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Abstract

The amount of free text data including online news, blogs, e-mails or social media
communication is constantly rising through the development of the World Wide Web.
These types represent unstructured data and the missing structure complicates searching
in it or getting quick information out of it. Thus, the need for efficient methods for
analyzing this kind of texts is growing. The thesis will focus on the problem of automated
news classification to sort articles according to their topic. This serves to facilitate
handling data in online news services for tasks like tagging or categorizing.

The data the thesis will work with are English news articles at the example of articles
from the news agency The Guardian. A pre-processing of the unstructured texts is
generally required including tokenization, stop word reduction and filtering of important
words. Subsequently, the main part of the process follows, which is the reimplementation
of the algorithms for the text classification task. The thesis major focus lies on the
algorithm called Semantic Fingerprinting, which uses a neuroscience rooted mechanism
to detect the similarity between natural linguistic documents. It is generally based on
the theory of Semantic Folding and the Hierarchical Temporal Memory (HTM) theory of
Jeff Hawkins. The theory of HTM describes a machine learning model that has structural
and algorithmic properties of the human neocortex. This method will be compared to
two classical algorithms, the k-nearest-neighbor classifier and the Naive Bayes algorithm.
Finally, the thesis will evaluate the performance and the results of the algorithms for
analyzing news articles, with special emphasis on the Semantic Fingerprinting method
in comparison to the two classical classifiers.
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Kurzfassung

Durch die Entwicklung des World Wide Webs stieg die Anzahl an digitaler Medien in den
letzten Jahren stark an. Im Speziellen beschéftigt sich diese Arbeit mit der Zunahme an
digitalen Texten, dazu zdhlen Texte auf online Nachrichtendiensten, Blog-Nachrichten,
E-Mails oder Nachrichten in sozialen Netzwerken. Diese Art von textuellen Medien ge-
hort zu der Kategorie der unstrukturierten Daten und durch ihre fehlende Struktur, wird
das Herausfiltern sowie das Suchen von darin enthaltenen, konkreten Informationen er-
schwert. Durch diese Problemantik wéchst das Interesse an Technologien zur Analyse
von unstrukturierten Texten. Die Arbeit widmet sich dem Problem der automatisier-
ten Nachrichten Klassifizierung und konzentriert sich auf das Sortieren von Artikeln
hinsichtlich ihres Themengebietes. Die Ergebnisse der Untersuchung kénnten Nachrich-
tendiensten bei der Beschriftung und Einordnung von Artikeln helfen und deren Arbeit
erleichtern und beschleunigen.

Bei den, in dieser Arbeit verwendeten Daten handelt es sich um englische Nachrich-
tenartikel. Als Beispieldaten fiir diese Art von Texten wurden Artikel von dem online
Nachrichtendienst The Guardian geniitzt. Fiir die Verarbeitung der Texte ist ein Pre-
Processing Schritt notwendig, einschliellich Tokenization, Stop-Word Entfernung und
das Selektieren von wichtigen Wortern. Anschlieflend folgt der Hauptteil der Arbeit,
die eigene Umsetztung der Algorithmen fiir die Textklassifizierung. Der Fokus liegt da-
bei auf der Semantic Fingerprinting Methode, die einen neurowissenschaftlichen Ansatz
niitzt um Gemeinsamkeiten zwischen natiirlich sprachlichen Texten herauszufinden. Es
basiert auf der Semantic Folding Theorie sowie auf der Hierarchical Temporal Memo-
ry Theorie von Jeff Hawkins. Dabei handelt es sich um ein Machine Learning Modell,
das strukturelle sowie algorithmische Eigenschaften des menschlichen Neokortex auf-
weist. Diese Methode wird mit zwei klassischen Algorithmen verglichen, dem k-nearest-
neighbor Klassifikator und dem Naive Bayes Algorithmus. AbschlieBend werden die
Leistungen und die Ergebnisse fiir das Analysieren von Nachrichtenartikeln bewertet,
mit besonderem Augenmerk auf die Semantic Fingerprinting Methode im Vergleich zu
den klassischen Algorithmen.

vii



Chapter 1

Introduction

The following chapter describes the purpose of the thesis as well as the solution approach
and the composition of the chapters included in this work.

1.1 Problem Description

The development of the World Wide Web in recent years caused simultaneously a rapid
increase of free text data including online news, social media communication, blogs or
e-mails. This kind of data counts in general to unstructured or semi structured data.
Unstructured data represents the largest part of all digital data and it cannot be fit in
a database without former processing. The missing structure additionally complicates
searching in the data or getting quick information out of it until it got filtered, sorted
and categorized to finally gain easy access to the contained subjects . Thus, the
need for efficient methods for analyzing unstructured or semi-structured texts is grow-
ing. The combination of functions from the fields text mining, machine learning and
natural language processing enables getting valuable information from the data and to
discover structures from the electronic documents, which forms the relevant subjects.
Text mining itself consists of diverse sub-fields like information retrieval, text classifi-
cation or summarization , but its main purpose is to offer users the possibility to
extract important information from texts and further analyze it with machine learning
and natural language processing p. 4].

This thesis focuses on the problem of automated news classification, a specific sub-
field of text classification. Text classification itself is in general about labeling natural
linguistic texts, such as articles, with classes, which can be compared with topics, on
basis of a comparison of its content and a predefined set of training data p. 1].
This serves to facilitate handling data in online news services for tasks like tagging or
sorting of articles according to their topic. Thus, the thesis is motivated by the following
research question: how can journalistic data be classified to facilitate data organization
and filtering. To answer this question, three different algorithms for text classification
are reimplemented, tested and compared.
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1.2 Solution Statement and Contribution

The data, the algorithms work with, are in general English news articles. As an instance
for this kind of data articles from the news agency The Guardian are used. After collect-
ing sufficient articles per class, a pre-processing of the unstructured texts is generally
required including splitting, stop word reduction and filtering of important words. The
overall goal of this step is “to convert the words of the documents into numerical rep-
resentations” p. 2] in order that the algorithms can work with. Subsequently, the
main part of the process follows, the reimplementation of the algorithms for the text
classification task.

The thesis main focus lies on the algorithm called Semantic Fingerprinting, which
uses a neuroscience rooted mechanism to detect the similarity between natural linguistic
documents and is generally based on the theory of Semantic Folding and the Hierarchi-
cal Temporal Memory theory of Jeff Hawkins. The theory of HT'M describes a machine
learning model that has structural and algorithmic properties of the neocortex. It gen-
erates individual semantic fingerprints for each text and topic, to finally compare these
fingerprints in order to detect the most overlaps p. 6].

The two classical algorithms are the k-nearest-neighbor classifier and the Naive Bayes
classifier. The first one focuses on a similarity function to detect the most similar article
in the training data to the new unseen document and assigns its class to the new one
p. 9] p. 1]. The second one is a probabilistic classifier, which uses the conditional
and joint probability for calculating the most likely topic by dismembering the texts
and working on each word individually p. 3].

Finally, the thesis evaluates the performance and the results of the algorithms for
analyzing news articles, with special emphasis on the Semantic Fingerprinting method
in comparison to the k-nearest-neighbor and Naive Bayes classifier.

1.3 Outline

The thesis consists of six chapters, including the introduction. The subsequent chap-
ter provides a general overview of the subject text analysis and a selection of related
projects. A detailed insight into the field of text classification follows including the pre-
processing procedure and the three algorithms used for the comparison, the k-nearest-
neighbor classifier, the Naive Bayes and the Semantic Fingerprinting method. In chapter
[3|the development environment is described as well as the used technologies and the data
source the algorithms work with. In chapter |4 the implementation of the pre-processing
procedure and the algorithms are explained in detail, including multiple source code
excerpts. The final results as well as the comparison of the algorithms are contained
in chapter 5| with specific information about the development process and the differ-
ent progressions of the methods. Finally, all findings are summed up in chapter [6] with
closing remarks and additional information about challenges and potential future work.



Chapter 2

Basics and State of the Art

The subsequent chapter provides a precise insight into the field of text analysis, rele-
vant projects and important steps preceding the prime purpose, the text classification
part. In this chapter the three chosen algorithms, k-nearest-neighbor and Semantic Fin-
gerprinting, will be dissected in detail with the main emphasis on the last technique.
Finally, the explication of multidimensional scaling, a useful technology utilized in the
corresponding thesis project, follows.

2.1 Introduction to Text Analysis

In recent years a rapid increase of free text data on the World Wide Web was witnessed
. This data originates from a variety of sources such as online news, blogs, e-mails,
digital libraries or social media communication and are counting to unstructured or
semi structured data p. 4].

Structured data can be described as information represented in form of columns
and rows which can be easily stored in databases and ordered by several parameters or
processed via individual keys. This kind of data constitutes only five to ten percent of all
digital data. By comparison, unstructured data represents up to 80% and can be
explained as a “massive unorganized conglomerate of various objects that are worthless
until identified and stored in an organized fashion”. It cannot be fit in a database until
the information got searched through, sorted and categorized to finally gain easy access
to the subjects . Semi structured data can be located between these two extremes.
This signifies, this kind of data does not fit in a relational database either, although it
possesses some organizational properties that facilitate analyzing it. XMI]'| or JSO
documents can be mentioned as samples for semi structured data [59].

The absence of structure in text documents complicates searching in it or getting
quick overviews. Thus, the need for efficient methods for analyzing texts is growing.
The collaboration of techniques from the fields of text mining, machine learning and
natural language processing makes it possible to get meaningful information from the
data and to automatically discover interesting and non-trivial patterns from the elec-
tronic documents. Text mining can be seen as an hypernym, which consists of diverse

' See also |https: //www.w3.org/standards/xml/core]
% See also https://www.w3schoo|s.com/js/js_json_intro.aspl
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fields like information retrieval, text categorization, visualization or summarization
. However, its main purpose is to enable users to extract relevant information from
texts and further analyze the extracted information using machine learning and natural
language processing p. 4].

For the procedure of extracting important information, functionalities from natural
language processing are needed. They are used to linguistically parse sentences and para-
graphs with the purpose of picking the texts into single words, key concepts, verbs and
proper nouns p. 5]. Summarized, systems using natural language processing have
to determine the structure of a text document to define the “Who?”, “What?”,“Why?”
and “Where?” p. 48].

When going further to the deeper tasks like text categorization or summarization,
a machine learning approach is partly needed, inter alia for calculating weights or simi-
larities |1 p. 43]. Especially in the field of text classification, machine learning methods
gained increasing popularity since the increase of digital information started p. §]
and algorithms like the Bayesian classifier, Decision Tree or k-nearest-neighbor (kNN)
have been extensively studied for calculating predictions on new and unseen data |1} p.
6] [18} p. 8].

Text classification, also referred to as text categorization or topic spotting, can be
described as an operation, which labels natural linguistic texts, such as articles, e-mails
or twitter posts, with topical categories on basis of a comparison of its content and
a predefined set of training data . A more precise definition of the classification
problem, has been defined by Charu C. Aggarwal. At the beginning, we are given a
set of data, where each text is related to a specific topic or so called class value. This
data is the training set and it describes the featuresﬁ of the text belonging to a relative
topic. When searching the class for a new, unknown test data, this training set is used
to compare it with the features of the unknown data and subsequently, to predict the
class value pp. 163-164]. Summarized, it means grouping a number of documents
according to its topic by analyzing its content. This task can be again modified to smaller
sub-challenges like language detection, sentiment analysis or as already mentioned topic
detection. All of these subdivisions of the classification task, use classifiers, which have
the same aim. They sort text by their subject and assign one or more labels or terms
to them p. 119].

The problem of classifying text finds a variety of applications in the domain of text
mining. Some use cases where text classification is commonly used are

e mnews filtering and organization,

e document organization and retrieval,

e opinion mining and

o email classification and spam filtering [1} pp. 164-165].

This thesis will be dealing with one of these applications, the news filtering and
organization field.

These days the majority of news services, which often provide their content on online
platforms as well, are based on an electronic entity. The sorting of articles into categories
or the tagging of them, which means assigning a label or a term to a text, is usually done
manually, and by the growth rate of information, the process does not scale up well. For

% The term “feature” is synonymously used for the term“word” in this field.



2. Basics and State of the Art 5

this purpose, automated programs and methods can be helpful for news categorization
and the labeling in online news agencies .

In order that algorithms can deal with the text documents, “one has to convert the
words of the documents into numerical representations”. This section is named the pre-
processing procedure and consists of two tasks, the feature extraction and the feature
selection [8} p. 2]. The first step should clearly define the structure of the language and
eliminate a maximum of language dependent properties with the aid of tokenization,
stop words removal and stemming p. 5]. The difficulty in sum is to generate a
list of terms that describes the documents sufficiently [8] p. 3]. The second step in the
pre-processing part has its main responsibility in removing features which hold only
less important information in it and this is done by allocating each word a weight,
which describes its importance, and to finally construct a vector space. It describes the
complete training set including all documents as points and all terms as axes. These
two tasks are explained in detail in section

After pre-processing, the prepared data can be moved forward to the particular
algorithms as numerical vectors related to the initial words in the documents. This
thesis focuses on the k-nearest-neighbor classifier, the Naive Bayes classifier and the
Semantic Fingerprinting method.

The main part of the k-nearest-neighbor is a similarity function, which detects the
most similar documents to the new unseen data p. 9] . The second algorithm, the
Naive Bayes, is a probabilistic classifier. It uses the joint probability of words and the
related class to predict the category for test instances p. 3]. Semantic Fingerprinting
is novel and in comparison to the previous mentioned methods which are using word
statistics, this one uses a neuroscience rooted mechanism to detect similarity between
natural linguistic documents p. 6]. The algorithms are detailed in section

2.2 Existing projects

The field of text mining or in particular text classification gained an ever-expanding
prominent status in recent years and thereby multiple projects and papers originated
around this field. Thorsten Joachims, Charu C. Aggarwal and Yiming Yang can be
highlighted as representatives for several papers and in the following section,
a selection of projects are explained. The last project is of particular importance for this
thesis, because it is the foundation for the reimplementation in the thesis project.

2.2.1 uClassify

The project, uClassif was launched in 2008 in Stockholm by a team including Jon
Kagstrom, the founder of the project, Roger Karlsson and Emil Ingridsson. It is a free
online machine learning web service for text classification and translation. It offers the
possibility to use classifiers and create classifiers on your own, when creating an account.
It also provides APIs via JSON and XML and has established a big community, which
already has published up to 3570 classifiers including sentiment analysis, topic spotting,
language detection, mood analysis, age detection or gender detection. The free API

* Project can be tested on |https://www.uclassify.com/l
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allows up to 1000 requests a day, but if the calls exceed the given number, the account
can be upgraded. An academic license can be requested as well .

One interesting type of classifier, made with uClassify, called Typeanalyzer, tries
to analyze the personality of blogs and treats them like persons. In the end it refers
different characteristics to them, describing their personality .

2.2.2 NewsWeeder

N ewsWeede is a project developed by Ken Lang, which he presented on the 12th Inter-
national Conference of Machine Learning. It is a filtering system for so called netnews
on the Useneﬂ which can be compared with a internet forum, where user can post
articles. Newsweeder addresses the problem of user dependency when filtering articles
by “letting the user rate his or her interest level for each article being read” p-
1]. This theme belongs more to the Information Retrieval field, which is about select-
ing all relevant data for a users query while preventing as many nonrelevant data as
possible [3] p. 4]. Ken Lang compared in his project the classical term-frequency inverse-
document-frequency, tf-idf, weighting approach with the Minimum Description Length,
MDL, principl which is based on the Bayes’s rule. In the study beside the project
he did an qualitative analysis and compared the results of two people, who tested the
NewsWeeder program. It showed that the second technique, MDL, nearly quadrupli-
cated the percentage of relevant articles found for the users query and excelled thereby
the first classical one . The tf-idf weighting and the Bayes’s rule are described in
detail in section and

2.2.3 BoosTexter

The next project, BoosTexte is implemented by Yoav Freund and Robert Schapire
and is based on a machine learning technique called boosting. Boosting is a method,
which improves the accuracy of algorithms by “producing a very accurate prediction
rule by combining rough and moderately inaccurate rules” [11]. Thus, its main idea
is “to build a highly accurate classifier by combining many “weak” or “simple” base
classifiers, each one of which may only be moderately accurate” p. 1].

The basic boosting algorithm used for this project is named AdaBoost, short for
“Adaptive Boosting”. It was also invented by the two developers and they won already
the Godel Prize in 2003 for this algorithm . In the project BoosTexter, this algorithm
got two new extensions to perform multi-class text and speech classification. The pur-
pose of the project is to test the performance of this modified AdaBoost with multiple
classical text classification algorithms like Naive Bayes or Rocchicﬁ .

® Related paper can be found on|http://citeseerx.ist.psu.edu/viewdoc/summary?doi:lO.1.1.22.6286 l
% See also www.usenet.org
" See also http://citeseerx.ist.psu.edu/viewdoc download?doi:lO.1.1.159.403&rep:repl&type:pdfl
& Related paper can be found on |https://link.springer.com /article/10.1023 A:1007649029923l

? See also |http://nlp.stanford.edu/lR—book/htmI/htmIedition/rocchio—classification—1.htm|l
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2.2.4 Retina Engine

The Retina Engin is developed by an Austrian company called Cortical.io, which was
founded 2011 by Francisco Webber and Daniel Schreiber. The Retina Engine is part of
a platform, which offers the possibility to solve multiple challenging natural language
tasks such as meaning-based filtering of unstructured text documents, real-time topic
spotting on social media sites or search engine problems independent from language. It
can be easily accessed via a REST API. The first release of Retina API was 2014 and
since then it got multiple awards and commendations .

Retina is based on an idea of Francisco Webber, who came to this field via his med-
ical studies and especially when he was participating medical data processing. Finally
he concluded that the brain is the only working “Natural Language Understanding sys-
tem” and he “decided to apply the principles of cortical processing to text processing”.
With the cooperation of Jeff Hawkins, one of the founders of Nument and the inven-
tor of the Hierarchical Temporal Memory theory, which is “an online learning system
modelled on how the neocortex performs tasks”, the so called Semantic Folding theory
was developed. The Retina AP therefore “converts language into semantic finger-
prints, a numerical representation that captures meaning explicitly and operates on it
computationally” . Details to this process are explained in section m

2.3 Pre-Processing

The following section describes the process of data preparation and all required tasks in
detail, starting with the data splitting and concluding with the weight per word com-
putations. When starting to work with documents, which commonly consist of strings
from a technical point of view, the primary goal is to convert these strings into a repre-
sentation appropriate for the different learning algorithms and the classifiers p. 5].
An approximate process chart of the pre-processing pipeline can be seen in figure

Two types of formats algorithms can work with are the bag-of-words representation
and the string representation. The bag-of-words approach describes a document as a set
of words (e.g. vectors) in which their associated frequency in the document is stored.
This type of representation essentially disregards the sequentially composition of words
in the document. On the contrary, the second approach preserves each text as a string
and by association the sequence of words. However, the majority of text classification
methods primarily prefer the first approach “because of its simplicity for classification
purposes” |1}, p. 167].

At the beginning of text classification it is important to know which kind of text
should be processed, with special focus on the structure like title, sections or paragraphs
[15] p. 458], and even the language. Some steps of the pre-processing task for instance,
may be simplified or aggravated depending on the language the texts are written in.
English benefits from its easy space-delimited segmentation compared to languages such
as Chinese, Japanese or Thai, which need an extra segmentation process applied before
going further pp. 4-5]. Another simplifying property of the English language is the

' Project can be tested on |http://www.cortica|.io/l
11
See also |http://numenta.com /|
'? See also http://www.cortical.io/product_retina_api.htmll
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Figure 2.1: Approximation of pre-processing pipeline p. 6].

lower-case notation. Even though, decisions have to be made concerning abbreviations,
numbers, special characters, hyphenation p. 458] or compound tokens .

As previously refereed in section[2.1] the following three sections belong to the feature
extraction step (tokenization, stop word reduction and stemming), whereas weighting
belongs to the feature selection step.

2.3.1 Tokenization

The goal of tokenization is to split the string, which represents the text document, into
tokens by detecting the word boundaries. In most European languages word boundaries
are indicated by the insertion of whitespaces, so including English. Another major seg-
ment which must be considered, is the punctuation such as periods, commas, quotation
marks, apostrophes or hyphens. These components of a sentence consist of two differ-
ent types, the ones which are separate tokens and the ones that are part of another
token. For instance the expressions analysts’ and doesn’t; the first marks the genitive
case and the second shows contractions, where letters have been skipped. There are
two approaches of how to handle such cases. One opportunity would be to remove only
separate tokens, with the difficulty that the system has to detect the difference between
these two kinds of tokens pp. 15-16], or the system removes all punctuation marks.
The last option raises another question, “the expressions “don’t”,“I'd”,“John’s” do we
have one, two or three tokens?” p. 458]. In the related thesis project, the decision
is made in favour of removing all punctuation forming one token, because of reasons of
simplification.

The next critical point are numbers, for instance in a phrase like “$3.9 to $4 million”.
The digits can again be treated in two ways, removing it or keeping it as independent
token. There is no definite rule for this case, but when keeping it as a token, some other
conclusions have to be made. Considering the question whether the phrase mentioned
above, would be treated the same if it has been written as “3.9 to 4 million dollars”
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or “$3,900,000 to $4,000,000”. Finally “the semantics of numbers can be dependent on
both the genre and the application” p. 16]. Concerning the project, the classification
of news articles, numbers or digits are of low importance for the classification process,
therefore they got dropped.

Obviously, English is highly accommodating particularly with regard to the tok-
enization process. In some languages multi-part words are commonly used, such as Ger-
man. “Kundenzufriedenheitsabfragen (customer satisfaction survey)” or a noun—noun
composition like “Lebensversicherung (life insurance)”, to mention just some examples.
Multiple other languages “use the hyphen to create essential grammatical structures”
like “c’est-a-dire (that is to say)” or “celui-ci (it)” in French p. 18]. All these prop-
erties of languages have to be considered and need an expansion of the tokenization
task.

2.3.2  Stop Word Reduction

The following step in the natural language processing pipeline concerns the numerous
non-informative words in text documents. To extract and separate topic related tokens
from the whole mass of words, these non-significant tokens have to be removed. This in-
cludes articles, prepositions, conjunctions and some high-frequency words. They belong
to the category of stop words and are in general also referred to as noise in natural lin-
guistic texts. The extraction of these words is commonly used to improve the accuracy
and to reduce the redundancy of the classifiers pp. 1-3].

To reach this goal, the non-informative words are often condensed in so called stop
word lists, with an average length of about 300 to 400 words. In most cases pre-processing
system use generic stop word lists for all documents they process, not depending on the
category or collection. This decision might be the safest option, due to the fact that the
extraction hardly causes a substantial accuracy decrease, but coincident, the increase
of it might be only minor p. 3].

Another approach of reducing stop words in texts was developed by Wilbur and
Sirotkin . This kind of method enables a more aggressive removal of stop words “from
documents without losing retrieval accuracy” and uses a training set of data to detect
word significance via a so called “word strength”. This value is not calculated on basis
of the word frequency, but “on word co-occurrences in pairs of related” or very similar
documents. This kind of calculation leads to more efficient and faster computation
without accuracy losses. However, the appropriate stop word reduction depends as well
on the domain and the application the classifier should work with pp. 3-7]. For the
thesis project and the detection of the topic, common stop word lists are adequate and
have been chosen.

2.3.3 Stemming

In the field of information retrieval the chance for success depends on the number and
frequency of terms the query and the searched document have in common. The same
can be applied to text classification, where the overlapping terms are of particular
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importance for detecting the topic. Even so the numerous morphologica versions of
words, contained in the documents, complicate the term matching process and increase
the dimensionality of the term space p. 12]. Additionally in most cases these words
with the same root, have a similar semantic meaning and could be treated as equivalent.
That implies that the purpose of this pre-processing step is to reduce the different
morphological versions of words [14] p. 2].

Julie Beth Lovins described this step as “a computational procedure which reduces
all words with the same root to a common form”. In many cases this is done by elim-
inating the derivational and inflectional suffixes from each word , so for instance
to remove the case or the plural. To mention one example, all the words “computes”,
“computing” and “computer” would be mapped to its common stem “comput”. This
procedure does not change the document information significantly, but it prevents the
increase of features p. 1662].

This approach of suffix removal is just one possibility, but it is used by the two
most popular algorithms, the Porter stemmer and the Lovins stemmer p. 2]. There
are two major characteristics on which these algorithms differ. The first one is the
“significant reduction in the complexity of the rules associated with suffix removal”.
The Lovins stemmer includes a list of 294 suffixes, 35 recoding rules, which specify how
the suffixes are converted, and 29 context-sensitive rules, which define if a suffix should
be removed from a word or not. Compared to the Porter Stemmer, which has a list of 60
suffixes, two recoding rules and one context-sensitive rule, the dimensions are reduced
remarkably. The second difference concerns the underlying relation of the rules. The
rules of the Lovins stemmer are related to the number of characters remaining after
removing the suffix, whereas the Porter stemmer is based on the number of remaining
consonant-vowel-consonant strings p. 220].

To summarize, the Lovins stemmmer searches the longest match in a large list of
endings, while the Porter stemmer uses “an iterative algorithm with a smaller number
of suffixes and a few context-sensitive recording rules” p. 2]. Some other possible
techniques would be truncation of character strings, word segmentation, letter bigrams
or linguistic morphology . In the thesis related project the Porter stemmer is
used.

2.3.4 Weighting

The last task describes the process of separating relevant documents, for a specific
topic or user query, from unimportant documents. A binary method of elimination, so
a decision between “yes” or “no”, would be too restrictive. This implies that something
between is required p. 459].

The process of defining this value is called term weighting and its purpose is to
refer higher weight values to more important terms and lower weight to less important
terms. In this context multiple definitions have to be considered. Words which frequently
appear in individual documents, can be one indication for a topic-related feature. Thus,
one part of a weighting system is the term frequency, tf, the number defining how
often a term appears in the documents. Unfortunately, it can happen that the high

13 In linguistics, morphology is the study of how words are formed and how they are related to other
words of the same language .
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frequently appearing words are widely spread in the whole set of documents, not only
concentrated on a particular number of them. As a consequence all documents would be
indexed and marked as relevant, what leads to performance decrease. Hence a factor has
to be defined, which “favours terms concentrated in a few documents of a collection”.
This figure is specified as the inverse document frequency, idf. In order to calculate the
idf value of a word, two other key figures are required, the total number n of documents
in the data set and N, the number of documents containing the word. The final factor
of a typical idf value can be then computed as log(N -+ n). The topic related terms
should be able with this extension to distinguish a particular group of documents from
the remaining data. Hence, they should have a high term frequency but a low overall
collection frequency. Finally, the term weighting can be determined as the product of
the term frequency and the inverse document frequency, tf - idf p. 516].

This approach of detecting relevant documents, is called the term discrimination
model. However, it has been often opposed with the probabilistic model, which uses a
term relevance weight. This weight is defined as “the proportion of relevant documents
in which a term occurs divided by the proportion of nonrelevant items in which the
term occurs”. Unfortunately, it is not “immediately computable without knowledge of
the occurrence properties of the terms in the relevant and nonrelevant parts of the
document collection”. An approximation can be computed with log((N — n) <+ n) for
the idf factor p. 517].

In conclusion, the term weights form, for each document, a vector filled with its
terms and a related weight. All vectors together form the vector space, where the terms
are the axes of the space and the documents represent points, more specifically the
vectors of weights, in the space. These vectors can now be processed further [31] p. 613].
An approximation of the vector space model can be seen in figure
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2.3.5 Similarity

One crucial factor in text classification is similarity, so the detection if two documents
are similar or not, to finally define the topic. The k-nearest-neighbor for instance is
reliant on the similarity function to detect the k£ nearest neighbors.

The notion of similarity is often associated with the distance between the two docu-
ment points in the vector space, which is in general related with the similarity between
these vectors. There are several ways to determine a similarity, but first it should be
clarified what the value represents. Given two vectors of two comparative documents,
the similarity value “reflects the degree of similarity in the corresponding terms and
term weights” p. 613].

Just two examples of many to measure this value is via vector analysis, the inner
product and the magnitude of the vector between two points. The first option is called
the cosine similarity and the second one the euclidean distance p. 51].

The main functionality, which is needed for the cosine similarity is the inner product
or also called, dot product, which can be interpreted as the product of the magnitude
of the first vector and the magnitude of the projection of the second vector on the first
(see equation . The graphical representation of the interpretation can be seen in
figure . If the angle between the two vectors is 90°, then the length of the projection
is zero, thus the value of the dot product is zero

— —

o - Oy = (|0 ][9] cos a. (2.1)

This functionality is crucial important to derive the cosine similarity formula from the
cosine theore whose basic form is

? =a®>+ b — 2abcosa. (2.2)

By changing the variables according to the figure the equation can be adjusted to

o o2 R N - o
100 = TlI” = 1Tl + |1Tp]l = 2 - [|T,]| - [[Tp]] - cos . (2.3)

" See also |http://www.mathe—onIine.at/materiaIien/heike.farkas/fiIes/Vektorrechnung_Ebene/Beweis_|

Winkel.pdf
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The final formula for the cosine similarity is then as follows

L U, - Uy
o ) = [ T 24
with the two given vectors v, and v}, describing the documents, where each value com-
prises a term and its weight in the related document. The formula computes the sim-
ilarity factor and the resulting value can be in the range between minus one and one,
indicating not similar and very similar. If the value is exactly one, the two vectors are
identical p. 51] and the angle between them zero, computable via the inverse cosine.
One important advantage of the cosine similarity is its independence of the document
length of the comparative vectors, because it normalizes the two vector lengths to one
p. 613]. This implies that only overlapping words are considered and short texts
will not be declined compared with long texts. However, this unifying has one flaw.
“Documents with the same composition but different totals will be treated identically”
[13] p. 52]. It means that if one short text is contained in some different and longer text,
these two documents would be treated as equal, which can have adverse effects.
Another possibility to calculate the similarity between two documents, is the eu-
clidean distance as mentioned above. This value represents the actual distance between
two points and can be calculated by creating the direction vector m between them
and applying the magnitude. The direction vector itself is computed by subtracting each
dimension of the document vectors ¢, and @, [13| p. 51].
In the thesis project both methods have been tested, but finally the cosine similarity
has been chosen, because it worked better for the news articles processed in it.

2.4 Algorithms

The classification of text documents can be done in three different kinds, supervised,
semi supervised or unsupervised. However, for classifying a great number of electronic
documents, supervised methods are primarily used. This kind of technology needs pre-
defined class labels, so fixed topic categories in advance, and documents, which are
assigned to these labels. The training set for the classifier consists of these documents
and they are then used to predict a label to a new unseen document. Generally, this
process of supervised learning is the core of automatic text classification p. 8]. Some
of these methods are described in the following section.
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2.4.1 k-nearest-neighbor

One of the oldest and simplest algorithms for pattern recognition is the k-nearest-
neighbor algorithm, abbreviated kNN in the following . It classifies each test docu-
ment, which is not labelled yet, by finding the most frequent label among the k nearest
neighbors contained in the training set. Yiming Yang described it as follows: “Given
an arbitrary input document, the system ranks its nearest neighbors among the train-
ing documents, and uses the categories of the k top-ranking neighbors to predict the
categories of the input document.” p. 4]. This implies that this algorithm and its
performance, crucially depend on the distance measure or similarity function to identify
the nearest neighbors .

The procedure of many classification methods have two phases, the training phase
and the testing phase. K-nearest-neighbor has also these two stages, whereby the first
one is restrained and not evident compared to other classification algorithms (8} p. 5].
During the first, all feature vectors, the word vectors with appropriate weights, and
the related categories of the training set have to be stored. In the second phase, also
referred to as the classification phase, the main process initiates. This stage computes
the distances or similarities from the new input vector, which contains the new text
document, to all stored train vectors to finally detect the k& most similar or closest
documents p. 9.

The undoubted advantage of the k-nearest-neighbor algorithm is its simplicity. Fur-
thermore, it performs significantly strong in terms of text data classification and the
success remains still stable even when “the category-specific documents form more than
one cluster because the category contains, e.g., more than one topic” |8 p. 6]. Though,
the method has some restrictions. The major limitation is its high calculation com-
plexity. For detecting the k nearest neighbors, the algorithm has to go through all the
documents and features to calculate the similarities and this procedure lasts the longest.
This problem can be circumvented by reducing the feature space, by using a smaller
data set or by using an improved and accelerated algorithm p. 9]. The next point to
consider concerns the not existing weighting between the different document samples.
All the texts are treated equally, for instance no preferential treatment of longer text
data towards shorter ones. Furthermore, the different number of training documents
per class can risk that too many documents from a “large category appear under the
k nearest neighbors and thus lead to an inadequate categorization” p. 6]. To solve
these problems, various improved versions of KNN have been developed and studied in
recent years [7} pp. 1-2] [23].

One approach to overcome the difficulty of differently-sized categories was elaborated
in the paper from Li Baoli, Yu Shiwen and Lu Qin. They developed a modified version
of kNN, which they describe as follows p. 1]:

“In the traditional KNN algorithm, the value of k is fixed beforehand. If k is
too large, big classes will overwhelm small ones. On the other hand, if k is
too small, the advantage of kNN algorithm, which could make use of many
experts, will not be exhibited. In practice, the value of k is usually optimal-
ized by many trials on the training and validation sets. But this method is
not feasible in some cases where we have no chance to do cross-validation,
such as online classification. To deal with this problem, we propose a revised
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k-Nearest Neighbor algorithm, which uses different k values for different
classes, rather than a fixed k value for all classes.”

To determine the number of nearest neighbors, the method computes the probability
for each category that the input document belongs to it, by using only some top n nearest
neighbors for the class ¢, where n is derived from % depending on the size of ¢ in the
training data. The result can be summarized as follows, “for larger classes, we used more
nearest neighbors; for smaller classes, we used fewer nearest neighbors” [4] p. 218]. This
method was tested on a Chinese text classification problem and the results show that
their method is less sensitive to the parameter k£ than the original kNN .

Another approach would be combining the traditional kNN with some other algo-
rithm, for instance a genetic algorithm, which uses the evolution strategy to select and
combine samples in the training set to find the optimal combination, as described in the
paper from N. Suguna and Dr. K. Thanushkodi. This technique has the advantage that
it does not consider all training samples and takes only the nearest neighbors; with the
addition of the genetic algorithm, it only considers the &k nearest neighbors straight away
and then computes the similarities to classify the input documents, which improves the
computation time p. 18].

Euihong Han et. al developed a weight adjusted modification of the kNN, “which
learns the importance of attributes and utilizes them in the similarity measure”. This
type of extension refers more to the preparation part, so the feature selection step, which
finally leads to a preference of specific features in the similarity computation [4] p. 216].

For the thesis related project, which focuses on the comparison of the different
algorithms, the traditional kNN was used.

2.4.2 Naive Bayes

This kind of classification algorithm belongs to the group of Bayesian approaches, to-
gether with the second section, the Non-Naive Bayes algorithms. The difference between
these two types is based on the assumption of word or feature independence. This de-
scribes the naive part of the classifiers and it means that the word combination in the
documents is irrelevant. This implies further that the presence or absence of a word does
not effect the remaining words at all. This approach enables a more efficient computation
of the classification process than the non-naive version |8, p. 6] p. 3].

The naive classifiers can be subdivided again into different types of classifiers. Two
commonly used examples are the Multivariate Bernoulli Model and the Multinomial
Model. Both versions calculate the posterior probability of a category based on the
appearance of words in the documents. The actual position or combination of words
can be ignored, thus these models work as well with the bag-of-words representation
as described in section The main differential characteristic of these two approaches
is the assumption “of taking (or not taking) word frequencies into account, and the
corresponding approach for sampling the probability space” |1} p. 182] p. 2].

Apart from the used model, the features of an given input document can be used in
combination with the Bayes rule to compute the joint probability for each class in the
data set. The category with the highest probability value will be finally assigned to the
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document [1} p. 182] \, p. 3]. The Bayes rul can be written down as p. 3]

p(zly)p(y)

plx)
It states, applied to the classification problem, the probability that the input document
has the class y under the assumption that the word z is contained in the document.
This probability is named conditional probability. The total value can be calculated by
determining p(z|y), the probability that the word x occurs in the category y, p(y), the
probability that the searched document belongs to the class y, and p(z), the probability
that the word z is mentioned in a document. The first value p(z|y) is computed by
dividing the term frequency of the word z in the class y with the total number of words
in the class y. The second value is defined by the ratio of the number of documents in
the category y to the total number of documents. The last value can be split as [37] p.
3]

p(ylz) = (2.5)

p(z) = p(zly)p(y) + p(x|-y)p(—y). (2.6)

The first part represents the same value as the numerator in the Bayes rule, so the prob-
ability that the word z occurs in the category y and the probability that the searched
document belongs to the class y. The value gets aggregated with the probability that
the word = occurs outside the class y, multiplied with the probability that the searched
document is not contained in class y. The — sign in the equation indicates the negation
of the subsequent term, thus the probability that the word z occurs outside the class y or
that the searched document is not contained in class y. Summing up these probabilities
for each word in the document by multiplying, results in the complete joint probability
for the class (1} p. 182]. When multiplying probabilities, it can cause very small values,
which can’t be processed further. To solve this problem the logarithm of the likelihood
can be used, “because the log-likelihood is monotonically related to the likelihood itself,
a maximum on the log-likelihood surface is also a maximum on the likelihood surface”
pp. 590-591] and in the field of text classification, only the highest class probability
is decisive and the exact computation can be neglected |1, p. 185].

To come back to the two common models of the naive classifiers, the first commonly
used one is the Multivariate Bernoulli Mode which basically uses the presence
or absence of words to represent the documents. This implies, the frequency of words
is irrelevant in this kind of classification model. A dictionary is created representing
the vocabulary of the data set and the representation of the documents finally results
in binary vectors, indicating if a word form the dictionary exists in the text or not.
The second method, which is often used is the Multinomial Mode This type of
classification method stores the frequencies of words in the documents. “As a result, the
conditional probability of a document given a class is simply a product of the probability
of each observed word in the corresponding class” p. 182].

"% See also |http:/ /stpk.cs.rtu.lv/sites/all /files/stpk /materiali /mi/artificial intelligence a modern approach |
pdf’

® See also |https: / /www.stat.wisc.edu /sites/default/files/tr1171.pdf]|

7 See also https://nlp.stanford.edu/IR-book /html/htmledition the—bernoulli-model—l.htmll

'® See also http://www.cs.ubc.ca/~murphyk/Teaching/CS340—Fa|I06/reading/bernouI|i.pdfl
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Consequentially, this kind of model works better with data which can easily be
transformed into tables of numbers, like word counts in text documents. Additionally,
the first version is more suitable for small vocabulary sizes like binary data, so data with
only few categories, such as yes or no options; conversely, the second one deals much
better with large vocabulary sizes. This key data indicates “that the two models may
have different strengths and may therefore be useful in different scenarios” p. 190].
In the case of classifying articles the second approach is more appropriate, because of
the various categories and because of the large vocabulary sets. The following section
describes the basic operation in detail, inclined towards the basics of the Bayes rule.

In summary, the Naive Bayes works “surprisingly well for many real world classifi-
cation applications” and its advantages are its simplicity, its insensitivity to deficiencies
and it only “requires a small amount of training data to estimate the parameters nec-
essary for classification” p. 10]. Another advantage is its computational efficiency,
because it only involves the presence of words in the calculation, not the absent ones
p. 5]. Thus, the benefits of the independence assumption can be simultaneously the
disadvantage, when the features of the data to process are not independent, which leads
to accuracy decrease and needs a remedy to be found .

2.4.3 Semantic Fingerprinting

This technology was developed by Francisco Webber and Daniel Schreiber, who addi-
tionally founded a company called Cortical.io around this idea. Webber recorded their
findings in a white paper pp. 6-40], which is the theoretical foundation for the
following section and all information derives from this reference.

The Semantic Fingerprinting method is based on a neuroscience rooted mechanism,
which arose during the medical studies of Francisco Webber. The fundamental method-
ology behind this concept, is named the Semantic Folding Theory, which describes the
encoding procedure that transforms textual input data into a Sparse Distributed Repre-
sentation (SDR), binary representational vectors, which can than be processed further
by Hierarchical Temporal Memory (HTM) systems.

HTM Learning Algorithm

This learning algorithm is one part of the Hierarchical Temporal Memory Model and
was developed by Jeff Hawkins . Generally, it assumes the structure and functionality
of the mammalian neo-cortex, which is from an evolutionary point of view a rather
novel structure for managing “the command and control functions of the older (pre-
mammalian) parts of the brain”. A human being is in general constantly exposed to a
stream of sensorial input data, noises, pictures, feelings, and this leads to a continu-
ously learning process of characteristics, which describe the “surrounding environment,
building a sensory-motor model of the world”. For the optimization of this world-model,
deposited in the neo-cortex, already stored information of previous experiences and im-
pressions are used to describe the new and unknown characteristics or to adjust older
ones with more details and features p. 10].

The natural condition of the neo-cortex is in general, “a two-dimensional sheet cov-
ering the majority of the brain”, which consists of “microcircuits with a columnar struc-
ture” p. 10]. Furthermore, the surface of the neo-cortex is subdivided into different
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Figure 2.6: Sparse representation of the word “pig” with single bit meaning p. 13].

areas, receiving either inputs from sensory organs or data passed on from another region.
All these parts detect frequently reoccurring input sequences, generate a distinct pat-
tern based on them and produce a stable representation of each learned pattern. These
types of operations can be described as a memory system as a whole, which processes
data just by storing it to a distinct address, a long binary vector, forming the Sparse
Distributed Representations, SDRs p. 11]. A system based on the HTM theory as-
sumes this mechanism. It converts input data into Sparse Distributed Representations,
saves them and tries to predict and recognize patterns in new and unseen data, based
on the already seen ones.

Sparse Distributed Representations

The purpose of SDR representations is to describe various sensory input of objects or
impressions in the surrounding environment. The corresponding pre-version of SDRs,
are dense binary values (see figure , where each combination of bits identifies a
specific data item, described by a set of stimuli, in the memory system. To detect which
kind of data item it is, a dictionary is needed, to keep track of all possible combinations
and related data items. The more impressions are stored in this dictionary, the longer
it would take to figure out which semantic grounding it has. To overcome this difficulty,
the semantic foundation of a binary vector can be directly included in its representation,
whereby every bit of it corresponds “to an actual feature of the corresponding data item
that has been perceived by one or more senses”. This will cause much longer vectors,
but in these representations (see figure only very few bits are set and by storing
only these set bits, a high compression rate can be achieved p. 13].

The only remaining problem is noise, in other words, false activation, shifted bits or
false dropping of bits can lead to a wrong or unreadable interpretation of a word
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Figure 2.7: Bits shifted to the left cause misinterpretation p. 14].

pp. 13-14]. “Sparse representation are more resistant to dropped bits”, because not all
features of the item are needed to identify it correctly. Nevertheless, shifted bits are still
troublesome (see figure . Up to this point, the features of the data item are located
at random positions and aren’t ordered. That implies that a 100% match is required
to identify a data item. When sorting and grouping similar features together, multiple
benefits are gained. The first advantage is the improvement of the noise reduction.
Even if a bit is slightly shifted a few places to the left or right, the overall semantic
meaning of the whole data still remains the same, because the neighboring features
belong to the corresponding group (see figure . The second improvement concerns
the semantic comparison of values. After grouping features, it is possible to calculate
a gradual similarity value by comparing separate regions of the fingerprint and this
allows a more sensitive comparison. It can be used for disambiguation or conclusions.
To summarize the main properties and advantages of SDR encoded input data:

o they can efficiently be stored, because of the very few set bits,

e every bit of them has a semantic meaning,

e similar terms result in a similar SDR,

e they are remarkable noise resistant, because of grouping features and

e they can be combined and merged together without information loss p. 14].

Semantic Folding

With this previous knowledge, Semantic Folding can be described as a “data-encoding
mechanism for language semantics”. In general, “language is a creation of the neo-cortex”
and all language elements are finally “converted into a inner representation, the SDRs,
“that can be directly used by comprehension circuits” on the neo-cortex p. 17].
Word-SDRs represent the smallest part of language, which contain lexical informa-
tion and whenever a word sequence is perceived, the neo-cortex detects frequently used
patterns, the Word-SDRs, and saves the sequence where they appear in. This sequence
can be seen as an instance of a Linguistic Special Case Experience corresponding to a
linguistic statement, which consists of sentences. These sentences or text snippets rep-
resent a context for each word contained in it. Every time the same Word-SDR appears,
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can fly
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Figure 2.8: Grouping of features for more resistance p. 14].

a new snapshot of the sequence is combined with the stored one, and over time only the
bits which “are in common within all states remain active” p. 20]. After some time
the learning process progressively switches and uses already known words that have
been learned previously for assimilating new words. Thus, “the mature brain depends
mostly on existing words to define new ones”. Every word gets linked to more and more
contexts enhancing its foundation and finally, a word is defined by its list of contexts
p. 21].

After this mapping step, a word can be described by a simple one-dimensional word
vector. The second mapping procedure concerns the contexts themselves. Their under-
lying representation are vectors, which can be used to create a two-dimensional map by
comparison, where finally “similar context-vectors are placed closer to each other than
dissimilar ones”. The resulting map is the sum of all received contexts, the Special Case
Experiences, so sequences of words and text snippets. When receiving new sequences,
the whole map gets dynamically extended pp. 21-22].

This semantic map is used to encode single words, by associating binary vectors to
them, containing a one if the word is contained in the underlying context at the specific
position or a zero if not. The result is a long sparse vector forming a Word-SDR, which
is still quite resistant against noise, because in the underlying context map adjacent
contexts have still a similar meaning (see figure . In general these encodings obtain
all advantages of SDR encoded data p. 23].

A set of multiple Word-SDRs can be compared by using a similarity function or
distance metric, like the euclidean distance or cosine similarity. The easiest way of
calculating the distance is counting binary overlaps between two SDRs. This case it
is important to note word-frequencies, because they can lead to misinterpretations.
Generally, these functions detect the semantic closeness of words. However, the similarity
of words can not be directly equated with word synonymy. This is only a special case of
semantic closeness. It is a more flexible concept, determining if two words have similar
contexts pp. 23-24]. Another possibility to detect the underlying term or topic of a
fingerprint is to look at the overlapping bits and the topic of the shared contexts in the

background p. 37].
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Encoding Process

| context 1 | [ context 14| | context 11 | 011
[ context | [ context6 | [ context7 | 100
———)] context2 | [ context3 | [ context 13]—>| 0 1 0
| context 5 | [ context 10] | context4 | 000
| context9 | [ context 12] | context 15] 100

v

[word | [01 1100010000100 |

Figure 2.9: Encoding of a word with ordered semantic map p. 23].

Recapping, Semantic Folding converts the incoming data stream into Sparse Dis-
tributed Representations in order that the system based on the Hierarchical Temoral
Memory theory can make predictions what meaning the unseen SDR has based on the
pattern it has seen so far. SDRs can also be referred to as Semantic Fingerprints and
the whole process of predicting patterns, as Semantic Fingerprinting.

Classifying Process

In terms of text classification the resources of texts, the articles of the training data,
are the reference texts defining the whole Semantic Universe the system has to work in.
The texts are converted into word vectors in the pre-processing step and then placed
in an array or a 2D matrix, in a way that texts with similar topics are placed closer
to each other than different topics. The result of this process is the semantic context
map, needed for encoding words. After the map construction, each word of the training
or testing texts, gets converted with the aid of this map. This produces a large, binary
and sparsely filled vector for each word, the Semantic Fingerprints. The fingerprint can
be visualized on a grid, in this case a square grid, by marking the ones as black fields
(see figure [2.10) p. 29].

These fingerprints can either be stored in a database, or they can be combined
and merged together forming Text-SDRs or Document Fingerprints. This is done by
collecting all Semantic Fingerprints of the words contained in a text, stacking them
over each other (see figure “and the most often represented features produce the
highest bit stack” p. 34]. “The bit stacks of the aggregated fingerprint are now cut
at a threshold that keeps the sparsity of the resulting document fingerprint at a defined
level” [38] p. 35]; in other words, the contexts of the highest stacks will be kept. The same
procedure can be applied for the creation of Topic or Category Fingerprints. Finally the
new input text which should be classified, can be classified on multiple ways: comparing
it with other texts from a specific category, or with a whole Category Fingerprint, or
the topic can be read out by looking at the overlapping contexts [38] pp. 39-40]. Details
on the classification process and the reimplementation are described in chapter
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Figure 2.10: Graphical representation of an example Semantic Fingerprint p. 29].

Figure 2.11: Put Semantic Fingerprints of words on top of each other (a) and detect
the highest stacks of ones in the fingerprint to keep it for the final Semantic Fingerprint

of a text (b) p. 29].

2.5 Multidimensional Scaling

In the field of text classification, one of the first tasks is the conversion of text into a
numeric representation. Therefore numbers have in general a great relevance in classi-
fication tasks. Concurrently, this complicates comprehending the workflow of the algo-
rithms, because it is difficult to get an overview of the properties of the numbers: One
possibility to overcome this barrier, is multidimensional scaling, a graphical representa-
tion of data, preserving the distances between them.

Multidimensional Scaling, in short MDS, is a collection of mathematical proceedings
“that enable a researcher to uncover the “hidden structure” of data bases” p. 5]
and addresses the reverse problem of distance measuring. When a map is given with a
number of cities marked on it, one only have to measure out the distances between them
and convert it into real distance. Unfortunately, when a table of distances is given, it
requires more effort to develop the related map. In the classification subject, the data
vectors the algorithm work with, are usually n-dimensional, with n > &, which means
the data is not suited to be visualized directly. Thus, the n-dimensional data have to
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Table 2.1: Proximity table of crime rates in 1970 of 50 U.S. states @ p- 4]. The values
show how similar the rates are in this year and if there are some correlations between
some crimes.

Crime Numb. 1 2 3 4 5 6
Murder 1 1.00 | 0.52 ] 0.34 | 0.81 | 0.28 | 0.11
Rape 2 0.52 | 1.00 | 0.55 | 0.70 | 0.68 | 0.44
Robbery 3 0.34 | 0.55 | 1.00 | 0.56 | 0.62 | 0.62
Assault 4 0.81 | 0.70 | 0.56 | 1.00 | 0.52 | 0.33
Burglary 5 0.28 | 0.68 | 0.62 | 0.52 | 1.00 | 0.70
Auto theft 6 0.11 { 0.44 | 0.62 | 0.33 | 0.70 | 1.00
rape
[ ]
burglary
assault °
°
[ ]
murder
[ ]
robgery auto theft

Figure 2.12: A graphical, two-dimensional representation of the proximity values in
table @ p. 4]. Tt visualizes the correlation of each crime, where close crimes are highly
correlated and far apart crimes are less connected.

be converted in a m-dimensional one, where m < n, but keeping the notions of distance
between the data points. Thus, it is a dimension-reduction technique for visualizing
data. This set of methods uses a N x N proximity matrix, which contains similarity
values of all objects to each other. These similarities indicate the distances between the
objects and how close or far apart two objects are @, p. 444]. In table an example
of an proximity table is shown. The final result is a geometric representation of points,
where each point corresponds to a distinct object, such as points on a map (see figure
. The representation locates dissimilar objects far apart from each other and similar
ones closer, reflecting the proximity values. The map is not necessarily adequate for two
dimensions, it can have three, four or even more. This configuration can reveal a hidden
structure in the data, which often facilitates comprehending the data [19] p. 7].

In practice, MDS representation are normally always constructed by computer pro-
grams due to the complexity of the computation. However, the approximate approach
is to determine the dissimilarities between the given objects based on their distance-
values, usually with the euclidean distance computation. The whole procedure results
in a configuration where the distances between the objects on the map, approximates
the corresponding dissimilarities between them. The quality of this configuration or also
referred to as approximation error, can be defined with a loss function, which detects
the optimal setting to minimize it p. 21] @ pp. 445-446] and finally adjusts the
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configuration. There are numerous versions of loss functions in use, also named stress
functions, some well-known representatives are the Raw Stress, the Normalised Stress
or the Kruskal’s Stress function [5) pp. 22-25].

In general, there are multiple varieties of MDS computations and the variation of
the loss function is one aspect of how they can differ. Some other distinguish in the
particular type of geometry, into which the method wants to map the object data, or in
the mapping function, the algorithms used to determine the optimal representation, or
in the possibility to visualize several similarity matrices into one map at the same time
@ p. 3]. Multidimensional Scaling is a very comprehensive field, with a great number
of adjustment possibilities and computation effort, but it offers the great opportunity
to uncover hidden patterns in data and the prospect to gain a deeper insight into the
fundamental substance. More detailed information about the technical background can

be found in @,@



Chapter 3

Conceptual Background

The following chapter describes the general set-up of the corresponding project as well
as the underlying conceptual idea.

3.1 Used Technology

The main purpose of the thesis correlated project is the creation of a reliable and stable
test environment for the comparison of different text classification approaches. In order
to achieve this, the whole project is integrated into a Content Management System,
CMS, environment and implemented as an extension to make it replicable and reusable.
The pre-processing steps are facilitated by means of Sam Hocevar’s NlpTools, and the
software RStudio enables a closer look on the structure of data the extension uses. The
remaining part of the project is implemented independently, based on the respective
theory, with the aim of enhancing the understanding of the fundamental principles of
text classification.

3.1.1 TYPO3 CMS

TYPO3 is the most commonly used Content Management System with more than
500.000 installations, for diverse web projects since eighteen years, which provides a
basic structure for websites, intranets or web and mobile applications .

Referring back, TYPO3 was developed by a danish developer, Kasper Skarhgj, in
1997. In those days the term “content management” was not as usual as today, but
the more complex the websites became, the more arose the idea of a new system which
separates design and content for clearer structures and easier handling. TYPO3 is an
open source project, which is one of its key features and offers with version 4.7 and
greater, a responsive approach for a variety of devices. The main advantage, in relation to
the thesis project, is its extension framework and the possibility to expand the personal
TYPO3 application by means of the Extension Manager .

Since the 10th November 2015, the seventh version of TYPO3 CMS is released
with new features like performance improvements, Bootstrap 3 integration and a visible
TYPO3 backend facelift . This version is used for the thesis project. The Extension
Manager was added to the main system with the release of version 3.5. This feature is an
internal control centre, which manages the new structured architecture, separating the

25
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Figure 3.1: Internal TYPO3 structure with primary focus on extensions .

core extension from the remaining extensions. Before the introduction of the Extension
Manager, everything was mixed together and overlapping, such as framework, plugins,
database and API. The structure was unstructured and hard to work with; thus, the
Extension Manager was necessitated. The actual internal structure of TYPO3 can be
seen in figure With the release of TYPO3 4.3 two addtional important extensions
have been added to the system, Extbase and Fluid .

In the early stages, Extbase and Fluid combined should be an alternative option
for the extension development with piBas but over time they gradually assumed this
responsibility. Extbase can be described as a framework and enables more complex
extensions, whereas Fluid adopts tasks of a template engine and is responsible for in-
and output . A detailed view of these two extensions can be found in section

3.1.2 PHP NlpTools

These tools consists of multiple PHP classes for natural language processing tasks devel-
oped by Sam Hocevar, mainly for its own needs. It is for free and available on GitHub or
via Packagist, the PHP package repository, and a detailed documentation can be found
on the project’s homepag The main part of the set contains different kinds of tok-
enizer, stemmers, classification models, clustering models, diverse similarity functions, a
tf-idf analysis and a stop word filtering method. The repository requires at least PHP 5.3
and for the project, it has to be placed in the TYPO3 Resources/Private/Libraries
folder.

The thesis project itself uses only some of the classes the library provides. The
general underlying idea using a library in the course of the project, is to facilitate the
pre-processing part of the classification process. This mainly concerns the preparation

' See also |https://www.video2brain.com de/videos—26061.html
? For the documentation see |http://php-nlp-tools.com|
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of the data, which the extension and the algorithms should process afterwards. For this
step following classes are needed: the WhitespaceTokenizer, the PorterStemmer, the
CosineSimilarity, the StopWords filtering class, the English normalizer and several
helper classes for calculating the tf-idf weighting. A detailed description of the used
classes and the pre-processing implementation can be found in the chapter

The homepage of this tool kit, offers a great set of code snippets showing how to use
the classes, tutorials, on what can be done and documentations of various projects. On
the blog of the page, the author publishes recent innovations or several insights into his
projects, presenting his current state of development. Among others, a spam detection
service and a programming language detection belong to the

One of the experiments on the blog deals with the comparison of the NlpTools with
the popular and commonly used Natural Language Toolkit (NLTK), written in Python.
The subject of the contrasting juxtaposition was the hierarchical clustering implementa-
tion and mainly its time complexity. After setting up datasets, running and comparing
the times for calculation, it turned out, the NLTK “implementation is asymptotically
worse than the one in NlpTools”. The author’s main assumption for the reason why;,
concerns the calculation of the cluster similarities; NlpTools uses a dissimilarity matrix,
but NLTK does not and recalculates the similarities each merge again. After adding
a “quick and dirty addition of a similarity matrix to the algorithm” of NLTK, a
decent speed improvement has been observed.

3.1.3 RStudio

RStudio’s attempt is to provide in general “the most widely used open source and
enterprise-ready professional software for the R statistical computing environment” [60].
This includes among others an IDE, an integrated development environment, for the
statistical language R and development tools, which facilitates working with this kind
of language and enables easy analysis of data. The enterprise was founded in 2008
and contains open source products such as the IDE or Shiny, a framework for web
applications using R, as well as a commercial professional version.

However, R is mainly used for statistical computing and graphics. Furthermore it
provides a great variety of methods such as classification and clustering methods. In
general it is closely related to the S languag which is often used for statistical method-
ology as well, but R offers open source opportunities and a highly extensible access to
this field.

In case of the related thesis project, it is used for the construction of multidimensional
scaling graphs, displaying the articles used in the text classification in relation to each
other. For this purpose the open source desktop version of RStudio IDE was used. Before
starting with R for the MDS graph, the data has to be prepared. The calculation needs,
as in section described, a proximity table containing the similarities between all
objects. Thus, a similarity matrix has been created with all articles compared with each
other. A small part of the proximity table for a data corpus including the categories
Film and Politics is shown in table which is needed to produce the figure

After creating a matrix with similarities and the respective article ID as column and

3
See also |http: php-nIp—tooIs.coml
* See also http://www.springer.com/de/book/9780387985039l
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Table 3.1: Small cutout of the similarity matrix for a data corpus including the categories
Film and Politics, which has to be created before starting with RStudio, for instance
by means of the Similarity class of NlpTools.

Article ID 1 2 3 4 5
1 1.0000 | 0.0226 | 0.0382 | 0.0201 | 0.0429
2 0.0226 | 1.0000 | 0.0111 | 0.0331 | 0.0815
3 0.0382 | 0.0111 | 1.0000 | 0.0180 | 0.0296
4 0.0201 | 0.0331 | 0.0180 | 1.0000 | 0.0432
5 0.0429 | 0.0815 | 0.0296 | 0.0432 | 1.0000

row names, the euclidean distance matrix can be calculated by means of RStudio with
dist (). This is needed for RStudio to create the graph with cmdscale() as following.

1 distances <- dist(mySimilarityMatrix)
2 mds <- cmdscale(distances, eig=TRUE, k=2)

To visualize the plot, the x- and y-axes have to be defined and labelled, as well as
the type of the graph has to be determined. In addition, the object points on the graph
need a label. In the following case they are named with their related category and can
be coloured as well.

1 xAxis <- mds$points[,1]

2 yAxis <- mds$points[,2]

3 plot(xAxis, yAxis, xlab="x-axis", ylab="y-axis", main="Film vs Politics", type="n"

4 text(xAxis, yAxis, labels = firstCategory, cex=1, col = c("red","blue") [
firstCategory])

The final result might look similar to the following example of the comparison of
documents from the film and politics category in figure which shows how similar
the documents are.

This kind of visualization allows a detailed insight in the structure of data and can
help comprehending the working process of algorithms dealing with this fundamental
article corpus.

3.2  Working Environment

As already mentioned, Extbase and Fluid, the major milestones for extension devel-
opment in TYPO3, are integrated in the system since 2009 with version 4.3 and are
destined to gradually replace the extensions with piBase. The idea behind is to pave
the way to TYPO3 Neo with the introduction of Extbase, because of a better com-

patibility [65].

3.2.1 Extbase

Extbase itself is a PHP based framework, which ensures a clean separation between
different concerns of code sections gaining benefits such as a simpler maintenance. With

® See also |https://www.neos.io/l
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Figure 3.2: MDS graph of the documents from the category Film and Politics.

the introduction of Extbase, object oriented programming has been introduced to the
extension development as well. Before this step, procedural programming, thus joining
functions together, was used in 95% of cases for developing extensions .

Unfortunately, procedural programming involves some drawbacks like difficulties for
re-using code, difficulties in finding errors because of confusing code and the possibil-
ity to alter properties everywhere, and properties and methods belonging to the same
content could not be united, so encapsulating subjects was not possible. An object ori-
entated approach enables transparent structures and a more realistic view of the code.
An object, seen as container of data, mirrors a real object, such as a car, with proper-
ties and methods, representing possible functionalities and actions. All the features are
present in code, when using object orientation. This heavily facilitates re-using and com-
prehending code. Extbase’s modular approach and modern architecture now requires a
different knowledge of developers. Concepts like Domain Driven Design or Model-View-
Controller pattern become more decisive during implementation and especially before
starting with it . The following section gives a short overview of the relevant concepts
in Extbase.

Domain Driven Design

In the field of software development, the usual task is to develop software for a distinct
customer. This implies that the first key challenge is to understand the problem of the
customer to finally offer him an adjusted solution. The domain driven approach focusses
mainly on this understanding of a problem and the definition of it. The crucial factor is to
define the problem in close cooperation with the customer to ensure that both sides have
the same understanding of the issue. This mainly consists of developing a general model
representing the problem, which can be subsequently the base for the final program.
In detail, a common language have to be determined to facilitate communication and
should be present in the source code as well. This implies core terms, names of entities,
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values of objects, such as the types of properties, associations between objects, with
regards to the database structure, aggregations of classes, and services defining the life
cycle of objects. With resolving these issues, the “domain of the application can be
efficiently packed into a software model”. Concerning the last issue, when using Extbase
the developer does not have to deal with the whole life cycle of objects, so there is no
point of direct contact with the database layer and the persisting of objects. The layer,
which takes care of the tasks, is named the repository layer and can be imagined as a
real life library counter, where the user can get objects of a distinct type, read or edit
it, save it or delete it. Thus, for each object type a repository is needed to manage these

object instances .

Model-View-Controller Pattern

The Model-View-Controller design pattern, abbreviated MVC, divides an application
into three rough layers: the Model, which contains the domain model and the corre-
sponding logic, the Controller, which controls the process of the application as well as
the communication between the Model and the View, and the View itself, which pre-
pares the data and manages the presentation of the data to the user. The interaction
between these three sections starts when the user sends a request object, containing in-
formation about the controller and the respective action, which should be executed. One
sample action could be listing all properties of car-objects stored in the database. Thus,
the object data from the model is required to satisfy the request. The domain objects
can be received via the car repository layer, as mentioned above, and after getting the
response as an array of car-objects, the data is forwarded to the view. Finally the View
displays the car-objects and returns the response to the user. In the common version of
the MVC patterns, the View is not only responsible for displaying data, it also listens
for changes in the Model to enable an immediate reaction on changes. However, Extbase
does not include the client-side of the view, only the server side, so it does not share a
persistent connection in order to keep the view even more separate as in the classical
MVC pattern. Hence, changes in the Model can not be presented immediately in the
browser [53].

General Setup

After the installation of TYPO3, the extension relevant files and folders are located in
typo3conf/ext/. On this level the extension folder has to be created, named after the
extension key, containing all classes and configuration files. Furthermore, the classes are
separated in two sections, the domain specific classes, including model and repository
classes, and the controller classes. The last part of MVC, the view is situated in the
resource folder consisting of various HTML files. Equally important are the three config-
uration files inside in the extension folder, ext_emconf .php, ext_localconf .php and
ext_tables.php . The rough concept can be seen in figure

The first file is responsible to supply all crucial data to the Extension Manager
to register the new extension including important details such as dependencies. The
localconf file defines basic properties, the action and the controller name, which should
be called when the extension is requested and all remaining actions and controller as
well. In the third file, the location of the extension has to be determined with the
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A [bs_text_classification]
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Figure 3.3: Rough concept of folder structure within TYPO3 extension folder.

extension key and a name. Afterwards, the controller can be created as well as the
needed actions and variables can be forwarded to the view via $this->view->assign()
. The system configuration is completed by this and detailed information about the
further implementation can be found in chapter

3.2.2 Fluid

Above all, Fluid focuses on the view part of the system. It is a template engine, which
is used to display content on a website and was specially developed for TYPO3 and
FLOWS3. The basic concept of each template engine including Fluid, is to process a
template file and replace all placeholders found in it with the content the engine gets
from the controller. In principle, Fluid draws upon three major components enabling
scalability and flexibility: the Object Accessors, the View Helpers and Arrays. When
receiving content from the controller, the template engine has to fill the content into
the specific areas, indicated by placeholders. These placeholders are called the Object
Accessors, because they are allowed to access the data. The Object Accessors are dis-
tinguished by two curly brackets. For instance, {carColour} would display the content
of the variable carColour. The variable itself has to be assigned in the controller with
the following syntax.

$this->view->assign(variableName, object)

To display more complex objects, a View Helper is needed, which are automatically
imported in Fluid. They are indicated by the prefix £: and can adopt multiple func-
tionalities such as for-loops, if-else conditions, links or a form with several field types.
The following code snippet, for instance, shows a for-loop listing car objects with their
names and related colour. Via the dot notation the properties, like name and colour,

can be accessed .

<ul>
<f:for each="{cars}" as="car">
<li>{car.name} : {car.colour}</1li>
</f:for>
</ul>
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Arrays, which can be compared to associative arrays in PHP, are fundamental in
Fluid to pass multiple variables from the controller to the view and also the other way
round. They can contain strings, numbers, objects and sub-objects simultaneously, the
only thing they need is a key. In Fluid it is possible to pass a number of variables with
a View Helper to a controller. The prime example is a link, where an action and the
corresponding controller can be declared, to get retrieved by clicking the link. With the
arguments property, multiple variables can be passed on to this action. Separating the
values by commas, indicates that the values are forwarded in form of an array . The
following line shows an example link with action and argument.

<f:link.action controller="Cars" action="show" arguments="{car: currentCar, id: 10}"
>Show current Car</f:link.action>

3.2.3 Project Use Case

Manual news organization in nowadays news agencies constitutes of hard effort. A small
piece of software can be very useful and lighten someone’s workload. The main idea
behind this project was to compare different algorithms, which can be used for text
classification, to finally build an extension which is able to classify an article based on
the learned corpus of training examples. It includes different ideas such as entering an
URL and the program logic has to classify the text found on this page, or entering a
text directly, which gets classified. Another possibility is to enter a topic and all articles
classified to it get listed.

The primary focus of the extension lies on the scientific aspect and on the new
approach of the semantic fingerprinting method, compared with other classification
techniques.

3.3 Data Source

The aim of the thesis project is to compare the semantic fingerprinting method for
classifying articles with the two classical algorithms, k-nearest-neighbour and Naive
Bayes. In order to achieve this goal, a great number of articles is needed, which have to
live up to certain conditions:

e have to be in English,

e have to be assignable to one specific category,

e have to be real life data and

 have to be of a certain length (more than 300 characters).

Especially to fulfill the third condition, to have realistic data, the decision was made
in favour of online news agencies, where a great number of texts are available. Categories
are also present in most of the agencies; thus, the main issues are widely satisfied. The
decision to chose The Guardian, was mainly because of the well structured construction
of the page, the possibility to move back and get past articles, and the subdivision
into categories (see figure . With the decision for www.theguardian.com|a stable and
reliable test environment for the algorithms has been created.
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Program 3.1: Using cURL for collecting the

curl_setopt ($ch,
curl_setopt($ch,
curl_setopt($ch,
curl_setopt ($ch,
curl_setopt($ch,
$data =
curl_close($ch);

0 N O U W N

$ch = curl_init();

CURLOPT_SSL_VERIFYHOST,
CURLOPT_SSL_VERIFYPEER,
CURLOPT_URL, $url);

CURLOPT_RETURNTRANSFER,
CURLOPT_CONNECTTIMEOUT,

curl_exec($ch);

content from The Guardian.

0);
0);

1);
)3

33

In order to get the data from The Guardian, the PHP supported cURL library from
Daniel Stenberg was usedﬁ It enables connections between various servers with diverse
protocols. With this library the content of multiple guardian pages has been collected.
The cURL commands can be seen in program

After receiving the content of a page, this content can be loaded into a DOMDocument,
a parser object, to parse the string containing the complete HTML from The Guardian,
back into its DOM tresee program . This can now be used to select specific
elements such as the article text between certain tags (see program , or to create
a DomXPath, a path object, and a related query, to get, for example, a list of all links
on the page (see program . These path objects are comparable with directories and

folders.

Nevertheless, after extracting the article content, the category, a short description,
the title and the publishing date are forwarded to prepare it for further processing.
Detailed information about the pre-processing stage continues in chapter

6
See also

http://php.net/manual/en /intro.curl.phpl

7
See also

https://WWW.W3schoo|s.com/js/js_htmIdom.aspl
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Program 3.2: Create DOMDocument and load HTML content.

$doc = new \DOMDocument () ;
$doc->1loadHTML ($data) ;

Program 3.3: Create a query to get all links with “data-link-name”.

$finder= new \DomXPath($doc);
$links = $finder->query("//a[@data-link-name='$attr']/Chref");

Program 3.4: Get content between two specific tags.

$pattern = "#<$tag>(.*x7)</$tag\b[">]*x>#s";
preg_match_all($pattern, $string, $matches);

The collected data set finally consists of twenty different categories, has the total
number of 2295 articles, and each category inheres between 80 and 150 files. The precise
breakdown can be seen in table

Table 3.2: Distribution of Article Resources per Category.

Category Articles || Category Articles
Art and Design 83 Politics 117
Books 103 Science 91
Business 125 Society 113
Culture 102 Sport 142
Environment 125 Technology 104
Fashion 130 Television/Radio 114
Film 115 Travel 133
Football 148 UK News 111
Life and Style 114 US News 102
Opinion 120 World News 103




Chapter 4

Implementation

The following chapter describes the technical process in detail, starting with the pre-
processing part, including the usage of the NlpTools, proceeding with the k-nearest-
neighbor implementation, the Naive Bayes implementation and concluding with the
Semantic Fingerprinting method. The chapter provides detailed insights into the pro-
cedure of text classification.

4.1 Pre—Processing

After receiving the raw data of the online articles from the collecting and saving proce-
dure, the primary objective is to split the text into single words, reduce the complexity
of features and to convert them further into respective feature vectors. However, one of
the first steps in the pre—processing pipeline to finally achieve this aim is to remove any
tokens, which could potentially confuse the text classification process, such as HT'ML
tags and every kind of punctuation. This can be done with default PHP functions like
strip_tags and preg_replace. Details can be seen in the following code snippet:

$dataContent = strip_tags($dataContent) ;
$dataContent = trim(preg_replace("/[0-9a-z ]+/i", "", $dataContent));

Subsequently, it is necessary to convert the letters into lower case to reduce the
feature variety on the one hand and to prepare the words for stemming on the other
hand. For this process the normalize function of the English class from the NlpTools
library is used. In case of sentiment analysis for example, it can be useful to keep upper
case words to detect special weightings for certain word sequences. Thus, to give them
more importance because of the notation, but in news classification upper case letter
most commonly refer to the beginning of a sentence.

Up to this point the article texts are processed in one large string, which gets edited
through the different functions. The next task is the Tokenization process, which splits
the string into single words. There are several approaches for splitting strings such as
splitting on white space or splitting on punctuation. However, in the project’s case the
string becomes split on white space with the WhitespaceTokenizer of the NlpTools.

After the Tokenization, the texts are present in form of arrays containing all words,
which can be filtered now to reduce the size of the feature set further. Removing fre-
quently used words, the stop words, like prepositions (“after”) or verbs (“do“), is the sec-

35



4. Implementation 36

Program 4.1: First part of pre-processing procedure including Normalization, Tokeniza-
tion and Stop Word Reduction.

1  $norm = new English();

2  $string = $norm->normalize($string);

3

4  $wtok = new WhitespaceTokenizer();

5 $array = $wtok->tokenize($string);

6

7  $stop = new StopWords($this->stopwordsENG) ;
8 foreach ($array as $key => $value) {

9 $array[$key] = $stop->transform($value);
10}

11

12 $array = array_filter($array);

13 $array = array_values($array)

ond stage of the pre—processing pipeline. The reduction can be done with the StopWords
class of the NlpTools library. When initializing the StopWords object, a stop words list
can be delivered, which is then used to filter the arrays of words. Iterating over the
words, the function sets or unsets array values and thus removes terms, which are con-
tained in the stop word list. Afterwards, the empty array spots have to be removed
and the keys of the remaining values refreshed. For this part the default PHP functions
array_filter and array_values are used. The process can be seen in program [4.1]

At this point, the filtered and normalized terms are saved in the database referencing
the article with the respective category. However, the next step includes the removal of
digits, done by the PHP function preg_replace. In general, numbers can also be kept
in the text, but evaluations on data with removed digits achieved significantly better
results, so they are dropped.

Another important task of the pre-processing pipeline is stemming, which is done
by the PorterStemmer class. The general idea of stemming is to reduce all words with
the same root to one common form to decrease the complexity of the feature set. This
is usually done by removing the derivational and inflectional suffixes from each word. In
the project it is taken on by the transform function of the PorterStemmer. Due to the
transformation, some extremely short terms (less than three characters) can occur in
the array. These words have no remarkable information value, so they can be dropped.
The same applies for extraordinary long words, which can come up through editing the
text (more than 20 characters). The respective code snippet can be seen in program 4.2

Finally, when the features are selected, filtered and edited, the last part of the
pipeline initiates. It concerns the transformation from words to respective numbers, the
weighting. Here again, NlpTools takes on the main functionality. In general, for the
calculation of the tf-idf value, the library needs an object, named TrainingSet, which
contains multiple TokensDocument objects containing the word vectors. This implies,
after initializing the train-Set, each document of the training data, gets converted
into a bag of words array, delivered to a TokensDocument to finally get added to the
trainSet. The notation can be seen in program
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Program 4.2: Second part of pre-processing procedure including digit removal and Stem-
ming.

$content = preg_replace('/[0-9]+/', '', $content);
$stem = new PorterStemmer();
foreach ($array as $key => $value) {

$array[$key] = $stem—>transform($value);
}
foreach($array as $k => $v){

if (strlen($v) <3 || strlen($v) > 20 ){

unset ($array[$k]) ;
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Program 4.3: Creation of the TrainingSet for the weighting process.

$trainSet = new TrainingSet();
foreach($this->trainingsData as $document){
$content = $document->getTerms();
$array = $this->prepareData($content) ;
$trainSet->addDocument ("", new TokensDocument ($array)) ;

}

(=200, NGV O

Program 4.4: Computation for the idf value.

foreach($tokens as $token=>$v){
if (isset($this->idf[$token])){
$this->idf [$token] ++;
Yelseq{
$this->idf [$token] = 1;
}
}
$D = count($tset);
foreach ($this->idf as &$v){
$v = log($D/$v);
}
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Thereafter, the training set is passed to the Idf class, whose constructor calculates
the idf value for each token. Counting the occurrences of terms, inverting it by dividing
it through the total number of tokens and taking the logarithm as it can be seen in
program [4.4] For detailed information, have a look inside the class Idf of the NlpTools.

Afterwards, the idf values are submitted further to the TfIdfFeature
Factory. This class is not included in the library, but provided in the library’s docu-
mentatio It gets the term frequencies from its parent class FunctionFeatures, and
multiplies this value with the respective idf value of the term. For reasons of normal-
ization in the thesis project, the tf value gets additionally divided by the total number

! For the documentation see |http://php—nIp—tooIs.com|
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of terms in the document to avoid a distortion of the results from long articles. The
procedure can be seen in the code snippet below:
$frequencies = parent::getFeatureArray($class, $doc);
$numbFeatures = array_sum($frequencies) ;
foreach ($frequencies as $term=>&$value) {
$value = ($value/$numbFeatures)*($this->idf [$term]);
}

The process of calculation gets triggered by the getFeatureArray function, applied
to each document in the trainSet. Thereafter, the array of training vectors is filled
with each token and its corresponding weight. The notation for the entire computation
process is as follows:

$idf = new Idf($trainSet);
$featureFactory = new TfIdfFeatureFactory(
$idf,
array(function ($c, $d) {return $d->getDocumentData();})
);
foreach($this->trainingsData as $key => $d){

$trainVector [$key] = $featureFactory->getFeatureArray("", $trainSet[$i]);
}

4.2 Algorithms

The subsequent section describes in detail the implementation of the algorithms used
for classifying the news articles. After pre—processing, the data is present in form of
word vectors for each article with the respective weight, which can be processed further
in the algorithms kNN, Naive Bayes and Semantic Fingerprinting.

4.2.1 k-nearest-neighbor

The success of the k-nearest-neighbor is mainly based on a similarity function to detect
the k& most similar documents in the training set to finally determine the class of the
unlabeled text. Just before starting to calculate the similarities, the whole corpus has to
be split into a training data set and a testing set. The relation of the sizes can be chosen
variable. For the thesis project multiple ratios from 67 to 33 up to 90 to ten have been
tested. Finally the decision is made in favour of 80% train to 20% test data, because of
better end results. The splitting is done by the default PHP function array_slice (see
code snippet below).

$this->trainingsData = array_slice($this->dataTerms, O,$trainingNumb,true);
$this->testData = array_slice($this->dataTerms, $trainingNumb,$testingNumb,true);

Thereafter, each document in the test data can be compared with the training
data to get the similarities. The function cosineSim starts the comparison by iter-
ating over the training data and delivering the test terms and the training terms to the
CosineSimilarity object. The similarity function of it returns the respective sim-
ilarity values, which get collected and stored. See the cosineSim function in program
[4.51

The similarity function, contained in the NlpTools, iterates over the terms of the
first document, checking if the term is contained in the second document and if this is the
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Program 4.5: Function for calculating all similarities between the test document and
the training data.

function cosineSim($testTerms,$sim){
$distances = [];
foreach($this->trainingsData as $key => $value)q{
$distances[$key] = $sim->similarity($testTerms,$this->trainingsData[$key]);
}

return $distances;

PN TSR JUR

Program 4.6: Function for calculating the cosine similarity between two arrays.

public function similarity($vi, $v2){
$prod = 0.0;
$v1_norm = 0.0;
foreach ($vi as $i=>%xi) {
if (isset($v2[$i])) {
$prod += $xix$v2[$il;
}
$vi_norm += $xi*Pxi;
}
10  $vi_norm = sqrt($vl_norm);
11 $v2_norm = 0.0;
12  foreach ($v2 as $i=>8$xi) {
13 $v2_norm += $xi * $xi;
14}
15 $v2_norm = sqrt($v2_norm);
16  return $prod/($vl_norm*$v2_norm) ;
17 }
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case, the weights are multiplied and summed up to the inner product. Simultaneously,
the sum for the magnitude of the word vector is computed. After the iteration the square
root has to be extracted from the sum to get the length of the first vector. The same
procedure of calculating the vector length has to be done for the second document.
Finally, the inner product can be divided with the product of the two vector lengths,
resulting in a value describing the angle between the two word vectors. The closer the
documents, the bigger is the value in a range from minus one to one. Notation of the
function can be seen in program

Another possibility to define similarities, is to use the Euclidean class of the Nlp-
Tools. In this case the dist function calculates the distances between the documents
and determines the k closest documents on this way. The computation is started by the
euclidSim function in the respective kNN class.

The computation itself consists of recording all words contained in both articles and
if a word occurs in both, the weights are subtracted. At the end of the function, all
values of the words get squared and summed up. Finally, the square root of the sum
results in the distance between the documents, because of vector calculus as explained
in section [2.3] When using this method, it implies that the smaller the value, the closer
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Program 4.7: Function for calculating the euclidean distance between two arrays.

1 public function dist($vi, $v2)

2  $r = array();

3  foreach ($vl1 as $k=>$v) {
4 $ri$k] = $v;

5 }

6 foreach ($v2 as $k=>$v) {
7 if (isset($r[$k]1)){

8 $r$k] -= $v;

9 Yelse{

10 $r($k] = $v;

11 }

12}

13  return sqrt(array_sum(array_map(function ($x) {return $x*$x;},$r)));
14 }

Program 4.8: Testing function and final prediction of the class for each test document.

1 foreach($testData as $key => $test){

2 $data = $knn->cosineSim($test,$sim);

3 arsort($data) ;

4 $topK = array_slice($data,0,$k,true);

5

6 foreach ($topK as $c =>$value) {

7 $a=trim(strtolower(strstr($dataTerms[$c]->getArticleID()->getCategory(), ' '))
)5

8 1

9

10 $countCat = array_count_values($categories);

11 arsort ($countCat) ;

12 $predictedCat = current(array_keys($countCat)) ;

13 %

and more similar are the documents. See the implementation contained in the NLpTools
library in program

When assembling the single parts of the algorithm, a similar procedure and imple-
mentation as the following can be the result. During the iteration of the different test
documents, the similarities get determined, sorted from big to small and sliced to get
the k& most similar documents. Thereafter, the categories of the top k articles have to
be figured out, to decide which category should be assigned to the test document. In
general there are multiple ways of determining which category wins. One possibility
would be to decide in favour of the most votes, which can be seen in program This
means the class which most frequently occurs in the top & documents, will be kept as
the predicted category. To prevent a tie, an odd number has to be taken for the actual
k value.

Another approach can be to decide in favour of the highest similarity per class. In
the thesis project both versions have been tested and the highest similarity approach
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generated better results. This implies, after summing up the similarities per category,
the ranking has to be sorted again from big to low and the first one, the category with
the highest similarity rate, is kept as prediction for the test document. The notation of
the process can be seen below:
foreach($weights as $i => $val){
$weightingRank [$categories[$i]] = $weightingRank[$categories[$i]]+($weights[$i])

)

}
arsort ($weightingRank) ;
$predictedCat = current(array_keys($weightingRank)) ;

This implementation process describes the testing phase of the kNN algorithm with
the aim to detect the accuracy and the success rate of it. In a case where only one
new document has to be classified, the corpus does not have to be split into training
data and testing data. In such particular application the whole corpus will be taken as
reference and training set for the assigning process.

4.2.2 Naive Bayes

The basic idea of the Naive Bayes algorithm is to use conditional probability to assign
a class to a new input document. The method takes a close look on the words contained
in the unknown article and computes for each word the probability that the document
has a certain class when it is given that the word is comprised in the text. It determines
the conditional probability for each word, summing it up to a joint probability and
calculates this value for each category. The class with the highest probability is finally
assigned to the document.

The overall implementation of the Naive Bayes is inspired by the following resources
and starts the same as the kNN. It splits the data corpus into a training
and a testing set at the ratio of 80 to 20. Afterwards, the classifier has to be trained,
which means the method has to analyse the training data, it has to work with. The
trainClassifier function is consequently the first important part of the Naive Bayes
algorithm.

Training the classifier beforehand, saves time and performance effort, especially for
the prediction part. The method records each article and fills four different arrays: the
terms array, the classes array, the documents array and the data array. Starting from
the coarsest, the documents array stores the total number of articles per class, the
classes array contains the count of words per class and the terms array contains all
words contained in the training corpus with the corresponding amount of occurrences in
the whole data set. However, the data array saves only the words and its quantity per
class. After passing through the articles and storing the numbers, a major and important
task has been ensured. The notation can be seen in program

Compared to the kNN implementation, the Naive Bayes prediction phase, which is
shown below, seems extremely short and simplified.

foreach($testData as $key => $value){
$probabilities = $naive->classifyDocument ($testData[$key] [1]);

$predictedCat = current(array_keys($probabilities));
}
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Program 4.9: Training the Naive Bayes Classifier beforehand.

1 protected function trainClassifier($class, $termArray){
2 if (!isset($this—>classes[$class])) {

3 $this->classes[$class] = 0;

4 $this->datal[$class] = [1;

5 $this->documents[$class] = 0;

6 }

7 foreach ($termArray as $term) {

8 if (!isset($this->terms[$term])) {

9 $this->terms[$term] = O;

10 }

11 if (lisset($this->datal[$class] [$term])) {
12 $this->data[$class] [$term] = O;

13 }

14 $this->classes[$class]++;

15 $this—>terms [$term] ++;

16 $this->datal[$class] [$term] ++;

17 }

18 $this->documents[$class]++;

19 }

The function iterates over the test documents, submits their word arrays to the
classifyDocument method, which returns a sorted probability breakdown for each
class. The class with the highest probability gets assigned to the test document.

The core functionality of the Naive Bayes and thus its second significant part is
included in the classifyDocument function, which returns a ranking of the classes
contained in the training corpus. The underlying approach of the function is to look
separately on each class and the terms in the documents contained in these classes.

Leading an example back to the Bayes rule it might look like the following and
can be summarized in the question: what is the probability that the latest article is an
article about sport, given that it contains the word game. The equation is

p(gamel|sport)p(sport)
p(game) '

At this point, with this formula only one word of the news article has been taken
into account. To get the joint probability the calculation has to be applied to each word.
The computation has to be repeated for the remaining classes as well to finally choose
the class with the highest probability value.

This implies, back in the implementation, that the process starts with the iteration
over the classes array, the array which stores the different categories with the corre-
sponding overall number of words. Simultaneously it iterates over the terms of the test
document submitted to the function and checks if the terms are contained in the train-
ing corpus, thus in the terms array. If a term exists in the training data, the number
of appearances in it is saved in the totalTokenNumb variable. This number does not
consider in which classes the term occurs, it only shows how often the term is included in
the training corpus. Prior to that, the total amount of documents in the corpus as well
as the number of documents in the class and outside of it, are stored for the subsequent

p(sport|game) = (4.1)
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calculations. The notation of the beginning of the prediction process is shown below:

1 public function classifyDocument ($testDocument){

2  $totalDocCount = array_sum($this->documents) ;

3

4  foreach ($this->classes as $class => $classCount) {
5 $log = 0;

6 $docCount = $this->documents[$class];

7 $inversedDocCount = $totalDocCount - $docCount;
8

9 foreach ($testDocument as $term) {

10 $totalTokenNumb = 0;

11 if (isset ($this->terms[$term])){

12 $totalTokenNumb = $this->terms[$term];

13 }

Thereafter, it continues with the class specific analysis. This section checks if the
term is contained in any document in the specific class by browsing through the data
array and saves the total count of it in the tokenNumbInClass variable. After storing
these two values, the computation part begins. The next snippet of the prediction process
is written as follows:

14  if ($totalTokenNumb === 0) {

15 continue;

16  }Yelseq{

17 $tokenNumbInClass= 0;

18 if (isset ($this->data[$class] [$term])){

19 $tokenNumbInClass = $this->data[$class] [$term];
20 }

At this stage, there are two different implementations of the computation of the
occurrences of a term in a class. A common way is to count the documents in the class
in which the term is contained. This implies, that the terms in the documents have to
be unique and it is only decisive if the term occurs in the text or not. This number is
then divided by the total amount of documents in the class, to get the word probability.
The same procedure is kept also for calculating the inverse word probability.

However, another approach is to have a look on the amount of appearances of a term
in a specific class, without deleting the duplicates of it. This value is then divided by
the total number of words in the class, resulting again in the word probability. When
we are given the numbers, how often a term occurs in all classes and how often a term
occurs in a specific class, the number, how often a term occurs outside the specific class
can be easily calculated by subtraction. This value is needed to determine the inverse
word probability. In conclusion, the level of the documents, has been skipped in this
approach.

The word probability value now shows the probability, that a term occurs in this
category, which is the first part of the Bayes rule. The second part of it, concerns the
already mentioned inverse probability, which is the probability that the term occurs in
any remaining class. It can be computed by dividing the outside token count of the term
with the total number of words outside the one certain class.

21 $inversedTokenNumb = $totalTokenNumb - $tokenNumbInClass;
22 $outsideClassCount = array_sum($this->classes)-$classCount;

23  $wordProbability = $tokenNumbInClass / $classCount;
24  $inversedWordProbability = $inversedTokenNumb / $outsideClassCount;
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If the first approach has been used the following two lines change, under the as-
sumption that the words in the documents are unique.

23  $wordProbability = $tokenNumbInClass / $docCount;
24  $inversedWordProbability = $inversedTokenNumb / $inversedDocCount;

Afterwards, the conditional probability can be defined. This value consists of the
word probability, the probability that the word occurs in this class, or in the documents
of the class, divided by the probability that the word occurs in any class or document at
all. This summarized probability is calculated by adding the probability that the term
occurs in this class, or in the documents of the class, and the probability that the term
occurs outside this class, the inverse probability. All in all, the calculation results in the
probability that the document has the certain class, when it is given that this certain
word is part of it.

25  $probability = $wordProbability / ($wordProbability + $inversedWordProbability) ;

After receiving the first probability with the first term, the process is repeated for
each following term in the test document. To get the joint probability for the whole
test document, the single probabilities are usually combined via multiplication of each,
divided by the multiplication of each inverse probabilities, which indicates the likelihoods
that the searched document has some other class. These multiplications often result in
extremely small values, which can not be utilized further. Thus, the logarithms should
be applied to both parts of the computation. Thus, the formula is then

plefw) _ p(e) - o Pwilo)
In =1 p(ﬁc)+21 ( ) (4.2)

p(clw) — " plwi=e)’

In this kind of classification task, it is not important to know the exact values for
each class. The decisive part is to detect the most probable class. According to the
rules of logarithm, the fraction can be transformed into a subtraction of nominator and
denominator. With the exp function of PHP, the logarithm can be undone afterwards
and the value restored. The most probable class is finally assigned to the document,
even if the number is not the exact probability value.

27  $log += (log($probability) - log(l - $probability));

28 $log += log(($docCount/$totalDocCount)/($inversedDocCount/$totalDocCount)) ;
29  $probabilities[$class] = exp($log);

30 arsort ($probabilities, SORT_NUMERIC) ;

31 return $probabilities;
32 }

The two approaches of the implementation have been both evaluated. Overall, the
one which takes the exact word number into account performed slightly better than the
one which only monitors in how many documents the word is contained. The remaining
test cases and results of the Naive Bayes algorithm are explained in detail in chapter

4.2.3 Semantic Fingerprinting Method

The following reimplementation is based on the theory of Semantic Folding and Semantic
Fingerprinting developed by cortical.io. The overall implementation can be separated
again into two parts, the preparation procedure of the classifier and the classification
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part itself. In this kind of algorithm, the preparation part is a lot more sophisticated and
time expensive than the classification part. The explanation of the implementation starts
with a rough description of the preparation procedure and goes into detail afterwards.

The very first step of preparing the classifier is to split the data set into training
data and testing data. Thereafter, the words of the training data get weighted with
tf-idf, which is needed to create the context map in an ordered way. Subsequently, the
creation of the map initiates as well as the storing of the labelled context map, which
is needed for later calculations.

During the following iteration over the train vectors, the classes and the respective
words get collected and recorded. Finally, this resulting array is used for the construction
of class fingerprints, by going through each class and each word, and summarizing the
binary maps to one fingerprint per category. The notation of the starting process can
be seen below:

$this->tfidf();

$this->contextLabelMap = $this->createContextMap();

foreach($this->trainVector as $key => $doc){

$cat = $this->dataTerms[$key]l->getArticleID()->getCategory();

$this->prepareClassifier($cat,array_keys($this->trainVector [$key])) ;

}
foreach($this->data as $class => $words){
$this->createCategoryFingerprints($class, $words) ;

}

After the weighting process, the context map gets created in the createContextMap-
function. The general task of this function can be roughly summarized, in placing train-
ing documents in an array according to their similarities to each other. The result then
should be an array which contains all IDs of training documents, where similar doc-
uments are close to each other and dissimilar ones are far apart. This object is later
used to encode words to their fingerprints, so it is a underlying grid template for the
fingerprints.

In particular, the function iterates over all training vectors, which represent the
documents consisting of words and their weights, and collects all similarities between
the new document and each document already existing in the context map. If the new
document is not the first one to place, it extracts the ID of the most similar document
on the context map and pastes the ID of the new document behind it in the array and
thus, on the context map. The notation for this procedure can be seen in program

During the computation of the context map, the respective labels of the document
IDs have been recorded as well and stored in the contextLabelMap variable. This vari-
able is used in the classification task.

The next step is to collect all terms for each class in the training set and saving
them in the data array with the according number of occurrences in the category. This
procedure is similar to the preparation of the Naive Bayes classifier. Afterwards, the
encoding of category fingerprints can be started.

The creation of category fingerprints is the main part of the preparation procedure.
These fingerprints represent each class in form of binary vectors and are finally used to
compare the new test document fingerprint with each of them. In general, to get these
fingerprints, the function iterates over each word in a class and each document on the
context map once, and checks if the word exists in these documents. If this is the case,
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Program 4.10: Function creates the context map using the similarity value as decisive
factor.

1 protected function createContextMap(){

2 foreach ($this->trainVector as $textID => $val) {

3 $indexSim = [I;

4 $sim = new CosineSimilarity();

5 $cat = trim(strtolower(strstr($this->dataTerms[$textID]->getArticleID()->
getCategory(), ' ')));

6

7 for ($i = 0; $i < count($this->contextMap); $i++) {

8 $indexSim[$i] = $sim->similarity($this->trainVector [$textID], $this->
trainVector [$this->contextMap[$i]]);

9 }

10

11 if (count($indexSim) == 0) {

12 $this->contextMap[0] = $textID;

13 } else {

14 arsort ($indexSim) ;

15 $pastBehind = current(array_keys($indexSim)) + 1;

16 array_splice($this->contextMap, $pastBehind, 0, $textID);

17 }

18 }

19 }

a one is put into this certain place in the fingerprint array of the respective word. In
the opposite case, a zero is added to it. After converting each word of the class into its
fingerprint, they are stacked over each other, summed up and sorted from high to low.
Then the x highest stacks are cut out, determined by a threshold value, and the keys
of them are set to one in the final fingerprint. The remaining places in the fingerprint
stay zero and get filtered out at the end to save memory. The resulting array consists
of IDs of training documents and ones, describing the category and its identification as
fingerprint. The function can be seen in program

To get the whole stack of all word fingerprints, the helper function getSumSDRs
sums them up immediately, which saves processing time. At this point, it should be
mentioned that the numb parameter holds the actual term count inside the class and to
improve the choosing of the right stacks, this value is here additionally included in the
computation. Afterwards, the getClassSDR function only has to check if each stack is
contained in the x highest stacks and sets the certain value in the class fingerprint to
one or zero. The two helper functions are shown in program [4.12] With the construction
of the semantic fingerprints for each of the categories existing in the training corpus,
the preparation of the classifier is completed.

A different approach of creating category fingerprints would be to take one document
of each class and convert it into a text SDR, which is then used for the classification. For
this method, the crucial factor is that the example text document should definitely be a
prime example for the category to have a good pattern template for the comparison with
the test document fingerprint. Otherwise it would have adverse effects on the results of
the classification.
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Program 4.11: Function creates semantic fingerprints for all categories.

protected function createCategoryFingerprints($class,$words){

$this->categoryFingerprints[$class] = [];
$categoryFP = array_£ill(0,count($this->trainVector),0);
foreach($words as $word => $numb){

$categoryFP = $this->getSumSDRs ($word, $categoryFP, $numb) ;
}

arsort (categoryFP) ;
$topX = array_slice($categoryFP,0,$this->threshold,true);

$this->categoryFingerprints[$class] = $this->getClassSDR($categoryFP,$topX) ;

ksort ($this->categoryFingerprints[$class]);

$this->categoryFingerprints[$class] = array_filter($this->categoryFingerprints[
$class]);

Program 4.12: Helper functions getSumSDRs() and getClassSDR().

protected function getSumSDRs($word,$categoryFP, $numb){

foreach($this->contextMap as $key => $index) {
if (array_key_exists($word, $this->trainVector [$index])){
$categoryFP[$key] += 1x$numb;
Yelse{
$categoryFP [$key]l += 0;
}
}
return $categoryFP;

protected function getClassSDR($stackedFP,$threshold){

$array = null;
foreach($stackedFP as $id => $value){
if (array_key_exists($id,$threshold)){
$array[$id] = 1;
Yelseq{
$array[$id] = O;
}
}

return $array;

Going further, to the classification part itself, the testing function is kept very similar

to the one for the Naive Bayes, which iterates over each single test document, classifies
it and gets the similarities of each class back. To determine the similarity value between
the different class fingerprints and the test document fingerprint, the cosine similarity
has been used. The class with the highest similarity is then assigned to the document.
This kind of decision criterion is called the semantic closeness or binary overlap.

A different approach for deciding which category will be chosen is to have a close

look on the positions of ones in the fingerprint. For this method, it is not necessary
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to compare fingerprints. By detecting the category of the underlying document in the
context map and summing up the ones per category, can also be a possible way to
get most overlaps between the test document and the categories. This method uses the
shared context between the fingerprints as decision criterion. In the thesis project both
forms of decision factors have been tested, but the first approach worked slightly better
overall, even if in single test cases the second approach delivered better results. The
notation of the testing method can be seen below with both possibilities.

foreach($testData as $key => $value)q{
$pack = $fingerprinting->classify($testData[$key],false);

$similarities = $pack['prob'];
$overlaps = $pack['over'];

$predictedCat01 = current(array_keys($similarities));
$predictedCat02 = current(array_keys($overlaps));
}

The classification process itself is carried out in the classify function in the Se-
mantic Fingerprinting class. This function retrieves the test documents and starts with
the preparation of the test data, including the removal of numbers and the splitting
into a bag of words object. Afterwards, duplicate values in the document get removed
to simplify the word vector, which is then forwarded to compute its semantic fingerprint
in the respective function. The function will be explained subsequently. It is the second
important part of the classification process.

1 public function classify($testDoc){
$testTerms = $this->prepareData($testDoc->getTerms());
$testTerms = array_unique($testTerms) ;

$package = $this->createTestDataFingerprint ($testTerms);
$fingerprint = $packagel['fp'];

UL W N

After the construction of the test document fingerprint, the comparison phase can
be started. During an iteration over the category fingerprints, each class gets compared
to the test fingerprint and by computing the cosine similarities between them, a ranking
can be computed, which is finally used for assigning a class to the document.

6 $sim = new CosineSimilarity();
7  foreach($this->categoryFingerprints as $cat => $fp){

8 $probabilities[$cat] = O;
9 $probabilities[$cat] = $sim->similarity($fp,$fingerprint);
10 2

By this, the result can be defined, but to have the opportunity to test the different
approaches of decision criterion, a second iteration starts. In this case, the test finger-
print itself is disassembled, by determining the class of the document under each one in
the fingerprint. For this process the labeled context map is used to get the underlying
classes. The values are summed up for each class and the scores sorted.

12 $overlaps = [];
13  foreach($fingerprint as $i => $k){

14 if($k > 0){

15 $overlaps[$this->contextLabelMap [$this->contextMap [$i]]]++;
16 }

17}

18  arsort($overlaps);
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Program 4.13: Creation of test data fingerprint.

1 protected function createTestDataFingerprint($testTerms){

2 $testFP = array_£ill(0,count($this->contextMap),0);

3 foreach($testTerms as $k => $word){

4 $testFP = $this->getStackOfWordSDRs ($word,$testFP,1);

5 }

6 arsort ($testFP);

7 $topX = array_slice($testFP,0,$this->customThreshold,true);

8 $fpPackage['fp'] = $this->getClassSDR($testFP,$topX);

9 $fpPackage['fp'] = array_filter ($fpPackagel'fp']l);

10 ksort ($fpPackage['fp']);

11 $presentClass = [];

12 foreach($topX as $id => $stack){

13 $presentClass[$this->contextLabelMap [$this->contextMap [$id]]]++;
14 }

15 arsort ($presentClass) ;

16 $fpPackage['frequentClass'] = current(array_keys($presentClass));
17 return $fpPackage;

18 }

Before returning the two results, one last check has been added to the classify
function. In case that the two top classes have the same value, it would be random
which class of the two will be chosen. To avoid this, the two top classes get checked,
and if it is indeed the circumstance of two similar values, the class which occurs most
frequently in the top z stacks, gets a boost. After another sorting process, the values
get returned to the prediction function.

20 arsort($probabilities);

21  $class = $package['frequentClass'];
22 $check = array_values(array_slice($probabilities,0,2,false));
23  if($check[0] == $check[1]){

24 $probabilities[$class] += 0.0001;
25}

26  arsort($probabilities);

27  $pack['prob'] = $probabilities;

28  $pack['over'] = $overlaps;

29 return $pack;

30 }

The construction of the test data fingerprint works the same as the creation of the
category fingerprints. Only the number of stacks, which are taken into account is defined
by a custom threshold, which can be the same as the class threshold, but can also differ.
Additionally, at the end of the function, the detection of the most common class in the
top x stacks follows. Therefore, the classes of the IDs in the context map get collected
and sorted. Finally, the highest value in the present classes gets returned, together with
the final test data fingerprint. The function for creating the test data fingerprint is
shown in program

With this implementation, a stable and solid test area is created. The environment is
used to detect the characteristics and criteria for a text classification task with Semantic
Fingerprinting and the test results will be explained in detail in chapter



Chapter 5

Evaluation

The following chapter provides a detailed insight into the results of the k-nearest-
neighbor, Naive Bayes and Semantic Fingerprinting classifiers, an overview of the devel-
opment process and a final comparison of the performances. During the evaluation, two
different data sets are used. The first set is the result of the first data gathering and is
smaller than the second one. Unfortunately, it is additionally unequally distributed on
class level. First tests revealed that more data is needed to create a balanced data set
to have meaningful evaluation results. Finally, all classifiers have been tested on both
data sets.

The initial setup of the evaluation phase contained 731 different articles from The
Guardian split into twelve rough categories, which are the general sections on their
website. The exact breakdown of numbers can be seen in figure As it is shown, the
numbers of articles per category are not even. Thus, the distribution is not homogeneous.
Through these disparate amounts of articles, the results tend to prefer large classes
and miss small ones. Therefore, only the five largest categories (World-News, Sport,
Football, Fashion, UK-News) have been taken into account during the testing procedure
to establish stable and balanced conditions.
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Figure 5.1: Number of articles per categories in initial data corpus.
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Figure 5.2: Number of articles per categories in final data corpus.

After some developing time with firm, but not persuasive results, the need for an
even corpus with preferably precise classes was growing. Thus, the data set got increased
and new articles and new classes added. Finally, the data corpus holds 20 categories with
about 80 to 150 articles per class. With this setup the intense testing phase initiates.
The total breakdown of the numbers is shown in figure [5.2] In this constitution, the
two classes with the most articles are Football and Sport with 148 and 142 articles,
whereas the two smallest classes are Art/Design and Science with 83 and 91 articles.
Although the numbers of the smallest and largest classes are a bit apart, for the majority
of the categories the difference is less significant. In the following sections the accuracy
performance metric is often used to evaluate the algorithms. This number is calculated
by dividing the correct classified articles by the total amount of test articles in the
test set. In the figures, the values are shown in a range from zero to one, but can be
interpreted as a percentage values, which range from zero to 100%.

5.1 k-nearest-neighbor

This algorithm has three adjustable parameters to change the performance and the
resulting accuracy. Since the test data is so called unseen data, which implies that it
is completely new and the algorithm does not know which kind of data comes next,
other variables, like these parameters, have to be changed to improve the classifiers
performance. The three main parameters in case of kNN is on the first place the k
value, which decides how many documents are included in the valuation, on the second
the similarity function or distance function, which detects the most similar or closest
documents, and on the third place, the decision criterion for the assignment of the class
to the document. Thus, the testing is focused on these variable parameters.
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Figure 5.3: Testing k parameters of the kNN with the initial data corpus in three different
settings.

5.1.1 Initial Findings

In the initial trails, the tested data amount accounts 233 articles on basis of the train-
ing corpus, which consists of 476 files and five different classes World-News, Sport,
Football, Fashion and UK-News. The resulting accuracy value is 73.82% in case of the
kNN classifier with a k& value of five. This number is the maximum accuracy in this
setup constellation, computed with the cosine similarity and the decision criterion of
majority.

Testing different values of k£ up to 245 provides no better results, whereas switching
the decisive factor to the sum of the similarities for each class, a new maximum accuracy
of 75.10% is yielded by the k values of 25. Now changing the k value, results in continu-
ously higher values than before. The definite numbers of the couple of test cases in the
initial phase can be seen in figure[5.3] In the figure the red curve shows the development
of accuracy using the majority decision with the cosine similarity, while the blue one
presents the course when using the summed up similarity and the cosine similarity. Yet,
when changing the similarity function to the euclidean distance and using the majority
decision, the same values are provided as before with the cosine similarity and the ma-
jority decision. The euclidean distance curve is shown in the figure as green line and due
to the exact same results, the green line has a different representation mode, to get both
lines visible in the figure. As it is shown, the results of the summed up similarities per
category remain quite stable when changing the k value, whereas the majority decision
steadily decreases.

When adding the remaining smaller classes to the five large ones, the values decrease.
With twelve classes, the maximum accuracy is about 72.2% with a k value of 15, the
cosine similarity and the highest similarity as decisive factor. Using the majority deci-
sion the maximum result, drops off to 70.12% and switching the distance measurement
delivers the same result. This decline might be caused through the uneven distribu-
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Figure 5.4: Testing extreme cases with variable k£ value and the two different decision
criterion, majority decision and highest similarity.

tion and through the small data amount and the rough categories. This affirmation is
supported by the test cases concerning two classes, Football and World-News, which
nearly have the same amount of articles and are supposed to be dissimilar considering
the topic. For the class Football, it is highly probable that it contains only articles
about football, whereas World-News consists of multiple subjects, such as politics, tech-
nology or business and only a small part of it may contain content about sports or in
particular about football. Thus, there are fewer intersections between them. In such
constellation, the differentiation between the categories is easier, because of the clearer
separation of the subjects. Testing the two classes with the cosine similarity, the highest
similarity decision criterion and a k value of 15, yields an accuracy of 96.67%, which is
quite strong. At this point, it should be mentioned that the general data amount is in
this case a lot smaller than before with a test data set of 90 articles and training basis
of 183 articles, which also has an impact on the percentage value.

The development of the performance of these two opposite cases, two and twelve
classes, are visible in figure The striking drop of the orange line and the starting
decrease of the red line, which represent classifications in combination with the majority
decision, show that high values for the k£ value are not meaningful to use in this setup,
because of its small number of training data. If the £ most similar documents are nearly
all articles of the training data, the majority decision decides in most cases in favour of
the largest category. The highest similarity decision does not have this difficulty, because
it takes the actual similarity values into account. In general, it is shown again, that the
results are higher when using the summarization of similarities as decision criterion.
Thus, it is reasonable to use.

In all the cases mentioned so far, a ratio of 67 to 33 is used for splitting the data
corpus into training and test data. Although, there are multiple possibilities for im-
provement at this stage of the kNN, this ratio is the first variable factor to have a closer
look at.
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Figure 5.5: Testing different train—test data ratios with variable k£ and initial data corpus.

5.1.2 Improvements

After the first test results, some parameters have been fixed. For the distance measure-
ment the cosine similarity is used together with the decision criterion of the highest
similarity per class, whereas the k value can not be set, because it seems to have several
dependencies. By this, an improvement phase initiates after these specifications.

Ratio of Training Data to Test Data

At the first stage a ratio of 67 to 33 is used, but after some researching and testing time,
a larger training corpus becomes more and more recommended. Thus, the proportion
switches to 80 to 20, 85 to 15 and 90 to 10. The test case with a ratio of 67 to 33, a
test data amount of 233 and five classes results in an accuracy of 75.10% by a k value
of 25, when using the highest similarity as decision criterion. When switching the ratio
to 80 to 20, but keeping the other settings, the accuracy decreases to 72.34%. Though,
when rising the k value step by step to 95, the result ascends again to 75.88%.

Going further to a ratio of 85 to 15, the result goes farther up to 78.30% by a k
value of again 135 and 145. And finally by the ratio of 90 to 10 even further to 80%
accuracy by a k value of 55, 145, 155, 165 and 185. An overview of the course of the
results can be seen in figure

As it is shown in the graph, the bigger the training data proportion the higher are
the accuracy values. However, at this stage, it has to be pointed out that the test data
amount is simultaneously shrinking if the training data is rising. This implies, that
the accuracy is based on a smaller amount of test articles, which leads to a smaller
denominator and this is distorting the percentage values. Thus, to get more balanced
and realistic results, the data corpus has to be expanded and tested with a moderate
ratio like 80 to 20.
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Figure 5.6: Testing the new data corpus in four different configurations and a variable
k value.

Data Increase

After the data growth, the data corpus contained about 2315 news articles with 20
different classes. The main test cases at this stage are testing a data corpus containing
20 categories, ten categories and five categories. Some binary samples have been tested
as well, so a data set with only two classes.

But before starting the comparison, the k value has to be analyzed with the new
topics and constellations of data sets. This is done by testing four different compositions
of data sets containing different topics. The first data sets consist of five classes, about
100 and 120 test articles and are based on 400 to 500 training samples. The variable &k
value and its impact on the results is shown in figure

As it can be seen in this figure with the new data corpus, the perfect k value differs
from data set to data set and concluding from its composition. However, some analogies
can be witnessed. In this constellation of five classes, the front third of the area, ranging
from 5 to 65, includes the highest results, apart from some exceptions beneath 15. This
implies, a kNN with a small k value seems to be sharp and strict and this can cause
positive or negative effects on the accuracy. Whereas, a KNN with higher values outside
the first third seem to be softer but also more imprecise and spongier, because the
accuracy values decrease more and more the higher the k values becomes.

A similar observation can be made in the data corpus, which consists of ten classes
(see figure . In this construction of data set, the amount of training data is naturally
larger than with five classes. This means the k£ value can go higher than before and this
is also necessary. Again the first third of the field provides better results than beyond,
but in these cases the preferring range passes from 45 up to 325.

However, to get comparable results and focus on the accuracies in the different data
set constellations, the k parameter has been fixed to 15 in the subsequent test cases.
As it is shown in table testing two classes results in quite strong values above
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Figure 5.7: Testing the new data corpus with data sets of ten classes and a variable k
value.

95% accuracy, whereas test data sets with more classes lead to a decrease. The data
sets of two classes contain each about 50 test articles and the classification is based
on approximately 200 training examples in each test run. When switching to a data
corpus of five classes, the accuracy varies much more than before with two classes. It
depends on the classes contained in the data set, but the values range from about 75%
up to 95%. The exact compilation of classes are contained in table Combining now
two data sets with each five classes to unite them to a ten classes corpus, results in
slightly worse accuracy values. These tests are performed on approximately 200 test
articles and with the basis of about 900 training samples. The two constellations lead
to 69.62% and 84.88% accuracy. Especially the second test run is surprisingly good,
because it contains the five classes which performed worst in the previous test run and
the classes which performed best. The second half of the ten classes seems to compensate
the deficiencies of the first half. Finally, all 20 classes united in one large data corpus
provides an accuracy of 68.68% by a test data amount of 463 and a training corpus of
1852 articles.

To summarize, the more classes contained in the data corpus, the lower are the
accuracy values. But yet, with the optimal &k value for a particular data set, the numbers
can be boosted. Nevertheless, the overall accuracy for 20 categories is still low and to
discover the reason why, the next step’s focuses on the data itself, the words contained
in the articles and the constellation of the articles.

Noise Reduction

Dealing with a real-life data corpus as foundation for the classification task, involves
articles and words or phrases in articles, which contain no useful information for the
primary goal of determining the topic in the unseen article. This data is called noise
and affects the classification accuracy adversely. For this purpose the noise should be
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Table 5.1: Testing various data corpus constellation containing different topics with a k
value of 15.

Categories in Data Corpus Accuracy
World-News, Football 96.00
Fashion, Technology 97.91
Sport, UK-News, Opinion, Society, Business 86.88
Politics, World-News, Lifestyle, Environment, Technology 86.95
TV /Radio, Culture, Art/Design, Film, Books 75.72
US-News, Football, Fashion, Travel, Science 95.04
Sport, UK-News, Opinion, Society, Business, Politics, World- 69.62
News, Lifestyle, Environment, Technology '
TV /Radio, Culture, Art/Design, Film, Books, US-News, Foot- 84,88
ball, Fashion, Travel, Science '
Sport, UK-News, Opinion, Society, Business, Politics, World-

News, Lifestyle, Environment, Technology, TV /Radio, Culture, 68.68

Art/Design, Film, Books, US-News, Football, Fashion, Travel,
Science

reduced as much as possible.

Concerning the thesis project, the noise reduction took place in several steps. After
the first test results with classification accuracies, which were still not as promising as
hoped for, it is necessary to look over the actual articles and it soon becomes apparent
that an additional stop word list is needed. The general stop word reduction in the
pre-processing part does not include short forms of words like “we’ll” or “couldn’t”.
Therefore another stop word list is created for eliminating these words.

Throughout the inspection of the articles, some phrases are especially noticeable
because of their multiple repetition in different articles belonging to various topics. These
sentences pertain to an advertisement for a chat forum, where user can register with
their email and post their comments in the discussion, thus they do not possess topic
related information and should be removed. These noises lead to a misinterpretation
and impureness of the topic related similarity checks, if these lines occur in multiple
classes multiple times.

Finally, another conspicuousness is detected by analyzing the articles data. In some
articles, entity names for HTML escape characters have been found, such as “&amp;”,
“&nbsp;” or “&gt;”, which occur various times for representing special characters and
goes along during the automatic read-out. These values also have to be deleted from
the articles.

At the end, the length of the articles is reviewed. During this examination, some
very short articles with only one or two sentences have been observed. In general, these
articles are hard to get classified because of the small amount of words, which may have
useful information for the classification. Hence, these extremely short articles get erased
from the data corpus to not interfere the classification.

After these corrections, the data corpus consists of 2295 articles and has been tested
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Figure 5.8: Comparing data sets with five classes before and after noise reduction (NR)
with kNN.

again with the same constellations of topics as before. Starting with five classes in four
different compositions. As it is shown in the respective figure the noise reduction
affects the first two test cases adversely. The accuracy values of them decline from
86.88% and 86.95% to 85.24% and 84.82%. Those effects might be caused through the
removal of some short documents in the data corpus, which have been classified correctly
before the improvement step. On the contrary, the last two data sets get a slight boost
through the adjustments. The numbers go up from 75.72% and 95.04% to 77.67% and
98.33% accuracy.

Combining two of these data sets and creating one corpus with ten classes, produces
similar performances. It is certainly interesting that joining the first two test data sets,
with the slight fall of accuracy, results in a minor increase of the overall accuracy. It
rises from 69.62% to 72.34%, whereas the second combination of data sets drops from
84.88% to 83.03%, even though classifying the single groups of five both leads to an
improvement. Finally, summarizing these two data sets as well, yields an accuracy of
69.93%, a small increase.

A possible reason for this behavior, might be simply the similarity between the
documents and of course, the selection of the documents. If more articles are avail-
able, different articles might become the most similar ones and thus change the results.
Additionally, the more articles are contained, more articles can have similar similarity
values, which results in a higher density of nearer documents. This can be visualized in
multidimensional scaling graphs and will be shown in the next section.

Another aspect is that these values are measured at a k value of 15. It is a snapshot
of the classification accuracy and not the highest value which can be reached. The rough
development of the performance when changing & is shown in figure One can well
see that the higher accuracies are again located in the front section of the figure for both
data set constellations. The first one which has 72.34% by a k of 15, has the maximum
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Figure 5.9: Comparing data sets with ten and 20 classes before and after noise reduction
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Figure 5.10: Development of performance of data sets with ten classes after the noise
reduction with kNN.

at 25 with 72.6% and the second one also by a k of 25, with 84.3%. This implies by
adjusting the k value the classification performance of the kNN can still be improved.

To conclude, with the decision in favour of the cosine similarity in combination
with the decision criterion of highest similarity per class, can achieve solid and strong
accuracy values, always depending on the data and the data related k value.
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Figure 5.11: Multidimensional Scaling graph with two data sets: (a) World-News and
Football and (b) Fashion and Technology.
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Figure 5.12: Multidimensional Scaling graph with two data sets: (a) Politics,
World-News, Lifestyle, Environment, Technology and (b) US-News,
Football, Fashion, Travel, Science.

5.1.3 Analysing Similarity

Throughout the test phase, it occurs occasionally that the accuracy numbers are surpris-
ing and different than expected. To determine the reason for this behavior, it is often
necessary to have a look on the data the algorithm works with. In case of the kNN,
the decisive factor is the similarity value. Thus, during the analyzing procedure, the
primary concern is on this factor. For this purpose, a multidimensional scaling graph is
reasonable to use. To create the graph, all documents in the data corpus get compared
with each other and the respective similarity values are stored in an array. By means of
RStudio, this matrix can be visualized and enables comprehending the significance for
the algorithm.

As it is shown in figure the separation between the categories World-News
and Football works well. The same conclusions can be seen with the topics Fashion
and Technology, and a number of other binary data sets. The clear division is as well
reflected in the accuracy values.

Visualizing some more classes the separation becomes blurry and a dense intersection
happens between many documents. Already in case of data sets with five classes, it is
visible why the accuracy value decreases (see figure . The documents are moving
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Figure 5.13: Multidimensional Scaling graph with Sport, UK-News, Opinion, Society,
Business, Politics, World-News, Lifestyle, Environment, Technology.

close together and through these circumstances it becomes difficult to detect the correct
class on basis of similarity. The main areas are crowded, which means lots of documents
are similar to each other, despite the class, which adversely affects the compositions of
the k nearest neighbors and thus the assignment of the new document. When analyzing
a data set with ten classes, it gets even worse clustered, as it is shown in figure
These arrangements and the positioning of documents are finally visible in the accuracy
values and lead to a decrease of performance.

5.2 Naive Bayes

The main idea of the Naive Bayes is to use conditional probability to classify a new
document. For this it focuses on the words in the new document as well as in the
training documents and computes the various likelihoods. Adjustable parameters are
rare in case of Naive Bayes, but two different approaches of calculating the probabilities
are possible. These two concepts differ in the aspect of taking the exact word number
into account or not and are tested at the end of this section. Before that, the initial as
well as the final findings are analyzed and the development of the performance during
the improvement phase.

5.2.1 |Initial Findings

In the initial test case, the amount of data which gets classified is 233 articles, containing
the general five classes: UK-News, World-News, Sport, Football and Fashion. The
accuracy value is slightly higher than in the first test case of the kNN with 75.10%
accuracy. Adding the remaining smaller classes to the data corpus of five, the value
decreases to 69.71% for the Naive Bayes; a similar behavior to the above analyzed kNN.

Furthermore, testing World-News and Football as a two classes data set, results
in strong 97.77% accuracy and also four classes, Football, World-News, Sport and
Fashion, have a significant value of 83.23%. An interesting fact can be shown here,
when adding the last of the five main classes, UK-News, to the data set of four, the
values sharply decrease about ten percent to 75.10% accuracy as already mentioned. A
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy

1 Football, World News, Fashion, Sport (3 classes + large class)

2 Football, World News, Fashion, Opinion (3 classes + small class)
3 Football, World News, Fashion, UK-News (3 classes + large class)
4 Football, World News, Fashion, Culture (3 classes + small class)

5 Football, World News, Fashion (3 classes)

Figure 5.14: Testing different compositions of data sets with Naive Bayes.

possible reason for this development may be the similarity of World-News and UK-News,
which affects the separation between texts belonging to these classes.

Switching to another combination of four classes the value can get even higher. With
Football, World-News, Fashion and Opinion the accuracy rises to 95.20% and adding
again UK-News, results in an drop of over ten percent to 82.29% accuracy. Another
reason for this performance, might be the different sizes of the classes. Opinion is
one of the smallest classes, while UK-News is the class with the most articles. In the
constellation of four classes including Opinion, it is not decisive because it has few
texts. This statement is supported by the test case, which shows that testing only three
classes, Fashion, World-News and Football, results in nearly the same accuracy value,
96.74%. This implies, that adding Opinion does not have major consequences. The
same outcome can be witnessed when Culture is included in the data set, in place of
Opinion. Then the accuracy value is also quite strong with 94.40%. Adding UK-News
instead, shows a decrease to 84.12% accuracy. Thus adding a large class, provides more
test and training samples and this influences the amount of data which get classified
correctly. The breakdown and the development of the results of the test cases with four
classes, can be seen in figure

5.2.2 Improvements

The next step, after the initial testing phase, is the improvement set up as mentioned in
the chapter before. In case of the Naive Bayes, there are few possible parameters which
can be adjusted to change the resulting outcome. Thus, the only thing which can be
adapted is the data and the amount of training data and test data. The last concern is
the first one, which gets analyzed during the improvement stage.
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Figure 5.15: Testing different ratios of splitting the data sets in training data and test
data with Naive Bayes.

Ratio of Training Data to Test Data

The initial test cases have been generated by a ratio of 67 to 33 for training data and
test data. As follows, this relation gets shifted to the next step of 80 to 20. With a data
corpus of the major classes, UK-News, World-News, Sport, Football and Fashion, the
accuracy values gets a small boost to 76.59% from 75.10%. However, when the ratio
changes further to 85 to 15 and 90 to 10, the boost grows to 78.30% and even 80%.
The same behavior can be witnessed with a binary test case, including Football and
World-News. Their accuracy rises from 97.77% to 98.14% and significant 100% at a
ratio of 85 to 15 and 90 to 10. Here must be noted, that the test data amount with
90 to 10 and 85 to 15 comprises only about 40 and 27 articles. Thus implies, that the
computation of the accuracy is based on a smaller denominator and this distorts the
percentage value. At a ratio of 67 to 33, the test data amount is about 90 articles large.

Switching to a data corpus of twelve classes, the accuracy value rises from 67.71% to
69.86%, but then decreases with a data ratio of 85 to 15, to 67.88% accuracy. Shifting
the ratio further to 90 to 10, the figure drops off to 67.12%. Another test case with
four classes, World-News, Sport, Football and Fashion, yields a similar performance
development. The accuracy value grows up to 85.52% at a ratio of 85 to 15, and then
declines a little to 84%. The overview of the developments with the different training
and test data ratios can be seen in figure

As already observed during the testing phase of the kNN, a training and test data
ratio of 80 to 20 produces the most promising results in the majority of the different
data corpus constellations. Thus, the decision is made again in favour of this ratio for
the following test cases.
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Table 5.2: Testing various data corpus constellation containing different topics with
Naive Bayes.

Categories in Data Corpus Accuracy
World-News, Football 96.00
Fashion, Technology 100.00
Sport, UK-News, Opinion, Society, Business 84.42
Politics, World-News, Lifestyle, Environment, Technology 87.82
TV /Radio, Culture, Art/Design, Film, Books 79.61
US-News, Football, Fashion, Travel, Science 95.04

Sport, UK-News, Opinion, Society, Business, Politics, World-

News, Lifestyle, Environment, Technology 72.57
TV /Radio, Culture, Art/Design, Film, Books, US-News, Foot- 8711
ball, Fashion, Travel, Science '
Sport, UK-News, Opinion, Society, Business, Politics, World-

News, Lifestyle, Environment, Technology, TV /Radio, Culture, 75 59

Art/Design, Film, Books, US-News, Football, Fashion, Travel,
Science

Data Increase

After the determination of the training and test data ratio, the data corpus gets in-
creased with new articles and new categories. Finally, it contains 20 different classes
with a summarized amount of 2315 articles. The first tests consists of data sets with
only two classes, which works quite well with similar results as before with the kNN al-
gorithm. Some combinations of topics are working better, and some worse. For instance,
Fashion and Technology yield an accuracy of 100%, but when classifying Fashion and
Lifestyle, the accuracy drops off to 91.83%, whereas kNN classifies all test articles
correctly in this specific case.

Testing a data corpus with five classes, generates mostly higher accuracy results
compared to the kNN. One exception is the first combination of classes with Sport,
UK-News, Opinion, Society and Business, with an value of 84.42%. The remaining
combinations result in slightly higher values and one significant outstanding result with
the five difficult classes, including TV/Radio, Culture, Art/Design, Film and Books.
Because of their similarity, the classification and the separation are complicated, and
when using kNN, this test case is the one which yields the lowest accuracy compared
to the other test cases with five classes. Using Naive Bayes this value gets improved to
nearly 80% accuracy, a growth of about four percent.

Finally, combining each two of the data sets with five classes, creates two data sets
with ten classes and this setup yields in both cases three percent higher accuracy values
than using kNN. With 72.57% for the first and 87.11% for the second data corpus,
the results up to now, can be exceeded. And classifying a data corpus with all classes
together, increases the accuracy value further to 75.59% with a boost of seven percent
compared to kNN.
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Accuracy
1 Sport, UK-News, Opinion, Society, Business
2 Politics, World—News, Lifestyle, Environment, Technology Before NR
3 TV/Radio, Culture, Art/Design, Film, Books After NR
4 US-News, Football, Fashion, Travel, Science

Figure 5.16: Comparing data sets with five classes before and after noise reduction with
Naive Bayes.

The overall values are significant and their breakdown is shown in table After
the data increase, the second noise reduction initiates, including an additional stop word
reduction and the removal of distracting phrases.

Noise Reduction

In case of real life data, noise is one of the main factors, which influences the classifi-
cation accuracy. After removing this data, in some data set constellations a recession
in the accuracy value can be witnessed. Concerning data compositions with five classes
the decline is less striking, only the third combination of classes, TV/Radio, Culture,
Art/Design, Film and Books, results in a slight drop. The remaining constellations
performed better or equally. Compared to the kNN results, this development of the
values differ. The only agreement is the last combination of five categories, the other
combinations performed even in opposing directions. See figure and figure for
a comparison.

When testing the data sets with ten classes, similar results to those of kNN are
achieved. For the first combination of classes the noise reduction increases the accuracy
value for about three percent, whereas the second data set gets a small decline of one
percent. Focusing on all 20 categories the noise reduction has a slight adversely affect
on the accuracy value compared to the results of the kNN, where the value rises. The
actual development of the numbers can be seen in figure

One surprising fact should be highlighted at this point. The noise reduction con-
cerning Naive Bayes, has a different impact on the outcome, compared to the kINN.
One reason for the occasional decrease of accuracy, might be caused by the removal
of documents, which distracted the accuracy value beforehand. The Naive Bayes is de-
pending on the words in the articles in the diverse categories, and if some of the texts
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Figure 5.17: Comparing data sets with ten and 20 classes before and after noise reduction
with Naive Bayes.

get erased, the overall probability values for each document change. For the kNN, the
removal of documents is less impressive, because it focuses on the similarity between
the new article and each single article in the training set, despite the whole class. Thus,
the values for the single documents do not change, but for the Naive Bayes these values
get modified.

In conclusion, the accuracy values for the Naive Bayes are satisfactory and show
a similar behavior like the algorithm tested before. The more classes contained in the
data set, the more difficult it gets for the algorithm to separate. Overall, this algorithm
performs better with multiple classes in the data corpus than the first algorithm. With
nearly 75% accuracy for all 20 categories, it beats the result of the kKNN.

5.2.3 Comparison of Two Approaches

Another key point to remember concerns the two different approaches of the Naive
Bayes. The one used for the test cases above, takes the actual word frequency in the
classes into account, whereas the second approach only checks in how many document
the term occurs, despite how often. During the test phase, both variations of the Naive
Bayes have been tested and the results can be seen in figure It shows that the
first approach reaches overall higher or equal results compared to the second one, with
different sizes and compositions of data sets. In case of two classes the first approach re-
sults in an strong increase, with Fashion and Lifestyle, or equal values, with Fashion
and Technology, and World-News and Football. These classes are represented in the
figure by the number one to three. The following four numbers belong to the usual
data sets with five classes, where as well a slight growth is visible, especially at the last
spot, number seven. The numbers eight and nine, are related to the data sets with ten
classes and behave the same way with the first approach. Similarly, the last test case
with twenty classes yields higher results with the first concept. Thus, the decision was
made in favour of the first variation of the Naive Bayes and against the second.
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[1, 2, 3] Two Classes

[4,5, 6, 7] Five Classes First Approach with term frequency
[8, 9] Ten Classes Second Approach w/o term frequency
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Figure 5.18: Comparing different data sets and their results of two variations of Naive
Bayes.

5.3 Semantic Fingerprinting

This classification method has multiple parameters, which can be adjusted. The first
parameter is comparable with the k value of kNN. This number called threshold value
determines, which stacks will be kept in the final fingerprint of the category fingerprint
or the fingerprint of the test document. Thus, it defines how much data to include in
the decision process. The next adjustable factor is the filling of the context map, hence
the arrangement of the training documents in the array for the context map. This map
defines the pattern of the subsequent fingerprints and is therewith, decisive for the clas-
sification process. Another point to consider, is the creation of the category fingerprints.
These fingerprints can be composed from all words contained in a class or by using an
example article, which represents the entire class. The second approach depends heavily
on this single document and for this project with articles from a news agency, it can
not be decided in favour of one of the articles for each class, because the articles usually
cover only a small aspect of the whole field. The method has been evaluated at the
very beginning with unfortunately low accuracy values. Therefore, the first approach
has been chosen for this procedure. The last variable parameter is the decision crite-
rion, similar to the kNN. For comparing fingerprints, one possibility is to focus on the
similarity of the fingerprints by using for instance the cosine similarity, which is then
called the semantic closeness or binary overlap. Another possible method is to determine
the positions of ones in the fingerprint and predicting the class from the majority class
in the underlying context map. Thus, this approach uses the shared context between
the fingerprints for deciding. These are all parameters, which are adjustable to finally
enhance the classification accuracy.

5.3.1 |Initial Findings

The evaluation phase focuses on data sets with five different classes. The first parameter,
which gets adjusted is the threshold value. When using the semantic closeness as decision
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Figure 5.19: Comparing different test settings and their results of the Semantic Finger-
printing Method.

criterion and a context map, which uses the overall similarity between each document
for its creation, a maximum accuracy value of 71.24% can be yielded at a threshold
of 38. This value is the highest level of the development curve, shown in figure
represented with the red line. It is visible in figure that small threshold values as well
as higher ones reduce the accuracy, similar to the behavior of the k value in the kNN.

Between thresholds of 15 and 40 the accuracy values are rising in case of this test
setting. But also when switching the creation mode of the context map, this area contains
the highest performance values. The orange line shows the development when using
semantic closeness as decisive factor again, but for the creation of the context map, the
actual classes of the labelled training data have been used to determine the order of
the map. The respective curve is developing in a similar way to the red one, which was
mentioned before. It also has its climax at a threshold of 38 with a value of 70.38%.

The blue one differs slightly from these two. Its peak is located at a threshold of
28 with a value of 69.95% and the context map is in this case a combination of the
similarity factor and the ordering per classes. However, the overall course is nearly the
same. Low accuracy at the very beginning, rising up to a threshold of 40 and then
constantly dropping.

Changing now the decision criterion to the shared context factor, which is looking
at the ones in the fingerprint and counting up for each class, results in a different curve.
This test setting is represented with the green line in the graph. Its maximum accuracy
is 68.67% at a threshold of 43, thus the curve is ascending up to this point and than
slowly decreasing again.

To conclude, the best results can be achieved with the combination of semantic
closeness and a context map ordered by similarity, and this set up has been kept for the
subsequent test cases. These accuracy values are similar to the two classical algorithms,
the k-nearest-neighbor and the Naive Bayes algorithm, analyzed in the previous sections.
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Figure 5.20: Results of the Semantic Fingerprinting Method with twelve classes.

The maximum accuracy of this data set with five classes is only four percent lower than
the result of these methods.

Unfortunately, when adding the remaining smaller classes to the data set, the highest
accuracy value decreases to 53.52% at the threshold 40. As shown in figure the
area between 28 and 40 contains the best accuracy values for this data set, similar to
the curves analyzed before. Another summit seems to be located between 80 and 90.
However, the maximum value is worse than the results from the classical algorithms.
Already at this stage, it seems that this method is more vulnerable, either for the uneven
distribution of articles per class or for the higher number of categories contained in the
data corpus.

Switching to a data set with only two classes, increases the accuracy value again to
a maximum number of 94.44% at a threshold of 40 and 43. Overall, this is a good value,
but also slightly lower compared to the remaining algorithms at this stage, with 97.77%
and 96.67% accuracy.

It becomes apparent that the semantic fingerprinting method tries to keep up with
the other algorithms, but barely misses equal results. The more classes contained in the
data set, the more difficult gets the classification for this method. The accuracy values
become lower and the gap between this method and the other algorithms gets larger. The
following challenge focuses on the analysis of this behavior as well on the improvement of
the performance of this classification algorithm. To facilitate the subsequent comparison
of different data set settings, the threshold value is fixed to the distinct number, 35,
contained in the area, which seems to yields the highest accuracy values.

5.3.2 Improvements

After the initial test cases, some settings are fixed. The context map is created ordered
by similarity, the decision criterion is set to semantic closeness and the threshold to 35.
The remaining adjustable factors are the amount of data for training and testing, the
overall data amount in the corpus and the noise filtering, thus the enhancement of the
feature selection. These key factors have been tested during the subsequent improvement
phase.
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Ratio of Training Data to Test Data

The first variable factor, which gets tested is the ratio of training and test data. The
initial testing phase uses a ratio of 67 to 33 and when shifting this division to 80 to 20
and starting with a data corpus of two classes, the accuracy value increases from 93.33%
t0 96.29% at a threshold of 35. Going further to a ratio of 85 to 15, the value rises even
more to 97.5% accuracy. Unfortunately, at a ratio of 90 to 10 the number drops sharply
back to 92.59%. The actual development of this data set constellation can be seen at
the bottom of figure

Testing a data corpus with the five major classes, shows a similar behavior of the
results to them of the Naive Bayes (see figure for comparison). The higher the
training data amount, the better become the accuracy values. The numbers are rising
from the initial 67.81% to 70.75% at a ratio of 85 to 15 and finally to 71.42% accuracy
with 90 to 10. An interesting development can be witnessed, when adding the remaining
classes to the data set at this stage. The expansion of the data set with only 22 articles,
and seven new and extremely small classes, causes a accuracy drop of 20%. With a
ratio of 90 to 10, a data set of finally twelve classes and a threshold of 35, the accuracy
value is about 49.31%. This shows, compared to the 71.42% of the five classes test case
at this ratio, that the data corpus definitely should be balanced. The highest value,
52.74%, with the twelve classes can be reached at a ratio of 80 to 20. The performance
breakdown is shown in figure

In conclusion, the results are again lower than the numbers of the remaining algo-
rithms. The most drastic decline occurs with twelve classes. The gap between Naive
Bayes and this method is between 10% and 15%. However, the values at this point are
measured at a distinct threshold number, thus they are not the maximum accuracy
values, but a snapshot of the performance. A detailed analysis of the impact of the
threshold will be covered at the end of this chapter with the final balanced data set of
articles.

After this session of testing, the ratio of training data and test data has been set to
a moderate value of 80 to 20. The subsequent trail runs use this ratio. The next step
after determining an appropriate ratio is to increase the amount of data and especially
to balance the distribution of articles per class.

Data Increase

To make the distribution of the amount of articles per class even, new articles from
overall 20 classes have been collected and stored. After that, each category includes
about 80 to 150 articles, thus the data corpus is quite balanced. Subsequently, the testing
phase starts again and the values seems now definitely promising (see table for the
exact results). The first test cases concern a data corpus with only two classes. With the
categories World-News and Football an accuracy value of 94% is yielded, with Fashion
and Technology the number drops slightly to 89.58%, but for Film and Politics the
algorithm classifies all test documents correctly. For this section, a threshold of 35 is
used once more for all test runs.

For the next step, five classes get combined to one data set in four different variations.
The first constellation results in 74.59% accuracy, the second in 66.95%, the third one
even lower with 59.22% and the fourth one exceeds them all with 90.08% accuracy.
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Figure 5.21: Testing different ratios of training and test data amount with Semantic
Fingerprinting.

One significant case focuses on a combination of four classes including Film, Business,
Football, Travel and Science. This data set constellation reaches an accuracy value
of 93.49%, which is significantly higher compared to the other values of five classes. On
the contrary, when using different four classes, World-News, Football, Fashion and
Technology, the accuracy drops to 81.63%. Even at this early stage, the reliance on the
class composition is highly apparent for this method.

Combining two of the data sets with five categories to two data sets with ten classes,
diminishes the accuracy drastically. An accuracy of 47.67% can be yielded for the first
composition, which is surprisingly low. The second combination can outpace this with
a 17% higher value.

However, classifying all articles together, the accuracy is only 2% lower compared to
the first set. The accuracy for the 20 classes is thus 45.57%. But in summary, the values
are lower than desired. The evaluations, carried out on the described data set, suggest
that this method is much more depended on multiple factors, such as the composition
of the data corpus, the similarity between the classes or the height of the threshold.

Noise Reduction

Up to this point, no remarkable enhancement of the accuracy values can be reported.
However, after an additional noise reduction the results of the method improved signif-
icantly compared to the classical algorithms. The noise reduction itself focuses on stop
words, distorting short articles and distracting phrases inside of documents as already
explained in the kNN section. After this filtering procedure, the previously performed
test cases are repeated and documented again.

The results from the data sets with two classes are raised from 94% to 96% accuracy
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Table 5.3: Testing various data corpus compositions with Semantic Fingerprinting and
a threshold of 35.

Categories in Data Corpus Accuracy
World-News, Football 94.00
Fashion, Technology 89.58
Sport, UK-News, Opinion, Society, Business 74.59
Politics, World-News, Lifestyle, Environment, Technology 66.95
TV /Radio, Culture, Art/Design, Film, Books 59.22
US-News, Football, Fashion, Travel, Science 90.08

Sport, UK-News, Opinion, Society, Business, Politics, World-

News, Lifestyle, Environment, Technology 47.67
TV /Radio, Culture, Art/Design, Film, Books, US-News, Foot- 64.44
ball, Fashion, Travel, Science '
Sport, UK-News, Opinion, Society, Business, Politics, World-

News, Lifestyle, Environment, Technology, TV /Radio, Culture, 4557

Art/Design, Film, Books, US-News, Football, Fashion, Travel,
Science

in case of World-News and Football as classes, and from 89.58% to 95.65% accuracy for
the fields Fashion and Technology. This shows, that the second data corpus contains
a lot more noise, what adversely affects the classification result.

In case of the data sets with five classes, the growth is not as representative. The
results of the first data set decline about three percent, in contrary to the second data
combination, which grew from 66.95% to 68.75% accuracy. The remaining combinations
of classes change both barely in the negative direction. The development of the numbers
is shown in figure

The most interesting behavior can be discovered on testing the data sets with ten
classes and all 20 classes. The data set with the first ten categories gets a boost of
four percent, whereas the result of the second composition declines by five percent. The
surprising development concerns the classification of all classes. The additional noise
reduction improves the accuracy value by ten percent and this value is now four percent
higher than the result of classifying only ten classes. To summarize, classifying 20 classes
performs much better, than classifying only these ten classes. Especially, what should
be kept in mind, more classes implies more articles, thus more test data and a higher
denominator for calculating the accuracy. To reach the same or higher percentage of
classifying ten classes, much more texts have to be classified correctly. The actual data
is visible in figure

To conclude, the filtering of noise, which can be detected by examining the actual
data in detail, is extremely important for this classification method. This algorithm
seems more vulnerable for noise, because it strongly depends on the words contained
in the texts, irrespective of the actual class of the text. This makes it even more prone
to noise than the other algorithms. Thus, reducing noisy data can boost the accuracy
values significantly. Unfortunately, the exact values can not keep up with the results of
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Figure 5.22: Comparing data sets with five classes before and after noise reduction with
Semantic Fingerprinting.
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Figure 5.23: Comparing data sets with ten and twenty classes before and after noise
reduction with Semantic Fingerprinting.

the classical methods. By this, the next goal is to analyze the components of the method
and to figure out why it is working as it does.

5.3.3 Comparison of Two Approaches

Similar to the Naive Bayes algorithm, a different approach can be tested concerning
the including of term frequency into the classification process. The test cases up to this
point have not taken the actual word frequency in the test documents into account.
This implies, all duplicates of words are removed to finally simplify the word vector
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Figure 5.24: Comparing different data sets and their results of two variations of Semantic
Fingerprinting.

and to create the test document fingerprint from the unique words. However, with the
inspiration of the Naive Bayes, this small modification of the Semantic Fingerprinting
method has been integrated and tested additionally.

The removal of word repetitions in the test documents accelerates the computation
time, because it minimizes the word vector length. But for this algorithm it might
be more essential to improve the selection of the right stacks for the fingerprint to
enhance the correct labelling. After changing this setting for term frequency, the tests
are repeated.

As shown in figure the removal of the duplicates improves the majority of the
accuracy values. For data sets with two classes, it is not as high as for the data sets
with five, ten and 20 classes. All values, despite the first two data sets, are increasing
by at least three percent and even up to ten percent. A data corpus with 20 classes has
now an accuracy value of 58.17% and with ten classes, a value of 59.83% and 69.64%.
Even if these values are still not as high as the results of the classical algorithms, the
gap between them is reduced considerably with this extension approach.

5.3.4 Data Corpus Composition

One of the conspicuous characteristics of this method is the dependency on the data
set composition. As witnessed multiple times during the testing phase, the classification
seems to perform better or worse, according to the classes contained in the data corpus.
Thus, it implies something puts a damper on the results when particular classes are
contained. After this perception, another in-depth testing period is initiated. The aim of
it is to find the classes which diminish the accuracy value of the classification. However,
the outcome took a slightly different direction as expected. The results are depending
on the combination of classes in the data corpus, not on particular classes which always
reduce the accuracy value.

In conclusion, the only factor, which can affect such behavior is the similarity value
between classes. This assumption is also supported by the overall workflow of Seman-
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Figure 5.25: Relation between similarity and average accuracy by means of data sets
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Figure 5.26: Relation between average similarity and average accuracy by means of data
sets with five classes.

tic Fingerprinting. If classes are similar, they consist of similar articles and contain in
particular similar words. This results in similar fingerprints, which then complicates the
assignment of a respective fingerprint and further, a respective class. To obtain assur-
ance, the similarity and average accuracy get measured using 24 different combinations
of binar data sets and are visualized in figure As it is shown in the figure with
the black line, the obvious tendency is falling. The lower the similarity, the higher is
the accuracy performance. The same inclination is contained when data sets with five
classes are tested. As it is shown in figure the average similarity and accuracy are
used.

With these circumstances in mind, some distinct trial runs can be performed to
visualize the impact of the similarity value. Starting with a binary classification and
adding iteratively new classes, shows the effect of each newly added category very well.
The first classification deals with articles from the classes World-News and Football. To

! binary = data set with two classes
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Figure 5.27: Impact of single classes when adding to the data corpus (a) and break
down of six binary classifications in relation to their similarity (b).

get an overview of the development of the accuracy for this data set, multiple test cases
with different threshold values have been executed and recorded. The resulting curve is
shown in ﬁgure (a) as a blue line and the average accuracy is about 95.64%, which is
quite strong. Adding now the next class, in this case Culture, the mean accuracy drops
off to 89.57% and the performance curve as well (shown as red line in figure [5.27] (a)).
Finally, the green line in the figure represents the last adjustment, thus adding the
class Art/Design to the already measured data set. Now the average accuracy is about
83.76% and the curve goes down further.

To find out the reason for this decline, the single components of the data sets have
to be broken down and analyzed. Combining each component of the corpus with each
other and classifying these binary combinations, shows that World-News and Football,
Football and Culture, and Football and Art/Design works quite well, whereas
World-News and Culture, and World-News and Art/Design causes problems. Though,
the worst combination is Culture and Art/Design. Looking now on the similarity val-
ues, provides insight into the behavior of the single classifications. The classes, which
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Table 5.4: Different data set compositions and their maximum accuracy (five classes).

Categories in Data Corpus Accuracy
Sport, UK-News, Opinion, Society, Business 80.32
Politics, World-News, Lifestyle, Environment, Technol- 80.35
ogy

TV /Radio, Culture, Art/Design, Film, Books 67.96
US-News, Football, Fashion, Travel, Science 95.00
US-News, Technology, Science, Sport, Opinion 78.37
World-News, Football, Politics, Fashion, TV /Radio 90.16
Culture, Environment, Art/Design, Lifestyle, Travel 72.97
Books, UK-News, Business, Film, Society 70.79

work well in combination have the three lowest similarities, while the classes of the
worst average accuracy have the highest similarity. This confirms again the theory of
the dependency on the similarity between classes in the data corpus. The lower the
similarity between classes, the higher the accuracy value can get. This implies, that
the red development curve in figure (a) goes down because of the difficulty be-
tween World-News and Culture, and the green curve because of the problems between
World-News and Art/Design, and Art/Design and Culture. The break down of the
binary classifications is shown in figure (b).

5.3.5 Threshold Analysis

The second striking characteristic concerns the influence of the threshold. As already
shown in the graphs above, the threshold value changes the resulting accuracy value.
With the appropriate value, the performance can be boosted significantly. The question
is now, is there an area, where the accuracy values are slightly higher than in the
remaining sections, similar to the behavior of the kNN. To find an answer to this issue,
data sets in ten different combinations have been tested and their results are finally
recorded on a graph.

As shown in figure the accuracy values are fluctuating continuously in a small
area, but on the whole, the tendency is again towards the first third or the center of
the graph. Small and high values seem not expediently. However, the fluctuation is the
major issue, because it is not predictable. The actual breakdown of the maximum values
of the different compositions are recorded in table

What is evident on these definite numbers, is that some data sets are located in the
central field with moderate numbers between 75% and 80%, other can reach a climax
with over 90% and still others are falling to a low beneath 75%. Few particular class
combinations seem to boost or on the contrary lower the resulting accuracy. Football
and Fashion seems to be a booster, while Culture and Art/Design or Film and Books
are rather a damper. In closing it can be stated that these enhancing or weakening
factors are summing up and influence the final result.

To return to the impact of the threshold, when testing four different data sets with
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Figure 5.28: Testing different combinations of data sets (five classes) with changing
threshold.

ten classes, a similar behavior can be witnessed. The accuracy value is again decreasing
with the height of the threshold and the best results are located in the central area. The
performance curves are shown in figure

The exact numbers of the maximum accuracy are recorded in table Once again,
the numbers show that the highest accuracy value for a data set with ten classes is the
second one with 75%. However, this data set consists again on the one side of the best
data set with five classes and on the other side of the worst composition of five classes.
But in the end, this consolidation of weak class combination and strong ones, seems to
restore the balance. This observation has already been witnessed in case of the kNN. It
also applies for the Naive Bayes, but less significant.

The last note to mention, concerns the general procedure of the Semantic Finger-
printing method. To make the comparison of articles possible, the texts have to be
converted into their semantic fingerprints as well as the whole training data of the class
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Figure 5.29: Testing different combinations of data sets (ten classes) with changing
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Table 5.5: Different data set compositions and their maximum accuracy (ten classes).

Categories in Data Corpus Accuracy
Sport, UK-News, Opinion, Society, Business, Politics, 63.67
World-News, Lifestyle, Environment, Technology '

TV /Radio, Culture, Art/Design, Film, Books, US-News, 75 00
Football, Fashion, Travel, Science '
US-News, Technology, Science, Sport, Opinion, Politics, 73.50
Football, World-News, Fashion, TV /Radio '
Culture, Environment, Business, Lifestyle, Art/Design, 62.94
Travel, Books, UK-News, Film, Society '

to combine them to the category fingerprint. For both computations, a threshold is
needed. All the test cases before used the same threshold for the test document and the
category. After a small investigation it turned out that the tendency is the following:
with a slightly lower test document threshold than the threshold for the class fingerprint
a small improvement can be caused in some circumstances. Unfortunately, the actual
value is again variable and differs from data set to data set, which makes it difficult to
distinguish. Nevertheless, it should be kept in mind that there are two possibilities to
change the threshold and to affect the outcome.

After determining the maximum accuracy values for the different data sets, a final
adjustment gets tested, the combination of the second approach, which includes the
term frequency of the words inside the test document into the classification process, and
the threshold which maximizes the accuracy. This change seems to effect the accuracy
values again slightly, in a positive direction or negative one. In three of four data set
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combinations, mentioned in the table before, including ten classes, it increases the value
by one or one and a half percent and in one case it decreases by this value.

To conclude, Semantic Fingerprinting has many parameters, which can be adjusted
and in the perfect combination, the resulting accuracy values can be boosted and nearly
keep up with the results from the classical algorithms. A more detailed comparison can
be found in the following section.

5.4 Comparison of Results

The main goal of this thesis and project was to compare the neuroscientific algorithm
(Semantic Fingerprinting) with two classical algorithms in a small and manageable
test environment, where parameters can be changed easily and the effects recorded.
After the reimplementation of the algorithms, the major task was an in-depth analysis.
The following section summarizes all different assets and drawbacks of the respective
methods.

The first analyzed method was the k-nearest-neighbor algorithm. This method clas-
sifies new, unseen data on basis of the similarity value between the unlabeled article
and each article in the training data set. The class of the article with the highest simi-
larity value gets assigned to the new data. This algorithm performs very well, but the
computation time is rather long, because of the various comparisons and calculations
of similarity values. The decisive parameters for this method are the k value, the deci-
sion criterion and the similarity function. In figure this algorithm is represented
as red bars and as it is shown, for five classes the results range from about 77.66% up
to 98.33% accuracy, for ten classes it yields an accuracy between 72.6% and 84.3% and
for 20 classes, 71.67% accuracy. The overall tendency is, the more classes contained, the
more difficult seems the separation.

The next algorithm, the Naive Bayes, is four times faster, because it computes a
major part of the used numbers beforehand. It is basically based on conditional prob-
ability to assign a class to a new input document. By computing for each word in the
article the probability that the document has a certain class when it is given that the
word is included and summing them up to a joint probability, results in an overall prob-
ability for each category. The class with the highest probability is finally assigned to the
document. This algorithm yields, with a few exceptions, equal or in many cases about
several percent higher results than the kNN, which are shown in figure with blue
bars. For five classes the results range again from about 77.66% up to 98.33% accuracy,
for ten classes from 75.21% to 86.60% and for 20 classes it yields 74.72% accuracy. This
shows that this algorithm is the best and fastest working algorithm in this comparison
set up.

Finally, the juxtaposition is concluded with the Semantic Fingerprinting method,
which is in general based on the conversion of words, texts and categories into semantic
fingerprints as well as on the comparison of them by similarity. Certainly, it has the
longest computation time in this kind of reimplementation, because of the context map
calculation, which has to be sorted by a similarity measure, and the various fingerprints.
As it is shown in figure [5.30] with yellow bars, this algorithm provides the lowest results
in this test implementation set up. The accuracy values are constantly a few percent
lower than the previously recorded values from the other methods, with a maximal
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Figure 5.30: Comparison of result from all reimplemented algorithms including five, ten
and twenty classes.

difference of 15%. It yields for five classes accuracy values between 67.96% and 95%, for
ten classes the results range form 64.10% to 76.34% and for 20 classes, the accuracy is
about 58.17%. Even if the values seem rather underwhelming at the first glance, with
progressive examination, it becomes apparent that the values are definitely justifiable
and in general, it performs similar to the classical methods and this is satisfactory. The
algorithm holds great potential with its approach, but it has multiple sensitive aspects.

The main influencing factors, which got extracted during the analysis are the thresh-
old value, the similarity between classes inside the data corpus and the kind of construc-
tion of the context map. These three key parameters can change the accuracy values
significantly. Whereas, the underlying difficulty for this method is something different.
It is, on the one hand that all words are equally important, so there is no weighting,
and on the other hand, that it merely examines in which texts of the context map are
the words included, irrespective of the actual class of this training data.

The first aspect shows the relevance of the underlying training data and the im-
portance of filtering uninformative documents or words from the texts, because each
word and each text gets converted into its fingerprint and subsequently included in the
classification process. The more noise is contained, the more the results are distorted.
This applies for the remaining algorithms as well, but in combination with the absent
weighting, it has greater impact.

The second key point mentioned above, explains why this algorithm has more dif-
ficulties to separate the classes than the remaining methods. The reason is in the end,
again related to the similarity of classes. During the conversion of words into finger-
prints, the method only checks if the word is contained or not in the underlying text on
the context map. It does not take the actual class of this text into account. Compared
to the Naive Bayes, which even takes care of the relation of the exact term frequency
inside a distinct class and outside of it, this option seems relatively restricted. Finally, if
two classes consist of similar vocabulary, similar class-intersecting fingerprints are pro-
duced, which affects the separation between the classes negatively. Consequently, with
these circumstances, this method is more fragile and vulnerable. But in spite of these
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weaknesses, the general approach and the underlying mechanism are interesting and the
results seems definitely worth for further research.

A general property, which applies for all three classifiers, is the dependency on the
data set. During the classifiers’ learning process, only the training samples are known
and the whole classification is based on them. The classified data is not taken care of.
Another property, which has been witnessed in case of all methods, is that a binary
classification yields the best results and the more classes are added to the data corpus,
the lower gets the accuracy value. Naive Bayes comes off best, followed by kNN and
finally Semantic Fingerprinting.

5.5 Text Data Properties

During the intense algorithm analysis, also some zero results have been attained. For
instance, the accuracy results of the algorithms are not related to the total amount of
vocabulary inside the data corpus, it is as well not depending upon the length of the
articles in the test data and also the total amount of words is irrelevant. However, these
examinations of the text data are useful, because it provides an insight into the data
and reveals some interesting properties.

In figure the total number of unique words per class are shown. These values
contained in the graph, describe the whole vocabulary of the categories and some of them
are striking, when comparing the numbers with the total amount of articles per category,
shown in figure For instance, the class Travel has by far the largest vocabulary,
but the number of articles is only the third largest. This means, this class contains the
most various words in a smaller amount of articles. To the contrary, the class Football,
which includes the most articles of all categories, has a conspicuous small vocabulary.
Thus, it has no great diversity of words. A similar behavior can be witnessed for the
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classes Sport, Fashion, Business and Society. The classes with a wide vocabulary
originate largely from the entertainment sector like TV/Radio, Books, Film, Culture and
Lifestyle. Interestingly, these classes are also those, where the classification algorithms
have the most difficulties. The class Opinion also has many different words which is quite
comprehensible, because this class includes multiple topics for discussions. Categories
with objective subjects like Politics, World-News, Technology and Science have a
more restricted vocabulary.

Correlated to these numbers is the length of the articles contained in the category and
thus, the total number of words in the classes. Travel, Opinion, Books and TV/Radio
are the highest four categories, which include the largest number of words in their fields
and also hold the longest articles compared to the remaining categories and which finally
results in a larger vocabulary.

To conclude, the examination of the data enables and facilitates the understanding
of correlations between algorithms, the processed text data and the results at the end.
Nevertheless, it is always important to capture the entire network and see the big picture
of the working system.



Chapter 6

Closing Remarks

The following chapter summarizes the issue and results of the thesis and the related
project, describes the challenges and difficulties during the development process and
concludes with hints for future improvements of the developed work.

6.1 Summary

With the growth of the World Wide Web, the amount of digital free text data increases
as well, including online news, blogs and social media communication. This data is
80% unstructured data and to categorize it, text classification algorithms are useful.
This thesis focuses on online news articles and their classification process comparing
three different algorithms, the k-nearest-neighbor classifier, the Naive Bayes classifier
and the Semantic Fingerprinting method. As an instance for this kind of data, articles
from The Guardian are used. The kNN algorithm classifies new text by comparing it
with each training document and determining the highest similarity value. The Naive
Bayes classifier dismembers the unlabeled document and computes with the single word
probabilities, a joint probability value for each class. The last algorithm, the Semantic
Fingerprinting method is the main part of this thesis. It uses the Hierarchical Temporal
Memory theory of Jeff Hawkins to convert words of categories and texts into Sparse Dis-
tributed Representations, which can than be compared to the new unclassified document
to finally detect the most similar topic. The SDRs are named Semantic Fingerprints and
consist of binary vectors. For the creation of these vectors, a context map is needed,
which consists of the articles in the training data. It constitutes the semantic environ-
ment the algorithm is able to work in. This method is novel and controversial, because
it uses no statistical approach compared to many other natural language processing
algorithms. It is based on the HTM theory, which represents a theoretical approach of
how the neocortex works. Thus, it is at the research stage and under development. But
the company called Cortical.io, already implemented an API with this idea as central
element and won several awards. In the thesis related project, a reimplementation is
developed, with the aim to compare the results of it with the reimplementation of the
two classical algorithms, k-nearest-neighbor and Naive Bayes. The general task, the al-
gorithms are tested in, is the categorization of unseen news articles based on a training
data set. This can be useful for online news services to sort or label online news content.

84
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6.2 Conclusion

The results of the testing phase are overall satisfactory. The methods are compared
on basis of the accuracy value. This number indicates how many articles have been
classified correctly compared to the total amount of tested data. The algorithm, which
performed best with the news articles from The Guardian is the Naive Bayes algorithm.
It is the fastest of the three tested methods and yields the highest results, with for
instance 74.72% accuracy for a data set of 20 classes. The second highest values for
the accuracy, generated by the k-nearest-neighbor classifier, whose computation time is
namely higher, but the overall results are solid and in some cases even higher than the
results of the Naive Bayes. It classifies the 20 classes data set with 71.67% accuracy. The
last method is the Semantic Fingerprinting method, but essentially it performs similar
to the classical ones. Its accuracy value is 58.17%, about 15% lower, when classifying a
data corpus with 20 classes. The less classes and the more diverse classes in the data set,
the higher gets the accuracy value. However, its main influencing parameters are the
threshold value and the composition of the context map. One main difference between
this method and the remaining is that it does not take care, during the creation of the
fingerprints, what class the data has beneath the context map, which are subsequently
used for the comparison to detect the searched label. It only checks if the word is
contained or not, irrespective of the exact class. As a result, the borders between the
class fingerprints become blurred by partly matching the same bits in the array. The
general tendency of all three methods is the dependency on the contained data and
the number of classes in it. If various categories are contained in the data corpus, the
accuracy decreases. For binary classification all the algorithms achieved in most cases
above 90% accuracy.

In general, the major challenge of this project was to get used to the algorithms,
especially for the Semantic Fingerprinting method. All three methods have different
priorities and to re-implement them ensures a detailed inside view of machine learning
and natural language processing. Another big difficulty was to get an insight into the
data the algorithms process. An overall text analysis before starting to work with the
algorithms is recommended, because it prevents unpleasant surprises during the testing
phase and it might help to explain the final results. For the analysis it is important to use
a visual representation to make the data and the properties of it easier to understand.
Finally, the examination of the articles and the exact words in them, was definitely
reasonable. Due to that a number of noise could be detected and deleted.

On the whole, the articles all algorithms worked with are real life samples and it
was an interesting experience to visualize them and see their relation to each other. The
k-nearest-neighbor classifier is a recommendable method to start with machine learning
and to get used to the principles of predicting labels. Whereas Naive Bayes is one
step further towards dismembering the data and counting words. It produced the best
results with less computation time and this was fascinating to observe. The gripping key
point of the Semantic Fingerprinting method was its different approach of converting
text data into binary representations and to apply machine learning functions to them.
Despite the gap between the classical algorithms and the neuroscientific one, the general
approach and the mechanism of it is highly interesting and the results seem definitely
promising and worth for further investigation.
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6.3 Future Work

An interesting point in case of Semantic Fingerprinting, which has not been examined
in detail and which may hide some additional properties of the algorithm is the con-
struction of the context map. In case of this implementation the whole trainings articles
have been used as contexts and compared to the functionality of the Retina APT and its
production of the fingerprints, this seems rather rough. Smaller parts and finer subdivi-
sions may be preferable to make the difference between classes more evident. Another
point to consider would be the representation of the context map. For the practical
part of this thesis a one-dimensional array has been used to create the context map. It
would be interesting if a two-dimensional arrangement like a grid, would make a dif-
ference. The last note to mention, concerns the class fingerprints. They are created by
converting all words contained in the texts belonging to the same category into semantic
fingerprints and stacking these layers on top of each other to get the final binary array.
Another possibility would be to add a step between, to create text SDRs from the stack
of word fingerprints in the first place, and than stacking these layers again to get the
class fingerprint. With this approach the differentiation between the classes could be
more precise.

It might be stated that the overall work flow consists, according to the points above,
of adapting parameters, changing some computation parts and testing the algorithms
repeatedly. Without extensive testing, it will not be possible to state which algorithm
works the best for this application and it always depends on the data and the parameters
the algorithm uses.
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A.1 Master Thesis (PDF)
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A.2 Images
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Results.xlsx . . . .. ..

Path: /Results/Diagrams
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Path: /Results/Application
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General results of the project
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Screenshots of User Application
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87



A. DVD Contents 88

A.4 News Classification Module
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Morphology_About.pdf Description of the term Morphology

Naive_Bayes_ Approach01.pdf Naive Bayes general approach

Naive_Bayes_ Approach02.pdf Naive Bayes theoretical background

Naive_Bayes_ Approach03.pdf Implementation of Naive Bayes in JavaScript
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