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Abstract

The ability to reliably identify sarcasm and irony in a text can improve the perfor-
mance of many Natural Language Processing systems, including summarization, senti-
ment analysis, etc. The existing sarcasm detection systems have focused on identifying
sarcasm on a sentence level or for a specific phrase. However, often, it is impossible to
identify a sentence containing sarcasm without knowing the context. This thesis aims at
showing the possibilities of sarcasm detection in Amazon product reviews using a deep
neural network. The data set for this project was acquired from the Github repository of
Elena Filatova, who has already done research on collecting sarcastic Amazon reviews.
As the task of irony detection yearns for corresponding algorithms, that can resolve
contextual problems, the approach of using a deep learning model, containing a Convo-
lutional Neural Network and a Long Short-Term Memory Network, was taken. Both can
handle classifying texts highly depending on the context, as they have memory units
to remember already learned words in a sentence. The results have shown that a deep
neural network approach outperforms simpler models in their accuracy. Nevertheless,
the best results have not yet been achieved due to the limit of data size.
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Kurzfassung

Die Fähigkeit, zuverlässig Sarkasmus und Ironie in Texten zu erkennen, kann die Leis-
tung vieler, maschineller Sprachverarbeitungssystemen verbessern. Dazu gehören die
Zusammenfassung von Texten, Sentimentanalyse und weitere Methoden. Bereits exis-
tierende Sarkasmusdetektionen fokussieren sich auf die Erkennung von Sarkasmus auf
Satzebene oder für eine spezielle Textphrase. Allerdings ist es oft unmöglich, einen ein-
zelnen, sarkastischen Satz zu identifizieren, ohne den Kontext eines jenen zu kennen.
Diese Arbeit beabsichtigt, die Möglichkeiten von Sarkasmuserkennung innerhalb Ama-
zon Produktrezensionen mittels eines Deep Neural Networks offenzulegen. Die Daten für
die Realisierung des Projekts wurden vom Github-Repository von Elena Filatova im-
portiert, die sich in ihrer früheren Arbeit bereits mit dem Sammeln von sarkastischen
Amazon-Produktrezensionen beschäftigt hat. Ironiedetektion verlangt nach passenden
Algorithmen, die kontextuelle Probleme lösen können. Deshalb war der erste Denkan-
satz für die Implementierung des Projekts ein Deep Neural Network, das jeweils ein
Convolutional Neural Network, sowie ein Long-Short-Term Memory Network umfasst.
Beide Methoden können Texte möglichst effizient klassifizieren, die sehr vom Kontext
des jeweiligen Textes abhängen, da beide über Speichereinheiten verfügen, um sich be-
reits gelernte Wörter aus dem Text merken zu können. Die Ergebnisse zeigten, dass
Deep Neural Networks die Genauigkeit simplerer Modelle übertreffen können. Nichts-
destotrotz, bessere Resultate konnten durch den Mangel an Daten noch nicht erzielt
werden.
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Chapter 1

Introduction

Artificial Intelligence (AI) offers a broad range of areas to research in, Machine Learn-
ing (ML), Deep Learning (DL) and Natural Language Processing (NLP) being the main
fields. Machine learning is defined as a set of statistical techniques for problem-solving,
being applied to a wide variety of problems, such as vision-based research, fraud detec-
tion and price prediction, whereas Deep learning denotes a subarea of ML and defines an
extension of Neural Networks. Deep learning algorithms are able to deal with NLP tasks
as well but are mainly applied to vision-based classification problems. Recurrent Neural
Networks (RNNs), Convolutional Neural Networks (CNNs) and Long Short-Term Mem-
ory Cells (LSTMs) belong in the field of deep learning. NLP is a confluence of artificial
intelligence and linguistics. It involves the analysis of written language. Specific textual
features could be investigated by performing Sentiment Analysis or information extrac-
tion on a text. The following figure illustrates the relationship between these three main
categories. All three departments intersect and create a subsection of AI. As natural
language processing has a strong linguistics component, the art of understanding lan-
guage can be described as the ability to understand humour, sarcasm, the subconscious
bias in text, and more. Once understood, a machine learning algorithm can be trained
and therefore, automatically discover similar patterns statistically [53].

Investigating the complexity of AI and the power of current machine learning algo-

Figure 1.1: Illustration of the relationship between the Artificial Intelligence fields Ma-
chine Learning, Deep Learning and Natural Language Processing [53]

1



1. Introduction 2

rithms, there seems to be one area of interest to be sparsely elaborated by now. This
area is located within NLP and to be more exact, within Opinion Mining and Senti-
ment Analysis. Besides recognizing the either positive, neutral or negative polarity of
a textual utterance, or identifying the emotion of an author of specific texts, there is
rather high feasibility of detecting sarcasm in written paragraphs.

Sarcasm is defined by the online dictionary Merriam-Webster as “a sharp and often
satirical or ironic utterance designed to cut or give pain” [51]. The term can be traced
back to the Greek verb “sarkazein”, which initially meant “to tear flesh like a dog”.
Especially on social media platforms, the possibility of being misunderstood by others
is responsibly high. As the information on these platforms is primarily delivered in
a textual form, audiovisual features of sarcastic utterances can not be perceived by
the counterpart. Irony detection is applied within a specific area of Sentiment Analysis.
Though, sarcasm itself is mainly relying on the tone of voice when being adopted within
a majorly ordinary conversation and claiming the right set of features to recognize it
within a text, seems to be challenging. Understanding sarcasm in online posts had been
a significant factor holding back monitoring tools in the past years. Sarcasm detection in
product reviews is primarily useful for automatic classification and sequencing of ratings
as various goods could be more easily ranked according to seriously given critiques. This
would enhance product representation for a numerous amount of businesses globally.

Some features of a speaker’s tone of voice can be adapted within textual utterances
as well. Colloquial, sarcastic writing style can involve an excessive usage of vowels in
a word. Overexaggerating sentiment in a sentence could look the following way: “Oh,
I just loooooove how you can speak about World War II in such a positive way!!!”
This example also illustrates how applying exclamation marks can add to overstating
the usual meaning of a written phrase. Further addressing the subject matter, people
adhering to sarcasm usage can be unveiled by inspecting contradictory word or predicate
handling in their sentences. “I admire your way of disrespecting my authority.” gives the
reader a line on ironic sentiment in the same way, as “admiring” something contradicts
with “disrespecting” someone. Not to mention, that there are various persons not being
able to understand sarcasm despite a sentence applying these features, depending on
the age, the overall knowledge and the level of distinctive humour of the recipient.

Sarcasm detection investigates the pragmatic features of an online text on one side.
Pragmatic features are, for instance, the usage of negations, as internal propriety of an
utterance. Considering such an example can help to detect the disparity between the
literal and the intended meaning of an utterance [20]. Another feature would be the
appearance of positive or negative tempered emoticons. There, the adequacy of their
usage can be discovered by analyzing the sentences’ polarity. While there are various
other pragmatic characteristics, the next areas of interest are the lexical or linguistic
cues used in an utterance. Linguistic features can be related to word exposure and
use, that represents the relative frequency of occurrence and use for specific words,
such as spoken word frequency, semantic diversity, and age of acquisition [38]. Besides
that, hashtags can also be used to determine the sarcastic meaning of a sentence. The
existence of hashtags enables a simple collection of sarcastic data from websites such as
Twitter or Reddit. On these platforms, the application of hashtags to express emotion
is common and done regularly [31].

In machine learning, the procedure of sarcasm detection operates in the following
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manner. Once a machine understands a text, the insights of analyzing its components
have to be unveiled. The simplest way to do this is by quickly looking at available
data, and analyzing it the way a human would parse its features, such as using smiley
faces for expressing emotions. Subsequently, a model can be built to perform such a
task automatically. This work considers the boundaries of detecting irony, or sarcasm,
within textual utterances, regarding specific features used, in online product reviews, or
to be more exact, in reviews written on the online shopping platform and book trading
company Amazon. Methods of achieving satisfiable results through machine detection
are characterized and defined throughout this research.

In the following few chapters, a detailed explanation of the process of detecting sar-
casm in online product reviews is given. Chapter 2 discusses the related work in terms of
sarcasm recognition, chapter 3 outlines the details of the research, including theoretical
insight into the model structure, chapter 4 sets out the architecture, implementation
and achieved results, and chapter 5 discusses the results and draws conclusions. The
following two sections will focus on the definite purpose of the research, as well as on
the chosen methodology.

1.1 Purpose of the Research
The ability to recognize irony is, for the most part, an odd feature of any human’s
intellect. Studies have shown, that the sagittal stratum, which is constructed out of
fibre pathways (also called white matter tracts) recumbent on the sides of the brain,
has the most significant impact on the human’s ability to understand sarcasm [13][9].
For this reason, people who have suffered from strokes, and damaged this part of their
control center, seemed to struggle in detecting irony or sarcasm in sentences [34]. The
reason for trying so severe to remodel this part of the brain within a machine model is
the following.

Sarcasm detection has gained reasonable attention in recent times. The change of
categorizing media, according to sentiment, has consistently evolved through Sentiment
Analysis. Despite, only common sentiments, such as happiness, sadness, anger or neu-
trality, are taken into account. One of a few categories missing is sarcasm or irony. The
possibility to classify pictures or videos according to their sarcastic sentiment clears the
track for businesses to offer a more detailed screening of their media’s content.

Regarding the platform Amazon, an especially exciting usage of such an irony filter-
ing system would directly affect the order of product reviews. Highly sarcastic written
reviews could be culled, and more helpful comments would be shown as either highest
or worst, honest product rating. The overall quality of recommended product reviews
could raise. Taken two similar examples of ratings, shown in figures 1.2 and 1.3, of the
exact item, a vast disagreement may be identified. Both ratings are taken from a product
called “Uranium ore” for about $39.95. The two have an equal amount of stars given as
the rating, which is five stars in this case. Figure 1.2 purely shows an honest rating of
an experimental nuclear physicist, who has purchased the uranium and gave his sincere
opinion about the behaviour of the product. The validity of the review is furthermore
endorsed through the tag “Verified Purchase”. Besides, figure 1.3 represents a well ob-
servable instance of a sarcastically-intended product review. It is indeed highly doubtful
that a coworker would confuse uranium with liverwurst, as a consequence consume it
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Figure 1.2: Positive, earnest rating of a product on Amazon [63]

Figure 1.3: Positive, sarcastically meant rating of a product on Amazon [64]

and therefore result in glowing in the dark. One will notice, that the verification tag
for a valid purchase is missing on this review. Accordingly, apart from a distinction of
the star rating and the meaning of a review, inspecting the verification of a purchase is
another hint for the presence of irony. A realistic assumption about a product can most
times only be given when there is actual proof of the product being bought from the
critic.

Regarding an additional utilization of a sarcasm detection tool, the online platform
Twitter is emphasized. Various posts and tweets, meaning online entries on a social
media platform, are published on a daily basis. Several entries deal with the circumstance
of being sarcastic. Unluckily, a few relate to topics such as bomb threats, assaults, and
other sensitive topics. At that critical point, the secret service considers recognizing
serious threats improbable. Automatic tools try to trace down the source of written
dangers online, but none can accurately differentiate between serious or ironic texts
[42]. This circumstance introduces a new gap of sarcasm detection, which is cybercrime
control. Regarding such, the most straightforward way to get caught posting a bomb
threat seems to be offered by the transparency of the social media platform Twitter.
Figure 1.4 demonstrates one particular usage of sarcasm in an online text, where, for
the sincere reader of it, it might not be entirely clear at the beginning, that this post is



1. Introduction 5

Figure 1.4: Demonstration of a sarcastic post on Twitter [49]

meant to be sarcastic. There is no hint of sarcasm, as no overly emphasized words are
used, nor is the hashtag #sarcasm provided. The obvious way to identify this tweet as
sarcastic is by the overall nature of the author’s profile. The profile name clearly states
that all of the author’s posts will be sarcastic. Nevertheless, there can always appear an
exceptional case. In this case, it is rather hard to say, which features a machine would
investigate to detect sarcasm. In the course of this work, a more detailed insight will be
given into this issue.

The major problem this work aims to solve, is in general, up to what extent it is
possible to push the boundaries of sarcasm machine detection. Thus it appears that the
overall definition of a boundary has to be tracked down, concerning sarcasm recognition
in written text. This work fields the question if a deep learning model is capable of
outperforming standard machine learning models, such as Support Vector Machines
(SVMs) or Logistic Regression (LR) models, and if not, is there a need for a deep
structural model at all. As of now, various approaches of sarcasm detection algorithms
do exist, as further depicted in chapter 2. Those papers discuss the relevance of such a
tool and define the accuracy of all their models in the end. As can be seen in chapter
2, the overall results of the models achieve around 79 to 82 percent accuracy for the
irony detection task, majorly in tweets or reviews. The goal of this research is to result
in higher accuracy than concurrent research outcome and exploit the limits of sarcasm
recognition within a machine.

To fill the gap of this recently researched topic, distinct modest and deep learning
structures shall be trained and evaluated to investigate performance fluctuation. For
this reason, the methodology will be amplified in section 1.2.

1.2 Methodology
As already stated, a potential accuracy gain and the boundaries of sarcasm detection
are the key areas this paper addresses. Therefore, thorough research compasses the
evaluation of specific work, comprising sarcasm in text and particularly in product
reviews. Jain, Ranjan and Baviskar [19] formerly achieved a satisfying percentage of
accuracy in their research using light models, such as SVMs and LR structures. This
work strives to outperform the simple approaches and gain higher accuracy by training
a Deep Neural Network (DNN) architecture.

This work acts as a balanced combination of a qualitative and quantitative research
method. Besides steeping into the broad spectrum of sarcasm detection within a text,
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Figure 1.5: Extract of Elena Filatova’s Sarcasm Corpus showing a sarcastic entry [12]

a more qualitative approach of informing about the specific task of recognizing such
within product reviews is followed. A vital difference to sarcasm recognition, in general,
is given by the presence of star rating, particularly in product ratings or the tag of the
purchase being verified. During this research, the star rating is carefully looked at, as the
utilized data, further described in section 1.2.1, does not contain any information about
the purchase validity. The guarantee of the star rating providing a satisfying solution
to sarcasm detection in a review is constituted by the case, that a low number of stars
given, alongside an overall positively written review, appears to indicate the presence
of irony. Potential throw-outs that do state a positive sentiment in the review have a
five-star rating as well but do indicate sarcasm, are labelled in the data set as sarcastic
anyway and do therefore not affect the outcome on a large scale.

1.2.1 Sarcasm Corpus
The data retrieved for the specific task of sarcasm detection is obtained by the research
of Elena Filatova [12] during her studies at the Fordham University in New York. The
corpus comprises a multitude of Amazon products, separated into sarcastic (or ironic)
and regular reviews. The labelling of the reviews was accomplished by workers of the
service Amazon Mechanical Turk (MTurk). This data set is chosen because of the ex-
tensive labelling and the presence of specific information, such as the star rating, which
may give additional certainty for sarcasm detection. In figure 1.5, an example of a sar-
castic data entry can be seen. The corpus was generated in 2012, and although the work
is somewhat obsolete, the data collected is still useful for training and testing a model
for the task of detecting sarcasm. The quirks of sarcasm may not appear to change over
time. Thus the validity of the deep neural network will not be affected.
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Figure 1.6: Elementary structure of the sarcasm detection DNN [14]

1.2.2 Deep Neural Network
After obtaining the corpus’s reviews, a next step is to categorize them as sarcastic or
non-sarcastic. Sarcasm can further be indicated by changing sentiment polarity between
sentences. Thus the model for categorizing the reviews shall be time-sensitive. Ghosh
and Veale [14] have conducted a research on building a deep neural network for sarcasm
detection on Twitter. Figure 1.6 shows a rough structure of their model. As can be seen
in the illustration above, the first layer of the model is an input layer, strictly followed
by one of the main components in the structure, the word embedding layer. Word em-
beddings are a specific type of document vocabulary representations. They are capable
of capturing the context of a word in a document. The same applies to semantic and
syntactic similarity and the relation with other words. Loosely speaking, they represent
a particular word in a vector [48]. Next, there is a two-layer CNN, being responsible
for reducing the frequency variation through convolutional filters and extracting dis-
criminating word sequences as a composite feature map for the trailing LSTM units.
In between, there is a dropout layer, which shall avoid the overfitting problem to an
extent. The output of the LSTM layer is further passed to a fully connected dense layer.
It produces a higher-order feature set based on the LSTM outcome, which is readily
separable for the desired number of classes. Finally, a softmax layer appears at the bot-
tom of the network. Using this deep configuration and comparing it to lightweight ones,
favorable results are expected.

1.2.3 Results
The results achieved during this work, using a deep learning model composed of sev-
eral neural network layers, will be compared to actual results of more trivial machine
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learning models, that state about 79 to 82 percent accuracy. If the formerly trained
deep neural network is then later evaluated, a difference in the percentage rate shall
be identified. Besides, the aggregate disparity of the different models shall be at least
one percent, to imply a drastic change in performance, therefore either innovation or
stagnation. The resulting limits of sarcasm detection, by the machine as well as by the
human, will then be compared to other research papers, dealing with the boundaries
in both parties. Rather than conducting an extensive survey process totalling this re-
search study, the existing research outcome will be used to gather information about
reasonable limitations of sarcasm detection by humans. Notwithstanding that a DNN
model may be an exorbitant choice for this problematic task, issuing typical machine
learning complications such as overfitting or possessing sparse data, and simpler models
may yield improved results, alternative findings might be revealed at the end of this
research.



Chapter 2

Related Work

The task sarcasm detection has been tackled a considerable amount of times in the
ML sector. Traditional models employ discrete features to address the task. This paper
investigates the possibilities of implementing deep neural network sarcasm detection
systems. In particular, the effect of Convolutional Neural Network and Long Short-
Term Memory algorithms is examined.

Research shows that sarcasm detection has become a requirement for various busi-
nesses. The Telegraph [29] states that online abuse has become a scourge of social media
companies. As of now, Artificial Intelligence aims to understand the context of posts in
order to avoid extremist messages, bullying or national threat. On social media, every
textual post tends to communicate a particular feeling, be it expressing an emotion itself
or simply handing out one’s opinion. Especially in the last case, various forms of sar-
casm are used to converse by messages. Deep Learning was first utilized to understand
distinct sentiments from a text. Since then, Natural Language Processing systems apply
sentiment analysis for classifying text according to positive and negative polarity [52].
Sarcasm mostly delivers vague signals to language processing systems and contextual
meaning enacts a major part in detecting such.

The following sections will discuss sarcasm detection in various areas, beginning
with the presence of sarcasm on social media, to the actual problem of its occurrence in
product ratings. Different approaches will be tackled, and the problems of sarcasm will
be elaborated.

2.1 Sarcasm Detection in Social Media
Sentiment detection plays a ground role in natural language processing. Though joy,
sadness, fury and enthusiasm can be adequately categorized within texts, sarcasm de-
tection remains a challenging aspect in this field. A paper written by MIT researchers
[11] informs about their created algorithm, that can translate the tone of social me-
dia posts. Therefore, it can understand when someone is sarcastic. This detection is
especially useful because of its ability to consider emojis. The emotional subtext is un-
derstood, and sarcasm usage can be identified. Their application is called DeepMoji. In
their paper, they analyzed 1.2 billion tweets to understand how 64 favored emojis are
used to convey meaning. The system was first trained to recognize sadness, happiness or

9
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fun. Given the context, the system was applied to understand and interpret the feeling
behind texts. The accuracy of 82 percent correctly perceived sentiment demonstrates
the reliability of this algorithm, notably because it was outperforming human volun-
teers having 76 percent accuracy state. The paper describes a variant of the LSTM
model. DeepMoji handles an embedding layer of 256 dimensions, projecting each word
into a vector space. A hyperbolic tangent activation function enforces a constraint of
individual embedding dimensions being within [−1, 1]. Two bidirectional LSTM layers
with 1024 hidden units and a superincumbent attention layer using skip-connections
complete the deep neural network. The attention mechanism lets the model decide on
the importance of each word by weighing them when constructing the depiction of the
text.

Bamman and Smith [2] conducted a research in the field of contextual sarcasm de-
tection on the social media platform Twitter. Though sarcasm detection as an everyday
text classification task provides considerable accuracy, it should not entirely ignore the
context beyond a sarcastic utterance’s surrounding. They decided to device the available
features into four classes comprising tweet features, author features, audience features
and environment features. Tweet features included linguistic indicators, such as word n-
grams, and sentiment-related aspects. The author features mainly comprised historical
data of the author and profile information. Audience features described the ones re-
lated to the interaction of the author with the audience. Lastly, environmental features
characterized the interaction between a tweet, and the particular tweet it is responding
to. The experimenters discovered that the tweet’s author historical striking terms were
the most significant indicator of sarcasm, with an accuracy of 81.2 percent, using a LR
model. In contrast to that, single tweet features score with 75.4 percent class accuracy.
Nevertheless, a combination of both feature classes results in an accuracy percentage of
84.9. Combining all of the features did not significantly increase accuracy.

Liebrecht et al. [26] worked on an entirely different approach during their work at the
Centre for Language Studies of the University in Nijmegen, Netherlands. The researchers
collected a training corpus of 78 thousand tweets in the Dutch language containing
the hashtag #sarcasme, the Dutch word for sarcasm. The data collection for this task
resulted in a set of 77,948 tweets. Entries were tokenized and stripped of punctuation.
A ML classifier was trained on the harvested examples and applied to a test set of a
day’s stream of 3.3 million Dutch tweets, of which 135 carried the hashtag #sarcasme.
Using this trained system, they were able to detect 101 (75%) unmarked tweets out
of 135 explicitly marked ones. In their paper they claim that sarcasm is signalized by
hyperbole, using intensifiers and exclamations. They hypothesize that explicit markers,
hashtags in this particular case, are the digital extralinguistic equivalent of people’s
nonverbal expressions when conveying sarcasm. In their work, they made use of word
uni-, bi- and trigrams as features for training the system. As the major classification
algorithm, they utilized the Balanced Winnow method [27]. This particular algorithm
seems to offer state-of-the-art results in text classification and produces weights, that
can be used to, for instance, inspect the highest-ranking features for a class label. The
research paper also argues that the detection of sarcasm is crucial for the development
and refinement of sentiment analysis systems, but at the same time a conceptual and
technical challenge. To evaluate the outcome, the group performed two evaluations. The
first one focusing on 135 tweets being explicitly labelled, posted on February 1, 2013,
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was measured by the True Positive Rate (TPR), the False Positive Rate (FPR), also
known as recall, and the Area Under the Curve (AUC). The AUC is an evaluation
metric, argued to be more resistant to skew than the general F-score, due to using TPR
instead of precision [10]. The researchers found to reach an AUC value of about 0.79
when using their trained ML system on their dedicated Twitter corpus.

Maynard and Greenwood [28] follow an almost identical approach, besides identi-
fying multiple hash marks. In addition to the hashtag #sarcasm, indicators such as
#notreally are determined and added to their list of sarcasm indicators. Due to these
constraints, they developed rules for recognizing sarcasm using various hashtags. For
this reason, the hashtag #sarcasm does not have to be present in every tweet, a com-
bination of other hash marks, such as #great #notreally, can be identified as having
a sarcastic tone as well. Using their method, they were able to achieve a precision of
74.58 percent.

Lastly, Bharti et al. [3] claim that opinions posted on social media can be classified as
positive, negative and neutral, and that a positive sentiment can further be classified as
actual positive or sarcastic. The same scheme applies to negative sentiment. For training,
50,000 tweets were collected containing the sarcasm hashtag from Twitter. To test their
first algorithm, which is a Parsing Based Lexical Generation Algorithm (PBLGA), 1,500
random tweets containing the hashtag, and 1,500 random tweets without it, were used.
To test the second algorithm, called the Interjection Word Start (IWS) algorithm, 1,000
tweets containing the hashtag, and 2,500 tweets without the explicit marker, were used.
In this case, both sets start with an interjection word. After preprocessing the data
and training the algorithm, the researchers achieved a precision of 0.89 percent in case
of the PBLGA containing sarcastically labelled tweets. Regarding the IWS algorithm,
they achieved a precision percentage of about 0.85, containing tweets with the sarcasm
hashtag.

2.2 Sarcasm Detection in Product Reviews

Researchers at The Hebrew University in Jerusalem, Israel [39] worked on a semi-
supervised recognition system for sarcasm in online product reviews. Tsur and Rap-
poport claim that the identification of sarcastic reviews can “improve the personaliza-
tion of content ranking and recommendation systems”. Their model SASI is short for
“Semi-supervised Algorithm for Sarcasm Identification”. The algorithm employs a novel,
semi-supervised pattern acquisition model for identifying sarcastic patterns on one side,
and a classification algorithm classifying each sentence on the other. The data used was
an extensive collection of Amazon user reviews, covering 66,000 of such, for different
types of products. A set of features further used in feature vectors was extracted from
the given, labeled sentences. They utilized the syntactic and pattern-based features.
In addition to the pattern-based features, punctuation-based features were considered
as meaningful. The researchers approached a k-nearest neighbors (kNN)-like strategy,
to assign a score to new examples in the expanding test set. The paper outlines the
exploitation of meta-data provided by Amazon, namely the star rating each reviewer
is obliged to provide. In respect of negative product ratings, their baseline classifies
as sarcastic those sentences that exhibit strong positive sentiment. Evaluating pattern
acquisition efficiency, they achieved 81 percent in 5-fold cross-validation.
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Buschmeier et al. [5] analyzed the impact of features for classifying irony in product
reviews. The German researchers modelled the task of irony detection as a supervised
classification problem. They focus on the impact analysis of different features by investi-
gating what effect their elimination has on the performance of the approach. To estimate
the level of irony in a sentence, they investigate the imbalance between the overall po-
larity of words in the review and the star-rating given for the particular product, as a
first feature. The hyperbole [25] indicates the occurrence of a sequence of three positive
or negative words in a row. The next feature describes, that up to two consecutive ad-
jectives or nouns in quotation marks have a positive or negative polarity. Likewise, if
there exists a span of up to four words containing at least one positive (negative) but no
negative (positive) word and ends with at least two exclamation marks or a sequence of
a question mark and an exclamation mark, another feature can be identified [7]. They
investigate the same feature, but with a sentence being surrounded by an ellipsis, in-
stead of ending with punctuation. Another feature comprises the presence of an ellipsis,
followed by multiple exclamations or quotation marks. Analogously, a merge of both is
examined, which is called the punctuation feature. Similarly, interjection features such
as “wow” or “huh”, laughter and emoticons are considered as features. In addition, they
use each occurring word as a feature (“bag-of-words”). For training a ML algorithm,
they used the corpus of Elena Filatova [12], further discussed in section 2.3. For the
machine learning algorithm itself, the group considered Naïve Bayes, SVMs (with a lin-
ear kernel), LR, decision tree and random forest classifiers. In the end, they were able
to achieve 74.4 percent accuracy on the identification task using LR with all features,
including the star-rating.

Jain et al. [19] set their focus on sarcasm detection in product reviews as well.
Again, the corpus of Elena Filatova [12] was used to train and test the machine learn-
ing algorithm. Their training data set was composed of three hundred sarcastic and
three hundred regular entries. For testing, they used a hundred entries of each category.
For preprocessing the data, the rating of the product is scaled, and the review text
is tokenized accordingly. Regarding feature engineering, the research group considered
sentiment, punctuation, each part or sentence of the review, word unigram and bigram
features, and contextual features (such as the absolute difference of the rating of the
product and its normalized sentiment score). For the classification task, they used Naïve
Bayes, a Multi-layer Perceptron (MLP) and an SVM. They distributed their data set
into training and testing set, by splitting it into six hundred reviews for training and two
hundred reviews for testing. Each category, whether sarcastic or regular, is present in
equal proportion within both sets. After extracting the features of each review, the data
are trained on the various classifiers mentioned before, and the subsequent results are
observed. By utilizing the SVM classifier, an accuracy of 81.5 percent could be achieved.

2.3 Sarcasm Detection Data Source

Elena Filatova [12] seems to be the most suitable counterpart when searching for a
sarcasm corpus comprising product reviews in detail. She worked on creating a sar-
casm corpus, in which its entries serve to be utilized for in-depth study of different
linguistic phenomena that make a text utterance sarcastic or ironic. In contrast to al-
ready existing corpora of Amazon product reviews, her data comprises text documents
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rather than separate sentences, as she believes that providing a context is of vast use for
learning patterns of text utterances containing sarcasm. For better understanding the
phenomenon of sarcasm, pairs of Amazon product reviews were collected, where both
reviews were written for the same product, but express distinct sentiment.

Filatova claims, that in many cases a stand-alone text utterance, such as a single
sentence can not reliably be judged as sarcastic or not without the surrounding context.
For this reason, the question “Where am I?” can not be categorized as sarcastic unless
it is known that it is written within a product review of a GPS device. She argues that
in the absence of a strict definition of irony, it is impossible to train experts who could
reliably identify irony. However at the same time, she is confident that the task of irony
detection seems to be quite intuitive.

For creating a sarcasm corpus, the Amazon service MTurk was assigned the task
to collect data, label it accordingly and therefore ensure the quality of it. The data
set consisted of whole documents and documents pairs of product reviews published on
Amazon. Therefore, the corpus can be used for identifying sarcasm on document and
text utterance level. An entry itself contained the link to the product, the number of stars
assigned, and further components. A dedicated list of instructions has been provided to
the MTurk workers, describing the review structure, contents and shape. Additionally,
for every entry a permalink was obtained, to retrieve the text of the product review
together with supplementary information, such as the number of stars assigned to the
review. Likewise, the labeling of the reviews was needed to test Filatova’s hypothesis
on whether people can reliably distinguish between irony and sarcasm. Labeling was
accurately done for 1,000 pairs of Amazon product ratings, excluding a few reviews
not meeting the requirements. The size of the texts varied from a phrase to a whole
document. After the data cleaning procedure, the corpus remains with 1,905 documents,
most of the reviews being ironic - non-ironic pairs.

In the second step, data quality control was performed by letting different workers
guess the number of stars assigned to a product by the review author. The goal was
to identify a clear image of which product ratings have been seen as clearly sarcastic
or regular. Lastly, the reliability of every annotator was computed and rated based on
the quality of their previous work. After this particular action, the corpus ended up
having 437 Amazon reviews containing irony, and 817 ones being regular/non-sarcastic.
As expected by the researcher, the majority of the sarcastic reviews are written by peo-
ple assigning low scores to the reviewed products, represented by 59.94 percent of the
audience who submitted a one-star review. Regular reviews were rated with five stars
(about 74 percent). Thus, Filatova assumes that it is easier to find sarcastic reviews
among those who have assigned low scores to products, and on the other hand, that the
chance to find an ironic review among the reviews that assign high scores to a product
is low.
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Number of reviews with
1* 2* 3* 4* 5*

sarcastic 437 262 27 20 14 114
regular 817 64 17 35 96 605

Table 2.1: Number of data entries and their distribution amongst the star rating accord-
ing to their label [12]

Appreciating the work of Filatova, the collected entries in the corpus fit well for training
a dedicated deep learning algorithm. She confirmed that the hypothesis of sarcasm is
often used in those reviews that give a negative score to the product, as well as, that
the presence of irony in a product rating does not affect the readers’ understanding of
the product quality.

2.4 Word2vec

Mikolov et al. [30] proposed two novel model architectures for computing continuous
vector representations of words from vast data sets. They also mention that the quality
of these representations is measured in a word similarity task. Using their model, they
observed substantial improvements in accuracy in much lower computational cost. They
compare different model architectures, where they first defined the computational com-
plexity of a model as the number of parameters that need to be accessed to train the
model fully. The first architecture proposed is the Continuous Bag-Of-Words (CBOW)
model, which they call a Bag-Of-Words (BOW) model, as the order of words in history
does not influence the projection according to their research. The second architecture is
similar to CBOW, but in contrast to predicting the current word based on a context, it
tries to maximize classification of a word based on another word in the same sentence.

Training complexity of the CBOW model is then

𝑄 = 𝑁 × 𝐷 + 𝐷 × log2(𝑉 ). (2.1)

At the input layer, 𝑁 previous words are encoded using 1-of-V coding, where 𝑉 is size

of the vocabulary. The input layer is then projected to a projection layer 𝑃 that has
dimensionality 𝑁×𝐷, using a shared projection matrix. With binary tree representations
of the vocabulary, the number of output units that need to be evaluated can go down to
around log2(𝑉 ). This model, as unlike a standard bag-of-words model, uses continuous
distributed representation of the context.

The training complexity of the second, Skip-gram architecture is proportional to

𝑄 = 𝐶 × (𝐷 + 𝐷 × log2(𝑉 )), (2.2)

where 𝐶 is the maximum distance of the words.

Results have shown that when they train high dimensional word vectors on a large
amount of data, the achieved result vectors can be used to answer very subtle semantic
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Figure 2.1: The novel model architectures by Mikolov et al. The CBOW architecture
predicts the current word based on the context, and the Skip-gram predicts surrounding
words given the current word [30].

relationships between words. This involves examining the relationship of a city and the
country it belongs to. An example of such a relation would be, for example, to classify
“France and Paris” as “Germany and Berlin”. The architecture of both models can be
seen in figure 2.1. The researchers defined a comprehensive test set containing five types
of semantic questions, and nine types of syntactic questions, to measure and verify
the quality of the word vectors. Overall, they used 8869 semantic and 10675 syntactic
questions. The questions in each category were created in two distinct steps. At first,
a list of similar word pairs was created manually, followed by a large list of questions
formed by connecting two word pairs. For example, they made a list of 68 large American
cities and the states they belong to and formed about 2.5K questions by picking two
word pairs at random. The data were composed only of single token words, multi-word
entities, such as “New York”, were not present.

They evaluated the overall accuracy for all question types as a whole, and for each
question type separately. Every question was assumed to be correctly answered if the
closest word to the vector computed, using the above method, is exactly the same as the
correct word in the question. As the models have not yet possessed of input information
about word morphology, reaching 100 percent accuracy was likely to be impossible. The
researchers claim that further progress could be achieved by incorporating information
about the structure of words, especially for the syntactic questions.

These word vector representation models are part of the implementation of Word2vec.
Word vectors with such semantic relationships are already used to improve many ex-
isting NLP applications, dealing with machine translation, the retrieval of information
or the answering of questions in a system. Their work shows that word vectors can be
successfully applied to an automatic extension of facts in Knowledge Bases, and also for
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verification of correctness of existing facts.

2.5 Problems in Sarcasm Detection

Ghosh et al. [15] consider the fact that there is a low success rate in detecting sarcasm
when investigating it in an isolated sentence. In their work, they observe the role of
conversation context for detecting sarcasm in online interactions. In general, context is
indispensable for the efficient recognition of sarcasm in a text. The researchers investi-
gated, that LSTMs that can model both, the context and the sarcastic reply, achieve
better performance than LSTM networks, that read only the reply. In particular, they
reviewed conditional LSTM networks, as well as LSTM networks working on sentence-
level attention, which achieved significant improvement of around 6 to 11 percent in
f1-score. To address another problem, describing the finding of significant text parts in
regard to the context. For this reason, a qualitative analysis of attention weights pro-
duced by the LSTM models with attention was presented and discussed with human
annotators. Attention-based models are able to identify the inherent characteristics of
sarcasm, such as context incongruity.

Wicana et al. [41] claim that currently, researchers largely misled between the linguis-
tic properties of sarcasm and the linguistic properties of sarcasm. Kreuz and Glucksberg
[23] state a theory, in which sarcasm and irony seem to be similar, yet different in that
sarcasm has a specific victim who is the target of a particular mocker. In irony, the
generality is approached, where no one, in particular, is the victim. Amir et al. [1] cling
to the opinion that sarcasm requires a common ground between the distinct parties,
represented by the author and the target, to be understood. Considering this qualifier,
the researchers tried to compute the probability of a relationship between users and
the content it produces by using a mathematical function. Wicana et al. argue that the
inability to make one useful framework of sarcasm detection resides in the fact that
sarcasm itself is extensible to be used for any situation, platform and condition. They
speculate about taking a full step towards this circumstance and re-assessing the defi-
nition of sarcasm itself because the recent definition of sarcasm and irony is different in
the first place.

Regardless of already existing work, the act of explicitly recognizing sarcasm in
product reviews is not approached using a deep neural network algorithm. Considerable
research has already been done regarding the capability of realistic sarcasm detection al-
gorithms. Nonetheless, there is just one scientific article addressing the specific problem
of detecting sarcasm in reviews combining sentiment and rating of such. Considering
this aspect, an unprecedented approach of applying a deep learning model for sentiment
analysis in Amazon reviews will be adopted. The first approach comprises a CNN, as
well as an LSTM network. As far as it has been researched, context is a crucial aspect
of sarcasm detection in text. Word embeddings (or word vectors) are provided as input.
Those vectors generally represent the sentences themselves. Furthermore, max pooling
is applied to the feature maps to generate features. A fully connected layer, followed by
a softmax layer outputting the final prediction, completes the deep neural network.



Chapter 3

Details of the Research

To resolve the research questions enclosed by this work, a principle understanding of
the areas it addresses is needed. This work is located in the largely attractive area
of AI, where applications are implemented for letting a machine think for itself. The
current chapter aims to give an understanding of the basic principles applied in the
implementation part of the research.

3.1 Artificial Intelligence and Machine Learning
Both of the areas, machine learning and deep learning, reside in the supercategory AI.
The online dictionary Merriam-Webster defines artificial intelligence firstly as “a branch
of computer science dealing with the simulation of intelligent behavior in computers”
and secondly as “the capability of a machine to imitate intelligent human behavior” [50].
Those two very similar definitions do not vary much in their meaning. Both describe
the possibility of intelligent human behaviour being imitated by a machine.

3.1.1 Artificial Intelligence
Artificial intelligence enables machines to learn from experience, to process recently ob-
tained information and to handle tasks themselves, that require human-like rationality.
Most applications of AI nowadays seem to be based on deep learning and NLP, where
an extensive quantity of data is processed and specific patterns can be identified by
machines. Artificial intelligence was first characterized in 1956, but has these days just
acquired greater importance, due to evolving algorithms and the improvement of com-
putational power. The revolution of AI over its history begins in the years 1950 to 1970,
when neural networks drummed up enthusiasm for“thinking” machines. From the 1980s
to 2010, machine learning gained importance. Today, the breakthroughs in deep learn-
ing tend to boost the interest in AI algorithms even more. AI automates the learning
through repetition and the discovery of data. It seldom acts as an isolated application,
instead, it upgrades existing implementations to be more intelligent. Multiple hidden
neurons allows the analysis of a greater amount of data and of greater depth [44].

17
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Forms of Artificial Intelligence

AI is on one hand classified into two distinct categories, namely the “weak AI” and the
“narrow AI”. The weak AI addresses systems, which are implemented and trained for
a specific task, such as virtual personal assistants. The other form, also known as the
common AI, describes a system possessing universal human cognitive skills, for it to be
able to find a solution to any occurring problem it may not know about. The Turing
test, contrived by the mathematician Alan Turing in the 1950s, serves as a method to
determine the ability of a computer to think like a human [58].

On the other hand, there is the classification approach of the assistant professor for
integrative biology and informatics Arend Hintze. He categorizes AI into four diverging
types. The first area describes reactive machines, such as the chess-playing mechanism by
IBM. They do not possess their own mind and are not able to evoke experience from the
past. The second type has limited storage and can use it, meaning past experiences, to
finalize decisions for the future. Some of the decision making in automotive driving cars
works in this manner. The second last type describes the native theory, a psychological
term referring to the understanding, that others might have their own persuasions,
desires and purposes, influencing decisions. Hintze refers to this type of AI as a future
type, as it might not exist so far. The last category of AI is self-awareness, where
systems hold a certain level of consciousness to understand their current state and use
this information to witness how others feel [58].

Applications of Artificial Intelligence

Applications of artificial intelligence vary from implementations in the general AI sector,
to more enhanced ones in the machine learning branch. Automation is the process where
a system acts and learns automatically. The Robotic Process Automation (RPA) can be
programmed in such a manner, that it can undertake high volume tasks, which would
normally be conducted by humans. It can automatically adjust to changing situations.
ML is the science of making a computer do a task, without explicitly programming
such for it. Deep learning is a subcategory of machine learning and might be seen as
the automation of predictive analytics. Forms of machine learning applications can be
supervised learning, unsupervised learning or reinforcement learning, which are further
described in section 3.1.2 [58].

Machine Vision (MV) is the science of giving sight to a machine. It principally works
on visual data or information, collected by cameras, analog-digital conversion and signal
processing. It is deployed in several applications, beginning with signature identification
to medical image processing. Lastly, there are Pattern Detection (PD) and the area
of robotics. PD is a branch of machine learning concentrating on the identification of
patterns in data. Robotics is applied in the area of engineering, bringing the development
and production of robots into focus. Such robots are utilized in the automotive sector
or astronautics, to manage work which might be too difficult for a human to undertake.
Most notably, robots for social interaction appear to be strongly worked on [58].
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3.1.2 Machine Learning
Machine learning is defined as a method of data analysis that automates analytical
model building. It is further defined as a branch of artificial intelligence based on the
idea that systems can educate from data, identify patterns and make decisions with
minimal human intervention. The main difference of machine learning to other learning
systems is that the principal goal is to understand the data structure and fit theoretical
distributions to the data that are well understood. Due to the utilization of an iterative
approach to learn from data, the learning of machine learning systems can be easily
automated. The data are long enough fed to a model until a robust pattern is found.
Besides other methods, two of the most widely adopted machine learning methods are
supervised learning and unsupervised learning, further described in the sections below
[45].

Supervised Learning

Regarding supervised learning, data sets are trained using labeled examples. This means,
there exists input, where the desired output is known. In the case of this work, supervised
learning is approached due to the existing data set by Elena Filatova [12]. There, a
piece of data is labeled as ironic, whereas the other piece of data is labeled regular.
The learning algorithm receives a set of inputs along with the corpus and learns by
comparing its actual output with all outputs to find sarcastic reviews. Through methods
like classification, regression, prediction and gradient boosting, the learning method
uses a pattern to predict the values of a label on additional unlabeled data. Supervised
learning is commonly used in implementations, where historical data shall predict future
events [45].

Semisupervised Learning

Semisupervised learning resembles supervised learning to that extent, that both labeled
and unlabeled data are utilized for training. Unlabeled data tends to be less expensive
and takes less effort to acquire. This learning type can be used with methods such as
classification, regression and prediction. It is especially useful when the cost associated
with labeling is too high to allow for a fully labeled training process [45].

Unsupervised Learning

Another popular learning method is called unsupervised learning. It is used against
data that has no labels. The algorithm is obliged to find the right answer by itself. The
goal is to explore the data and find a structure within. This method of learning works
well on transactional data, such as when it comes to identifying segments of customers
with similar attributes, who can then be treated similarly in marketing campaigns.
Other applications include self-organizing maps, nearest-neighbor mapping, k-means
clustering and singular value decomposition [45].
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Reinforcement Learning

The fourth type of learning is reinforcement learning, which is often used in robotics,
gaming or navigation. Through this particular learning method, an algorithm discovers
through trial and error which actions yield the greatest rewards. The primary contents
of this method consist of the agent (the learner or decision maker), the environment
(everything the agent interacts with) and actions (what the agent is able to do). The
objective for the agent is to choose actions maximizing the expected reward over a given
amount of time. By following a good policy, the agent can accelerate finding the goal,
which is in this case to learn the best policy [45].

3.2 Deep Learning
Deep learning can be seen as a subcategory between artificial intelligence and machine
learning. It combines advances in computing power and special types of neural networks
to learn complex patterns in large amounts of data successfully. Its techniques are state
of the art for identifying objects in images and words in sounds. At the moment, re-
searches tend to apply these successes in pattern recognition to more complicated tasks,
such as automatic language translation, medical diagnoses and numerous other social
and business problems [45].

3.3 Natural Language Processing
Natural language processing is the manipulation of the human language through a com-
puter program. One of the most popular applications of NLP is the spam identification
in mail communication, where the subject and the text of an email are investigated and
classified into regular or junk mail. Its tasks are the translation of a text, the analysis
of the sentiment in such and speech recognition [58].

3.3.1 Sentiment Analysis
Further, NLP works hand in hand with Sentiment Analysis (SA). Medium defines SA as
the contextual mining of text, identifying and extracting subjective information in the
source material, such as helping a business understanding the social sentiment of their
brand, product or service by monitoring online conversations [47]. It is the automated
process of understanding an opinion about a given subject from written or spoken lan-
guage. It is also known as Opinion Mining. Besides identifying an opinion, these systems
extract attributes of an expression, such as the polarity, the subject and the opinion
holder. Polarity defines whether the opinion of a speaker expresses positivity or nega-
tivity. The subject is the object talked about, and the opinion holder is thus the person
or entity expressing an opinion. Available information over the Internet is continually
growing. Therefore a large amount of data expressing opinions can be gathered online.
Unstructured information could be automatically transformed into structured data of
public opinions with the aid of sentiment analysis. The resulting data can be beneficial
for commercial usage like marketing analysis, public relations, and various other appli-
cations. Considering this fact, it seems to be a valuable method for detecting sarcasm
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Figure 3.1: Illustration of a basic neural network structure [55]

in product reviews [52].

3.4 Deep Neural Networks
Neural networks have proven to outperform other algorithms in accuracy and speed as
of yet. As the name already implies, neural networks consist of several neurons cohering.
Those networks were inspired by the neural architecture of a human brain [55]. A basic
structure of a neural network can be seen in the following image, figure 3.1. A neuron
in the machine learning world is a placeholder for a mathematical function, and its only
job is to provide output by applying the function on the inputs provided. The function
used within a neuron is called an activation function. A layer in a neural network is
nothing but a collection of neurons taking in input and providing output. Inputs to
each of these neurons are processed through the activation functions assigned to the
neurons. A neural network possessing more than one hidden layer is generally called a
deep neural network [55]. The elements of deep neural networks, including the activation
functions, are described in more detail in the following sections.

3.4.1 Activation Functions
The distinct activation functions provide a starting input for neural networks, determin-
ing the output a node will generate. The step function, the sigmoid function, the tanh
function and the Rectified Linear Unit (ReLU) function belong to the most commonly
used activation functions [55]. The most relevant for understanding the work done are
described in chapter 4.

3.4.2 Convolutional Neural Network
CNNs is a form of neural network heavily used in computer vision. The hidden layers
of a CNN are named convolutional layers, pooling layers, fully connected layers, and
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Figure 3.2: Illustration of an RNN structure [18]

normalization layers. Instead of using a simple activation function as input for this
network, convolution and pooling functions are used. Convolution operates either on
two signals (in a 1D space) or two images (in a 2D space), where one acts as an input
signal and the other one (also called the kernel) as a filter on the input, producing
an output. In simplified words, the input signal is multiplied with the kernel to get a
modified signal. On the other side, pooling is a sample-based discretization process. The
goal of pooling is to down-sample an input representation by reducing its dimensions
and allowing for assumptions to be made about features in sub-regions. The two existing
types of pooling are known as max and min pooling. Max pooling is based on picking the
maximum value of a selected region. The opposite is described by min pooling, where
the objective is picking the minimum value of a selected region.

All in all, CNNs are neural networks, consisting of hidden layers having convolution
and pooling functions in addition to an activation function, aiming to introduce non-
linearity [55]. To be more exact, the max-pooling layer takes the maximum of features
over small blocks of a previous layer. The output indicates if a feature was present in a
previous region, but not precisely where. Max-pooling layers allow later convolutional
layers to work on larger sections of the data [24].

3.4.3 Recurrent Neural Network
RNNs are a form of neural network heavily used in the NLP area. In general neural
networks, the input is processed, and an output is generated, without assuming that
two successive input could be dependent on each other. This assumption is undoubtedly
relevant in real-life scenarios. In the case that one wants to predict the next word in
a sequence, dependence on previous observations must be considered. RNNs are called
recurrent because they perform the same task for every element in a sequence. The
output is thus dependent on previous computations [55]. Figure 3.2 shows the structure
and behaviour of an RNN. RNNs reveal a chain-like structure, similar to a sequence or
list. They already succeeded in solving problems such as speech recognition, language
modeling, translation and image captioning [18]. RNNs can be thought of to be networks
containing a memory, capturing information about the calculation process. Nonetheless,
RNNs are limited to looking back only a few steps in practice. Regarding the structure
of an RNN, one can imagine it as a neural network consisting of multiple layers, where
each layer is representing the observations at a certain time. Those networks have shown
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Figure 3.3: Illustration of an LSTM structure [18]

to be greatly successful in NLP, especially in their variant of an LSTM, which is able
to look back longer than the usual RNN structure [55].

The standard RNN was developed by the idea of being able to connect previous
information to the present task, such as a word in a sentence might indicate what the
next word will most probably going to be. Considering a simple language model, a
recent problem of standard RNNs can be shown. If a neural network is trying to predict
the last word in the sentence “the clouds are in the sky”, there is no further context
needed to be assured that the next word is going to be “sky”. Where the gap between
relevant information and the place that a searched-for term is needed, is rather small,
RNNs are able to learn past information. In cases, where more context is needed, such
as in the sentence “I grew up in France... I speak fluent French.”, recent information
suggests the next word to be the name of a language. If the network has to narrow
down to which specific language is needed, more context is required. As a gap grows,
RNNs become unable to memorize past information [18]. During backpropagation, those
networks suffer from the vanishing gradient problem. Such gradients describe values used
to update a neural network’s weights. The vanishing gradient problem occurs when
the gradient shrinks as it back propagates through time. If a gradient value becomes
too small, it does not contribute to the learning effect anymore [54]. The term LSTM
describes one essential type of RNN. It is a particular kind of RNN, which works in an
enhanced manner.

3.4.4 Long-Short Term Memory
LSTMs are specific RNNs, capable of learning long-term dependencies. They were intro-
duced by Hochreiter and Schmidhuber [18] in 1997 and since then refined and popular-
ized by various researchers. Their default behaviour is to remember information for long
periods. As already described, the typical structure of an RNN is a chain of repeating
modules. In standard RNNs, the repeating module corresponds to a single tanh layer
[18]. Figure 3.3 illustrates the functionality of an LSTM. Just like RNNs, LSTMs are

built of this chain-like structure. Other than RNNs, the repeating module consists of
four neural network layers, denoted as a yellow box in the above diagram. The pink
circles represent pointwise operations, such as vector additions. The core idea behind
LSTMs is to obtain a particular cell state. It runs straight down the entire chain, hav-
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ing minor linear interactions. Thus it is facilitated for the information flow to remain
unchanged. Individual gates are able to alter the information in a cell, composed of a
sigmoid neural net layer and a pointwise multiplication operation [18].

To better describe how the information is flowing in an LSTM network, a more
specific explanation is given. In the case of an online review, one would first look at the
rating then determine if other persons thought a product was good or bad. While reading
the review, the human brain subconsciously only remembers important keywords. An
LSTM is able to learn to keep only relevant information to make predictions while
forgetting about non-relevant data. Based on the words remembered, a decision about
the sentiment in the review is made. LSTMs resemble the control flow of RNNs. They
process data passing on information as it flows forward. Operations within the LSTM cell
are used to either keep or forget information. The cell state transfers relevant information
down the sequence chain. The state mimics the memory of the network. The cell state
itself can carry relevant information to following time steps. During the state transfer,
information is added or removed to the cell state via gates. Their goal is to decide which
information is allowed on the cell state. This is achieved by calculating the sigmoid
function, described further later on [54].

All in all, an LSTM consists of a forget gate, an input gate and an output gate. The
forget gate decides which information shall be thrown away. The previous hidden state
and current information are passed through the sigmoid function. The closer an output
value is to 1, the likelier it will be passed on to the next gate. The input gate is utilized
to update the cell state. The hidden state and the current input are also passed to the
tanh function to help to regulate the network. The output of the tanh and the sigmoid
function are multiplied, and the output will decide which information is essential. The
cell state is pointwise multiplied by the forget vector. Afterwards, the input gate output
is taken to do a pointwise addition updating the cell state to new values. Lastly, the
output gate decides what the next hidden state will be. This state is specifically used
for predictions. The previous hidden state and the current input are passed into the
sigmoid function. The newly modified state is then passed to the tanh function. The
tanh output is multiplied with the sigmoid output to decide upon the information that
will be carried by the hidden state. The new cell state and the new hidden state are
then carried over to the next time step, where the cycle starts over again [54].

3.4.5 Proposed Deep Learning Model
Ghosh et al. suggest a deep neural network, composed of an embedding layer, a two-
layer CNN, an optional dropout layer, a two-layer LSTM network, a dense layer and
a softmax layer, for computing any text sentiment detection task. A rough overview
can be seen in figure 3.4. Neural network architectures, such as CNNs, RNNs, and
others have shown excellent capabilities for modelling complex word composition in a
sentence. A sarcastic text can be considered elementally as a sequence of text signals or
word combinations. An LSTM has the capability to remember long distance temporal
dependencies. Moreover, as it performs temporal text modelling over input features,
higher-level modelling can distinguish factors of linguistic variation within the input.
CNNs can also capture temporal text sequence through convolutional filters, which
connect a subset of the feature space that is shared across the entire input. They also
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Figure 3.4: Illustration of the proposed DNN structure by Ghosh et al. [14]

reduce frequency variation and can directly capture temporal text patterns for shorter
texts. However, in longer texts, where temporal text patterns may span across 15 to
20 words, CNNs must rely on higher-level fully connected layers to model long-distance
dependencies. This dependency occurs because the maximum convolutional filter width
for a text is 5. Another major limitation of CNNs is the fixed convolutional filter width,
which is not suitable for different lengths of text patterns and cannot always resolve
dependencies properly. Regarding CNNs, obtaining the optimal filter size is expensive
and corpus dependent, while the LSTM operates without a fixed context window size.
Its performance can be improved by providing better features [14].

Following the proposal of Vincent et al. [40], it can be beneficial to exploit a CNN’s
ability to reduce frequency variation and map the input features into robust composite
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features for using them as an input to an LSTM network. After that, dense layers seem
to be appropriate for mapping features into a more separable space. A fully connected
dense layer, added on top of an LSTM network, can provide better classification by
mapping between output and hidden variables respectively by transforming features
into an output space.

3.5 Understanding Sarcasm
Sarcasm is a linguistic construct in conversations developed by the human race. The
understanding of such a construct is thus dependent on each person itself.

3.5.1 Definition
According to Wicana et al. [41], irony is the use of words to express the opposite of
the literal meaning of a sentence, while sarcasm is defined as having a “bitter, caustic”
tone directed against an individual. When a person is trying to be sarcastic, he or she
is communicating an ostensible message to their opposite, but simultaneously framing
the message with a metamessage, saying something like “I don’t mean what I just said,
I meant the exact opposite” [17].

3.5.2 Psychological Aspects
The Smithsonian Magazine states that sarcasm often seems to exercise the brain more
than sincere statements do. Scientists have monitored the electrical activity of the brain
when exposed to sarcastic statements. They have investigated that brains have to work
harder to understand sarcasm. Learning to understand sarcasm includes developing a
“theory of mind” to see beyond the literal meaning of the words and understand that
the speaker may be thinking of something entirely different.

Many parts of the brain are involved in processing sarcasm, including the temporal
lobes and the parahippocampus. Both are involved in picking up the sarcastic tone of
voice. Researches expose that the left hemisphere of the brain seems to be responsible
for interpreting literal statements. On the other hand, the right hemisphere and both
frontal lobes seem to be involved in figuring out when an utterance is intended to mean
exactly the opposite [8].

3.5.3 Typical Features
The tone of the voice has proven to be a strong indication of sarcasm. Speakers often
use a nasal tone when speaking in a sarcastic manner. This is because they immediately
link sarcasm to disgust. The other manner a sarcastic person uses is called inverse pitch
obtrusion. In other words, a particular word gets stressed at a lower pitch.

Imagining the following example, the process can be more easily understood. The
stress on the word “great” varies depending on whether the speaker acts sarcastic or
sincere: When saying the sentence “Great weather, huh?”, a high pitch implies sincerity,
while a low pitch implies sarcasm usage. Other implications of sarcasm would be the
elongation of words and saying words associated with excitement in a flat tone. The
facial expression also matters when signifying sarcasm. This is why it is oftentimes so
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hard to detect in text. Text cannot convey tone and must rely only on context. Despite
the context, many people cannot understand sarcasm, as a fact of certain parts of their
brain being damaged or unable to recognize sarcastic statements [37].

3.5.4 Human Capacity
Researchers have found that kids pick up the ability to detect sarcasm at a young age.
They showed children short puppet shows in which one of the puppets made either a
literal or a sarcastic statement. The children had thus decided whether the puppet was
friendly or mean. Children as young as 5 were able to detect sarcastic statements quickly
[8].

Autistic people may have trouble understanding sarcasm, because they struggle to
connect context, intention and language, but interpret speech literally. Not being able to
understand sarcasm can also be a sign of dementia. Deterioration in certain parts of the
brain corresponded with an inability to detect lies (or sarcasm). This finding may help
doctors diagnose dementia earlier. Therefore a patient could receive treatment sooner
[37].

3.5.5 Limits of Machine Detection
The two biggest, historical (and ongoing) problems in machine learning appear to be
overfitting (in which the model exhibits bias towards the training data and does not
generalize to new data, meaning that it learns random things when trained on new data)
and dimensionality (algorithms with more features work in higher or multiple dimen-
sions, making understanding data more difficult). One of the most common mistakes
among machine learning beginners is testing training data successfully and having the
illusion of success. The importance of keeping some of the data set separate when testing
models, and only using that reserved data to test a chosen model, is significantly em-
phasized. When a learning algorithm is not working, often the quickest path to success
is to feed the machine more data. However, feeding more data can lead to issues with
scalability, in which we have more data available but less time to learn that data, which
remains an issue. In terms of purpose, machine learning is not an end or a solution in
itself [43].



Chapter 4

Experimental Evaluation

Evaluation of the work takes place after the first results were output by the ML model.
The project work itself consisted of building a model to detect sarcasm in product
reviews, achieved by implementing a logistic regression model on the one hand. The
second model implemented was a deep learning structural model, where the results
should be compared to those of the standard logistic regression one. The reason for
utilizing a more deeply structured algorithm had to be emphasized, and the usefulness
of employing it had to be proved. Before diving into the results and the details of the
evaluation, the project’s structure and architecture are emphasized.

4.1 Architecture
The experimental approach was conducted on the latest version of MacOS, which is
MacOS Mojave1. The version of the utilized browser regarding the project architecture
is Chrome2. The version of the web environment is crucial, since the project code was
implemented and stored on the cloud. The development environment used is further
described in section 4.1.1.

4.1.1 Google Colaboratory and Jupyter
Google Colaboratory is a cloud service based on Jupyter Notebooks. It provides free-
of-charge access to a robust GPU, as well as a runtime fully configured for training
deep learning networks [6]. Before introducing Google Colaboratory, the technology
incorporated within it should be discussed. This technology is called Jupyter Note-
books. Jupyter is an open-source, browser-based tool integrating interpreted languages,
libraries, and tools for visualization [33]. Each Jupyter document is composed of multi-
ple cells, that can be stored locally or on the cloud. Such a cell contains script language
or markdown code. The output of each cell, which can be run individually, is embedded
in the document. Typical outputs include text, tables, charts, and graphics [35].

Google Colaboratory combines the possibilities of writing and executing code in the
same User Interface (UI), while instantly showing every kind of change in the execu-

1version 10.14.6
2version 76.0.3809.132
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tion results after altering any minor part of available code sections. Colaboratory allows
combining code, comments, multimedia, and visualizations in an interactive document,
which can be shared, re-used, and re-worked. Colaboratory works with most major
browsers and is tested with the latest versions of Chrome, Firefox and Safari. Colabora-
tory is entirely free of charge. The main difference to Jupyter, the open-source project
on which Colaboratory is based, is, that Colaboratory allows its users to use and share
Jupyter notebooks with others without having to download, install, or run anything on
their own computer other than a browser. The Jupyter notebooks can be shared via
Google Drive with any desired group of people. Regarding language support, Colabo-
ratory supports Python 2.7 and Python 3.6, preconfigured with the essential machine
learning and artificial intelligence libraries, such as TensorFlow, Matplotlib, and Keras.
When the code in the notebook is run, it is executed in a virtual machine dedicated to
one’s account. After being idle a certain amount of time, the virtual machine is recycled,
due to the maximum lifetime of each machine enforced by the system [46]. Other than
that, Google Colaboratory provides a solid base for creating a runtime efficient deep
learning model, accelerated by GPU, and hosted on the Google Cloud platform.

Carneiro et al. [6] provide a study about the performance analysis of Google Colabo-
ratory as a tool for accelerating deep learning applications. Due to their findings, Colab-
oratory was chosen for implementing the project’s deep neural network. Their objective
was to verify whether it is advantageous using Colaboratory for processing modern deep
learning applications rather than dedicated hardware. Their research states that using
Colaboratory’s accelerated runtime for processing the deep learning applications and
the Graphics Processing Unit (GPU)-centric combinatorial search is faster than using
20 physical Central Processing Unit (CPU) cores. Therefore, it is worth using than, for
instance, a robust server with no GPU, a laptop, or a workstation that needs to be
configured and has a mid-end GPU. Nevertheless, the free-of-charge hardware resources
provided by Colaboratory are not enough to solve demanding real-world problems, but it
is indeed enough for research reasons. For this reason, Google Colaboratory was chosen
over any conventional Integrated Development Environment (IDE), such as PyCharm
or Eclipse.

4.1.2 Python
According to TutorialsPoint, Python is a high-level, interpreted, interactive and object-
oriented scripting language. The language is designed to be highly readable, meaning it
uses English keywords frequently whereas other languages use punctuation. All in all it
has fewer syntactical constructions than other languages. Python is especially present
in the Web Development Domain and described as a must for specialists working in this
field. Python is a language processed at runtime by the interpreter. Therefore there is
no previous compilation of the code obligatory. This is similar to the coding languages
Perl and PHP: Hypertext Preprocessor (PHP). Python applies coding interaction, where
a user can sit in front of the Python prompt and directly interact with the interpreter.
Furthermore, the language supports Object-Oriented Programming (OOP), allowing to
encapsulate program code within objects. Lastly, it is a beginner’s language, easy to
learn, mainly due to the full range of applications from simple text processing to game
architecture design [61].
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Python, Python 3 specifically, is the most recent and popular coding language for
neural network and modern machine learning applications. It has a wide range of avail-
able libraries and frameworks for implementing AI software, many of these tackling the
different layers of neural network creation, such as TensorFlow, Keras and Scikit-Learn.
In combination with those libraries, the choice for a fitting programming language and
version was fixed on Python 33. It is currently the most updated and likewise stable
version on the market.

4.1.3 Keras and TensorFlow
Keras is a so-called Application Program Interface (API), written in Python and capable
of running on top of the libraries TensorFlow, Microsoft Cognitive Toolkit (CNTK),
or Theano. Keras is particularly designed for deep learning problematics and allows
for simplified and accelerated prototyping through user-friendliness, modularity, and
extensibility. The interface support CNNs, as well as RNNs, and combinations of both.
Additionally, it seamlessly runs on CPU and GPU. Keras follows best practices for
reducing cognitive load, by offering consistent and simple APIs, minimizing the number
of user actions required for common use cases, and providing clear feedback upon user
error. In Keras, neural networks, cost functions, activation functions, optimizers and
regularization schemes are all standalone modules, creating a new model when combined
[21].

As a backend engine, the engine TensorFlow was installed. TensorFlow is an end-
to-end open-source platform for machine learning. It allows easy building and training
of machine learning models using intuitive high-levels APIs like Keras. Python develop-
ment is possible on CPU, GPU and Tensor Processing Unit (TPU). TPUs describe a
chip technology, particularly created for TensorFlow by Google, to accelerate the pro-
cess of machine learning. TensorFlow’s high-level APIs are based on the Keras API
standard for defining and training neural networks. Keras, therefore, enables fast pro-
totyping, state-of-the-art research, and production [60]. Minding the installed Python 3
version, being the latest version on the market, Keras’s latest version4, and TensorFlow’s
supported version5, were installed.

4.1.4 Scikit-learn
Scikit-learn is described as the gold standard of ML. Additionally, it provides a wide
selection of supervised and unsupervised learning algorithms. Similar to those men-
tioned above, its core API design revolves around being easy to use, powerful, and still
maintaining flexibility for research endeavours. Scikit-learn is built on top of several
common data and math Python libraries, simplifying the process of integrating between
them all. Scikit-learn offers implementations of the libraries NumPy, SciPy, Matplotlib,
IPython, Sympy, and Pandas. They all offer different application foci, such as matrix
operations, scientific computing, data visualizations, data manipulation, or data anal-
ysis. The framework’s robust set of machine learning applications include Regression

3version 3.7.2
4version 2.2.5
5version 1.14.0
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for fitting linear and non-linear models, Clustering for unsupervised classification, De-
cision Trees for both classification and regression tasks, Neural Networks for end-to-end
training also in both tasks, SVMs for learning decision boundaries, and Naive Bayes for
probabilistic modelling. In contrast to other existing libraries, Scikit-learn provides fea-
ture manipulation methods, outlier detection and model validation [59]. The two most
interesting methods for this project implementation, therefore, are cross-validation and
hyperparameter tuning.

Regarding the already used versions of TensorFlow and others, Scikit-learn’s latest
version6, was chosen for programming. Instead of providing as many features as possible,
the project’s goal has been to provide solid implementations. Scikit-learn offers a reliable
implementation for creating an efficient ML application.

4.1.5 Natural Language Toolkit
The Natural Language Toolkit (NLTK) is the leading platform for building Python
programs to work with human language data. The framework provides a suite of text
processing libraries for classification, tokenization, stemming, tagging, parsing, and se-
mantic reasoning. Thanks to the comprehensive API documentation, NLTK is suitable
for linguists, engineers, students, educators, as well as researchers. The framework is a
free, open-source, community-driven project [4]. NLTK offers the most important pre-
processing methods for data cleaning and further neural network training. In the case of
the current research, the most valuable methods, for this reason, are Possessive ending
parent’s (POS) tagging, and sentence and word tokenization.

4.1.6 Gensim and Word2vec
Gensim is defined as a Python library utilized for topic modelling, document indexing
and similarity retrieval with large corpora. One of the target audiences is the NLP
community. All its algorithms are memory-independent, which means it can process
input that is larger than the Random Access Memory (RAM) available. The library
also provides efficient multicore implementations of popular algorithms, such as online
Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA), Particle give up
(RP), Hierarchical Dirichlet Process (HDP) or Word2vec deep learning. Gensim can run
LSA and LDA on a cluster of computers [36]. Its easy integration made it possible to
incorporate the library and its application of Word2vec rapidly.

Word2vec contains a group of related models producing word embeddings. The mod-
els provided are shallow, two-layer neural networks trained to reconstruct linguistic con-
texts of words. Word2vec takes a large corpus of text as an input and produces a vector
space with each unique word in the corpus being assigned to a corresponding vector in
the space. Word vectors are positioned in a way, that words that share common contexts
in the corpus are located close to one another in the vector space [30]. The process of
training such a model is further explained in section 4.2.

6version 0.21.3
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Figure 4.1: Extract of Google Colab’s user interface

4.2 Implementation
The implementation of the project’s source code takes place on Google Colaboratory,
within a Jupyter notebook. Regarding the coding style, the project’s needs strived for
a combination of modules and inline, notebook coding. Therefore, an adequate level of
encapsulation was preserved, while interactivity of the user within the notebook is not
ceased. Coding in a Jupyter notebook offers the programmer to visualize results fast
and easy. These were the major reasons why this platform was chosen for the project’s
use case.

4.2.1 Configuration and Usage
In Google Colaboratory, the user has the possibility to program using either Python 2 or
Python 3. The settings can be adjusted in the Colab specific notebook settings, as can
be seen in figure 4.1. The project’s configuration needed to be Python 3. These were all
the settings configured in this case. The needed imports for the project implementation
are displayed below.

1 !pip install q numpy==1.16.4
2 !pip install q matplotlib==3.1.1
3 !pip install q tensorflow==1.14.0
4 !pip install q scikit-learn==0.21.3
5 !pip install q keras==2.2.5
6 !pip install q gensim==3.8.0
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7 !pip install q nltk==3.4.5

Numpy is used for several matrix operations within the program, while Matplotlib is
needed for the learning curve, accuracy and loss visualization. TensorFlow, Scikit-learn
and Keras are the main libraries commonly utilized in DL applications. Gensim is an
open-source toolkit for unsupervised topic modelling and NLP, using modern statistical
ML. This toolkit offers Word2vec, a group of related models that are used to produce
word embeddings. Lastly, NLTK provides a suite of text processing libraries for classi-
fication, tokenization, stemming, tagging, parsing, and semantic reasoning. Within the
program, it is imported for sentence and word tokenization prior to training the neural
network.

1 import nltk
2 nltk.download('punkt')
3 nltk.download('maxent_treebank_pos_tagger')

The above-defined code section describes some obligatory NLTK downloads to ensure
that the used tokenizers within the program implementation work as intended. A last
configurational edit is made through the following code lines.

1 import os
2
3 if not os.path.exists('./model/'):
4 os.makedirs('./model/')
5
6 if not os.path.exists('./src/'):
7 os.makedirs('./src/')
8
9 if not os.path.exists('./images/'):

10 os.makedirs('./images/')

The os library is used to achieve a structured directory tree. The model directory con-
tains all the cached models of neural network training. The source folder comprises the
project’s Python classes and functions. In the image folder, the accuracy and loss plots,
as well as other illustrations, are stored. The whole directory tree is illustrated in fig-
ure 4.2 below. The corpus directory contains all the review entries in differently stored
formats, further described in section 4.2.2. The resources folder is part of the data pre-
processing procedure. The files within, negative-words.txt and positive-words.txt,
are collections of commonly known, either negatively or positively rated words struc-
tured as a list.

4.2.2 Data Fetching
As stated in the sections 1.2.1 and 2.3, the corpus used for evaluating the deep neural
network is the product review data set by Elena Filatova, containing entries labeled
as sarcastic or non-sarcastic. The data set is loaded in the following manner. The ac-
tual Hypertext Markup Language (HTML) review files are stored in the directory called
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corpus/
Ironic/

*.html
*.txt

Regular/
*.html
*.txt

five_labels_plus_stars.xlsx
file_pairing.txt

images/
*.png

model/
*.hdf5

resources/
negative-words.txt
positive-words.txt

src/
data.py
feature.py
model.py
performance.py
review.py

Figure 4.2: Sarcasm detection directory tree

“corpus”. Within this directory, they are split into two different folders, called “Ironic”
and “Regular”. The naming convention relies on an individual, unique product Identi-
fication (ID), for instance 1_1_R280644F3NWFFN.html. Every HTML file is available in
a text file within the same folder, using the identical ID in the file name, besides the
file ending being .txt. Therefore, ironic and neutral product reviews are sorted within
these two separate folders.

Additionally, a text file named file_pairing.txt is defined in this folder structure.
This file describes the order of the review content. For some of the product reviews, a
pair of files exists, meaning that for the same product, one sarcastic review, as well
as a regular review was collected. These reviews are labeled as “PAIR” within the file.
Singular reviews are either labeled as “IRONIC” or “REGULAR”, following the ID of
the file. This labeling is crucial for data set loading, loading the product reviews in
particular. The file file_pairing.xlsx is provided as an addition to the data set by
Filatova, but is not further used in the realization of the project and therefore discarded
in the following steps.

Data structure

First of all, the data entries are analyzed according to their structural components.
Elena Filatova [12] already visualized the distribution of the product reviews in her
research, as can be seen in table 4.1. The total collection of data entries consists of
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Number of reviews with
1* 2* 3* 4* 5*

sarcastic 437 262 27 20 14 114
regular 817 64 17 35 96 605

Table 4.1: Number of data entries and their distribution amongst the star rating accord-
ing to their label [12]

Figure 4.3: Distribution of the product reviews in the training set

437 sarcastic and 817 regularly tempered product reviews. In the table, there is a clear
tendency of one-star rated products being reviewed sarcastically. As opposed to this,
five-star rated product tend to be reviewed neutrally.
The following illustrations in figure 4.3 display the distribution of product reviews

explicitly for the training data set used when training the neural network.
The distribution graphs confirm that 90 percent of the whole product review collection

is used for neural network training. The horizontal axis defines two variables. Variable 0
characterizes the neutral tempered product ratings, variable 1 defines the sarcastic ones.
Figure 4.4 shows the distribution of the number of words used in the product review
descriptions. The average number of words in a product review is approximately 242
words. The minimum number of a typical review is 13 words. The maximum number of
words is 3571. Filatova aimed to collect well-written reviews, poorly written review texts
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Figure 4.4: Distribution of the words in the product review texts

Figure 4.5: Frequency of the most used words in the product review texts

were discarded anyhow. that is why reviews having less than ten words do not exist in
the data set. Figure 4.5 illustrates the occurrence of the most used terms within the data
set. The overall majority of the words being used most of the time are considered stop
words. Stop words are terms that have little meaning for training a neural network.
In this particular case, stop word removal is not performed, as these words do have
a major influence on the context of a sentence. The word “not” would be considered
as a stop word in a sentence, but it could make a significant difference regarding the
comprehension of the sentence’s meaning. The preprocessing is further described in
section 4.2.3.
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Data loading into Colab

The data loading process is simple in Google Colaboratory, nevertheless, it requires
a few tricks to function correctly. Using the Colab specific library google.colab, the
tool offering the opportunity to upload a zipped file is imported. When running a code
section in Colab, also called a cell, the output is immediately printed below this cell.
The output in case of the file upload, therefore, is a dialog, where a specific file can
be chosen from any local directory. In this case, the file was the zipped file data.zip,
comprising the corpus and the resources directory.

1 from google.colab import files
2 uploaded = files.upload()

The next step is to unzip the data folder to continue operating on the neural network
using it. The command %%capture is one of the predefined IPython magic commands,
and has the effect of suppressing the cell output, only giving information about every
individual unzipped file in this particular case.

1 %%capture
2 !unzip data.zip

The content of the zipped file comprises the ironic and regular ID files, as well as the
file pairing text file and the distribution table. The data unpacked is now ready to be
utilized within the Jupyter notebook.

Data loading within the program

In the program code, minor adjustments have to be made, to simplify the reading of the
review files for further data processing. The function generate_sets() contains the
functionality for doing so. There, the function create_data(sizes) is called, where
one can decide on the splitting of training, test and validation data. To have a balanced
split of data sets, the training set was defined to have 90 percent of the complete data,
while the test set was determined to have only 10 percent. As there were only few re-
view entries to train a DNN, the training set is defined to provide a high number of
reviews, to allow the neural network to be successfully trained on a rather high number
of reviews and therefore output desirable results. Yet, a small amount of test data has
to be provided for validating the functionality of the network.

1 # Create review pairing files
2 generate_sets()

To begin with fetching the data entries, the function read_ids(filename) is called,
where the different IDs in the file file_pairing.txt are sorted into related lists. The
following section gives an impression of how the review IDs are ordered in the text file.
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1 PAIR: 34_6_R2WH1O4QVDL3O5 (ironic) 34_6_R2PCIAGT8AVU67 (regular)
2 IRONIC: 14_1_R1MEA9N3D7643N
3 REGULAR: 18_7_R34LXBIHMBM1YY

Using the following program code, these lines can be read in and appropriate, filled
lists are returned by the function. Using codecs.open() the file is read line by line
into a variable. The read-in review IDs are then sorted into corresponding lists, either
describing pairs, individual ironic or individual regular review entries.

1 # 'utf-8-sig' removes leading Byte Order Mark
2 with codecs.open(filename, 'r', encoding=fileEncoding) as ids_file:
3 # Read lines of review pairing file
4 review_raw = ids_file.readlines()
5
6 # Organize entries regarding labeling
7 for raw_id in review_raw:
8 id_parts = raw_id.split()
9 if id_parts[0] == "PAIR:":

10 review_pair.append((id_parts[1], id_parts[3]))
11 elif id_parts[0] == "IRONIC:":
12 review_ironic.append(id_parts[1])
13 elif id_parts[0] == "REGULAR:":
14 review_regular.append(id_parts[1])

All the review IDs returned by the function are then added up to one large, labeled
string list. The function label_set() is just returning a list of ID, label pairs, while
set_to_string() returns a list of string representations for every ID, label pair.

1 # Add up labeled review ids to one large list
2 review_ids = set_to_string(label_set(review_ironic, "ironic"))
3 review_ids += set_to_string(label_set(review_regular, "regular"))
4 review_ids += set_to_string(label_set([r for i,r in review_pairs], "regular"))
5 review_ids += set_to_string(label_set([i for i,r in review_pairs], "ironic"))

A further step involves calling the function divide_data(review_ids, sizes), divid-
ing the data according to their percentages and return a list of lists.

1 def divide_data(data, sizes):
2 # Return a list of list from the data accordingly to the given percentages
3 assert not sum(sizes) > 100
4
5 # Randomly shuffle data using given seed
6 random.seed(44)
7 random.shuffle(data)
8
9 result = []

10 num_sets = 0
11 offset = 0
12
13 # Check for zero in set size
14 for elem in sizes:



4. Experimental Evaluation 39

15 if elem != 0:
16 num_sets += 1
17
18 # Divide the entries within list
19 for num in range(num_sets):
20 if num == num_sets-1:
21 result.append(data[offset:])
22 else:
23 end = offset + round(len(data) * sizes[num] / 100)
24 result.append(data[offset:end])
25 offset = end
26
27 return result

At the beginning of the code section, the percentage distribution is checked on correct-
ness, while right after that, the data set is shuffled using random.shuffle(data). Then,
the data are split into the given percentages, which were 90 percent of the data for train-
ing and 10 percent for testing. The data sections are appended to a list and returned.
Finally, the generated sets are stored in individual files, called training_set.txt and
test_set.txt. The following cell defines the loading of the training and test data into
local Python variables, stored on Google Colaboratory. To load the training-specific IDs,
load_ids() is called.

1 # Load review data
2 pair_ids, ironic_ids, regular_ids = load_ids("training_set.txt")
3 train_ironic_review_ids = load_ironic_review_ids(pair_ids, ironic_ids)
4 train_regular_review_ids = load_regular_review_ids(pair_ids, regular_ids)
5 train_reviews = load_reviews(train_ironic_review_ids, train_regular_review_ids)
6
7 pair_ids, ironic_ids, regular_ids = load_ids("test_set.txt")
8 test_ironic_review_ids = load_ironic_review_ids(pair_ids, ironic_ids)
9 test_regular_review_ids = load_regular_review_ids(pair_ids, regular_ids)

10 test_reviews = load_reviews(test_ironic_review_ids, test_regular_review_ids)

The function load_ids(filename) stores all review IDs into the corresponding list. The
different lists holding review pairs, sarcastic reviews and regular reviews are, therefore,
returned.

1 def load_ids(filename):
2 # Load all review ids into lists
3 if filename == None:
4 print("Filename none")
5
6 pair_ids = []
7 ironic_ids = []
8 regular_ids = []
9

10 # 'utf-8-sig' removes leading Byte Order Mark (BOM)
11 with codecs.open("./corpus/" + filename, 'r', encoding='utf-8-sig') as idsFile:
12 rawReviewIDs = idsFile.readlines()
13 for rawID in rawReviewIDs:
14 IDParts = rawID.split()
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15
16 if IDParts[0] == "PAIR:":
17 pair_ids.append((IDParts[1], IDParts[3]))
18 elif IDParts[0] == "IRONIC:":
19 ironic_ids.append(IDParts[1])
20 elif IDParts[0] == "REGULAR:":
21 regular_ids.append(IDParts[1])
22
23 return pair_ids, ironic_ids, regular_ids

The function load_ironic_review_ids(pair_ids, ironic_ids), as well as the func-
tion load_regular_review_ids(pair_ids, regular_ids), splits the paired IDs, sorts
them and adds them either to the ironic IDs list, or the regular IDs list, and returns
each of these lists at last.

1 def load_reviews(ironic_ids, regular_ids):
2 # Load all reviews into a dictionary
3 review_dict = {}
4 review_dict.update(read_reviews(ironic_ids, "./corpus/Ironic/", ironic=True))
5 review_dict.update(read_reviews(regular_ids, "./corpus/Regular/", ironic=False))
6 return review_dict

The function load_reviews(ironic_ids, regular_ids) loads all reviews, in this case,
either the reviews for the training or the ones for testing, into a dictionary. This is done
by reading the data review by review.

1 def read_reviews(review_ids, folder, ironic):
2 # Return a dictionary containing reviews to the given IDs
3 return {review_id: Review(filename="{0}{1}.txt".format(folder, review_id),

ironic=ironic)
4 for review_id in review_ids}

As opposed, the above function returns a dictionary containing the IDs pointing to
review objects. The program classes needed for understanding are later described in
section 4.2.2. Also, the data preprocessing happens there.

1 # Combine review ids
2 train_review_ids = train_ironic_review_ids + train_regular_review_ids
3 test_review_ids = test_ironic_review_ids + test_regular_review_ids

Lastly, the IDs of all training and testing specific review data entries are combined. This
particular cell has to be run only once for initialization purposes. Summarizing, this cell
creates the two files used for loading the review-specific data within the ML program.

Program classes

The project implementation comprises exactly three classes defining a single object for
review display. All the classes to be described are located in the module review.py.
The first class Review is illustrated and further explained below.
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1 class Review(object):
2
3 HTMLParser = HTMLParser()
4 sentenceTokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
5 wordTokenizer = TreebankWordTokenizer()
6
7 def __init__(self, rawReview=None, filename=None, ironic=None):
8 if filename is not None:
9 self.parse_file(filename, ironic)

10 elif rawReview is not None:
11 self.parse(rawReview, ironic)
12 else:
13 self.product = ""
14 self.title = ""
15 self.text = ""
16 self.stars = 0.0
17 self.author = ""
18 self.date = datetime()
19 self.ironic = None
20 self.wordSpans = []
21 self.wordPolarity = []
22 self.sentenceSpans = []

The class implementation starts with defining an HTML parser. For class internal word
tokenization of the review text, the function TreebankWordTokenizer() is used, the
function invoked by the NLTK library function word_tokenize(). While initializing
the class object, usually the first class method called is parse_file(self, filename,
ironic, fileEncoding=’latin-1’).

1 def parse_file(self, filename, ironic, fileEncoding='latin-1'):
2 with codecs.open(filename, 'r', encoding=fileEncoding) as reviewFile:
3 self.parse(reviewFile.read(), ironic)
4
5 def parse(self, rawReview, ironic):
6 self.ironic = ironic
7 self.stars = float(get_subpart(rawReview, "<STARS>", "</STARS>"))
8 self.author = get_subpart(rawReview, "<AUTHOR>", "</AUTHOR>")
9 self.product = get_subpart(rawReview, "<PRODUCT>", "</PRODUCT>")

10
11 # Date can be written in one of three formats
12 try:
13 self.date = datetime.strptime(
14 get_subpart(rawReview, "<DATE>", "</DATE>"),
15 "%B %d, %Y")
16 except ValueError:
17 try: self.date = datetime.strptime(
18 get_subpart(rawReview, "<DATE>", "</DATE>"),
19 "%d %B %Y")
20 except ValueError:
21 self.date = datetime.strptime(
22 get_subpart(rawReview, "<DATE>", "</DATE>"),
23 "%d %b %Y")
24 self.title = get_subpart(rawReview, "<TITLE>", "</TITLE>")
25
26 self.text = get_subpart(rawReview, "<REVIEW>", "</REVIEW>").strip()
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27 self.text = self.preprocess(self.text)
28 self.sentences = self.tokenize_sentences(self.text)

Parsing the file starts by passing every raw review to the parsing function parse(self,
rawReview, ironic). There, every section of the HTML raw review text is returned
by the method get_subpart(). Using the HTML-specific highlight words, such as
“<STARS>” and “</STARS>”, as indices for the review array, every subtext is ex-
tracted. In the case of the star variable, it is the integer number of stars of the product
rating. The method is applied to every HTML subarea. The two last functions called
are described in detail in the following code section.

1 def preprocess(self, text):
2 # Preprocess the given text by unescaping HTML entities
3 return self.HTMLParser.unescape(text)
4
5 def tokenize_sentences(self, text):
6 return [Sentence(text)
7 for text in self.sentenceTokenizer.tokenize(self.text,

realign_boundaries=True)]

Preprocessing the given text just involves unescaping the HTML entities. Unescaping
means to convert HTML to a common Python string. As the text is converted to a
common string now, it serves as an input to the function tokenize_sentences(self,
text). There, a vector of Sentence objects is returned.

1 class Sentence(object):
2
3 POS_TAGGER = 'taggers/maxent_treebank_pos_tagger/english.pickle'
4 wordTagger = nltk.data.load(POS_TAGGER)
5 wordTokenizer = TreebankWordTokenizer()
6 __slots__ = ['text', 'words']
7
8 def __init__(self, text):
9 start = None

10 end = None
11 self.text = text
12 self.words = self.tokenize_words(self.text)

The class uses a POS tagging mechanism to tag every single word in a sentence. The
review sentence again has to be tokenized into words, additionally tagged at the same
time, in the function tokenize_words(self, text).

1 def tokenize_words(self, text):
2 return [Token(w,p)
3 for w,p in self.wordTagger.tag(self.wordTokenizer.tokenize(text))]

The above function returns a dedicated vector of Token objects, each of them containing
the POS tagged terms. The class used for this is implemented in the next code section.
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The Token class uses a polarity lexicon, where the positive and negative terms defined
in the earlier mentioned text files positive-words.txt and negative-words.txt are
represented.

1 class Token(object):
2
3 polarityLexicon = load_polarity_lexicon(["./resources/positive-words.txt", "./

resources/negative-words.txt"],
4 ["positive", "negative"])
5
6 __slots__ = ['text', 'pos', 'positiveScore', 'negativeScore']
7
8 def __init__(self, text, pos=None):
9 start = None

10 end = None
11 self.text = text
12 self.pos = pos
13 if (self.text in self.polarityLexicon and
14 self.polarityLexicon[self.text] == "positive"):
15 self.positiveScore = 1
16 else:
17 self.positiveScore = 0
18
19 if (self.text in self.polarityLexicon and
20 self.polarityLexicon[self.text] == "negative"):
21 self.negativeScore = 1
22 else:
23 self.negativeScore = 0

On initialization, the current word is checked on its existence in the polarity lexicon. If
there is a tendency to positive or negative sentiment, it is likely to be located in it. If the
polarity is then approved as positive, the variable self.positiveScore is assigned the
number one. The same process is applicable to a negative term within the review text.
Later on, when the sentiment of the product review is checked, the simple comparison
between the two variables positiveScore and negativeScore is made. Depending on
which of the two is higher, the sentiment is determined.

1 def load_polarity_lexicon(filenames, categories):
2 # Return a dictionary containing the words from the given files and their

corresponding category
3 assert len(filenames) == len(categories)
4 polarityLexicon = {}
5 for filename, category in zip(filenames, categories):
6 with codecs.open(filename, 'r', encoding='latin-1') as wordsFile:
7 polarityLexicon.update({w.strip(): category
8 for w in wordsFile.readlines()
9 if w.strip() and not w.strip().startswith(";")})

10 return polarityLexicon

To load the polarity lexicon, a dictionary is created initially. The given text file is read
into the dictionary, word by word. Lines starting with a semicolon are ignored, as these
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serve as a headline or commentary. The lexicon is then returned and used to grade the
terms within the product reviews.

4.2.3 Data Preprocessing
Before training the deep neural network, the review text of each data entry has to be
cleaned and preprocessed using different ML techniques. The major component of the
project is located within the function apply_deep_learning(). At the beginning of the
function, the IDs are another time shuffled to change the order of the training and test
data entries. Right after that, the CBOW model is created, as illustrated in the code
section below.

1 def create_cbow(reviews):
2 # Create continuous bag-of-words model
3 data = []
4
5 for review in reviews.values():
6 for i in sent_tokenize(review.text):
7 temp = []
8
9 # Tokenize the sentence into words

10 for j in word_tokenize(i):
11 temp.append(j.lower())
12
13 data.append(temp)
14
15 # Create CBOW model
16 return gensim.models.Word2Vec(data, min_count=1, size=300, window=5)

In this function, a data array is created, where all the sentence of all product reviews
are tokenized into words and then added. The tokenization is done by the functions
sent_tokenize() and word_tokenize() of the NLTK library. Here, the Gensim frame-
work is used to handle word embeddings by providing the data frame as input to its
vectorization function. The context window size can be passed as the parameter window.
It can also be described as the maximum distance between a target word and words
around the target word. The window size of five words exposed as an adequate number
for yielding appropriate results. The parameter size defines the number of dimensions
of the embeddings, where the default value is 100. The minimum count of words is
the number to consider when training the model. Words with occurrence less than this
count will be ignored. The default for min_count is five. The default algorithm used for
training is the CBOW method. To train using the skip-gram method, the parameter sg
can be altered.

The following data preprocessing step is to extract the features of each review. This is
done for training and test set individually. The function feature_extract(review_ids,
reviews, bow_dictionary) is implemented in the following way.

1 def feature_extract(review_ids, reviews, bow_dictionary):
2 feature_vec = {}
3 for ID in review_ids:
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4 review = reviews[ID]
5 feature_vec[ID] = []
6
7 # Star Rating
8 feature_vec[ID].extend(star_rating(review))
9

10 # Sentiment
11 feature_vec[ID].extend(sentiment(review))
12
13 return feature_vec

First, a Python dictionary is created for the purpose of being filled with review-specific
features. The first feature stored in the dictionary is the star rating of each the review
currently looked at. The second one is the overall sentiment of this particular product
review text.

1 def star_rating(review):
2 return [1 if i+1 == int(review.stars) else 0 for i in range(5)]

For every product review, a feature array is appended. This array contains the stars
given at the product rating but in a one-hot encoded form. A five-star rated product
would have the feature array [0 0 0 0 1], while a two-star rated product would be
filled in the way [0 1 0 0 0]. The second feature is implemented below.

1 def sentiment(review):
2 # Return a vector for the sentiment of a given review
3 result = [0] * 1
4 polarity = len(review.positive_words) - len(review.negative_words)
5
6 if polarity > 0:
7 result[0] = 1
8
9 return result

Observing the sentiment of a given review is done by inspecting the negative and pos-
itive words within the product review text. The previously collected vectors of either
negatively or positively tempered words are compared to their length. If more negatively
tempered words exist within the review, the overall sentiment is defined as negative. If
more positive terms exist, the sentiment is described as positive. The complete feature
vector is then returned and can be used for training the DNN.

Stop word removal

Why is removing stop words not always a good idea? Stop words removal is a crucial
preprocessing step in many machine learning applications dealing with text. For some
applications, stop words are actually needed. A stop word may be considered a word
that has high frequency on a corpus, such as articles or terms that do not help finding
the true meaning of a sentence. These words can be removed without any negative
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consequences to the training of the model. These stop words are always different, as it
depends on the corpus used.

Reducing the data set size is a way of increasing performance. Training models can
be accelerated by removing unwanted tokens. Thus the training time should decrease.
As the project’s used data collection is rather small, the stop words removal is not
needed before training the neural network. Problems like sentiment analysis are much
more sensitive to stop words removal than document classification. An example could
be the following sentence: “I told you that she was not happy”. After removing the stop
words, the result would be [’told’, ’happy’]. For sentiment analysis purposes, the overall
meaning of the resulting sentence is positive. In reality, the sentiment should be negative,
but not considered as negative, as the word “not” was removed in the preprocessing step.
This is the main reason why stop words removal is not done throughout this research
[62].

Part-of-speech Tagging

The most basic models are based on BOW in the NLP area. But such models fail to
capture the syntactic relations between words. A sentiment analyzer based only on BOW
will not be able to capture the difference between “I like you” and “I am like you”. In
the first case, “like” is a verb with a positive sentiment, while in the other case “like” is
a preposition with a neutral sentiment.

POS tagging is utilized for building parse trees, which are used in extracting relations
between words. During the process, a word in a corpus is marked up to a corresponding
part of a speech tag, based on its context and definition. An example can be seen in the
sentence “Give me your answer”. In this particular case, answer is a noun, but in the
sentence “Answer the question”, answer is a verb. To understand the meaning of any
sentence, POS tagging is a crucial step.

The different techniques of POS tagging involve lexical base methods on the one
hand, where the tag is assigned the most frequently occurring with a word in the training
corpus. The rule-based methods assign POS tags based on specific rules, such as endings
like “ed” or “ing” must be assigned to a verb. The probabilistic method assigns the tags
based on the chance of a particular tag sequence occurring, such as Conditional Random
Fields (CRFs) and Hidden Markov Models (HMMs). The last method is the DL method,
which uses RNNs for POS tagging [57].

The tagging of the sentence “They refuse to permit us to obtain the refuse per-
mit” would look like the following vector: [(’They’, ’PRP’), (’refuse’, ’VBP’),
(’to’, ’TO’), (’permit’, ’VB’), (’us’, ’PRP’), (’to’, ’TO’), (’obtain’,
’VB’), (’the’, ’DT’), (’refuse’, ’NN’), (’permit’, ’NN’)] [4]. The tag “NN”
represents a singular noun, “VB” just defines a verb in its base form. “VBP” describes
a verb in its singular, present form, while “TO” is just the tag for the term “to”. The
tag “PRP” signifies a personal pronoun, such as he, she or I. “DT” is the tag for a de-
terminer. A list of available tags is described in more detail in the appendix, specifically
in chapter .
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Figure 4.6: Model summary of the proposed DNN

4.2.4 Deep Learning Model
The implemented DNN is the one initially created by Ghosh and Veale [14]. As men-
tioned earlier, the neural network consists of two CNNs, two LSTMs, a dense neural
network and an activation layer. The summary of the model can be seen in figure 4.6. The
neural network was implemented within the method model_dnn(x_train, y_train,
x_test, y_test, cbow=None), that holds the entire modelling and all the parameters
used for training and testing. The process is described in more detail in the code section
below.

1 def model_dnn(x_train, y_train, x_test, y_test, cbow=None):
2 embedding_dimension = 300
3 hidden_size = 128
4 max_len = 6
5 vocabulary = len(cbow.wv.vocab)
6
7 # The batch size defines, how many samples the model sees at once - in this case

64 reviews
8 batch_size = 64
9

10 # The epoch variable defines, how often the model sees the data set
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11 epochs = 500

The embedding_dimension was set to 300, which is one of the most used size numbers
for word embeddings. The hidden_size was defined as 128. The variable vocabulary
desribes the size of the CBOW model’s vocabulary. At the beginning, a batch_size of
64 was used. To be sure, the amount of epochs run was defined as 500. After defining
the initial constants, a matrix of embeddings had to be created.

1 # Save the word2vec vectors in a new matrix
2 embedding_matrix = zeros((len(cbow.wv.vocab), embedding_dimension))
3 for i, vec in enumerate(cbow.wv.vectors):
4 embedding_matrix[i] = vec

The Word2vec vector was converted to an embedding_matrix containing each element
in the vector space. This matrix is fed into the first layer of the neural network, the
embedding layer. The DL model is built in the following manner.

1 # Start to build model
2 model = Sequential()
3
4 model.add(Embedding(input_dim=vocabulary, output_dim=embedding_dimension,

input_length=max_len,
5 weights=[embedding_matrix], embeddings_initializer='

glorot_uniform'))
6
7 # Reduce frequency variation through convolutional filters and extract

discriminating word sequences as a composite
8 # feature map for the LSTM layer
9 model.add(Convolution1D(embedding_dimension, 3, kernel_initializer='

glorot_normal', padding='valid', activation='sigmoid', input_shape=(1, max_len))
)

10 model.add(Convolution1D(embedding_dimension, 3, kernel_initializer='
glorot_normal', padding='valid', activation='sigmoid', input_shape=(1, max_len -
2)))

11
12 # Dropout layer to avoid overfitting
13 model.add(Dropout(0.25))
14
15 # LSTM layer
16 model.add(LSTM(hidden_size, kernel_initializer='glorot_normal', activation='

sigmoid', dropout=0.5, return_sequences=True))
17 model.add(LSTM(hidden_size, kernel_initializer='glorot_normal', activation='

sigmoid', dropout=0.5))
18
19 # Output of LSTM layer is passed to a fully connected dense layer
20 # It produces a higher order feature set based on the LSTM output, which is

easily separable for the desired number
21 # of classes
22 model.add(Dense(hidden_size, kernel_initializer='glorot_normal', activation='

sigmoid'))
23 model.add(Dropout(0.25))
24
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25 model.add(Dense(hidden_size, kernel_initializer='glorot_normal', activation='
sigmoid'))

26
27 # Final softmax layer
28 model.add(Dense(2, activation='softmax'))

The model starts with the embedding layer, getting passed the vocabulary length, as
well as the output dimension of the length embedding_dimension. The embeddings
initializer if the function glorot_uniform. The uniform algorithm finds a good vari-
ance for the distribution from which the initial parameters are drawn. This variance is
adapted to the activation function used and derived without explicitly considering the
type of distribution. The Word2vec model is actually passed as a vector to the layer
function.

Both CNN layers are initialized with the size of the embedding dimension. The ker-
nel initializer used in these cases was the algorithm glorot_normal. The same construct
is given when adding the two LSTM layers to the neural network. The only difference
is the size of the hidden layers, which is 128 in this case. Lastly, a dense layer and a
softmax activation layer are added to the network. Softmax functions limit the output
of the function into the range 0 to 1. This allows the output to be interpreted directly
as a probability. After creating the model structure, the model is compiled using an
optimization and a loss function.

1 # Optimization of parameters using ADAM
2 adam = Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0,

amsgrad=False)
3 sgd = SGD(lr=0.01, momentum=0.9, decay=1e-6, nesterov=True)
4 adadelta = Adadelta()
5
6 # Loss function declarations
7 scc = 'sparse_categorical_crossentropy'
8 bcc = 'binary_crossentropy'
9 cc = 'categorical_crossentropy'

10 loss = tf.keras.losses.Huber(delta=1.0)
11
12 # Model compilation
13 model.compile(loss=loss, optimizer=adam, metrics=['accuracy'])
14 print('No of parameter:', model.count_params())

At first, the model was trained using the Adam optimizer, with a learning rate of 0.0001.
The loss function at this point was the function sparse_categorical_crossentropy.
The metric to look at compilation was just the accuracy value. After compilation, the
model is fitted.

1 # Callback functions for saving model
2 save_best = ModelCheckpoint("./model/" + 'model.json.hdf5', monitor="acc",

verbose=1, save_best_only=True,
3 mode="max")
4 save_all = ModelCheckpoint("./model/" + 'weights.{epoch:02d}__.hdf5',

save_best_only=False)
5 early_stopping = EarlyStopping(monitor='val_loss', patience=20, verbose=1)
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6 lr_scheduler = LearningRateScheduler(step_decay)
7
8 # Model fitting
9 history = model.fit(x_train, y_train, validation_split=0.20, batch_size=

batch_size, epochs=epochs, shuffle=True,
10 callbacks=[save_best, save_all, early_stopping])

The fitting of the model is done using a validation split of 20 percent of the training
data. Four different callbacks have been created, where only three of them were used at
the beginning. The callback save_best offers the ability to save a model into a specific
file directory, every time it achieves better accuracy than in the earlier epoch. The same
applies for save_all. There, the completely fitted model is saved. The early_stopping
method decides whether to abort a learning process. If there has been no gain in accu-
racy for 20 epochs, the model fitting is completed.

1 # Evaluating the current model - it's accuracy
2 loss, accuracy = model.evaluate(x_train, y_train, verbose=False)
3 print("Training accuracy: {:.4f}".format(accuracy))
4 loss, accuracy = model.evaluate(x_test, y_test, verbose=False)
5 print("Testing accuracy: {:.4f}".format(accuracy))

As the last step, the model is evaluated according to its performance and accuracy.
Therefore, the evaluation is done utilizing training data at first. Afterwards, test data
are evaluated. So with this step, the neural network training is completed.

4.2.5 Learning Process
The learning process itself contains several steps for achieving the best results in sarcasm
detection within product reviews. The first step is to tune all the hyperparameters of
the neural network, which is described in section 4.2.5.

Hyperparameter Tuning

The hyperparameter tuning was first done by hand. Several parameter values were tried
out until no performance and accuracy gain was reached. To achieve the best perfor-
mance for the model, an algorithm was used to find the most fitting hyperparameters.
This method is called “Random Search”. Random search tries out a random combina-
tion of parameters after another. Once a fairly good result is achieved, further searching
will take place near the area of these parameters.

1 def random_search(x_train, y_train):
2 batch_size = 128
3 epochs = 10
4
5 # Wrap Keras classifier to use it with scikit-learn
6 keras_model = KerasClassifier(build_fn=create_model, epochs=epochs, batch_size=

batch_size, verbose=1)
7
8 # Learning algorithm parameters



4. Experimental Evaluation 51

9 lr=[1e-2, 1e-3, 1e-4]
10 decay=[1e-6,1e-9,0]
11
12 # Activation
13 activation=['relu', 'sigmoid']
14
15 # Dropout and regularisation
16 dropout = [0, 0.1, 0.2, 0.3]
17 l1 = [0, 0.01, 0.003, 0.001,0.0001]
18 l2 = [0, 0.01, 0.003, 0.001,0.0001]
19
20 loss = ['sparse_categorical_crossentropy', 'tf.keras.losses.Huber()', '

categorical_crossentropy', 'binary_crossentropy']
21
22 param_distributions = dict(act=activation, l1=l1, l2=l2, lr=lr, decay=decay,

dropout=dropout, loss=loss)
23
24 random = RandomizedSearchCV(estimator=keras_model,
25 cv=KFold(3),
26 param_distributions=param_distributions,
27 verbose=20, n_jobs=1,
28 n_iter=10)
29
30 random_result = random.fit(x_train, y_train)
31
32 print('Best Score: ', random_result.best_score_)
33 print('Best Params: ', random_result.best_params_)
34
35 return random_result

The function random_search(x_train, y_train) starts with an initialization of the
number of epochs and the batch size. For hyperparameter tuning, a relatively small
size of ten was chosen as the number of epochs, as well as a moderate size of 128
as the batch size. Through KerasClassifier(), the model is wrapped to be used with
Scikit-learn. The function create_model returns the fully compiled model using various
combinations of the parameters. The chosen parameter ranges can be seen in the code
section above.

The function RandomizedSearchCV() is provided by Scikit-learn and does the job of
searching for the most optimal hyperparameter combination to achieve the best results.
The estimator passed to the function is the object to be instantiated for each grid
point. It is assumed to implement the Scikit-learn estimator interface. The variable
param_distributions is a dictionary with parameters names as keys and distributions
or lists of parameters to try. The variable n_iter defines the number of parameter
settings that are sampled, while n_jobs is the number of jobs to run in parallel. Verbose
controls the verbosity: the higher, the more messages. The cv parameter determines the
cross-validation splitting strategy. The possible inputs for cv are either None, to use
the default 3-fold cross-validation, or any integer, to specify the number of folds in a
(Stratified)KFold.

The grid search is another hyperparameter optimization algorithm. The main differ-
ence to the random search algorithm is the execution. In the grid search, every possible
combination of given parameters is executed while optimizing. The randomized search
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and the grid search explore exactly the same space of parameters. The result in param-
eter settings is quite similar, while the runtime for a randomized search is drastically
lower [32]. In practice, one would not search over this many different parameters simul-
taneously using grid search, but pick only the ones deemed most important. This is why
the random search was chosen for the project realization.

Parameter Choice

After searching for the most optimal parameter choice using the random search, the
following parameters were destined to be taken. A batch_size of 256, as well as the
number of epochs of 500, have been used for fitting the neural network model. As the
batch size was defined rather high, the learning rate had to be rather low, to avoid
overfitting of the model.

The currently utilized optimization function is the Adam optimization, with an
initial learning rate of 0.001. Adam is the adaptive learning rate optimization algorithm
specifically designed for training DNNs. Adam is considered a combination of Root Mean
Square (RMSprop) and Stochastic Gradient Descent (SGD) with momentum. It uses
the squared gradients to scale the learning rate like RMSprop and it takes advantage of
momentum by using moving average of the the gradient instead of gradient itself like
SGD with momentum. As Adam is an adaptive learning rate method, which means, it
computes individual learning rates for different parameters, the algorithm fits well for
the product review sarcasm detection task. Its name is derived from adaptive moment
estimation, as it uses estimations of first and second moments of a gradient to adapt
the learning rate for each weight of the neural network [22].

The sarcasm detection task is a so-called binary classification problem, which is a
problem where one classifies an example as belonging to one of two classes. The problem
is framed as predicting the likelihood of an example belonging to class one, the class that
one assigns the integer value 1, whereas the other class is assigned the value 0. The out-
put layer of a binary classification problem is a node with a sigmoid activation unit. The
loss function used for solving this problem is the cross-entropy function, also referred to
as Logarithmic loss [16]. In the project’s case the sparse_categorical_crossentropy
is used. The Keras Huber loss was tried out as well, in case it would result in a better
accuracy percentage. Indeed, the training and test loss was severely reduced, to a num-
ber below ten percent, but the training and test accuracy performed way worse than
with using the categorical cross-entropy approach [22].

4.3 Results
At the end of the project research, the results of several models have been evaluated and
taken into account. The neural network has been trained and tested, and corresponding
accuracy value has been returned. For comparability, a more simplistic, standard model
was evaluated on the sarcasm review data set as well. This LR model outputs the
following results, as can be seen in figure 4.7. The precision of the logistic regression
resulted in a percentage of around 75.6. The accuracy is about 81.7 percent. This model
shows promising performance when evaluating. Regarding the results of the deep neural
network at first, the findings in training and test accuracy were not satisfiable enough.
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Figure 4.7: Extract of the LR model results

Figure 4.8: Model structure of the cut-down DNN

The training and test accuracy remained stuck in the area of about 65 percent. The
simpler, LR model returned higher accuracy values and therefore seemed to perform
better than a DNN in the first place.

After cutting down the model to the most needed components, the model structure
is illustrated in figure 4.8. As can be seen above, some layers were discarded. The
setup of the cut-down model results in a way better training and test accuracy, already
outperforming the LR model. As the model training did not improve after about 83.3
percent, early stopping took place. The abortion process is illustrated in figure 4.9. In
figure 4.10, the training curve of both the training and test accuracy are displayed. The
training accuracy starts rather low at about 66 percent, while increasing drastically to
epoch 18.

At this point, the learning settles down to the accuracy of 83 percent. Figure 4.11
thoroughly illustrates the loss of both training and test data over all the executed epochs
during the training. Both loss curves show a drastic drop at about ten epochs, while at
epoch 20, the loss values stay more or less the same. In comparison to the other model,
the implemented neural network does perform well, even considering the rather tight
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Figure 4.9: Early stopping applying during training of the cut-down DNN

Figure 4.10: Training and test accuracy of the cut-down DNN

data set. All in all, the neural network has great potential to be used with more data.
It is also a base model when more features are input. Thus a even better performance
may be achieved.
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Figure 4.11: Training and test loss of the the cut-down DNN



Chapter 5

Conclusion and Future Work

This thesis work presented the novel idea of deep neural networks composed of CNN
and LSTM layers highly probable giving improved results over state-of-the-art discrete
models. Sarcasm understanding has become an important topic these days and should
be even more investigated to provide a convenient tool for interested parties. Future
work should be mindful of already achieved results and therefore, improve performance.

The achieved results are within the range of the expected, given the difficulty of the
classification problem. The main goal of the research was to describe a sarcasm detection
system, structured as a deep neural network, using a dedicated Amazon product review
corpus. Even human experts would disagree about some of the classifications in the
corpus. The overall findings during the research comprise the clarification, that sarcasm
is majorly used in review, where the particular product is given an overall low star
rating.

For future researches, a broader sarcastic review data set shall be used, to build
an efficient model acting as a classifier in a wider range of topics. Having such a small
amount of data available, a neural network having this many deep layers might not be
the right choice for training, as similar results are obtained using standard regression
models. Nevertheless, the model layers themselves perform well when working with
context-sensitive input. As well as the presence of the Word2vec model made the deep
neural network’s accuracy achieve higher percentage.

The importance of feature engineering (relative to simply obtaining more data
points) can not be over-emphasized. The feature extraction is the part of sarcasm de-
tection where most of the effort should be placed in order for sarcasm recognition to
be successful. In the end, the project made it possible to broaden the knowledge in the
sentiment analysis field, as well as taking a small step in the right direction.
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Appendix A

CD-ROM/DVD Contents

A_Deep_Learning_Model_for_Detecting_Sarcasm.pdf
project.zip/

Amazon_Review_Sarcasm_Detection.ipynb
data.zip/

corpus/
Ironic/

*.html
*.txt

Regular/
*.html
*.txt

five_labels_plus_stars.xlsx
file_pairing.txt

resources/
negative-words.txt
positive-words.txt

Figure A.1: Project content directory tree
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Appendix B

List of Acronyms

AI Artificial Intelligence
API Application Program Interface
AUC Area Under the Curve
BOW Bag-Of-Words
CBOW Continuous Bag-Of-Words
CNN Convolutional Neural Network
CNTK Cognitive Toolkit
CPU Central Processing Unit
DL Deep Learning
DNN Deep Neural Network
FPR False Positive Rate
GPU Graphics Processing Unit
HDP Hierarchical Dirichlet Process
HTML Hypertext Markup Language
ID Identification
IDE Integrated Development Environment
IWS Interjection Word Start
LDA Latent Dirichlet Allocation
LR Logistic Regression
LSA Latent Semantic Analysis
LSTM Long Short-Term Memory
ML Machine Learning
MLP Multi-layer Perceptron
MTurk Amazon Mechanical Turk
MV Machine Vision
NLP Natural Language Processing
NLTK Natural Language Toolkit
OOP Object-Oriented Programming
PBLGA Parsing Based Lexical Generation Algorithm
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PD Pattern Detection
PHP PHP: Hypertext Preprocessor
POS Part-Of-Speech
RAM Random Access Memory
ReLU Rectified Linear Unit
RMSprop Root Mean Square
RNN Recurrent Neural Network
RP Random Projections
RPA Robotic Process Automation
SA Sentiment Analysis
SGD Stochastic Gradient Descent
SVM Support Vector Machine
TPR True Positive Rate
TPU Tensor Processing Unit
UI User Interface



Appendix C

Part-of-speech Tags and their Meaning

The following definitions are retrieved from the website Medium [56].

CC Coordinating conjunction
CD Cardinal digit
DT Determiner
ET Existential there
FW Foreign word
IN Preposition/subordinating conjunction
JJ Adjective ’big’
JJR Adjective, comparative ’bigger’
JJS Adjective, superlative ’biggest’
LS List marker 1)
MD Modal could, will
NN Noun, singular ’desk’
NNS Noun, plural ’desks’
NNP Proper noun, singular ’Harrison’
NNPS Proper noun, plural ’Americans’
PDT Predeterminer ’all the kids’
POS Possessive ending parent’s
PRP Personal pronoun I, he, she
PRP$ Possessive pronoun my, his, hers
RB Adverb very, silently
RBR Adverb, comparative better
RBS Adverb, superlative best
RP Particle give up
TO To go ’to’ the store
UH Interjection, errrrrrrrm
VB Verb, base form take
VBD Verb, past tense took
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VBG Verb, gerund/present participle taking
VBN Verb, past participle taken
VBP Verb, sing. present, non-3d take
VBZ Verb, 3rd person sing. present takes
WDT Wh-determiner which
WP Wh-pronoun who, what
WP$ Possessive wh-pronoun whose
WRB Wh-abverb where, when
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