
Dynamically Distributed 2D Game
Physics

Michael Söllinger

M A S T E RA R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2015

© Copyright 2015 Michael Söllinger

This work is published under the conditions of the Creative Commons

License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, September 28, 2015

Michael Söllinger

iii

Contents

Declaration iii

Abstract vi

Kurzfassung vii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Question . 1
1.3 Objectives . 2
1.4 Thesis Structure . 2

2 Foundation 3
2.1 Game Engine . 3

2.1.1 Game Loop . 4
2.1.2 Event Queue . 4
2.1.3 Service Locator . 5

2.2 Network Programming in Games 5
2.2.1 Resource Limitations 6
2.2.2 Network Protocols . 7
2.2.3 Message Transmission 7

2.3 Game Physics . 8
2.3.1 Physics Engine . 9
2.3.2 Physics Islands . 9

2.4 Clustering Algorithms . 10
2.4.1 Approaches . 10
2.4.2 DBSCAN . 11
2.4.3 OPTICS . 11
2.4.4 Conclusion . 11

2.5 Load Balancing . 13
2.5.1 Linear Partition Problem 14
2.5.2 Workload Rating . 15
2.5.3 Conclusion . 16

iv

Contents v

3 Implementation 17
3.1 Target Platform . 17

3.1.1 Operating System . 19
3.2 Distributed Game Engine . 19

3.2.1 Overview . 19
3.2.2 Time System . 22
3.2.3 Message System . 22
3.2.4 Network Module . 23
3.2.5 Input Module . 24
3.2.6 Graphics Module . 24
3.2.7 AI Module . 26

3.3 Distributed Physics . 26
3.3.1 Physics Simulation Module 28
3.3.2 Master Module . 29
3.3.3 Clustering . 30
3.3.4 Load Balancing . 31

3.4 Test Application . 32

4 Results 33
4.1 Hardware Setups . 33

4.1.1 Input and Output . 34
4.2 Game World Configurations 36

4.2.1 Data Collection and Comparison Methods 36
4.3 Test Results . 36

4.3.1 Network Performance 38
4.3.2 Performance Limits 39

5 Conclusion 41
5.1 Problems . 41
5.2 Improvements . 41

A Content of the CD-ROM 43
A.1 Master’s Thesis . 43
A.2 Online Sources . 43
A.3 Thesis Project . 43
A.4 Miscellaneous . 43

References 44
Literature . 44
Online sources . 47

Abstract

The present thesis engages in the creation of a dynamically distributed
2D game physics simulation targeting low-performance microcomputers. To
overcome said performance restrictions the computationally demanding task
of physics simulation is distributed among multiple processing nodes and
dynamically load balanced during runtime. The nodes of this distributed
system connect to an enclosed LAN via Ethernet.

Current game programming techniques and patterns are taken into ac-
count during development. Special focus lies on the creation of an e�cient
network protocol with minimized overhead. A preexisting third-party 2D
physics engine handles the actual simulation of the objects in a game’s vir-
tual environment. Clustering algorithms are compared, and a suitable one
is chosen, to allow distribution of these dynamic objects. The resulting clus-
ters are load balanced among the processing nodes to evenly utilize processor
capacity and optimize overall performance.

The implemented system is evaluated by comparing the results of vari-
ous test scenarios, which are executed multiple times on di�erent hardware
configurations.

vi

Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit der Erstellung einer dynamisch
verteilten Physik Simulation für 2D-Spiele auf leistungsschwachen Mikro-
computern. Um die Einschränkungen durch die geringe Leistung zu umge-
hen, wird die anspruchsvolle Aufgabe der Physik Simulation auf mehrere
dieser Computer verteilt. Das geschieht mittels dynamischer Lastverteilung
über die gesamte Laufzeit der Anwendung. Die einzelnen Knoten dieses ver-
teilten Systems sind über Ethernet zu einem LAN verbunden.

Während der Entwicklung werden aktuelle Techniken und Muster aus
dem Bereich der Spieleentwicklung berücksichtigt. Ein besonderer Fokus
liegt hierbei auf der Erstellung eines e�zienten Netzwerk-Protokolls. Für
die eigentliche physikalische Simulation der Objekte, in der virtuellen Um-
gebung des Spiels, wird eine existierende 2D-Physik-Engine verwendet. Um
eine Verteilung der Simulation zu ermöglichen werden die dynamischen Ob-
jekte mit einem passenden Algorithmus in Cluster zusammengefasst. Die
resultierenden Cluster werden dann so auf die Rechen-Knoten verteilt, dass
eine gleich mäßige Auslastung und optimale Leistungsfähigkeit gewährleistet
ist.

Die Evaluierung des implementierten Systems erfolgt durch den Ver-
gleich der Ergebnisse verschiedener Test-Szenarios, welche auf mehreren un-
terschiedlichen Hardware Konfigurationen ausgeführt werden.

vii

Chapter 1

Introduction

1.1 Motivation
Since its introduction, the Raspberry Pi and similar inexpensive low-perfor-
mance microcomputers have proven highly successful and are used widely
in di�erent research fields. An area where they may not seem ideal at first is
game development because of the computationally highly demanding real-
time requirements of certain game types. However, low power consumption
and low heat emission make them a logic alternative to more powerful fan
cooled computers when used in closed arcade cases. To overcome the per-
formance bottleneck, a distributed game engine running on multiple micro-
computers is an easily extensible solution.

Game physics simulation became the second most demanding area af-
ter visual representation regarding required processing power. To achieve
high scalability within the described system, physics simulation could be
distributed among several processors in addition to the more obvious ideas
like separating rendering and logic or artificial intelligence.

Further, a distributed physics simulation targeting microcomputers also
provides an inexpensive testing ground before taking the idea to more ex-
pensive high-performance hardware.

1.2 Research Question
Based on the premise described in the previous section following research
question was formulated: Are dynamic clustering algorithms applicable to
distribute game objects to allow distributed simulation of game physics?
Which algorithms are suited for initial distribution and dynamic update
during runtime? What load balancing strategies are feasible to dynamically
allocate processing resources to simulate the clustered objects?

1

1. Introduction 2

1.3 Objectives
This thesis engages in the development of distributed 2D game physics sim-
ulation built on top a distributed game engine. The intended goal is to
answer the research questions based on the evaluation of example use cases
that facilitate this distributed engine.

1.4 Thesis Structure
The thesis starts in Chapter 2 with an introduction to the existing literature
that forms the foundation for a distributed 2D game physics system. This
basic knowledge includes general game engine design, game physics, cluster-
ing algorithms and load balancing. After that, the actual implementation of
the system is presented in Chapter 3, including a distributed game engine,
distributed physics simulation and a test application for actual use cases.
Results obtained by running the test application in various usage scenarios
are then displayed, compared and discussed in Chapter 4. A final verdict if
the set objective was achieved and an outlook for possible improvements is
shown in the concluding Chapter 5.

Chapter 2

Foundation

This chapter details the foundation on which the thesis project builds. A
general introduction to game engine development is followed by a detailed
look at network programming in games. These two topics form the core on
which the other parts build. The next section looks at the simulation of
game physics and the concept of a physics engine. After that, clustering al-
gorithms are discussed. The last section of the chapter details load balancing
techniques.

2.1 Game Engine
In today’s professional game development, the actual game is created by
facilitating a pre-existing or custom-built game engine. Those engines can
be general purpose targeting multiple game genres or o�er features tailored
to a single game genre. They include modules for input handling, output
(3D/2D graphics, sound, force feedback) and physics/dynamics simulation.
In other words all the game code that does not directly specify the games
behaviour or environment data [13].

As shown in Figure 2.1 the engine is the layer that sits directly above the
operating system and graphics API 1. It provides a higher level abstraction of
these resources to the game code. In the later described engine, the network
code is more integrated into the engine due to its distributed nature (see
Chapter 3 for details).

This section gives a short introduction to game engine techniques and
game programming patterns used as a foundation for the distributed physics
simulation.

1Application Programming Interface.

3

2. Foundation 4

Server

Operating System

To other
instances
of the gameGraphics API

Engine

N
et

wo
rk

C

od
e

Game Code

Virtual Worlds

Figure 2.1: Modular game engine structure [13].

Algorithm 2.1: Basic game loop.
1: RunGame

2: while true do
3: ProcessUserInput()
4: UpdateGameState()
5: Render()
6: end while
7: end

2.1.1 Game Loop
At the core of almost any game engine lies the game loop [15, Chapter 9]. A
basic implementation of a game loop is an infinite loop. Within the loop’s
body user input is processed, the game state is updated, and the current
state’s representation is rendered to the screen (see Alg. 2.1).

An actual implementation of a game loop is more complex than this
simple concept. For Example di�erent update rates for subsystems like ren-
dering and physics simulation should be supported.

2.1.2 Event Queue
An event queue (or event loop, message dispatcher, message pump, . . .) is
a programming construct that decouples the sending of a message or event
from when it is processed [33]. It is also widely used in GUI systems for user
input handling. In a game engine, an event queue can be used to decouple
di�erent sub-systems [15, Chapter 15]. Figure 2.2 shows a UML2 diagram of
an example event queue. In contrast to the observer pattern [9, Chapter 17]

2Unified Modeling Language: http://www.uml.org/.

http://www.uml.org/

2. Foundation 5

Message

+getMessageType() : String

Messenger

+send(message: Message) : void
+registerReceiver(messageType: String, receiver: Receiver) : void
+dispatchMessages() : void

SpawnMessage

+getMessageType() : String

MoveMessage

+getMessageType() : String

Receiver

+handleMessage(message: Message)

SpawnReceiver

+handleMessage(message: Message)

MoveReceiver

+handleMessage(message: Message)

Figure 2.2: UML diagram of an example event queue implementation.
Events are called messages in this case.

which also allows decoupling of message sender and receiver, an event queue
also allows to decouple message creation and handling in time.

2.1.3 Service Locator
The service locator pattern allows further decoupling by providing a central
access point to game services (e.g.: render system, log system, . . .) [15,
Chapter 16].

Clients can access these services without knowing about their actual
implementation and services can be designed without considering global
access to them.

2.2 Network Programming in Games
Networking in games is needed when the gameplay or parts of it are dis-
tributed among several computers. In many cases, these games are multi-
player where each player runs the game on a separate machine. Of course
not all multiplayer games are networked [3, Section 2.1]. An e�cient im-
plementation of a game’s network layer is necessary due to the fact that
network resources are limited (see Section 2.2.1). This is especially true for
real time games. Since the thesis focuses on a distributed simulation in an
local area network this section limits most details to this type of network.

2. Foundation 6

2.2.1 Resource Limitations
In the design of distributed games, three resource limitations of computer
networks have to be considered. They are network bandwidth, network la-
tency and the required computational power for handling the network traf-
fic [24, 25].

Bandwidth

Available Bandwidth of a network describes the maximum data through-
put of said network. From the applications perspective the amount of sent
packages and their size define the needed bandwidth. Bandwidth require-
ment also increases with the number of recipients. Broadcast and Multicast
are techniques that may be used to prevent sending of redundant data and
reduce bandwidth in cases with multiple recipients.

Due to the real-time requirement in game development bandwidth con-
cerns are secondary to latency.

Latency

Network latency specifies the delay between sending and receiving of a mes-
sage. It can be measured either in one way or in both ways as round-trip
time. In real-time games, latency is the most significant restriction to take
into account.

Sources of Latency are [3, Section 5.2]:
• Propagation delay: Is the time a packet needs to travel from sender

and receiver. It is lower than or in the best case equal to the speed of
light. The greater the distance between sender and receiver the larger
the delay.

• Serialisation delay: This delay occurs at most link layers when the
frames are broken up into sequences of bytes which are then sent one
bit at a time. It depends on the speed of the link and the length of the
packet being sent.

• Queuing delay: Occurs at routers if packets arrive faster than the
router can process them. For example, this is possible due to a ca-
pacity overload during a burst transmission. It can lead to delays up
to several seconds.

The actually acceptable latency di�ers depending on the type of games [7].
Studies showed that in first person shooters for example latency from 75ms
to 100ms was already noticeable for players [5]. Latency above 100ms leads
to distinctly lower accuracy. The authors of [20] state that even latency of
only 60ms was distracting for some players. In real-time strategy games,
latency of several seconds is acceptable without noticing and influencing the
performance of a player [21]. Racing games again tolerate only very small

2. Foundation 7

latency values. First influences on player’s performance show already at a
latency of only 50ms. Values above 100ms should be omitted because they
lead to unrealistic driving behaviour [16].

Computational Power

Besides the two restrictions of the actual network, also the processing power
of the computers running the distributed system has to be considered. It is
often overlooked, but can require a noticeable amount of processing power,
especially on less powerful systems when dealing with a large number of
connections [22].

2.2.2 Network Protocols
The computers running the distributed engine are connected via Ethernet.
The most common and widely supported protocols are TCP and UDP, which
both build on top of the Internet Protocol (IP) [17]. Each has its benefits
and drawbacks, and the decision which one to use depends mainly on the
requirements of the particular application [35].

Transmission Control Protocol (TCP)

TCP is a connection-oriented transport protocol [18]. Prior to the actual
communication, a connection has to be established. During data transmis-
sion, the protocol guarantees ordered and reliable delivery of data. To achieve
this the receiver queues all packets and if one got lost asks the sender to
retransmit it. This mechanism has the downside that it delays the trans-
mission, especially in the case of packet loss. The header on each sent data
stream contains metadata needed to provide the described reliability. This
leads to a typical header size of 20 Bytes. These facts make the protocol not
that well suited for the real-time requirements of video games.

User Datagram Protocol (UDP)

In contrast to TCP, UDP is a connection-less protocol [19]. It does not pro-
vide any functionality for a reliable transmission which means lost packages
are not resent automatically. However, this has the benefit that a header
of 8 Bytes size is needed and no waiting time for lost packages occurs. If
needed, features of TCP can be implemented on top of UDP [34, 36].

2.2.3 Message Transmission
Messages in a local area network can either be transmitted as unicast, broad-
cast or multicast. These transmission methods are implemented in the IP
protocol. Unicast transmission sends a message only to a single receiver.

2. Foundation 8

Sender

Receiver

Receiver

Receiver

Sender

Receiver

Receiver

Receiver

Sender

Receiver

Receiver

Receiver

(a) (b) (c)

Figure 2.3: Message sending in unicast transmission (a), broadcast trans-
mission (b) and multicast transmission (c) in comparison.

Broadcast, in contrast, transmission sends a message to all members of the
network. A multicast transmission sends messages only to specific recipients.
A schematic comparison in shown in Figure 2.3.

2.3 Game Physics
Physics simulation in video games is needed when games try to simulate
virtual worlds based on the physics of the real world. For example, this may
be wanted to create a believable game world in an action or strategy game,
simulate vehicles a racing or flight simulation or allow physics based puzzles
in certain puzzle games.

When speaking of game physics this thesis, like most literature on physics
in games, means classical mechanics. Other parts of academic physics are
only simulated if they are an important element of the gameplay. Or optics,
for example, which plays into the real-time graphics part of game develop-
ment.

Since the first games have been created physical simulation has been a
part of them. With the increase of processing power, the physics simulation
became more sophisticated. Beginning with simple bullet ballistics in early
games and leading to destructible objects and ragdoll bodies3, which simu-
late the human skeleton to allow more realistic trips, falls and death scenes
in today’s blockbuster games [14, Chapter 1].

In most games, simulation speed is more important than accuracy. Due to
this requirement game physics are only an approximation and simplification
of real world physics. Depending on the type of game such a simplification

3
https://en.wikipedia.org/wiki/Ragdoll_physics.

https://en.wikipedia.org/wiki/Ragdoll_physics.

2. Foundation 9

could be to simulate physics only in two dimensions instead of three. This,
for example, is the case in the distributed physics discussed in this thesis.

2.3.1 Physics Engine
Initially, each physical e�ect was directly programmed into a game’s code as
needed. The more complex physics in games became, the more e�ects had to
be added separately. This lead to the idea of creating more general physics
simulations in games [14, Chapter 1].

Like a graphics engine for the rendering part, a physics engine handles
the physical simulation of the game world. From the developer’s view, this
engine is a black box, which does all the calculations needed to simulate the
physics. In comparison to directly implemented physics, the developer has
to define the objects and the forces that are applied to them.

Advantages

There are two key benefits when implementing a physics engine in games.
First it is reusable in more than one game. This way a general purpose
physics engine leads to time saving.

Second there is the quality of the physics simulation. When using mul-
tiple e�ects, all created on their own, the combination of them can lead to
visible errors that destroy the immersion in a game. In a general purpose
engine, combined e�ects on objects happen automatically. Improved quality,
of course, can only be delivered if the engine was developed carefully [14,
Chapter 1].

Disadvantages

The main problem of a general purpose physics engine is the processing
power needed for simulation. In games that only require specific physical
e�ects performance may be better if some restricting assumptions can be
made [14, Chapter 1].

2.3.2 Physics Islands
The concept of an island was created to parallelize simulation of physics.
An island is a group of bodies that cannot be pulled apart of each other
and because of that have to be simulated together. On the other hand, this
means that each island can be solved independently on a separate processing
unit [28]. In physics engines island creation, distribution among threads and
solving happens encapsulated within the simulation step and usually cannot
be accessed from the outside. The creation of islands takes place after pairs
of the objects in contact have been calculated [29].

2. Foundation 10

2.4 Clustering Algorithms
Clustering Algorithms are used to organise spatial data into relatively ho-
mogenous groups. In the distributed game physics simulation these clusters
are used to form separated physical islands, which then can be processed on
their own.

2.4.1 Approaches
Clustering algorithms may be divided into two basic types: Partitioning and
hierarchical algorithms [12, Section 1.3].

• Partitioning algorithms, as the name suggest, construct a partition of
a dataset of n objects into a set of k clusters. Clusters are represented
by the gravitational center of the cluster (k-means) or by an object of
the cluster located near its center (k-medoid). The shape of all found
clusters is convex, which may be a restriction that prevents optimal
cluster discovery.
The number of clusters k is a required input parameter, which means
that it has to be known in advance. For the arbitrary distribution
of simulated physical bodies in a game, this is not true. Therefore,
partitioning algorithms are not suited for application in distributed
game physics.

• Hierarchical algorithms create hierarchical decomposition of a given
dataset. This decomposition is represented by a tree that iteratively
splits D into smaller subsets until there is only one object left in each
subset. Each node of the tree represents a cluster of the dataset.
The tree can either be created bottom-up from the leaves to the root
(agglomerative approach) or top-down from the root to the leaves (di-
visive approach).
An advantage over partitioning algorithms is that the number of clus-
ters (k) needs not to be known in advance. However, a termination
condition has to be defined to indicate when the merge or division
process should stop, and the clustering is finished. One example of
a termination condition in the agglomerative approach is the critical
distance Dmin between the clusters of the dataset. Deriving the ter-
mination condition is a main problem with hierarchical algorithms.
Ejcluster is an algorithm that automatically calculates the termina-
tion condition, this, however, comes with the computational cost of
O(n2) [8].

Additional to these older categorizations there are also density-based clus-
tering algorithms. In density-based clustering, clusters are defined as regions
in the data space in which objects are dense. These clusters are separated
by regions of low density (noise). The clusters may have arbitrary shape and

2. Foundation 11

Algorithm 2.2: DBSCAN algorithm [8]. NOISE and UNCLASSIFIED are
markers to distinguish data points which are not part of a cluster or have
not yet been classified. When the algorithm is finished all points have either
a cluster id or are marked as NOISE .

1: DBSCAN(P, ‘, pmin) Û The set of points P is UNCLASSIFIED.
2: c Ω 0 Û c is the next cluster id.
3: for all p œ P do
4: if p

c

= UNCLASSIFIED then Û cluster id of p is unclassified
5: if ExpandCluster(P, p, c, ‘, pmin) then Û see Alg. 2.3.
6: c Ω c + 1 Û Increment cluster id c.
7: end if
8: end if
9: end for

10: end

the points inside each cluster may be arbitrarily distributed [26, Chapter 8].

2.4.2 DBSCAN
DBSCAN is a density-based algorithm for discovering clusters in spatial
databases with noise. To count as a cluster for each point, the neighbourhood
of a given radius has to contain at least a minimum number of points. In
other words, the density of a neighbourhood has to exceed some threshold.
The algorithm supports any distance function appropriate to the application.
So in the case of clustering 2D physics bodies the Euclidian distance in 2D
can be used. A basic version of DBSCAN can be seen in Algorithm 2.2. It
is described in full detail in [8].

In comparison to the partitioning approach, the density based DBSCAN
clustering o�ers improved handling of clusters of di�erent size, convex clus-
ters and clusters of di�erent density (see Fig. 2.4).

2.4.3 OPTICS
OPTICS stands for Ordering Points To Identify the Clustering Structure. It
does not produce a clustering of a data set but instead creates an ordering of
the database representing its density based clustering structure [2]. It works
in principle like an adapted DBSCAN algorithm that creates a hierarchical
density based clustering. In comparison to DBSCAN, it allows clusters to
have varying density.

2.4.4 Conclusion
As already mentioned in the previous sections clustering algorithm for use
in distributed game physics should not require knowing the number of clus-

2. Foundation 12

Database 1 Database 2 Database 3

(a)

Database 1 Database 2 Database 3

(b)

Database 1 Database 2 Database 3

(c)

Figure 2.4: Comparison of DBSCAN with the k-medoid based CLARANS
algorithm. The initial dataset (a), clusterings discovered by CLARANS (b)
and the clusterings discovered by DBSCAN (c). In database 1 the improved
handling of di�erent sized clusters is visible, database 2 contains convex
clusters which are discovered better by DBSCAN and database 3 shows the
noise points CLARANS would assign to the closest medoid. Image source [8]

ters in advance. There may be some games where this number is known in
advance but in general and due to player interaction with the game envi-
ronment it is not known.

The noise points as yielded by the density based algorithms like DB-
SCAN can be arbitrarily distributed among the computation nodes because
they are not interacting with any clusters.

2. Foundation 13

Algorithm 2.3: DBSCAN expand cluster.
1: ExpandCluster(P, p, c, ‘, pmin)

Returns true if p is a cluster’s core point or else false.
2: S Ω RegionQuery(P, p, ‘) Û S contains the ‘-neighbourhood of p.
3: if |S| < pmin then
4: p

c

Ω UNCLASSIFIED
5: return false Û p is no cluster core point.
6: else Û All points in S are density reachable from p
7: p

c

Ω c Û p’s cluster id is now c.
8: Delete(S, p) Û Remove p from S.
9: while |S| > 0 do

10: q Ω S0 Û Get first point q of S.
11: T Ω RegionQuery(P, q, ‘)
12: if |S| < pmin then
13: for all r œ T do
14: if r

c

= UNCLASSIFIED ‚ r
c

= NOISE then
15: if r

c

= UNCLASSIFIED then
16: Append(S, r)
17: end if
18: r

c

Ω c
19: end if
20: end for
21: end if
22: Delete(S, q) Û Remove q from S.
23: end while
24: return true
25: end if
26: end

2.5 Load Balancing
The last part of the proposed dynamically distributed game physics simu-
lation is to balance the load among the nodes which are running the en-
gine. To allow distribution of the simulation partitions can be formed from
the clusters obtained by the clustering algorithms discussed in the previous
Section (2.4). Such partitioning mechanisms are required in all distributed
simulations and the best of them also load-balance the partitions [4].

Work package exchange between the processing nodes can be done glob-
ally or locally when required due to load changes. In a global load balancing
strategy, packages can move to any other node in the system. Local load
balancing on the other hand only allows these exchanges with the defined
neighbouring nodes [4].

2. Foundation 14

Load balancing in distributed systems can be distinct in two classes
depending on where the management is done. It can be done centralized on a
single entity (master node) or decentralized on the separate entities forming
the system. While the centralized approach simplifies the balancing task, it
can be a performance bottleneck and increase network communication. The
dezentralized method makes it hard to get a global view of the simulation
and is not suited well for global load balancing [4].

2.5.1 Linear Partition Problem
When balancing load for parallel processing the linear partition problem
arises [23]. Load has to be classified with positive integer values to fall under
this domain. For balancing clusters, this can be achieved by simply taking
the clusters’ sizes for partitioning.

Introduction

A special case would be to balance load evenly among only two nodes, which
is an example of the optimization variant of the partition problem [37]. The
partition problem is one of Karp’s 21 NP-complete4 problems defined in
1972 [11].

The partition problem itself is the task to determine if a given set S of
positive integers can be partitioned into two subsets S1 and S2 such that

sum(S1) = sum(S2), (2.1)

where
sum(S) :=

X

xœS
x. (2.2)

An example set S = {3, 1, 1, 2, 2, 1} could be split into the two sets S1 =
{1, 1, 1, 2} and S2 = {2, 3} with sum(S1) = sum(S1) = 5.

For load balancing, it is not important if there is an exact solution instead
a optimal solution is needed. The optimization version of the partition prob-
lem, however, is NP-hard5[37]. For example there exists no exact solution
for S = {2, 1, 5} however an optimal solution is S1 = {5} and S2 = {1, 2}.

Although there exists a solution to find the optimum, depending on
the actual use case, an approximation may be su�cient. A naive and com-
putationally inexpensive (O(n log n)) approach for finding an approximate
solution is, for example, the following greedy algorithm where the given set
(e.g. S = {2, 1, 5})

1. is sorted descending (e.g. S = {5, 2, 1}),
2. the first element is inserted into the first subset (e.g. S1 = {5}),
4
https://en.wikipedia.org/wiki/NP-complete/.

5
https://en.wikipedia.org/wiki/NP-hard/.

https://en.wikipedia.org/wiki/NP-complete/
https://en.wikipedia.org/wiki/NP-hard/

2. Foundation 15

Algorithm 2.4: Greedy algorithm for finding an approximate optimal so-
lution for the partition problem [37].

1: Partition(S) S a set of positive integers
Returns two sets S1, S2 containing the partitioned values.

2: S Ω sort(S) Û sort S descending.
3: S1 Ω {}
4: S2 Ω {}
5: for all x œ S do
6: if sum(S1) Æ sum(S2) then Û see Eq. 2.2
7: insert(S1, x)
8: else
9: insert(S1, x)

10: end if
11: end for
12: return (S1, S2)
13: end

3. the next element is inserted into the second subset (e.g. S2 = {2}) and
4. all further elements are inserted into the set with the smaller sum (e.g.

S1 = {5} and S2 = {2, 1}) (see Alg. 2.4).
This algorithm is especially well suited for partitioning DBSCAN clusters
because the noise objects, which basically are clusters containing only one
single element, lead to a better approximation of the optimal result when
filling the two sets. In cases where the algorithm produces a bad approxima-
tion, the other algorithms that find an optimal solution have their highest
runtime complexity, which is bad for real-time applications.

Linear Partitioning Problem Algorithm

The discussed greedy algorithm can be adapted to work for the general-
ization of the problem, the linear partitioning problem (see Alg. 2.5). The
modified algorithm has the same properties that make the specialized algo-
rithm well suited for partitioning DBSCAN clusters in real-time application
scenarios.

2.5.2 Workload Rating
A central question prior to actually balancing the workload is how it can be
rated.

• For balancing clusters of objects for simulation, a simple approach
could be to count the number of objects in each cluster [10]. This
value is a simplified estimation of the workload.

2. Foundation 16

Algorithm 2.5: Adaption of Alg. 2.4 to work for k Ø 2 instead of k = 2.
1: LinearPartition(S, k) Û S a set of positive integers, k number of

result sets wanted
Returns a set R containing k sets which contain the partitioned values.

2: S Ω sort(S) Û sort S descending
3: R Ω {} Û R is an ordered set
4: for 1, . . . , k do
5: append(R, {}) Û append a new empty set into R
6: end for
7: rmin Ω 0 Û initialize current minimum sum rmin
8: cS Ω |S| Û cS element count of S
9: for i Ω 0, . . . , do

10: for j Ω 0, . . . , k ≠ 1 · i < cS do
11: if sum(R

j

) Æ smin then
12: insert(R

j

, x) Û insert x into set at R
j

13: rmin Ω sum(R
j

) Û set rmin to sum of R
j

14: i Ω i + 1
15: end if
16: end for
17: end for
18: return R
19: end

• Additional cluster parameters like density could be taken into account
to achieve an improved estimate.

• The actual workload can also be measured during simulation runtime.
This measurement may then be used to rate the load for the next
simulation run.

2.5.3 Conclusion
Of the general load balancing concepts discussed in this section the best
suited approach, for balancing the dynamically distributed game physics
simulation, is a centralized global dynamic load balancing algorithm. Cen-
tralized because the main game logic is already in a single place. Global
because the distributed system is relatively small and it makes no sense to
define neighborhoods between the processing nodes when there is no net-
work structure that already provides such relationships. Dynamic because
the workload may change, while the simulation is running.

Chapter 3

Implementation

The following chapter describes the testing application developed during the
creation of this thesis.

The application facilitates a distributed game library, which aims to run
on multiple Raspberry Pi (see Section 3.1) microcomputers in parallel. The
library was expanded to support distributed physics simulation as proposed
in Chapter 1. It incorporates the techniques described in Chapter 2. The
computers are connected to a LAN through Ethernet forming the distributed
hardware platform on which the application runs (see Fig. 3.1).

The term node or processing node is used in the following to name a
single computer in the distributed system and also for the software running
on such computer. Likewise, the term distributed system addresses either
the hardware or the software configuration forming the platform that runs
the game.

With this engine as a base, a testing application was created. This ap-
plication is a 2D physics playground where di�erent test scenarios can be
started, and a user can interact with simulated objects.

Test results of how the application performs at runtime on di�erent hard-
ware setups are presented and analyzed in Chapter 4.

3.1 Target Platform
The target platform of the proposed game engine is a system on a chip
(SoC) single board microcomputer. To be more specific a Raspberry Pi [39].
Its SoC a Broadcom BCM2835 combines all the basic PC components in
one Chip which sits on on a credit card sized board. The Hardware in detail
is composed of:

• a 700 MHz ARM CPU,
• a Broadcom VideoCore IV GPU,
• 256 MB (Model A) or 512 MB RAM (Model B, see Fig. 3.2) and

17

3. Implementation 18

Switch

Master
&

Input
Physics I Physics II AI

Graphics I Graphics II

Figure 3.1: An example configuration of the distributed game engine. Six
Raspberry Pis form a LAN by connecting to a network switch. The master
node in this case also runs the input module to handle key events of the
connected keyboard. To support two high definition screens two Raspberry
Pis run an instance of the graphics module. An AI module and two physics
simulation modules run on the remaining Raspberry Pis.

• a LAN9512 USB 2.0 Hub and 10/100 Ethernet.
There are also several special hardware interfaces to directly connect devices
like cameras, displays or sensors. These are the GPIO (General Purpose
Input/Output) pins, the CSI (Camera Serial Interface) and the DSI (Display
Serial Interface). Important for distributed systems of Ethernet connected
Raspberry Pis is also the maximum network speed of 100Mbps (MegaBits
per second).

A custom Debian Linux based operating system called Raspian1 is pro-
vided for it. Other operating systems like Fedora Linux, Risc OS, FreeBSD
and Plan 9 have also been ported to this hardware platform [38]. Because of
its low cost and low power requirements it has already been used in several
research projects [1, 27].

1
https://www.raspbian.org/.

https://www.raspbian.org/.

3. Implementation 19

Figure 3.2: Top view of a Raspberry Pi Model B+. Four USB ports and
the ethernet port occupy the right border of the board. HDMI, micro-USB
and audio port are at the bottom border. At the top left the GPIO pins are
visible. Image source [38].

3.1.1 Operating System

The distributed game engine specifically targets the Raspbian OS2. Although
this OS comes with an X11 3 desktop environment (see Fig. 3.3) the game
engine is a CLI4 application. The decision to not require X11 was made
due to its overhead, which may be a problem running games on the low
performance hardware of the Raspberry Pi.

3.2 Distributed Game Engine
The distributed game engine is the library which allows the creation of games
running on one or more Raspberry Pis connected to a LAN via Ethernet.

3.2.1 Overview
The engine and the test application were implemented in C++ using the new
features introduced by the C++11 standard. Both are designed in a modular

2Operating System.
3X Window System http://www.x.org/.
4Command Line Interface.

http://www.x.org/

3. Implementation 20

Figure 3.3: Screenshot showing Raspbian’s X11 desktop environment with
several applications running. Image source [38]

way. The engine aims to be general purpose engine for any type of game.
Therefore, certain parts of it could be adapted when implementing a specific
game. The modules can be grouped in the core modules and distributable
modules (see Fig. 3.4).

Core Modules

The core modules are mandatory and, therefore, run on each single node of
the distributed engine. Parts of these modules may be deactivated in certain
configurations:

• The Time System that manages the di�erent timers needed in a game.
• A Message System which allows loose coupling between all the modules

of the engine (see Sec. 3.2.3).
• The Network Module, which can be seen as the bottom layer of the

engine and provides the functionality to run the engine actually dis-
tributed among ethernet connected computing nodes.

Distributable Modules

The five distributable modules are the ones that can run spread among the
cluster nodes. They form di�erent distributed systems depending on how
they are distributed:

• An Input Module which handles keyboard input to allow users to in-
teract with the game world.

3. Implementation 21

Messenger

Master Module
(Game Logic)

Input Module

AI Module

Graphics Module Physics Simulation Module

Network Layer

Protocol Layer

LAN

Message Transmitters

Receive Methods

Distributed Modules
(node presence depending on game)

Core Modules
(present on each node)

Figure 3.4: Distributed game engine structure. The core modules (green)
are present on each single node of the distributed system. Of the distributed
modules (brown) presence on a specific node may vary from one to all of them,
depending on the game. Also they may be not present in the whole system at
all (e.g. no AI module if not needed). There are multiple message transmitters
and receive methods for di�erent message categories. The dashed arrows
represent the loose coupling via the messenger which may also take place
across the network.

• The Graphics Module, which is currently the only output module, ei-
ther runs an OpenGL5 or an OpenVG6 renderer to put a visualization
of a game’s world to the screen.

• An AI7 Module, which can run game specific AI code. This module is
only a wrapper because an actual AI module is game specific.

5https://www.khronos.org/opengl/.
6https://www.khronos.org/openvg/.
7Artificial Intelligence.

3. Implementation 22

• The Physics Simulation Module, which simulates physical behaviour
of objects inside a game world.

• A Master Module is also present in all games. It contains the main
game logic, which controls world and object creation, reacts to user
input and handles the gameplay. When enabling distributed physics in
a game, it also manages clustering of the game objects and balancing
the clusters among the physics simulation nodes.

They are optional, and the need for them depends on the requirements of
the game itself.

Supported Platforms

As stated prior the engine was initially designed to run on the Raspberry
Pi and the Rasbian OS. Initial tests of distributed game physics showed
that the rendering performance on this platform is a major bottleneck when
displaying a large number of simulated objects. To overcome this restric-
tion when testing distributed physics performance the engine was extended
to support also OS X8, specifically version 10.10 Yosemite, as a runtime
environment. The use of in general platform independent C++ code and
the modular design of the engine made this extension of support relatively
simple. Additional platforms may be supported in the future if needed.

3.2.2 Time System
The time system facilitates functionality contained in the newly introduced
standard library std::chrono header and namespace in the C++11 stan-
dard. To be more specific, the std::chrono::high_resolution_clock9 is
used to get time point values in the highest possible precision on a system.

3.2.3 Message System
At the core of the engine lays the message system. It is a generic implemen-
tation of the Event Queue pattern described in Section 2.1.2. It uses C++
template programming to allow sending and receiving of message objects
based on custom message classes. This means if the game needs a particular
type of messages a developer simply has to create a class for it. An example
UML diagram is shown in Figure 3.5.

Message sending then can be achieved by calling the template function of
the messenger object. Any class can become a receiver of a specific message
type by inheriting from the abstract templateable receiver class for that
specific message type. The main benefit is the streamlined and simplified

8OS X (pronounced OS ten). (OS 10) is the current operating system run on Apple
computers http://www.apple.com/osx/.

9
http://en.cppreference.com/w/cpp/chrono/high_resolution_clock

http://www.apple.com/osx/
http://en.cppreference.com/w/cpp/chrono/high_resolution_clock

3. Implementation 23

Receiver

+handleMessage(message: T)

T

Messenger

+send(message: T) : void
+subscribe(receiver: Receiver<T>) : void
+dispatchMessages() : void

–queues: List<Queue<T>>
–receivers: List<Receiver<T>>

T

MoveMessage

+getMessageType() : String

SomeOtherClass

+handleMessage(message: SpawnMessage)
+handleMessage(message: MoveMessage)

SomeClass

+handleMessage(message: SpawnMessage)

SpawnMessage

+getMessageType() : String

Receiver<SpawnMessage> Receiver<MoveMessage>

Figure 3.5: UML diagram showing the templateable messenger and receiver.
Basically any class can be used as a message type for this messenger but spe-
cialized message classes are more feasible. SomeClass and SomeOtherClass
are only examples of possible extensions of the abstract Receiver class.
When compared to Figure 2.2 the reduced complexity can be seen in the
missing abstract message class.

adding of new messages and receivers and, therefore, less code that could
contain errors.

3.2.4 Network Module
The engine’s network module provides all the functionality needed to run
the engine on multiple nodes. It allows the nodes to discover each other and
to later on exchange messages with each other. Since most messages contain
information needed at each node (e.g. position updates) they are sent as a
broadcast to all nodes in the LAN. To prevent a message loop caused by the
broadcast a nodes own message is filtered out during message receiving. If
needed certain messages can also be sent by unicast to one node only, which,
for example, makes sense for input messages that are only handled at the
master node containing the main game logic.

3. Implementation 24

Network Messages

To allow transmission of the message system’s messages over the network a
serializer and deserializer functionality has to be provided for each message.

A transmitter class for each message category handles serialization of
these messages (e.g. PhysicsTransmitter). An instance of a transmitter
object has to be present on each node that should send out these messages.

Deserialization is implemented as a method within the network modules
protocol layer. A call to the message type-specific method is required on
each node that is interested in this type.

The instantiation and calls of message serialization and deserialization
are handled within the engines modules. For example, the graphics module
takes care to receive position updates if it is activated on a node.

3.2.5 Input Module
The input module handles keyboard based player input. It registers key
down and key up events. The events are then sent via the messenger to
any class extending the according receiver. The module can be configured
to handle certain keys only to prevent unnecessary network messages for an
unused key.

Input events are read directly from the input device’s specific event file
(e.g. /dev/input/event0) to react to the actual key presses and releases on
the Raspberry Pi without requiring X11. The command-line’s default key
handling behaviour is disabled during the applications runtime.

On OS X, the GLFW 10 library is used to receive input events. GLFW
needs a window to achieve this, so even if the graphics module is not active
on an engine node started in OS X ’s terminal, an empty window is opened.
Keyboard events are only registered if this window is active. If the graphics
module is active, its window is used for input also.

3.2.6 Graphics Module
The graphics module displays the game world’s representation on the screen.
To support multiple displays it can run on multiple nodes of one distributed
system.

Output can be rendered in a vector mode where polygons are created on a
spawn polygon message. This mode is also intended for debugging. In games
that use images and sprites for their game world and entity representations,
a helper module is needed. This helper module reacts to spawn messages and
then triggers the sprite creation in the graphics module. Object movement
and destruction are handled in both cases automatically by the graphics
module itself.

10GLFW is an open source, multi-platform library for creating windows with OpenGL
contexts and receiving input and events: http://www.glfw.org/.

http://www.glfw.org/

3. Implementation 25

(a)

(b)

Figure 3.6: Comparison photos taken of the Raspberry Pi attached display.
Visible is the aliasing at rounded shapes in the OpenGL rendering (a) com-
pared to smoother curves in the OpenVG rendering (b). Both outputs have
the same performance requirements. While the OpenVG text (b) is scale-
invariant, OpenGL text (a) can only be upscaled with quality losses or more
demanding higher resolution textures.

On the Raspberry Pi the graphics module works without an X11 en-
vironment, which is a speciality when compared to other modern graphics
engines. It facilitates low-level screen access via EGL11 and the Raspberry
Pi’s native Broadcom graphics driver interface12. For the window provided
by this base layer either an OpenGL ES13 or an OpenVG context is created.

OpenGL ES is a variant of OpenGL for embedded systems and the ren-
derer provides functionality to display polygons, images and text. It also
supports custom shaders and can be used to create all kinds of graphical
e�ects.

OpenVG, on the other hand, is missing these custom shaders but o�ers
11EGL Native Platform Interface: https://www.khronos.org/egl/.
12

https://github.com/raspberrypi/firmware/blob/master/opt/vc/include/bcm_host.h.
13https://www.khronos.org/opengles/.

https://www.khronos.org/egl/
https://github.com/raspberrypi/firmware/blob/master/opt/vc/include/bcm_host.h

3. Implementation 26

more e�cient rendering of antialiased polygons especially suited for text (see
Fig. 3.6). Displaying raster graphics is also supported. Overall rendering is
slightly (up to 10%) more performant than in OpenGL.

For OS X, the existing render logic was extended to support OpenGL.
Due to the similarities to OpenGL ES the adaption to this platform only
needed slight changes in the renderer code and the actual renderers share
most of their code. The primary di�erence is the use of GLFW for window
and context creation and handling.

3.2.7 AI Module
This module is designed only as a wrapper for a game’s AI behaviour. It
receives updates about the game world, like spawn and move messages, and
sends input events similar to the input module. In games with multiple AI
opponents, the module can be run on a separate node for each opponent.

3.3 Distributed Physics
All explanations in this chapter are restricted by the fact that a pre-existing
physics engine is used. If the physics engine itself was created to be dis-
tributed among multiple processing nodes some of the restrictions described
may not apply.

Physics simulation in games happens within the game world. To dis-
tribute the simulation of the objects in this world the objects need to be
clustered by certain requirements:

• Objects that are touching each other need to be simulated together,
to allow the physics engine to compute and apply the collision e�ects.

• Forces that act in specified regions have to be applied to all objects
within that region.

The distributed game physics simulation can be structured into several
sub-elements. At the core, there is the distributed game engine explained
in the previous section. An arbitrary number of computation nodes of this
engine may run a physics simulation module. The engines network module
handles communication between these separated modules (see Section 3.2.4
for details).

The master node of the engine, which handles the main game logic, is also
responsible for distributing the physical objects among the nodes running
physics simulation modules. This is done by clustering all objects into groups
that need to be simulated on a single node. Then the resulting clusters are
distributed among all nodes, to keep the computational stress to the nodes
as balanced as possible and achieve optimal performance.

Figure 3.7 shows an overview of this workflow during one single simula-
tion step. In the first run of the game loop (the first one of the simulation

3. Implementation 27

Physics Node N

Update local physical object type
according to new object-node mapping

Physics engine simulation step

Broadcast new object poses

…

Update local physical object type
according to new object-node mapping

Physics engine simulation step

Broadcast new object poses

Physics Node 2

Update local physical object type
according to new object-node mapping

Physics engine simulation step

Broadcast new object poses

Physics Node 1

Update local physical objects types
and positions

Physics engine simulation step

Broadcast new object poses

Master Node

Broadcast updated object-node mapping

Balance clusters among nodes

Clustering

Updated local objects positions

Network

object-node
mapping updates

object-node
mapping updates Position updates

Position updates

Position updates

Figure 3.7: The workflow of a single step of the distributed game physics
simulation during runtime. Communication between the nodes takes place
over the network. Not shown in the figure are other node types like graphics
nodes and the position updates going there or the input node and the input
updates coming from there to the master node.

3. Implementation 28

steps), there are no position updates fed into the master node. Instead the
objects initial positions present in the master node are used. This is also true
for objects added later during a games runtime. The master module can also
run on a node with other modules, for example with a physics simulation
module instance.

The following sections o�er a detailed look at the parts forming the whole
distributed game physics simulation.

3.3.1 Physics Simulation Module
The physics simulation module facilitates a pre-existing third-party physics
engine. To keep control over the module’s interface wrapper classes for the
engines components have been created. This allows to exchange the used
physics engine at a later stage if needed and keeps required code changes
limited to this wrapper classes.

As stated in Chapter 1, 2D game physics was chosen since it allows
simpler setup of the engine testing ground. Reduced complexity of the scenes
also makes it easier to compare the test results. For the first implementation
of the physics simulation module, the well established Box2D engine was
used. Therefore, the wrapper classes are heavily based on the functionality
provided by this engine.

Box2D

Box2D is an open source 2-dimensional physics engine for video games de-
veloped by Erin Catto and licensed under the zlib14 license [30]. It allows
rigid body simulation, is written in platform-independent C++ and was
initially released in 2007 [31]. The engine has been ported to other pro-
gramming languages, including for example Java15, Adobe Flash16, C#17

and JavaScript18,19. It is incorporated in game engines and frameworks like
Torque2D20, libGDX21 or Unity22 and has been used in popular games like
AngryBirds [32], Limbo23 and Crayon Physics Deluxe24. Because it’s wide
adoption, it was chosen to be facilitated for the distributed physics simula-
tion discussed in this thesis.

14
http://zlib.net/zlib_license.html.

15
http://www.jbox2d.org/.

16
http://box2dflash.sourceforge.net/

17
https://code.google.com/p/box2dx/.

18
https://code.google.com/p/box2dweb/.

19
http://box2d-js.sourceforge.net/.

20
http://www.garagegames.com/community/blogs/view/18641.

21
https://github.com/libgdx/libgdx/wiki/Box2d.

22
http://unity3d.com/unity/whats-new/unity-4.3.

23
https://en.wikipedia.org/wiki/Limbo_(video_game).

24
https://code.google.com/p/box2d/wiki/FAQ.

http://zlib.net/zlib_license.html
http://www.jbox2d.org/
http://box2dflash.sourceforge.net/
https://code.google.com/p/box2dx/
https://code.google.com/p/box2dweb/
http://box2d-js.sourceforge.net/
http://www.garagegames.com/community/blogs/view/18641
https://github.com/libgdx/libgdx/wiki/Box2d
http://unity3d.com/unity/whats-new/unity-4.3
https://en.wikipedia.org/wiki/Limbo_(video_game)
https://code.google.com/p/box2d/wiki/FAQ

3. Implementation 29

The engine simulates rigid body physics and is internally composed of
three modules [6]:

1. The Common module provides basic functions for memory allocation,
math and settings.

2. The Collision module defines the shapes, which can be convex poly-
gons, circles or edges and functions that operate on them. It further
contains a dynamic tree and broad-phase to allow e�cient collision
processing of large systems without missing collisions due to the tun-
neling e�ect [6, Section 1.5].

3. Finally, the Dynamics module handles the simulation world, fixtures
that add the previously mentioned shapes to bodies and joints that
restrict movement. This module builds on top of the two prior ones,
and it is the one that developers interact mostly with when using
Box2D.

The bodies simulated by the engine can be one of three types:
1. Dynamic bodies are a�ected by forces like gravity and bounce back

when colliding with other bodies. They are used for the player char-
acter, other actors and all manipulatable objects in a game scene.

2. Static bodies are not a�ected by forces and stay in position when dy-
namic bodies collide with them. They are used for the non-manipulat-
able game world like floors, walls and so on.

3. Kinematic bodies are like static bodies concerning forces and collisions
but can be moved by setting a velocity value for them. A usage example
for them is moving platforms in a platform game.

Internally Box2D uses an integrator algorithm to simulate the physics equa-
tions at discrete points of time. A time step of at least 60Hz is generally
recommended for game physics engines, which is also true for Box2D. The
lower the update rate the more problems will occur. A higher rate will lead
to a more exact simulation. A fixed time step is better than a variable one
and, therefore, be used if possible [6, Section 2.4].

3.3.2 Master Module
While the physics simulation module is a wrapper module as it is present
in many game engines integrating third-party physics engines. The master
module contains the logic to distribute the objects of the game world among
the physics simulation module nodes present in the system. This is done as
described in the following sections by first clustering physical objects and
then balancing this clusters among the nodes depending on their computa-
tional load. The process is depicted inside the Master Node in Figure 3.7.

3. Implementation 30

Figure 3.8: Example game scene. The colors (blue, green and red) show the
di�erent clusters detected by DBSCAN. The grey objects are noise objects
not belonging to any cluster. The black bar at the bottom is a static object
representing the ground and since only dynamic objects are clustered ignored
by the algorithm.

3.3.3 Clustering
For clustering of the physical game objects, the DBSCAN algorithm as
described in Section 2.4.2 was chosen. The decision to use this algorithm fell
for several reasons:

1. It performed better than the other algorithms during comparison tests.
2. Clusters are characterized by the density of objects in an area. This

fact fits very well with the requirements to compute objects close to
each other together on a single processor node.

3. And at last the free objects not added to any cluster by the algorithm
can be distributed arbitrarily in the load balancing step, which allows
fine-grained load control in most cases.

Clustering is only done for physical objects composed of dynamic bodies.
Static bodies like floors and walls are ignored by the algorithm. On the
simulation nodes all objects not simulated locally are also present as static
objects.

Algorithm Parameters

As described in Section 2.4.2, DBSCAN has two input parameters. They
are the minimum number of points in a cluster (MinPts) and the radius ‘
around a point within which at least MinPts other points are.

The creators of DBSCAN developed a heuristics on how to determine
these two values for the “thinnest” cluster in a database [8]. However, this
approach is only useful for a given database. In the case of the objects inside
the game world the database changes in every simulation step. Obtaining
the ideal parameters would be too runtime intensive, so a di�erent approach
was chosen. The cluster density we are interested in depends on the objects’
size, so ‘ is chosen based on the diameter of the largest objects. This way it

3. Implementation 31

is guaranteed that all clusters are found in which collisions are possible (see
Fig. 3.8).

3.3.4 Load Balancing
Based on the general considerations presented in Section 2.5.2, the final
load balancing algorithm was developed in an iterative approach. Work-
load is managed central because the distributed game engine already uses
a master node for the main logic and balanced globally (see Sec. 2.5). The
partition of the clusters obtained by DBSCAN is done by an implementation
of Algorithm 2.5 after classifying the clusters with positive integer values.

Balancing by Cluster Size

The first iteration takes the clusters size as an estimation of the clusters’
workload. The size is an integer value larger than two. Noise objects can be
seen as clusters containing only one object and, therefore, are weighted by
the integer value one.

Balancing by Estimated Cluster Workload

However, clusters containing the same number of objects have not necessarily
the same computational load when it comes to physics simulation. A better
estimation can be achieved by taking cluster density into account. This
approach is based on the assumption that denser clusters more likely have
collisions between their objects. The reactions to the collisions have to be
calculated during the simulation step and lead to higher workload. The
quantification of a clusters load is done by a combination of density and
object count.

Balancing by Measured Cluster Workload

In most cases, it is correct to assume that there are more collisions in denser
clusters, but there are situations where this is not true. For example Objects
in a dense cluster could be moving apart. There is even the possibility that
a dense cluster has no load at all which happens if a stack of objects resting
on each other is sent to sleep by the physics engine. In the described special
cases, the di�erence between actual and estimated workload is very high,
which would lead to an uneven load distribution among the nodes.

Noise objects resting on the ground or not a�ected by any force may also
be sent to sleep by the physics engine. Here a wrongly estimated workload
has a much lower e�ect and will not influence the even balancing as much.

In the first simulation step and if a completely new cluster is formed
workload classification falls back to the estimation by density approach since
there is no previous workload present that could be measured.

3. Implementation 32

Figure 3.9: Screenshot of the test application showing two stacks of dy-
namic physical objects and the cursor in interaction mode. The right stack
already crumbles to pieces, while the left one remains relatively stable. Be-
low the cursor an object created at the cursor’s position is falling. The colors
show the di�erent clusters. As expected the two initial stacks form clusters
(red and green). In the middle, the player created object and one object orig-
inally belonging to the right stack form a third cluster (blue). Basic runtime
information is displayed in the top left corner.

Integer values weighted by the measured run time are utilized for parti-
tioning when this method is used.

3.4 Test Application
Using the distributed game engine with the added distributed 2D game
physics as the base library a demo and test application was created. The
application consists of a simple 2D game world enclosed by a floor and walls
on each side.

The player can control an onscreen cursor via keyboard inputs. New
game objects can be spawned and destroyed at the cursor’s position. The
cursor can also mimic a static game object and collide with existing dynamic
objects within the virtual environment (see Fig. 3.9). When initially started
the game world contains already a bunch of objects. The test application
is started by a script on all nodes that compose the distributed system it
should run on.

Chapter 4

Results

In this chapter, the results of running the test application described in Sec-
tion 3.4 in various hardware and software configurations are presented. To
get comparable results these configurations have been defined precisely. A
photo of an example hardware setup running a test case is shown in Fig-
ure 4.1.

4.1 Hardware Setups
To evaluate the implementation the test application was run on three di�er-
ent hardware setups (see Fig. 4.2). The Master module contains the whole

Figure 4.1: Example hardware setup running a test configuration. In this
case the notebook running OS X also acts as network switch and via USB
as power source for the Raspberry Pis.

33

4. Results 34

Switch

Input & Output
(OS X)

Master
&

Physics I

Switch

Input & Output
(OS X)

Master
&

Physics I
Physics II

(a) (b)

Switch

Input & Output
(OS X)

Master
&

Physics I
Physics II Physics III Physics IV

(c)

Figure 4.2: The three di�erent hardware setups used for comparison tests.
Setup 1 with non distributed physics simulation running on a single Rasp-
berry Pi computer (a), Setup 2 with physics simulation distributed among
two Raspberry Pi computers (b), Setup 3 with physics simulation distributed
among four Raspberry Pi computers (c). Input and output modules are run-
ning on a laptop computer running OS X in all setups. Although not needed
the switch is also present in test setup 1 to keep the network setup close to
the other setups. Setup 2 is also depicted in Figure 4.2.

logic for initial game world setup and handling player inputs sent by the
input module. Additionally for the distributed game physics it also takes
care of the clustering of the physical objects and after that balancing the
clusters depending on their load among the actual physics simulation nodes.

The master node was run on a Raspberry Pi node to evaluate the perfor-
mance e�ect of clustering and load balancing on the actual target platform.
This way the test setup containing only one Raspberry Pi can be used to
compare the distributed physics simulation performance to a non-distributed
physics simulation.

4.1.1 Input and Output
Input and output module are not run on low performance hardware but
instead on a notebook running OS X. However, varying frame rate on this

4. Results 35

(a) (b)

(c)

(d) (e)

Figure 4.3: Schematic representation of the five game configurations for
comparison testing. Test 1 with 90 objects on a single stack (a), Test 2
with 90 objects initially distributed among two stacks of 45 objects each (b),
Test 3 with 250 objects initially distributed among five stacks of 50 objects
each, Test 4 is a special case of initially contains a single stack of 300 objects
and finally Test 5 with 300 objects distributed evenly in the game world
to form no clusters initially. The actual configurations contain more objects
than shown in these figures. All five configurations have their objects starting
above the ground and falling down to get initial collision reactions.

node has no e�ect on the performance of the other nodes that form the
distributed physics simulation because it only reacts to the position updates
received via the network. Therefore, it could also be replaced with another
Raspberry Pi, which could render the large number of objects only at very
low frame rates, without influencing the behaviour of the other distributed
physics simulation.

4. Results 36

4.2 Game World Configurations
Five di�erent game world configurations were executed on each one of the
three hardware setups. The configurations di�er in initial object count and
distribution (see Fig. 4.3). To keep computation requirements high through-
out the whole runtime the physical properties of the objects (e.g. friction
and restitution) were set to values that prevent sleeping of objects in stacks.
Sleeping could simply be deactivated in the physics engine, but this way
bouncing and sliding objects keep workload high throughout the whole run-
time.

To get further performance results, that resemble real world gaming, the
game world is manipulated by player interactions in additional test runs.

4.2.1 Data Collection and Comparison Methods
Due to network delay and clock di�erences on the di�erent computers during
runtime leading to non-deterministic behaviour of the Box2D physics engine
the actual computational load is di�erent in each test run. To minimize this
e�ect on the test results average values of 10 test runs of each configuration
were used for comparison.

4.3 Test Results
This section shows the performance measures and results of the test runs. Ta-
ble 4.1 shows average simulation steps per seconds achieved on each physics
node for all game configurations. In general, the results look like expected.
The distributed system performs better if there is more than one large clus-
ter. This can be best seen in the results of Test 3.

In the distributed setups Setup 2 and Setup 3, the higher load on the first
node which also runs the master module can be seen. The e�ect, however,
is low enough so that this node is not an outlier decreasing the performance
of the whole system.

When looking at the numbers for Setup 3 the lower load on the later
nodes can be seen in their slightly better performance (e.g. Test 2 with 198,
212, 223, and 218 steps per second). This happens due to the fact that the
balancing algorithm distributes the higher loads to the first nodes in most
cases.

When testing real-time applications like games, average results are not
the most important benchmark. The minimal simulation steps per second
are also an interesting figure because this drop in performance is disrupting
the user immersion in the game. Table 4.2 shows the minimum and maximum
simulation steps per second achieved.

As shown in Figure 4.4 a first performance drop occurs around second
five when running the test cases. This decrease happens because the first

4. Results 37

Table 4.1: Average simulation steps per second. The column for setup 2 and
setup 3 contains the values for all participating nodes.

Setup 1 Setup 2 Setup 3

Test 1 (90 objects, 1 stack) 118 129 131
132 136

142
137

Test 2 (90 objects, 2 stacks) 120 169 198
180 212

223
218

Test 3 (250 objects, 5 stacks) 22 39 52
45 62

68
65

Test 4 (300 objects, 1 stack) 18 13 12
17 16

19
21

Test 5 (300 objects) 11 10 9
13 11

14
15

Table 4.2: Minimum and maximum achieved steps per second. The values
are an average of all the test runs and for setup 2 and 3 also an average of
the nodes participating in the distributed simulation.

Setup 1 Setup 2 Setup 3
min/max min/max min/max

Test 1 (90 objects, 1 stack) 81/140 73/184 75/213
Test 2 (90 objects, 2 stacks) 74/162 67/281 64/340
Test 3 (250 objects, 5 stacks) 16/36 21/87 26/115
Test 4 (300 objects, 1 stack) 10/33 9/47 7/53
Test 5 (300 objects) 4/24 6/33 7/47

4. Results 38

0

20

40

60

80

100

120

1 11 21 31 41 51

Figure 4.4: Steps per second during the first minute when running Test 3
on Setup 3. The peak at second one exists because there are no collisions
initially.

objects hit the ground at this time. Further performance drops can be linked
to cluster fluctuations. Without player interaction performance stays mostly
at the same level after the first minute of runtime.

4.3.1 Network Performance
Figure 4.5 compares physics simulation performance with network load.
Higher network load occurs when more objects are colliding, and larger
cluster changes happen. Further factors increasing the network load are the
creation of new objects by the player. A higher load can also be seen at
simulation start, where object creation messages are sent to all simulation
nodes. However, this is compensated by the low amount of collisions at this
point.

As seen in Figure 4.6 average network load stays at a relatively low level
even for 300 objects. This load is far from exceeding the limit of the 100
Mbps network speed of the Raspberry Pis.

The loads shown in Figure 4.5 and Figure 4.6 are average values. Peaks
can occur where the rate reaches the network’s limits of 100Mbps. These
peaks may lead to a short increase in latency. In the tested setups this la-
tency was never noticeable in the application’s output. Maximum measured
latency in any of the tests was 78ms which is low enough for most game
types (see Sec. 2.2.1).

4. Results 39

0

20

40

60

80

100

120

1 11 21 31 41 51

Figure 4.5: The same interval as shown in Figure 4.4 (blue) and the bits per
second sent from the Master Node (orange). On average 14 bits per second
are sent in this scenario.

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350

Figure 4.6: Average network load in bits per second (y-axis) depending on
numbers of objects to simulate (x-axis) on Setup 3.

4.3.2 Performance Limits
As stated in Section 3.3.1, the minimal recommended time step for Box2D
is 60Hz. To guarantee this update rate the maximum number of objects

4. Results 40

is around 70 objects per node. This number also depends highly on the
game type and the game world because of di�erent load depending on the
interactions occurring between the objects.

Scalability by adding additional nodes is visible in the results shown in
Table 4.1. When the peaks in network load are taken into account a system
with ten simulation nodes should run without noticeable latency. Therefore,
a system of ten simulation nodes should be able to run a simulation of
around 700 objects. For larger systems, however, latency and overall network
behaviour is not predictable and actual tests are required to give a statement
on performance.

These performance limits of the whole distributed system may be lower if
the objects form very large clusters that cannot be distributed evenly among
the nodes.

Chapter 5

Conclusion

In the present thesis, the creation of a distributed game physics system was
shown by introducing the required knowledge base, describing the consid-
erations for the system’s creation and evaluating the system in several test
scenarios. The goal to improve game performance by distributing physics
simulation among multiple devices was achieved to a certain degree as shown
in the test results discussed in Chapter 4.

5.1 Problems
The main problems of the generalized implementation presented in this the-
sis are the special cases. Due to the unpredictability of the players actions
all physical objects in a game could be forming a single cluster. Therefore,
a distribution among the computation nodes is not permitted anymore. Al-
though this may be a rare case in most games, it is still possible and would
lead to significant performance drop.

A situation where a cluster has a very high complexity in regards to
the computational requirements can also lead to performance problems. In
physics simulations, this can happen in tight object clusters like stacks and
heaps. Again the resulting uneven distribution among the processing nodes
is the cause of problems.

The current clustering implementation assumes relatively homogenously
sized objects. A problem occurs when the sizes di�er to a certain degree.
Larger objects may not be added to a cluster of smaller objects by the
algorithm. Colliding objects that are not computed on the same island have
slightly incorrect collision reactions.

5.2 Improvements
As explained in Section 3.2 the existing system is unfocused concerning
game types and, therefore, o�ers a generalized approach to some problems.

41

5. Conclusion 42

However, it could be used as a starting point for more specialized distributed
engines and games, which could o�er improvements that are not possible in
a general approach.

A possible general improvement for the clustering algorithm would be
to include the existing velocity information of the objects. This way objects
that are close to each other but moving away from each other could be split
into multiple clusters. It would further allow to add objects earlier to clusters
if they approach them.

Additionally the system could also be adapted to more powerful hard-
ware and adapted for use in online games where the simulation is run on
server clusters. The increased performance would allow more complex game
worlds containing much more simulated objects but, of course, would need
adjustments in the network layer and also lead to di�erent performance
bottlenecks.

Appendix A

Content of the CD-ROM

Format: CD-ROM, Single Layer, ISO9660-Format

A.1 Master’s Thesis
Pfad: /

Soellinger_Michael_2015.pdf Master’s Thesis (This document)

A.2 Online Sources
Pfad: /Online Sources

*.pdf Copies of the online sources

A.3 Thesis Project
Pfad: /Thesis Project

DiEngine Distributed game engine source code
examples/simple_physics Test application source code
build/pi/bin Rasbian binaries
build/osx/bin OS X 10.10 binaries
CMakeLists.txt Main CMake project file

A.4 Miscellaneous
Pfad: /Images

*.pdf Vector graphics embedded in the thesis
*.jpg, *.png Raster graphics embedded in the thesis

43

Soellinger_Michael_2015.pdf
*.pdf
DiEngine
examples/simple_physics
build/pi/bin
build/osx/bin
CMakeLists.txt
*.pdf

References

Literature

[1] Pekka Abrahamsson et al. “A�ordable and Energy-E�cient Cloud
Computing Clusters. The Bolzano Raspberry Pi Cloud Cluster Exper-
iment”. In: Proceedings of the 5th International Conference on Cloud
Computing Technology and Science. Bristol, UK: IEEE, Dec. 2013,
pp. 170–175 (cit. on p. 18).

[2] Mihael Ankerst et al. “OPTICS. Ordering Points To Identify the Clus-
tering Structure”. In: Proceedings of the 1999 ACM SIGMOD Inter-
national Conference on Management of Data. Philadelphia, PA, USA:
ACM Press, June 1999, pp. 49–60 (cit. on p. 11).

[3] Grenville Armitage, Mark Claypool, and Philip Branch. Networking
and Online Games. Understanding and Engineering Multiplayer In-
ternet Games. Chichester, UK: Wiley and Sons, Apr. 2006 (cit. on
pp. 5, 6).

[4] Quentin Bargard, Anthony Ventresque, and Liam Murphy. “Global
Dynamic Load-Balancing for Decentralised Distributed Simulation”.
In: Proceedings of the 2014 Winter Simulation Conference (Dec. 2014),
pp. 3797–3808 (cit. on pp. 13, 14).

[5] Tom Beigbeder et al. “The E�ects of Loss and Latency on User Perfor-
mance in Unreal Tournament 2003”. In: Proceedings of the 3rd ACM
SIGCOMM Workshop on Network and System Support for Games.
NetGames ’04. Portland, OR, USA: ACM, Sept. 2004, pp. 144–151
(cit. on p. 6).

[6] Erin Catto. Box2D User Manual. Version 2.3.0. 2013. url: http://
box2d.org/manual.pdf (cit. on p. 29).

[7] Matthias Dick, Oliver Wellnitz, and Lars Wolf. “Analysis of Factors
A�ecting Players’ Performance and Perception in Multiplayer Games”.
In: Proceedings of the 4th ACM SIGCOMM Workshop on Network
and System Support for Games. NetGames ’05. Hawthorne, NY, USA:
ACM, Oct. 2005, pp. 1–7 (cit. on p. 6).

44

http://box2d.org/manual.pdf
http://box2d.org/manual.pdf

References 45

[8] Martin Ester et al. “A Density-Based Algorithm for Discovering Clus-
ters in Large Spatial Databases with Noise”. In: Proceedings of the
2nd International Conference on Knowledge Discovery and Data Min-
ing. Portland, OR, USA: AAAI Press, Aug. 1996, pp. 226–231 (cit. on
pp. 10–12, 30).

[9] Erich Gamma et al. Design Patterns. Elements of Reusable Object-
Oriented Software. Reading, MA, USA: Addison-Wesley, Oct. 1994
(cit. on p. 4).

[10] Bruce Hendrickson and Karen Devine. “Dynamic Load Balancing in
Computational Mechanics”. In: Computer Methods in Applied Me-
chanics and Engineering 184.2–4 (Apr. 14, 2000), pp. 485–500 (cit.
on p. 15).

[11] Richard M. Karp. “Reducibility among Combinatorial Problems”. In:
Complexity of Computer Computations. Ed. by Raymond E. Miller,
James W. Thatcher, and Jean D. Bohlinger. New York, NY, USA:
Springer US, Mar. 1972, pp. 85–103 (cit. on p. 14).

[12] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data.
An Introduction to Cluster Analysis. Chichester, UK: Wiley and Sons,
Jan. 1990 (cit. on p. 10).

[13] Michael Lewis and Je�rey Jacobson. “Game Engines in Scientific Re-
search”. In: Communications of the ACM 45 (January 2002), pp. 27–
31 (cit. on pp. 3, 4).

[14] Ian Millington. Game Physics Engine Development. How to Build a
Robust Commercial-Grade Physics Engine for Your Game. 2nd ed.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Sept.
2010 (cit. on pp. 8, 9).

[15] Bob Nystrom. Game Programming Patterns. Genever Benning, Nov.
2014 (cit. on pp. 4, 5).

[16] Lothar Pantel and Lars C. Wolf. “On the Impact of Delay on Real-
time Multiplayer Games”. In: Proceedings of the 12th International
Workshop on Network and Operating Systems Support for Digital Au-
dio and Video. NOSSDAV ’02. Miami, FL, USA: ACM, May 2002,
pp. 23–29 (cit. on p. 7).

[17] Jon Postel. Internet Protocol. RFC 791. Updated by RFCs 1349, 2474.
Sept. 1981. url: http://tools.ietf.org/html/rfc791 (cit. on p. 7).

[18] Jon Postel. Transmission Control Protocol. RFC 793. Updated by
RFCs 1122, 3168, 6093, 6528. Sept. 1981. url: http : / / tools . ietf .
org/html/rfc793 (cit. on p. 7).

[19] Jon Postel. User Datagram Protocol. RFC 768. Aug. 1980. url: http:
//tools.ietf.org/html/rfc768 (cit. on p. 7).

http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc768

References 46

[20] Peter Quax et al. “Objective and Subjective Evaluation of the Influ-
ence of Small Amounts of Delay and Jitter on a Recent First Person
Shooter Game”. In: Proceedings of 3rd ACM SIGCOMM Workshop
on Network and System Support for Games. NetGames ’04. Portland,
OR, USA: ACM, Sept. 2004, pp. 152–156 (cit. on p. 6).

[21] Nathan Sheldon et al. “The E�ect of Latency on User Performance in
Warcraft III”. In: Proceedings of the 2nd Workshop on Network and
System Support for Games. NetGames ’03. Redwood City, CA, USA:
ACM, May 2003, pp. 3–14 (cit. on p. 6).

[22] Sandeep K. Singhal. E�ective Remote Modeling in Large-Scale Dis-
tributed Simulation and Visualization Environments. Tech. rep. CS-
TR-96-1574. Stanford, CA, USA: Stanford University. Department of
Computer Science, Aug. 1996. url: http://i.stanford.edu/pub/cstr/
reports/cs/tr/96/1574/CS-TR-96-1574.ps (cit. on p. 7).

[23] Steven S. Skiena. The Algorithm Design Manual. 2nd ed. London, UK:
Springer-Verlag London, 2008 (cit. on p. 14).

[24] Jouni Smed and Harri Hakonen. Algorithms and Networking. for Com-
puter Games. Chichester, UK: John Wiley and Sons, Apr. 2006 (cit. on
p. 6).

[25] Jouni Smed, Timo Kaukoranta, and Harri Hakonen. “Aspects of Net-
working in Multiplayer Computer Games”. In: The Electronic Library
20.2 (2002), pp. 87–97 (cit. on p. 6).

[26] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to
Data Mining. Boston, MA, USA: Addison-Wesley, May 2, 2005 (cit. on
p. 11).

[27] Fung Po Tso et al. “The Glasgow Raspberry Pi Cloud. A Scale Model
for Cloud Computing Infrastructures”. In: Proceedings of the 33rd In-
ternational Conference on Distributed Computing Systems Workshops.
Philadelphia, PA, USA: IEEE, July 2013, pp. 108–112 (cit. on p. 18).

[28] Thomas Y. Yeh, Petros Faloutsos, and Glenn Reinman. “En-
abling Real-time Physics Simulation in Future Interactive Entertain-
ment”. In: Proceedings of the 2006 ACM SIGGRAPH Symposium on
Videogames. Sandbox ’06. Boston, MA, USA: ACM, July 2006, pp. 71–
81 (cit. on p. 9).

[29] Thomas Y. Yeh et al. “ParallAX: An Architecture for Real-time
Physics”. In: Proceedings of the 34th Annual International Symposium
on Computer Architecture. ISCA ’07. San Diego, CA, USA: ACM,
June 2007, pp. 232–243 (cit. on p. 9).

http://i.stanford.edu/pub/cstr/reports/cs/tr/96/1574/CS-TR-96-1574.ps
http://i.stanford.edu/pub/cstr/reports/cs/tr/96/1574/CS-TR-96-1574.ps

References 47

Online sources

[30] About | Box2D. url: http : / / www . box2d . org / about/ (visited on
09/24/2015) (cit. on p. 28).

[31] Box2D - Wikipedia, the free encyclopedia. url: https://en.wikipedia.
org/wiki/Box2D (visited on 09/24/2015) (cit. on p. 28).

[32] Creator Of Angry Birds’ Physics Engine Calls Out Rovio For Not
Giving Him Credit | TechCrunch. url: http://techcrunch.com/2011/
02/28/creator-of-angry-birds-physics-engine-calls-out- rovio- for-not-
giving-him-credit/ (visited on 09/24/2015) (cit. on p. 28).

[33] Event Loop - Wikipedia, the free encyclopedia. url: http : / / en .
wikipedia.org/wiki/Event_loop (visited on 09/24/2015) (cit. on p. 4).

[34] Glenn Fiedler. Ga�er on Games | Reliability and Flow Control.
Oct. 2008. url: http : / / ga�erongames . com / networking - for - game -
programmers/reliability-and-flow-control/ (visited on 09/24/2015) (cit.
on p. 7).

[35] Glenn Fiedler. Ga�er on Games | UDP vs TCP. Oct. 2008. url: http:
//ga�erongames.com/networking-for-game-programmers/udp-vs-tcp/
(visited on 09/24/2015) (cit. on p. 7).

[36] Glenn Fiedler. Ga�er on Games | Virtual Connection over UDP.
Oct. 2008. url: http : / / ga�erongames . com / networking - for - game -
programmers / virtual - connection - over - udp/ (visited on 09/24/2015)
(cit. on p. 7).

[37] Partition Problem - Wikipedia, the free encyclopedia. url: https://en.
wikipedia.org/wiki/Partition_problem (visited on 09/24/2015) (cit. on
pp. 14, 15).

[38] Raspberry Pi - Wikipedia. url: http : / / en . wikipedia . org / wiki /
Raspberry_Pi (visited on 09/24/2015) (cit. on pp. 18–20).

[39] What is a Raspberry Pi? url: http://www.raspberrypi.org/help/what-
is-a-raspberry-pi/ (visited on 09/24/2015) (cit. on p. 17).

http://www.box2d.org/about/
https://en.wikipedia.org/wiki/Box2D
https://en.wikipedia.org/wiki/Box2D
http://techcrunch.com/2011/02/28/creator-of-angry-birds-physics-engine-calls-out-rovio-for-not-giving-him-credit/
http://techcrunch.com/2011/02/28/creator-of-angry-birds-physics-engine-calls-out-rovio-for-not-giving-him-credit/
http://techcrunch.com/2011/02/28/creator-of-angry-birds-physics-engine-calls-out-rovio-for-not-giving-him-credit/
http://en.wikipedia.org/wiki/Event_loop
http://en.wikipedia.org/wiki/Event_loop
http://gafferongames.com/networking-for-game-programmers/reliability-and-flow-control/
http://gafferongames.com/networking-for-game-programmers/reliability-and-flow-control/
http://gafferongames.com/networking-for-game-programmers/udp-vs-tcp/
http://gafferongames.com/networking-for-game-programmers/udp-vs-tcp/
http://gafferongames.com/networking-for-game-programmers/virtual-connection-over-udp/
http://gafferongames.com/networking-for-game-programmers/virtual-connection-over-udp/
https://en.wikipedia.org/wiki/Partition_problem
https://en.wikipedia.org/wiki/Partition_problem
http://en.wikipedia.org/wiki/Raspberry_Pi
http://en.wikipedia.org/wiki/Raspberry_Pi
http://www.raspberrypi.org/help/what-is-a-raspberry-pi/
http://www.raspberrypi.org/help/what-is-a-raspberry-pi/

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Motivation
	Research Question
	Objectives
	Thesis Structure

	Foundation
	Game Engine
	Game Loop
	Event Queue
	Service Locator

	Network Programming in Games
	Resource Limitations
	Network Protocols
	Message Transmission

	Game Physics
	Physics Engine
	Physics Islands

	Clustering Algorithms
	Approaches
	DBSCAN
	OPTICS
	Conclusion

	Load Balancing
	Linear Partition Problem
	Workload Rating
	Conclusion

	Implementation
	Target Platform
	Operating System

	Distributed Game Engine
	Overview
	Time System
	Message System
	Network Module
	Input Module
	Graphics Module
	AI Module

	Distributed Physics
	Physics Simulation Module
	Master Module
	Clustering
	Load Balancing

	Test Application

	Results
	Hardware Setups
	Input and Output

	Game World Configurations
	Data Collection and Comparison Methods

	Test Results
	Network Performance
	Performance Limits

	Conclusion
	Problems
	Improvements

	Content of the CD-ROM
	Master's Thesis
	Online Sources
	Thesis Project
	Miscellaneous

	References
	Literature
	Online sources

