
The Influence of Software on Computer
Animation

Klemens Svetitsch

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Digital Arts

in Hagenberg

im Dezember 2015

© Copyright 2015 Klemens Svetitsch

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, December 2, 2015

Klemens Svetitsch

iii

Contents

Declaration iii

Preface vii

Abstract ix

Kurzfassung x

1 Introduction 1
1.1 Technology and Technique . 1
1.2 Tools . 2
1.3 Interplay: Artist and Tool . 3
1.4 Media . 4
1.5 An Account of Animation . 5
1.6 Animation from the Software Perspective 6
1.7 The Logic of the Virtual . 8
1.8 The Structure of this Paper 9

2 Software 10
2.1 Classifying Software . 10
2.2 The Properties of Software 12

2.2.1 Learning to Use Software 12
2.2.2 Automation . 12
2.2.3 Abstraction . 13
2.2.4 Parameterization . 14
2.2.5 Customizability and Mutability 15

2.3 Programming . 18
2.3.1 Programming Languages 19
2.3.2 Programmers and Programming 20

3 User Interfaces 22
3.1 Principles of Interaction . 22

3.1.1 Conceptual Model and System Image 22
3.1.2 Conventions and Standardization 23

iv

Contents v

3.1.3 Input . 24
3.1.4 Feedback . 24

3.2 The GUI and Invisibility . 25
3.3 Elements of the GUI . 25

3.3.1 Windows . 25
3.3.2 Buttons . 26
3.3.3 Shortcuts . 26
3.3.4 Hotboxes, Pie Menus and Ribbons 27

3.4 Limitation . 27
3.5 Software and the Artist . 30
3.6 The GUI as a Medium . 30

4 Software Media 32
4.1 Hybrid Media . 33
4.2 Interactivity . 34
4.3 Popular Software . 35
4.4 Software Accessibility . 36
4.5 Post-Digital . 38
4.6 Power to the Tool . 38

5 Tools and Operations 40
5.1 Analog vs. Digital . 40

5.1.1 Detail . 41
5.1.2 Parameterization . 41
5.1.3 Complexity and Realism 42
5.1.4 Amount and Mass Production 42
5.1.5 Accessibility and Distribution 43

5.2 Procedural vs. Handmade . 43
5.2.1 The Thought Process 44
5.2.2 The Efficiency of Proceduralism 45
5.2.3 Faking It . 45
5.2.4 Realism . 47
5.2.5 Coherence and Abstraction Mismatch 47

5.3 3D Animation Suites: The Technology in the Back 48
5.3.1 Operations . 48
5.3.2 Data Structures . 49
5.3.3 Renderers . 50

5.4 Animation Software: Logic and User Interface 50
5.4.1 Software as a Medium for Creating Animation 51
5.4.2 Timeline . 51
5.4.3 Layers . 52
5.4.4 Nodes . 53

5.5 Introducing: Maya 2016 . 55
5.5.1 Software and Best Practices 56

Contents vi

5.5.2 Open-Source . 57
5.5.3 Learning Curve . 58

6 The Animator 61
6.1 Digital Workflows . 61
6.2 Technology: From Geeks to Mainstream 63
6.3 Animation: Schools, Studios and Artists 63

6.3.1 Mentalities . 64
6.3.2 Students . 64
6.3.3 Training: To Be an Artist or an Animator 64
6.3.4 The Artist and the Animator 65

6.4 User Motivation . 66

7 Animation and Software Artifacts 67
7.1 Animation and the Impossible 67
7.2 Modes of the Digital . 68

7.2.1 Transformation, aka Blending 68
7.2.2 Resolution . 69

7.3 Visual Style . 70
7.3.1 Perfection . 70
7.3.2 Abstraction . 72
7.3.3 Faces and Expressiveness 72
7.3.4 Transformation and Smear-Frames 72

7.4 Art and Animation After the Digital 74
7.5 Arising From Constraint . 75

8 Conclusion 80

A Interviews 82
A.1 Angie Jones . 82
A.2 Alvaro Gaivoto . 83
A.3 Mike Winkelmann . 86

B CD-ROM Content 87
B.1 Thesis . 87
B.2 Online Literatue . 87
B.3 Images . 87

References 88
Literature . 88
Software . 90
Films and audio-visual media . 90
Online sources . 91

Preface

Media theorist Lev Manovich already claimed that “the logic of program-
ming is projected to the GUI level and becomes part of the user’s cognitive
model of working with media inside applications” [14, p. 222]. Obviously, the
ways software may influence art and animation in particular are manifold
and some of these influences may be difficult to examine as well. This paper
will be not exclusively about the specific animation styles that have evolved
as a result of software being increasingly used for animation production over
the past forty years. Nor is it going to prove that artists are in fact being
manipulated or controlled by the software applications they are believing to
be in control of. All of these aspects and presumptions do play an impor-
tant role, however, in trying to find the connections of the technical art of
software development with the artistic techniques of animation.

These connections are indeed very complex and this paper will not go
into too much detail about all of the theories already established in the
fields of software and animation, psychology and everything in-between, but
rather a couple of theories and findings will be picked to support the network
of ideas that will be offered.

The general question we will have to ask ourselves when trying to con-
nect software and art is what short- and long-term consequences of creating
and using software might be. More specifically, it should be the goal to find
evidence for the impact of digital production (through software) on anima-
tion. Also, different aspects of software must be examined in relation to
people and their workflows—the main ones being the user interface, the way
programmers think and programming. Very important might be to evaluate
the claim that the usage of software has certain side-effects on creativity,
literacy and other cultural conditions, but this will be beyond the scope of
this paper.

Since technology plays such an important role in the process of anima-
tion production, the history of technologies involved in creating it and the
associated ways of thinking about animation are essential to understanding
what might have changed with the introduction of computers. But before
we can delve into the technicalities of animation, we have to deal with the
nature of software, the tool that is used to shape the vast majority of to-
day’s media and thereby culture, and that is itself manipulating the ones

vii

Preface viii

manipulating the masses.
As far as software is concerned, no full account of all its dimensions

can be given. For one, software, as we are encountering it today, is still not
comprehensively examined as an artifact in regards to the interaction and
interchange processes with humans; for the other, I argue that software as
a technology is still in its infancy. The reader may agree or not, but this
should be sufficiently evident from the missing subtlety and sophistication
of its integration into our everyday lives.

What we have to think about is not only whether software in its current
state, covertly causing social and political upheaval, economic restructuring
and collective reprogramming, could, apart from its apparent positive effects,
also have negative ones. Also, new concepts of thought, concerning the place
and purpose of the human among their tools, are necessary to cope with the
accelerating technological advancement that might sooner or later do to its
programmers what it is constantly doing to itself: make them redundant.

As the probably most universal, and still expanding, non-interactive art
form of our time, animation shall provide the examples necessary to make
the influence of software on animation evident and believable. Lev Manovich,
who connects diverse aspects of culture, software and art, and Paul Wells
who puts animation in a wider cultural context and also thinks about its
interaction with the technologies, both indicate this relationship and are
essential sources documenting and researching its history.

Abstract

Animation has always involved machines and contraptions, but with the ad-
vent of computers a totally new era of animation has started, driving both
technology and software as well as different animation styles. But these
strong connections between software and animation lead not only to inno-
vation and a prospering of diversity but also to a convergence of animation
styles and the disappearing of techniques. The logic of the computer and
software has an impact on the software tools available to artists and thereby
subtly influence what artists can and want to do and how they work.

Software is based on principles like automation and abstraction, which
reflect out onto the user interfaces of media authoring applications and pos-
sibly even onto the animated works created by the artist. As the central
communication platform for software and artist, the user interface decides
how much power the artist has inside an application, how restricted they
are and whether they get inspired by the tool or not.

Since animation programs are complex and technical pieces of software,
animation artists using an application may experience significant pressure
from the tool, as is normal for any tool, instead of being able to receive
their imagined artwork at the click of a button. While a certain degree of
manipulation from a tool is natural, software has very specific properties
that lead to particular influences in how animation looks and is thought
about. These can likely be connected back to the logic of programming and
software development itself.

ix

Kurzfassung

Obwohl Technologien mechanischer und chemischer Natur schon immer eine
große Rolle für die Animation spielten, wurden durch die Verbreitung des
Computers technologische und visuelle Entwicklungen nie dagewesener Di-
mensionen ausgelöst. Doch diese enge Verbindung von Software und An-
imation hat nicht nur Innovationen und eine aufblühende Vielfalt in der
Animationsszene zur Folge, sondern auch eine Verdrängung bewährter kün-
stlerischer Techniken und Stile. Die Logik des Computers und der Software
hat Auswirkungen darauf, welche Programme Künstlern zur Verfügung ste-
hen und damit auch darauf, welche Möglichkeiten diese durch die Software
erhalten und wie sie damit arbeiten.

Software zugrunde liegende Prinzipien wie Automation und Abstraktion
wirken durch alle Ebenen der Softwareentwicklung, bis in die visuelle Be-
dienoberfläche, und haben so subtilen Einfluss auf Animationskünstler, ihre
Arbeit und ihre Werke. Die Benutzeroberfläche entscheidet, wie viel Macht
dem Benutzer gegeben wird und somit, wie stark der Künstler durch das
Werkzeug eingeschränkt, unterstützt oder sogar inspiriert wird.

Wie auch andere Werkzeuge, drängen Animationsprogramme den Kün-
stler in bestimmte Richtungen, statt auf Knopfdruck das vorschwebende
Ergebnis zu liefern. Auch wenn diese Manipulation bis zu einem gewissen
Grad natürlich und häufig erwünscht ist, hat Software auch Einflüsse, die
für den Benutzer besonders schwer erkennbar sind und die teilweise bis in
technischen Details der Softwareentwicklung zurückverfolgt werden können.

x

Chapter 1

Introduction

1.1 Technology and Technique
In history, there have been quite a lot of definitions and notions about the
meaning of the term technology, starting out from the original Greek word
techne to the industrial age when it received many new connotations. There
have also been lots of disputes about the correspondences of the English
terms “technology” and “technique” and the German “Technologie” and
“Technik”. Though it should be noted that “Technik” carries similarities
with both English terms and “Technologie” doesn’t seem to be quite the
same as “technology”, it shall not be discussed here any further because I
simply find that there is a lot of confusion about the German terms and
that “technology” and “technique” are more accurate to describe the differ-
entiation I am intending to make. Without having delved into the depths of
their previous connotations I decided to use these terms as follows, based
on how they are currently understood [48]:

• A technique is a procedure (an algorithm) with the purpose of reach-
ing an objective.

• A technology is a collection of techniques that by means of an artifact
can fulfill a task not fulfillable by humans or optimize a process per-
formed by humans in an unprecedented/unequaled way. It is thereby
set to the goal of controlling/harnessing certain natural forces.

Technology relates to technique in that way because generally we identify
devices as technology whose task requires an intricate understanding of how
the task is performed and of the matters involved in it. While a technique
can be applied by anything that is physically equipped to do so, a technology
can only be developed by an entity capable of imagining what the technology
is supposed to do and of implementing it physically.

A few simple examples should serve to clarify the distinction and to point
out that it is not always as unambiguous as the definitions suggest: An artist
using paint and brush to create a painting applies a technique to accomplish

1

1. Introduction 2

this. The structure of an airbrush takes advantage of the physical behavior
of liquids and air to allow an artist to apply color onto a surface in a very
consistent manner. A teacher makes use of certain techniques to keep their
students busy in class and to motivate them to study. Face recognition is
using several algorithms that are implemented and embedded in another
hardware technology (e.g. a computer or a camera).

Evidently, the two definitions are based on certain implicit assumptions
and have a couple of implications. First, technique per se is a purely virtual
construct existing in our heads and, in order to manifest, requires a medium
that it can be applied to. Consider artisans or artists who are working with
physical materials to transform them into something useful or decorative.
But virtual things can also be subject of techniques, for example learning
and memory techniques that transform words on paper into memories and,
hopefully, understanding.

Another important observation about the term technology is that it de-
notes both, a virtual concept and the physical artifact exploiting it and
making it accessible and useful to humans. The artifacts incorporating these
“technologized” techniques are called tools because people are using them
in order to do things faster than without or to do things they would not
be able to do without. The following conclusion is important: A technology
is basically the concept behind the performance of a tool that more or less
radically reduces the necessity and possibility of human intervention.

1.2 Tools
Humans have been building tools for 2–3 million years [49]. The main reason
to do this are physiological limitations—that are our size and strength—that
we had to compensate for. A tool is therefore an extension of the body and
the mind, expanding the possibilities and powers of the user.

Tools can be very different in many ways. What we commonly under-
stand as tools are mostly devices that are operated physically, by hand, like
a hammer or a brush. But there are also other tools that are—though they
are operated through mediation by a physical device—not physical them-
selves and not actually perceived as such, like computer programs. There
are also big differences in complexity, as far as concerns construction as well
as operation. For example, while it is relatively easy to build a hammer and
to use it to drive a nail, one might say it can be much more difficult to use
a paint brush in a way to produce what one has in mind. Again, it is a com-
pletely different thing to construct a factory or a car than to operate them.
When it comes to the relationship of the user and their tool, an asymmetry
of powers can be assumed natural and unavoidable. This asymmetry mirrors
the tension between the two roles people can take towards tools: the role of
the toolmaker and the role of the tool-user.

1. Introduction 3

This dichotomy seems mainly to be the result of social and psychological
mechanisms that, though having efficiency as their asserted goal, are causing
people to separate into groups defined by certain skills and interests. The
separation which is deeply fixed inside the minds of everybody living in a
so-called “civilization” is a separation of professions. Although technically
the sword does not stand between the smith and the swordsman, a blunt
blade certainly can. Still, the tool also connects the maker with the user and
their relationship is shaped by how both approach each other and the tool
itself. Only if both are concerned with the thinking of the other can the tool
really be powerful.

Tools are the most important subjects of techniques. Around every tool—
be it a paint brush or a 3D animation package—a whole collection of tech-
niques accumulates over time, with some going out ahead and others falling
into oblivion. Precisely these techniques are what defines the tensions not
only between tools and users but also among the users themselves. The result
are target groups which systematically divide users by their skills and in-
tentions. While seemingly connecting people with each other, tools separate
the makers from the users and the professionals from the amateurs.

It is regarded necessary that a goal exists in order that a technique can
be developed. If a task is performed without following some sort of procedure
or strategy it is usually not called a technique. It is however not necessary
that the manifestation of a technology (e.g., a piece of machinery) has an
actual goal or purpose in order for it to appear as such, because intent
and purpose cannot necessarily be deducted from appearance. Rather, we
sometimes deem things as technology because of their morphological features
which reflect into our assumptions of their underlying complexity. This might
(perhaps intentionally) result in the situation that a piece of art is seen as
technology but not as art despite its being anything but technology.

1.3 Interplay: Artist and Tool
The three essential kinds of reflection artists are practicing are the reflection
of themselves where they are trying to show their feelings and conceptions,
the reflection of their environment like culture and society and the reflection
on their tools and media. Some will argue that tools are actually part of the
artist’s environment but I would suggest that there is a difference between
an examination of, for example, social dynamics or political developments
and the exploration of the properties of a tool.

At first glance, one feels tempted to rank the three categories for idealistic
reasons, but this does not make any of them less relevant. On the contrary,
it underlines the natural misconception that every person is prone to due
to their civilized cultural upbringing. It is conveyed to us that social and

1. Introduction 4

personal issues should be the topmost priorities of a good person and this
is enforced by general affirmation through mediation mechanisms. The tool
is not culturally seen as part of a person but as a separate entity which
makes it less likely that people reflect and critique on them as they do
on themselves. Well-known media philosophers and theorists like Marshal
McLuhan or even Sigmund Freud have made sufficiently clear that the tool
extends the body and also integrates with it in our minds [7, p. 48], [17, p.
63]. Thus, tools should be just as much the subject of art as they are subject
of public discussion.

Earlier I pointed out that the asymmetry between user, tool and medium
is cause for a tension and I argue it is this tension that the artist is trying
to overcome by working with their tools. For many artists the foremost wish
may be to realize their visions—idealistic or deeply personal—but to feel
one’s tools and materials and to experiment with them, just like the baby
playing with its hands and feet, feeling them and getting to know them, is
an approach just as valid. It is these two approaches—to prioritize form (the
tool in the broadest sense and what it can do) or the idea (message)—that
Scott McCloud explains in his book Understanding Comics [16, p. 179f.].

1.4 Media
The way we experience the world, understand it and learn from it, is by
means of sensory perception. We perceive configurations of matter and struc-
ture the visual, auditory etc. information corresponding to our existing con-
cept of the world—built from our previous experiences—which new ones
must fit into.1 However, the brain is also capable of connecting together
(“associating”) different experiences or phenomena, and in cases where this
bond becomes explicit and consolidated, “signs” are created according to
semiotic studies [2, p. 2]. For what is usually understood as a sign in se-
mantics2, like words or symbols, particular properties and proportions must
exist between the sign and its meaning.

Let us consider several examples from popular media types. In written
language, words are purely abstract while their meaning can be immensely
diverse but almost always involves some kind of abstract notion of a real-
world phenomenon, artifact or a concept.3 The meanings of words like “tree”,
“home”, “hypotenuse” or “theory” are learned and require understanding
and the ability of abstraction. Pictograms on street signs, product packages
or in written documents resemble physical objects and thereby evoke an

1No doubt, this is not going to change until technologies have been developed that can
emulate impressions directly to our brain, thereby bypassing our sensory system.

2Semantics is the study of meaning, or more specific, of signifiers and the signified, the
artifacts signs are associated with [50].

3Words that exist due to grammatical peculiarities and might negate this statement
are not considered relevant here.

1. Introduction 5

association with them [51]. Visually, they are no different than words, from
an objective point of view, but in the context of the visually perceptible real
world they are more strongly connected with their meanings than words.4
Then there are also static and moving images like photographs in magazines
or film on television.

Media are constructs that possess the ability to carry signs. They can
be used to transport messages from one place or time to another, but more
importantly from one entity to another. Since all media are physical or
physically based, they also influence the messages they are carrying by their
inherent limitations. Any artifact capable of holding a sign is a medium but
media are very different in terms of what signs they can carry and what
effect they have on the message.

The actual purpose of media is to transport information that is gener-
ated in one point to another. In personal communication this is clear. When
looking at mass media like television, movies or news sites however, another
effect becomes apparent. Mass media technologies make possible the separa-
tion of content production from consumption, thereby reducing the overall
cost of distribution (in a financial but also general sense). By a histori-
cal comparison, bards, messengers and story-tellers have become redundant
because of YouTube as the global bard, television as the centralized news
messenger and movies as oligarchic story-tellers.

1.5 An Account of Animation
If technology is the endeavor to make the hard easy and the impossible
possible, the goal of animation would be to make that which is impossible
to see visible, that is to show a world that is incompatible with reality.
In the first statute of the ASIFA it reads: “[...] animation cinema creates
the occurrences using instruments different from those used for automatic
registration. In animated films, the occurrences take place for the first time
on the screen” [65].

Admittedly, scientific instruments like microscopes, telescopes and x-ray
machines also have the purpose of making the invisible visible and this par-
allel should not be dismissed lightly. In fact, scientific research is vividly
connected to animation as firstly, it required massive technological progress
in order to even enable animation production—this is still far too obvious
for digital animation—and secondly, animation is the main means of visu-
alization used by scientists to demonstrate their findings. This was one of
the earliest drivers of the development of computer animation as the most
general and powerful technology in animation.5

4Since words have an auditory representation, their pronunciation, they are also
strongly rooted within our memory due to this double-association.

5Edward Zajac created one of the earliest computer animated films in 1961, which

1. Introduction 6

As opposed to expensive instruments, due to its nature as a simple se-
quence of images, animation can be consumed by practically anyone in the
whole world. Nevertheless, to support the above statement about media
centralization, only few are capable of making it. That is because animation
takes a lot of effort and expense to produce. It is even more expensive than
live-action movies and therefore the decision which format to use for telling
a story is critical. In effect, in most cases when animated movies are made,
the narrative and visual language make use of the extraordinary capabilities
of animation.

Abstract animation may be at the core of the concept of animation be-
cause it is the prime example of phenomena that cannot be seen in reality
or shown in any other way but by means of animation technology. Most
people, however, seem to be averse of the disruptive nature of the majority
of abstract animations and therefore different, more figurative themes dom-
inate in the animation industry for the sake of entertainment. There are
now various typical places in movies where the “animation aspect” has been
made to excel: locations can be surreal, magical or futuristic; people can do
impossible things, survive deadly attacks, dissolve and reassemble; animals
can talk and take the place of humans as main characters; imagined magical
creatures like dragons or even more exotic ones are used.

Animation is a playground for the imagination. The previous restrictions
of live-action filming are gone and with photo-realistic visual effects most of
nowadays’ blockbuster movies can be called “hybrid” at the very least. Apart
from extremely visible effects created to transform the imagery altogether,
compositing techniques are used to alter images in ways that make it difficult
to identify them as computer-manipulated.6 Looking at animated feature
movies, one might observe that the quality of the narrative generally is very
high and oftentimes critical points of view and themes are taken up.

1.6 Animation from the Software Perspective
When we think about how animation, with all its sub-forms, and software,
with its plethora of shapes, permeating culture deeply, interact and continue
to form new expressive forms, it is clear that no uniform way of character-
izing these interaction mechanisms and mutual influences can be described.
Rather, a certain hierarchy of involvement of software in the creation of
cultural products must be developed, not only to distinguish certain levels
of impact but also the different types of applications used. The following

simulated a satellite orbiting the Earth [22, p. 151]. James Blinn, whilst working for NASA
on visualizations of the Voyager missions, solved major computer graphics problems [23,
p. 48ff.].

6These manipulations are called invisible visual effects [81]; further examples can be
found in this video: https://www.youtube.com/watch?v=clnozSXyF4k, referenced in [69]

https://www.youtube.com/watch?v=clnozSXyF4k

1. Introduction 7

scale is based on the prevalent terms or “genres” used in the industry7 and
uses their language to describe how deeply software is integrated into their
production; the examples given (whether of technique or technology) are to
be seen as major drivers of developments, not as the only ones:

1. Analog/Traditional: Computers are involved not at all or in ways or
degrees that are insignificant to the effective outcome of the process.
For example, computers might be used for accounting or project man-
agement. Whether the writing of a screenplay on a computer already
has measurable impact on the outcome, is arguable. Examples for this
mode of work are all animated films prior to the spread of digital im-
age processing software, like Ivan Sutherland’s Sketchpad (1962) [23,
p. 41ff.].

2. Digital Post-Production: While the production (animation) itself
is done in purely traditional ways, computers are used to enhance
the images. Examples are the stop-motion technique where the pho-
tographs are graded and artifacts from the manual process removed,
or cel animation with a digital finishing step.

3. Digital 2D: With Disney’s Computer Animation Production System
(CAPS) came a set of tools that allowed for large parts of the old ink
& paint-based process to be replaced by digital workflows. Though
parts of the skills required to create good animation (like drawing
and mastering the principles of animation) were still necessary, other
tasks connected to the previous cel-medium, like painting and inking,
were abandoned (together with the corresponding workforce). The new
medium led to lower production costs and the animators (solo artists
in particular) being able to focus on the essential aspects of animation
(image and motion) rather than a laborious and difficult process, but
of course, knowledge about certain crafts were lost as well.

4. Visual Effects: They are used to manipulate and enhance “live-
action” footage, to extend and complement the recorded “real”. This
category is itself so extensive that it is difficult to set it in relation
to the other modes, but although it came chronologically before the
above digital 2D animation practices, the general degree of computer
usage in the VFX industry (nowadays) results in a far greater exposure
of live-action movies to side effects of the digital.

5. 3D/Full-CG: After the integration of computer-generated imagery
into live-action footage, the logical next step was to create the whole
movie inside the computer, which was successfully done for the feature
format in 1995 and for the short form several years earlier. In cinemas,
the 3D-film as the now-prevalent form of entertaining animation has

7I consider Genre a valid designation because the categories are based on a common
understanding in the industry and the employment market of the involved workflows and
technologies. Genre is usually associated with an agreement of a market.

1. Introduction 8

replaced the cartoon and its visual style, while adopting large parts
of its language. Since computers play a primary role in the creation
of 3D films and they have ubiquitous areas of application, it will be
necessary here to examine practices linked to the usage of software and
computers on the one hand, and the changes of practices taken over
from previous working methods on the other.

6. Procedural Animation: While the digital 3D-animation approach
still involves the manual placing of key-frames on a timeline and the
manual creation and manipulation of virtual objects, once program-
ming is accepted as the more powerful and universal tool in creation,
the artist is liberated from the repetitive processes of manual anima-
tion and the rules specified in the programming code are left to reign
over the details of motion and shape. In procedural animation, the
principles and the knowledge developed over decades of manual ani-
mation practice are formulated in code and integrated as basic rules
(if they are at all desired), together with the general implementation—
instructions and procedures—of the artistic vision. The artist is now
no longer the user of a tool, building their world piece by piece or frame
by frame, but the conductor of a spectacle which they can watch and
make changes to (if they dare), in service of the machine’s logic.

7. Virtual Reality: With devices that make possible the immersion of
oneself in a virtual world comes the necessity to create the diverse
alternate realities on the large scale. Animation is interactive and gen-
erative, ultimately: real. The frame is finally abolished and the logic of
the computer is made completely transparent to the user who adapts
to the new paradigms, rendering unnecessary and unlikely the critical
examination of the underlying mechanisms.

1.7 The Logic of the Virtual
Any artist will confirm that the blank page, the emptiness, cannot be the
sole ground for creation, but rather, the environment, the “eco-logic” of
the surroundings are necessary for inspiration and innovation, ultimately
something that we might call creativity. As intimidating as the blank page
can be, lacking the media and tools to realize one’s vision can be just as
frustrating. To deal with this situation is the actual goal of the digital, to
level out all preconditions and bring all tools down to a single, blank page
on which anything imaginable, therefore virtual, can be created.

The logic of virtuality—de-construction and re-construction—sometimes
seeming to be the driving forces of all human endeavors, is also the principle
of art and animation. The power to create a world after one’s own vision is
inspiring as well as terrifying in its ability to transcend all limitations that
we experience in real life. But in reality, the limitations of the computer

1. Introduction 9

are just as present as the limitations of the physical. There is a fundamental
difference between the two, however, that is to the traditional artist, physical
objects are potentially source of inspiration, part of the art or even a tool,
while the digital artist, whose philosophy is to deconstruct and recreate, can
draw inspiration only from the digital world or face the obstacles of having
to engage deeply with technical matters and limitations in order to simulate
the non-digital. In nature one has an arsenal of materials and shapes at their
disposal; in digital one always has to rely on other people’s work or one’s
own ability to return to one’s senses after a journey into technicalities and
details, to a broader perspective of the real once more.

1.8 The Structure of this Paper
So now we have looked at several terms that are essential to the discussion
about the influences of software, as it will be held here. After an introductory
chapter about Software2, the circumstances of its production and its prop-
erties, multiple perspectives will be taken up, one after the other revealing
a tiny part of the image that we might have of the cultural and industrial
factors of software.

As the most visible part of software, first the user interface3 will be
discussed in regards to what (subliminal) influence it has on the user/artist.
Then a closer look will be given on the workings and mechanics of the tools
and operations5 inside software themselves and how they steer us in our
creative work. Software also has a major impact on our workflows6 and,
consequently, on how we think about our own work and how we plan our
lives. Last, some visible effects of software7 on animation (or animated
film) will be pointed out and their roots discovered.

Chapter 2

Software

Although the term tool has already been described in depth, when it comes
to software it will be used here in two different ways. One is to emphasize
the character of software or a software application as a tool to the user to
create something, as has already been established. The other artifact we
can identify as a tool in the software context is, of course, the functional-
ity, operation or “tool” inside an application. Everyone should be familiar
with “tool-palettes” from Photoshop or almost any other media authoring
software with a GUI.

2.1 Classifying Software
This paper will primarily focus on the professional software tools used in
the animation scene but it is nevertheless interesting to have a look at what
software is used in general and how.

Here are a couple of properties that may be useful when we are trying
to classify a piece of software. We may consider whether it is for

• professionals or consumers,
• visible or invisible,
• graphical or textual, or for
• general or specific purposes.

These are only some of the possible distinctions we might make, but they
are the most important to find out how an application interacts with the
user.

Whether an application is intended to be used by people of a certain
profession, like animators or technicians, or by just anybody finding it
useful, is of great importance to how it is supposed to be designed. This
shall be discussed in detail later on.

Visible software applications are all around us. They are in computers,
smart-phones, smart-watches, glasses, cars, TVs, ATMs, inside our internet

10

2. Software 11

browsers. But invisible programs are even more so. The internet is home to
countless web-servers delivering content to us, bots and crawlers continu-
ously scanning the web for information, and analysis mechanisms observing
our behavior on the web. Even on desktop computers and smart-phones most
processes running are invisible, so-called daemons. Most of them perform
simple and useful tasks like drivers that provide an interface with hardware
devices, but there are also dangerous Viruses and Trojans which are just as
invisible to the human eye as all the little helpers we appreciate.

In the early days of computers it was at first impossible and later still
difficult to build applications with a GUI (which would encompass any-
thing that is not text) because of the limitations of the hardware. Graphical
elements like buttons or draggable windows have been made possible by
inventions like the mouse and hardware components capable of handling
the additional computational strain caused by the complex visual represen-
tations. The command line interface, though, has the advantage that the
developers can focus entirely on the functionality of a program as opposed
to its looks, which is why most programming environments default to a
non-graphical project on start.

The specialization of an application usually doesn’t have an immediate
effect for the user because they are often only interested in solving the im-
minent problem at hand. What kinds of problems the software addresses
in general is irrelevant in this case if only it provides the proper solution.
Quite relevant, however, is the quality of the user interface and the tool
implementations, which is in some way coupled with the degree of focus the
developers can raise to attend to the small details in the application. Large
applications like 3D-suites and compositing programs often aspire to satisfy
a plethora of needs and thereby miss one of the key requirements that is to
provide the tools the user wants with the greatest efficiency possible. Having
one hundred unneeded tools doesn’t make up for a single tool missing at the
wrong time.

Highly specialized applications like SynthEyes1, Dragonframe2 or xNor-
mal3 follow the strategy of giving the artist exactly the tool set they need
to complete a specific job. Apart from offering all of the tools one will most
likely be looking for, they have the advantage of being very small and cheap
in comparison to the “Swiss Army knives” of 3D or animation.

One of the core conflicts between user and developer is brilliantly brought
to the point by Kostas Terzidis: “[...] the programmer is able to provide those
tools that are believed to be needed [... but ...] is unable to provide the means
to create the tools that are not believed [...] to be needed” [24, p. 77].

1https://www.ssontech.com/
2http://www.dragonframe.com/
3http://www.xnormal.net/

https://www.ssontech.com/
http://www.dragonframe.com/
http://www.xnormal.net/

2. Software 12

2.2 The Properties of Software

2.2.1 Learning to Use Software

Any heavy software user will agree that software can have a major influ-
ence on the way we think and act. Those not overly familiar with computer
programs may take as a proof that it usually takes people not having used
computers before a rather long and wearisome time to get accustomed to
the ways of thinking required to successfully operate a computer and the
different applications on it. While it may be argued that learning a new
application takes time because new features, command locations and tools
must be learned, this argument alone is not sufficient to explain the difficul-
ties emerging at the first contact with a computer.

The process involved in learning to work with a computer in general—
system settings, the file browser and the different mechanisms essential to
navigation—is much more complex than what is happening in the brain for
the second, third or nth application. The brain has to adjust to the machine’s
interaction principles and logic which are very different from anything we
experience in the physical world and the interaction with humans.

Consumer software has to make it easy for people to get accustomed with
it and a number of different features are usually implemented to accomplish
this. One of them is the group of “auto”-operations whose purpose is to
shorten a complicated or technical manual process by automating it based
on a number of input parameters and providing the inexperienced user with
only a simple button, virtually saying “Start”.4

2.2.2 Automation

Automated processes can be life-savers in many every-day tasks with com-
puters, be it batch-renaming, auto-formatting or a spell-check. However,
there is a distinction to be made between different kinds of these tools. Op-
erations that can be simply called useful are the ones that take work off our
hands that is purely repetitive and tedious and that not necessarily requires
human attention or intervention. They can also do work that emerged only
as a result of limitations of the computer, for example the conversion of data
from one format into another. As long as no actual intelligence is needed,
everything is fine.

The tools of the second kind appear quite similar to the first ones in the
way that they also automate tedious processes. The nature of them, however,
is that sometimes it occurs to us when looking at the results of their work,
that they have not arrived at the exact result that we expected. Now it may
happen that most of the time a certain spell-check or match moving tool

4The 3D match moving application SynthEyes indeed provides such a button, labeled
“Auto”, but overall it targets professional users and requires experience to operate.

2. Software 13

does everything as we wanted, but then there is always the exception. And
in those cases it is often difficult to manually correct the mistakes.

Such tools which abstract processes that cannot be fully automated cause
an issue that becomes especially severe when people begin to not learn
how to perform the task manually any more. At a certain point a tool
may be sufficiently sophisticated and intelligent to make human intervention
dispensable, but still, in most cases a tiny probability for mistakes remains.
That is why users need first to have a basic understanding of the processes
and and why the tool must provide enough information and control to the
user so they can steer the process in the direction they want.5

2.2.3 Abstraction

One of the primary principles of the procedural programming paradigm is
that it supports and enforces the abstraction and automation of processes.
In fact, these two are very similar in the way that once a process has been
automated it can be abstracted by substituting it with a signifier that stands
for the whole process. The notation of algorithms is very similar to this as
usually only the steps necessary to understand it are included, whereas self-
evident basic steps are grouped together under a code word. In contrast
to human languages which are hard to abstract because of their complex
and diverse semantic expressiveness, programming languages are designed
to allow for definition and substitution. Without this, with the low level at
which programming languages technically operate, it would not be possible
to build large applications because a programmer would not be able to
handle the gigantic program structure.

Abstraction is a very useful concept because it allows the programmer
to think in junks that can be efficiently handled by the brain. By packing
a whole algorithm together into the notion of a function whose outcome
is predictable but not necessarily easy to compute, the programmer can
again put together an even more complex program that in the end will be
represented by just a single word. As wonderful as it sounds—being able to
stack finished parts on top of each other without having to rebuild the whole
thing each time—in reality all algorithms and often whole applications are
implemented many times. The reason is that software structures tend to
be complicated and hard to grasp and one never knows in beforehand how
particular components will be working together. A very common problem
is that structures, due to changed requirements, suddenly need to possess a
flexibility that was not planned for.

5In a bit different context Kostas Terzidis stresses as well that technical understanding
(of algorithms) is essential to gaining control over software as complex and automated as
CAD applications [24, p. 78].

2. Software 14

2.2.4 Parameterization

The next step, logically following the concept of abstraction which takes
complexity but also control away from the programmer, is the introduction
of parameters. A parameter is a piece of information that is used to control
the workings and outcomes of a function. For example, to a program that
builds skyscrapers we could pass a number that indicates how many floors
should be built, or we could create a simple function called “sort”, uniting
all available sorting algorithms, and, by passing a parameter, state which
algorithm should be used. The diversity of ways parameters can be used
to control aspects of software, technology or art is restricted only by the
underlying platform [14, p. 220ff.].6

The first kind of parameters simply define what subject (we might call
them data or media) the function (technique) shall be applied to. This can be
tricky because the data to be transformed might have several representations
used by different applications and therefore a conversion must take place.
Some applications—which are also, non-technically speaking, just complex
functions with lots of parameters and options—take it on them to perform
this themselves; others need to be fed the exact right data types.

The second kind of parameters are actually used to transform the op-
eration itself. When changing the size of a Photoshop brush, the size of a
blur filter, the maximum distance of a vertex-merge-tool or the resolution
in render-settings of a 3D package, we tell a procedure how it should do its
work and we expect to observe a predictable effect on the result.

But functions, tools and operations are not parametric in the first place.
Making them so can be a difficult task because decisions have to be made
about what aspects of the process are supposed to be outside-controlled and
by what means and to what extents this control can be given. From a visual
point of view the principles of abstraction and parameterization allow to
build a system that obeys certain rules and that can be manipulated easily
within its constraints [22, p. 95]. If abstraction makes repetition possible,
parameterization adds to it the possibility of non-uniformity because control
can be exerted on the individual manifestation of the idea7 and not only
on the general concept. In the computer context this enables not only the
creation of procedural artworks but also complex crowd-simulation systems
that try to copy realistic dynamics of large masses of people by letting
individuals move according to precise, but nevertheless seemingly organic,
rules.

Since the author’s intention when creating a parametric system is crucial
to its power, evidently, conflicts arise between the actual implementation

6Here I am not referring to operating systems but to any environment that allows
for the implementation of a parametric procedure, like programming languages or media
applications with tools for automation.

7http://en.wikipedia.org/wiki/Theory_of_Forms

http://en.wikipedia.org/wiki/Theory_of_Forms

2. Software 15

and the user’s desire. Every parameter that is exposed adds possibilities
on the one hand but can also cause confusion on the other. Usability is
a core interest of technical development and it usually stands against the
power or controllability of the product. The easiest to use devices are the
ones with only a single button and the clearest applications are the ones with
few menus and easily accessible and comprehensible functionalities. But this
restrictiveness takes away a lot of the flexibility people need and want to
create something they can really feel connected to because it reflects their
complex reality.

2.2.5 Customizability and Mutability

In many games it is possible to change one’s avatar and name, clothing and
equipment, sometimes even when those thing are not relevant to success or
goals of the game. Lev Manovich sees such kinds of superficial customization
critically: options are chosen from fixed sets and at best items are combined
from fixed inventories. Some applications let the user change the color of the
user interface, the size or type of fonts, icons or let them place and arrange
widgets on a screen. But every question, choice or artwork ends in a process
of picking from options—they are discrete, digital. He argues that this is
the “new logic of computer culture” where nothing is built from the ground
up but rather every new piece is a combination of existing, or even worse,
ready-made parts. Libraries from which prepared assets or projects can be
picked constitute a mixed blessing because whether they are actually helpful
or holding back creative initiative after all depends on how one approaches
these gifts and tools in general [15, p. 124].

In an economical context a degree of efficiency has to be achieved and
working long hours with the software is a natural part of people’s jobs.
Professional users are going to demand flexibility and adaptability of the
user interface and tools to their needs. In contrast to beginners who are
easily overwhelmed by overly complex interfaces, they are working with their
software tool every day and know every one of its features by heart.

As indicated in [3, p. 13] there are some software tools that are very
difficult to make adapt to a workflow in a particular production environ-
ment whereas others embrace or even encourage customization. The fea-
tures offering faked individuality to the user (like themes or skinning), which
Manovich refers to, should not be confused with this kind of deep adapt-
ability some applications allow in order to optimize the usage and workflow
with the interface. For professionals to be able to efficiently work with an
application it is in most cases indeed necessary that they can easily adjust
the accessibility of tools and their settings.

If the options are consciously used it is also helpful if presets and saving
and restoring of configurations of tools are supported in order to speed
up usage of frequently used settings. Additional functionalities like those

2. Software 16

necessary for embedding the application into an existing pipeline should
also be easy to be integrated, especially because compatibility with other
applications is a crucial quality professional software must live up to.

By nature software applications are more like sealed machines (black
box) running some magic than like a juggler who one can watch doing
their amazing stunts. There are several ways of retrieving information about
the status of code execution. Code can be installed inside the application
that writes log files to the disks or shows information on the screen, some
applications can sort of penetrate other programs and read data from their
memory (hacking). If code is compiled into machine code there isn’t really
a way of directly intervening with the execution on a high level. If, on the
other hand, the source code is interpreted at run-time instead, as in the case
of JavaScript, the interpreter can indeed make performance measurements,
for example, or allow debugging.

The two most common ways of breaking with the inflexibility that ap-
plications cannot be altered after their compilation are available in almost
every major media authoring application: scripting and plug-ins.

Plug-ins

They are pieces of software that interface with a host application and usually
can access its functionality on some level (through an API). Plug-ins extend
the capabilities of the application and can be installed and removed at any
time. Data created with the operations of a plug-in often depends on the spe-
cific plug-in to be installed on the machine where the file is opened, however.
Large media applications like 3D and compositing software depend highly
on the plug-in mechanism because many users require special functionality
that cannot be included in the default set of tools, or the application would
become too big and possibly unstable. By delivering the software with a
number of basic features the core installation stays minimal and every user
can add their preferred plug-ins later on [77].

Many plug-ins provide automation and preset options that the base ap-
plications do not have. There is a variety of plug-ins for After Effects, for
example, that simplify and speed up diverse processes of creating motion
graphics and complex animations. The strategy or workflows intended by
a software manufacturer might thereby be overridden, allowing a deep cus-
tomization of the application according to the design of another software
developer. After its installation into the software a plug-in practically be-
comes part of the main software, as far as the user is concerned.

Scripting

With “scripting”, code is executed by an interpreter entirely inside the ap-
plication itself, which has the advantage that it is much easier to use and

2. Software 17

deploy than plug-ins. It is supported mostly by bigger software packages
like Maya8 or Nuke9 and can be a powerful tool in the hands of artists
and pipeline designers because they usually allow access to at least all com-
mands available through the visual interface, if not more. These commands
are provided through an API (application programming interface) which is
tailored and unique to the host application and therefore requires proper
familiarity with its features and peculiarities. Against the ease-of-use also
stands the fact that applications may offer their own scripting languages to
control it.10 Although some particular languages like Python and Javascript
have become increasingly popular for this precise purpose, when dealing
with many different packages (which is common for studio pipelines), one
might have to learn several programming languages to implement the same
functionalities in all of them.

Versions, Updates and Patches

Software has a peculiar property most other media have not—the tendency
to make itself redundant.11 There is not only good software and bad software
like there are good TV shows and bad TV shows, rather even good pieces
of software are permanently reinventing themselves, rendering their older
versions or even their older functionalities outdated and expendable.

This property that software constantly mutates and evolves is innate and
completely integral only to digital data due to the fact that only data, as
a technology, can be seamlessly replaced at least on the application level.
Versioning and updating are observable not only in data structures that
feature this capability like tables, documents and databases, but also in
games, office applications and operating systems. Since they typically consist
of an enormous amount of code they are especially prone to errors and
failure. Frequent updates are the inevitable consequence.

But with these updates come not only improvements and praised features
but also changes that make it extremely difficult for users to develop consis-
tent workflows and to work consistently over a longer period of time. New
(better) file formats, altered (improved) features and the removal of features
and support for file formats lead to loss of data that has been created with
an earlier version of a program and not been converted to the new format.
They frequently lead to disorientation after, perhaps automatic, updates or
even downright inappropriateness of the application [71].12

8http://en.wikipedia.org/wiki/Autodesk_Maya
9http://en.wikipedia.org/wiki/Nuke_(software)

10Maya uses MEL (Maya Embedded Language), 3dsMax uses MaxScript.
11We still read books from the 18th century and watch movies from the beginning of

the 20th, but nobody uses software that is more than a couple of years old.
12Such a case is Apple’s initial release of Final Cut Pro X which, allegedly, made scores

of professionals stay with the earlier versions or switch to other alternatives. Updates to
the application were offered after discontent was expressed [72].

http://en.wikipedia.org/wiki/Autodesk_Maya
http://en.wikipedia.org/wiki/Nuke_(software)

2. Software 18

Dynamic Programming

The overall goal of the above structures is to make software more dynamic,
to add and remove features as needed. But programming languages can
also have “dynamic” features themselves that enable the programmer to
think more immediately and work more expressively and faster. Dynamic
features make use of methods like Just-In-Time compilation or interpreting,
all of which cause overhead at run-time. But with computer power steadily
increasing it is now becoming possible to introduce new dynamic capabili-
ties into productive software despite the need of good performance. At the
moment expressive languages are primarily used for the implementation of
high-level logic or prototyping because they are still too slow to run op-
erating systems or animation software on. The underlying consideration of
abstract languages is however that eventually their code can be automat-
ically compiled and optimized in such a way that the resulting machine
code will actually run just as fast or faster than manually tweaked low-level
code. When this point is reached it would mean a decoupling of technology
from logic because now, any valid formulation in any programming language
imaginable would lead to the same result and the technical, more difficult
to learn platforms would disappear.

2.3 Programming
Our foremost goal here should be to examine the mentality of the program-
mer, to get a notion of how they think and why they might be doing what
they are doing. Programming languages and “programming” are their means
of solving problems and achieving unforeseen things and therefore we first
have to deal with the nature of programming itself. In general, program-
ming could be called the embodiment of the human urge to imagine. There
is currently no system (except for the universe itself maybe) with a simi-
lar capability to create what has not been before. Of course, the beautiful
difference between the computer and the universe (in our opinion at least)
is that we can control it and create the things we like. The fact that what
the computer creates isn’t actually “real” but virtual, ironically is irrelevant
from an experiential point of view because the brain makes it real anyway.
This may be one of the reasons an examination of software is really nec-
essary. The following shall provide a brief insight in what the basis of this
imagination “virtualization” system is.

The process of creating instructions for a mechanical or electronic ma-
chine to follow is called programming. This can happen through configu-
ration of mechanical parts, hard wiring processing circuits, authoring al-
phanumeric instruction files or inside visual programming environments.13

13There might also be other ways of programming which the author is not aware of but

2. Software 19

All of them have very distinct qualities for the programmer as well as the
machine and involve very different ways of working. Since the first two are
not immediately relevant for the topics of software and animation, and since
I am not particularly familiar with them either, I shall continue to explain
the basic principles of alphanumeric and visual programming. Both of them
are important for artists and programmers, though visual programming has
not gained much traction in professional software development so far.

Note that this discussion deals specifically and only with the program-
ming of electronic digital computers as they are used today in many shapes
and which John von Neumann created the foundation for. Also, this is not
supposed to be an account or summary of any sort of the enormous field
of computer science or the circumstances of software production, but rather
its purpose is to convey a general idea of what it is like to program to those
who have not done this before.

Alphanumeric program texts (or codes, as they are called) consist of
commands14 that instruct the computer to perform certain actions. This
way of programming has been used ever since the first digital computers
in the 1940s and is still predominant. It is based on the physical structure
of the computer which consists of a CPU capable of very basic operations
regarding mainly calculation (like addition and multiplication), data transfer
(reading and writing chunks of data) and control structures. The latter make
“decisions” depending on the data available to the computer possible. Of
course, the computer does not decide—the programmer does—which means
that it is the programmer’s duty to account for every possible case before
“runtime” (or “real-life”) data is even available.

2.3.1 Programming Languages

The categorization of certain artifacts in informatics, which actually all have
the purpose of instructing and controlling the computer, into “programming
languages”, “protocols” and “file formats”, is in fact arbitrary. The terms,
again, only serve us to infer their mode, area and scope of application, which
indicates that their actual difference is the size of the window they open upon
the functionality of the underlying structures [4, p. 170].

Although all Turing-complete programming languages15 are functionally
equivalent, each language is designed for specific problem sets and thus en-
courages distinct modes of thought [4, p. 170]. Evidently, the structure of
programming languages must be highly dependent on the types of problems
that are supposed to be solved with them. They are the result of the nego-
tiation between technical considerations, as not to obstruct the work of the

they are not really relevant here.
14The term “command” is used here in the sense of any written symbol or combination

of symbols that give the computer a definite instruction.
15For Turing-completeness see [52].

2. Software 20

machine unnecessarily, and user preference, for the sake of learning curves
and work efficiency [4, p. 169]. Programming languages are also designed
specifically to avoid mistakes by the programmer, enforcing constraints and
proven working habits on them i.e. by means of syntax.

The enormous number of existing programming languages may serve
as evidence of the countless different problems and preferences that are to
be satisfied. It is the contemporary, accepted understanding that no single
language can fulfill the requirements of all problem sets as well as the needs of
all programmers. Especially when it comes to “high-level” and “low-level”
programming languages, no consent can be reached because both target
largely different areas of application. Which language to use is, as with
human languages, a question of availability and liking.

To clear the terms up, with low level programming languages we have to
work very closely to the hardware of the computer, that is to say, we take
direct control of the actual features of the hardware parts. This, however,
requires ways of thinking that are very far from how people are used to
think about problems. First, great efforts are necessary to accustom oneself
to them and second, it makes it more difficult to think about a high-level
problem16 one wants to solve if one has to also think about pointers or regis-
ters. These technicalities also cause lower level languages like C or Assembly
to have an increased amount of code the programmer has to handle for the
same implemented logic. And a lot of code means more chances of making
mistakes. These languages give a lot of power to the programmer but also
force them to do many things themselves that high-level languages would
take care of [53].

On the top of the list of popular high-level programming languages are
the likes of Java, C#, Python and JavaScript. They are also very different
from each other but newer developments seem to indicate that languages
supporting multiple paradigms are on the rise.

Programming paradigms are schools of thought that describe how in-
structions are formulated, how data is structured and, as a consequence, how
the programmer has to think. Functional languages, for example, consider
functions (procedures) as a kind of data and are thus much more dynamic
because they don’t depend on rigid, inalterable processes [54].

2.3.2 Programmers and Programming

In general, the nature of software is to systematically constrain the totality
of functionalities of a Turing-complete language, embodied by the hardware
of the universal machine17 the digital computer is, to a subset of operations
purposed for specific sets of tasks. The application’s user interface provides
access and control only over these operations, abstracting the overwhelming

16Like how an interface should adapt to the user’s needs.
17For the universal machine, see http://en.wikipedia.org/wiki/Universal_Turing_machine.

http://en.wikipedia.org/wiki/Universal_Turing_machine

2. Software 21

mass of possibilities of the programming language down to a graphical or
alphanumeric control language, fitted to the nature and requirements of
the tasks and the preferences of the human user [5, p. 149f.]. This can be
compared to a window opening the view onto a huge landscape. Sometimes
one narrows the perspective by focusing on a specific part and sometimes
one feels confined and wishes to broaden the view.

Against this stands the technical reality that programming languages
are very rigid constructs with fixed and inflexible grammars and specific
requirements. Problem solving involves thinking on several levels, or levels
of abstraction as I would say. The way to solving a problem is like a branching
structure, sort of like a fractal, so to say. One starts with thinking about
a problem, dissects it, splits it up into smaller pieces: sub-problems. These,
again, are split up into a number of lower-level problems, and so on. This is
not to say that any of these sub-problems are actually easier to solve than
higher-level problems—on the contrary, often they are more challenging—
but they need to be solved before moving up. Moving upwards from a set of
lower-level problems means abstracting processes and they can be thought
of as a simple symbol, a function.

To conclude this notion with a metaphor: In reality, usually ready-made
components (bricks) are used and assembled by specialists (masons). But if
one wishes to build their house by themselves they must learn everything
necessary for that. In comparison to house-building, software development is
not at all standardized for a lot of reasons, three of which being that there are
different areas for which software is made, that people prefer different ways
of thinking and working (to repeat myself) and that the technologies are still
evolving rapidly. The first is certainly true for house-building as well, but the
second is normally ignored in that domain, at least for the “less abstract”
tasks. Unlike the architect who does generally not lay bricks, the artist
programmer writes their code themselves and thereby deeply engages with
the substance of their tools and media. This, however, blocks these mental
resources for higher-level considerations like deep and elaborate messages.

Personally, I would argue that this switching through the abstraction
levels can also be an obstacle to getting into the experience of Flow18—
especially when unforeseen lower-level problems emerge whilst working on a
higher-level problem.

18For the theory of “Flow”, see Mihaly Csikszentmihalyi’s work [6].

Chapter 3

User Interfaces

The main purposes of the user interface are to provide information and
to give feedback to the user. Information can be given regarding the state
of the program and the data it is working on, and the options (tools and
commands) available. In addition to this information of a more static kind,
the user desires immediate feedback to their actions in order to be able to
react accordingly. Ideally what the user perceives in the interface would,
as in the physical world, be directly manipulable by hand and immediately
changing. Since this is not currently possible, the devices majorly in use are
the ones designed to best fit the human needs. This does mean, however,
that anyone using these interaction devices with a computer will inevitable
be shaped by their physical and logical nature.

For animation visual input and feedback are crucial and although anima-
tion is possible by simple text input (see JavaScript animation frameworks
like Greensock1), a Graphical User Interface can give far more control and
precision in achieving what one has in mind.

3.1 Principles of Interaction

3.1.1 Conceptual Model and System Image

Don Norman uses two significant terms in order to describe what happens
when the user meets a tool or a device. The information that is available
to the user from what they see, hear or from what they have experienced
with other systems is called the system image [20, p. 31f.]. This is what the
user is confronted with when they want to use a tool. It is then up to the
user to make sense of this information and to use it in order to operate the
tool. The understanding which the user has formed from the system image
and the knowledge they have gained from their experiences are called the
conceptual model because they do not describe the actual workings of the

1https://greensock.com/

22

https://greensock.com/

3. User Interfaces 23

system but rather how the user imagines it to work [20, p. 25ff.].
The above mentioned principles of interaction with objects are essential

to the communication between designer and user. Here, the idea outlined in
the introductory Section 1.2, that tool maker and user are connected through
the tool itself, comes into play. When the designer’s conceptual model, which
is probably built even before the tool itself, does not align with the user’s
conceptual model, it strongly suggests problems with the design of the tool.
Since the designer and the user usually come from different perspectives, it
is often very difficult to create the tool in a way that conforms to both the
ideas and requirements of the designer or programmer and those of the user.

This issue is not limited to user interfaces but also applies to program-
ming environments and languages. Although programming is already con-
sidered a complex skill to acquire and accordingly a lot of effort to learn it is
anticipated, even further obstacles are created by bad design of syntax, lan-
guage features and application programming interfaces. Oftentimes, certain
functionalities are either expected to exist or to work in a particular way
but turn out to be missing, misleading or to work in a completely different
manner than considered sensible by the programmer.

As best usability is provided when a system meets all the expectations
of the user, some general goals of any system design should be to ensure
predictability, consistency, meaningful feedback and reliability. Obstacles in
achieving this might be missing constraints, missing conventions or bad com-
munication design.

3.1.2 Conventions and Standardization

One of the problems of the computer industry is the fast pace at which
new technology is developed and put on the market. The competitors aim
for earliest possible release dates and new and innovative solutions. When
there are several thinkable solutions to a particular problem (there always
are), multiple different systems will be developed and sold by the players
in the industry. A good example of the issue that follows this behavior is
the diversity of 3D packages available. One must only look at the variety of
software products made by Autodesk and the competing applications like
Cinema4D2, Modo3, Blender4, zBrush5. It becomes clear that very different
ways and strategies can be found to work with objects in 3D space. The
annoying or even frustrating part appears when several of these programs
are to be used at the same time because almost no standardization what-
soever has been reached in order to simplify transition between them. The
most obvious example for this is the navigation in the viewport, for which

2http://www.maxon.net/en/products/cinema-4d-studio/
3https://www.thefoundry.co.uk/products/modo/
4https://www.blender.org/
5http://pixologic.com/

http://www.maxon.net/en/products/cinema-4d-studio/
https://www.thefoundry.co.uk/products/modo/
https://www.blender.org/
http://pixologic.com/

3. User Interfaces 24

every application comes up with its own flavor. Like with other technologies
like cars, high-definition video, web technologies and so on, agreements for
standardization will be made for a large number of aspects. Best practices
identified by leading professionals in the field, as well as general usability
considerations should be the base of this possibly lengthy process [20, p.
248ff.].

3.1.3 Input

As beings with a focus on our visual senses we prefer visual feedback to our
actions. While we cannot yet (sufficiently precisely) control the computer
with our eyes, the direct feedback we get e.g. from moving the mouse and
thereby the mouse cursor provides us with a qualitative feeling of manip-
ulation. Despite its popularity and seemingly effortless handling there are
repercussions to the usage of the mouse, physical as well as psychological.
For example, the mouse constrains our radius of action and possibly our
distance from the computer. It requires that we watch the screen closely
and have to be aware of the changing position of the cursor. When we want
to trigger an action we must turn our focus to the area where we want to
navigate and it takes precision and time to reach the target. The mouse
cursor is limited to a single position, so it is impossible to work in multi-
ple areas at once or to activate multiple items simultaneously. There is no
agreement as to how many buttons the mouse should have; a single button
is certainly simpler but with the growing amount of operations we want to
perform (and quickly) it may be helpful to have more options directly at
hand on the mouse.6

3.1.4 Feedback

After input has been given to a system to perform a certain action, the user
will expect the system to carry out that action. It is a common scenario
in media applications that an operation is triggered by shortcut or through
the menu but no results can be observed right away. If the user cannot
verify that the input has been received and that the intended effect has
been achieved, they might assume malfunction of the system or an error on
their own side. In order to prevent such frustration, information about the
state of the system must be provided as well as feedback about the reception
of input. Especially in applications with a graphical interface it happens at
times that disturbingly long delays occur until feedback is given. In some
cases this can lead to wrong judgments of to which action a certain effect can

6Maya uses the middle mouse button for the dragging of certain items, while Blender
uses the right mouse button for selecting and the left for placing the “3D cursor”[55]. The
pop-up menu triggered by the right mouse button in most operating systems appears at
the position of the cursor to be easily accessible.

3. User Interfaces 25

be attributed. Too much feedback, on the other hand, is to be avoided as well
because it has the same effect as noise, that is to drown any distinguishable
signal in an overload of information. Without useful feedback, no experience
and expectations of the system can be formed and no mastery of a tool can
be accomplished [20, p. 23ff.].

3.2 The GUI and Invisibility
The principal job of the Graphical User Interface is to make things visible.
As mentioned, it visualizes data, states, available commands and options
and perhaps also gives hints and tips at what can be done or done better.
But another thing the GUI is good at is hiding the complex system behind
it.

While the GUI can be great for achieving particular results it has been
designed for, it also prevents the user from doing other things. This, how-
ever, is not perceived as a constraint as such but rather becomes apparent
only when the user forms intentions that do not comply with the designer’s
original concept of the work process.

For particular decisions or tasks the user wants to perform, knowledge
might be required that is not available through the GUI. In some cases, this
information can be obtained from manuals or documentations of scripting
interfaces and APIs, but for very large applications, these tend to be in-
complete or difficult to comprehend. Without proper understanding of the
underlying logic and workings of the system, qualified decisions cannot be
taken.

3.3 Elements of the GUI

3.3.1 Windows

The window metaphor is very convenient because it allows a variety of analo-
gies with software mechanisms and, not by chance, it has been used ever since
the invention of the GUI at Xerox PARC in the early 1970s. In software,
windows are built for flexibility. According to Steven Johnson they permit
access to the larger information space behind the interface that is otherwise
inaccessible to the human senses. Windows in file explorers provide features
to organize and order the data that is stored on the computer’s hard-disk
in a chaotic way, which means they should be adaptable to basically any
preference a user might have regarding the presentation of folder structures
[10, p. 91ff.].

They are also means of separating different applications and logical units
from each other. In this capacity they are especially useful because spa-
tial structures (the “layout”) are essential for our ability to remember and

3. User Interfaces 26

quickly recall where we can find a certain tool or a piece of information.
Johnson, however, suggests that the frequent moving-around, which win-
dows encourage, makes efficient use of our spatial memory impossible [10,
p. 91f.].

3.3.2 Buttons

The two established modes of manipulation—the tool to “work on” data al-
lows a more or less intuitive real-time interaction, and the operation which
performs changes according to previously defined specifications—both re-
quire some sort of trigger to initiate their activity. The button, the preva-
lent means of achieving this, is usually a rectangular (or rarely circular)
area which is emphasized and indicated as an interactive element by a visi-
ble border, sometimes additional decoration, and an icon or a text pointing
at its purpose or meaning to the user. While in the real world the artist
or craftsman has to physically pick up a tool and bring it in contact with
the medium (which in turn resists its manipulation) or at least pick up the
medium, insert it into an automated machine and observe the medium being
manipulated, the virtual medium requires no such action and provides no
comparable feedback [21, p. 31f.].

As Don Norman stresses, affordances, the properties of an object that
help us understand what it might be used for, are an essential factor in
the learning and recognition of tools. The software button, however, in the
place often not even indicating its constraints—not to be dragged or written
into for example—fails to effectively communicate its meaning through its
only relevant functionality, to be clicked. Ultimately, an icon or text label—
tiny pieces of visual communication—in combination with the most generic
interaction with the computer possibly conceivable, the click, is supposed to
guide the artist in their choice of tool [20, p. 11].

Although there exists a variety of mechanisms in the computer to “trig-
ger” processes, the deliberate action of the user necessary to activate it is
what distinguishes the tool as something that explicitly exists “in service” of
the user and not in their non-observance or even to their detriment. There-
fore the button, in its seeming visual and functional simplicity, spites the
user’s belief to be in control through its feigned non-ambiguity and power-
lessness as part of the larger auto-mated (self-acting) system. It might not
yet be working for itself, but it has already been abstracted from us—pulled
away from our control—which could be even more concerning [21, p. 34].

3.3.3 Shortcuts

The open-source 3D package Blender is a prime example of an expert-
oriented software application. Most tools and operations are intended to
be entered or invoked by using shortcuts on the keyboard (see Blender’s ex-

3. User Interfaces 27

tensive shortcut editor in figure 3.1). While beginners need a lot of feedback
and visible options in order to explore the complex system, experts, who are
familiar with it and have the necessary information in their head, require
the utmost efficiency in using the available tools. Keyboard shortcuts can
be utterly frustrating for amateurs when they are pressed by accident and
possibly cause a ripple through the program which might be hard to revert
without the appropriate knowledge. However, for experienced users it is im-
portant to be able to define custom shortcuts that are setup according to
their workflow and easy for them to remember.

3.3.4 Hotboxes, Pie Menus and Ribbons

Context sensitive menus that are dependent on the state of the system or the
location or object clicked on are very useful for effective navigation because
large menu structures are cumbersome to go through repeatedly and certain
systems possess such a large number of commands that shortcuts for each
are exceedingly difficult to find and remember.

Again, different concepts serve different purposes. While the pie menu is
suited for a small number of options which are arranged in a circular form
around the cursor (or touch) position, the Maya hotbox 3.1 accommodates
all menu options available in the application and supersedes the top menu
bar completely, which saves screen space. Context-sensitive circular menus
enable more intuitive changing of tools if the location of particular options
is fixed and can be remembered. That way, the user need not read button
labels all the time and can quickly switch back and forth between tools and
modes which might not have shortcuts assigned.

Ribbons, as available in 3ds Max and Microsoft products like Word or
Excel, and Maya “Shelves” 3.2 are another way of providing mode-dependent
information or interface elements. Shelves provide quick access to common
features useful when working in a specific “mode” or workflow stage. The
idea is that every workflow can be divided into smaller parts, each of which
requires a specific set of tools to work with. Since shelves are customizable,
they can be adapted to suit any possible requirements.

3.4 Limitation
The principle of reduction and abstraction is a common concept for pro-
gramming and design. The goal is to reduce an existing base of options and
operations down to a number of controls that are easier to work with. In
computer software the lowest level is the hardware itself, which layers of soft-
ware programming are set up upon.7 Programming the hardware to do what

7This layering can happen in multiple ways. Sometimes higher-level code invokes faster
lower-level code. Often higher-level languages are implemented in lower-level languages.

3. User Interfaces 28

(a) (b)

(c)

Figure 3.1: Blender ’s shortcut editor (a) offers detailed options to assign
mouse or keyboard shortcuts to any tool or operation of the application.
Maya’s hotbox (b) overlays all other window content and appears when the
space key is pressed. SynthEyes’ “Auto” button (c) has an almost physical
quality to it.

(e)

(f)

Figure 3.2: Maya’s shelf and tool menu (e), and 3ds Max’s ribbon (f) are
icon collections providing faster and more contextual access to certain tools
than traditional top menus do.

Crucial in the context of human-computer-interaction is not the technical implementa-
tion but the fact that different levels of abstraction exist with different strengths and
limitations.

3. User Interfaces 29

Hardware

Low-Level Programming

High-Level Programming

Graphical User Interface

Universal

Turing

Machine

Power / Capabilities of the Interface

A
b

st
ra

ct
io

n

Figure 3.3: While hardware programming and real programming languages
provide large sets of possibilities and a lot of flexibility (although abstraction
always takes certain capabilities away), description languages like HTML and
graphical user interfaces are far more restricted.

the user will be trying to achieve is, of course, not possible, not least because
on the hardware level problems like heat arise that are completely different
from the issues prevalent in the higher, more abstract, levels.8 It is, after all,
the goal of most computer systems to hide all influences of physics and the
“real” from the computer user. Up to a certain point the layers stacked on
top of each other are Turing-complete, which means that essentially they are
equally powerful. The main reason to use one language instead of the other
is that some are designed to make it easier for programmers to build more
complex structures as higher-level tools are constructed. The critical point
is reached when one layer breaks the chain of Turing-completeness. In most
cases this is the graphical user interface as it is common to hide the complex-
ity of the underlying programming from the consumer. The only exceptions
are products for developers and professional users who might demand ex-
treme flexibility to be able to extend or alter the application’s functionality.
Media applications like the major ones from Adobe (Photoshop, Illustra-
tor, After Effects, Premiere), programs for 3D- and 2D-Animation or visual
effects all offer scripting capabilities.

Knowledge of technical restrictions, of what is possible and what is hard,
is acquired over a longer amount of time and in the course of working, trying

8Florian Cramer points out in [68] that data in a computer is actually analog on
the lowest, physical level, which is true because voltage has continuous values. The real
digitality is produced by transistors which act like switches (1 or 0; current flowing or not)
[80].

3. User Interfaces 30

and failing, with the software. However, high expectations, clear visions of
the end-result and low motivation to learn the technology itself can prevent
any getting closer of artist and software. The limited expressiveness and
consequent informative value of the user interface on the one hand, and the
insufficient training in technical thinking of the user on the other hand cause
a lot of frustration since the software is a very specialized tool and the artist
is usually a user with very particular demands [24, p. 77f.].

But even technically experienced people can get frustrated with a piece
of software if the user interface is too restrictive and blocks the user from
performing actions they consider logical and necessary. When user interfaces
and functionalities are designed, developers take special care not to expose
too many options and parameters to the user because these might be con-
fusing to new users and annoying to experts if they get in the way. While
to some degree this is desirable, over-compensation can also lead to serious
impairments of the user’s abilities to perform freely and creatively inside the
application.

3.5 Software and the Artist
Since expression and implementation of their ideas are major desires of most
artists, every tool the artist uses should be examined in regards to how it
affects their expressive abilities. The interplay of tools and people, of purpose
and intention, is intense and beyond measure but the basic principles are
evident. The tool gives power to the artist and in return the artist gives up
a bit of freedom and power by agreeing to the restrictions they put upon
him.

The power one can gain by using software should be quite easy to deter-
mine by looking at popular software as well as the digital art scene, which
has grown considerably in the past years. Both are important because one
shows the state of the art of commercial production which has to withstand
the enormous pressure of the global market and the other has to keep up
with the speed of technological progress in order to remain relevant.

The ways software influences and changes us, on the other hand, are
more subtle and creeping. When the artist uses a tool they are exposed to
the effects of the various interactive processes between them. While working
with the tool, they slowly take in its logic and rules, which we call learning
[24, p. 78].

3.6 The GUI as a Medium
Tools can be used to produce and manipulate media but are they media
themselves? Are they communicating a message to their users? In fact, there
are several layers of communication taking place between a software tool and

3. User Interfaces 31

its user. The first layer tells the user simply whether to use it or not. Some
tools are inviting and inspiring because of their design and others are not.
The second layer tells the user what to do with the tool. Software often has
the problem that it is very hard to determine from its appearance (GUI)
what it is actually good for or built for. The third layer instructs the user
how to use the software. As tricky as the first two layers may seem, this is
the most difficult part of communication with the user [20, p. 11].

While the first layer is trivial and relevant mostly for the economic suc-
cess of a product, the second is in fact already decisive for what users will
attempt to do with it. Factors in this stage are available examples of works
done with the software, foremost of course professional pieces and artworks
which span from mainstream applications to the more eccentric and inno-
vative, and then the indications inside the software itself. These might be
tutorials or presets coming up at first start or labels and button graphics in
the user interface.

If a GUI foregrounds certain common or special features, like in an own
palette or menu, it suggests to use them and try them out instead of the
other ones hidden in the drop-down menus. A GUI built for accessibility like
Maya, with tools fairly distributed, appears complex because it has no focus
or entry point. It also makes a difference how the tools are grouped in the
menus or palettes.

If they are grouped by task (like in Maya 2016) they are likely to be
seen as associated with that task for a reason, making usage outside of
that task less likely. Someone following a workflow that the predefined tasks
do not fit into might not be happy with this default arrangement at all.
The commonly used convention in software is to group operations sort of
task-based under items like “File” for loading and saving, “Edit” for editing
content in the broadest sense, “View” for changing settings of the content
views. This seems helpful as a convention although it is entirely arbitrary
and unfit for consistency.

Software working with different media or data types might also group
tools by what type of content they create or operate on. Blender uses this
paradigm for its Create tab (“Mesh”, “Curve”, “Lamp”, “Other”), Cinema
has a similar grouping in their main toolbar and Maya 2016 has shelves set
up in that way. This kind of configuration is very practical and actually tech-
nology oriented but it does not support the more abstract mode of working
suggested by the Python-paradigm: that a tool should have a meaning and
work according to it and decide its actual operation in context of the given
data.

There is probably no way of sorting this problem out that has to do with
how people work and think. But it might be a viable solution to provide
mechanisms to switch between different modes depending on the current
needs.

Chapter 4

Software Media

As pointed out in the introductory Section 1.4, media—be they so-called
traditional or “new” media—are means of communicating content to peo-
ple: From one to one, from one to many, from many to one or from many to
many. These aspects of media, and new media in particular, and the prob-
lems that arise with them, have been discussed exhaustively for the past
years. What has not been widely discussed are the characteristics of soft-
ware as a medium communicating to billions of people all over the world.
While it is obvious that communication is enabled by applications like Skype,
Facebook, Twitter and YouTube, the more hidden and subtle ways software
is impacting us, with its own particular agenda, are mostly overlooked. This
daring and provocative presumption of a “software-agenda” is subject of the
critical examinations throughout this paper.

The discussion of GUIs as a medium in the previous Section 3.6 should
give a brief introduction to the ways software in fact acts as a medium. But
as software and development become more accessible, the border between
tool and medium software becomes blurred. According to Lev Manovich,
the terms “digital media” and “new media” don’t accurately reflect the fact
that the associated media types and their creation are mainly shaped by
software [14, p. 149ff.]. It is in fact the software applications used to create
and view the digital data behind “new media” that are responsible for most
of the properties and affordances these media expose [14, p. 149ff.].

Maybe it would be more sensible to call the kind of new media that
are accessed via digital devices, and that are constantly changing and rein-
venting themselves, dynamic to express the fact that behind these media
stand evolving technologies shaping the experience they offer. Software me-
dia might then be a sub-category describing media that are accessed through
screen-based devices like computers, tablets and smart-phones, as they are
the homes of the applications that are commonly referred to as “software”.
Virtual reality is a good example to test this formulation. In virtual reality
applications the goal is not an interactive screen but full immersion and

32

4. Software Media 33

immediate interaction. The much deeper connection it allows in comparison
to traditional software makes it more “hard” than “soft” and therefore not
a software medium as such, but still a very dynamic one.1

Lev Manovich proposes a new notion of how media are to be examined.
He suggests that particular techniques for the generation, editing and ac-
cess of content are the core factors of any medium. For digital media in
particular, he resolves that their essential components distinguishing them
from each other are the data structures and algorithms behind them which
are used to create, edit and view content [14, p. 206]. Previously there were
hard boundaries between technologies—like the television, the radio or the
newspaper—and thereby their associated techniques (of creation, access etc.)
were separated [14, p. 206ff.]. With the dawn of software this has changed
dramatically and new categories to distinguish digital media from each other
must be found.

4.1 Hybrid Media
Hybrid media, as Manovich defines them, are a product of the advancements
in software and hardware development since the late 1970s [14, p. 199]. The
roots of media hybridity lie in the power of the universal digital computer
into whose language the former analog media have been gradually translated.
In a general sense, all translation of real-world phenomena into a sort of vir-
tual representation inside a computer can be called a simulation, be it planet
trajectories, market behavior or a physically accurate paint brush. Formerly,
techniques were implemented in hardware instruments and thereby highly
restricted in their applicability by the form of their implementation and the
physical medium this tool was fitted for. The transfer of these traditional
media techniques into the computer meta-medium practically made their
merging and cross-fertilization inevitable [14, p. 199f.].

More specifically, the computer gave the analog media software as a
common basis and thereby enabled their fragmentation into smaller elements
like primal algorithms and data structures. In particular, every algorithm
and data structure can be related to media because, as time has proven,
almost every mathematical theoretical corpus can be employed for some
kind of communication purpose. It is this collection of algorithms that are
the base elements and capital of all digital and hybrid media. They made
the combination of previously independent media possible, leading to the
emergence of media concepts never seen before [14, p. 176].

But according to Manovich hybrid media is not just the necessary conse-
1Of course, I am completely aware of the original meaning of software as a set of

computer instructions but in the context of media I use the term to distinguish media
with a definite association with a “program run in the background” from media where
interaction is superseding this feeling [78].

4. Software Media 34

quence of the universal digital code but also results from the gradual devel-
opment of technological compatibility. File formats, modules and plug-ins
for import and export or network protocols comply with conventions aris-
ing from a social context and in turn they make communication and data
exchange between software solutions, facilities and individuals possible [14,
p. 336f.].

Due to the computer’s flexibility, collaborative strategies and modern
software development platforms, the creation of a new media “species” can
be done within increasingly shorter amounts of time, which explains the
incredible velocity at which new media emerge (and vanish). Also, with
the mouse and especially with newer technologies like touch-devices, a new
factor entered the picture and stirred up the previously simple concept pro-
grammers had of software. Interactivity is at the heart of many new-media
technologies because it is the immediate interaction with software and the
machine that give them the life-emulating qualities people have been dream-
ing of.

4.2 Interactivity
In general, interactivity is the capability of a system to react to an outside
stimulation with a more or less complex response that is usually expected to
be somehow related to the given input, to be more or less predictable, that
is. Theories of interactivity state different definitions of what should actually
be called “interactive” and what is merely “reactive” or non-interactive. For
computer systems, which are typically completely predictable, the delimi-
tation of interactivity becomes slightly simpler. The ways a computer can
exchange information with the human user and process it are (still) very
limited and therefore real interactivity is virtually not yet possible [56].2

As already pointed out in Chapter 3, in comparison to command-line in-
terfaces spatial navigation and spatial interfaces not only give the developer
more options to let the user control an application but also give the user a
lot more freedom in how they can generally interact with it. Therefore, more
consideration has to be put into how to restrict this freedom without it be-
ing too irritating. Even today, software tends to crash or not respond when
something unexpected happens (which always does with human users) and
therefore special precautions must be taken to prevent that. While this may
be tolerable for programmers who focus on particular use cases, it is a major
drawback for people without proper technical background and experience.

With interactivity the computer added another essential feature to the
2The concept of (artificial) intelligence would be what we imagine the source of actual

interactivity, meaning the complexity of the machine’s response matches the complexity
of our thinking. In this sense, the naive notion of AI includes interpretative and expressive
abilities while wisely excluding the threatening powers of decision and execution.

4. Software Media 35

collection of media techniques which had, for the most part, always been pas-
sive in nature. Interactivity opened completely novel possibilities to artists,
ranging from websites, apps and games to virtual reality projects and large
installations interacting with several people at once. Interaction with an arti-
fact provides to the audience a deeper feeling of involvement with its nature
and content, which is especially useful for art and learning environments.

The importance of interactivity in media could lead us to speak now of a
fundamental division of media in interactive and non-interactive. Both may
have equal rights to the attention of the audience from a cultural or peda-
gogic point of view but the ongoing advance of interactive technology allows
no conclusion about whether there will remain a small area for “traditional
media” to exist.

4.3 Popular Software
The network effect: The more members a network has, the more the mem-
bers profit from it. This simple observation underlines the radical difference
of traditional markets where there are limited amounts of products, and
new “digital” markets where the amounts are unlimited and therefore the
consumption of one person does not directly hurt another. The consequence
is that people, in order to gain the most from it, choose the bigger network
which supports the forming of monopolies [11, p. 197].

The traditional physical media were quite lucrative for artists as well
as publishers and generated reasonable profits, but since the advent of the
internet they have been constantly losing market share. They are giving way
to new ways of distribution that yield no or minor profits for the artists but
large ones for the distributors (platforms like online stores), putting artists
under serious pressure [11, p. 175].

By making the access of media content easy and fast, “on-demand” ser-
vices and streaming support and enforce casual consumption. The mecha-
nism is designed in a way that anything the consumer asks for is delivered
to them directly and—at least if they are on modern telecommunication
standards—without delay. With this little effort needed, little resistance is
evoked against constant consumption in the leisure time or even alongside
work. Obviously this reduces the importance of a single piece of consumed
content down to a fraction of its original value as it is drowned in a flood of
other content and activity [11, p. 176].

For media authoring software this also has an effect as applications with
larger communities of users supporting each other and contributing to the
overall ecosystem built around the product are more likely to be taken up
by newcomers because they promise a faster introduction and problem res-
olution.

4. Software Media 36

4.4 Software Accessibility
Using software made by a large corporation, or anyone else than oneself for
that matter, always entails dependency on that producer. Especially when it
comes to the industry where producing in commercial quality is paramount,
a small number of common tools dominate the market. While the individual
artist potentially has the freedom to work with whatever tool they like,
professional artists are very much bound to the software used and available
at their workplace, not least for compatibility reasons. That way, cultural
differences in production methods and techniques might even be overridden
by commercial software products from a specific country, targeted at a very
generic audience. Accessibility, therefore, is not only a question of how easy
a tool is to use and how easily it can be obtained, but also of which tools
are being made, under what circumstances and for what purpose they are
made [71].

Cost

Which applications a person can make available to themselves highly de-
pends on their financial and social context. Products developed for profes-
sional use are often very expensive, though payment-free student versions
may be offered. For artists, however, many of those tools are not available
because they cannot afford to buy them, nor are they entitled to student
licenses. Since these professional products are very well protected and their
usage also not widespread, it is sometimes difficult to acquire an illegal copy
of the program as well.

Slowly, free and open-source tools like Blender start to fill in the hole that
has been emerging due to the growing interest people are taking in media
technologies. At first, when the rise of digital animation began, hardly any
software was available to private persons at all and the few tools that existed
could be used only by specialists spending most of their time taming them
and sending back messages to the programmers, to remove that bug or add
that feature.

Usability

Tools that are based on technologies that are only just developing, are al-
most never built with a focus on usability. That is because the developers’
primary interest lies in the tools being functional and working well. Only
when the technical and performance problems have been sorted out, further
care is taken to improve the users’ experience with the tool. Sometimes, the
developers just don’t know what the users actually need.

In open-source software applications, which are developed by people out
of passion, mainly in their free time and without receiving any payment for

4. Software Media 37

their work, this phenomenon can still be observed. Many otherwise powerful
tools tragically lack in clear user interfaces and workflow-enhancing features.

Complexity

Another problem, which can be especially severe for artists and students, is
the complexity of professional applications. With more and more software
products flooding the market, even software manufacturers making tools for
professionals have been put under pressure to redesign their applications to
be more user-friendly and easier to learn. But until recently, these appli-
cations were created mainly with a focus on functionality in mind, making
them very hard to learn and understand and also incredibly unpleasant to
the eye (which might also have turned one or the other artist away).

Today, professional-level workshops and tutorials (e.g. from lynda3, gnom-
on4, digitaltutors5) are available for very reasonable prices, narrowing the
gap students have to jump when entering the industry. Thanks to the grow-
ing community actively using animation software in all kinds of productions,
there is also an increasing number of user-made tutorials on private blogs,
computer graphics and animation platforms like cgmeetup6 or on YouTube
and Vimeo as well. Still, since most lessons are intended to facilitate the en-
try phase into an application, it can be rather tricky to find comprehensible
instructions and documentation of tools that are more advanced or rarely
used. This goes especially for expert-level features like scripting, which are
actually aimed at a more technically skilled audience.

Hardware

Apart from this, another factor is the hardware performance consideration.
Professionals and studios spend a considerable amount of money on up-to-
date computers because they depend on their software running smoothly.
Students and artists, however, usually don’t have the means to achieve the
same standard and are therefore either completely excluded from the usage
of a particularly “hungry” package, or at least limited in the types and sizes
of projects they can create with it.

On the other side of this is the quick entry of desktop-level applications
into mobile devices. With the touch screens and ever more powerful process-
ing units smartphones and tablets possess, they are now capable of providing
capabilities in regards to creating drawn as well as 3D animation. The We-
bGL standard allows for 3D animation to be done even inside a browser
with applications like Clara.io7.

3http://www.lynda.com/
4https://www.gnomon.edu
5http://www.digitaltutors.com/
6http://www.cgmeetup.net/home/
7https://clara.io

http://www.lynda.com/
https://www.gnomon.edu
http://www.digitaltutors.com/
http://www.cgmeetup.net/home/
https://clara.io

4. Software Media 38

4.5 Post-Digital
The “shift from semantics to pragmatics” that Florian Cramer diagnoses
contemporary “maker movements” with can also be observed in animation
[68]. Animation has always had an element of exploration of texture and
materiality. Beginning with the abstract animations of Oskar Fischinger,
Norman McLaren to the early digital works of James and John Whitney,
the adventurous or “innovative” amongst the animators often pushed for
the novelty of the visual. Experimenters aside, with digital animation a new
mode entered the stage and claimed attention: procedural animation.
Although not by definition non-narrative, procedural animation is strongly
associated with abstract animation and a more liberated concept of story and
dramaturgy. Its function changed from minority enthusiast entertainment to
mainstream event spectacles and background visuals for music performances.
As such, animation became just another language in the canon of multi- and
hybrid-media contexts, like mobile apps and web platforms did a little later.

What Post-Digital means overall, as follows from the explanations by
Florian Cramer, is that “the digital” (as a synecdoche for all digital tech-
nologies and behaviors elicited through the digital revolution) has transi-
tioned from a state of being fascinating and disruptive to being special no
more but rather ordinary [68]. The less comforting aspect of this develop-
ment is that a world or life without digital technology is getting increasingly
unimaginable.

Although the Post-Digital is supposedly an attitude encouraging the use
of technologies not by default or fashion but by suitability for the specific
purpose, trends in animation indicate a growing importance of the digi-
tal production methods. Alvaro Gaivoto, an animator originally trained in
traditional methods, argues that “3D animation is an evolution of the ani-
mation genre” but that “the quality of story and direction has suffered” (see
Section A.2). This reflects a notion resulting from the deceiving universal-
ity of the computer—the “illusion of more control over the medium” [68].
But despite or because of the greater power and freedom the digital medium
indeed gives, the actual control the artist has over it decreases when the gen-
eral techniques associated with the medium (or rather the super-medium,
animation) are ignored or if the technology is not under one’s control.

4.6 Power to the Tool
Missing knowledge of techniques and basic properties of a technology or
the medium is the common source of loss of control to the tool. While the
programmer might understand the capabilities of a tool or a feature as a
starting point for others to explore further from, software users perceive
them as unchangeable defaults, especially beginners with no overview of the

4. Software Media 39

general possibilities.
Abstraction and automation unknown to the user are the main concepts

used to disempower them. By delivering to them a highly automated tool
with promised capabilities, seemingly giving them the powers to achieve
what previously could be achieved only by professionals, the user’s approach
to and acting inside or with the tool are limited and under control. Behind
this is the user’s desire to achieve without effort; but in practice average
effort can lead only to average achievement and by definition the average
can only ever be “mainstream”.

Presets, ready-made assets and templates are not necessarily an attempt
to deliver mainstream content to professionals or to un-diversify workflows,
rather they can have actual benefits in the beginning of commercial projects.
However, if we set dedicated professionals and artists aside, even if cus-
tomization and scripting mechanisms are provided, most users will not de-
part from the default (settings) because both good technical understanding
and special intentions are preconditions for this. The software medium makes
media (and software) literacy more necessary than ever.

Chapter 5

Tools and Operations

As pointed out, software development as well as the animation production
are per se evolutionary and innovative processes. Software constantly needs
to be updated, enhanced and extended. Even after careful writing, planning
and design the work on an animated movie requires frequent evaluation and
subtle and often enough radical corrections.

Computer Graphics in particular are still evolving rapidly and it is there-
fore logical that the tools created for them allow for extreme adaptability.
In general, if innovation is a goal, not only should the software tools incor-
porate innovative technology and research but they also should be flexible
enough to encourage innovation themselves.

5.1 Analog vs. Digital
When new technologies are developed there is always the question of whether
or not it is feasible or reasonable to change the whole existing and functional
system over to using that new thing. As outlined in Chapter 6, usually the
change happens gradually because a certain level of sophistication and ma-
turity must first be reached in order to make a new technology economically
attractive. The beginning of a new technology is often marked by a handful
of people seeing great potential in certain mechanisms, and this is exactly
what happened in computer graphics as well. When computers first got the
capability to work with graphics about 19601 traditional animation was al-
ready very much matured and a whole industry, led by the Walt Disney
Company, had been formed. But from the point where Ed Catmull created
his Computeranimated Hand in 1972, which could easily and with much less
effort have been produced with traditional methods, it took only about 25
years to the creation of the first fully computer animated feature: Toy Story.

1The first graphical computer screens were used with the TX-0 in 1951 at MIT [23, p.
38f.]. In 1962 Ivan Sutherland developed the first graphical drawing program Sketchpad
[23, p. 41f.].

40

5. Tools and Operations 41

To the early CG-pioneers it may not have been entirely obvious that com-
puters would afford qualities impractical for analog animation. Apart from
the different (“digital”) look of computer-generated images which was not
at all polished at the beginning of the CG success history2, the real poten-
tial became clear in 1982 with first complex effects and in 1985 with the
first believable integration of a near photo-realistically rendered being into
live-action footage [12, p. 9].3

5.1.1 Detail

In the 1900s the first animated films were created by J. Stuart Blackton
and Émile Cohl and in the 1910s the techniques were further refined with
an already sophisticated depiction of character in Winsor McCay’s Gertie
the Dinosaur. What is striking about all animation of that time and most
animated films for the rest of the century, is the cartoony style and simplicity.
Although painted backgrounds were introduced in the 1930s or even earlier,
characters and moving parts are being drastically simplified in hand-drawn
animation to the day.

It proved impossible to use the intricate painting techniques developed
over hundreds of years, with the goal of realism, on thousands of frames.
Furthermore, the effect of the story and overall emotional impact go un-
harmed when abstracted, “cartoony” styles are chosen. As opposed to the
shape and motion of characters, the detail of the imagery has no critical
impact on how the story or the characters are perceived; otherwise powerful
studios would have gone the extra mile of creating more detail instead of
staying with the established style.

5.1.2 Parameterization

Computer animation has a different mode of creation than frame-by-frame
animation techniques. Animation software is designed in a way to exploit
the computer’s innate ability to calculate fast and efficiently, simply lets the
animator define what is most important to them and interpolates everything
in between. Instead of having to draw every frame individually, the animator
sets up the key poses (posing), sets them apart from each other in the
timeline (timing) and adjusts the interpolation curves in order to create
sensible arcs. A traditional key animator is essentially doing the same but
more people are involved in creating the full animation and changing any
aspect usually means that everything must be redone. In computer terms,

2Take Pixar’s first animation short The Adventures of André and Wally B. (1984) for
example.

3In Star Trek 2–The Wrath of Khan(1982) fractal geometry generated by Loren Car-
penter and particle systems by William Reeves were used to create a planet. For Young
Sherlock Holmes(1985) a glass knight jumping out of a window was animated, again by
ILM [12, p. 9]

5. Tools and Operations 42

the animation in digital is just the product of a limited number of parameters
which the animator has to define in order to receive the desired result.

5.1.3 Complexity and Realism

The history of complexity as one of the primary incentives to move over
to digital animation begins with the early fractal experiments by Loren
Carpenter in the 1970s and leads up to whole cities generated procedurally.
Fractals are a key technology for the creation of realistic images because, as
Benoît Mandelbrot argues, many shapes and structures in nature are fractal,
having repeating and often nesting patterns that is. For example, mountains,
trees and textures are frequently generated through fractal algorithms [13,
p. 6ff, 25f.].

Particle systems simulate values on a great number of individual data
points. For computer animation, these points are usually located in 3D space
and forces like gravity, friction and wind are exerted on them. While the
primary attributes are usually location and speed, special effects like fire and
water can be created by adding simulation of temperature and branching
systems where a particle can itself produce more particles. Additional logic
can usually be attached to particles, which enables complex behavior like
flocking.

Complex phenomena like water and fire, but also whole cities and trees,
are very difficult to reproduce in analog animation because they need to
be made for each frame and give a continuous impression throughout the
sequence. Procedural structures can be generated easily by the computer
once the according algorithms have been implemented and even for big sim-
ulations of water the complexity achievable through acceptable calculation
times is far greater and the results more flexible than with traditional tech-
niques.

5.1.4 Amount and Mass Production

Apart from qualitative (complexity and realism) and productive advantages
(duplication, proceduralism, references) the computer also provides benefits
when the amounts and distribution of content are concerned. The ease with
which digital data can be transferred from artist to studio or from producer
to the consumer is also one of the reasons hand-drawn animation is nowadays
done on the computer as well (see A.2). The traditional process required
masses of paper, expensive animation cels and hours of scanning in the
drawings in order to digitize them. With a high-resolution graphic tablet and
a few days of practice, most artists are able to reproduce their drawing style
directly in the computer. The resulting data is cleaner and easier to compress
and use in the further production. Instead of ink and paint, vector lines
are used and the areas are filled with color automatically. Disney’s CAPS

5. Tools and Operations 43

(Computer Animation Production System) revolutionized this process for
their large productions in the 1980s. CAPS maximized the work-load a single
animator could do by simplifying processes and automating the redundant
ones [57].

As with most technological developments, with every breakthrough in
animation technology, the amount of work and the budgets of movies did
not decrease despite gains in productivity and efficiency. In contrast to tech-
niques which enable the efficient creation of something and are limited in
the degree of acceleration because of human limitations, new technologies
generate even more goals and optimization to be made. The result is that
an even greater amount of content can be produced with the same means.
Since creativity cannot (yet) be industrialized and mass produced, partic-
ular effort must be made to uphold the quality of storytelling and visual
diversity [75].

5.1.5 Accessibility and Distribution

The already mentioned speed of data transfer has more advantages than
just to make collaboration of artists around the globe easier. Today, most
animated short films are released on online movie platforms like Vimeo or
YouTube. All in all, every movie (short or feature) is available online at some
point and therefore accessible to an increasing amount of people all over the
world. Student and artist films are commonly put online after their initial
reception through animation festivals and thus receive much more audience
than they would without distribution on the internet. Since most animated
short films are not made with the intention of making profit (which is very
difficult), their free availability does not conflict with the makers’ interests.
The animators are often trying to get into the industry and make use of the
public channels which bring their work closer to potential employers.

5.2 Procedural vs. Handmade
What the above discussion points at is that part of the question of ana-
log or digital is actually not about whether a computer is involved but
whether the art is hand-made or procedurally generated. While frame-by-
frame animation—either with a rig or a brush—is possible on the computer
just as painting every texture by hand, the computer offers the power to gen-
erate content automatically as well. The properties and strengths of software
and computers have been discussed in Chapter 2. They appear again in the
context of animation software because they have essential impact on how
people work to create animation.

5. Tools and Operations 44

5.2.1 The Thought Process

The approaches taken to produce visual art by hand in analog or digital or
procedurally differ significantly as two completely different thought processes
are involved. For creating art by hand, artists think in terms of shape, color,
composition. Artists need to envision and think about the overall structure
of the image from the first drawn line on because every additional line will
just add something and correction is often difficult. Especially in analog, one
usually plans the composition and certain aspects of the image in advance
but once the actual drawing or painting has started, one is working on the
artwork itself.

When working in digital, like Painter4, ArtRage5, Photoshop, Krita6

(open-source) or comparable painting software, established mechanisms like
layers and non-destructive effects give the artist more flexibility to make
changes to any part or aspect of the image at any time. The underlying
paradigm is to encourage a mode of working in which big structures are put
first, because they have the biggest influence on the image, and finer details
are added gradually, layer by layer. That way one can change the appearance
of foreground elements without damaging the background behind, which is
impossible to achieve in analog without a layering technique, for example
with animation cels. The digital medium makes the painter more flexible
and efficient [9, p. 29].

Procedural generation of an image requires a different way of thinking
about nature and the object one wishes to show. Instead of focusing on ap-
pearance, the structure and rules behind the objects and phenomena must
be analyzed. Since procedural generation is happening in the context of the
computer, precise instructions must be defined which the machine can use
to create the representation itself. These instructions can then be used to
produce a near infinite number of instances and if the procedure is powerful
enough, randomness in parameter values can lead to different results for ev-
ery instance of the generated object. In this context, objects or “instances”
can be textures, meshes, complex ecosystems or other digital content; im-
ages, text, animation or even speech are possible as well [22, p. 95–113].

While the artist should be aware of the desired end-result in analog
construction, this is not necessary for procedural generation. One reason is
that rules and procedures can be changed at any time because the computer
allows it. The other is that the computer makes it easy to change perspectives
on the content and, in 3D software for example, enables the artist to move
the camera and view the scene from any perspective. The image composition
and many other components of the final image can be decided and easily
adjusted later on. These properties are a result of software variability.

4http://www.painterartist.com/
5https://www.artrage.com/
6https://krita.org/

http://www.painterartist.com/
https://www.artrage.com/
https://krita.org/

5. Tools and Operations 45

5.2.2 The Efficiency of Proceduralism

The efforts and steps necessary to create procedural or hand-made animation
are very different. Building a complex system of objects, materials, lights,
shaders and more takes a lot of time. Therefore, it is often easier and faster
to use traditional techniques to create a single image, because thought must
only be given to visual aspects and the artist works on the final image.
On the other hand, painting the same image over and over again for every
frame, with little variation, takes a lot more time. If a logical structure
(like a scenery) is used for more than one frame, it might be faster and less
tiresome to build the structure once and to let the computer do the repetitive
work. Once the definition of the animation and visuals is established, a whole
animated film can be rendered without someone ever having to paint a single
frame.

5.2.3 Faking It

Animated films in the style of painting often use painting techniques on
media less permanent than actual oil on canvas, like The Safe House by
Lee Whitmore, for which she painted with oil on a glass pane, with colored
paper as a background. But even with this reduced style only between two
and forty frames could be produced on a day at certain times, depending on
the activities on screen [58, p. 7f.].

Visual Effects: Matte Painting

Since the beginning of the 20th century a technique called “matte paint-
ing” had been used, where parts of the image the movie camera recorded
were covered with black tape and a painting on glass was created to replace
them. Thanks to this technique places could be shown in movies that were
either impossible or too expensive to go to or to build as a set. The principle
this originally analog technique used was adapted, brought to the digital
domain and is now a standard procedure in post-production. Digital matte
paintings expand the possibilities of the matte painting by drawing from “il-
lusionist” compositing techniques developed much earlier by filmmakers like
Georges Méliès. The workflows involved often combine multiple technologies
and are built upon a layering strategy where visual elements from different
sources are used to compose a seamless fitting background, sometimes even
extending into the foreground. As is accordant with Lev Manovich’s theo-
ries about the roots and properties of hybrid media, the imagery of which
these elements are composed can come from a variety of different production
methods [14, p. 281].

The usually cheapest and easiest way to generate imagery for this pur-
pose are stills and video with removed background, e.g., by means of keying
or rotoscoping; if shot and prepared in the right manner they can be used

5. Tools and Operations 46

(a) (b)

Figure 5.1: The team of Contre Temps used a lot of matte paintings to
speed up and simplify the process of creating the elaborate backgrounds
they had planned [41].

(a) (b)

Figure 5.2: Cyriak’s animated films are based on de-construction and re-
reconstruction. He separates visual elements (film, photos or animation) from
their context and recombines them to form creatures and even new spaces
(a) Cirrus (2013)[39] (b) Cycles (2010)[42]. The result may have an analog
look to it, due to the nature of the used material, and its resemblance to
traditional collage, but the complexity of motion and recombination points
to the computer’s power of abstraction and automation.

to replace a sky, parts of buildings, to insert people or even crowds in a
scene. With the same techniques the British After Effects artist Cyriak cre-
ates animation of a radical fascination and complexity, using the effects of
repetition, combination and transformation.7

The second main way of producing material to enhance the footage shot
on set with is, of course, computer animation. “Set extensions” are commonly
used to replace sometimes ridiculously small set structures with computer-
generated environments. For that, the set must be measured precisely in
terms of scale and lighting and in combination with the data acquired by
camera tracking the footage, the physical elements can be perfectly overlaid
with computer rendered images of the desired location, designed and built
entirely in the computer. Unnecessary to mention that the whole range of
animation characteristics—transformations, characters and effects—can be
inserted in these ways.

7Cyriak’s work can be found on http://cyriak.co.uk/index.html.

http://cyriak.co.uk/index.html

5. Tools and Operations 47

5.2.4 Realism

Before moving to the criteria of realism, we should discuss whether a 3D
scene consisting of hand-made models, textures, lighting and shading should
be considered hand-made. This is clearly not the case because the rendered
image, which is calculated by the computer through algorithms and simula-
tions, is the end-product, not the scene itself.

A couple of factors are essential in the examination of what makes an
image realistic. Questions about the meaning and differentiation of terms
like “realism”, “photo-realism” and “naturalism” are ignored here and the
aspect discussed shall be the quality of animated imagery to appear “real”
or indistinguishable from reality. The art-genres called “Photorealism” and
“Hyperrealism” are the upper limits of the degree of realism possible with
traditional techniques. They have the professed goal of creating art (e.g.
images or sculptures) that looks exactly like the “real” originals which it is
trying to imitate. Painting a photo-realistic image can take weeks or months
and actual references must exist to be copied. It is evident that it would take
far too long to create photo-realistic animation with thousands of frames by
hand [19, p. 396].

Although an exceeding amount of intricate work is involved in creating
a photo-realistic 3D rendered scene and the rendering takes very long be-
cause of the physically based lighting algorithms used, this is still a more
practical solution than creating every frame by hand. In order to integrate
animated imagery with live-action footage, like for most of today’s movies
where set extensions, characters or whole environments are done in 3D, the
perspective and motion of the two components have to match as well. This
is almost impossible to do in traditional animation. The movie Who Framed
Roger Rabbit (1988)[46] mixes live-action with animation, and frequently
cameras are not static but moving, which entailed an incredible amount of
work. Today, many movies use shaky hand-camera or at least freely mov-
ing cameras throughout or in action sequences, and despite these camera
movements being a horror for match-moving and rotoscoping, studios doing
visual effects seem to cope [37].

5.2.5 Coherence and Abstraction Mismatch

In order for imagery to be visually appealing, it must possess a certain
degree of coherence. This is the reason why collage-like animated films where
live-action footage is combined with abstract computer generated material,
cartoon animation or graphic elements often fall apart visually or have a
strange feel to them. The structure of textures used in an image should be
roughly similar in terms of detail, organic-ness and color.

While traditional techniques mostly provide a natural feeling to im-
ages on their own—due to imperfections in the materials and the artist’s

5. Tools and Operations 48

technique—in digital one is constantly fighting against the precision and
sterility enforced by the computer. Analog artistic methods usually lead to
a good level of coherence by design because the materials involved are the
same over the whole piece of work. Still, consistent technique and conscious
balancing are necessary [27, p. 325f.].

For computer animation, objects and characters are created one-by-one
from scratch and thus, coherence must be actively imposed and checked,
especially when several people are working on them. Painters usually develop
individual styles early on and learn to imitate other styles properly if trained
formally. Good 3D-artists may have a formal training in design and in the
technologies of computer animation but their work often contains a technical
component that can draw too much focus to itself, leading to a blindness to
the relevant qualities of what one is creating.

When we look at Ed Catmull’s A Computer Animated Hand (1972)[34]
we can observe this kind of clean, unnatural feel to the images which per-
sists in amateur animations to the present day. In Pixar’s The Adventures
of André and Wally B. however, this abstract quality has already been over-
come to some degree, not least because of John Lasseter’s excellent character
animation and the effort put in the background details.

5.3 3D Animation Suites: The Technology in the
Back

Complexity is one of the severest problems 3D software has nowadays. When
3D animation was first explored in the 1970s and 1980s one had to be a
proficient programmer if not a genius in computer science in order to work
on and complete a 3D-animated film.8 Although multiple approaches were
taken to make the software more user and artist friendly, in the prevalent
3D applications like Maya, 3dsMax, Cinema4D, Modo or Blender we have
huge and very complex programs and user interfaces. Moreover, it is often
not enough to have some superficial knowledge of how to perform a certain
task because issues will arise that can only be handled with deep knowledge
of the system [31]. Some of the properties (and troubles) of 3D applications,
resulting from their technology, are outlined in the following:

5.3.1 Operations

While in 2D space most common operations can be performed with a limited
number of (old and tested) algorithms and implementations following best

8In 1985 four Canadian students (programmers) created the first computer animation
exhibiting emotional facial expressions on a person: Tony de Peltrie (1985). Considering
the means they had at their disposal (mainframes running a self-written animation soft-
ware called TAARNA) and the state of the technologies, their work was awe-inspiring [23,
p. 67ff.].

5. Tools and Operations 49

practices, in 3D space the number and complexity of algorithms increases
considerably. For this, again, there are many reasons. One of them is that
screens and print media are two-dimensional and therefore cannot show a
three-dimensional model directly but it must be projected onto a plane (and
rendered) in order to be visualized. Another reason is simply that with ev-
ery dimension a system becomes more complicated because there are more
possibilities and degrees of freedom. So, Quaternions had to be developed as
a representation of rotations, ray-tracing is used in many areas from lighting
and rendering to physics engines, texture mapping is used to project a two-
dimensional texture onto a 3D surface. Other concepts that were developed
for representation and manipulation in 3D space actually have 2D variants
but become a lot more complicated and calculation intensive when used in
3D space, like NURBS, Bézier splines, polygonal meshes or Boolean opera-
tions. Many techniques have been invented since the 1970s and many have
been rigorously tested and improved, but still, accord might not exist in the
industry about which implementations are the fastest and most stable. And
often, different techniques are used for similar things but neither is ideal for
all use cases, which makes it more difficult for amateurs to choose the right
one.

5.3.2 Data Structures

Apart from a plethora of techniques and their implementations there are
also different complex data types they have to work on. Three-dimensional
shapes are represented in either mathematical form as the result of formulas
(NURBS) or as a collection of points connected in a particular order (poly-
gon mesh). Polygonal meshes are complex data structures because they can
consist of millions of points (vertices) and many problematic situations can
occur that make it very difficult for algorithms to operate on them success-
fully. Examples of such problems are faces with more than three (or four)
vertices, non-planar faces, faces without an area, holes in the geometry,
wrong-ordered vertices. During the course of the work on a model many of
these can appear; often they are difficult to avoid, if at all, and they can only
be resolved with the proper knowledge. Naturally, when one has to deal with
such intricate problems, the implementations of operations working with this
data contain many mistakes as well because they have to account for a lot
of situations and issues, which makes them more vulnerable. Furthermore,
these different data and file types are difficult to convert between and for
many concepts no standardized formats exist yet. Applications have to sup-
port a number of file formats in order to be compatible with each other in
one or the other way. Many of these formats are legacy and not up to date
with the most recent technologies.

5. Tools and Operations 50

5.3.3 Renderers

Responsible for creating the visual representation of the 3D data (objects)
on the screen, renderers are usually integrated into 3D suites as a plug-in
and must be compatible with the internal data formats of the software. They
add another level of complexity as well because data might have to be pre-
pared for a specific renderer and for many of them, particular arrangements
must be made in order for them to work properly. Some demand completely
new ways of working and thinking as compared to the renderers built-in or
included with the 3D packages. Most of them are focused on a particular
style and consequently employ a specific, optimized set of technologies. For
example, one might choose V-Ray or Arnold for photo-realistic rendering,
Renderman for a “Pixar-Look” or a Vector-renderer for a cartoon look. Cur-
rently, it seems like renderers are at times having deeper impact on workflow
and visual results than the 3D applications themselves.

Next Limit Maxwell Render is built for applications where photorealism
is required. As a product for a very specific purpose, its professed goal is
to provide short render times as well as maximum usability for the task.
Therefore, it is designed exclusively for people with a background or solid
knowledge in photography, and not rendering and lighting technology. In
order to “speak their language” it has controls based on observable and
intuitive parameters. The website also promises predictability and reliability,
as one would expect from a realistic renderer [59].

Photorealism is certainly a fortunate case where usability can be enor-
mously improved through technological progress because the expectations
of what the result should be are homogeneous throughout developers and
artists. Set aside the consequent loss of diversity when it is so easy to cre-
ate high-quality imagery, this is a positive step, enabling artists to focus on
results instead of algorithms. This simplification of the production of the
romanticized photorealistic images might even lead to a decline of their im-
portance and, if corresponding tools follow that bring similar usability to
software for more liberated creation (of a less specific nature), other visual
styles might regain popularity.

5.4 Animation Software: Logic and User Interface
With many available (and necessary) operations a great number of com-
mands must be accessible through the interface. These operations have dif-
ferent meanings, purposes and targets and therefore they should be grouped
so the human user can more easily recall where they are. Working with dif-
ferent data types means that even more options must be available to create
the data, manipulate and view it. The process of viewing the data should be
possible in real-time in order to provide instant feedback about an operation
and information about the state of the data and the software system. This

5. Tools and Operations 51

can be challenging because large amounts of data and complex scenes can
easily put too much strain on the computer’s hardware and make the speeds
necessary for professional work impossible.

Most important, however, is constant feedback about the state and cur-
rent doings of the system. Since operations in 3D-applications can take a
very long time it is extremely frustrating for the user when they don’t know
what the system is processing and why it is taking so long. Sources of the
prolongation should be pointed out right away, defective data sets be iden-
tified and solutions offered.

5.4.1 Software as a Medium for Creating Animation

For every medium fitting instruments are required to comfortably and ef-
ficiently create and manipulate content for it. Most media were invented
before the computer and hence devices had already been constructed for
them when the computer became a meta-medium. These devices, be they
video editing systems, darkroom equipment or the multiplane camera, are
tailored to the needs of the operator and the properties of the physical
medium that is to be manipulated by them. To reach a point where a sat-
isfying experience could be offered took a long time of experimentation but
in the end the limitations of the physical devices and media themselves were
the main reason basically all media were transferred into the digital domain
[14, p. 58f.].

Remainders of these physical devices are still lingering in the GUIs of
our media applications, though. Graphical interfaces are usually modular so
their elements can be arranged as favored by the user and to provide visual
structure. Each of these arrangeable elements (panels) has a specific pur-
pose and controls certain aspects and properties of the content or medium.
For example, the Maya Attribute Editor controls attributes of objects, the
Photoshop Layer Palette controls the order and properties of Layers, the
ZBrush Material Palette controls the properties of materials.

5.4.2 Timeline

Timelines are GUI elements that are used to navigate inside a temporal
structure and to indicate the occurrence of certain events over its course.
They can be used to represent data or operations that are active or valid
only at a particular point in time and to show processes that take place over
a period of time. While keyframes, which are used to describe the state of
properties at one time, sit on a single point on the timeline (e.g. a particular
frame), the activity of layers9 in After Effects is depicted as a bar spanning
between a start and an end point on the timeline.

9The layer bars are controlling whether the layer is shown and evaluated or not [28].

5. Tools and Operations 52

In most 3D animation programs there are options to control how keyframes
are shown on the timeline, to adjust their color and which keyframes should
be shown, but there are no ways of creating a more meaningful view telling
about properties like visibility, the state of IK/FK switches or color gradi-
ents directly in the timeline. It can also be important that the user be able
to give input through the timeline. The position and length of transitions
from one footage item or animation clip to another can be indicated or a
time-range be marked that a particular effect should be operating on.

The appearance and functionality of the timeline depends highly on the
kind of data or material that it is supposed to control. Multi-lane timelines
like in audio editing software (digital audio workstations, short DAW 10),
video editing software (non-linear editing systems, short NLE system11) or
After Effects support and enforce a “directing” kind of workflow because
they allow to have an overview of the properties (position, length, etc.) of
several lanes (or layers) and to manipulate them in context. So far, animation
applications usually do not provide such a kind of overview because they are
not designed as a directing tool but just for implementing a preconceived
idea in the software medium. It is therefore difficult to work in a mentally
more abstract mode where one can think about the synchronization of many
objects at the same time.12

5.4.3 Layers

Layering is the process of stacking items on top of each other. This is used
to combine items that should be kept separate for practial reasons. Whereas
with analog media, like photographs, one can simply put one image over the
other without one replacing the other completely (physically), when it comes
to data the mechanisms involved are not so straightforward. Because data is
numerical and exists only virtually as a physically transitory configuration,
two data items require both a context and an operation to combine them
together and constitute a “layered” state. Specifically, data items usually
possess additional information about their state in the context, like position,
rotation and size. An algorithm then receives the items as an input and
generates the same result for the same input every time. Technically the two
data items are used to generate a third item that represents the combination
of the two. The original data items are used only to manipulate the result in
a way more flexible than if the items were combined irrevocably (the original
data be deleted).

Although layering is used in a variety of areas, the easiest to understand
use case is images. In the Photoshop layer palette, layers carry the data

10http://en.wikipedia.org/wiki/Digital_audio_workstation
11http://en.wikipedia.org/wiki/Non-linear_editing_system
12Compare this to my notions about abstraction in software programming outlined in

Sections 2.3.1 and 2.3.2.

http://en.wikipedia.org/wiki/Digital_audio_workstation
http://en.wikipedia.org/wiki/Non-linear_editing_system

5. Tools and Operations 53

while the layer mode defines the calculation method by which a layer is
combined with the result from the layers below. As color is a rather complex
data type with several representations, the number of layer modes available
in Photoshop is far greater than what is usual for other applications like
animation layers where basically only one combination (addition) makes
sense.

In some cases, like 3D applications where 3D primitives are added to a
scene, the combination of items takes place not on the actual data level but
happens in a final rendering step, like the projection of 3D objects onto a 2D
plane, in this case. Still, scene editors (in Maya the Outliner) allow additive,
non-destructive, layering workflows.

The effect layering workflows have on the user is that they don’t see the
working area not as a continuous surface anymore to which only permanent
changes can be made, but a collection of separate objects that can be set in
relation to each other. This is especially relevant when it comes to anima-
tion because it makes possible a true decoupling of elements: independent
objects can be moved independently without influencing other objects. As
Lev Manovich describes, this act of abstraction is a result of the thinking of
data and code as modular [15, p. 30f.].

The layer representation, however, has a severe limitation that is its
focus on the combination of data instead of its transformation. This
means that common layer GUIs often have inconsistent ways of represent-
ing operations because the only operations planned for in this concept are
those combining two data sets together. Photoshop, for example, shows fil-
ters like Blur or Stylize as components of individual layers13 while it shows
color transformations as adjustment layers which are similar to data layers
in all respects except that they cannot hold pixel data. Both Smart Filter-
components and adjustment layers can be deactivated, activated and have
their properties and parameters changed, but they possess different capabil-
ities and limitations. For example, a filter cannot be applied to the result
of multiple layers at once and adjustment layers can be applied only to all
layers below it but not to an arbitrary set of layers in the palette [33].

5.4.4 Nodes

Nodes are the next step of abstraction following the layer representation.
They are individual items that can either hold data or represent an op-
eration that it performs to data it receives. The program holds the data
and behaviors in these nodes which have inputs and outputs and can be
connected in a usually separate editor. We are here talking about “node
networks” as opposed to simple stacks and this implies how much more

13This is only the case if they are set to be “smart”, meaning they get the ability to
be manipulated in a non-destructive manner on the object basis (as opposed to the layer
basis).

5. Tools and Operations 54

(a) (b)

(c)

Figure 5.3: The network shown in the Nuke node panel (a) and the layers
in the After Effects timeline (c) both produce the result in (b).

complex and confusing they can be.
Each node receives the data from the preceding node through the input

channels, processes it and passes the result on through the output channels.
This concept is a lot more flexible because it treats data items in the same
way as operations, but as can be seen from an example from Nuke, the
functionality of two simple pixel layers in After Effects requires a more
verbose representation in Nuke with nodes: five nodes and a Viewer are
needed instead of one layer (see Figure 5.3) [32].

There are also differences in how the data contained in the nodes is
processed to contribute to the actual media result (the image or 3D scene).
In Nuke or VVVV, nodes need to be connected to a Viewer or Renderer
node in order to be processed and added to the image, whereas in Maya it
is not always clear which nodes produce output and which don’t. This may
be partly because these applications put different focus on the node graph.
Nuke and VVVV use the node graph as their main working area; so in order
to add anything to the project, be it a data item or an operation, a node
must be created and connected in the node editor. Maya, on the other hand,
due to different established workflows in 3D applications, offers the usage
of the node editor as an addition to the other editors of which the Outliner
is most important for scene organization. Both solutions can be confusing
in different ways or make it difficult to manage data and data-flow in the

5. Tools and Operations 55

project.

5.5 Introducing: Maya 2016
The following discussion of the Autodesk Maya 2016 3D animation soft-
ware will be based on several videos provided by Autodesk to give an
overview of the new features in this 2016 release.14

In each of these videos Daryl Obert, then Technical Marketing Manager
for Maya at Autodesk, presents features of Maya 2016 together with another
person from the management or development teams of Maya. The changes
addressed in [73] are all about how they tried to make Maya faster and eas-
ier to use in general but also specifically for beginners with no experience
with the software. Some of these features seem to come a little late into an
application that should really be all about usability and artist empower-
ment, especially considering the trends and advancements in user-centered
development of the past years. For many years Maya lacked a general direc-
tion in the design of the software and features added were mostly technical.
However, due to its universal node architecture and the integration of deep
interoperability mechanisms like the Maya API and the MEL and Python
scripting languages, unlike simpler architectures might have, Maya did not
hit the ceiling of its technical capacities. With the 2016 release, it seems,
Maya finally arrived in the twenty-first century and includes features like
Editable Motion Trails which allow editing animation paths in the viewport
[73, T=00:44:35], the In-View Attribute Editor for faster access to tool pa-
rameters [73, T=00:18:25], a Look Development Environment inside the Hy-
pershade where material properties can now be edited and effects observed
directly [73, T=00:06:20], a new Pivot Workflow inspired by SoftImage [73,
T=00:21:50]. But efforts were also made to amend the outdated Scene Eval-
uation logic which now supports multi-core systems and graphics processors,
improving animation playback speeds significantly [79]. For riggers and tech-
nical versed people a profiler was added [79, T=00:03:35].15 Very thoughtful
changes made to the Maya user interface are the task-based menu sets that
group tools based on what part of the general workflow they are used in
[73, T=00:03:10], DPI-dependent scaling of interface elements so they ap-
pear the same size even on high-resolution displays [73, T=00:01:20], and
the grouping of tools in the shelves by color which makes the identification
of shelf buttons and their purpose easier [73, T=00:02:35].

Setting these changes in relation with the factors of interactive systems
already discussed in Chapter 3 about user interfaces suggests more immedi-
ate feedback, faster and more direct input and better visual organization of

14The videos used are the following: Supercharged Animation Performance in Maya
2016, Making Maya Easier To Use.

15The game engine Unity has had a performance profiler feature for years now.

https://www.youtube.com/watch?v=KKC7A9bbUuk
https://www.youtube.com/watch?v=KKC7A9bbUuk
https://www.youtube.com/watch?v=zR5ZsEIc9u8

5. Tools and Operations 56

the user interface. Albeit, even more shortcuts and “quick–” features have
been added which still, as the videos indicate, appear to be badly docu-
mented or hard to find.16

5.5.1 Software and Best Practices

Talking about the efficiency of deformers and supposed “better practices”
inside Maya, at [73, T=00:40:24] Maya Animation & Rigging Development
Lead Martin De Lasa makes an interesting point: “rather than continuing
to encourage people to maybe abuse Maya in ways that, you know, were
kind of not consistent with the original design we’re trying to encourage
people to move towards other kinds of deformers”. This expresses two ideas,
one being that users indeed abuse an application when not working in the
ways originally intended by the developers, and also that the developers are
actively thinking about how to constrain people in how they can work with
the software, or at least about how to make them use predictable workflows.

We should not go as far as to accuse Autodesk or other software man-
ufacturers of deliberately trying to prevent people from using their soft-
ware in unintended ways (and to make them think in specific ways), but
rather it is the essential problem of all interactive software applications so
far—applications without intelligence and high-level communication abili-
ties, that is—that certain paths through the system must be secured and
recommended. After all, the developer cannot actually foresee what the user
is going to do, but they can try and steer them in particular directions.

The concept in question here is that of best practices. In the soft-
ware context best practices are usually sets of instructions and guidelines
accumulated by one or many entities that yield better results than other
methods [66]. Especially when development and management are concerned,
best practices sometimes conflict with common sense or the solution reck-
oned best at first view. When technology is concerned, like in the example
of deformers above, results are commonly measured numerically17 and the
most efficient method identified in that way. On the one hand techniques
are essential when very specific tasks must be performed with a minimum of
time or resources, but on the other hand techniques inhibit the artist from
experimenting with less-than-perfect approaches and block their view from
encountering new creative options.

The problems outlined above remind of those that persisted for a decade
with the JavaScript programming language18, whose concept and design

16See [73, T=00:14:48] and [73, T=00:23:25].
17Depending on the case the frame-rate, execution time or quality of the result, measured

by an algorithms can be used. For complex problems best practices are often based just
on statistical analysis.

18JavaScript is the first and only major language used on websites and interpreted by
web browsers. Due to this availability it is perhaps one of the most used languages in
terms of how many people engage with products using it every day.

5. Tools and Operations 57

was badly misunderstood, which was used in amateurish ways and, more-
over, implemented differently and sloppily throughout browsers and there-
fore really hard to use in a consistent and reliable manner by developers
at all. From about 2005 on, frameworks were developed that exhibited and
enforced a best practice style in JavaScript and with the ever-growing num-
ber of powerful tools (which are free and easily available) the Web 2.0 and
3.0 flourished and expanded rapidly in the numbers of users and develop-
ers alike. It was only with these new, simpler frameworks and other tools
like Yeoman19, which enable streamlined mechanisms to set up and manage
projects, that more people got interested and more creative work could be
done on the web platform [61]. In the liberated context of the world wide web
it proved a necessity to bring order to the massive number of different soft-
ware involved by installing and promoting standards that create a basis for
more advanced technologies and more democratic access. These standards,
however, were established not by a single player but through collaborative
processes.

5.5.2 Open-Source

Partly as a result of the open-source trend—catalyzed by the web’s induced
networking, democratization and globalization trends—by now a number of
universal data exchange formats has been developed. Unlike many of the web
standards, 3D-related file formats and conventions are mostly originating
from corporations like Autodesk or ILM. The FBX file format, which has
become one of the most widely used formats for mesh and animation data
exchange because of the availability of FBX import and export options in
all major 3D software, is still undisclosed and can only be used through a
SDK provided by Autodesk [62, 70].

Alembic is an open-source file format that enables the exchange of mesh
data between 3D applications as well as renderers and compositing appli-
cations. It is not built around an abstract representation of shapes, scene
hierarchies or rigs but the common denominator of all 3D software, that is
vertices and meshes. Alembic can be used to transfer baked animation from
one software to the other. Although it offers a safe, efficient and consistent
way of doing this, which is very helpful for visual effects because of varying
compatibility with other “high-level” file types, it cannot replace FBX due
to its limited scope [64], [8, p. 8].

OpenEXR is an extremely powerful and versatile open-source image for-
mat for high-dynamic-range images, developed by ILM. It supports a spec-
trum of features essential to computer animation and VFX: high precision
(each color channel can be saved in a 32-bit floating point format), a num-
ber of compression algorithms, Deep Data, multiple channels. Being able to

19Yeoman is based on Node.js, a cross-platform runtime environment running JavaScript
code [60].

5. Tools and Operations 58

save many channels into a single image file makes sense for rendering and
compositing workflows because thousands of frames might accumulate for
an animated film and if all render passes were separate, each in its own
file, the numbers would multiply. With OpenEXR all connected data stays
together in one place [76], [8, p. 8].

Conventions like the data formats above are very valuable to the commu-
nity and stimulate cooperation and exchange. Every artist and professional
may have their own preferred tool to create, edit and distribute content but
only if common technologies afford easy interoperability can more creative
collaboration and constructive cooperation take place on a larger scale.

5.5.3 Learning Curve

There are currently maybe over a dozen professionally usable general-purpose
3D animation applications on the market. If we attempted to oversimplify
the situation, we might say that there are essentially two types of applica-
tions: the quick and easy type and the powerful and difficult type. Now,
in this particular context these terms are actually misleading because they
suggest there is software to create good animation with easily at all. But
in my opinion there is no software that makes animation really easy and
provides an agreeable set of advanced features nonetheless.20 Rather some
applications are only as complicated to learn and use as necessary for basic
workflows and others are built for more complexity and flexibility.

On the upper end of this scale, Maya has a very complex architecture
and it exposes a great deal of its sophistication on the user interface. The
result is that it has a steep learning curve and requires a lot of dedication
to learn well but proves extremely powerful and extensible. This becomes
clear already from the way Maya manages the modularity and variability of
objects in the 3D scene: with nodes.

As discussed, in order to build flexible structures, components which
build upon each other are necessary. The logical and simplest representation
of such a structure is a layer stack. In 3ds Max so-called modifiers are layered
on a stack, each taking the input from the modifier directly below (see
Figure 5.5). Just like in Photoshop this has the advantage that it is easy
to understand and operate. Maya on the other hand uses the node concept
to represent scene objects and connects them by itself when operations are
called. Initially before digging deeper into the software, one has no idea of
these concepts and might see changes as permanent but as one goes on to
encounter errors, tutorials or the manual, these more technical aspects of
the application can be engaged with and used to achieve different results.

20Coming developments may prove this statement wrong. The French company Nukey-
gara is working on an animation application Akeytsu which is very light-weight and built
exclusively around the requirements of animators. It also has basic rigging functionalities
[29].

5. Tools and Operations 59

Figure 5.4: The Node Editor panel in Maya.

It is important to note that neither representation is better than the
other, nodes are simply more powerful and precise but less expressive (in
programming jargon) and layers are much easier to understand but have
certain limitations in what can be built with them. What all of the current
applications for animation (be it 3D or 2D, hand-drawn or vector-based)
have in common is the lack of a mechanism to switch through different
levels of abstraction quickly and intuitively.21 Each offers a different kind of
representation and tries to stay faithful to their strategy but all have certain
obvious limitations that can be got used to only through lengthy training
and comprehensive knowledge of the application’s features.

21Layers are here referred to as one and Node Networks as the other layer of abstraction.

5. Tools and Operations 60

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: These panels show how the components controlling a Boolean
operation are represented in various programs; the polyCBoolOp node (a)
in Maya and its attributes (b); the Modifier List with the Boolean Modifier
in 3ds Max (c) and its parameters (d). In Blender’s modifier list (e) each
modifier’s parameters are integrated into the list item as an expandable form.
In Cinema4D the target shapes of the operation are put underneath the Boole
object (f).

Chapter 6

The Animator

6.1 Digital Workflows
Before asking questions about the potential or actual problems with digital
or software-based production, one should also think about its immediate
advantages. There are two main properties of software that make it especially
efficient and convenient to use as a tool, in comparison to analog media: the
universality and compactness of data. With compactness I mean that data is
extremely portable and can be transferred all over the world with unrivaled
speed. Universality means that data can be very compatible because simple
programs or exporters can be written that bring data structures into specific
formats, where all, the information about the format, the exporter and the
data itself can be easily exchanged. Also, the internet makes it easier to
negotiate a common data format.

Quicker and easier collaboration is certainly a plus of software, as tools
exist to facilitate the organization and exchange of production data. Media
like movies, texts or music can be distributed cheaper and more efficiently
through the internet and common data formats enable that everyone can
consume them without any further requirements than a computer or smart-
phone. Digital media are usually cheaper to produce because no physical
tools and materials are needed. However, the increase in performance and the
amount of research required for big projects generally bring the budget up to
level, as in software one can always push further if the means are available.
Another important convenience is that a plethora of tools, algorithms and
possibilities of data manipulation (in the positive sense) exist and that many
people spend time developing new ones, due to the ease of access to software
as opposed to hardware tools.

Apart from these advantages associated with the general properties of
software there is also the arguable aspect that it is commonly regarded faster
and easier to learn to do something with software than with traditional me-
dia. Automation is hard to do for analog media but is one of the core virtues

61

6. The Animator 62

of software, so it is no wonder that with presets, auto-features and image
filters even the beginner can quickly put together something agreeable and
sometimes even commercially successful. Unfortunately, automation seduces
us to let the computer do the work, and to slide into a mode of combination,
repetition and adaptation where the necessity for a vision is dropped and
the software predetermines the outcome with its powerful, convenient but
standardized settings.

Data Flow

In the context of or when set in relation to software, the concept of “work-
flow” receives a whole new connotation than what was common before the
information age. Data in computers essentially has the ability to flow freely
between different hardware systems and software programs. If not obstructed
by hardware or software mechanisms designed for this, due to its universal
binary code, data has no limits as to where or how fast it can move around,
except the speed and bandwidth of the infrastructure. Hence, unlike the
painting which takes a long time to be transported from the artist to the
consumer, the digital image can be transferred almost instantly. Although
it seems, digitality has solved a whole set of problems, like the resistance of
content to be moved, these problems have simply been shifted to another
point in the process. Unlike the painting, which as a physical object has a
truly universal structure to all humans, the image data is not accessible to
human senses and requires translation by a human-interactable computing
device. A painting may have several levels of messages that can be inter-
preted from it, and just as a human requires certain knowledge and states
of mind to extract them, the computer requires certain information in order
to extract the universal image data from the image code.

Data Formats

Like cultural conventions, of visual, social or whatever nature, data formats
are merely conventions, based on some sort of optimized structure, to fa-
cilitate understanding and communication. Cultural conventions, although
sometimes seeming arbitrary when one looks at the broader multi-cultural
picture, are usually not only agreements constituting the cultural context,
but include certain optimizations like practicality and unambiguousness.
The structure of data formats, however, is optimized for different aspects,
one of which usually being file size. Admittedly, there never is a single, obvi-
ous way of encoding a complex structure like a program or a database, but
the necessity of saving space is the cause of many frustrations due to one
person or the other company feeling obliged to think of an especially shrewd
way of compressing data into an even smaller file.

6. The Animator 63

6.2 Technology: From Geeks to Mainstream
The simple distinction between professionals and consumers made in Section
2.1 can be further refined in regards to technology. The following “three
phases of adoption” have been developed by David Liddle [18, p. 245ff.]:

• Enthusiast: When a technology is first invented and introduced it will
be used only by enthusiasts who do not necessarily care about its
usability. They will tinker with it and try to make it work for them
[18, p. 246].

• Professional: Once the technology has been developed into a product—
by the developer or by the tinkerers themselves in the case of open-
source projects—people are going to try to make money with it. If a
similar product already exists the existing professionals will be hesi-
tant at first to try out or move to the new one. Otherwise, some of the
former enthusiasts will try to found a new industry. Now, the technol-
ogy must not only produce nice results but it has to perform well in
order to enable professionals to make a living and to keep them from
moving on to a competing product. Still, professionals will make an
effort to make it work for them since their know-how with technology
is one of the factors that distinguishes them from others and that is
what they are paid for [18, p. 246].

• Consumer: In the final stage the technology must be so easy to use
and understand that anyone without massive technical knowledge can
use it. For the developers this is the most difficult step because at
this point people without a clue about the underlying complexity will
challenge every aspect of the implementation and design and must be
led to a satisfying experience with the product [18, p. 246].

6.3 Animation: Schools, Studios and Artists
This above scheme is, of course, valid also for animation software. Most cer-
tainly animation programs have moved through the enthusiast phase with
pioneers like John Whitney from the 1950s to the 1970s [23, p. 26ff.] making
early digital animations, to early commercial software in the 1980s and the
first industrialized animation productions in studios like Pixar and Indus-
trial Light & Magic. There definitely are trends indicating that soon it will
be possible for animation to be taken up by an even greater number and
variety of people.1 Looking at these structures in society installed to have
animation as their focus, a different categorization could be made:

• Learning: Students; they know they have to learn it to get a job.
1Consider e.g., Adobe’s recent product Character Animator: https://helpx.adobe.

com/after-effects/how-to/adobe-character-animator.html retrieved October 14, 2015, 13:00.

https://helpx.adobe.com/after-effects/how-to/adobe-character-animator.html
https://helpx.adobe.com/after-effects/how-to/adobe-character-animator.html

6. The Animator 64

• Commercial: Production studios and advertising agencies; they just
want to get it to work.

• Independent: Artists and amateurs; they have little willingness to cope
with technologies or concepts they don’t understand—content is king.

These three groups differ a lot from each other as far as their usage of
animation software is concerned. The main factors distinguishing them are
to what kinds of software they have access and what their motivation is to
use it.

6.3.1 Mentalities

One might be tempted to believe that these categories reflect the actual path
people go from being students through a career as a professional animator
to being an artist, and in some cases this is true because studios are always
looking for talented and creative people who, at some point, wish to be
independent. This certainly serves them well in their understanding of and
working with the technologies. But with the contemporary notion of the term
“art” goes along its parting with the associated obligation of mastering a
craft (like painting, sculpting or animating). Feeling that bothering with
technology and craft are just obstacles to self-expression, more artists now
refuse formal education and focus on their convictions, learning bits and
pieces of their tools on the way, mostly auto-didactic.

6.3.2 Students

In the 1970s and 1980s, schools with a focus on animation and little later
computer animation began to pop up. Since animation studios had always
had troubles finding talented animators, these schools specialized in training
people to work in the animation industry. The demands on young animators
have certainly always been high and to be able to work in a field as com-
mercialized and economically driven as the entertainment industry, students
must specialize in a particular area soon after learning the essentials. Prac-
tical experience and particularly a strong “show reel” are critical to one’s
entry into the industry, but with ten thousand applicants on one hundred
internship spots, studios like Pixar can choose freely among the available
talent [1, p. 143]. Moreover, the fiercer the competition gets, the more spe-
cialized and the better trained young professionals will need to be.

6.3.3 Training: To Be an Artist or an Animator

Training, however is not the same as education plus experience. Focus on
only a few aspects of the production and the resulting animation, its message
and the experience it offers, leads to disconnection from the outcome and a
decrease of the number of people who influence it. Commercial entertainment

6. The Animator 65

does not have to be experimental—that is the arena of artists and small
independent entities—however, since everything distributed and marketed
through public media channels targets a substantial amount of people (unlike
most art, unfortunately), these media objects need to be examined closely.
Frequently, it seems, political and corporate agendas are in one way or the
other communicated through moving images, and it is not in the interest of
the producers to have employees question their motives.

6.3.4 The Artist and the Animator

The animation artist David O’Reilly approaches software in a very optimistic
way and uses its limitations in order to create unique and new animation
styles [63]:

Software has inherent limitations. When your imagination comes
into contact with limitations it produces ideas.

As an artist nowadays mostly working with traditional media, Angie
Jones—formerly an animator and now teaching Maya at university—has a
very different perspective on software and tools in general. For her, just like
the oil pigments she is using for her elaborate painting process, software
applications are merely a tool for realizing her ideas. It is the story and
the feeling that really matter and after having worked in the CG animation
industry for a considerable time she does not feel constrained by software in
any way but rather enjoys the flexibility of her tools (see Section A.1).

It seems, many experienced artists—especially when coming from tradi-
tional media, which require long training and perseverance—tend to focus
on content and its quality and therefore see technology as only a minor ob-
stacle on the way. With 3D-animation software becoming publicly available
and making the use of the timeline overly easy with functions like auto-
matic “easing”, the barrier to produce any kind of animation is lowered
considerably. Drawing skills are difficult to acquire but anyone can pose a
well-rigged character in software, without much training. To introduce tran-
sitions between poses and to make a character perform certain actions is a
matter of clicks and a couple hours tinkering. But to learn the principles
of animation—posing, timing and spacing—and to be able to produce high-
quality and natural motion requires far more time, knowledge and skills.
While software makes it easy to start out with something, by replacing
complex skills (drawing a whole character in every detail) with simple pro-
cesses (moving the characters leg where you want it), it does not make the
underlying skill sets—observation of people and their behavior, judgment of
color, proportion and shape—any easier. If anything, one will be less inclined
to learn something difficult after learning something easy because the effort
doesn’t seem worth it anymore when everything else is easy.

6. The Animator 66

Indeed, through standardized software, the computer allows not only to
create animation in industrial standard quality but, as Paul Wells argues “at
a industrially determined aesthetic level” [26, p. 50], leading to the situation
where “everyone’s movies sort of start to look and feel the same” (Don
Hertzfeldt).2

6.4 User Motivation
Psychologically, there is a variety of reasons to make animated movies, or
practice any other kind of art or craft, for that matter. There is also, how-
ever, the very obvious construct surrounding the professional industry. Pro-
fessional animators make movies to earn money and students make movies
to learn it, to go on making movies and money. Since the skills required
to make animation are very advanced and achieved only through long and
hard work most people in the animation industry, just like in games but
possibly even more so3, are enthusiastic about animation itself and there-
fore highly motivated and dedicated to their work. The high level of abilities
reflects in the choice of new employees which puts animation students un-
der pressure to present show reels and portfolios exhibiting state-of-the-art
technologies and skills as well. Consequently, the student’s focus, whether
they want to get into the industry or the art scene, will decide whether they
concentrate in their preparation on experimentation and storytelling or on
visual complexity and technology.

In the art scene of animation there is a lot of pressure as well, however.
Due to either insufficient funding programs or too many artists applying
for them, depending on the country, funding for a project is difficult to get
and it is therefore difficult for animation artists to make a living off their
work. The long time it takes to learn animation software and subsequently
also the fundamentals of animation which require practice and live study to
master, makes the situation even more severe. The complexity of the software
alone can make ambitious future animators shy away and even once one has
acquired the necessary skills a single animation project can take a long time
to finish and many frustrating mistakes can be made along the way.

2Quoted in [26, p. 61].
3See the famous example of Pixar: http://thenextweb.com/media/2012/05/21/how-

pixars-toy-story-2-was-deleted-twice-once-by-technology-and-again-for-its-own-good/,
retrieved October 17, 2015, 15:00.

http://thenextweb.com/media/2012/05/21/how-pixars-toy-story-2-was-deleted-twice-once-by-technology-and-again-for-its-own-good/, retrieved October 17, 2015, 15:00
http://thenextweb.com/media/2012/05/21/how-pixars-toy-story-2-was-deleted-twice-once-by-technology-and-again-for-its-own-good/, retrieved October 17, 2015, 15:00
http://thenextweb.com/media/2012/05/21/how-pixars-toy-story-2-was-deleted-twice-once-by-technology-and-again-for-its-own-good/, retrieved October 17, 2015, 15:00

Chapter 7

Animation and Software
Artifacts

The history of computer animation is mainly a history of technological
breakthroughs.1 For motion pictures the invention of the movie camera was
already the biggest step forward and further developments were heavily con-
cerned with visual language, editing and acting techniques. The technology
of the camera is not a primary factor for the overall effect of the movie.
With digital production, computer generated visual effects and set exten-
sions this changed dramatically and full-CG animated films rely on certain
technologies to deliver a coherent and compelling impression.

7.1 Animation and the Impossible
In the introductory Section 1.5 about animation it was already pointed at
the notion that the domain of animation is the impossible to see. Despite all
the definitions of animation, pinning it to techniques, technologies, genre,
historical meanings and developments, animation is eventually simply de-
fined through what it is used for and what it can be used for—what its
purpose is. If we watch a live-action movie with VFX, what we see is an
actor, who is obviously not animated, and a monster, which is animated.
Whether the set extension, replacing the movie set with a view on cities and
mountains, is animation is probably dependent on the technique used and
the type of camera movement. But even if a still image or an inanimate 3D
model may not traditionally be seen as animation, I argue they are subject
to the same effects and principles.

I am proposing the following list of categories of things that animation
is mostly used for (or why it is used in the production of a story). It should
not be seen as comprehensive but rather as the starting point of a discussion

1https://en.wikipedia.org/wiki/History_of_computer_animation

67

https://en.wikipedia.org/wiki/History_of_computer_animation

7. Animation and Software Artifacts 68

about the suitability of software for these purposes:
• Impossible structures (e.g. spaceships, alien planets, aliens),
• Invisible structures (e.g. atoms, the inside of the body),
• Impossible transformations (e.g. that of one person in another, of a

thing in another, or even the continuous changing of shapes as demon-
strated in Foldès’ La Faim (1974)) and

• Possible structures/transformations for cost (e.g. set extensions)

7.2 Modes of the Digital
Now, by coincidence (or design) software, with the blank page it creates for
the building of new tools, has at its core a similar purpose—the liberation
of the human from their physical form—and thus is a platform capable of
visualizing just about anything imaginable [26, p. 96]. Naturally, software
dominates where it comes to realizing the impossible and brings some of its
own logic into animation techniques, processes and in the end, style.

7.2.1 Transformation, aka Blending

As mentioned above, transformation is one of the key modes of animation
because it usually goes beyond what is possible in reality. But transformation
is along with variability a core concept resulting from parameterization, that
is, using variables instead of constants to control shapes makes it possible
to change the shape of something over time. Several mechanisms based on
the principle of blending are in place in software today.

The simplest example would be the blend modes in image editing or
compositing applications like Photoshop and Nuke. Blend modes define a
formula which takes two images, usually one over the other, as an input and
gives a single image as a result, blends them together. By putting different
weight on the two input images or varying the transparency of the images, a
blending effect can be achieved—a transformation of one image in another.

The usual, basic, approach to animation, if we disregard complex and
overlapping movements, is to see motion as a gradual change of an objects
position from one place to another. While in discrete (e.g. traditional hand-
drawn or frame-by-frame) animation motion is seen as a change from one
frame to the next, computer animation abstracts the process and lets us
define motion by a start and an end point. The computer, then, is able to
calculate the object’s positions in-between the two, to interpolate them.
Since this information alone is often not enough to design a motion pleas-
ingly, additional tools like tangents and curves are used to tweak timing and
motion path. The great advantage of this approach is that very little defini-
tion (in the sense of data, not know-how, of which a considerable amount is
required) by the animator is actually needed to create a decent animation.

7. Animation and Software Artifacts 69

Also, start and end points are potentially variable, so that the computer can
“decide” itself, what paths the objects should follow, which is exceedingly
helpful for procedural animation.

Blendshapes are a technique used to accomplish the animation of com-
plex organic (or not organic) objects like faces, which cannot easily be rigged
part by part because they consist of many parts enclosed by a single hull.
They let the user define several instances of geometry with the same topol-
ogy (e.g. several duplicated human heads), but different shape (e.g. normal
face, smiling face), and blend additively between them. In practice, this
means that one can add certain features of the blendshapes to the “normal”
state (e.g. the lifted eyebrow from one and the squinted eye from the other
blendshape) and thereby not only avoids modeling every single distinct ex-
pression (like it is done in stop-motion), but can also interpolate between
them continuously. This technique is based on the blending of the vertices
between the base mesh and the changed positions on the deformed meshes.
Each blendshape has its own weight, controlling the impact it has on the
resulting shape. As sometimes hundreds of blendshapes are used on a sin-
gle face, to enable sophisticated, natural expressions, additional tools are
devised to facilitate control and make the usage more intuitive.

7.2.2 Resolution

Numerical values, the ones that are used to interpolate between states, are
infinitesimal, at least as far as the user is concerned—the limited preci-
sion of decimal numbers in the computer is rarely an issue. The limitations
of resolution, however, are frequently disconcerting. As parameterization is
limited by the capacities of the human brain (too many parameters destroy
the usability), resolution is normally limited by the speed of the computer.
Parameters are intended to be an interface for the user to control a machine,
whereas the computer itself manipulates a far greater number of parameters
(be they pixels or vertices), according to algorithms and their exposed pa-
rameters. The term “resolution” means that something consists of smaller
parts and implies that we are not interested in what these parts are, as is
true for pixels and vertices. It becomes indeed difficult when we are forced to
think about these smallest parts nonetheless. Natural shapes and colors are
grasped intuitively, our perception cannot be measured, and when we have
to deal with their mathematical representations, work can get frustrating.

Actually, the frustrating part seems not to be the development of a vir-
tual representation (like meshes, NURBS, skinning), but the work at the
border of technology and art. Technologists are used to solving technical
problems and are absorbed in their matter; artists are used to working with
intuitive tools to express their thoughts. Of course, this view is a simplistic
generalization—indeed both groups need to be really into their work and
have a purpose for it at the same time—but still there is a border area be-

7. Animation and Software Artifacts 70

tween art and technology where it is difficult to act, as one is not sufficiently
immersed in both domains. Nevertheless, it is exactly this border area which
proves most inspiring and fruitful because drawing from concepts of both
areas leads to unexpected, innovative ideas and solutions [24, p. 79].

7.3 Visual Style
Although the basic materials involved in the creation of analog animation
are the same as they have been in traditional arts for hundreds of years,
the animation culture enriched the overall stylistic diversity of visual arts
dramatically by adding previously considered childish or simplistic styles to
the new canon. That this was possible might be due to various reasons, one
of which being that animation was not subjected to professional criticism
for a long time because of its experimental nature and the fact that it was
long not recognized as an art form but seen more as entertainment, which
enabled animation artists to work more freely within their own modes of
expression and style. Another aspect could be that the images were now put
to more explicit use as they told stories that everyone could understand and
relate to, as opposed to still images which require more knowledge and time
of reflection in order to lead to a satisfying interpretation. They can also be
made more entertaining as the attention of the audience—which naturally
follows action—can be massaged by the skillful lowering and heightening of
tension. It is therefore easier to accept a simplistic style in an animation
than in a painting because the latter has to rely on the quality of its static
visual appearance only, whereas animation can distract from its appearance
with other aspects. In fact, according to Scott McCloud visual abstraction
can help the identification of the audience with characters in a story [16, p.
30f.].

The way animated films are made, the styles and approaches used, highly
(but not exclusively) depend on which of the groups mentioned in Chapter
6 the makers belong to.

7.3.1 Perfection

The entertainment industry is a particularly competitive one and anima-
tion studios must stand up to large production companies with enormous
resources. Animated feature movies are generally very successful with the
young audience and the number of adults taking interest in animation is
growing constantly. Especially if the narrative abides by high standards and
offers depth and a critical component the chance to reach a larger audience
is very high as compared to entertainment-only comedies or children’s series.
But still, the main selling points of animated movies seem to be comedy and
entertainment as well as visual impressiveness and complexity. This is not
to say that realism is the ultimate goal of the so-called “animated feature”

7. Animation and Software Artifacts 71

(a) (b)

(c) (d)

Figure 7.1: In Big Hero 6 (a, b)[38] and The Lego Movie (c, d)[45] huge
cities are seen (a and c), often only for a couple of seconds. (b) and (d) show
plastic materials, as did Toy Story because they could be rendered more
believable than organic materials at the time. But now, the lighting and
rendering technologies make the translucent surfaces look realistic in ways
impossible only years ago [74].

(this is the case for visual effects) but the audience recognizes incoherent
levels of abstraction in the image.2

Since the image has such an impact on the audience, studios are always
struggling to stay on top and to incorporate the most recent technologies
into their films. Many of them are actively researching and developing tools
and some are even contributing their developments to the public.3 For a
while now, crowds of people, morphing, hair, fur, liquids, trees, particle and
rigid-body simulations and cloth have been standard for big productions
and they are (or becoming) available to amateurs as well. More recently it
has become possible to create large procedurally generated cities, realistic
snow, even more realistic lighting models and to control immense masses of
individual parts in very complex ways (see the effects in The Lego Movie
and Big Hero 6 and Figure 7.1). The reason why these cannot be used by
amateurs and small studios for now is that they require enormous computing
power which is (despite Moore’s law) yet available only to large commercial
facilities.

2For example, if the behavior of clothes and fabrics is physically accurate it might look
strange if the character’s floating hair were reduced to a rigid mass; imagine Rapunzel’s
hair in Tangled being a mesh rigged with a simple joint chain.

3See OpenSource projects like Alembic, OpenSubdiv, OpenEXR.

7. Animation and Software Artifacts 72

7.3.2 Abstraction

Hand-drawn animation has traditionally stimulated creative character de-
sign. Not only in artist animated films but also in series and feature films,
characters have been given expressive and strongly abstracted shapes. The
drawing medium allows that shape per se (as opposed to detail) has no
impact on how much work it is to bring a character to life.

In 3D computer animation, on the other side, more restrictions exist re-
garding the flexibility of characters and their deformations because less tricks
can be used to make them look correct. Although shapes are not limited as
such, their motion must be more accurate because the camera is positioned
in 3D space and often cannot be prevented from seeing mistakes. Incorrect
deformation and interpenetration can become an issue if a rendering style
is chosen that accentuates mistakes instead of hiding them.

As a result of the procedural design of 3D animation software (parametric
parts are defined instead of continuous object-states) more thought has to be
given to the design and technical structure of assets, characters and scenes
overall.

7.3.3 Faces and Expressiveness

The expressions of the face are an essential part of human communication
and they can convey feelings or even thoughts. Since animating details and
believable facial expressions is laborious and difficult in traditional anima-
tion, in many stop-motion or hand-drawn animations faces are deliberately
left abstract and generic. Commercial productions always incorporated more
or less detailed facial animation but on the other hand, means were devel-
oped to transport emotion on different levels. The body language exhibited
in the Italian animated TV series La Linea is a great example of how facial
animation can be substituted or complemented effectively [40] (see Figure
7.2).

With technologies like blendshapes, muscle rigging and facial motion cap-
ture, facial animation has become a standard in 3D animation and it is
not regarded a specialty any more. At the same time, the techniques origi-
nally designed to make up for the missing face expressions—not only intense
body language but also techniques in editing and visual design—are used
less and less. Despite the immense possibilities of the computer, mainstream
3D animation is not any more “hybrid” than the traditional Disney cartoon
animation.

7.3.4 Transformation and Smear-Frames

Despite the supposed “nativeness” of transformation to software, transfor-
mation is not a very simple thing to do in computer animation. Although it
is fairly easy to do “tweening”, that is to animate a single value over time,

7. Animation and Software Artifacts 73

(a) (b)

(c) (d)

Figure 7.2: With extremely reduced means La Linea (1972)[40] manages
not only to tell stories but also to evoke empathy.

it is usually difficult to transform complex objects like people or creatures.
Non-linear deformers like squash and stretch and bend give good results for
primitive deformations adding to expressiveness but they do not allow what
we mean by transformation as in Hulk (2003) or even Transformers (2007).
For effects like these, many, possibly nested, transformations of individual
parts must be put together to form a coherent whole. Such effects were
mostly simplified or left out in traditional animation, and rarely used in
full-CG animation until recently; they are, however, an essential asset for
Visual Effects movies.

So-called smear-frames are used to make motion appear more fluid and
they are based on a simulation or faking of camera artifacts in animation,
where motion-blur does not occur. Rather easy to create in hand-drawn an-
imation, they are distinctly hard to create in the computer because creative
and controllable solutions are usually more desired than simple simulations
of motion-blur. Several categories of smear-frames are used in traditional an-

7. Animation and Software Artifacts 74

(a) (b)

(c) (d)

Figure 7.3: WalkingCity shows the ever same walking animation in a loop.
But while the base motion stays unchanged, the geometry following it trans-
forms constantly. While frequently the old version is substituted by the new
one and organically reduces itself (c), sometimes when the walking character
is changing, the old geometry is subjected to simulation and left behind like
trash (d). The look of this film is dominated by global illumination and fluid
(a) and particle effects (b) [43].

imation and some are much more difficult to make in computer animation
than others. In general, considering the fact that smear-frames are individ-
ual frames which must be crafted basically one-by-one, they are far greater
effort to use in digital than in analog animation and they have therefore
been mostly ignored, so far.

7.4 Art and Animation After the Digital
Before digital tools were invented to create media and art, the artist stood
in direct and usually tactile contact with their medium, be it pencil and
paper, chisel and stone. With software comes a medium that allows for the
creation of other media that do not stand in direct relation to what the
artist uses in order to shape them. After a digital image has been printed
on canvas or a movie transferred on film it cannot be connected back to its
technical source, were it not for specific characteristics of digitally produced
media, for example those pointed out in Section 7.5. The medium for the
artist to carve their message into, now, is not necessarily the medium the
recipient interacts with to perceive it. With physical media the possibilities

7. Animation and Software Artifacts 75

of reshaping a specific medium and its content to fit another one, or even to
allow mechanical reproduction, are very limited. Digital data on the other
hand is a universal carrier of content and can therefore be remodeled (say,
converted) rather freely. Thus, the message the audience receives is depen-
dent mainly on the properties and capabilities of the media decoding it,
nowadays mostly software applications like video players, web browsers or
games [14, p. 149f.].

7.5 Arising From Constraint
Constraints and thereby challenges are known to produce particular ambi-
tion and creativity in us to solve the problems and find ways to realize ideas
and visions. Certain ideas and solutions would not have come to being at
all without the proper challenge presenting itself. It is the problems and
limitations that drive and inspire us.

The following are only a few of countless aesthetic styles that have made
their way into art and culture, being the result of embraced technological
limitations:

Abstraction

Abstraction can be applied to the appearance of beings, motion, behavior,
etc., and represent them to a certain degree and under certain circumstances.
But abstraction can also be exaggerated and then the image might not be
a representation as such but an indication of some thing’s existence and
acting (as in the case of Memo Akten and Quayola’s Forms; see Figure
7.7) or the image might trigger a mere association with one or a variety of
phenomena. As the “abstraction and automation machine”, the computer
is the ideal environment for the production of complex representations and
motions and lends a whole new mode of working and a new scope to already
existing and proven techniques.

In The Lego Movie explosions, water and other effects, normally created
with millions of tiny particles, are represented with Lego bricks and therefore,
like the whole movie, have a very abstract appearance. “Analog” effects4

like this—and the movie has indeed a sort of analog look to it, due to its
photorealistic shading (see Figure 7.1)—would not be possible with analog
techniques but are a development based both on traditional techniques and
the possibilities of the computer.

4The term is used here to emphasize that the look of these effects is derived from
traditional techniques with a lot of limitations regarding complexity, as opposed to the
standard, highly complex digital effects.

7. Animation and Software Artifacts 76

(a) (b)

Figure 7.4: Hunger (1974) was one of the earliest computer-animated films
at all and features objects and characters constantly transforming into each
other [44].

Vector Graphics

The characteristics of vector graphics are their smoothly flowing edges and
organically shaped color regions. Vector-based images contrast to hand-
drawn images by their perfect line quality which is a result of the (Bézier)
splines’ continuous interpolation. The probably first vector-animated films
were made by Peter Foldés in the 1970s 7.4. These techniques were then
used in motion graphics and for advertising and information purposes—
advertisements and infomercials.

Low-Poly

The previous limitations of polygon modeling (exemplified by the “box-
modeling” technique) lead to the popular low-poly look where complex
shapes are represented by abstract polygonal objects. A whole culture has
been built around this style which is associated with, or even a result of, the
restrictions imposed on artists working for game productions, because game
engines are very limited in the amount of data they can handle.

One of the consequences of this connection is that the low-poly style
is sometimes used to distract from how brutal or macabre the animated
scenes are (see Figure 7.5), or to give them a naive undertone emphasizing
the story’s irony. This could support the hypothesis that abstract visual
style also supports more abstract thinking and perception or, as McCloud
says: “amplification through simplification” [16, p. 30].

The goal not to create realistic looking characters and objects can be
inspiring and also lead to interesting designs and solutions regarding how
characters are made to express emotion [47].

7. Animation and Software Artifacts 77

(a) (b)

Figure 7.5: The animated short Flying Lotus—Kill Your Co-Workers by
Mike Winkelmann is made in a minimalist low-poly technique. It receives
part of its charm from the analog looking rendering with lots of imperfections
and artifacts added on purpose. Particle effects augment the piece through
their complexity and intensify its game-like character [47].

Ambient Occlusion

Ambient Occlusion is a technique that is supposed to fake light behavior
in locations of a scene that are “less accessible” to light. This is done by
measuring how much geometry is surrounding a certain point and darkening
the area according to how many directions there are from which light might
be coming. The effect is that corners and grooves appear darker, which gives
surfaces nice gradients and makes them more natural than if their shading
was constant. However, this technique is not an adequate simulation of light,
like path tracing, but merely a quick approximation based on observations.

Actual simulations are often difficult to control in artistic ways because
they are not based on a design whose purpose is to give control to the user,
but built around an understanding of a process. While with simulation the
definitive focus lies on getting the most accurate result in reasonable time5,
with faked solutions the original intention is to reproduce an effect without
knowing or respecting the logic of the physical phenomenon.

Ambient occlusion may be an outdated technique but as a means of
creating volume and space without realistic shading, it is still an interesting
tool for animators who are not after photo-realistic imagery (see Figure 7.6).

Particle Systems

Early examples of the usage of particle systems demonstrate the wish to
make effects without having to painstakingly draw them frame by frame,
but make evident that having the right mechanism alone is not enough. The
imitation of natural effects using large particle systems often requires using

5This means the developer is concerned more about the steps of the calculation them-
selves, and that they are correct and optimized, rather than great flexibility. Scientifically,
there is only one true solution to a simulation problem.

7. Animation and Software Artifacts 78

(a) (b)

Figure 7.6: Although surfaces in Or Bar-El’s Beat have almost no texture
and are differentiated mostly by subtle variations of color value, light and
darkness create a strong feeling of space. The strong exaggeration of shadows
in corners and at the bounds of surfaces suggest the usage of non-physically-
based lighting models used to generate a digital, almost clinical look [36].

millions of particles and immense computing power.
Today, the typical old look of particle effects—the unnatural behavior

and artificial texture—can only be found in cheap games because with op-
timizations and fast computers, quite realistic looking water and fire effects
can be simulated in real-time. Up-to-date liquid simulation technologies re-
quire much more calculation power and render time but don’t seem to have
any limitations as far as realism is concerned.

For the artist, particle systems have great potential because they are a
way of abstracting the individual object and thinking of a complex system
in a more general way, instead of having to plan the path of every single ob-
ject. Particles add texture by contributing random elements, choreographed
behavior or even near-physical simulation. In Forms the artists Quayola and
Memo Akten use particles and procedurally generated geometry to visual-
ize forces and motions occurring when world-class athletes perform their
routines (see Figure 7.7).

The “Pixar look”

As pioneers of computer animation, the Pixar Animation Studios were the
first to tackle and succeed creating a feature length computer animated film.
The style exhibited in Toy Story was refined and increased in quality ac-
cording to new technologies developed or improved especially for particular
movies, like hair for Monsters, Inc. or underwater shading for Finding Nemo.
In its essence, this style has been adopted by all other animation studios and
a great number of animated films, both of long or short form, build on it.

In the tradition of Disney’s traditional animation, it has a very cartoony
visual language but combines it with strong physical lighting models like
global illumination and subsurface scattering. Detailed textures and mod-
els add complexity just like fur, hair, particles, fluids and physics simula-

7. Animation and Software Artifacts 79

(a) (b)

Figure 7.7: The data on which the imagery is based was gathered entirely
from video footage of the athletic performances. The result is an abstract
animation that still suggests a certain connection with its source but operates
in a digital, sterile space. It receives its meaning only through the association
with the real-world events behind it [35].

tion. Until recently shading and lighting were the major culprits in creating
images that clearly pointed to the computer as their source. But with de-
velopments in this area, 3D computer animation seems to develop a style
independent of its technological limitations. Examples for this are movies
like Monster’s University, Dreamworks’ Home and Disney’s Big Hero 6,
which are both, realistic and pleasing on their surface, and fantastic and
meaningful in their core. Once the race for unprecedented realism and tech-
nological break-throughs in CG is coming to an end (and as it seems this
is already happening), maybe animation will become more liberated and
diverse again.6

6In painting, prevalent styles became much less prominent as soon as all secrets of
photo-realism had been discovered in the 20th century. Today there still are many different
directions in painting, most in the tradition of or based on previous styles, but there is no
single one at the top.

Chapter 8

Conclusion

This paper may have touched upon only a small fraction of the actually
observable effects of software on art and animation but I believe in conjunc-
tion with theoretical work and research from other fields and the opinions
of artists representing the practical side, it has become clear that software
influences its users and especially artists and professionals in the creative
industry significantly. Still, psychological research about the effects of tools
and especially software may be highly necessary.

One of the outcomes of the ELIZA project, conducted from 1964 to 1966
by Joseph Weizenbaum, seemed to be that people are easily tricked into
believing a computer system to be intelligent. Humans are programmed to
recognize other people based on a minimum of information and this principle
has been used to simulate human vision, by making computers see faces
everywhere, or to make software impersonate a therapist [25, p. 368ff.].

In opposite to this effect stands the objectification of computers and
software. Since the processes taking place in the computer—the services,
applications and algorithms—are invisible, the workings of the computer
overall are transparent. This means that what the user sees of the ongoing
processes is controlled by the computer itself or, in the end, the developers
of the software. Algorithms and programming are not impartial and ab-
stract, as corporations like Google or Autodesk want to make us believe,
but expressions of the judgment and thinking of their creators, developers
and executives. Much of this thinking might be directed to design and logic,
but information about the actual agendas are not available to the consumer
[67].

There are two fundamental differences between traditional tools and soft-
ware, particularly in the art context: While most traditional (artist) tools
are simple and easy to understand, question and manipulate, software is
extremely complex and difficult to have an influence on. Also, software is
mostly a black box whose content and principles of operation are completely
inaccessible. For these reasons it seems naive and careless to believe that

80

8. Conclusion 81

software can be a tool just as subordinate and unbiased as a paintbrush—
without access to the source code at least.

More specifically relating to art and animation software is the question of
their missing flexibility in regards to the current requirements of the user. As
opposed to programming languages, which are really more a problem-solving
environment where one does the creative work in beforehand and then goes
in to implement the solution in code, the purpose of animation software is
not only to provide the fastest way of creating what the user imagines. Of
course, a first step might be just that, to enable any user to quickly visualize
what they have in mind, but on top of that animation software should also
be the platform for innocent and undirected creative experimentation. It
should inspire and challenge the mind of the user through its immanent
logic when this is desired but be available as a well-meaning servant when
absolute efficiency and obedience are required.

Overall, digital animation seems to go towards more interactivity, real-
ism and hence less handmade and more code-generated content. It is ob-
viously possible to proceduralize all existing visual styles—even the pre-
digital ones—and thereby broaden the spectrum of available languages, but
the logic of proceduralism has in fact been established firmly and is start-
ing to become ordinary. Of course, new-media art can still be impressive
and breath-taking, just like a great pre-digital James Bond movie, a Mozart
Symphony or a fantasy novel. But they are not impressive mostly because
of the novelty of their design, structure, materiality or logic but because of
their universality, for which the rules have developed over the entire history
of humanity and which probably are part of our nature, by design or culture.
After all, despite being pre-digital relicts, the formations and the nature of
this earth can still be very impressive as well. They may not be strictly
speaking impossible or invisible like alien planets but they are still very
much “animating”.

Appendix A

Interviews

A.1 Angie Jones
An article on CGW 1 indicates that you have found your way to traditional
animation after having worked with computers for a long time. I conclude
that you must have considerable insight into the influences of animation tools
and media on the artist.

This statement is inaccurate. I started in traditional and moved in com-
puters once traditional animation died as a medium in main stream anima-
tion. I am now working in oil painting and no longer work in animation at
all as the industry has changed drastically and doesn’t support creativity
anymore.
What is your occupational background? (analog/digital, 2D/3D, creative/tech-
nical, etc.)

I am now a Assistant Professor in Practice of Animation at the John C.
Hench Division of Animation & Digital Arts, School of Cinematic Arts, for
the University of Southern California. I teach using Maya animation software
but only as a tool for my students to tell their stories. I mostly teach how
to tell a story visually no matter if you are doing it with paint, sand, clay
or the computer. I also am a fine arts oil painter. I have not worked in CG
animation production since 2011 when I last worked on the Smurfs movie.
Mainstream mass produced animation (game, tv, feature or whatever) is
about the bottom line for the board of directors, now and holds no interest
for me any longer.
Why are you working digitally as opposed to working with traditional (ana-
log) media?

I am not. I haven’t worked digitally in over four years.
If you are working with analog as well as digital media, what do you see as
their strengths and weaknesses?

1http://www.cgw.com/Publications/CGW/2006/Volume-29-Issue-11-Nov-2006-
/Bridging-the-2D-and-CG-Gap.aspx

82

http://www.cgw.com/Publications/CGW/2006/Volume-29-Issue-11-Nov-2006-/Bridging-the-2D-and-CG-Gap.aspx
http://www.cgw.com/Publications/CGW/2006/Volume-29-Issue-11-Nov-2006-/Bridging-the-2D-and-CG-Gap.aspx

A. Interviews 83

Both are tools. Simple as that.
What media software applications do you use for your work? Why are you
working with these as opposed to other products?

Work: Teaching = Maya – Storytelling
Fine Art: Painting = Oil Pigment – Storytelling

In what ways do you feel restricted in your artistic freedom when working
with these applications?

I don’t feel restricted by either.
How would you describe the (visible) effects your software has on your (art)work,
style and workflow?

The fragmented surface of my oil paintings reflect the wire frame models
I have looked at in animation production for over twenty years.
What makes animation look digital or analog? The computer is a tool like
the quill, but is it more constraining or liberating? How does the thinking
change when moving from analog to digital media?

Do you think GOOD animation is defined by it’s medium? The computer
is just another tool. What you do with that tool using your own innate
creativity is what is important. I find my creative thought process is the
same no matter what tool I use. I am only chasing what Tom Waits refers
to is the intangible spark that comes when you are stuck in traffic and cannot
do anything about it. . . I am talking about “the zone” where the chatter in
your mind goes quiet and it doesn’t f-ing matter what tool you are using.
That you do not feel restricted by software applications (like Maya, which I
consider bloated and buggy) is puzzling to me but all the more interesting.
This I attribute to your two decades of experience in visual effects, animation
and computer animation, which, on the other hand, makes me think that the
computer and software can indeed become a part of oneself. Like pencil and
brush.

Bloated and buggy? You can make ANYTHING with Maya!!! ANY-
THING! I find the economy of low polygonal art refreshing and NOT ridicu-
lous. . . like abstract art.
To me, low-poly art is not ridiculous (nor is abstract art, in some cases). But
when I go outside I do not see wireframes and vertices on objects. Objects
have volumes and surfaces, materials. They are tangible.

Everything I see breaks down into planes in my mind because that is how
an artists thinks to delineate light color and form. I challenge any artists
who does not see the world in that way.

A.2 Alvaro Gaivoto
What is your occupational background? (analog / digital, 2D / 3D, creative
/ technical, etc.)

I have been working in analog traditional 2D animation since 1976.

A. Interviews 84

Why are you working digitally as opposed to working with traditional (ana-
log) media?

I have recently changed to digital animation software at the request of
various studios to make it easier to transfer files over internet to them, and
cut down costs in the production.
If you are working with analog as well as digital media, what do you see as
their strengths and weaknesses?

I find pencil and paper has a different “feel” to that of working on tablets.
I can lightly sketch what I am thinking before committing to a stronger line.
The tablet, pressure sensitive pens and modern software although are coming
close to this ability. I think it is a matter of getting used to the new method.
The great advantage of Digital is the delivery method. No more scanning of
paper drawings and sending heavy files over the internet.
What media software applications do you use for your work? Why are you
working with these as opposed to other products?

I am using for drawing and painting, Sketchbook pro, and art rage. There
is an old obsolete animation line test called CTP (crater software) that I use
often for animation linetests because it is very basic and easy to operate. I
also use Toonboom studio and storyboard pro. As an animator I am basically
interested in programs that I can do line tests with and not in how many
colors it has or how many pencils. I normally don’t color in-between or clean
up my animation. A great advantage of digital is the ability to cut or copy
and paste the whole or parts of a drawing to help in the next frame.
In what ways do you feel restricted in your artistic freedom when working
with these applications?

This is an interesting question which I have talked about with other
animators. If you do a nice pose on a piece of drawing paper, most people
will comment on how nice YOUR drawing is, if however you show them a
drawing on a tablet, they will comment on what a great tablet you have, or
ask what software you use. Non artistic people will always appreciate paper
drawings or analog painting much more that digital. They don’t understand
the digital process and think that somehow the software made the drawing
look good and not the artist.
How would you describe the (visible) effects your software has on your (art)
work, style and workflow?

I am still coming to terms wit digital drawing and for relaxation I will
still go back to the old paper and pencil technique. The great advantage of
the digital method is the increase in productivity and ease of delivery over
an internet connection.
Further notes and comments

I still remember (yes I am that old) waiting for a DHL truck to show up
at my door in London to take my scenes to Gatwick airport to be shipped to
a studio in Munich. These would then be scanned and painted at the studio
by other artists. Now I click on the send button and the files are there in

A. Interviews 85

under 5 minutes. There two further points I would like to make about the
advent of the digital process. First, most studios now expect the animator
to clean up and paint his or her own animation without adding the extra
funds or time allowance. Second, the client or agency have become aware of
the ease of production and do not understand the creative process involved
in animating. They think that you just press a button on the software and
out comes a rabbit dancing, therefore the amount of time allowed for good
animation is impossibly short, and the art suffers. As Richard Williams
(Roger Rabbit director) once said to me in London “The monkeys have
taken over the zoo”
Do the strengths of digital (speed, automation, composability) really con-
tribute to the art and quality of animation?

The digital process does not necessarily contribute to the art and quality
of animation, but it makes the artist more marketable. (Unfortunately this
is reality). As I said in Hagenberg, a tablet for an animator is just a very
expensive pencil. The real art and quality comes from the animator and not
the tool he or she uses.
Do you think animating in 3D has an impact on how animators think or on
how and what they animate?

A 3D animator is just as important as a 2D animator, but he or she
is more of a puppeteer than an artist (in the drawing sense). One of the
advantages 2D animators could have over others was the ability to draw.
With the advent of 3D this necessity to be able to draw well became obsolete.
In 2D we only have to worry how the drawing looks in a flat plane. In 3D
the animator has to worry how the character is setup in all views. I really
don’t think an animator is impacted by the tools they use. The quality of
the animation comes from the person and not from a pencil or a tablet.
Do you think it’s easier to start animating (well) in 2D or in 3D? Assuming
one has no prior knowledge of the basic principles.

I might be biased here, but I think it might be easier to animate in 3D, if
you don’t have the drawing skills. I didn’t say more fun, I said easier. Once
you have learned the secret of TIMING, POSING AND SPACING, it does
not matter really what you use to animate with.
Apart from the visual and technical differences, do you think the question of
2D- or 3D-animation is merely a matter of preference, maybe? Of how one
likes to think — visually or logically? Or has one a fundamental advantage?

I think 3D animation is an evolution of the animation genre. We might
think back to the good old days, but the fact remains that producers follow
the public taste and today apart from some old farts like, me most people
want to watch 3D films. I of course think that the quality of story and
direction has suffered to ease of scene manipulation. It used to be very
hard to set up a pan and track in a 2D animated film. (check out Richard
William’s The Thief and the Cobbler), but with 3D it has become so easy
that it is being used just to show off the software and not because the story

A. Interviews 86

needs it. The question whether we will ever go back to 2D, I find no reason
to think so. All of the 2D Animation films here in Europe that I have been
asked to help with would not pay a living wage.

A.3 Mike Winkelmann
Why do you work with Cinema4D (and not with say . . . Maya) [30], [31]?

I heard it was a lot easier to learn and have stuck with it. don’t need
anything high end like maya.
What do you like about its features that you think you wouldn’t get from
another software?

I’ve heard the mograph stuff is a lot better. to be honest i’ve heard people
mostly complain about maya.
Do you work “against” the software / “abuse” it / use it in unintended
ways?

Ummm, not sure. not sure how it’s intended to be used. not sure that’s
even possible. good software is really open and can’t be “abused”
Can you think of any visual characteristics that you would think are “totally
Cinema4D”?

Ummm, i think people copy certain styles but i think that’s mostly out of
laziness or a lack of ideas. has nothing to do with the software, this happens
in every medium.

Appendix B

CD-ROM Content

Format: CD-ROM, Single Layer, ISO9660-Format

B.1 Thesis
Pfad: /

Svetitsch_Klemens_2015.pdf Master’s Thesis

B.2 Online Literatue
Pfad: /OnlineLiterature

*.pdf Archived online literature

B.3 Images
Pfad: /Images

. Images included in the Master’s Thesis PDF

87

/
Svetitsch_Klemens_2015.pdf
/OnlineLiterature
*.pdf
/Images
.

References

Literature
[1] Ed Catmull with Amy Wallace. Creativity, Inc.: Overcoming the Un-

seen Forces That Stand in the Way of True Inspiration. New York:
Random House Publishing Group, 2014 (cit. on p. 64).

[2] Daniel Chandler. Semiotics: the basics. Second edition. London and
New York: Routledge, 2007 (cit. on p. 4).

[3] Ben Cole. “An Overview of a Film Production”. In: Production
Pipeline Fundamentals for Film and Game. Ed. by Renee Dunlop.
Burlington, Massachusetts: Focal Press, 2014 (cit. on p. 15).

[4] Florian Cramer. “Language”. In: Software Studies: A Lexicon. Ed.
by Matthew Fuller. Leonardo Books. Cambridge, Massachusetts: The
MIT Press, 2008, pp. 168–174 (cit. on pp. 19, 20).

[5] Florian Cramer and Matthew Fuller. “Interface”. In: Software Stud-
ies: A Lexicon. Ed. by Matthew Fuller. Leonardo Books. Cambridge,
Massachusetts: The MIT Press, 2008, pp. 149–153 (cit. on p. 21).

[6] Mihaly Csikszentmihalyi. Flow: The Psychology of Optimal Experi-
ence. New York: Harper and Row, 1990 (cit. on p. 21).

[7] Sigmund Freud. Das Unbehagen in der Kultur. Wien: Internationaler
Psychoanalytischer Verlag, 1930 (cit. on p. 4).

[8] Gottfried Hofmann. “Open Source von den großen VFX-Studios”. In:
Digital Production 2015.05 (August 2015), pp. 8–11 (cit. on pp. 57,
58).

[9] Elésiane Huve. “Beat the Brush”. In: Digital Production 2015.05 (Au-
gust 2015), pp. 28–31 (cit. on p. 44).

[10] Steven Johnson. Interface Culture: Wie neue Technologien Kreativität
und Kommunikation verändern. Stuttgart: Klett-Cotta, 1997 (cit. on
pp. 25, 26).

[11] Christoph Keese. Silicon Valley: Was aus dem mächtigsten Tal der
Welt auf uns zukommt. München: Albrecht Knaus Verlag, 2014 (cit.
on p. 35).

88

References 89

[12] Keywan Mahintorabi. “Das digitale Zeitalter der Spezialeffekte”. In:
Digital Production 2015.01 (Januar/Februar 2015), pp. 8–12 (cit. on
p. 41).

[13] Benoît B. Mandelbrot. The Fractal Geometry of Nature. Rev. ed. of:
Fractals, 1977. New York: W.H. Freeman and Company, 1982 (cit. on
p. 42).

[14] Lev Manovich. Software Takes Command. International Texts in Crit-
ical Media Aesthetics. New York: Bloomsbury Academic, 2013 (cit. on
pp. vii, 14, 32–34, 45, 51, 75).

[15] Lev Manovich. The Language of New Media. Cambridge, Mas-
sachusetts: The MIT Press, 2001 (cit. on pp. 15, 53).

[16] Scott McCloud. Understanding Comics: The Invisible Art. New York:
Harper Perennial, 1994 (cit. on pp. 4, 70, 76).

[17] Marshall McLuhan. Understanding Media: The Extensions of Man.
Originally published in 1964. Berkeley, California: Ginkgo Press, 2003
(cit. on p. 4).

[18] Bill Moggridge. Designing Interactions. Cambridge, Massachusetts:
The MIT Press, 2007 (cit. on p. 63).

[19] Winfried Nerdinger. Perspektiven der Kunst: von der Karolingerzeit
bis zur Gegenwart. München: Martin Lurz, 1994 (cit. on p. 47).

[20] Don Norman. The Design of Everyday Things. New York: Basic Books,
2013 (cit. on pp. 22–26, 31).

[21] Søren Pold. “Button”. In: Software Studies: A Lexicon. Ed. by
Matthew Fuller. Leonardo Books. Cambridge, Massachusetts: The
MIT Press, 2008, pp. 31–36 (cit. on p. 26).

[22] Casey Reas, Chandler McWilliams, and Jeroen Barendse. Form+code
in design, art, and architecture. New York: Princeton Architectural
Press, 2010 (cit. on pp. 6, 14, 44).

[23] Tom Sito. Moving Innovation: A History of Computer Animation.
Cambridge, Massachusetts: The MIT Press, 2013 (cit. on pp. 6, 7,
40, 48, 63).

[24] Kostas Terzidis. “Tool-Makers vs Tool-Users (or both)?” In: Digital
Pedagogies. form-Z Joint Studies Program Report (Dec. 2006), pp. 77–
79 (cit. on pp. 11, 13, 30, 70).

[25] Joseph Weizenbaum. “From Computer Power and Human Reason-
From Judgment to Calculation”. In: The New Media Reader. Ed. by
Noah Wardrip-Fruin and Nick Montfort. Cambridge, Massachusetts;
London, England: The MIT Press, 2003, pp. 368–375 (cit. on p. 80).

References 90

[26] Paul Wells. Re-Imagining Animation - The changing face of the mov-
ing image. Lausanne, Switzerland: AVA Publishing SA, 2008 (cit. on
pp. 66, 68).

[27] Aylish Wood. “Behind the Scenes: A Study of Autodesk Maya”. In: An-
imation: An Interdisciplinary Journal 9.3 (November 2014), pp. 317–
332 (cit. on p. 48).

Software
[28] After Effects. url: http://www.adobe.com/products/aftereffects.html

(visited on 10/16/2015) (cit. on p. 51).
[29] Akeytsu. 2015. url: https://www.nukeygara.com/akeytsu (visited on

10/09/2015) (cit. on p. 58).
[30] Cinema4D. url: http ://www.maxon .net/en/products/cinema- 4d-

studio/ (visited on 10/18/2015) (cit. on p. 86).
[31] Maya. url: http://www.autodesk.com/products/maya/overview (vis-

ited on 10/09/2015) (cit. on pp. 48, 86).
[32] Nuke. url: https://www.thefoundry.co.uk/products/nuke/ (visited on

11/10/2015) (cit. on p. 54).
[33] Photoshop. url: http://www.photoshop.com/ (visited on 10/14/2015)

(cit. on p. 53).

Films and audio-visual media
[34] A Computer Animated Hand. By Edwin Catmull and Fred Parke. 1972

(cit. on p. 48).
[36] BEAT. Story, Direction and Animation: Or Bar-El. 2011. url: https:

//vimeo.com/31423544 (visited on 11/15/2015) (cit. on p. 78).
[37] Behind the Ears: The True Story of Roger Rabbit. DVD. Who Framed

Roger Rabbit (Vista Series). Bonus Features, Disc Two. Published by
Disney Home Video. 2003 (cit. on p. 47).

[38] Big Hero 6. DVD. Production: Walt Disney Animation Studios, Di-
rectors: Don Hall and Chris Williams. 2014 (cit. on p. 71).

[39] Bonobo - ’Cirrus’. By Cyriak. 2013. url: https://vimeo.com/58115286
(visited on 11/15/2015) (cit. on p. 46).

[40] Osvaldo Cavandoli. La Linea 3. DVD. Produced by Wagner-Hallig-
Film. 2004 (cit. on pp. 72, 73).

[41] Contre Temps. By Jérémi Boutelet, Thibaud Clergue, Tristan Ménard,
Camille Perrin, Gaël Megherbi, Lucas Veber. 2012. url: https://vimeo.
com/71695621 (visited on 11/15/2015) (cit. on p. 46).

http://www.adobe.com/products/aftereffects.html
https://www.nukeygara.com/akeytsu
http://www.maxon.net/en/products/cinema-4d-studio/
http://www.maxon.net/en/products/cinema-4d-studio/
http://www.autodesk.com/products/maya/overview
https://www.thefoundry.co.uk/products/nuke/
http://www.photoshop.com/
https://vimeo.com/31423544
https://vimeo.com/31423544
https://vimeo.com/58115286
https://vimeo.com/71695621
https://vimeo.com/71695621

References 91

[42] Cycles. By Cyriak. 2010. url: https://www.youtube.com/watch?v=-
0Xa4bHcJu8 (visited on 11/15/2015) (cit. on p. 46).

[47] Flying Lotus - Kill Your Co-Workers. Animation: Mike Winkelmann.
2010. url: https://vimeo.com/15572863 (visited on 10/17/2015) (cit.
on pp. 76, 77).

[35] Forms. By Memo Akten and Quayola. 2012. url: http://www.memo.
tv/forms/ (cit. on p. 79).

[44] La Faim. Animation. Production: National Film Board of Canada,
Director: René Jodoin, Animation: Peter Foldès. 1974. url: http://
www.nfb.ca/film/la_faim (cit. on p. 76).

[45] The Lego Movie. DVD. Production: Warner Bros., Director: Phil Lord
and Christopher Miller. 2014 (cit. on p. 71).

[43] Walking City. Production: Universal Everything, Creative Director:
Matt Pyke, Animation: Chris Perry. 2014. url: https://vimeo.com/
85596568 (visited on 11/15/2015) (cit. on p. 74).

[46] Who Framed Roger Rabbit. DVD. Production: Touchstone Pictures,
Directors: Robert Zemeckis. 1988 (cit. on p. 47).

Online sources
[48] url: http://en.wikipedia.org/wiki/Technology (visited on 04/29/2015)

(cit. on p. 1).
[49] url: http://en.wikipedia.org/wiki/Tool (visited on 05/16/2015) (cit. on

p. 2).
[50] url: https://en.wikipedia.org/wiki/Semantics (visited on 10/11/2015)

(cit. on p. 4).
[51] url: http://en.wikipedia.org/wiki/Pictogram (visited on 05/24/2015)

(cit. on p. 5).
[52] url: http://en.wikipedia.org/wiki/Turing_completeness (visited on

05/18/2015) (cit. on p. 19).
[53] url: http://en.wikipedia.org/wiki/Programming_language (visited on

05/21/2015) (cit. on p. 20).
[54] url: http://en.wikipedia.org/wiki/Programming_paradigm (visited on

05/21/2015) (cit. on p. 20).
[55] url: http : / / wiki . blender . org / index . php / Doc : 2 . 4 / Manual / 3D _

interaction/Transform_ Control/Pivot_ Point/3D_ Cursor (visited on
07/26/2015) (cit. on p. 24).

[56] url: http://en.wikipedia.org/wiki/Interactivity (visited on 05/17/2015)
(cit. on p. 34).

https://www.youtube.com/watch?v=-0Xa4bHcJu8
https://www.youtube.com/watch?v=-0Xa4bHcJu8
https://vimeo.com/15572863
http://www.memo.tv/forms/
http://www.memo.tv/forms/
http://www.nfb.ca/film/la_faim
http://www.nfb.ca/film/la_faim
https://vimeo.com/85596568
https://vimeo.com/85596568
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Tool
https://en.wikipedia.org/wiki/Semantics
http://en.wikipedia.org/wiki/Pictogram
http://en.wikipedia.org/wiki/Turing_completeness
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_paradigm
http://wiki.blender.org/index.php/Doc:2.4/Manual/3D_interaction/Transform_Control/Pivot_Point/3D_Cursor
http://wiki.blender.org/index.php/Doc:2.4/Manual/3D_interaction/Transform_Control/Pivot_Point/3D_Cursor
http://en.wikipedia.org/wiki/Interactivity

References 92

[57] url: https://en.wikipedia.org/wiki/Computer_Animation_Production_
System (visited on 08/25/2015) (cit. on p. 43).

[58] url: http : // sa - staging . com/programs/attachments / thesafehouse_
presskit.pdf (visited on 08/31/2015) (cit. on p. 45).

[59] url: http://www.maxwellrender .com/index.php/products/maxwell -
render-suite/why-choose-it (visited on 10/27/2015) (cit. on p. 50).

[60] url: https://en.wikipedia.org/wiki/Node.js (visited on 10/09/2015)
(cit. on p. 57).

[61] url: https://en.wikipedia.org/wiki/JavaScript (visited on 10/08/2015)
(cit. on p. 57).

[62] url: http : / / download . autodesk . com / us / fbx / 20112 / FBX _ SDK _
HELP/ index .html?url=WS1a9193826455f5ff - 150b16da11960d83164 -
6c6f.htm,topicNumber=d0e294 (visited on 10/07/2015) (cit. on p. 57).

[63] url: http://brighttyger.com/post/312089462/david-oreilly-golden-bear-
winner-interview (visited on 08/24/2015) (cit. on p. 65).

[64] Alembic. url: http://www.alembic.io/ (visited on 10/14/2015) (cit. on
p. 57).

[65] Giannalberto Bendazzi. Defining Animation - A Proposal. 2004. url:
http : / / giannalbertobendazzi . com / wp - content / uploads / 2013 / 08 /
Defining _ Animation - Giannalberto _ Bendazzi2004 . pdf (visited on
05/03/2015) (cit. on p. 5).

[66] Best Practice. url: https://en.wikipedia.org/wiki/Best_practice (vis-
ited on 10/09/2015) (cit. on p. 56).

[67] Nicholas Carr. The Manipulators: Facebook’s Social Engineering
Project. Sept. 14, 2014. url: https : / / lareviewofbooks . org / essay /
manipulators - facebooks - social - engineering - project (visited on
10/12/2015) (cit. on p. 80).

[68] Florian Cramer. What is ‘Post-digital’? url: http://www.aprja.net/
?p=1318 (cit. on pp. 29, 38).

[69] Nichola Dobson. Taking for granted the digital world. 2013. url: http:
//blog.animationstudies.org/?p=390 (visited on 10/07/2015) (cit. on
p. 6).

[70] FBX binary file format specification. Aug. 10, 2013. url: https://code.
blender.org/2013/08/fbx-binary-file- format- specification/ (visited on
10/07/2015) (cit. on p. 57).

[71] Wesley Fenlon. 2D Animation in the Digital Era: Interview with
Japanese Director Makoto Shinkai. Sept. 20, 2012. url: http://www.
tested . com/art/movies/442545- 2d- animation - digital - era - interview-
japanese - director - makoto - shinkai/ (visited on 10/28/2015) (cit. on
pp. 17, 36).

https://en.wikipedia.org/wiki/Computer_Animation_Production_System
https://en.wikipedia.org/wiki/Computer_Animation_Production_System
http://sa-staging.com/programs/attachments/thesafehouse_presskit.pdf
http://sa-staging.com/programs/attachments/thesafehouse_presskit.pdf
http://www.maxwellrender.com/index.php/products/maxwell-render-suite/why-choose-it
http://www.maxwellrender.com/index.php/products/maxwell-render-suite/why-choose-it
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/JavaScript
http://download.autodesk.com/us/fbx/20112/FBX_SDK_HELP/index.html?url=WS1a9193826455f5ff-150b16da11960d83164-6c6f.htm,topicNumber=d0e294
http://download.autodesk.com/us/fbx/20112/FBX_SDK_HELP/index.html?url=WS1a9193826455f5ff-150b16da11960d83164-6c6f.htm,topicNumber=d0e294
http://download.autodesk.com/us/fbx/20112/FBX_SDK_HELP/index.html?url=WS1a9193826455f5ff-150b16da11960d83164-6c6f.htm,topicNumber=d0e294
http://brighttyger.com/post/312089462/david-oreilly-golden-bear-winner-interview
http://brighttyger.com/post/312089462/david-oreilly-golden-bear-winner-interview
http://www.alembic.io/
http://giannalbertobendazzi.com/wp-content/uploads/2013/08/Defining_Animation-Giannalberto_Bendazzi2004.pdf
http://giannalbertobendazzi.com/wp-content/uploads/2013/08/Defining_Animation-Giannalberto_Bendazzi2004.pdf
https://en.wikipedia.org/wiki/Best_practice
https://lareviewofbooks.org/essay/manipulators-facebooks-social-engineering-project
https://lareviewofbooks.org/essay/manipulators-facebooks-social-engineering-project
http://www.aprja.net/?p=1318
http://www.aprja.net/?p=1318
http://blog.animationstudies.org/?p=390
http://blog.animationstudies.org/?p=390
https://code.blender.org/2013/08/fbx-binary-file-format-specification/
https://code.blender.org/2013/08/fbx-binary-file-format-specification/
http://www.tested.com/art/movies/442545-2d-animation-digital-era-interview-japanese-director-makoto-shinkai/
http://www.tested.com/art/movies/442545-2d-animation-digital-era-interview-japanese-director-makoto-shinkai/
http://www.tested.com/art/movies/442545-2d-animation-digital-era-interview-japanese-director-makoto-shinkai/

References 93

[72] Jeffery Harrell. What went wrong with Final Cut Pro X. June 23, 2011.
url: http://jefferyharrell .tumblr.com/post/6830049685/what-went-
wrong-with-final-cut-pro-x (visited on 10/28/2015) (cit. on p. 17).

[73] Making Maya Easier To Use. url: https://www.youtube.com/watch?
v=zR5ZsEIc9u8 (visited on 10/09/2015) (cit. on pp. 55, 56).

[74] David Mitchell. The Future of the Cartoon Feature Film: An Overview
of CGI Animation. 2002. url: http://www.zenoshrdlu.com/zenocgi.
htm#oview (visited on 10/28/2015) (cit. on p. 71).

[75] David Mitchell. The Future of the Cartoon Feature Film: Appendix 2.
2002. url: http://www.zenoshrdlu.com/zenocgi.htm#app2 (visited on
10/28/2015) (cit. on p. 43).

[76] OpenEXR. url: http://www.openexr.com/ (visited on 10/14/2015)
(cit. on p. 58).

[77] Plug-in (computing). url: https ://en .wikipedia .org/wiki/Plug- in_
(computing) (visited on 10/12/2015) (cit. on p. 16).

[78] Software. url: https : / / en . wikipedia . org / wiki / Software (visited on
10/16/2015) (cit. on p. 33).

[79] Supercharged Animation Performance in Maya 2016. url: https ://
www.youtube.com/watch?v=KKC7A9bbUuk (visited on 10/09/2015)
(cit. on p. 55).

[80] Transistor. url: https://en.wikipedia.org/wiki/Transistor (visited on
10/10/2015) (cit. on p. 29).

[81] Steve Wright. The Importance of Invisible Effects. 2008. url: https://
library.creativecow.net/articles/wright_steve/Creative_Cow_Magazine_
VFX_Invisible_Effects.php (visited on 10/07/2015) (cit. on p. 6).

http://jefferyharrell.tumblr.com/post/6830049685/what-went-wrong-with-final-cut-pro-x
http://jefferyharrell.tumblr.com/post/6830049685/what-went-wrong-with-final-cut-pro-x
https://www.youtube.com/watch?v=zR5ZsEIc9u8
https://www.youtube.com/watch?v=zR5ZsEIc9u8
http://www.zenoshrdlu.com/zenocgi.htm#oview
http://www.zenoshrdlu.com/zenocgi.htm#oview
http://www.zenoshrdlu.com/zenocgi.htm#app2
http://www.openexr.com/
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Software
https://www.youtube.com/watch?v=KKC7A9bbUuk
https://www.youtube.com/watch?v=KKC7A9bbUuk
https://en.wikipedia.org/wiki/Transistor
https://library.creativecow.net/articles/wright_steve/Creative_Cow_Magazine_VFX_Invisible_Effects.php
https://library.creativecow.net/articles/wright_steve/Creative_Cow_Magazine_VFX_Invisible_Effects.php
https://library.creativecow.net/articles/wright_steve/Creative_Cow_Magazine_VFX_Invisible_Effects.php

	Declaration
	Preface
	Abstract
	Kurzfassung
	Introduction
	Technology and Technique
	Tools
	Interplay: Artist and Tool
	Media
	An Account of Animation
	Animation from the Software Perspective
	The Logic of the Virtual
	The Structure of this Paper

	Software
	Classifying Software
	The Properties of Software
	Learning to Use Software
	Automation
	Abstraction
	Parameterization
	Customizability and Mutability

	Programming
	Programming Languages
	Programmers and Programming

	User Interfaces
	Principles of Interaction
	Conceptual Model and System Image
	Conventions and Standardization
	Input
	Feedback

	The GUI and Invisibility
	Elements of the GUI
	Windows
	Buttons
	Shortcuts
	Hotboxes, Pie Menus and Ribbons

	Limitation
	Software and the Artist
	The GUI as a Medium

	Software Media
	Hybrid Media
	Interactivity
	Popular Software
	Software Accessibility
	Post-Digital
	Power to the Tool

	Tools and Operations
	Analog vs. Digital
	Detail
	Parameterization
	Complexity and Realism
	Amount and Mass Production
	Accessibility and Distribution

	Procedural vs. Handmade
	The Thought Process
	The Efficiency of Proceduralism
	Faking It
	Realism
	Coherence and Abstraction Mismatch

	3D Animation Suites: The Technology in the Back
	Operations
	Data Structures
	Renderers

	Animation Software: Logic and User Interface
	Software as a Medium for Creating Animation
	Timeline
	Layers
	Nodes

	Introducing: Maya 2016
	Software and Best Practices
	Open-Source
	Learning Curve

	The Animator
	Digital Workflows
	Technology: From Geeks to Mainstream
	Animation: Schools, Studios and Artists
	Mentalities
	Students
	Training: To Be an Artist or an Animator
	The Artist and the Animator

	User Motivation

	Animation and Software Artifacts
	Animation and the Impossible
	Modes of the Digital
	Transformation, aka Blending
	Resolution

	Visual Style
	Perfection
	Abstraction
	Faces and Expressiveness
	Transformation and Smear-Frames

	Art and Animation After the Digital
	Arising From Constraint

	Conclusion
	Interviews
	Angie Jones
	Alvaro Gaivoto
	Mike Winkelmann

	CD-ROM Content
	Thesis
	Online Literatue
	Images

	References
	Literature
	Software
	Films and audio-visual media
	Online sources

