References 71

[29] Michael G. Moore. “Editorial: Three types of interaction”. American
Journal of Distance Education 3.2 (1989), pp. 1–7 (cit. on pp. 12, 14).

[31] Brad A. Myers, Herb Stiel, and Robert Gargiulo. “Collaboration Us-
ing Multiple PDAs Connected to a PC”. In: Proceedings of the 1998
ACM Conference on Computer Supported Cooperative Work. CSCW
’98. Seattle, Washington, USA: ACM, 1998, pp. 285–294 (cit. on pp. 5,
18).

[32] Matei Negulescu et al. “Tap, Swipe, or Move: Attentional Demands
for Distracted Smartphone Input”. In: Proceedings of the International
Working Conference on Advanced Visual Interfaces. AVI ’12. Capri
Island, Italy: ACM, 2012, pp. 173–180 (cit. on pp. 9, 23).

[33] Les Nelson et al. “Palette: A Paper Interface for Giving Presentations”.
In: Proceedings of the 1999 CHI Conference on Human Factors in
Computing Systems. CHI ’99. Pittsburgh, Pennsylvania, USA: ACM,
1999, pp. 354–361 (cit. on p. 16).

[34] Yusuke Niwa et al. “A Collaborative Web Presentation Support Sys-
tem Using an Existing Presentation Software”. In: Proceedings of the
3rd International Conference on Advanced Applied Informatics (IIA-
IAAI), 2014. Aug. 2014, pp. 80–85 (cit. on p. 56).

[35] Gerald M. Phillips, Gerald M. Santoro, and Scott A. Kuehn. “Com-
puter: The use of computer-mediated communication in training
students in group problem-solving and decision-making techniques”.
American Journal of Distance Education 2.1 (1988), pp. 38–51 (cit.
on p. 12).

[36] Susanne Reindl. “Kontextsensitiver Guideline-Review als Methode
der automatisierten User-Interface-Evaluierung”. Diplomarbeit. Ha-
genberg, Austria: University of Applied Sciences Upper Austria, Inter-
active Media, July 2011. url: http://theses.fh-hagenberg.at/system/
files/pdf/Reindl11.pdf (cit. on p. 56).

[37] Beat Signer and Moira C. Norrie. “PaperPoint: A Paper-based Pre-
sentation and Interactive Paper Prototyping Tool”. In: Proceedings of
the 1st International Conference on Tangible and Embedded Interac-
tion. TEI ’07. Baton Rouge, Louisiana: ACM, 2007, pp. 57–64 (cit. on
p. 16).

[38] Mark Stefik et al. “Beyond the Chalkboard: Computer Support for
Collaboration and Problem Solving in Meetings”. Communications of
the ACM 30.1 (Jan. 1987), pp. 32–47 (cit. on p. 5).

http://theses.fh-hagenberg.at/system/files/pdf/Reindl11.pdf
http://theses.fh-hagenberg.at/system/files/pdf/Reindl11.pdf

References 72

[39] Jaime Teevan et al. “Displaying Mobile Feedback During a Presenta-
tion”. In: Proceedings of the 14th International Conference on Human-
computer Interaction with Mobile Devices and Services. MobileHCI
’12. San Francisco, California, USA: ACM, 2012, pp. 379–382 (cit. on
pp. 8, 17, 25, 27, 28).

[40] Vasileios Triglianos and Cesare Pautasso. “ASQ: Interactive Web Pre-
sentations for Hybrid MOOCs”. In: Proceedings of the 22nd Interna-
tional Conference on World Wide Web. WWW ’13 Companion. Rio de
Janeiro, Brazil: International World Wide Web Conferences Steering
Committee, 2013, pp. 209–210 (cit. on pp. 6, 7, 28, 31).

[41] Philipp Wacker. “How Does It Feel? suPresenter Experience and
Evaluation While Using Canvas Presentation Tools”. Aachen, Techn.
Hochsch., Masterarbeit, 2014. MA thesis. Aachen, 2014, XIII, 98 S.
(Cit. on pp. 14, 23, 27).

[42] JoAnne Yates and Wanda Orlikowski. “The PowerPoint presentation
and its corollaries: how genres shape communicative action in organi-
zations”. Communicative practices in workplaces and the professions:
Cultural perspectives on the regulation of discourse and organizations
(2007), pp. 67–91 (cit. on p. 1).

Software and Libraries

[43] Dan Abramov and others. Redux. url: http://redux.js.org/ (cit. on
p. 59).

[44] Hampton Catlin, Natalie Weizenbaum, and Chris Eppstein. Sass. url:
http://sass-lang.com/ (cit. on p. 32).

[45] Evan Czaplicki. elm. url: http://elm-lang.org/ (cit. on p. 35).
[46] Hakim El Hattab. reveal.js. url: http://lab.hakim.se/reveal-js (cit. on

pp. 10, 37).
[47] Facebook Inc. React. url: https://facebook.github.io/react/ (cit. on

pp. 28, 32).
[48] Facebook Inc. React Native. url: https://facebook.github.io/react-

native/ (cit. on pp. 28, 36).
[49] Google Inc. AngularJS. url: https://angularjs.org/ (cit. on p. 33).
[50] Google Inc. Google Slides. url: https://www.google.com/slides/about/

(cit. on p. 10).
[51] Sebastian McKenzie and others. Babel. url: https://babeljs.io/ (cit. on

p. 32).
[52] Mentimeter AB. Mentimeter. url: https://www.mentimeter.com (cit.

on p. 10).

https://github.com/reactjs/redux/graphs/contributors
http://redux.js.org/
http://sass-lang.com/
http://elm-lang.org/
http://lab.hakim.se/reveal-js
https://facebook.github.io/react/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://angularjs.org/
https://www.google.com/slides/about/
https://github.com/babel/babel/graphs/contributors
https://babeljs.io/
https://www.mentimeter.com

References 73

[53] Microsoft Open Technologies, Inc. The Reactive Extension for
JavaScript (RxJS). url: https://github.com/Reactive-Extensions/RxJS
(cit. on pp. 32, 35).

[54] Node.js Foundation. Express. url: https : / / expressjs . com/ (cit. on
p. 31).

[55] Node.js Foundation. Node.js. url: https://nodejs.org (cit. on p. 31).
[56] npm, Inc. npm. url: https://www.npmjs.com/ (cit. on p. 32).
[57] Leandro Ostera and Iris Schaffer. unveil.js. url: https://github.com/

leostera/unveil.js (cit. on pp. 37, 39, 73).
[58] Juha Paananen and others. Bacon.js. url: https://baconjs.github.io/

(cit. on p. 35).
[59] Alexander Pohl, Francois Bry, and Yingding Wang. Backstage. url:

http://backstage.pms.ifi.lmu.de/ (cit. on p. 7).
[60] Prezi Inc. Prezi. url: https://prezi.com/ (cit. on p. 10).
[61] Guillermo Rauch and others. socket.io. url: http://socket.io/ (cit. on

p. 31).
[62] Iris Schaffer. Unveil Example Presentation. url: https://github.com/

irisSchaffer/unveil-client-server (cit. on pp. 39, 52).
[63] Iris Schaffer. Unveil Interactive Extension. url: https://github.com/

irisSchaffer/unveil-interactive (cit. on pp. 39, 55).
[64] Iris Schaffer. Unveil Network Synchronisation Layer. url: https : //

github.com/irisSchaffer/unveil-network-sync (cit. on pp. 39, 55).
[65] Iris Schaffer. unveil.js. Fork of original unveil.js library [57]. url: https:

//github.com/irisSchaffer/unveil.js (cit. on pp. 37, 55).
[66] Slides, Inc. slides. url: https://slides.com/ (cit. on p. 10).
[67] sli.do, s.r.o. sli.do. url: https://www.sli.do (cit. on p. 10).
[68] Bartek Szopka. impress.js. url: https://github.com/impress/impress.js

(cit. on pp. 6, 37).

Online sources

[69] Copy available on DVD (File /references/npm-babel.pdf). url: https:
//www.npmjs .com/package/babel (visited on 04/21/2016) (cit. on
pp. 33, 63).

[70] Babel. See who’s using Babel. Copy available on DVD (File
/references/babel- users.pdf). url: https://babeljs. io/users/ (visited
on 04/11/2016) (cit. on pp. 33, 63).

https://github.com/Reactive-Extensions/RxJS
https://expressjs.com/
https://nodejs.org
https://www.npmjs.com/
https://github.com/leostera/unveil.js
https://github.com/leostera/unveil.js
https://github.com/baconjs/bacon.js/graphs/contributors
https://baconjs.github.io/
http://backstage.pms.ifi.lmu.de/
https://prezi.com/
https://github.com/socketio/socket.io/graphs/contributors
http://socket.io/
https://github.com/irisSchaffer/unveil-client-server
https://github.com/irisSchaffer/unveil-client-server
https://github.com/irisSchaffer/unveil-interactive
https://github.com/irisSchaffer/unveil-interactive
https://github.com/irisSchaffer/unveil-network-sync
https://github.com/irisSchaffer/unveil-network-sync
https://github.com/irisSchaffer/unveil.js
https://github.com/irisSchaffer/unveil.js
https://slides.com/
https://www.sli.do
https://github.com/impress/impress.js
https://www.npmjs.com/package/babel
https://www.npmjs.com/package/babel
https://babeljs.io/users/

References 74

[71] Rob Britton. Why We Ditched Socket.IO. Copy available on DVD (File
/references / socketio - problems . pdf). Dec. 2013. url: https : / /www.
robbritton . com/2013/12/10/why- we- ditched - socket - io (visited on
04/11/2016) (cit. on pp. 41, 64).

[72] Creative Bloq Staff. Hover is dead, long live hover. Copy available on
DVD (File /references/creative-bloq-hover.pdf). Apr. 2013. url: http:
//www.creativebloq.com/design/hover-dead- long- live-hover-4132957
(visited on 08/21/2016) (cit. on pp. 26, 63).

[73] Thomas Dimson. Emojineering Part 1: Machine Learning for Emoji
Trends. Copy available on DVD (File /references / instagram - emoji .
pdf). Apr. 2015. url: http://instagram-engineering.tumblr.com/post/
117889701472/emojineering-part-1-machine-learning-for-emoji (visited
on 08/17/2016) (cit. on pp. 25, 63).

[14] Facebook Inc. Official React Documentation. url: http://facebook.
github.io/react/docs (visited on 04/13/2016) (cit. on p. 36).

[15] Facebook, Inc. Draft: JSX Specification. Copy available on DVD (File
/references/jsx-specification.pdf). url: https://facebook.github.io/jsx/
(visited on 09/05/2016) (cit. on pp. 36, 63).

[18] Google Inc. Motion – Duration and easing. url: https : / /material .
google.com/motion/duration-easing.html (visited on 07/26/2016) (cit.
on pp. 23, 61).

[74] i>clicker. About i>clicker. i>clicker website, About i>clicker page.
Copy available on DVD (File /references / about - iclicker . pdf). url:
https://www1.iclicker.com/about- i- clicker/ (visited on 07/04/2016)
(cit. on pp. 6, 63).

[75] Lars Kappert. ECMAScript 6 (ES6): What’s New In The Next Version
Of JavaScript. Copy available on DVD (File /references/sm-es6.pdf).
Oct. 2015. url: https://www.smashingmagazine.com/2015/10/es6-
whats- new- next- version- javascript/ (visited on 04/08/2016) (cit. on
pp. 33, 64).

[76] Sammi Krug. Add Reactions to Pull Requests, Issues, and Comments.
Copy available on DVD (File /references/github-reactions.pdf). Mar.
2016. url: https : / / github . com / blog / 2119 - add - reactions - to - pull -
requests-issues-and-comments (visited on 08/17/2016) (cit. on pp. 25,
63).

[77] Sammi Krug. Reactions Now Available Globally. Copy available on
DVD (File /references/facebook-reactions.pdf). Feb. 2016. url: http:
//newsroom.fb.com/news/2016/02/reactions-now-available-globally/
(visited on 08/17/2016) (cit. on pp. 25, 63).

https://www.robbritton.com/2013/12/10/why-we-ditched-socket-io
https://www.robbritton.com/2013/12/10/why-we-ditched-socket-io
http://www.creativebloq.com/design/hover-dead-long-live-hover-4132957
http://www.creativebloq.com/design/hover-dead-long-live-hover-4132957
http://instagram-engineering.tumblr.com/post/117889701472/emojineering-part-1-machine-learning-for-emoji
http://instagram-engineering.tumblr.com/post/117889701472/emojineering-part-1-machine-learning-for-emoji
http://facebook.github.io/react/docs
http://facebook.github.io/react/docs
https://facebook.github.io/jsx/
https://material.google.com/motion/duration-easing.html
https://material.google.com/motion/duration-easing.html
https://www1.iclicker.com/about-i-clicker/
https://www.smashingmagazine.com/2015/10/es6-whats-new-next-version-javascript/
https://www.smashingmagazine.com/2015/10/es6-whats-new-next-version-javascript/
https://github.com/blog/2119-add-reactions-to-pull-requests-issues-and-comments
https://github.com/blog/2119-add-reactions-to-pull-requests-issues-and-comments
http://newsroom.fb.com/news/2016/02/reactions-now-available-globally/
http://newsroom.fb.com/news/2016/02/reactions-now-available-globally/

References 75

[30] Mozilla Developer Network. Using files from web applications. Copy
available on DVD (File /references/mozilla- file- api .pdf). July 2016.
url: https://developer.mozilla.org/en-US/docs/Using_files_from_
web_applications (visited on 08/31/2016) (cit. on pp. 44, 63).

[78] Sebastián Peyrott. More Benchmarks: Virtual DOM vs Angular 1 &
2 vs Mithril.js vs cito.js vs The Rest. Copy available on DVD (File
/references/react-benchmarks.pdf). Jan. 2016. url: https://auth0.com/
blog/2016/01/11/updated- and- improved- more- benchmarks- virtual -
dom-vs-angular-12-vs-mithril- js- vs- the- rest (visited on 04/11/2016)
(cit. on pp. 36, 64).

[79] Nick Roberts. Do You Speak Emoji? Bing Does. Copy available on
DVD (File /references/bing-emoji.pdf). Oct. 2014. url: https://blogs.
bing.com/search/2014/10/27/do-you-speak-emoji-bing-does/ (visited
on 08/17/2016) (cit. on pp. 25, 63).

[80] Barry Schwartz. Google now also allows you to search using emoji
characters. Copy available on DVD (File /references/google-emoji.pdf).
May 2016. url: http://searchengineland.com/google-now-also-allows-
search-using-emoji-characters-249802 (visited on 08/17/2016) (cit. on
pp. 25, 63).

[81] Susannah Shattuck. The Science of Effective Presentations. Copy
available on DVD (File /references/prezi - science- presentations .pdf).
June 2016. url: https : / / blog . prezi . com / e - book - the - science - of -
effective-presentations/ (cit. on pp. 1, 64).

[82] Stack Overflow. 2015 Developer Survey. Copy available on DVD (File
/references/so-developer-survey.pdf). 2015. url: http://stackoverflow.
com/research/developer-survey-2015 (visited on 04/11/2016) (cit. on
pp. 33, 64).

[83] University of Colorado Boulder. CUClickers / i>clickers - FAQ. Copy
available on DVD (File /references/cu- clickers - faq.pdf). url: http:
//www.colorado.edu/oit/services/teaching-learning-tools/cuclickers/faq
(visited on 01/07/2016) (cit. on pp. 5, 63).

[84] René Verheij. Copy available on DVD (File /references / socketio -
wildcards.pdf). Nov. 2015. url: http://stackoverflow.com/a/33960032/
3340229 (visited on 04/20/2016) (cit. on pp. 31, 64).

[85] Yahoo! Developer Network. Best Practices for Speeding Up Your Web
Site. Copy available on DVD (File /references/yahoo-performance.pdf).
url: https://developer.yahoo.com/performance/rules.html (visited on
09/05/2016) (cit. on pp. 53, 64).

https://developer.mozilla.org/en-US/docs/Using_files_from_web_applications
https://developer.mozilla.org/en-US/docs/Using_files_from_web_applications
https://auth0.com/blog/2016/01/11/updated-and-improved-more-benchmarks-virtual-dom-vs-angular-12-vs-mithril-js-vs-the-rest
https://auth0.com/blog/2016/01/11/updated-and-improved-more-benchmarks-virtual-dom-vs-angular-12-vs-mithril-js-vs-the-rest
https://auth0.com/blog/2016/01/11/updated-and-improved-more-benchmarks-virtual-dom-vs-angular-12-vs-mithril-js-vs-the-rest
https://blogs.bing.com/search/2014/10/27/do-you-speak-emoji-bing-does/
https://blogs.bing.com/search/2014/10/27/do-you-speak-emoji-bing-does/
http://searchengineland.com/google-now-also-allows-search-using-emoji-characters-249802
http://searchengineland.com/google-now-also-allows-search-using-emoji-characters-249802
https://blog.prezi.com/e-book-the-science-of-effective-presentations/
https://blog.prezi.com/e-book-the-science-of-effective-presentations/
http://stackoverflow.com/research/developer-survey-2015
http://stackoverflow.com/research/developer-survey-2015
http://www.colorado.edu/oit/services/teaching-learning-tools/cuclickers/faq
http://www.colorado.edu/oit/services/teaching-learning-tools/cuclickers/faq
http://stackoverflow.com/a/33960032/3340229
http://stackoverflow.com/a/33960032/3340229
https://developer.yahoo.com/performance/rules.html

Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

Breite = 100 mm
Höhe = 50 mm

— Diese Seite nach dem Druck entfernen! —

76

	Declaration
	Acknowledgments
	Abstract
	Kurzfassung
	Introduction
	Motivation
	Goals
	Structure

	Related Work
	Classroom-Related
	Office Environments
	General Presentations

	Requirements and Design Goals
	Factors
	Audience Size
	Presentation Environment
	Speaker and Audience

	Resulting Mechanisms
	Remote Control
	Following Slides
	Paths
	Audience Questions
	Polls
	Reactions
	Content Sharing

	Application Design
	Application Flow
	General Interface
	General Interaction Principles
	Polls
	Reactions
	Content Sharing

	Implementation
	Project Scope
	Server Architecture
	Front End Technologies
	ECMAScript2015 and Babel
	Reactive Programming
	React
	unveil.js

	Project Structure
	Extended unveil.js
	Network Synchronisation Layer
	Interactive Extension
	Speaker Presenter
	Reactions
	Content Sharing
	Voting

	Results
	Application
	Voting
	Content Sharing

	User Study
	From a Developer's Perspective
	Setup
	Building a Presentation
	Customisation and Extension

	Discussion
	User Study
	From a Developer's Perspective
	Architecture

	Conclusions and Future Work
	Future Work

	DVD Contents
	General
	Copies of Online References
	Graphics

	References
	Literature
	Software and Libraries
	Online sources

