
A layered depth-of-field technique for
handling partial occlusion in computer

renderings

David C. Schedl

DIPLOMARBE IT

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2011



© Copyright 2011 David C. Schedl

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/


Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbst-
ständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen
und Hilfsmittel nicht benutzt und die aus anderen Quellen entnommenen
Stellen als solche gekennzeichnet habe.

Hagenberg, am 21. September 2011

David C. Schedl

iii



Contents

Erklärung iii

Acknowledgements vi

Abstract vii

Kurzfassung viii

1 Introduction 1

2 Optical systems and camera models 3
2.1 Optical lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Snell’s law . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Thin lens . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Thick lens . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 Compound lens . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Aperture stop . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Depth of field . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Rendering basics and post processing 13
3.1 Camera projection . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Post processing . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Alpha blending . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Alpha channel . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Over operator . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Premultiplied alpha . . . . . . . . . . . . . . . . . . . 21

3.4 Texture filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Texture magnification . . . . . . . . . . . . . . . . . . 25
3.4.3 Texture minification . . . . . . . . . . . . . . . . . . . 29
3.4.4 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iv



Contents v

4 Previous work 41
4.1 Methods in object space . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Distributed ray tracing . . . . . . . . . . . . . . . . . . 41
4.1.2 Accumulation buffer . . . . . . . . . . . . . . . . . . . 42
4.1.3 Splatting . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Image space methods . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Artefacts . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Single-layer methods . . . . . . . . . . . . . . . . . . . 47
4.2.3 Multi-layer methods . . . . . . . . . . . . . . . . . . . 55

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Proposed method 61
5.1 Rendering partly occluded objects . . . . . . . . . . . . . . . 62

5.1.1 Depth peeling . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.2 Further considerations . . . . . . . . . . . . . . . . . . 64

5.2 Scene decomposition . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.1 Matting function . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 Layer boundaries . . . . . . . . . . . . . . . . . . . . . 67

5.3 Blurring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Results and discussion 72
6.1 Test scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Layer matting . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 Layer anchor points . . . . . . . . . . . . . . . . . . . . . . . . 74
6.4 Blurring methods . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.5 Depth peeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6 Ray tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Conclusion and outlook 85

A Content on CD-ROM 87
A.1 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.2 Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.3 Scene files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.4 Thesis figures . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.5 Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Abbreviations 89

Bibliography 90



Acknowledgements

This thesis started as a project at the IT University Copenhagen, supervised
by Paolo Purelli, and was continued as Master’s thesis, supervised by Wil-
helm Burger, at the University of Applied Sciences Upper Austria. With the
hand-in of this work and the completion of my degree, a five-year long chap-
ter of studying in Hagenberg, which I thoroughly enjoyed, closes. Thanks to
everyone who supported me throughout those years.

Furthermore, I want to thank the following people for assistance with
this thesis: Thanks to Christine Schedl-Kircher and Erwin Schedl for their
support and patience and Melanie Hametner for her support and discussions.
Thanks to Wilhelm Burger for supervision and providing helpful comments.
Mariana Bernasconi helped me with proofreading this work. My friends and
colleagues Thomas Berger, Christian Grossauer, Marko Jelen, Michal Kar-
powicz, Jürgen Koller, Sebastian Mayer, Tamara Nitsch, Beatrix Schwaiger,
and Reto Stuber provided welcome diversions.

vi



Abstract

Depth of field (DoF) represents a distance range around a focal plane in optic
systems such as photographic cameras. Objects in camera-produced images
out of this distance range appear to be blurred. The shape and amount of
blurring depends on the configuration of the optical system. Depth of field
is one of the effects which significantly contributes to the photorealism of
images and therefore is simulated in rendered images. Photorealistic DoF
can be achieved for non-real-time rendering applications with techniques
such as ray-tracing.

Methods for rasterisation renderings try to approximate this realism at
interactive rates. However, many rasterisation DoF implementations sacri-
fice quality for high frame rates and generate artefacts. One such artefact
is produced by partial occlusion: blurry objects near the camera are semi-
transparent and result in partially visible background objects. This effect
is not achievable in single-layered renderings due to missing information in
scene renderings. Partial occlusion can only be handled correctly if addi-
tional scene information is used. DoF methods, resolving this issue, render
the scene into layers.

In this work DoF approaches are discussed and a method for solving par-
tial occlusion is proposed. The contribution of this thesis is a layered method
where the scene is rendered with a technique to retrieve hidden scene frag-
ments. Rendered fragments are sorted into a set of layers which are blurred
accordingly to their blurriness, determined by their circle of confusion, and
composed by blending. The DoF effect is controlled by real world parame-
ters known form photographic cameras such as focal length and f -stop. An
approximation of DoF effects in optical systems without partial occlusion
artefacts is thus produced.

vii



Kurzfassung

Als Schärfentiefe wird ein Bereich bei optischen Systemen, wie Foto- und
Filmkameras, bezeichnet. Objekte ausserhalb dieses Bereichs erscheinen un-
scharf auf Kamerabildern. Diese Unschärfe wird durch Parameter des opti-
schen Systems definiert. Da Schärfentiefe in Foto und Film-kameras auftritt,
ist sie ein wichtiger Bestandteil in fotorealistischen Bildern. Daher wird die-
ser Unschärfeeffekt oft bei computergenerierten Bildern simuliert. Methoden
wie Raytracing erlauben fotorealistische Simulationen, sind aber zu rechen-
intensiv um diesen Effekt in Echtzeit zu berechnen.

Mit Rasterisierungsmethoden können interaktive Bildwiederholungsra-
ten erzielt werden, jedoch können Schärfentiefeeffekte so nur approximiert
werden, was Artefakte zur Folge hat. Ein Artefakt entsteht durch partielle
Verdeckung: Objekte nahe der Kamera sind unscharf und werden dadurch
transparent dargestellt; Hintergrundobjekte scheinen somit durch. Dieser Ef-
fekt ist mit Rasterisierungsmethoden nicht erzielbar, da verdeckte Bereiche
nicht gerendert werden. Partielle Verdeckung kann nur richtig dargestellt
werden, wenn zusätzliche Szeneninformationen bekannt sind. Methoden zur
Simulation von Schärfentiefe lösen dieses Problem durch das Rendern von
mehreren Schichten.

Diese Arbeit behandelt Schärfentiefemethoden in der Computer Grafik,
welche das partielle Verdeckungsproblem lösen. Es wird eine eigene Lösung
vorgestellt, in der die Szene mit einer Methode gerendert wird um verdeckte
Pixel zu erhalten. Die gerenderten Pixel werden in Schichten sortiert und an-
hand ihrer Unschärfe gefiltert. Der Schärfentiefeeffekt wird durch Parameter
wie Brennweite und Blendenzahl, welche aus der Fotografie bekannt sind,
gesteuert. Dadurch wird eine gute Annäherung an Schärfentiefe inklusive
partieller Verdeckung in optischen Systemen erzeugt.

viii



Chapter 1

Introduction

This thesis deals with the problem of simulating depth of field (DoF) for
artificial images such as computer renderings. DoF represents a distance
range around a focal plane in optic systems, such as camera lenses. Objects
out of this range appear to be blurred compared to sharp objects in focus.
This effect emphasises objects in focus and therefore is an important artistic
tool in pictures and videos. The effect can be explained with a finite aperture
camera model where all light-rays hitting the image plane travel through a
optical lens. The lens has a particular focus point or focus range. Light-rays
from objects out of this range are spread and therefore produce a smeared
circle, also called the circle of confusion, instead of a sharp point on the
image plane.

People in the field of computer graphics aim for the ambitious goal of
generating photorealistic renderings. Depth of Field is one effect which sig-
nificantly contributes to the photorealism of images because it is an effect
that occurs in most optical systems. In computer renderings the pinhole-
camera model, which rests upon the assumption that all light-rays travel
through one point before hitting the image plane, is used. Therefore, there
is no focus range and no smearing occurs resulting in a crisp image.

DoF can be simulated very accurately by ray tracing. However, ray trac-
ers fail to produce accurate DoF effects at interactive frame rates. For in-
teractive applications, the effect has to be simulated in real-time. There-
fore, most approaches use fast post-processing techniques but sacrifice visual
quality and produce artefacts in some situations. Post-processing methods
work only on the rendered scene and usually do not need any further screen
information apart from the depth buffer. Most common techniques to pro-
duce the DoF effect use an approach where pixels of the frame buffer get
smeared according to their circle of confusion (CoC). The CoC is depending
on the distance of objects and the lens parameters. One artefact in simple
post-processing approaches is partial occlusion: An object in-focus behind
an out-of-focus object should be partly visible at the blurred borders of the

1



1. Introduction 2

(a) (b)

Figure 1.1: Depth-of-field effects produced with post-processing methods:
a rendering produced with Blender (www.blender.org) showing artefacts (a);
a rendering without partial occlusion artefacts, generated with the method
described in chapter 5, (b). Note that the green cone, placed closely to the
camera, smears to semi-transparency and reveals occluded dragons in (b),
while in (a) the background is missing. Missing background information be-
hind blurred objects is called partial occlusion problem, in DoF methods.

front object. Due to the lack of occluded pixels in rendered images, this
effect cannot get simulated with simple post-processing approaches (shown
in figure 1.1 (a)). In computer graphics, the used pinhole camera model is
dismissing background pixels. Optical systems use a finite aperture camera
model where light-rays from occluded objects can hit the image sensor.

This thesis presents an approach tackling the partial occlusion problem.
By rendering the scene with a technique called depth peeling, hidden pixels
can be retrieved. This hidden information is used to overcome the problem
of partial occlusion (see figure 1.1 (b)). Rendered pixels are decomposed into
layers. Thus, allowing each layer to be blurred uniformly and individually.
Previous layered DoF methods produce discontinuity artefacts due to the
layer splitting. In this thesis discontinuity artefacts are handled by smoothly
decomposing layers. After blurring, the layers are composed by blending thus
producing a rendering with appropriate simulated DoF and partial occlusion.

The rest of this thesis is structured as follows. In chapter 2 the gener-
ation of depth of field in optical systems is discussed. Chapter 3 gives an
overview of rendering and texture mapping methods used in rasterisation
rendering. Previous depth-of-field methods are discussed in chapter 4 and
their artefacts, including partial occlusion, are explained. The approach pro-
posed in this work is shown in chapter 5, with results and discussion shown
in chapter 6. Conclusion and future work is presented in chapter 7.

www.blender.org


Chapter 2

Optical systems and camera
models

Computer renderings try to resemble the behaviour of optical systems such as
cameras. Therefore this chapter deals with the optical constraints of cameras
and camera parts. This thesis will not cover such devices in detail, but rather
focus on important parts contributing to the depth of field i.e., lenses (see
section 2.1) and the aperture stop (see section 2.2). In section 2.3 the depth
of field and the impact of the lense and the aperture stop are discussed.
Other important parts of cameras e.g., the shutter, the image sensor and the
focusing unit are left out. For further details on cameras and optical systems
one may refer to [30, 32].

The simplest setup for an optical camera is the pinhole camera model.
This means that the camera is a box with a small hole. All rays pass through
one point (the hole) and hit the image plane. The size of the hole is called
aperture and is theoretically infinitely small. In practice, there are some
limitations with small holes:

• Large apertures increase the amount of light but result in a blurry
image due to large image spots.

• Small apertures darken the image and result in sharper images. How-
ever, diffraction1 prevents the image spots from getting arbitrarily
small.

These constraints make the pinhole model unusable for real cameras. Despite
that, the pinhole model is a good and simple approximation of more com-
plex cameras and therefore used in computer graphics (see section 3.1). The
solution in modern optics for overcoming the limitations of pinhole cameras
is to make the hole bigger and fill it with one or more lenses.

1The spreading of light after passing through a very small aperture, such as a pinhole
or a narrow slit, is called diffraction [30, page 106].

3



2. Optical systems and camera models 4

z

r

n2n1

θ1

α α′
θ2

s
r

A R A′

D

Figure 2.1: Refraction of a ray at a spherical surface (adapted from [30]).

2.1 Optical lenses

A lens is an optical device which transmits and refracts light. Lenses can be
found in various systems such as microscopes, magnification glasses, video
cameras, photo cameras, and even organic eyes. This section discusses models
and theories for the use of lenses in cameras.

In cameras, the objective lens is used to transmit light-rays from the
world onto an image plane where the light gets captured on a photographic
film or digital sensor. In the following sections simple models of lenses will
be discussed. Whereas modern camera lenses consist of more complex lens
systems, simple lenses are sufficient for understanding the principles of depth
of field. Further information on optical lenses can be found in [30] and [5].

2.1.1 Snell’s law

The refraction of a light-ray within two optical mediums (e.g., lens glass and
air) is defined by Snell’s law.2 Snell’s law is defined as

sin(θ1)

sin(θ2)
=
n2
n1

, (2.1)

where n1, n2 are the refraction indices3 of two materials, θ1 and θ2 are the
angles between the rays AD, DA′ and the surface normal (figure 2.1). Thus,

2Snell’s law as defined in http://en.wikipedia.org/wiki/Snell’s_law is a formula used
in optics and physics to describe the relationship between the angles of incidence and
refraction, when referring to light or other waves passing through a boundary between
two different isotropic media, such as water and glass.

3The refractive index or index of refraction of a substance is a ratio of the speed of
light in vacuum relative to that in the considered medium [30, pages 5–6].

http://en.wikipedia.org/wiki/Snell's_law


2. Optical systems and camera models 5

f f

Object Image

r2

r1
n

Lens

z s

F FR2 R1

Figure 2.2: A thin-lens model (adapted from http://en.wikipedia.org/wiki/
Lens_(optics)).

the following equation can be obtained

sin(α)

sin(α′)
=
s− r
z + r

· n2
n1

, (2.2)

where z is the distance of the ray intersection with the optical axe in the
material with refraction index n1 (ray AD), s is the distance in material n2
(ray DA′), and r is the radius of the curved surface (centre at point R) of the
latter material. With equation 2.2 the image distances are not the same for
all rays but are a function of the slope angle α. Thus, the rays do not come
to a single focus. This is known as spherical aberration and is a well known
problem of reflecting and refracting surfaces. If the angles are small enough,
the so called paraxial approximation can be used. Paraxial approximation is
where small sines are replaced by the angles themselves. If this is applied,
equation 2.2 reduces to

n1
z

+
n2
s

=
n2 − n1

r
. (2.3)

2.1.2 Thin lens

A simple lens can be seen as an improved pinhole lens. With a thin lens the
disadvantages of a pinhole model—i.e., either dark or blurred images—can
be overcome. A thin lens focuses rays, from an object in the world, on the
image plane allowing for sharp images with large apertures, and resulting
in brighter images. The curvature of a lens is defined by its radii. Figure
2.2 shows a biconvex model of a thin lens with the radii r1 and r2 whose
centre points are R1 and R2 respectively. Considering a single thin lens in a
homogeneous medium, it can be shown that the object and image distances

http://en.wikipedia.org/wiki/Lens_(optics)
http://en.wikipedia.org/wiki/Lens_(optics)


2. Optical systems and camera models 6

F F

Object Image

s

r1

z
T

Tz Ts
Hz Hs

r2

R2 R1

Figure 2.3: A thick lens with the focal point F. The distances are measured
from the principal planes Hz and Hs (inspired by [30]).

for paraxial rays are related by the equation

1

z
+

1

s
= (n− 1)

(
1

r1
− 1

r2

)
, (2.4)

where n is the index of refraction for the lens’ material, z and s are the
distances in front and behind the lens respectively. The focal length f is
defined as the image distance for parallel incoming rays. Thus, light-rays
parallel to the optical axis pass the point F. For a thin lens f is defined by

1

f
= (n− 1)

(
1

r1
− 1

r2

)
. (2.5)

This equation is known as the lens-maker’s formula [30]. Note that the dis-
tances z and s (equation 2.4) are fixed lengths. Moreover, only objects at
distance z produce sharp projections at the image plane at distance s.

2.1.3 Thick lens

The model of a thin lens implies that the medium is infinitely thin. This is
not applicable for real lenses such as the one shown in figure 2.3. Therefore,
the distances (i.e., s, z and s) are measured from the principal planes Hz and
Hs at which the refraction can be considered to happen. The focal length is
calculated from the equation

1

f
= (n− 1)

(
1

r1
+

1

r2
− (n− 1)2 · T

n · r1 · r2

)
, (2.6)

where T is the lens thickness. The positions of the principal planes are given
by

Tz = f · T ·
(

1− n
r2

)
and Ts = f · T ·

(
1− n
r1

)
. (2.7)



2. Optical systems and camera models 7

n1 n2

(a) (b)

Figure 2.4: A thin lens and the effects of chromatic aberration. Due to
dependence of the refraction index on the wavelength of the light, different
colours get refracted differently (a). A second lens with a different dispersion,
right after the first lens, can reduce this artefact (b) (from http://en.wikipedia.
org/wiki/Lens_(optics)).

2.1.4 Compound lens

In camera objectives, there is more than one kind of lens used to prevent the
effects of chromatic aberration. Furthermore, the focal distance can be varied
to focus on a certain distance (in the coming sections referred to as zfocus).
If thin lenses get combined, the resulting focal distance f can be expressed
as

1

f
=

1

f1
+

1

f2
+

1

f3
+ . . . , (2.8)

where f1, f2, . . . are the focal lengths of the individual lenses placed closed
together (in contact). If the lenses are separated by a distance E, the effective
focal length of two lenses with the focal lengths f1 and f2 are related by

1

f
=

1

f1
+

1

f2
− E

f1 · f2
. (2.9)

Chromatic aberration

The focal length of a simple lens (equation 2.5) varies with the wavelength
of the light. The index of refraction n is not uniform for all wavelengths of
the visible light. This variation is called chromatic aberration and can be
reduced by combining lenses with different refractive indices. Figure 2.4 (a)
shows the effect and figure 2.4 (b) shows how to substantially avoid it.

2.2 Aperture stop

With lenses, it is possible to bundle more light on an image sensor thus
producing brighter images. However, in photographic cameras it is desirable

http://en.wikipedia.org/wiki/Lens_(optics)
http://en.wikipedia.org/wiki/Lens_(optics)


2. Optical systems and camera models 8

to control the amount of light passing the lens. A diaphragm placed in front
of or behind a lens, in combination with the shutter, is used to regulate the
exposure. The aperture also cuts off oblique light rays.

Photographic lenses specify their diaphragm settings as f -stops deter-
mined by dividing the lens’ focal length by the diameter of the aperture. Its
relationship to exposure regulation is directly proportional to its area. Since
the doubling or halving of the exposure is related to the multiplication or
division of the diameter by the square root of two, this serves as the basis
for the series of f -stops such as the values 1.0, 1.4, 2.0, 2.8, etc. The diameter
of the aperture a is defined as

a =
f

N
(2.10)

where N is the f -stop value as described above. Ideally, the shape of the di-
aphragm is a circle. However limited by mechanical constraints, the aperture
often has a different shape, e.g., a rectangular, hexagonal or octagonal shape.
The form of the diaphragm is responsible for the shape of the out-of-focus
blur, and is most observable at bright out-of-focus spots, e.g., at lights and
reflections. This effect is known as bokeh effect and the function defining the
shape of the blur is often called a point spread function (PSF) in computer
graphics.

Further details and also some historical background on diaphragms can
be found in [32]. The aperture also has an important impact on the DoF
effect which will be discussed in section 2.3.

2.3 Depth of field

Hypothetically, a sharp image point will only appear on the image plane
from an object exactly in focus, located at zfocus (see figure 2.5). In practice,
because of the limitations of the human eye, objects within an acceptable
sharpness are recognized as sharp. Thus, those points on the image plane
are small enough and appear to be in foucs. DoF is defined as the distance
range between the closest and furthest objects with acceptable sharpness on
the image plane [24]. If a lens is focused on an object in front of the camera
at distance zfocus, the object lies within this sharpness range. In figure 2.5,
the in-focus area is the area between the points A and B. The diameter of
the sharpness area is symbolized as MN and will be referred to as dz. Line
DE is the diameter of the aperture a. If dz is located at the distance zfocus
from the lens, then the range within acceptable sharpness lies within zfront
and zback. Since 4ADE is similar to 4AMN and 4BDE is similar to 4BMN
the following equations can be obtained [62]:

zfocus − zfront
dz

=
zfront
a

,
zback − zfocus

dz
=
zback
a

. (2.11)



2. Optical systems and camera models 9

A C

D

E

M

N

zback

zfocus

zfront

image
plane

F C′

M′

N′
A′

sback

sfocus

sfront
f

Figure 2.5: The range of Depth of Field in front and behind the lens. There
are similar triangles around the diameters MN and N′M′, which can be used
to calculate these distances (inspired by [62]).

Although zfront and zback can be determined if dz is given, it is unusual to
work with the diameter on the object side of the lens. The diameter on
the image plane dcoc is called circle of confusion and better suited for the
purpose of this work. In figure 2.5 the length of N′M′ defines this circle of
confusion. The triangle4C′N′M′ is similar to4C′DE and4A′N′M′ is similar
to 4A′DE, resulting in

sfocus − sback
dcoc

=
sback
a

and
sfront − sfocus

dcoc
=
sfront
a

. (2.12)

Now the circle of confusion can be obtained as

dcoc(s, a, sfocus) = |sfocus − s| ·
a

s
, (2.13)

where s can be any distance behind the lens. For a photographic lens, mea-
suring the distance z instead of s is common because z specifies the length
in front of the lens to an object. From equations 2.4 and 2.5 we get

1

z
+

1

s
=

1

f
, (2.14)

and, thus

s =
f · z
z − f

. (2.15)

Equation 2.13 can now be rearranged to

dcoc(z, f,N, zfocus) =

∣∣∣∣ f2 (z − zfocus)
z N (zfocus − f)

∣∣∣∣ , (2.16)



2. Optical systems and camera models 10

where z is the distance to the object in front of the lens and N is the f -stop
number.

The observation that the aperture has an important impact on the circle
of confusion can be made now. A small aperture, thus a high N , increases the
depth of field resulting in a small CoC diameter as shown in figure 2.6 (b).
In figure 2.6 (a) an open diaphragm is shown resulting in a higher blurring
of out of focus objects. The ideal projection (i.e., no blurring) with a pin-
hole model is shown in figure 2.6 (c). Figures 2.7 (a)–(c) show some plots
of equation 2.16 and the influence of different parameters on the circle of
confusion. Figure 2.7 (a) shows the influence of changing the focal length
f , figure 2.7 (b) the impact of modifying N , and figure 2.7 (c) shows the
difference of the CoC-plot if zfocus is changing.

Hyperfocal distance

One distance setting, called hyperfocal distance, is quite popular when talking
about DoF. It is used in DoF techniques such as [24, 62, 68] and defined in
Goldberg’s textbook [32] as

The hyperfocal distance is the distance setting at a given f -
number that produces a depth-of-field with infinity at the far
limit and half the hyperfocal distance at the near limit. It’s the
focus setting on nonadjustable snapshot cameras.

The hyperfocal distance B is approximated by

B =
f2

N · dB
, (2.17)

where dB is the accepted diameter; the diameter at which image points still
appear to be in focus. In [32] a sharpness standard of dB = 0.03 mm is used.



2. Optical systems and camera models 11

A

B

C

A′

B′

C′
zfocus sfocus

(a)

A

B

C
A′

B′

C′

aperture stop

sfocuszfocus

(b)

B′

A

B

C
A′

C′

pinhole

sfocuszfocus

image plane

(c)

Figure 2.6: A lens with an open aperture and 3 points A,B,C and their
projections A′,B′,C′ on the image plane (a). The same with a closed aperture
(b). For comparison the ideal projections (small spots) with a pinhole camera
model are shown (c) (adapted from [32] and http://en.wikipedia.org/wiki/
Depth_of_field).

http://en.wikipedia.org/wiki/Depth_of_field
http://en.wikipedia.org/wiki/Depth_of_field


2. Optical systems and camera models 12

dcoc(z, f,N, zfocus)

(a)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0 0.5 1.0 1.5 2.0 2.5 z

dcoc(z, 0.03, 2.4, 1.00)

dcoc(z, 0.05, 2.4, 1.00)

dcoc(z, 0.07, 2.4, 1.00)

dcoc(z, 0.20, 2.4, 1.00)

(b)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0 0.5 1.0 1.5 2.0 2.5 z

dcoc(z, 0.05, 1.4, 1.00)

dcoc(z, 0.05, 2.4, 1.00)

dcoc(z, 0.05, 8.0, 1.00)

dcoc(z, 0.05, 32.0, 1.00)

(c)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0 0.5 1.0 1.5 2.0 2.5 z

dcoc(z, 0.05, 2.4, 0.75)

dcoc(z, 0.05, 2.4, 1.00)

dcoc(z, 0.05, 2.4, 2.00)

Figure 2.7: A plot of dcoc(z, f,N, zfocus), equation 2.16, and the impact of
changing parameters: the focal length f (a); the f -stop number denoted by
N (b); the focal plane at zfocus. The units of the axis are shown in meters.



Chapter 3

Rendering basics and post
processing

In chapter 2, the optical constraints of DoF are discussed. Since this thesis
deals with depth-of-field simulations for computer generated images, some
principles of computer graphics such as rendering, post-processing, and fil-
tering are discussed in this chapter. Further readings regarding these topics
can be found in [2, 11, 25, 26, 29, 57, 59, 64].

In rendering applications, a scene is composed of points in 3D (vertices),
edges between them, and polygonal faces. Since dealing with homogeneous
coordinates1, transformations are often matrix-multiplications with 4 × 4
dimensional matrices. Vertices are rasterised for displaying a scene on the
screen. These operations can be done efficiently on modern GPUs which are
highly optimized for such purposes. One popular application for these 4× 4
matrices is the transformation of points into different coordinate systems.
A point in a 3D scene is often defined in a global coordinate system. With
matrix transformations, it can be transformed into the view space where
the camera position is at the origin. From view space, the point can be
easily projected onto a image plane. The next sections deal with camera
projections (section 3.1), post processing (section 3.2), blending (section 3.3),
and filtering (section 3.4). Again, it is not the scope of this thesis to discuss
the rendering pipeline in detail but rather to give a rough overview with
respect to this work.

13



3. Rendering basics and post processing 14

p

z

image plane

x

zp

pinhole

p′

xp

xp′

zp′ = s

proj. plane
s s

Figure 3.1: The notation for deriving a simple perspective projection ma-
trix. A perspective projection of point p onto the projection plane at z = s
yields to the projected point p′. The projection is performed from the origin,
where the pinhole of a pinhole camera would be located. The projection of
point p onto an image plane of a pinhole camera would lead to a projection
on the image plane which is a mirrored version of p′. Both planes are located
a distance s away from the origin.

3.1 Camera projection

In chapter 2 the parts of an optical camera, their impact on depth of field,
and the concept of a pinhole camera are discussed. Although the pinhole
model is not used in real cameras, this simple concept is used in computer
graphics. The model of all rays passing one point, the pinhole, and hitting the
image plane always in perfect focus can be calculated with a projection. Since
it is possible to perform projections with 4 × 4 matrices, this model seems
perfect. A perspective projection is used more closely because it resembles
how the human eye perceives the world, i.e., objects further away are smaller.
Projecting a point p = (xp, yp, zp)T onto a plane at z = s, s > 0 yields to
a new point p′ = (xp′ , yp′ , s)

T as shown in figure 3.1. With similar triangles,
the following equations for the components of p can be obtained

xp′ = s
xp
zp

and yp′ = s
yp
zp

. (3.1)

1Homogeneous coordinates are a system of coordinates used in projective geometry.
They have the advantage that the coordinates of points, including points at infinity, can
be represented using finite coordinates. Expressions involving homogeneous coordinates
are often simpler (from http://en.wikipedia.org/wiki/Homogeneous_coordinates).

http://en.wikipedia.org/wiki/Homogeneous_coordinates


3. Rendering basics and post processing 15

y

xz

(xl, yb, znear)

(xr, yt, znear)

φx

φy

Figure 3.2: The view frustum in view space (from [2]).

With the use of homogeneous coordinates this calculation can be packed into
the 4× 4 matrix [2]

Mproj =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/s 0

 . (3.2)

A point p can be transformed into a projected space (as shown in equa-
tion 3.1), with matrix Mproj from equation 3.2, as

p = Mproj ·P =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/s 0

 ·


xp
yp
zp
1

 =


xp
yp
zp
zp/s

 ≡


s xp/zp
s yp/zp
s
1

 .

The perspective projection in equation 3.2 assumes that the eye-point is at
the origin and all points are projected on a plane. However, rather than
projecting onto a plane it is more desirable to transform the view frus-
tum into a view volume. A view frustum can be defined by the parameters
(xl, xr, yb, yt, znear, zfar) defining planes in the world space such as shown in
figure 3.2 where 0 < znear < zfar. The horizontal field of view φx is deter-
mined by the angle between the left and the right planes. The vertical field
of view φy is defined by the angle between the upper and lower plane. These
planes are determined by xl, xr and yt, yb, respectively. The perspective ma-



3. Rendering basics and post processing 16

trix transforming the view frustum into the view volume is [2]

Mvolume =


2znear
xr−xl 0 −xr+xl

xr−xl 0

0 2znear
yt−yb −yt+yb

yt−yb 0

0 0 zfar+znear
zfar−znear − 2zfarznear

zfar−znear
0 0 1 0

 . (3.3)

Instead of simply setting zp′ = s (as in equation 3.2), by projecting a point
with the matrix Mvolume the depth of a projected point is preserved. Depth
values z in the view frustum are mapped to the range [−1, 1] determined by
the near- and far-clipping planes znear and zfar. Such planes at the front and
back of the view frustum define a finite depth range znear < zp < zfar for
a point p. Objects in the scene in front or behind the frustum are clipped.
The mapping and clipping of fragments has the advantage of better using
the precision of floating-point numbers; thus preventing artefacts such as z-
fighting.2 However, one characteristic of the perspective transform matrix is
the greater precision for objects closer to the viewer [11, chapter 18].

Note that there are variations of the view volume projection matrix
(equation 3.3) depending on the intervals of the volume used; e.g., the depth
interval typically is [−1, 1] in OpenGL but [0, 1] in DirectX.3 Additionally,
the coordinate systems can be right-handed or left-handed. In right-handed
coordinate systems the z-axis points towards the viewer. This means that an
infinitely far away point p, from the viewer’s location, is located at zp = −∞
while in a left-handed coordinate system the point is located at zp = ∞.
Since the latter system is more natural when working optical-camera coordi-
nates, figures in this work use left-handed coordinate systems. Matrices only
need small modifications to transform between left-handed and right-handed
coordinate systems.

Field of view angle

A natural way for specifying the view frustum is by the field of view angles
φx and φy as shown in figure 3.2. The formula for converting from camera
lens size to field of view is defined as

φx = 2 arctan

(
w

2f

)
, (3.4)

2In [2, page 883], z-fighting is explained as: “For example, say you modelled a sheet of
paper and placed it on a desk, ever so slightly above the desk’s surface. With precisions
limits of the z-depths computed for the desk and paper, the desk can poke through the
paper at various spots. This problem is sometimes called z-fighting.”

3OpenGL (Open Graphics Library) and DirectX are standard specifications for appli-
cations producing 2D or 3D computer graphics, developed by the Khronos group and the
Microsoft Corporation, respectively (from http://www.opengl.org and http://en.wikipedia.
org/wiki/DirectX.

http://www.opengl.org
http://en.wikipedia.org/wiki/DirectX
http://en.wikipedia.org/wiki/DirectX


3. Rendering basics and post processing 17

z

x

zfar

viewer
xr

−xr

view frustum

znear

φx
φx

2

Figure 3.3: Top view of a symetrical view frustum.

where φx is the horizontal field of view, w is the horizontal frame/sensor size,
and f the focal length. In rendering applications w is often a constant; e.g.,
wBlender = 32 mm in Blender.4 If the view frustum is symmetric (xr = −xl
and yt = −yb), as shown in figure 3.3, the following can be derived:

tan

(
φx
2

)
=

xr
znear

. (3.5)

Thus the projection matrix (equation 3.3) can be simplified to

Mfov =


1

tan(φx/2)
0 0 0

0 1
tan(φy/2)

0 0

0 0 zfar+znear
zfar−znear − 2zfarznear

zfar−znear
0 0 1 0

 . (3.6)

In pbrt the perspective projection matrix is calculated this way [60, page 312].

3.2 Post processing

Renderings are often produced by projecting polygons, as discussed in the
previous section (section 3.1) and rasterising these projections. If a rendering
is based on an image rather than on polygons it is referred to as image-
based rendering. The advantage of such representations is that the rendering
costs are proportional to the number of pixels and not dependant on the
complexity of a scene; e.g., defined by the number of polygons.

In [2] the goal of rendering is defined as follows:

The goal of rendering is to portray an object on the screen; how
we attain that goal is our choice. There is no single correct way

4Blender is an open source 3D modelling application (www.blender.org).

www.blender.org


3. Rendering basics and post processing 18

y

xz
viewer

v

u

Figure 3.4: The view space (x, y, z), where the viewer’s position is at the
origin. The dotted lines represent the frustum. A screen spaced aligned quad
with the texture space (u, v) is shown.

to render a scene. Each rendering method is an approximation of
reality, at least if photorealism is the goal.

The spectrum of image based renderings ranges from simple appearance
based methods such as sprites renderings, and layer compositions to more
complex, physically based ones such as global illumination.5 In [2] the author
provides a good overview of techniques.

If an image based method is applied to a rendered scene before showing
the result on the screen, the method is referred as post processing method.
Such methods might also be called screen spaced methods; this is in reference
to the fact that operations are done on objects in the projected space.

Screen spaced techniques

Screen spaced techniques use the renderings of a scene which are then in
some form rendered to an off-screen buffer,6 containing colour, depth, nor-
mals and so on. When post processing is used on GPUs, these buffers are
treated as textures and applied to screen-filling quadrilaterals (as shown in

5Global illumination is a group of algorithms used in 3D computer graphics to add
more realistic lighting to 3D scenes. Such algorithms take into account not only the light
which comes directly from a light source (direct illumination), but also light rays reflected
by other surfaces in the scene—indirect illumination (http://en.wikipedia.org/wiki/Global_
illumination).

6A off-screen buffer is a buffer which’s content is initially not intended to be shown on
a screen.

http://en.wikipedia.org/wiki/Global_illumination
http://en.wikipedia.org/wiki/Global_illumination


3. Rendering basics and post processing 19

figure 3.4). Post processing is performed by rendering the quad and applying
programmable pixel shaders on the quad. Various effects can then be applied.

Special care has to be taken when converting between the texture space
(u, v) and the viewport coordinates [70]. The x and y coordinates on the
projection plane are in the range [−1, 1] while the u and v coordinates of
the screen spaced quadrilaterals are defined on the interval [0, 1]. The off-
screen buffers are usually of the same dimension as the screen. Depending
on the hardware, buffers can use 8-bit, 16-bit or even 32-bit per channel and
also vary in the number of channels. The z-depth buffer is usually stored
with 16-bit or 32-bit precision. The four channel colour information (red,
green, blue, and alpha) of a rendered scene is often stored with 8-bit per
channel. In modern render pipelines, the colour information is saved with
higher precision for use in HDR images. Further details on image processing
and post processing on the GPU can be found in [2, 10, 54].

Deferred rendering takes screen spaced approaches one step further and
applies operations which are often done during rasterisation, such as lighting
and normal mapping, as a post process [71].

3.3 Alpha blending

Rendering algorithms, either polygon (section 3.1) or image based (sec-
tion 3.2), write their results in the frame buffer. If there is already a colour
value in the frame buffer, the previous values have to be combined with the
new one. This process is often referred as blending. Blinn in [12, chapter 16]
describes it as follows:

One of the most important antialiening [!] tools in computer
graphics comes from a generalization of the simple act of storing
a pixel into the frame buffer. Several people simultaneously dis-
covered the usefulness of this generalization so it goes by several
names: matting, image compositing, alpha blending, overlaying,
or lerping.

One of the first publications covering this problem is [61] by Porter and
Duff. The authors extend the representation of a three-valued RGB-pixel by
a fourth component named a “coverage” value α.

3.3.1 Alpha channel

With the additional α component per pixel, the representation of a pixel p
is defined as

p = (r, g, b, α) , (3.7)

where r, g, b are the colour values and α is a coverage component. In this
section, the range of the colour components is defined in the range [0, 1]



3. Rendering basics and post processing 20

where 1 in the alpha channel indicates coverage and 0 indicates no coverage.
Simply said, with this representation it is possible to model transparency.
Some examples are

red = (1, 0, 0, 1),
white = (1, 1, 1, 1),
black = (0, 0, 0, 1),
clear = (0, 0, 0, 0).

Of special interest are black and clear where the former is a opaque black
and the latter is a transparent pixel. One obvious way to deal with semi-
transparent colours would be to modify the alpha component, such as
(1, 0, 0, 0.5) for a semi-transparent red. However, for some applications this
representation is not the best way (further discussed in section 3.3.3).

Porter and Duff discuss various blending operators using the α compo-
nent. One operator frequently used for blending is the over operator.

3.3.2 Over operator (⊕)

To overlay a foreground image on top of some background image the over
operator can be used. Say the background colour is defined as B and the
foreground as F, where both colours are a three-element vectors. With the
over operator the composited colour value B′ is defined as

B′ = (1− α)B + αF, (3.8)

where α is the coverage component of the foreground [61].
However, this is not general enough when dealing with two semi-transpar-

ent colour values F and G with the occlusion values α and β, respectively.
A pixel colour G⊕ F—“G over F”—is defined as

G⊕ F =
α(1− β)F + βG

γ
, (3.9)

where

γ = α+ β − αβ (3.10)

is the alpha value of G ⊕ F [12, chapter 16]. The result of the operation is
shown in figure 3.5 (c). Figure 3.5 (d) shows the result of F ⊕G. Note that
the blending order is important.

If F is an opaque colour (α = 1) the equation unfolds to equation 3.8

G⊕ F = (1− β)F + βG. (3.11)

Since a colour value is often multiplied by its alpha component, such as αF
and βG, one key insight of [61] is the association of the colours with their
opacity.



3. Rendering basics and post processing 21

F G

F1

F2

F3

G1

G2

G3

F1 = (0, 0, 1, 1) G1 = (1, 0, 0, 1)
F2 = (0, 0, 1, 0.5) G2 = (1, 0, 0, 0.5)
F3 = (0, 0, 1, 0) G3 = (1, 0, 0, 0)

(a) (b)

H = G⊕ F I = F ⊕G
H1

H2

H3

I1

I2

I3

H1 = (1, 0, 0, 1) I1 = (0, 0, 1, 1)
H2 = (0.6, 0, 0.3, 0.75) I2 = (0.3, 0, 0.6, 0.75)
H3 = (0, 0, 0, 0) I3 = (0, 0, 0, 0)

(c) (d)

Figure 3.5: Two images F (a), G (b) and the composition of those two with
the over operator (c), (d). For each image three sample colour values, in the
form of a quadruple (equation 3.7) are shown.

3.3.3 Premultiplied alpha

The simplification of multiplying a pixels colour by their opacity is usually
referred to as opacity associated with the colour, or as having the colour pre-
multiplied by its alpha value (mentioned in [61] and cited in [12, chapter 16]).
Premultiplied colour values are defined as:

F̃ = αF, (3.12)

G̃ = βG, (3.13)

G̃⊕ F̃ = γ(G⊕ F). (3.14)



3. Rendering basics and post processing 22

F̃1 = (0, 0, 1, 1) G̃1 = (1, 0, 0, 1)

F̃2 = (0, 0, 0.5, 0.5) G̃2 = (0.5, 0, 0, 0.5)

F̃3 = (0, 0, 0, 0) G̃3 = (0, 0, 0, 0)

(a) (b)

H̃1 = (1, 0, 0, 1) Ĩ1 = (0, 0, 1, 1)

H̃2 = (0.5, 0, 0.25, 0.75) Ĩ2 = (0.25, 0, 0.5, 0.75)

H̃3 = (0, 0, 0, 0) Ĩ3 = (0, 0, 0, 0)

(c) (d)

Table 3.1: The two images F and G, (a) and (b) and their compositions H
and I, (c) and (d) from figure 3.5, converted to premultiplied colour values
(see equation 3.17).

Using these definitions equation 3.9 can be simplified to

G̃⊕ F̃ = (1− β)F̃ + G̃, (3.15)
γ = (1− β)α+ β, (3.16)

where γ is the coverage value of G̃⊕ F̃.
Similar to the representation of unassociated pixels (equation 3.7) a pre-

multiplied pixel has the following components

F̃ =
(
r̃, g̃, b̃, α

)
, (3.17)

where r̃ = α · r, g̃ = α · g and b̃ = α · b. To retrieve the unassociated colours
the components have to be divided by alpha

F =

(
r̃

α
,
g̃

α
,
b̃

α
, α

)
, (3.18)

where α 6= 0. Table 3.1 shows the associated colours from figure 3.5. The
premultiplied quadruple with alpha of 0 forces the colour components to
result in black, as shown in table 3.1, the colour values of F̃3 and G̃3 are zeros.
In comparison, there are nonzero colour values in F3 and G3 in figure 3.5.
Moreover, an opaqueness approaching 0 reduces the precision of the colour
components; especially when dealing with integer values. When calculating
with floating precision, such as on modern graphics hardware, this is a minor
issue. Colour values bigger than α indicate colours outside of the range [0, 1],
which is unusual and might apply for HDR images.

One reason for the usage of associated colour values, besides convenience
and sparing one multiplication, can be shown when filtering images. In [12,
chapter 16] it is shown that when images are downsampled and composed,



3. Rendering basics and post processing 23

v

u

I(i, j)

1

1

0

0

Figure 3.6: An image I used as texture. Accessing a pixel at the texture
coordinates (u, v) is mapped to a discrete position (i, j) and the pixel I(i, j)
is returned.

premultiplied colours should be used to get results independent of the or-
der of those operations. The result of downsampling two already blended
images plus the result of downsampling those images and blending them af-
terwards is only the same when using premultiplied values. More details on
downsampling and filtering images can be found in the next section.

3.4 Texture filtering

Texture coordinates (u, v) are continuous values in the range [0, 1]. This
section explains the relation of u, v coordinates to textures, which are discrete
functions, and how filtering operations are used when working with textures.

A texture I is used on a screen spaced method as discussed in section 3.2.
In a certain fragment7 the u, v coordinates obtained might be (0.32, 0.29).
When the texture’s resolution is 256 × 256, the u, v coordinates have to
be multiplied by 256 resulting in (81.92, 74.24). Dropping the fractions, the
corresponding colour value used in the fragment is I(81, 74). This method
is a form of the nearest neighbour filtering discussed in section 3.4.2. This
example is taken from [2] and illustrated in figure 3.6. If the texture has
the same pixel density as the projection on the screen, a simple mapping

7In computer graphics fragments represent pixels in a buffer not or not yet displayed
on the screen, thus a fragment’s content is changeable.



3. Rendering basics and post processing 24

like the one previously described is applicable. However, there are situations
where other algorithms should be applied. If the projected quadruple covers
more pixels as the original texture contains, magnification (section 3.4.2) is
needed. When the projection covers less pixels, minification (section 3.4.3)
is needed. The goal is to prevent aliasing (section 3.4.4).

3.4.1 Convolution

Filtering/interpolating images, as discussed in sections 3.4.2 and 3.4.3, can be
described by an operation called linear convolution. The term convolution, in
mathematics, describes the combination of two functions of the same dimen-
sionality either continuous or discrete. A convolution of a discrete function
I(i, j) is defined as

I ′(u, v) =

∞∑
i=−∞

∞∑
j=−∞

I(i, j) ·H(u− i, v − j) (3.19)

or

I ′ = I ∗H (3.20)

where I is a discrete two-dimensional function, such as an image, and H is
a two-dimensional continuous function (called filter kernel in image process-
ing). If the filter kernel H is non-zero only in a certain range, i.e., within a
width of wH and a height of hH , equation 3.19 can be changed to

I ′(u, v) =

bu+wH
2
c∑

i=

bu−wH
2

+1c

bv+hH
2
c∑

j=

bv−hH
2

+1c

I(i, j) ·H(u− i, v − j), (3.21)

resulting in wH · hH ·wI · hI operations where wI and hI are the dimensions
of I.

Multiple channels

In image processing and computer graphics, images usually consist of more
than one channel, such as colours, alpha or depth etc. When dealing with
colour images, a pixel I(i, j) is multidimensional

I(i, j) =
(
Ir(i, j), Ig(i, j), Ib(i, j), Iα(i, j)

)
. (3.22)

Thus each channel c is convolved separately as

I ′c = Ic ∗H. (3.23)



3. Rendering basics and post processing 25

Separability

Some filter functions used for convolution are separable. Separability means
that a two-dimensional function can be split up in a convolution of two one-
dimensional functions. Thus, a filter kernelH can be composed of two kernels
H→x , H

↑
y as

H = H→x ∗H↑y . (3.24)

With separable kernels equation 3.19 can be simplified to

I ′(u, v) =
∞∑

i=−∞
H→x (u− i) ·

∞∑
j=−∞

I(i, j) ·H↑y (v − j). (3.25)

Separable filters are much more efficient to calculate, especially with big
filter kernels. Filtering with direct convolution (equation 3.19) results in a
time complexity8 of O(m4). While filtering with separable kernels results
in a complexity of O(m3). An example of a separable filter is the Gaussian
filter.

Gaussian filter

One frequently used filter, also used in this work, is the Gaussian filter,
defined by

Hσ(r) = e−
r2

2σ2 or Hσ(x, y) = e−
x2+y2

2σ2 , (3.26)

where σ is the standard deviation of the Gauss shaped function and r is
the distance to the centre pixel [16]. A plot of a one-dimensional Gaussian
function is shown in figure 3.9 (d). The Gaussian kernel is a separable filter;
therefore

Hσ(x, y) = H→σ (x) ∗H↑σ(y). (3.27)

3.4.2 Texture magnification

If a texture displayed on the screen has a lower resolution as the screen, it
needs to be up-sampled or magnified. In this section, three methods are dis-
cussed with focus on methods used in computer graphics: nearest neighbour,
bilinear and bicubic filtering [2].

8 The term “complexity” describes the effort (i.e., computing time or storage) required
by an algorithm or procedure to solve a particular problem in relation to the “problem
size” m, [16].



3. Rendering basics and post processing 26

(a) (b) (c)

Figure 3.7: Magnification of a 32×32 image onto 256×256 pixels. Filtering
with the nearest neighbour filtering, where the nearest texel is chosen (a).
Bilinear interpolation using a weighted average of the four nearest pixels (b).
Bicubic filtering as implemented in ImageJ [http://rsbweb.nih.gov/ij/features.
html] using an weighted average of the 4× 4 nearest pixels (c), as discussed
in [16, chapter 16].

Nearest neighbour filtering

With nearest neighbour filtering the nearest texel to a sample position in the
source image is used. Basically, this is the method described with an example
at the introduction of section 3.4. This interpolation method might also be
refereed as pixelation or box filtering (although box filtering usually refers
to broader filters). The results of this method are not visually appealing
as shown in figure 3.7 (a). However, it is one of the fastest interpolation
methods.

The nearest neighbour interpolation or, generally speaking, the box filter
can be expressed as convolution filter such as

Hbox(x,wbox) =

{
1 for − wbox

2 ≤ |x| < wbox
2 ,

0 otherwise,
(3.28)

where the nearest neighbour filter is a special case of the box filter:

Hnn(x) = Hbox(x, 1). (3.29)

Note that the above formulations are one-dimensional filter kernels. Fig-
ure 3.9 (a) shows a plot of the nearest neighbour interpolation function.

Bilinear interpolation

Figure 3.7 (b) shows a bilinear interpolation sometimes referred to as lin-
ear interpolation. For this type of filter four neighbouring pixels are linearly
interpolated and added together. Continuing the example from the introduc-
tion of section 3.4, the texel-coordinates obtained are (u, v) = (81.92, 74.24).

http://rsbweb.nih.gov/ij/features.html
http://rsbweb.nih.gov/ij/features.html


3. Rendering basics and post processing 27

(u, v)

(ir, jt)(il, jt)

(il, jb) (ir, jb)

Figure 3.8: Notation for bilinear interpolation, where the four texels are
illustrated by the four squares drawn by the dashed lines. The four points
illustrate the texel centers at (il, jt), (il, jb), (ir, jt) and (ir, jb), which are the
nearest neighbours to the point at (u, v) (inspired by [2]).

Computing the four closest pixels retrieves the rectangle area ranging from
(il, jb) = (81, 74) to (ir, jt) = (82, 75). For the interpolation, the decimal
part of the (u, v) coordinates are needed (u′, v′) = (u − buc, v − bvc). The
bilinearly interpolated value Ibilinear at the position (u, v) is defined as

Ibilinear(u, v) = I(il, jb) · (1− u′) · (1− v′) + I(ir, jb) · u′ · (1− v′)
+ I(il, jt) · (1− u′) · v′ + I(ir, jt) · u′ · v′, (3.30)

where I(i, j) is the texels’ value at the integer position (i, j) as shown in
figure 3.8. Bilinear filtering is widely used in computer graphics. Especially
because of its simplicity and superior results compared to nearest neighbour
filtering (figure 3.7 (b)). The bilinear interpolation can also be expressed as
a filter kernel for convolution by the equation

Hbilinear(u, v) = H→linear(u) ∗H↑linear(v), (3.31)

H→linear(r) = H↑linear(r) =

{
1− |r| for |r| < 1,
0 otherwise.

(3.32)

Figure 3.9 (b) shows a plot of the one-dimensional function H→linear.

Bicubic filtering

Cubic interpolation uses a weighted sum of an array of texels thereby using
more data for the interpolation. This results in a higher quality than box or
bilinear filtering but also in a more complex calculation. One example cubic



3. Rendering basics and post processing 28

0

1

-3 -2 -1 0 1 2 3

x
0

1

-3 -2 -1 0 1 2 3

x

(a) (b)

0

1

-3 -2 -1 0 1 2 3

x
0

1

-3 -2 -1 0 1 2 3

x

(c) (d)

0

1

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

x

(e)

Figure 3.9: The interpolation kernel of a nearest neighbour interpolation
filter from equation 3.29 (a), of an linear interpolation as in equation 3.32 (b),
and a cubic interpolation filter with the steepness value a = 1.0 calculated
with equation 3.33 (c). A one-dimensional Gaussian function with σ = 0.75
from equation 3.26 (d), and a plot of the infinitely defined sinc function as
in equation 3.35 (e).

function Hcubic is defined as

Hcubic(x) =


(−a+ 2) · |x|3 + (a− 3) · |x|2 + 1 for 0 ≤ |x| ≤ 1,
−a · |x|3 + 5a · |x|2 − 8a · |x|+ 4a for 1 < |x| < 2,
0 otherwise,

(3.33)



3. Rendering basics and post processing 29

A

BC

A′

B′C ′

(a) (b)

Figure 3.10: Square pixel cells A,B,C in screen space (a) and their projec-
tions A′, B′, C ′ onto a texture (b). While the projection of A covers a small
area in texture space A′, the projections B′ and C ′ cover large areas.

with a defining the steepness of the slope [16]. A standard value of a = 1 is
often recommended. The bicubic interpolated value Ibicubic(u, v) is defined
by the convolution

Ibicubic(u, v) =

buc+2∑
i=
buc−1

bvc+2∑
j=
bvc−1

I(i, j) ·Hcubic(u− i) ·Hcubic(v − j). (3.34)

The result of a bicubic interpolation is shown in figure 3.7 (c) and a plot of
Hcubic is shown in figure 3.9 (c).

3.4.3 Texture minification

The magnification of a low-resolution texture, as discussed in section 3.4.2,
cannot have the same visual quality as a high-resolution texture for obvious
reasons. The opposite, creating a low-resolution texel of a high-resolution
texture, needs different considerations. The ideal solution is [2]:

To get a correct colour value for each pixel, you should integrate
the effect of the texels influencing the pixel. However, it is difficult
to determine precisely the exact influence of all texels near a
particular pixel, and it is effectively impossible to do so perfectly
in real time.

For minification, the same filters as used for magnification can be used.
Those filters fail if the pixel’s area covers a relatively big area of texels.
This effect is shown in figure 3.10 (a) where the pixels B and C cover a



3. Rendering basics and post processing 30

(a)

(b)

(c)

Figure 3.11: Images Rendered with nearest neighbour sampling (a),
mipmapping (b) and with summed area tables (c), as implemented in Blender
(www.blender.org).

big area of texels after projecting them to B′ and C ′ (figure 3.10 (b)). The
nearest neighbour interpolation uses the colour information of the nearest
texel, resulting in visible artefacts. Blinking artefacts appear especially if
the texture in the scene is moving. Bilinear filtering uses the four nearest
texels and fails to achieve artefact free results if the covered area of the pixel
is bigger than four texels. The same applies for the area of 4× 4 texels with
bicubic sampling. Nearest neighbour sampling produces the most noticeable
artefacts. In figure 3.11 (a) nearest neighbour filtering is shown along other
methods to reduce those artefacts. This problem is called aliasing and can
be explained with the Nyquist-Shannon sampling theorem (discussed in the
next section).

3.4.4 Aliasing

Often continuous signals, such as audio or video signals, are sampled at
uniformly spaced intervals resulting in them being discretised. This is done
for digitally representing the signal and to reduce the amount of information.
Whenever the process of sampling is done, aliasing may occur. One classic,

www.blender.org


3. Rendering basics and post processing 31

real life example is a spinning wheel filmed by a movie camera. Because
the wheel might spin faster than the camera can record an image, it might
appear to be spinning slowly forward, backward, or even stand still.

In computer graphics, common examples of aliasing are the “jaggies”
of a rasterised line or the minification of a checker or line pattern (shown
in figure 3.11 (a)) [2]. For a signal to be sampled properly, the sampling
frequency has to be more than twice the maximum frequency of the signal to
be sampled. This is called the Nyquist-Shannon theorem also widely known
as the “sampling theorem”. In the real world example of the spinning wheel,
this would mean that a movie camera has to shoot at least more than two
pictures while the wheel is turning once.

The sampling theorem also applies to 2-D functions such as images.
Therefore, aliasing occurs when a texture is sampled with a sampling fre-
quency θs where the maximum signal frequency θmax is

2θmax > θs.

Figure 3.11 (a) shows a rendering with aliasing artefacts. The options to fulfil
the sampling theorem are

• to increase the sampling frequency θs until 2θmax ≤ θs,
• or to reduce the bandwidth (the maximum frequency) in the function.

While increasing the sampling frequency obviously leads to more compu-
tation costs, depending on the sampled area, the latter option seems rea-
sonable. To reduce the maximum frequency (band limit) in a function, the
function should be filtered by an arbitrary low-pass filter.9

The ideal low-pass filter is the sinc function

sinc(x) =
sin(πx)

πx
, (3.35)

as ploted in figure 3.9 (e). However, the filter width of the sinc function is
infinite defined thus making it computationally expensive to compute and
rarely useful.

In computer graphics, there are many attempts to overcome aliasing arte-
facts and some are discussed in the following sections. In general, they are
referred to as antialiasing methods. Blinn discussed this topic in [12, chap-
ter 3] and his rather demotivating verdict is:

There is no such thing as full antialiasing. Anyone who tries to
tell you differently is trying to sell you something.

There are various points in a rendering process where aliasing can occur.
Drawing lines or edges in the frame buffer is a well known source of aliasing.

9The term low-pass filter describes the ability of a filter to remove high frequencies and
keep low frequencies in the signal.



3. Rendering basics and post processing 32

k

L0

L1

Lk

LK−1

Figure 3.12: A mipmap with its original image L0, at the base. The next
level up is formed by averaging each 2× 2 area into one texel of the coarser
level. The vertical axis k can be seen as third texture coordinate, thus
mipmapping is also called trilinear interpolation (adapted from [2]).

Methods to overcome such aliasing artefacts are e.g., multisample antialias-
ing (MSAA) or post processing antialiasing methods such as morphological
antialiasing (MLAA) [65].

In the following sections, filtering methods used in computer graphics to
overcome aliasing in textures are discussed. General surveys and summaries
of filtering functions can be found in [36, 37].

Mipmapping

One technique frequently used in computer graphics to reduce aliasing is
mipmapping [13, 14]:

When mipmapping, we build scaled-down versions of our texture
maps; when rendering portions of the scene where low texture
detail is needed, we use the smaller textures. Mipmapping can
save memory and rendering time, but the motivating idea behind
the technique’s initial formulation was to increase the quality of
the scene by reducing aliasing.

The general idea is to use K textures of different scaling levels (level 0 to
K − 1) by generating a pyramid, as illustrated in figure 3.12. The coarser
levels are generated by downsampling the previous level by 0.5 × 0.5 of its
resolution, with a 2 × 2 box-filter (see section 3.4.2). Mipmapping has its
origin in [73] and is the reason why square textures with power-of-two reso-
lutions are used in computer graphics. Although the box-filter is often used



3. Rendering basics and post processing 33

(a reason might be its simplicity and efficiency), it can be shown that av-
eraging produces artefacts [12, chapter 3]. The best filter would be the sinc
function (equation 3.35), but it is defined infinitely. Finite filters with good
results in reducing aliasing artefacts are the Lanczos-windowed sinc function
or the Kaiser-windowed sinc function [13].

For accessing the mipmap structure while texturing, the area of a pro-
jected screen pixel has to be determined (shown in figure 3.10 (b)). With the
area, the corresponding mipmap level kmip can be determined as illustrated
in figure 3.13. Two methods for computing kmip are to use the longer edge
of the quadrilateral of the pixel’s cell or the largest absolute value of the
differentials of the texture coordinates (u, v), each in the directions x and y.

The goal is a pixel-to-texel ratio of at least 1:1 in order to achieve the
Nyquist rate. The mipmap is accessed by the triplet (u, v, k) whereas the
colour is linearly interpolated from two sample points on the k-axis. There-
fore, this process is called trilinear interpolation.

The advantage of mipmaps is that, no matter what the amount of mini-
fication is, the sampling process takes a fixed amount of time. However, one
major flaw of mipmapping is overblurring which occurs if a pixel covers a
large area of texels only in one direction. For example, at the lines moving
into distance shown in figure 3.11 (b).

Ripmaps are an extension to mipmapping and reduce the overblurring
problem by storing all the possible rectangles 1× 2, 2× 4, 2× 1, 4× 1, etc.
additionally to the rectangles of a mipmap 1× 1, 2× 2, 4× 4, etc. Ripmaps
produce better visuals than mipmaps but come at a high cost by adding three
times more additional space beyond the original image whereas mipmaps
only add one-third storage space [2].

Anisotropic filtering

Anisotropic texture filtering, which reuses mipmapping, can be used for bet-
ter results on widely spread graphics hardware. The idea is to sample the
texture a number of times depending on the pixel’s projection on the tex-
ture. Each tap is a sample of a hirachical mipmap pyramid (see [3, 31, 53]).
The samples are taken along the lines of anisotropy and afterwards averaged.
Thus, anisotropic filtering can be implemented in programmable shaders by
simple texture lookups. This is roughly illustrated in figure 3.13. In mipmap-
ping, the level of detail k is defined by the longest side of a pixel’s projection
(kmip). Whereas with anisotropic filtering, it is defined by the shortest one
(kani). This makes the averaged area smaller for each sample and therefore
less blurrier. The overblurring artefacts known from general mipmapping can
be avoided with this technique. The visual improvement comes with addi-
tional sampling costs. On modern GPUs the implementation of anisotropic
filtering varies. The OpenGL extension specification does not specify any par-



3. Rendering basics and post processing 34

A′

B′C ′

kmip

kani
lines of anisotropy

mipmap sample(s)

Figure 3.13: An extension of figure 3.10 (b) showing the lines of anisotropy
used for anisotropic filtering. Three projected pixels A′, B′, C ′ on the texture
are sampled with 1, 2 and 3 mipmap samples per pixel. The samples are
taken on the line of anisotropy. Additionally the lengths of the quadrilateral
kmip and kani used for accessing the mipmap structure in mipmapping and
anisotropic filtering, respectively, is shown (adapted from [2]).

ticular implementation.10 Therefore, the number of samples are not strictly
defined and are often configurable. Using more samples results in higher
quality and more computing time.

Recursive filtering

Instead of directly filtering with large filters smaller filters can be applied
recursively. The notation for recursively applying a box filter is H∗mbox where
Hbox is the kernel of a filter and ∗m denotes m convolutions:

H∗mbox = Hbox ∗Hbox ∗ · · · ∗Hbox (m times).

Figures 3.14 (b)–(e) show plots of the impulse response of recursive box fil-
ters. As m increases the recursive filter approaches a Gaussian shape [35]. In
comparison, figures 3.14 (f) and (g) show the impulse response of Gaussian
filters.

If Gaussian filters, of sizes σ1, σ2, are applied recursively to an image,
the result is the same as filtering the image with one bigger Gaussian kernel
Hσc . Thus, Hσc can be composed by

Hσc = Hσ1 ∗Hσ2 , (3.36)

10http://www.opengl.org/registry/specs/EXT/texture_filter_anisotropic.txt

http://www.opengl.org/registry/specs/EXT/texture_filter_anisotropic.txt


3. Rendering basics and post processing 35

(a) (b) (c) (d) (e) (f) (g)

Figure 3.14: The original signal is a 9 × 9 pixel image with an impulse
at (4, 4) (a). The signal convolved with recursive box filtering of the type
Hbox, H

∗2
box, H

∗3
box and H∗4box (b-e), respectively. For comparison the convolu-

tions of (a) with a Gauss filters of sizes σ = 1.0 and σ = 1.5 are shown (f)
and (g). Note that all plots and images are normalised so that the maximum
value is 1 for a better visualization. The plots show the 4th column of the
convolved images.

where σc =
√
σ21 + σ22 is the size of the combined filter [17, chapter 8].

Strengert et al. in [72] use recursive filtering on pyramid levels to effi-
ciently approximate higher order filters, i.e., Gaussian filters and B-splines.
The authors use bilinear interpolation of GPUs to speed up the calculations.
A more thorough exploration can be found in [45]. The authors show that
filters such as Bartlett or Gauss can be approximated by

H7×7
Gauss = H3×3

Bartlett ∗H
3×3
Bartlett ∗H

3×3
Bartlett, (3.37)

H3×3
Bartlett = H↘box ∗H

↖
box, (3.38)

where H↘box and H↖box are shifted kernels of 2× 2 box filters:

H↘box =
1

4

0 0 0
0 1 1
0 1 1

 , H↖box =
1

4

1 1 0
1 1 0
0 0 0

 . (3.39)

(3.40)

In [45] the authors extend this approach by introducing analysis and syn-
thesis filters. While analysis filters are used to downsample, synthesis filters
are used to upsample an image by factor (0.5× 0.5) and (2× 2) respectively.
The notation for analysis filters is denoted by

I ′ = I ↓ ∗H, (3.41)

where I is the input image, I ′ the downsampled image, andH the filter kernel
used for downsampling. The authors propose discontinuous and continuous
filters composeable with the kernels shown in equations 3.39 and 3.38.



3. Rendering basics and post processing 36

Synthesis filters are denoted by

I ′ = I ↑ ∗H. (3.42)

For the upsampling process, the authors propose the use of B-splines as
described in [18].

In [46] the synthesis and analysis approach for efficiently blurring ren-
derings is used in a DoF method (see section 4.2.3). However, this filtering
approach produces artefacts when used in animated scenes. Therefore in [44]
the authors do a quantitative analysis of the filters discussed in [72] and
propose an improved analysis filter.

Summed area tables

Crow provided a method by which box filtering of an image over any aligned
rectangle can be done rapidly. This method is called summed area tables and
got introduced in [21]. The method takes a source image I and creates a new
image, S, whose value at pixel (x, y) is a sum of all values of the rectangle
with corners (0, 0) and (x, y) in image I

S(x, y) =

x∑
i=0

y∑
j=0

I(i, j), (3.43)

where x, y, i, j ∈ N0. The sum of a rectangle with the corners at (x, y) and
(x+ a, y + b) can then be computed by

x+a∑
i=x

y+b∑
j=y

I(i, j) = S(x+ a, y + b)− S(x+ a, y)− S(x, y + b) + S(x, y).

(3.44)

The advantage of this method is that once the summed area table S is com-
puted, filtering with a box-filter of any size is possible within constant time
by doing four texture lookups and the arithmetic operations in equation 3.44.
Note that S needs more bits of precision to store the sum of colour values
(e.g., 16 bits or more for each channel). Further information on summed area
tables can be found in [29].

A method to produce a summed area table on modern GPUs is described
in [38]. In figure 3.11 (c) a summed area table is applied and shows visual im-
provements over nearest neighbour filtering and mipmapping, figure 3.11 (a)
and (b) respectively. If a transformed pixel is not approximately an aligned
rectangle, then summed areas might blur the result excessively.

Heckbert improved summed area tables by proposing a generalized ver-
sion of summed area tables where repeated box filters, converging toward a
Gaussian shape, and other polynomial filter kernels can be used for convolu-
tion [35]. The basic idea is to take advantage of the fact that the convolution



3. Rendering basics and post processing 37

of f with g is equivalent to convolution of the mth integral of f with the mth

derivative of g

f ∗ g = fm ∗ g−m, (3.45)

where m (positive) denotes integration and −m (negative) denotes differ-
entiation. Preprocessing and the filtering process are computationally more
expensive than simple summed area tables.

Heat diffusion

One approach for blurring an image inhomogeneously is to use heat diffusion.
A heat equation simulates the thermal conductivity of a medium I (in this
case an image) over time t and is defined as:

δI

δt
= ∇ · (g∇I), (3.46)

where ∇f of the function f donates the first derivative the function (f ′) and
g is the conductivity, a function which controls the diffusion. The function
g can be defined as gradient of I to implement and edge preserving filter
[17, chapter 3] or use any other function, such as a CoC-gradient for DoF
simulations [9, 39]. To allow smoothing in certain areas, g should return high
values. In areas where smoothing should be suppressed, g should return low
values. For further information one might refer to [58]. The conductivity is
often in the range [0, 1] and if g is not uniform, anisotropic filtering is done.

If the conductivity is constant, equation 3.46 reduces to

δI

δt
= c · (∇2I), (3.47)

where c is the constant conductivity and ∇2I is the Laplace operator11 of
the image I. The solution for equation 3.47 can be calculated numerically.
The heat equation is solved iteratively in the form

Im =

{
I0 for m = 0,

Im−1 + α · [∇2Im−1] for m > 0,
(3.48)

where I0 is the original signal and α is a time increment, which should be
in the range [0, 0.25]. The Laplacian (∇2I) in equation 3.48 can be approxi-
mated by the convolution

∇2I ≈ I ∗

0 1 0
1 −4 1
0 1 0

 , (3.49)

11The Laplace operator or Laplacian ∇2f is a differential operator given by the diver-
gence of the gradient of function f . Other notations for the Laplacian of f are ∇·∇f , ∇2f
or ∆f http://en.wikipedia.org/wiki/Laplace_operator.

http://en.wikipedia.org/wiki/Laplace_operator


3. Rendering basics and post processing 38

Figure 3.15: A Poisson disk generated with Poisson Disk Generator (http:
//www.coderhaus.com/?p=11). The circles around the points mark the min-
imum distance r = 0.1.

for a discrete image I. After m diffusion steps, image Im is the same as
filtering I0 with a normalised Gaussian kernel of width σ =

√
2mα [17,

chapter 3]. More on the similarities between heat diffusion and the Gaussian
distribution can be found in [55].

Stochastic sampling

One method to overcome aliasing issues in sampling is to skip uniform sam-
pling (i.e., mipmapping, summed area tables, . . . ) and use stochastic sam-
pling. Stochastic sampling is often used in ray tracing to distribute rays [19],
but it is also applicable in other fields. In [23] the authors state that:

Both the grain of photographic film and the receptor patterns of
the human retina exhibit random sampling.

The advantage of stochastic sampling over uniform sampling is the fact that
high frequency information is scattered into broadband noise rather than
generating false patterns. Thus, stochastic sampling can be used in many
situations. One example is [68], discussed in section 4.2, where Poisson disk
sampling is used in combination with trilinear filtering. Two popular stochas-
tic sampling methods are Poisson and jittered patterns.

Poisson sampling: The basic idea of generating a Poisson disk sampling
pattern is to randomly generate sample points with the constraint that there
is a minimum distance r between sample points (see figure 3.15). There are
several implementations of this approach. One efficient implementation is
proposed in [15]. Although there are methods to generate Poisson patterns

http://www.coderhaus.com/?p=11
http://www.coderhaus.com/?p=11


3. Rendering basics and post processing 39

(a) (b) (c)

(d) (e) (f)

Figure 3.16: Stochastic sampling patterns. A uniform grid with a distance of
0.1 between the points (a). Rectangular jittered sampling with jitter distances
(distances from the grid position) of 0.3 (b), 0.5 (c) and 1 (d). Poisson disk
distribution with a minimum distance of 0.1 (e), generated with Poisson Disk
Generator (http://www.coderhaus.com/?p=11) discussed in [15]. A stochastic
pattern generated by randomly splatting points (f).

efficiently, the generation is a costly process. Therefore in computer graphics,
and some other applications, the Poisson pattern is stored in a LUT to avoid
the generation process during run-time.

A Poisson sampling pattern is shown in figure 3.16 (e). Due to the min-
imum distance between each sample point, high densities of spots in cer-
tain areas are avoided, compared to randomly generated sample points in
figure 3.16 (f). By increasing the minimum distance in Poisson sampling,
high-frequency noise is increased and low-frequency noise is reduced [19].

Jittered sampling: Another approach to generate a stochastic sample
pattern is jittering. A regular sampling pattern, as shown in figure 3.16 (a),
is modified by jittering each sample point. The regular sample point yk (with
sampling rate β) is modified by adding a random variable jk

yk =
k

β
xk = yk + jk (3.50)

where k is in the range k = [−∞,∞]. The random number jk is in the
range jk = [−α/(2β), α/(2β)]. Values of α = 0.3, 0.5 or 1.0 are shown in

http://www.coderhaus.com/?p=11


3. Rendering basics and post processing 40

figures 3.16 (b)–(d). An α = 0 produces the same results as uniform sampling
(see figure 3.16 (a)). Compared to Poisson sampling, high-frequency noise is
decreased but aliasing appears at jittering rates of α < 1.0. Jittered sampling
is a good approximation of Poisson sampling and can be calculated more
efficiently.

However, according to [19]:

. . . images are somewhat noisier and some very small amount of
aliasing can remain.

Thus, Poisson sampling seems to produce better results when jittered and
Poisson sampling are compared.



Chapter 4

Previous work

The optical principles of depth of field have been discussed previously in sec-
tion 2.3. Methods for simulating DoF in computer graphics are discussed in
the following sections. Some DoF implementations, especially rasterisation
techniques, sacrifice quality for high frame rates and produce artefacts such
as discussed in section 4.2.1. In this work DoF simulations are structured
in object spaced (section 4.1) and image spaced methods (section 4.2). Ob-
ject spaced methods operate in 3D space and use the rendering pipeline for
the DoF effect whereas image spaced methods operate on a rendered image;
the latter is known as post processing and explained in section 3.2. In gen-
eral, object-space methods produce more realistic results than image spaced
methods. Despite that, the latter are faster. Summary and surveys of depth
of field methods can be found in [1, 2, 4–6, 22].

4.1 Methods in object space

DoF methods in this work are classified as object spaced methods if the DoF
effect is generated by altering the rendering method, i.e., changing rays in
a ray tracer or modifying the position of a camera while rendering. While
image spaced methods do not (or only slightly) modify the rendering method.
In the following sections object spaced methods are discussed.

4.1.1 Distributed ray tracing

DoF effects can be simulated by distributed ray tracing [20]. Instead of trac-
ing one ray per pixel, which would simulate a pinhole camera, several rays
are distributed per pixel position thus simulating a finite aperture. This tech-
nique is called oversampling and is used to reduce aliasing artefacts [5]. If
the rays are distributed within a finite aperture, DoF can be simulated. Rays
can be refracted by the lens and then enter the scene. Since this simulates
the way how an image is formed in optical systems (such as cameras) im-

41



4. Previous work 42

ages appear realistic. Therefore, ray tracing often serves as a reference for
evaluating postprocess methods [4]. To get visual appealing DoF effects (es-
pecially for large blurs) many rays per pixel are required. Thus, making ray
tracing a technique hardly usable for interactive applications. When fewer
rays are used, the technique degrades to noise rather than to other visible
artefacts. More details and implementation hints can be found in [60] which
is a discussion of the source code for the ray tracer pbrt.1 Furthermore, the
ray-casting process of rays in pbrt is explained in detail in section 6.6.

4.1.2 Accumulation buffer

Standard rasterisation hardware, such as a modern GPU, is optimized for
rendering pinhole models. Therefore, rasterisation methods are widely used
in interactive applications, e.g., games. The accumulation buffer method uses
pinhole renderings of a scene from different camera-locations, uniformly dis-
tributed across the aperture, and then blends those renderings together using
the accumulation buffer [33]. This method is similar to the ray tracing ap-
proach proposed in [20] since many samples per pixel are taken and averaged.
Although the accumulation buffer method is faster than distributed ray trac-
ing, large blurs need more scene renderings to overcome banding artefacts.
For a high quality rendering (limiting sampling artefacts to 2× 2 pixel with
an 8-pixel-radius CoC maximum) 50 renderings are required. For lower qual-
ity (limiting artefact to 3 × 3 pixels with a 6-pixel-radius CoC) 12 scene
renderings are needed (according to [22]). This is still hardly applicable for
interactive applications. Since rasterisation is used, with the accumulation
buffer technique, the entire scene is rendered. Thus, it is not possible to adap-
tively reduce the rendering effort for pixels in focus with small or almost no
blur. With ray-tracing techniques, this adaptive control is possible.

4.1.3 Splatting

Point based methods describe the scene as points rather than as geometric
primitives. These points are rendered by elliptical weighting and painted as
ellipses in the screen buffer. To simulate DoF, while rendering point based
scenes, the ellipses can be scaled up to the CoC (discussed in section 2.3).
Although DoF blurring naturally fits in the pipeline for point based ren-
derings, e.g., [47], a similar method can also be applied to primitive based
approaches [49]. To render points on rasterisation hardware, additional ge-
ometry, such as CoC sized sprites, has to be generated. These sprites can be
generated with geometry shaders2 [2]. With sprites, each point can spread its
colour value based on a PSF (section 2.2). If a pixel’s area is increased, the

1Source code available at http://www.pbrt.org/.
2Geometry shaders add a additional programmable stage between vertex shaders and

the rasterisation unit on the GPU’s rendering pipeline.

http://www.pbrt.org/


4. Previous work 43

(a) (b)

Figure 4.1: Scattering spreads a pixel’s value to the neighbouring area (a).
Gathering samples the neighbouring values to affect one pixel. The samples’
positions might be defined by a Poisson disk (b). Programmable shaders on
modern GPUs are optimized for gathering via texture sampling. (adapted
from [2]).

sum of its intensity should stay the same. This is done by normalisation and
is reflected in the alpha channel of the pixels. To compose the final scene,
the sprites have to be rendered with enabled alpha-blending and should be
rendered from back to front. The fact that a pixel value spreads its colour
value is called scattering as illustrated in figure 4.1 (a). Spreading a colour
value does not map well to pixel shader capabilities of GPUs. Additionally,
generating geometry and depth-sorting (needed for artefact free spreading
on GPUs) are costly operations. Scattering suffers from the lack of high-
precision blending on GPUs and often normalisation issues occur. Therefore,
splatting techniques are mostly used in non-interactive applications and of-
ten named forward mapped methods because of the fact that source pixels
are mapped onto the destination image [22].

4.2 Image space methods

DoF methods in object space, as discussed in the previous section, are hardly
applicable for real-time applications. In contrast, image spaced depth-of-field
methods are widely used in real-time applications. Image spaced DoF meth-
ods are based on the idea of rendering the scene with a pinhole camera model
and simulating the DoF effect via post processing. Thus, leading to few or no
changes in the rendering pipeline. Potmesil and Chakravarty discussed such
depth-of-field methods first in [62]. For each pixel, the CoC is calculated
based on the depth of a pixel (see section 2.3). Pixels are blurred according
to their CoC. Image spaced methods use additional buffers to store more in-



4. Previous work 44

formation per pixel such as depth. Since image based DoF effects simulate an
effect which usually happens within a scene but produce the effect afterwards,
such methods are called backwards mapped or reverse mapped methods. Al-
though post-processing methods work on an image, there are post-processing
DoF techniques which slightly modify the way how the scene is rendered.
One such possibility is to render into layers. Therefore, DoF methods can
be classified into methods with one or more images (called single-layer or
multi-layer methods). Most image-based DoF methods use gathering and not
spreading because of performance reasons. Gathering means that a pixel sam-
ples neighbouring texels and can be carried out efficiently through texture
lookups on GPUs. Figure 4.1 (b) outlines how gathering can be performed.
Despite that, there are image based DoF methods which use scattering, e.g.,
[40, 49]. Thus, scattering and gathering can be used as another classification
criterion for DoF methods.

Spreading or gathering

Another way to look at gathering and scattering can be found in [42], where
the author explains linear image filters by order-4-tensors simplified by two-
dimensional matrices. Considering an image to be a vector of pixels I a
filtered image I′ can be obtained by a matrix vector multiplication I′ = A · I
where A is a linear filter in matrix form. Filter weights placed in the rows of
A produce a gathering operation and arranging the weights down the column
has the effect of spreading. With this notation it can be shown that some
spreading methods produce the same results as gathering methods and some
filter kernels can be applied in both ways. In [40] a DoF technique using such
spreading filters is presented (described in section 4.2.2).

4.2.1 Artefacts

Artefacts in DoF methods occur due to the facts that image based DoF
approaches do not resemble the transportation of light such as ray tracing;
and image based DoF often prioritise speed instead of physical accuracy.
Some of those artefacts are discussed in the following sections.

Intensity leakage

One artefact, in screen spaced approaches, is the so called intensity leakage.
It happens when pixels are blurred out with an isotropic gathering blur
method. Sharp pixels bleed their colour on unsharp pixels due to large CoCs
of the latter. Thus, this artefact might be also called pixel bleeding or colour
bleeding. Intensity leakage artefacts are often noticeable when in focus objects
are in front of a blurred background. In figure 4.2 (b), one such artefact is
shown.



4. Previous work 45

(a) (b)

(c) (d)

Figure 4.2: Images rendered with no DoF (a), with a post processing DoF
method showing colour bleeding (b) and depth discontinuities (c), produced
with Blender (from www.blender.org). As comparison, a DoF effect without
partial occlusion problems (d), produced with the method described in chap-
ter 5. In (b) the green cone bleeds its colour on the dragons in the background,
while in (c) this behaviour is avoided by producing sharp borders. In (d)
the green cone is smeared to semi-transparency, thus revealing the dragons
in the background—strongly visible at the top of the cone. In single-layer
post processing methods, such as (b) and (c), this transparency effect is not
achievable.

Depth discontinuity artefacts

Depth discontinuity artefacts are artefacts strongly connected to intensity
leakage and partial occlusion artefacts. This occurs if out-of-focus objects
are in front of sharp objects. By preventing intensity leakage on sharp ob-
jects in the back, silhouettes of the out-of-focus foreground objects appear

www.blender.org


4. Previous work 46

occluded
object

occluder

aperture

image plane
aperture-ray

pinhole-ray

pinhole

Figure 4.3: When a occluded object is completely hidden from rays travel-
ing through a infinitely small aperture (pinhole-ray), it is possible that the
occluded object can be reached by rays traveling through a finite aperture
(aperture-ray). All rays start from the image plane located behind the aper-
ture (adapted from [6]).

to be sharp. However, out-of-focus objects in the front should have soft bor-
ders and furthermore should be partly transparent so the background can
bleed through. This transparency can be explained by partial occlusion. In
figure 4.2 (c), a depth discontinuity artefact is shown where the green cone
is out of focus but doesn’t have smeared borders.

Partial Occlusion

One artefact, related to pixel bleeding (intensity leakage) and depth disconti-
nuity artefacts, is the partial occlusion problem. In rasterised renderings, the
pinhole-camera model is used which means the aperture is infinitely small.
Depth of field is an effect which occurs at finitely aperture sizes (described
in section 2.3). Rays hitting the image sensor can only pass a single point on
the aperture if a pinhole-camera model is used. With a finite aperture, rays
can scatter within the area of the aperture opening. Thus, making regions
in the scene visible which are hidden in a pinhole model. The source of par-
tial occlusion is illustrated, in figure 4.3. Ray tracing (see section 4.1) solves
this problem. In image space methods, renderings are missing information,
colour information, to fully resemble a finite aperture. Partial occlusion is
noticeable at high aperture openings (where blurry objects near the camera
are semi-transparent) resulting in partially visible background objects. Due
to missing colour information of the occluded objects, the transparency ef-
fect cannot be achieved by simple filtering/blurring a single-layer rendering.
Basically, this problem is apparent in all single-layered methods covered in
section 4.2.2. Methods, revealing occluded objects, can produce DoF effects
without partial occlusion artefacts. An example of this are layered methods
as discussed in section 4.2.3.



4. Previous work 47

Filtering artefacts

Since image space methods operate by filtering the scene rendering, artefacts
caused by the blurring method can occur. Methods such as [46, 51, 68] use
stochastic sampling, mipmapping, bilinear filtering, anisotropic filtering, or
combinations of those filtering methods to increase the speed on graphics
hardware. Using trilinear filtering (mipmapping) can cause blocky magni-
fication artefacts (see section 3.4.2). Stochastic sampling, discussed in sec-
tion 3.4.4, could result in jittering artefacts. Thus, DoF methods using fast
inaccurate filtering methods might suffer artefacts related to blurring.

4.2.2 Single-layer methods

Single-layered DoF methods only operate on one single scene rendering and
the depth buffer. Therefore, no re-rendering or modification of the scene is
needed and interactive frame rates are possible. Since speed is important,
such methods often use gathering and are used in interactive applications
such as games.

Potmesil and Chakravarty (1981)

Potmesil and Chakravarty described the first method which artificially adds
depth of field to computer renderings [62, 63]. It is a post processing approach
using a linear filter to blur pixels according to their CoC. The method suffers
from artefacts such as intensity leakage, depth discontinuity, and partial oc-
clusion (see section 4.2.1). Despite the previously stated flaws, this technique
is still the basis for modern DoF simulations and introduces equation 2.16:
the formula for calculating the diameter of the CoC.

Rokita (1996)

Rokita proposed a method for virtual environments by repeating convolution
with a 3× 3 filter kernel, H, of the form

H =

 1 2 1
2 b 2
1 2 1

 , (4.1)

where b is depending on the amount of blur [67]. Decreasing b increases the
blur amount. Larger blurs can be achieved by repeating the convolution. The
method is fast because it uses graphics hardware for filtering. However, it
becomes slower with big blur sizes and suffers from the same artefacts as
[62].



4. Previous work 48

Fearing (1996)

Fearing introduces a DoF method based on [62] where the amount of pre-
processing is dependent on the change of a pixel. Based on changes in depth,
colour, and CoC, each pixel gets an importance value [28]. The more im-
portant pixels are rendered first, and the rendering process is stopped after
a specified amount of pixels have been updated, a user interrupt, or a time
interrupt occurred. Because of that fact, this method is well suited for ani-
mated scenes. Keeping pixels from the previous frame where no or only small
changes occurred gains a speed increase (up to ×20) compared to [62]. All
artefacts from [62] are retained. Additionally, inconsistency artefacts occur-
ring at too seldom updated pixels are introduced.

Mulder and van Liere (2000)

Mulder and van Liere present a technique making use of rendering hardware
[56]. The authors propose two methods, one high quality and one faster (thus
low quality), and an approach for using both methods simultaneously. The
high resolution method is applied in the centre of the scene where important
pixels lie (centre of attention) and the low resolution method is applied on
the rest of the scene. For the high resolution method CoC diameters are
discretised to pixel size and the border pixel of the different diameters are
used. Rectangular polygons (their number is dependant on the amount of
pixels in the CoC border) equal the size of the scene are drawn for each pixel
and offset so that they align to the outermost border of the CoC border
starting with the largest. Each texel of the polygon covers a pixel of the
original scene. Only those pixels of each polygon that have a CoC larger
than or equal to the current CoC border are rendered. This is done by using
alpha coverage. Furthermore, with the alpha value, the intensity of a rendered
border pixel is controlled. This process is repeated for the next smaller CoC
diameter until the diameter is one. Thus, this method can be described as
a scattering method because each pixel spreads its colour value based on a
PSF (PSF is discussed in section 2.2).

The low quality approach is based on a pyramid method where the fore-
ground is the level 0 and the background is composed of the levels in the
pyramid. The number of levels is depending on the amount of blur.

The technique proposed by Mulder and van Liere produces good blurring
results at the center of attention but produces blocky artefacts at positions
where the lower quality method is applied. Furthermore, artefacts such as
depth discontinuity and partial occlusion are not resolved with this tech-
nique.



4. Previous work 49

Bertalmio et al. (2004)

Bertalmio et al. present a DoF simulation method using heat diffusion (as
discussed in section 3.4.4) [9]. The conductivity is defined by

g(x, y) = χ

(
|Z(x, y)− zfocus|

Z(x, y)

)2

. (4.2)

Constant χ keeps g within the range [0, 1], Z(x, y) is the depth-buffer value
at (x, y), and zfocus is the focus distance.

The authors use a numerical iteration scheme to calculate the heat equa-
tion (equation 3.46). Backward differences3 are used for the divergence and
forward differences are used for the gradient, denoted by ∇− and ∇+

Im+1 = Im + α∇− · (g · ∇+Im), (4.3)

where α = 0.25. Bigger maximum kernels are achieved by processing more
iterations of diffusions (m) on the image.

Since the blur is nonuniform but depending on the CoC, intensity leaking
is prevented. The method produces depth discontinuity artefacts (i.e., sharp
borders) with out-of-focus foreground objects. Bertalmio et al. prevent the
sharp borders of foreground objects by isotropic diffusion of the depth buffer
at positions where the depth value is smaller than the focal plane. This
method produces good results but suffers from partial occlusion problems
such as most single-view post processing methods. At screen resolutions of
1024× 768 pixels and m = 20 iterations, the approach is far from achieving
real-time performance.

Kass et al. (2006)

Kass et al. propose a method based on heat diffusion with the purpose of
producing high quality DoF simulations for off-line rendering [39]. 2D heat
diffusion approaches are of complexityO(w2) to produce a filter of width pro-
portional to w. Therefore, the authors propose a separable approach where
the heat diffuses along the u axis and along the v axis in a second step.
Similar to separating a Gaussian filter, objectionable anisotropies are often
avoided in the result.

The heat equation (equation 3.46) is solved by an backward Euler4 ap-
proach resulting in a symmetric tridiagonal linear system. The conductivity

3The finite forward difference of a function f is defined as ∇+f(x) = f(x + 1)− f(x),
whereas the finite backward difference is defined by ∇−f(x) = f(x) − f(x − 1) (from
http://mathworld.wolfram.com/FiniteDifference.html).

4The Euler backward method is an implicit method for solving an ordinary differential
equation. In the case of a heat equation, for example, this means that a linear system must
be solved at each time step. However, unlike the Euler forward method, the backward
method is unconditionally stable and so allows large time steps to be taken (from http:
//mathworld.wolfram.com/EulerBackwardMethod.html).

http://mathworld.wolfram.com/FiniteDifference.html
http://mathworld.wolfram.com/EulerBackwardMethod.html
http://mathworld.wolfram.com/EulerBackwardMethod.html


4. Previous work 50

dmax

(a) (b)

Figure 4.4: A point out of focus (blurriness = 1) and the corresponding
Poisson disk size (a). If the point is in focus (blurriness = 0) the disk is
scaled down to cover only one pixel (b) (adapted from [66]).

g is related to the CoC (equation 2.16). This linear system can be solved
efficiently in constant time and on GPUs, making this method efficient.

The method prevents intensity leaking. However, sharp borders and arte-
facts at out-of-focus foreground objects appear, similarly to [9]. As a solu-
tion, the authors propose to use three layers: a foreground, midground, and
a background layer. The use of more than one layer introduces additional
rendering costs but solves the artefacts and also takes care of the partial oc-
clusion problem. At a resolution of 1024×768 and one additional foreground
layer, the frame rate is at 3 to 4 frames per second.

Riguer (2003)

Riguer describes two real-time DoF approaches showcasing it in an imple-
mentation for DirectX 9 [66]. The first method renders the scene with mul-
tiple render targets (MRT) where the colour is stored in one buffer (8-bit
RGBA) and the depth and blurriness, calculated with equation 2.16, of a
pixel is stored in a second buffer (2× 16-bit). In the second rendering pass,
the colour buffer is blurred with a 12-tap Poisson disk (as shown in figure 4.4).
The Poisson disk is scaled according the amount of blurriness stored in the
buffer. The maximum diameter dmax of the Poisson disk is predefined and
limited by the number of taps in the disk (increasing the disk too much would
result in noticeable artefacts). The scene texture is then sampled at the taps
of the disk with bilinear filtering enabled. If a pixel is in focus, the Poisson
disk is scaled down so that only one texel is sampled (see figure 4.4 (b)).



4. Previous work 51

zfarznear zfocus

1

0

−1

z

Figure 4.5: The relative depth (continuous line) and the mapping to the
blur radius (dotted line) relative to dnear, dfocus and dfar in the range −1 to
1 and 0 to 1, respectively (adapted from [68]).

Each sample is averaged and contributes to the final colour of the processed
pixel. This leads to intensity leakage which can be avoided by skipping taps
in focus and in front of the centre pixel.

The second approach by Riguer uses Gaussian blur filtering. First, the
scene is rendered into a frame buffer where the depth is stored in the alpha
channel so MRT can be avoided. The scene texture is rendered to an off-
screen buffer one fourth the size of the full resolution. The downsampled
texture is blurred with a 25× 25 Gaussian filter separated horizontally and
vertically. In the final compositing step, the full resolution and low resolution
scene textures are linearly interpolated based on a pixel’s depth (stored in the
alpha channel of the full-screen texture). Since the Gaussian blur is uniform,
intensity leakage cannot be avoided with the second method proposed by
Riguer.

Scheuermann and Tatarchuk (2004)

Scheuermann and Tatarchuk in [68] proposed a method which is basically an
improvement and combination of the methods described in [66]. The scene is
rendered into an off-screen buffer where the alpha channel stores the relative
depth of the pixel. The depth is calculated relative to znear, zfocus, and zfar
as shown in figure 4.5 in the range −1 to 1 where znear, zfocus, and zfar are
set by an artist. Storing the depth in this way allows simple mapping to the
blur radius dcoc by

dcoc(z) = dmax · |z|, (4.4)

where dmax is the maximum CoC and z is the alpha value of the texel. This
method avoids the usage of MRTs, but causes additional considerations when



4. Previous work 52

dealing with transparent objects. Transparent objects must be rendered in
two passes: the first one renders the colour and blends the object into the
frame buffer and the second one writes the blur into the alpha channel. Be-
fore compositing the DoF effect, a blurred low-resolution version of the scene
rendering is generated by downsampling it to a 1/16 of its original resolu-
tion with a 4 × 4 box filter. Blurring the final image is done by sampling a
centre pixel and fetching its blur radius from the alpha channel. The Pois-
son disk is scaled according to this blur radius and used for sampling the
high-resolution and low-resolution buffer (figures 4.4 (a) and (b)). Depending
on the amount of blur, either the sharp high-resolution or the blurred low-
resolution image contributes more to the final result. Intensity leakage can
be minimized similarly to [66] by checking the depth and the sharpness of
taps. Scheuermann and Tatarchuk provide the shader source code for their
implementation. In [68] only 8 sample taps in the Poisson disk are used.
Setting dmax too high results in aliasing artefacts due to low sampling rates.
Partial occlusion artefacts cannot be avoided because the method does not
use occluded pixels.

Hammon (2007)

Hammon compares DoF methods and proposes a method [34]. A gather
method trying to resemble scattering is discussed first. The first method
samples within the CoC (similar to [68]) but always uses the maximum
circle of confusion. For every sample, the according CoC is calculated. Every
sample is normalized according to its CoC, and the normalised sample is
added to the center pixel. Thus, a scattering-similar approach is achieved at
high computational costs. However, this method produces artefacts due to
the fact that depth ordering is important and cannot be done at reasonable
costs.

Due to these problems, the approach is skipped in favour of a visually
appealing but physically inaccurate version. The foreground pixel’s CoC are
written in a texture where pixels in focus and behind the focal plane are set
to zero. This texture is then blurred to avoid sharp borders for out-of-focus
foreground objects (discontinuity artefacts). Additionally, the biggest CoC
in a 2× 2 neighbourhood (done with mipmaping) is used. The latter process
produces CoC values without discontinuities in the foreground. For the back-
ground, the unmodified CoC is used. This approach is used for game engines,
so the CoC is linearly approximated based on the depth of a pixel. Thus,
artists have more control over the effect (similar to [68]). The final blurring is
done by interpolating between three different blur radii speeded up by using a
downsampled texture of the screen. The smallest and finest blur is done by 5
texture lookups averaging 17 pixels (using bilinear interpolation). According
to the authors, this method uses an average of 9.6 texture lookups per pixel
(which is fewer than [68]). This method avoids sharp borders for foreground



4. Previous work 53

objects, which makes the partial occlusion problem less noticeable. However,
partial occlusion cannot be resembled because the method is missing scene
information. The fact that sharp objects can blur on unsharp background
objects can be neglected because such artefacts are hardly noticeable.

Zhou et al. (2007)

In [74] a DoF method with the goal of producing a fast and accurate DoF
effect is presented. Furthermore, one goal of the authors is to change as little
as possible in an existing rendering pipeline so the depth buffer of OpenGL
is used without further modifications.

The blurring of the rendering is done with a two-pass gather filter sim-
ilar to separable Gaussian filters (section 3.4.1). First, the buffer is blurred
vertically with a fixed width kernel. The weights of the filter are adaptive
depending on the CoC (equation 2.16) of the center sample. Additionally, a
simple PSF (the reciprocal of the square of the radius) and a factor to avoid
intensity leakage are calculated and multiplied individually for each weight.
Afterwards, the same filtering process is carried out horizontally.

The performance hit of this method on a scene with 420 000 triangles at
a resolution of 1024 × 1024 and a kernel width of 9 pixels, are additional
25.2 milliseconds per frame on a NVIDIA5 6800 GPU. Increasing the width
of the kernel results in greater performance hits (i.e., 70%) for a 13 pixels
kernel.

The method avoids intensity leakage artefacts but suffers from partial
occlusion artefacts and depth discontinuity artefacts. Since only small CoCs
(13 pixels in [74]) are applicable, partial occlusion artefacts might not be
strongly noticeable.

Lee et al. (2009)

A method designed for virtual reality environments running at high frame
rates is discussed in [51]. The real-time performance is generated by us-
ing mipmaps for blurring. Although this has been used by other methods
before, there are modifications to the standard mipmapping algorithm (sec-
tion 3.4.4). Each mipmap level is generated with a 3×3 anisotropic Gaussian
kernel to reduce intensity leakage artefacts. A sample tap of the Gaussian
filter is rejected if the tap is sharper than the center tap (similar to [66]). Fur-
thermore, to prevent blocky artefacts, known from mipmapping, the Gaus-
sian filter taps are aligned in a circular as opposed to a rectangular grid. The
mipmap levels can then be mapped to the standard deviation of a Gaussian

5NVIDIA is a leading manufacturer of graphic processing units (http://www.nvidia.
com).

http://www.nvidia.com
http://www.nvidia.com


4. Previous work 54

filter which furthermore are mapped to the CoC by

σ =
dcoc

2
. (4.5)

The usage of the anisotropic mipmaps reduces colour leaking artefacts
but produces sharp borders (depth discontinuity artefacts). Lee et al. solve
this by smoothing foreground boundaries in the buffer storing σ which is a
similar approach as the one used in [34].

The two DoF artefacts (i.e., intensity leakage and depth discontinuity
artefacts) are thus efficiently reduced. Partial occlusion problems are hardly
noticeable at smaller blur radii, because they are hidden by the fact that un-
sharp foreground objects are smeared over sharp background objects. How-
ever, this is not an optically correct solution for partial occlusion and fails
at high blur radii where the foreground object should be semitransparent.

The performance of this method is dependant on the scene and the mean
CoC size. Yet, according to the figures in [51] it is, on average, approximately
20% slower than [68].

Kosloff (2010)

The novel contribution of the thesis [40] is the comparison of spreading
and gathering when performing those operations as matrix multiplications.
The following filtering methods are presented: rectangle spreading, perimeter
method, polynomial spreading, spreading with pyramid levels, and a tensor
method. However, only one of these methods is used in an DoF implemen-
tation. For an AMD6 DoF demo, the filtering method called polynomial
spreading is used with an implementation tailored to DirectX 11 graphics
hardware.

Polynomial spreading uses a similar method to the one proposed by Heck-
bert in [35] (section 3.4.4). This method filters an image with themth deriva-
tive and transforms it into the final output by taking the mth integral. The
advantage of this is that for example, a quadratic impulse response has a
sparse third derivative thus producing only a few texture writes.

Although few texture writes are an indication for speed-ups, this is not
the case on pre DirectX 11 graphics cards since the polynomial spreading is
a spreading method (which are slow on GPUs). In [40], the author proposes
an implementation using scatter and atomic operations of the DirectX 11
standard. To take full advantage of the parallelism of modern GPUs the
integration step has to be carried out in domains requiring one additional
fixing path.

Kosloff’s method reaches over 30 FPS on an ATI Radeon HD58xx series
video card and, since it is a spreading method, avoids artefacts such as

6AMD is a manufacturer of central processing units and ATI graphic processing units
(http://www.amd.com).

http://www.amd.com


4. Previous work 55

intensity leakage or depth discontinuity effects. Thus, partial occlusion is
hardly noticeable. However, if the scene input is only one single rendering,
not containing layers or other information, the partial occlusion problem
cannot be handled correctly.

4.2.3 Multi-layer methods

In multi-layered methods a scene is either decomposed or rendered into lay-
ers, and therefore these methods allow new ways of filtering and resolv-
ing artefacts. Producing and composing layers introduces additional render-
ing effort. Thus, layered methods usually operate at lower frame rates than
single-layer methods. While all single-layer methods suffer the partial occlu-
sion problem to some degree, multi-layered methods can resolve this issue.

Barsky et al. (2005)

In [7, 8], the authors investigate artefacts produced by layering methods,
such as occlusion and discretisation problems. While the partial occlusion
problem has already been discussed, the discretisation problem only appears
in layered methods.

A rendering of a scene is used and split into layers. Each layer contains
pixels with depth values within a certain depth range. Thus, layers can be
blurred uniformly and efficiently with a gathering method. However, the
discretisation of a pixel into only one layer introduces artefacts if layers are
blurred. The border of an object in one layer gets blurred and therefore
smeared out. When this smeared-out border is blended on the other layers,
this smeared region appears as a ringing artefact due to the reduced opacity.

In [8], those discretisation artefacts are reduced by extending objects at
layer boundaries. One method to do so is by edge detecting the depth buffer
or by a first degree difference map. With these methods, object boundaries
within a layer are determined and the layer can be extended by neighbouring
pixels. Because of those extended sub-images, discretisation artefacts are not
visible.

However, since there is no other scene information than one single ren-
dering, high blur radii leading to semitransparent foreground objects cannot
be simulated. Thus, the partial occlusion problem cannot be resolved with
this method.

Kraus and Strengert (2007)

Kraus and Strengert’s method in [46] follows a similar approach as [8] which
is the decomposition of a single scene rendering into multiple layers and
blurring them uniformly. Layer boundaries zi for splitting the scene rendering



4. Previous work 56

into sub-images are calculated by

zi =


zfocus

1+dpix(i)/dmax
for i < 0,

zfocus for i = 0,
zfocus

1−dpix(i)/dmax
for i > 0,

(4.6)

where i ∈ Z and dmax is defined by

dmax =
wpix

w
· f
N

. (4.7)

The variables wpix and w are the width of the image and the image sensor in
pixel and meters. N and f are the f -stop and the focal length respectively.
The diameter dpix(i) is dependant on the blur-method chosen. Basically, var-
ious methods from section 3.4.4 could be applied. In [46] it is approximated
by

dpix(i) ≈

{
0 for i = 0,
0.85× 2|i|−1 for i 6= 0.

(4.8)

The boundaries in a plot are shown in figure 6.7 (b).
With those layer boundaries, the scene rendering gets decomposed into

layers. In the next step foreground pixels in each layer, which are in front of
the particular layer boundary zi, are culled away. This results in undefined ar-
eas in each layer. Therefore, these culled pixels are disoccluded which means
they are filled by interpolated colour and depth values. This disocclusion is
done with the pyramid method described in [45, 72]. To avoid discretisation
artefacts, the layers do not contain any undefined colour values. After disoc-
clusion, the layers are matted with a matting function. The matting function
is discussed in detail in section 5.2 because this thesis’ method reuses some
parts of that function. The purpose of the matting function is to cull away
pixels in the foreground and background which do not belong to a layer. For
an exemplary layer Li the core depth range is zi−1 to zi. Additionally, the
matting function of [46] introduces a smooth transition to avoid hard cuts
and thus resulting in a extended depth range of zi−2 to zi + 1 for layer Li.
Since every layer contains pixels of similar depth, thus similar CoC, each
layer can be blurred uniformly, done by a pyramid method from [45, 72].
Afterwards, the blurred layers are blended from back to front resulting in
a DoF effect without discretisation artefacts. Artefacts at the boundaries
of the scene, caused by pyramid blurring, are avoided by the fact that the
sub-images are in a buffer of a larger size than the original rendering.

The authors Kraus and Strengert compare their method to renderings
produced with the ray tracer pbrt. According to the authors, the layers are
slightly over blurred due to the usage of the matting function. Despite that,
results look appealing. The results are not optically accurate, since scene



4. Previous work 57

information is interpolated. This might become apparent at high blur radii
where foreground objects are semi-transparent and should reveal in-focus
objects behind them.

The performance of this method depends on the amount of layers used
which is dependant on the maximum CoC, dmax. On a NVIDIA Geforce 7900
GTX GPU with a resolution of 1024 × 1024 pixels, 12 sub-images result in
14.2 FPS and 6 layers in 29 FPS.

Kosloff and Barsky (2007)

In [41], the authors propose a generalised depth of field method. The basic
idea is to use DoF to anticipate objects in a scene without optical constraints.
For example, the in-focus area could be a region/volume shaped like a cross
or two objects at completely different depths are in focus while the rest of
the scene is out of focus.

A scene is rendered in layers where each layer contains one object of the
scene. A layer has a position map storing x, y and z coordinates of the pixels.
Blur values are calculated based on the position map for each pixel in the
layers. Based on these blur values, the layers are blurred with a heat diffusion
(as discussed in section 3.4.4). The borders of an object act as bounds for
the heat diffusion, and thus preventing objects from being transparent at
in-object regions. After blurring, the layers are composed from back to front
resulting in a generalised depth of field effect.

Because of the fact that anisotropic filtering is used, objects spanning
over a high depth range do not have to be split. Partial occlusion and dis-
cretisation artefacts are handled well by the method because occluded scene
information is available in layers and objects are not split across layers. How-
ever, the method cannot handle complex objects occluding itself which is a
problem, especially with complex scenes. Furthermore, the rendering of each
scene object separately and the usage of heat diffusion results in frame rates
far from interactive rates.

Lee et al. (2008)

In [49], a method based on splatting which resolves the partial occlusion
method is presented. Hidden scene information is rendered with a tech-
nique called depth peeling, as discussed in section 5.1 because it is used in
this work’s method. Additionally, the peeling method is extended by edge-
detection on the depth buffer so that only pixels relevant for partial occlusion
are stored.

The scene rendering and the hidden scene renderings are splatted onto
three pixel layers, for each incoming image, via MRT. The PSF used for
spreading the colour of a pixel is stored in a LUT. While spreading, an in-
coming source pixel is assigned to one of the three layers (near, same, and



4. Previous work 58

farther layer) with respect to the destinations pixel’s depth. Thus, avoiding
the sorting problem known from spreading DoF methods. The generated lay-
ers containing the spread values are blended from back to front. Afterwards,
the compositing has to be normalised to avoid normalisation artefacts.

This method produces appealing results with respect to partial occlusion.
However, the splatting method is computationally expensive and therefore
the method runs at non-interactive frame rates. The authors propose an ac-
celerated method where the resolution of the sprite, for splatting, is reduced.
An NVIDIA Geforce 9800GX2 GPU, a resolution of 1024 × 768 pixels, a
mean COC size of 32 pixels, and a scene with approximately 220 000 trian-
gles produced a frame rate of 1 FPS without acceleration and 31 FPS with
the accelerated method.

Lee et al. (2009)

In [50], a scene is rendered into K layers. Each layer consists of renderings
of the scene with the near and far clipping plane set to the layer boundaries.
Thereby producing hard cuts between layers (in practice the layer overlap)
and also producing important scene information needed for partial occlusion.

The layers are split uniformly with respect to the change of the CoC, ∆d.
First the maximum circle of confusion dmax (which is at the near clipping
plane znear, if the focal plane is set to infinity zfocus →∞) is calculated. With
these constraints dmax can be approximated by the equation 2.16 resulting
in

dmax = d(znear, f, b, zfocus →∞) ≈
∣∣∣∣− f2

znear ·N

∣∣∣∣ . (4.9)

Then the change of CoC for each layer is defined by

∆d =
dmax

K
. (4.10)

The layer index k for a pixel/fragment q with the depth zq is given by

k =

⌊
af

∆d · (zfocus − f)
·
(

1

znear
− 1

zq

)⌋
, (4.11)

where zq lies within the near and far clipping planes (znear < zq < zfar).
A plot of the boundaries with respect to depth and the CoC is shown in
figure 6.7 (c).

After rendering a layer, its depth buffer is used as a height-map for ray
traversal. Instead of using image manipulation methods (spreading, gather-
ing or heat diffusion), the depth of field effect is generated by a simple form of
ray tracing. The ray traversal method is called cone tracing and artefacts are
reduced by jittered sampling (jittering is explained in section 3.4.4). Thus,



4. Previous work 59

discretisation or normalization artefacts known from other layered methods
are avoided. Partial occlusion is handled correctly since occluded information
of the scene is used.

The rendering of layers is produced with DirectX’s array textures al-
lowing individual depth buffers per layer. The performance of the method
is dependant on the number of layers K and the number of views/rays V .
With V = 64 (which is sufficient according to the authors) and K = 16 a
scene with 300 000 triangles runs at a frame rate of 24 FPS.

Kosloff et al. (2009)

In [43] a DoF method based on spreading is introduced. The spreading is
based on a similar approach as discussed in [35]. A derivative of a rectangu-
lar filtering kernel, the method is called rectangular spreading, is used on a
summed area table. Thus, only four texture writes are necessary for spread-
ing one pixel with a filter kernel of any size. Normalization of the filter is
done with an additional fourth channel initially containing 1. Point primitive
generation features of DirectX 10 are used for an efficient implementation.

Furthermore, the authors propose a second method to spread filters of
any shape by writing values for each scanline. Thus, the performance is
depending on the perimeter of the chosen PSF.

A hybrid of the two proposed spreading methods is discussed: low con-
trast areas are blurred with rectangular spreading, and areas of high contrast
(where simple PSFs are more noticable) are blurred with the more complex
spreading method.

At a resolution of 800×600, pixels a framerate of 45 FPS can be achieved
with rectangular spreading on an ATI HD4870 GPU.

Since [43] uses layers, partial occlusion can be solved. The layer decompo-
sition is kept simple (similarly to [41]) and therefore objects cannot occlude
themselves. Thus, discretisation artefacts are not an issue. The authors claim
that their method is also applicable for simple scenes without layers, but this
would result in partial occlusion problems.

Lee et al. (2010)

In [52], an extension/improvement to [50] is presented. Similar to [50], the
scene is rendered into layers and the DoF effect is generated by ray traversal.
The method in [52] differs by using depth peeling for the layer creation and
additionally simulating other lens effects, such as tilt-shifted lenses, chro-
matic aberration (section 2.1.4), and others. The depth peeling (discussed
in section 5.1) is accelerated by ignoring pixels that cannot be hit by any
lens ray (due to occlusion). Thus, the amount of depth peeling layers can be
reduced. This results in speedups during the composition.

The generated layers are composed via ray traversal. Rays are modified



4. Previous work 60

according to the simulated lens effects (lens effects are discussed in sec-
tion 2.1).

Because of the optimized depth peeling, the authors claim that 4 layers
are sufficient in most cases. The performance hit of the DoF effect on a scene
with 400 000 triangles, 100 lens rays, 4 layers, and a resolution of 800× 600
on an NVIDIA Geforce 285GTX GPU is 24 milliseconds.

Partial occlusion is handled correctly. Since a form of ray traversing is
used, discretisation artefacts are not a problem. However, artefacts slightly
occurring are noise artefacts, caused by too few lens rays.

4.3 Summary

Methods for generating DoF effects have been discussed in the previous sec-
tions. The conclusion of this chapter is:

• Either the method produces physically accurate DoF effects, such as
ray tracing or the accumulation buffer method (section 4.1), but gen-
erates high rendering costs.

• Or, a rendering approach tries to approximate DoF by altering a al-
ready rendered scene (section 4.2) at reasonable rendering costs.

Although the first mentioned methods produce accurate DoF renderings, the
latter are of interest in this thesis.

In single-layer methods, altering a single image is done by filtering with
spreading or gathering filters (section 4.2.2). For renderings at interactive
frame rates, fast filtering methods are used (section 3.4). The blurring shape
and size of pixels are determined by the optical constraints of cameras (chap-
ter 2). The model of a simple thin lens (section 2.1.2) and the lens’ CoC
(section 2.3) is sufficient for DoF approximations. Reasonable results can be
achieved with single-layer filtering methods; especially if the filtering method
is spreading or heat diffusion, e.g., [39, 40]. Nevertheless, single-layer meth-
ods cannot handle partial occlusion correctly.

If a solid approximation of partial occlusion is the goal, then multi-layer
DoF methods have to be used. Methods, successfully handling partial oc-
clusion, use more than one input image for the DoF approximation (sec-
tion 4.2.3). Furthermore, with the layered representation it is possible to
uniformly blur a layer. Thus, partial occlusion can be handled correctly, but
layer discretisation artefacts might occur. Recent multi-layer methods (i.e.,
[50, 52]) try to avoid such artefacts by ray traversing.

In the following chapter, a multi-layer DoF method is proposed reusing
some of the ideas discussed in this chapter.



Chapter 5

Proposed method

A multi-layer approach, similar to methods discussed in section 4.2.3, is pre-
sented in this work. The rendered scene is decomposed into layers where
each layer contains pixels of a certain depth range. This decomposition ap-
proach is similar to layered methods like [8, 41, 43, 46]. However, one main
difference to the prior mentioned methods is that there are two scene buffers
where the second buffer contains a rendering where only occluded pixels
are stored (section 5.1). Thus, partial occlusion artefacts are avoided. Ad-
ditionally, the matting function from [46] prevents discretisation artefacts
(section 5.2). The decomposed layers are blurred according to their CoCs
(section 5.3) and blended back to front for a final result (section 5.4). Fur-
thermore, a method for combining, thus efficiently computing, the blur and
the layer composition is proposed (section 5.5).

With the occluded scene information, the discussed approach avoids par-
tial occlusion artefacts. Thus, high out-of-focus objects can be blurred to
transparency and reveal the background. While [51] also uses depth peel-
ing to avoid partial occlusion issues, the authors use spreading for blurring
the scene. This work’s method uses uniform filtering for each layer and so
gathering filters are applied.

The scene is rendered into layers in [50]. Blurring the scene, in [50], is
done by intersection testing within a layer thereby avoiding the discretisation
problems but introducing noise. The method proposed in this thesis is free
of such noise.

The depth of field method discussed in this thesis can be structured into
the following steps:

1. Render the scene into a buffer I0 containing the colour information—
red, green, blue, and alpha—and a depth buffer Z0.

2. With the depth buffer from the previous rendering step Z0, this method
will depth peel the scene and store the colour and the depth into buffers
I1 and Z1 respectively (section 5.1).

3. Decompose I0 and I1 intoK layers L0 to LK−1 with a matting function

61



5. Proposed method 62

based on the pixel’s depth values in Z0 and Z1 (section 5.2).
4. Filter each layer Lk based on the appropriate CoC (section 5.3).
5. Compose the processed layers L′0 to L′K−1 from back to front (sec-

tion 5.4).
Figure 5.1 outlines the above described algorithm.

5.1 Rendering partly occluded objects

For a post-process depth-of-field method to fully resemble the partial occlu-
sion effect (described in section 4.2.1), additional scene and depth buffers
are needed. One way of resolving this issue is to render the scene in K layers
by setting the near and far clipping planes (znear and zfar, discussed in sec-
tion 3.1) of the camera as it has been done in [8, 50, 69]. Although rendering
into layers would simplify the decomposing step (but not completely remove
it, because of matting), a technique called depth peeling is used to reduce the
amount of scene renderings. Rendering a scene a number of times, even with
modified near and far clipping planes, is more expensive than post processing
(especially if the scene is complex). Depth peeling got introduced in [27] and
its basic idea is to use a similar technique as shadow mapping.1

5.1.1 Depth peeling

For depth peeling, first a 3D scene is rendered into a buffer storing the
colour I0 and the depth Z0 of a rendering, shown in figures 5.2 (a) and (b),
respectively. Then the scene is rendered a second time into new buffers I1 and
Z1 while projecting the depth buffer Z0 onto the scene. For each fragment
p with the coordinates p = (xp, yp, zp) and the projected coordinates p′ =
(xp′ , yp′ , zp′), a depth test with the projected depth buffer is carried out in
the fragment shader. The fragment p gets rejected if its depth zp has the
same or smaller depth than the previously rendered fragment stored in I0
and Z0. Resulting in

I1(xp′ , yp′)←

{
colour(p) for Z0(xp′ , yp′) < zp,
I1(xp′ , yp′) otherwise,

(5.1)

and

Z1(xp′ , yp′)←

{
zp for Z0(xp′ , yp′) < zp,
Z1(xp′ , yp′) otherwise,

(5.2)

meaning that only previously occluded fragments are stored in I1 and Z1

(shown in figures 5.2 (c) and (d)). If a fragment is rejected it is “peeled away”
1Shadow mapping is a technique introduced in [48] and widely used for simulating

shadows in 3D environments.



5. Proposed method 63

Z0I0 Z1I1

L0 L1 LK−1

. . .

L′0 L′1 L′K−1

. . .

Matting

Rendering Depth peeling

Blurring

Compositing

I ′

L′K−2

LK−2

(a) (b)

(c)

(d)

(e)

Figure 5.1: A overview of the proposed method in this work: The scene
and the depth are rendered into buffers I0 and Z0 (a). Via depth peeling,
occluded scene information is revealed and stored in I1 and the peeled depth
stored in Z1 (b). I0 and I1 are decomposed into K layers L0 to LK−1 by
matting (c). The decomposed layers get blurred based on the depth in each
layer resulting in L′0 to L′K−1 (d). Finally, the processed layers are composed
to a final image I ′, (e).



5. Proposed method 64

(a) (b)

(c) (d)

Figure 5.2: The rendering of a scene I0 (a) and its depth buffer Z0 (b).
A second rendering of the scene produced with depth peeling resulting in a
peeled scene I1 (c) and a peeled depth buffer Z1 (d).

revealing objects behind the first layer. Depth peeling could be executed
recursively (always use Zk−1 to render layer Ik and Zk) to disclose further
layers. A stopping condition might be a certain amount of layers or the
number of fragments not rejected in the current peeling pass (0 for disclosing
all fragments in a scene). However, the proposed implementation in this
paper only uses one hidden layer. Every peeling step renders the whole scene
and therefore more layers result in additional costs.

5.1.2 Further considerations

A simple depth test, such as in equation 5.1, might fail because of precision
variance caused by the limited precision depth buffer. Therefore, a minimum



5. Proposed method 65

distance ε between two peeled layers gets introduced. The for condition of
equations 5.1 and 5.2 is then redefined to

Z0(xp′ , yp′) + ε < zp. (5.3)

Similarly to shadow mapping, choosing an ε for producing reasonable results
is scene depending. If a pixel in the first rendering I0(xp′ , yp′) and the peeled
sub-image I1(xp′ , yp′) are both decomposed into the same layer Lk and the
pixels’ depths are similar Z0(xp′ , yp′) ≈ Z1(xp′ , yp′), then the colour from I1
in Lk will be overwritten (see section 5.2). Therefore, an approach would
be to set ε based on the layer boundaries discussed in section 5.2 to avoid
overwriting peeled pixels.

In [49], depth peeling is used with some additional constraints: Edge
detection in the depth buffer is used only to reveal occluded fragments at
borders of depth discontinuities. Additionally, fragments behind the focal
plane (zq > zfocus, where zfocus is the focal plane) are discarded because the
partial occlusion problem is hardly noticeable at such areas. Such optimisa-
tions might also be an option for the method described in this work when
performance improvements would be needed.

5.2 Scene decomposition

The rendering I0 and the peeled scene I1 are decomposed into K layers
L0, L1, . . . , L(K−1). Each layer Lk contains pixels (consisting of red, green,
blue, and alpha channels) from the buffers I0 and I1. Which pixel is composed
into a layer is given by a matting function ω(z), where z is the pixel’s depth.
Therefore, a layer Lk is defined by

Lk =
(
I0 · ωk(Z0)

)
⊕
(
I1 · ωk(Z1)

)
, (5.4)

where ωk(z) denotes the matting function for the layer Lk. Thus, all pixels
decomposed in a layer Lk have a similar CoC necessary for uniformly blurring
(see section 5.3).

5.2.1 Matting function (ω)

The matting function is taken from [46] and defined as

ωk(z) =


z−zk−2

zk−1−zk−2
for zk−2 < z < zk−1,

1 for zk−1 ≤ z ≤ zk,
zk−z

zk−zk+1
for zk < z < zk+1,

0 otherwise,

(5.5)

where zk−2 to zk+1 defines anchor points for the layer matting. A plot of
the function is shown in figure 5.3 for exemplary anchor points. Since the



5. Proposed method 66

0

1

zk−2 zk−1 zk zk+1

ω
k
(z

)

z

Figure 5.3: A plot of the matting function ωk(z) for the layer Lk with
exemplary depth coordinates zk−2 to zk+1.

rendered scene and the peeled scene are weighted with ω(z), the function
might be also called a weighting function. The matting function is defined
continuously for smooth transitions of pixels across three layers. Since the
function is not normalised, it will contribute a summed weight of 2. There
areK anchor points. Because of this the matting functions ω0, ω1, and ωK−1
are ill-defined with respect to equation 5.5. Therefore, the matting functions
for those layers are:

ω0(z) =


1 for z ≤ z0,
z0−z
z0−z1 for z0 < z < z1,
0 otherwise,

(5.6)

ω1(z) =


1 for z ≤ z1,
z1−z
z1−z2 for z1 < z < z2,
0 otherwise,

(5.7)

ωK−1(z) =


z−zK−3

zK−2−zK−3
for zK−3 < z < zK−2,

1 for zK−2 ≤ z,
0 otherwise.

(5.8)

After decomposition, a pixel from I0 or I1 has no longer the unique depth
Z0 or Z1, respectively, but for example the depth range zk−1 to zk for the
layer Lk.

Other matting functions

The weighting function ωk might produce artefacts in some cases (further
explained in section 6.2). Therefore, this section proposes two alternative
matting functions ω̇k and ω̈k for the use in equation 5.4. Different to equa-
tion 5.5, the first function prevents all pixels with a depth greater than zk



5. Proposed method 67

0

1

zk−2 zk−1 zk zk+1

ω̇
k
(z

)

z 0

1

zk−2 zk−1 zk zk+1

ω̈
k
(z

)

z

(a) (b)

Figure 5.4: Alternative matting functions ω̇k (a) and ω̈k (b) for the layer
Lk with exemplary depth coordinates zk−2 to zk+1.

from contributing any colour to layer Lk:

ω̇k(z) =


z−zk−2

zk−1−zk−2
for zk−2 < z < zk−1,

1 for zk−1 ≤ z ≤ zk,
0 otherwise.

(5.9)

Therefore, there is a hard cut boundary at the back of a layer which produces
layering artefacts as discussed in [8] but hinders the peeled background to
bleed through (section 6.2). Another matting function ω̈k produces hard layer
cuts in the back and the front layer borders. Only pixels in the range zk−1
to zk are excepted in layer Lk:

ω̈k(z) =

{
1 for zk−1 ≤ z ≤ zk,
0 otherwise.

(5.10)

Usage scenarios for the other matting functions are discussed in section 6.2.
Figures 5.4 (a) and (b) show plots of the matting functions.

5.2.2 Layer boundaries

In layered DoF methods, there are various approaches for spacing layers (see
section 4.2.3). In the approach discussed, K layers (L0, L1, . . . , LK−1) are
generated by matting with a matting function. The matting function relies
on K anchor points (z0, z1, . . . , zkfocus , . . . , zK−1) where kfocus is the index of
the layer in focus. In [50], the layers are split with respect to the change in the
CoC. A maximum circle of confusion dmax is used and split by the number of
layers. In [46], the boundaries are spaced accordingly to the chosen blurring
method. This work’s method follows a similar approach where the formula
for calculating the CoC (equation 2.16) is rearranged to calculate a depth z
based on a given CoC d. Since dcoc is non-injective. There are two possible
results

d−1coc(d) =
(
D1(d), D2(d)

)
(5.11)



5. Proposed method 68

0

dkf−1

dkf−2

zkf−3 zkf−2 zkf−1 zkfocus zkf+1

dcoc

zk

dk

dkf−2

dkf−1

dkfocus

dkf+1

Figure 5.5: A plot of dcoc with exemplary anchor points zkfocus−3 to zkfocus+1

marking the layer bounds (equation 5.14). The Layer Lk has a CoC of dk,
and the CoCs are marked as dkfocus−2 to dkfocus+1. Note that kfocus has been
shortened to kf for this plot.

with(
D1(d), D2(d)

)
=

(
zfocus · f2

f2 + d ·N · (zfocus − f)
,

zfocus · f2

f2 − d ·N · (zfocus − f)

)
.

(5.12)

Note that D2(d), d ∈ R+ is only applicable as long as

d <
f2

N · (zfocus − f)
, (5.13)

otherwise D2(d) will be negative and not applicable as an anchor point. The
anchor point furthest away, zK−1, is bound by this constraint.

With the use of the matting functions, points in the depth range zk−1
to zk contribute their unbiased colour to the layer Lk. Depending on the
weighting functions ω, ω̇, and ω̈ the depth range might extend to: zk−2 to
zk+1, zk−1 to zk+1, and zk−1 to zk. Therefore, the anchor point zk should be
placed in the middle of the layers Lk and Lk+1 as

zk =

D1

(
dk+dk+1

2

)
for k < kfocus,

D2

(
dk+dk+1

2

)
for k ≥ kfocus,

(5.14)

where dk and dk+1 are the CoCs of the layers Lk and Lk+1 respectively. A
plot of the CoC with exemplary anchor points is shown in figure 5.5.



5. Proposed method 69

5.3 Blurring

The layer Lk, containing pixels of a certain depth range (zk – zk−1), is blurred
uniformly by a filter kernel. The layer gets blurred with a convolution method
denoted by

L′k = Lk ∗Hk, (5.15)

where Hk is a filter kernel based on dk (the CoC of the layer Lk). Basically,
various filtering methods discussed in section 3.4 can be used. Note that the
blurring is done with associated colour values (section 3.3.3). This thesis’
method uses Gaussian filters for blurring the layers. An optimisation for this
method uses recursive filters (see section 5.5). Gaussian filters are used in
other post-processing DoF implementations (section 4.2).

The anchor points, z0 to zK−1, for the layer matting are determined by
equation 5.14. For a layer Lk, the circle of confusion is denoted as dk. The
CoC for the in-focus layer is dkfocus = 0 which means the layer in focus
(Lkfocus) is not blurred. Starting from the in-focus layer, the CoC diameter
increases symmetrically for layers closer and further away from the camera
resulting in

dkfocus−i = dkfocus+i (5.16)

when (kfocus − i) ≥ 0 and (kfocus + i) < K.
The CoC dcoc is defined in units on the image sensor whereas a blurring

method uses texture coordinates. With the following formula, the CoC can
be defined in texture units:

dpix =
dcoc · wpix

w
. (5.17)

where w is the width of the image sensor and wpix is the width of the ren-
dering in pixel.

The width of the Gaussian filter kernel Hk, used for blurring layer Lk, is
defined by σk (see section 3.4.1). Therefore, a conversion from the circle of
confusion to the parameter of the blurring method (i.e., Gaussian filter) has
to be established. This mapping is often chosen empirically or defined by a
designer in other DoF methods (e.g., [34, 46, 68]). In this work the mapping
is chosen empirically as

dpix = 4σ. (5.18)

A Gauss distribution within the range [−2σ, 2σ] covers about 95% of the
function’s area. Due to the matting function, pixels contribute to more layers
and therefore might be overblurred (section 5.2); pixels at a depth between
anchor points zk−1 to zk are present in layer Lk but also spread their values



5. Proposed method 70

to layers Lk−1 and Lk+1. With equations 5.17 and 5.18, the CoC in image
sensor coordinates can be determined by

dk =
4 · σk · w
wpix

. (5.19)

With respect to the matting function, the following constraints for choos-
ing σk should apply

σkfocus−i = σkfocus+i, (5.20)
σkfocus−i−1 > σkfocus−i, (5.21)
σkfocus+i+1 > σkfocus+i. (5.22)

One concrete approach for defining σk is shown in section 5.5.

5.4 Blending

For the final compositing (I ′), the blurred layers are blended together from
back to front:

I ′ = L′0 ⊕ (L′1 ⊕ (· · · ⊕ (L′K−2 ⊕ L′K−1))). (5.23)

Note that it is important to keep the right order for blending. Otherwise,
hidden scene content (revealed by depth peeling) would be blended on top.
The layer L′K−1 contains the background of the scene (i.e., pixels) with the
highest depth value. In L′0 are the pixels with the lowest depth value. To
avoid blending and normalisation artefacts, the layers use premultiplied al-
pha values.

5.5 Optimisation: Cascading

The previous sections discussed the method of this thesis in four steps. This
section proposes a method which combines the blurring and composition
step (sections 5.3 and 5.4). Instead of blurring each layer separately, with
a Gaussian filter kernel Hk, a cascaded approach is chosen. As discussed in
section 3.4, recursively filtering with smaller filter kernels produces the same
result as filtering with one bigger filter kernel. Although it is an advantage to
use smaller filter kernels, simply using recursive filters would not be an op-
timisation because more filtering iterations would be needed. Thus, between
each blurring iteration, one layer is blended onto the compositing before the
blurring iteration continues. Each cascading filter kernel Ĥk is chosen so that
the final result is the same as a single blur with kernel Hk.

Note that the front and the back layers, layers in front and behind the
layer in focus respectively, have to be composed separately. Otherwise it is



5. Proposed method 71

not possible to compose the scene with the correct ordering of the layers.
The composition of the front layer starts by taking the layer closest to the
camera (i.e., L0) and blurring it with the filter kernel Ĥ0. In the next step
this blurred layer is blended, with ⊕, on the next closest layer (i.e., L1) and
afterwards blurred with Ĥ1. Since the blurred layer L0 is over L1 and then
blurred again, the effect of this method is that L0 is blurred by Ĥ0 and by
Ĥ1. The iteration continues until the layer in-focus Lkfocus is reached. Thus,
the layers have been blurred recursively.

The back layers are blurred similarly starting with LK−1. To keep the
correct ordering of the layers, the layer closer to the camera (i.e., LK−2) has
to be blended over the previously blurred layer. The iteration is continued
until the layer in-focus is reached.

The number of blurring iterations for a layer Lk is given by |k − kfocus|
and calculating the final composition I’ is denoted as

I ′ = I ′front ⊕ (Lkfocus ⊕ I
′
back), (5.24)

where

I ′front = ((((L0 ∗ Ĥ0)⊕ L1) ∗ Ĥ1) · · · ⊕ Lkfocus−1) ∗ Ĥkfocus−1, (5.25)

I ′back = (Lkfocus+1 ⊕ (· · · (LK−2 ⊕ (LK−1 ∗ ĤK−1)) ∗ ĤK−2)) ∗ Ĥkfocus+1.
(5.26)

This optimised composition approach delivers similar results to the composi-
tion in equation 5.23. However, there are differences in the final results which
are further discussed in section 6.4.

The cascaded filter kernel Ĥk is a Gaussian filter kernel with a standard
deviation of σ̂k. Results shown in chapter 6 use

Ĥk = Hσ̂k , (5.27)

where σ̂k is defined as

σ̂k = |k − kfocus|. (5.28)

Thus, σk needed for calculating the anchor points (equation 5.19), can be
calculated by

σk =


0 for k = kfocus,√
σ̂2k + σ2k+1 for k < kfocus,√
σ̂2k + σ2k−1 for k > kfocus,

(5.29)

where k is in the interval [0,K − 1]. Recursive filters are discussed in sec-
tion 3.4.4. Further information on cascaded Gaussians can be found in [17,
chapter 8].



Chapter 6

Results and discussion

In this chapter, results produced with the method presented in chapter 5
are shown and discussed. The approach is implemented as an extension to
the image manipulation program ImageJ.1 Renderings (the scene I0, peeled
scene I1, and their depth buffers) are supplied by an external program i.e.,
Blender. Results with different matting functions are shown in section 6.2.
The spacing of the layers is discussed in section 6.3 and the impact of the
used blurring method is described in section 6.4. Results with and without
the occluded scene information are shown in section 6.5. The final method
is compared to the ray tracer pbrt (section 6.6). For the comparisons and for
the rendering results, a test scene is used. This scene is explained in the next
section.

6.1 Test scene

The test scene dof-dragons-v3, used in this chapter, is a modification of
the scene from [60] and used in [46]. A line of 11 dragons and a cone are
placed in the scene, as shown from a top view, in figure 6.1. Due to the
placement of the cone close to the camera, the scene is ideal for showing
partial occlusion artefacts. Figures 6.2 (a) and (b) show pinhole renderings
of dof-dragons-v3 produced with pbrt and Blender respectively. Although
the scene is the same in terms of positioning of objects and the camera, there
are differences in the materials and lighting. This is due to the usage of two
different stand alone applications (pbrt and Blender) and thus the different
rendering methods. Furthermore, the renderings produced with Blender do
not use anti-aliasing on edges because a pixel needs a single depth value for
the matting. Antialiasing would result in interpolations in the depth buffer
and in wrongly decomposed pixels.

1ImageJ is open source and can be downloaded from http://rsbweb.nih.gov/ij/.

72

http://rsbweb.nih.gov/ij/


6. Results and discussion 73

cone cameradragons. . .

z

φ

zfocus

Figure 6.1: A top view of the test scene dof-dragons-v3 used in this work,
consisting of 11 dragons and a cone close to the camera to show the partial
occlusion effect. The scene is a modification of a scene for pbrt [60].

(a) (b)

Figure 6.2: The test scene dof-dragons-v3 rendered, with a pinhole model,
in pbrt (a) and Blender (b). The field of view angle is set to φ = 60◦.

6.2 Layer matting

With the matting functions ω, ω̇, and ω̈ (discussed in section 5.2), a pixel
contributes colour to three, two, and one layers with a weighted sum of 2,
1.5, and 1, respectively. However, the final composition does not get bright-
ened up because of the over operator (section 3.3.2) and associated colours
(section 3.3.3). If a rendered scene gets decomposed and composed again
(without blurring) the brightness does not change.

The proposed matting function ω, as introduced in [46], prevents discreti-



6. Results and discussion 74

sation artefacts known from [8]. In combination with depth peeling, however,
a new problem arises: with the usage of the matting function ω for the de-
composition of the peeled scene (equation 5.4) hidden pixels might be matted
into a front layer. When the scene is finally composed, those hidden pixels
are on top of foreground pixels resulting in artefacts. One such artefact is
strongly visible in figure 6.3 (a) where the grey floor is visible on top of the
red in-focus dragon. In figures 6.3 (a)–(d), the DoF range is large, therefore
layers span across a wide depth range and thereby produce bigger disconti-
nuities. If the layers have a smaller depth range, produced by more blur in
the scene, this artefact is hardly visible (figure 6.4 (a)).

Using the matting function ω̇ (equation 5.9) prevents artefacts where
peeled colour is blended on top of foreground pixels but introduces discreti-
sation artefacts (known from [8]). In figure 6.3 (b), this issue is hardly no-
ticeable. With bigger blurs, such as in figure 6.4 (b), the artefacts become
more noticeable.

Using ω̈ as a matting function produces discretisation artefacts in most
situations. There are examples of this in figures 6.3 (c) and 6.4 (c).

One solution for the issue is to modify equation 5.4 to

Lk =
(
I0 · ωk(Z0)

)
⊕
(
I1 · ω̇k(Z1)

)
, (6.1)

which means the peeled information is matted with ω̇ while the scene ren-
dering is matted with ω. The results, produced with this modified decompo-
sition method, are free of the previously mentioned artefacts. This is shown
in figure 6.3 (d) and figure 6.4 (d).

6.3 Layer anchor points

Since the proposed method of this work is a layered method, one important
part is the decomposition of the scene into layers. A layer Lk contains pixels
from I0 and I1 with a depth range from zk−1 to zk (depending on the matting
function, this range might be extended) where zk and zk−1 are anchor points.
In section 5.2 the calculation of the anchor points is discussed in detail. This
section compares them to layer boundaries of other layered approaches, i.e.,
[46, 50].

Figure 6.5 shows a plot of dpix(z). The CoC dpix is in pixel units and
the parameters used for the plot are: f = 0.05, N = 2.5, zfocus = 0.75,
w = 0.058, wpix = 512. The layer bounds are symbolised by the dashed lines
and the CoC for layer Lk, dk are marked with circles. The number of layers
is set to K = 11.

Note that all pixels with a depth greater than zK−1 use the same CoC
dK−1. The anchor points in the background (z > zfocus) are bound by equa-
tion 5.13. Therefore, dK−1 is a diameter which fulfils this constraint. Anchor
points in the front (z < zfocus) are only bound by the number of layers K.



6. Results and discussion 75

(a) (b)

(c) (d)

Figure 6.3: DoF renderings produced with the proposed method and the
lens settings N = 1.6, φ = 60◦, f = 0.01, and w = 0.0114. Results with
the matting function ω (a), ω̇ (b), ω̈ (c), and the advanced matting (d),
from equation 6.1, are shown. Note that the matting function ω (a) produces
artefact where the peeled scene bleeds through at the bottom of the green
cone and on the red in-focus dragon. Weighting function ω̈ (c) produces
artefacts in objects distributed across layers where objects become partly
transparent. This is especially noticeable on the green cone. Function ω̇ (b)
and the advanced matting function (d) do not produce noticeable artefacts
with the above settings.

Therefore K has to be chosen big enough so that the depth range of a scene
is covered, because each anchor point further away from the focus plane at
zfocus increases the maximum CoC diameter. If K is chosen too small, parts
of the scene with big CoCs are not blurred enough for a realistic DoF ef-
fect. This problem is shown in figure 6.6 (a) where K = 5 produces too little



6. Results and discussion 76

(a) (b)

(c) (d)

Figure 6.4: DoF renderings produced with the proposed method and the
lens settings N = 0.5, φ = 60◦, f = 0.01, and w = 0.0114. Similar to
figure 6.3, the results with the matting function ω (a), ω̇ (b), ω̈ (c), and the
advanced matting (d), from equation 6.1, are shown. Similar to figure 6.3, the
matting function ω̈ (c) produces noticeable artefacts. At higher blur radii, ω̇
(b) results in ringing artefacts this is slightly visible on the green cone. With
the above settings, ω (a) and the advanced matting function (d) produce
results with no noticeable artefacts.

blur for the cone at the front. The parameters used for these renderings are
φ = 60◦, N = 0.5, f = 0.01, and w = 0.0114. Figure 6.6 (b) shows a suffi-
cient amount of layers. The cone in the scene dof-dragons-v3 is located at
depth zcone = 0.10 and z0 = 0.378 with K = 5. Therefore, the pixels from
the cone get blurred with d0, which is an indicator for too little blurring.
Increasing K to K = 15 layers is enough for the same scene because then
z0 = 0.084, z1 = 0.094, and z2 = 0.107. Thus, a pixel at depth zcone = 0.10



6. Results and discussion 77

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5

d
p
ix

(z
)

z

f = 0.05, N = 2.5

zk

z0

z1

z2
z3
z4
z5

z6
z7 z8

z9

dk

d0

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

Figure 6.5: A plot showing dpix(z), the anchor points zk, and the CoCs dk
for the layers with K = 11. The parameter settings are: f = 0.05, N = 2.5,
zfocus = 0.75, w = 0.058, wpix = 512.

(a) (b)

Figure 6.6: The test scene dof-dragons-v3 rendered with the proposed
method where K = 5 (a) and K = 30 (b). The settings used are φ = 60◦,
N = 0.5, f = 0.01, and w = 0.0114. Note that a too small amount of layers
as shown in (a) produces too little blur for front objects: the green cone and
parts of the floor.



6. Results and discussion 78

0 0.5 1 1.5 2

zk

z0

z1

z2

z3

z4

z5

z6 z7

z8

0 0.5 1 1.5 2

zi

z−5

z−4

z−3

z−2

z−1

z0

z1

z2

0 0.5 1 1.5 2

zk

z0
z1
z2
z3
z4
z5 z6

z7

z8

(a) (b) (c)

Figure 6.7: The anchor points of two layered DoF methods plotted as in
figure 6.5 but with less details. A plot of the method proposed in this work
with the parameters K = 9, φ = 60◦, N = 0.5, f = 0.01, w = 0.0114, and
wpix = 512 (a). The splitting of the layers in [46], with r = 0.01, is shown in
(b). The Layer boundaries of [50] are shown in (c) with similar settings as in
(a) along with znear = 0.3.

will be blurred with the CoC diameter d2.
The layer splitting in this work strongly relates to the used blurring

method. Other layered DoF methods, as discussed in section 4.2.3, i.e., [46,
50], also decompose the layers by defining anchor points. A comparison of
anchor points for layered methods are shown in figures 6.7 (a)–(c) where this
work’s methods, [46] and [50], are ploted with similar settings.

The method proposed in [46] covers high blur radii near the camera with
less layers because of the used pyramid blurring method. In [50] znear, a
user-defined variable, is limiting the maximum CoC to dcoc(znear).

6.4 Blurring methods

One optimisation discussed in section 5.5, is the use of cascaded Gaussian
filters and the combination of blending and blurring. With this optimisation
the blurring width of the filter kernel, σ of a Gaussian distribution, for each
layer can be reduced. With the usage of filters on scaling levels, such as
done in [46], this approach could be optimised more. Further information on
filtering on scaling levels can be found in section 3.4. However, this is not
implemented in this work and would reduce the quality of filtering.

Although recursively filtering with a Gaussian distribution produces sim-
ilar results as filtering with one big Gaussian kernel, the blending step be-
tween each recursion introduces differences in the results. The comparisons
between figures 6.8 (a) to (b) and figures 6.8 (c) to (d) show those differ-
ences. One explanation for the differences in the results is as follows: before



6. Results and discussion 79

(a) (b)

(c) (d)

Figure 6.8: A comparison of the cascaded Gaussian or the regular Gaussian
blurring. The DoF effect generated with the settings N = 0.5, φ = 60◦,
f = 0.01, and w = 0.0114 is shown with the cascaded (a) and the Gaussian
blurring (b). The rendering with a different f -stop of N = 1.6 is shown
with cascaded (c) and with Gaussian blurring (d). Note that there are slight
differences in the results when using the cascaded approach compared to the
Gaussian blur, especially if the blurring radii in the scene are large, such as
in (a) and (b).

blurring a layer Lk (in the cascaded approach), the previously blurred and
composed layers Lk−1, . . . , L0 are blended on top of the current layer. Thus,
Lk contributes less to the next blurring step, because some information is
not existent anymore or it’s intensity is reduced.

Nevertheless, for example, after 10 filtering iterations with the recur-
sive Gaussian approach, the width of the recursive Gaussian kernel is still
σ̂10 = 10.00 while the single Gaussian blur needs a width of σ10 = 19.62 (as



6. Results and discussion 80

i 1 2 3 . . . 9 10 11 12 13 14 . . .
σ̂i 1.00 2.00 3.00 . . . 9.00 10.00 11.00 12.00 13.00 14.00 . . .
σi 1.00 2.24 3.74 . . . 16.88 19.62 22.49 25.50 28.62 31.86 . . .

Table 6.1: A table showing σ̂ and the resulting σ if the filter kernels Hσ̂ are
applied recursively. The number of recursion is denoted by i.

shown in table 6.1). The first few filtering iterations only slightly blur the
results stronger. Therefore, scenes with high blur radii gain higher perfor-
mance increases because the convolution with a single big Gaussian kernel
is avoided.

6.5 Depth peeling

One essential part of this thesis, to avoid partial occlusion artefacts, is depth
peeling (section 5.1). Depth peeling suffers similar problems as shadow map-
ping. Therefore, a good choice of the bias value ε is essential. Furthermore,
rendering methods such as backface culling should be enabled to avoid the
pollution of the peeled scene with backside polygons. The implementation of
depth peeling in a rendering pipeline needs changes in all materials-shaders
used in a scene, and therefore requires a lot of changes in simple rendering
pipelines.

The peeled scene and peeled depth for the scene dof-dragons-v3 is pro-
duced with two additional renderings and their depth buffers; where one
rendering is without the green cone and the second without the cone and
the dragons. Therefore, the renderings produced with Blender do not contain
shadows or reflections (which would cause artefacts). The scene, the peeled
scene, and their depth buffers are shown in figures 5.2 (a)–(d).

If the peeled scene information (I1 and Z1) is not used for matting, the
approach reduces to a simple layered DoF method producing discretisation
artefacts. Figures 6.9 (a) and (b) show renderings without depth peeling. With
small CoCs, thus small blur radii as in figure 6.9 (a), the artefact is less
noticeable. Big CoCs, as in figure 6.9 (b), produce noticeable artefacts at the
borders of front objects. Figures 6.9 (c) and (d) show the DoF effect with
the same parameters but with depth peeling enabled.

6.6 Ray tracing with pbrt

As discussed in chapter 4, a ray tracer produces optically accurate DoF effects
and also does not suffer from partial occlusion problems. Therefore, the test
scene is rendered with the ray tracer pbrt from [60]. In pbrt the configurable
camera parameters are the field of view φ, the focus plane zfocus, and the
radius of the lens r, where a = 2r.



6. Results and discussion 81

(a) (b)

(c) (d)

Figure 6.9: The Dof effect, produced with the method discussed in chapter 5
without the peeled scene information (I1 and Z1), with parameters N ≈ 0.5
(a) and N = 1.67 (b). The compositions with depth peeling (c) and (d)
respectively. The focal length is set to f ≈ 0.01 and the image sensor width
is w = 0.0114. Note that for scenes with small blur radii, such as (a) and
(c), the missing of peeled scene information is less noticeable. In scenes with
higher CoCs, shown in (b) and (d), partial occlusion artefacts are visible; the
artefact is strongly visible at the top of the green cone where dragons should
be partly visible.

To understand the mapping of pbrt-parameters to lens parameters, some
basics of pbrt are discussed. If a pinhole camera model is simulated in pbrt,
a ray starts from the origin p0 = (0, 0, 0) and passes a point on the view
plane pview. This is shown in figure 6.10. When simulating a finite aperture,
the origin of a ray gets altered to any position on the lens, distributed by a
point spread function, where the lens is defined by the aperture. Instead of



6. Results and discussion 82

p

zp

z

zfocus zview −zview

pfocus

pview

cp

dcoc

a

p0

0

Figure 6.10: A schemata to show how the ray tracer pbrt produces depth
of field.

calculating snell’s law (equation 2.1), pbrt uses the constraint that all rays
from the lens pass one point pfocus located at the focus plane at zfocus. The
point pfocus can be calculated with the vector ~p0pview (figure 6.10). With
pfocus, the new direction of the ray, ~p0pfocus, can be computed.

With similar triangles (dashed lines in figure 6.10), the following can be
shown:

cp
zp − zfocus

=
a

zfocus
. (6.2)

Thus, the circle of confusion can be obtained by

dcoc
zview

=
cp
zp

, (6.3)

shown with solid lines in figure 6.10. In [46], the parameters of pbrt are used
to generate the DoF effect. Parameters, which are typically better known by
photographers (f , N , w as discussed in chapter 2), are used in this work. One
important parameter, for the conversion between pbrt and lens parameters,
is the location of the view plane at zview. In pbrt zview = znear, where the view
plane is set to zview = 0.01 in the programme source code. Since the view
plane distance also defines the distance of the image plane, with equation
2.14 the focal length f can be calculated. Thus, w and N can be calculated,
with equations 3.4 and 2.10 respectively.

Comparison of renderings

After establishing the relation between pbrt-parameters and DoF-parameters,
renderings are compared. Figures 6.11 (a) and (b) show renderings of dof-
dragons-v3 produced with pbrt and different lens diameters r = 0.01 and



6. Results and discussion 83

(a) (b)

(c) (d)

Figure 6.11: Test scene dof-dragons-v3 rendered in pbrt with a lens radius
of r = 0.01 (a) and r = 0.02 (b). The field of view angle is set to φ = 60◦.
Dof effects produced with the method discussed in chapter 5 with parameters
f = 0.00987, w = 0.0114, N = 0.493 (c), and N = 0.247 (d). Note that
the ray tracer’s PSF differs from this work’s PSF (Gaussian). Furthermore
the ray tracer uses the entire scene description, while the post processing
method only uses pinhole renderings; noticeable at the bottom of the green
cone, where the ray adds grey colour from the surrounding floor while the
proposed method does not.

r = 0.02. The field of view is set to φ = 60◦ and the focus plane is at
zfocus = 0.75. The resolution of the renderings is 512 × 512 resulting in
wpix = 512. From the parameters defined in pbrt, the focal length f can be
computed by

f =
zview · zfocus
zview + zfocus

, (6.4)



6. Results and discussion 84

resulting in f = 0.00987 or f ≈ 0.01. For the conversion of the CoC between
screen and sensor units, the image sensor size w is needed. By rearranging
equation 3.4 to

w = 2f tan

(
φ

2

)
, (6.5)

the width can be calculated resulting in w = 0.0114.
With the above calculated parameters this work’s DoF method can be

used. Examples of renderings are shown in figures 6.11 (c) and (d) with
N = 0.493 and N = 0.247 respectively. The scene I0 and peeled scene I1
along with the depth buffers Z0 and Z1 are renderings produced with Blender.

The renderings produced with this work and the results of the ray tracer
look similar. Partial occlusion, especially at the green cone, is handled sim-
ilarly and objects in the scene are blurred similarly strong. However, since
the renderings are produced with different programs, it is not comparable
by any image similarity method. Furthermore, the point spreading function
used in pbrt does not match the Gaussian shape used in this work.

Additionally, post-processing methods as used in this thesis produce dif-
ferent results at image borders. A ray tracer uses the full scene description,
while the post-processing DoF only uses the already rendered scene. This
problem is apparent in figures 6.11 (a) and (b) at the bottom of the green
cone, where the ray traced images are blurred to grey, due to the surround-
ing grey floor. While the post-processed results do not show this effect (fig-
ures 6.11 (c) and (d)); one solution, minimizing this artefact, is to render a
bigger viewport of the scene and crop it after post-processing.



Chapter 7

Conclusion and outlook

In this work, an approach for solving the partial occlusion problem in depth-
of-field post-processing effects is presented. The optical effects leading to
DoF, and techniques and processes in computer renderings have been dis-
cussed in chapters 2, and 3. Current methods for generating DoF effects on
artificially generated images have been presented, in a chronological order,
in chapter 4. Problems and strengths of previous methods, with respect to
partial occlusion, have been discussed.

The novel contribution of this work, discussed in chapter 5, is the com-
bination of DoF methods (mainly [46, 49, 50]). This work’s method uses
layers, as done in other DoF approaches (i.e., [8, 39, 46, 50]), where the layer
spacing is inspired by [46]. Hidden scene information, generated with depth
peeling, is used. One downside of depth peeling is the costly integration into
existing rendering pipelines. Layered rendering, as done in [50], might be an
alternative but comes at additional rendering costs.

Each layer can be blurred uniformly by gathering filters, well suited for
GPUs. The current implementation uses Gaussian filters (a PSF frequently
used in DoF methods e.g., [46, 51, 74]) because Gaussians can be applied
recursively. Combining the filtering and composing steps as an optimisa-
tion, to reduce the kernel size for the layer blurring, alters the result (when
compared to individual layer blurring) but reduces the filtering effort. The
filtering effort for high blurriness in the scene is rising linearly because of the
separability of Gaussian filters. Since each layer is blurred uniformly, any
other filtering method can be used if the optimisation is left out.

The composition method used in chapter 5 uses alpha blending for com-
bining the layers, which is simpler than [50], but also avoids normalization
issues of [49]. Layering discretisation artefacts known from other methods
are avoided by the matting function from [46].

The current implementation is not optimized for interactive rates. Thus,
this method is suited for generating DoF effects in previously rendered scenes
where depth peeling is possible. Producing DoF effects with a ray tracer is

85



7. Conclusion and outlook 86

physically accurate but comes at high rendering times. One application for
this work’s method is to generate DoF effects on pinhole renderings produced
with a ray tracer or another accurate rendering method. However, it is un-
usual and needs additional considerations to produce a depth buffer and a
peeled scene; especially with a ray tracer.

As discussed in chapter 5, the antialiasing of edges (e.g., MSAA) cannot
be enabled for scene renderings because a pixel should not contain inter-
polated colours or interpolated depth values. With the rising popularity of
deferred shading in rendering pipelines, image based antialiasing methods
(such as MLAA) are more popular. Therefore, there are methods available
to antialias renderings as a post-process.

Future work

For future work, the usage of the presented approach on animated scenes
can be examined. With the usage of layers, there might be popping arte-
facts1 caused by the layer discretisation. Although such artefacts should be
reduced by the smoothness of the matting function, the impact of this work’s
approach still has to be verified.

With the usage of cascaded Gaussian filters, the filtering process is opti-
mized. There are further possibilities to optimize the blurring of the layers.
Depending on the application, approximations of a Gaussian might be suf-
ficient. Therefore, scale based methods (e.g., [45]) can be used. If speed is a
high priority goal, mipmapping and stochastic sampling as in [68] are options
for the filtering method. Since each layer is blurred uniformly, other uniform
filtering approaches different than recursive Gaussians can be applied. Op-
tions for such blurring methods are filters in the frequency domain or filter
spreading, as in [42]. Furthermore, a filtering method with the possibility to
change the PSF would allow to simulate various shapes of aperture stops.

The layer decomposition could be optimized by using clustering methods,
such as k-means clustering, as proposed in [40, 49]. With the use of clustering,
layer borders could be tailored to the pixel density in scenes and empty layers
could be avoided. However, clustering is a costly process and therefore only
applicable for off-line rendering.

Furthermore, the presented approach should be implemented on modern
graphics hardware using OpenGL or DirectX for performance benchmarks.
The author of this work designed this approach for interactive rendering
rates. Thus, especially when the blurring method is changed to an inaccurate
method and the number of layers is kept low, this should be an achievable
goal.

1Popping artefacts appear in animated sequences. The word popping refers to the fact
that objects or pixels appear or disappear in a short time period (often one frame) without
any form of smooth transition. Thus, the abrupt change is recognised as artefact.



Appendix A

Content on CD-ROM

Standard: CD-ROM, single layer, ISO9660

A.1 Thesis

Path: /

thesis.pdf . . . . . . . . David C. Schedl’s master thesis

A.2 Source code

Path: /source/

DofIj/ . . . . . . . . . . source code for ImageJ plugins
exr2txt/ . . . . . . . . . source code of a tool for converting *.exr

images to *.txt files, needed for the ImageJ
plugins

A.3 Scene files

Path: /scenes/

blender-scenes/ . . . . . test scenes for Blender
pbrt-scenes/ . . . . . . test scenes for pbrt

A.4 Thesis figures

Path: /images/

cha_optics/ . . . . . . figures used in chapter 2
cha_postpro/ . . . . . . figures used in chapter 3
cha_previous/ . . . . . figures used in chapter 4

87

/
thesis.pdf
/source/
DofIj/
exr2txt/
/scenes/
blender-scenes/
pbrt-scenes/
/images/
cha_optics/
cha_postpro/
cha_previous/


A. Content on CD-ROM 88

cha_method/ . . . . . . figures used in chapter 5
cha_results/ . . . . . . figures used in chapter 6
cha_*/*.png . . . . . . images used in the thesis
cha_*/*.pdf . . . . . . PDF-files containing figures
cha_*/*.plot . . . . . . raw files for generating plots with gnuplot
cha_*/*.svg . . . . . . raw files of figures in an editable vector

format

A.5 Papers

Path: /papers/

*.pdf . . . . . . . . . . papers cited and discussed in the thesis

A.6 Applications

Path: /applications/

pbrt-v2/ . . . . . . . . . contains executable files for pbrt and
auxiliary tools

blender* . . . . . . . . . installation files for Blender

cha_method/
cha_results/
cha_*/*.png
cha_*/*.pdf
cha_*/*.plot
cha_*/*.svg
/papers/
*.pdf
/applications/
pbrt-v2/
blender*


Abbreviations

CoC circle of confusion
CPU central processing unit
DoF depth of field
FPS frames per second
GPU graphics processing unit
HDR high dynamic range
LUT lookup table
MLAA morphological antialiasing
MRT multiple render target
MSAA multisample antialiasing
PSF point spread function

89



Bibliography

[1] T. Akenine-Moeller, J. Munkberg, and J. Hasselgren. Stochastic ras-
terization using time-continuous triangles. In Proceedings of the 22nd
ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hard-
ware, pages 7–16, Aire-la-Ville, Switzerland, 2007. ACM.

[2] T. Akenine-Moeller, E. Haines, and N. Hoffman. Real-Time Rendering.
A K Peters, 3rd edition, 2008.

[3] A. C. Barkans. High quality rendering using the talisman architecture.
In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop
on Graphics hardware, pages 79–88, New York, USA, 1997. ACM.

[4] B. A. Barsky and T. J. Kosloff. Algorithms for rendering depth of
field effects in computer graphics. In Proceedings of the 12th WSEAS
international conference on Computers, pages 999–1010, Stevens Point,
Wisconsin, USA, 2008. World Scientific and Engineering Academy and
Society (WSEAS).

[5] B. A. Barsky, D. R. Horn, S. A. Klein, J. A. Pang, and M. Yu. Cam-
era models and optical systems used in computer graphics: Part I, Ob-
ject based techniques. Technical report, University of Berkeley, Cali-
fornia, USA, 2003. URL http://graphics.cs.berkeley.edu/papers/Barsky-
CMO-2003-05/.

[6] B. A. Barsky, D. R. Horn, S. A. Klein, J. A. Pang, and M. Yu. Camera
models and optical systems used in computer graphics: Part II, Image-
based techniques. Technical report, University of Berkeley, California,
USA, 2003. URL http://graphics.berkeley.edu/papers/Barsky-CMP-2003-
05/.

[7] B. A. Barsky, D. R. Tobias, Michael J.and Horn, and D. P. Chu. Inves-
tigating occlusion and discretization problems in image space blurring
techniques. In First International Conference on Vision, Video and
Graphics, pages 97–102, University of Bath, UK, July 2003.

90

http://graphics.cs.berkeley.edu/papers/Barsky-CMO-2003-05/
http://graphics.cs.berkeley.edu/papers/Barsky-CMO-2003-05/
http://graphics.berkeley.edu/papers/Barsky-CMP-2003-05/
http://graphics.berkeley.edu/papers/Barsky-CMP-2003-05/


Bibliography 91

[8] B. A. Barsky, M. J. Tobias, D. P. Chu, and D. R. Horn. Elimination
of artifacts due to occlusion and discretization problems in image space
blurring techniques. Graphics Models, 67(6):584–599, Nov. 2005.

[9] M. Bertalmio, P. Fort, and D. Sanchez-Crespo. Real-time accurate
depth of field using anisotropic diffusion and programmable graphics
cards. In Proceedings of the 3D Data Processing, Visualization, and
Transmission, 2nd International Symposium, 3DPVT ’04, pages 767–
773, Washington, DC, USA, 2004.

[10] K. Bjorke. High-quality filtering. In F. Randima, editor, GPU Gems:
Programming Techniques, Tips and Tricks for Real-Time Graphics,
chapter 24. Pearson Education, Amsterdam, 2004.

[11] J. Blinn. Jim Blinn’s Corner: A Trip Down the Graphics Pipeline.
Morgan Kaufmann, 1996.

[12] J. Blinn. Jim Blinn’s Corner: Dirty Pixels. Morgan Kaufmann, 1998.

[13] J. Blow. Mipmapping, part 1. online, Dec. 2001. URL http://number-
none.com/product/Mipmapping,%20Part%201/index.html.

[14] J. Blow. Mipmapping, part 2. online, Jan. 2002. URL http://number-
none.com/product/Mipmapping,%20Part%202/index.html.

[15] R. Bridson. Fast poisson disk sampling in arbitrary dimensions. Tech-
nical report, University of British Columbia, 2007. URL http://people.
cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf.

[16] W. Burger and M. J. Burge. Digital Image Processing An Algorithmic
Introduction using Java. Springer, 2008.

[17] W. Burger and M. J. Burge. Principles of Digital Image Processing:
Advanced Techniques. To appear, 2011.

[18] E. Catmull and J. Clark. Recursively generated b-spline surfaces on
arbitrary topological meshes. In R. Wolfe, editor, Seminal graphics,
pages 183–188. ACM, 1998.

[19] R. L. Cook. Stochastic sampling in computer graphics. ACM Transac-
tions on Graphics (TOG), 5:51–72, Jan. 1986.

[20] R. L. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. In
Proceedings of the 11th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’84, pages 137–145, New York, NY,
USA, 1984. ACM.

[21] F. C. Crow. Summed-area tables for texture mapping. SIGGRAPH
Computer Graphics, 18:207–212, Jan. 1984.

http://number-none.com/product/Mipmapping,%20Part%201/index.html
http://number-none.com/product/Mipmapping,%20Part%201/index.html
http://number-none.com/product/Mipmapping,%20Part%202/index.html
http://number-none.com/product/Mipmapping,%20Part%202/index.html
http://people.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf
http://people.cs.ubc.ca/~rbridson/docs/bridson-siggraph07-poissondisk.pdf


Bibliography 92

[22] J. Demers. Depth of field: A survey of techniques. In F. Randima, editor,
GPU Gems, chapter 23, pages 375–390. Pearson Education, 2004. URL
http://http.developer.nvidia.com/GPUGems/gpugems_ch23.html.

[23] M. A. Z. Dippé and E. H. Wold. Antialiasing through stochastic sam-
pling. In Proceedings of the 12th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’85, pages 69–78, New
York, USA, 1985.

[24] J. Donald. The ultimate depth-of-field skinny. online, Nov. 2002. URL
http://www.dvinfo.net/articles/optics/dofskinny.php.

[25] W. Engel, editor. ShaderX7 – Advanced Rendering Techniques. Charles
River Media, 2009.

[26] W. Engel, editor. GPU Pro – Advanced Rendering Techniques. ShaderX
Book Series. A K Peters, 2010.

[27] C. Everitt. Interactive order-independent transparency. Techni-
cal report, NVIDIA, 2001. URL http://developer.nvidia.com/content/
interactive-order-independent-transparency.

[28] P. Fearing. Importance ordering for real-time depth of field. In Proceed-
ings of the Third International Conference on Computer Science, pages
372–380, Hong Kong, 1996.

[29] J. D. Foley, A. v. Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics Principles and Practice. Addison-Wesley, 1997.

[30] G. R. Fowles. Introduction to Modern Optics. Dover Publications, New
York, 2nd edition, 1989.

[31] A. Glassner. Adaptive precision in texture mapping. SIGGRAPH Com-
puter Graphics, 20:297–306, Aug. 1986.

[32] N. Goldberg. Camera Technology: The Dark Side of the Lens. Academic
Press, 1992.

[33] P. Haeberli and K. Akeley. The accumulation buffer: hardware support
for high-quality rendering. SIGGRAPH Computer Graphics, 24:309–
318, Sept. 1990.

[34] E. J. Hammon. Practical post-process depth of field. In H. Nguyen,
editor, GPU Gems 3: Programming Techniques for High-Performance
Graphics and General-Purpose Computation, chapter 28, pages 583–
606. Addison-Wesley, 2007. URL http://http.developer.nvidia.com/
GPUGems3/gpugems3_ch28.html.

http://http.developer.nvidia.com/GPUGems/gpugems_ch23.html
http://www.dvinfo.net/articles/optics/dofskinny.php
http://developer.nvidia.com/content/interactive-order-independent-transparency
http://developer.nvidia.com/content/interactive-order-independent-transparency
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch28.html


Bibliography 93

[35] P. S. Heckbert. Filtering by repeated integration. In Proceedings of
the 13th annual conference on Computer graphics and interactive tech-
niques, SIGGRAPH ’86, pages 315–321, New York, 1986. ACM.

[36] P. S. Heckbert. Survey of texture mapping. IEEE Computer Graphics
and Applications, 6:56–67, Nov. 1986.

[37] P. S. Heckbert. Fundamentals of texture mapping and image warping.
Master’s thesis, Department of Electrical Engineering and Computer
Science, University of California, Berkeley, 1989.

[38] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra. Fast
summed-area table generation and its applications. Computer Graphics
Forum, 24:547–555, 2005.

[39] M. Kass, L. Aaron, and J. Owens. Interactive depth of field using sim-
ulated diffusion on a GPU. Technical report, Pixar Animation Studios,
2006. URL http://graphics.pixar.com/DepthOfField/paper.pdf.

[40] T. J. Kosloff. Fast Image Filters for Depth of Field Post-Processing.
PhD thesis, EECS Department, University of California, Berkeley, May
2010. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-
2010-69.html.

[41] T. J. Kosloff and B. A. Barsky. An algorithm for rendering generalized
depth of field effects based on simulated heat diffusion. In Proceedings
of the 2007 International Conference on Computational Science and its
Applications, ICCSA’07, pages 1124–1140, Kuala Lumpur, Malaysia,
2007. Springer.

[42] T. J. Kosloff, J. Hensley, and B. A. Barsky. Fast filter spreading and its
applications. Technical report, EECS Department, University of Cal-
ifornia, Berkeley, Apr. 2009. URL http://www.eecs.berkeley.edu/Pubs/
TechRpts/2009/EECS-2009-54.html.

[43] T. J. Kosloff, M. W. Tao, and B. A. Barsky. Depth of field postpro-
cessing for layered scenes using constant-time rectangle spreading. In
Proceedings of Graphics Interface 2009, pages 39–46, Toronto, Canada,
2009.

[44] M. Kraus. Quasi-convolution pyramidal blurring. In Proceedings of
the Third International Conference on Computer Graphics Theory and
Applications, GRAPP 08, pages 155–162, Funchal, Madeira, Portugal,
2008.

[45] M. Kraus and M. Strengert. Pyramid filters based on bilinear inter-
polation. In Proceedings of the Second International Conference on

http://graphics.pixar.com/DepthOfField/paper.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-69.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-69.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-54.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-54.html


Bibliography 94

Computer Graphics Theory and Applications, GRAPP 2007, pages 21–
28, Barcelona, Spain, Mar. 2007. INSTICC – Institute for Systems and
Technologies of Information, Control and Communication.

[46] M. Kraus and M. Strengert. Depth-of-field rendering by pyramidal im-
age processing. Computer Graphics Forum, 26(3):645–654, 2007.

[47] J. Krivánek, J. Zára, and K. Bouatouch. Fast depth of field rendering
with surface splatting. In Computer Graphics International, CGI 2003,
pages 196–201, Tokyo, Japan, July 2003. IEEE Computer Society.

[48] W. Lance. Casting curved shadows on curved surfaces. In Proceedings
of the 5th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’78, pages 270–274, Atlanta, Georgia, USA,
Aug. 1978. ACM.

[49] S. Lee, G. J. Kim, and S. Choi. Real-time depth-of-field rendering using
splatting on per-pixel layers. Computer Graphics Forum (Proc. Pacific
Graphics’08), 27(7):1955–1962, 2008.

[50] S. Lee, E. Eisemann, and H.-P. Seidel. Depth-of-field rendering with
multiview synthesis. ACM Transactions on Graphics (TOG), 28(5):
1–6, 2009.

[51] S. Lee, G. J. Kim, and S. Choi. Real-time depth-of-field rendering using
anisotropically filtered mipmap interpolation. IEEE Transactions on
Visualization and Computer Graphics, 15(3):453–464, 2009.

[52] S. Lee, E. Eisemann, and H.-P. Seidel. Real-time lens blur effects and
focus control. ACM Transactions on Graphics (TOG), 29(4):65:1–65:7,
July 2010.

[53] J. McCormack, J. M, K. I. Farkas, N. P. Jouppi, and R. Perry. Simple
and Table Feline: Fast Elliptical Lines for Anisotropic Texture Mapping.
Technical report, Western Research Laboratory, Palo Alto, Califor-
nia, USA, Oct. 1999. URL http://www.hpl.hp.com/techreports/Compaq-
DEC/WRL-99-1.pdf.

[54] J. L. Michtell, M. Y. Ansary, and E. Hart. Advanced Image Processing
with DirectX9 Pixel Shaders. In F. W. Engel, editor, ShaderX2: Shader
programming Tips and Tricks With DirectX 9, chapter 4, pages 439–464.
Wordware Publishing, Plano, Texas, USA, 2004.

[55] L. Moore. The heat equation and diffusion. Slides, Macquarie University,
Sydney, Australia, 2004. URL http://www.physics.mq.edu.au/~wardle/
PHYS220/heat_eqn.ppt.

http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-99-1.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-99-1.pdf
http://www.physics.mq.edu.au/~wardle/PHYS220/heat_eqn.ppt
http://www.physics.mq.edu.au/~wardle/PHYS220/heat_eqn.ppt


Bibliography 95

[56] J. D. Mulder and R. van Liere. Fast perception-based depth of field
rendering. In Proceedings of the ACM symposium on Virtual Reality
Software and Technology, VRST ’00, pages 129–133, Seoul, Korea, Oct.
2000. ACM.

[57] H. Nguyen, editor. GPU Gems 3: Programming Techniques for High-
Performance Graphics and General-Purpose Computation. Addison-
Wesley, 2007.

[58] P. Perona and J. Malik. Scale-space and edge detection using anisotropic
diffusion. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 12(7):629–639, July 1990.

[59] M. Pharr, editor. GPU Gems 2: Techniques for Graphics and Compute-
Intensive Programming. Addison-Wesley, 2005.

[60] M. Pharr and G. Humphreys. Physically Based Rendering: From Theory
To Implementation. Morgan Kaufmann, 2nd edition, July 2010.

[61] T. Porter and T. Duff. Compositing digital images. SIGGRAPH Com-
puter Graphics, 18:253–259, Jan. 1984.

[62] M. Potmesil and I. Chakravarty. A lens and aperture camera model
for synthetic image generation. In Proceedings of the 8th Aannual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH
’81, pages 297–305, Dallas, Texas, USA, 1981. ACM.

[63] M. Potmesil and I. Chakravarty. Synthetic image generation with a lens
and aperture camera model. ACM Transactions on Graphics (TOG), 1
(2):85–108, Apr. 1982.

[64] F. Randima, editor. GPU Gems: Programming Techniques, Tips and
Tricks for Real-Time Graphics. Pearson Education, 2004.

[65] A. Reshetov. Morphological antialiasing. In Proceedings of the 2009
ACM Symposium on High Performance Graphics, pages 109–116, New
Orleans, Louisiana, USA, Aug. 2009. ACM.

[66] G. Riguer. Real-time depth of field simulation. In W. F. Engel, editor,
ShaderX2: Shader Programming Tips and Tricks with DirectX 9, pages
529–556. Wordware Publishing, Oct. 2003.

[67] P. Rokita. Generating depth-of-field effects in virtual reality applica-
tions. IEEE Computer Graphics and Applications, 16:18–21, Mar. 1996.

[68] T. Scheuermann and N. Tatarchuk. Improved depth of field render-
ing. In W. Engel, editor, ShaderX3: Advanced Rendering Techniques in
DirectX and OpenGL, pages 363–378. Charles River Media, 2004.



Bibliography 96

[69] C. Scofield. 21
2 -D depth-of-field Simulation for Computer Animation.

In D. Kirk, editor, Graphics Gems III, pages 36–39. Morgan Kaufmann,
Jan. 1994.

[70] J. Selan. Using lookup tables to accelerate color transformations. In
M. Pharr and R. Fernando, editors, GPU Gems 2: Programming Tech-
niques for High-performance Graphics and General-purpose Computa-
tion, chapter 24, pages 381–392. Addison-Wesley, 2005. URL http:
//developer.nvidia.com/node/43.

[71] O. Shishkovtsov. Deferred shading in S.T.A.L.K.E.R. In M. Pharr
and R. Fernando, editors, GPU Gems 2: Programming Techniques for
High-performance Graphics and General-purpose Computation, chap-
ter 9, pages 145–166. Addison-Wesley, 2005. URL http://developer.
nvidia.com/node/27.

[72] M. Strengert, M. Kraus, and T. Ertl. Pyramid methods in GPU-based
image processing. In Workshop on Vision, Modelling, and Visualization,
VMV ’06, pages 169–176, Aachen, Germany, 2006.

[73] L. Williams. Pyramidal parametrics. SIGGRAPH Computer Graphics,
17:1–11, July 1983.

[74] T. Zhou, J. X. Chen, and M. J. Pullen. Accurate depth of field simula-
tion in real time. Computer Graphics Forum, 26(1):15–23, 2007.

http://developer.nvidia.com/node/43
http://developer.nvidia.com/node/43
http://developer.nvidia.com/node/27
http://developer.nvidia.com/node/27


Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

Breite = 100 mm
Höhe = 50 mm

— Diese Seite nach dem Druck entfernen! —

97


	Erklärung
	Acknowledgements
	Abstract
	Kurzfassung
	Introduction
	Optical systems and camera models
	Optical lenses
	Snell's law
	Thin lens
	Thick lens
	Compound lens

	Aperture stop
	Depth of field

	Rendering basics and post processing
	Camera projection
	Post processing
	Alpha blending
	Alpha channel
	Over operator
	Premultiplied alpha

	Texture filtering
	Convolution
	Texture magnification
	Texture minification
	Aliasing


	Previous work
	Methods in object space
	Distributed ray tracing
	Accumulation buffer
	Splatting

	Image space methods
	Artefacts
	Single-layer methods
	Multi-layer methods

	Summary

	Proposed method
	Rendering partly occluded objects
	Depth peeling
	Further considerations

	Scene decomposition
	Matting function
	Layer boundaries

	Blurring
	Blending
	Optimisation

	Results and discussion
	Test scene
	Layer matting
	Layer anchor points
	Blurring methods
	Depth peeling
	Ray tracing

	Conclusion and outlook
	Content on CD-ROM
	Thesis
	Source code
	Scene files
	Thesis figures
	Papers
	Applications

	Abbreviations
	Bibliography

