
Combining React and D3.js for Efficient
Data Visualization in the Browser

Maximilian Zauner

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Juni 2019

© Copyright 2019 Maximilian Zauner

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, June 25, 2019

Maximilian Zauner

iii

Contents

Declaration iii

Preface vi

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Problem Description and Motivation . 1
1.2 Goals of the Project . 1

2 D3.js – Data-Driven Documents 3
2.1 Introduction to D3 . 3
2.2 Explaining the D3 API . 4
2.3 Force Graphs – Real Time Rendered Data Visualizations 7

3 React – A JavaScript Library for Building User Interfaces 12
3.1 Introduction to React . 12
3.2 Explaining the React API . 14

3.2.1 JSX in General . 14
3.2.2 Explaining React Components 16

3.3 React’s Component Lifecycle . 19
3.4 Conclusion . 22

4 Combining React and D3 23
4.1 Introduction and Motivation of the Project 23
4.2 Project Setup . 23
4.3 Prototypes . 26

4.3.1 Pure D3 Prototype . 26
4.3.2 Pure React Prototype . 30
4.3.3 D3 and React Hybrid Prototype 34

4.4 Comparison of the Different Proposed Prototypes 38
4.5 Prototype Storybook . 38
4.6 Conclusion . 39

iv

Contents v

5 Performance Testing and User Perception 40
5.1 Test Environment Setup . 40

5.1.1 Challenges . 40
5.1.2 Building a Stable Testing Environment 41

5.2 Testing Setup . 43
5.2.1 Testing Devices . 43
5.2.2 Testing Methodologies . 44

5.3 Benchmark Results . 45
5.3.1 Introducing the Test Results . 45
5.3.2 Human Perception of Fluent Animations 48
5.3.3 Interpreting the Test Results . 49

5.4 Conclusion . 52

6 Open Source and the React Community 54
6.1 Building an Open Source Library Component 54
6.2 Technical Details of the Component API 55
6.3 Final Thoughts . 56

7 Conclusion 57
7.1 Prototypes . 57

7.1.1 Pure D3 Prototype . 57
7.1.2 Pure React Prototype . 58
7.1.3 React and D3 Hybrid Prototype 58

7.2 Performance Results . 59
7.3 Open Source . 59
7.4 Final Thoughts . 59

A CD-ROM Contents 60
A.1 Master’s Thesis . 60
A.2 Thesis Project – Combining React and D3 60

References 61
Literature . 61
Audio-visual media . 61
Software . 62
Online sources . 62

Preface

I want to thank all the people who not only provided me with their spare time but
also with their personal devices to be able to execute the performance benchmarks on
in order to obtain some results for the research aspect of the thesis. Furthermore, a
special thank goes to Sigrid Huemer, as she visually enhanced some of the graphs in
this master’s thesis.

vi

Abstract

D3 is one of the most powerful data visualization libraries in the JavaScript environ-
ment. Because the development of the library started in 2011 and although the library
went through several re-writes, the API is still relatively outdated. As a consequence,
projects that use D3 become unmaintainable relatively quickly as D3’s API was not
designed to realize extensive enterprise projects.

To avoid hardly maintainable code bases, the idea to combine D3 with a well-known
and widespread JavaScript library called React came to mind. The claim that developer
experience improves by writing React code to use D3 features might be subjective. Thus
the research question of this thesis is if the combination of React and D3 can be achieved
without sacrificing render performance.

Hence the master’s thesis introduces the reader to three combination prototypes
which were developed as a part of the thesis project. The thesis not only explains imple-
mentation details but also compares the advantages and disadvantages of the prototypes.
However, the central research aspect of this thesis focuses on the performance compar-
ison of the prototypes and shows if a combination of React and D3 with performance
results comparable to a native D3 implementation can be achieved.

vii

Kurzfassung

D3 ist eine der umfangreichsten und leistungsfähigsten Datenvisualisierungsbibliothe-
ken im JavaScript-Umfeld. Da die Entwicklung der Bibliothek im Jahr 2011 begann
und obwohl die Bibliothek mehrere Neuschreibungen durchlaufen hat, ist die API noch
relativ veraltet. Infolgedessen werden Projekte, die D3 verwenden, relativ schnell nicht
mehr wartbar, da die API von D3 nicht für die Realisierung umfangreicher Unterneh-
mensprojekte konzipiert wurde.

Um kaum wartbaren Code zu vermeiden, kam die Idee in den Sinn, D3 mit einer
bekannten und weit verbreiteten JavaScript-Bibliothek namens React zu kombinieren.
Die Behauptung, dass sich die Erfahrung des Entwicklers verbessert, wenn man React-
Code schreibt, um D3 -Funktionen zu verwenden, könnte jedoch subjektiv sein. Daher
ist die Forschungsfrage dieser Arbeit, ob die Kombination von React und D3 erreicht
werden kann, ohne die Renderleistung zu beeinträchtigen.

Die Masterarbeit führt den Leser in drei Kombinationsprototypen ein, die im Rah-
men des Masterarbeitsprojekts entwickelt wurden. Es werden nicht nur die Details der
Implementierung erklärt, sondern auch die Vor- und Nachteile der Prototypen werden
verglichen. Der zentrale Forschungsaspekt diese Arbeit konzentriert sich jedoch auf den
Leistungsvergleich der Prototypen und zeigt, ob eine Kombination mit vergleichbarer
Leistung wie eine native D3 -Implementierung erreicht werden kann.

viii

Chapter 1

Introduction

This chapter introduces the reader to the general concept of the master project. Not
only should the initial situation and motives be clear after reading this section of the
thesis, but also what the thesis project is about and what it tries to achieve.

1.1 Problem Description and Motivation
With D3 being one of the most powerful data visualization libraries in the JavaScript
environment, it is shocking how bad developer experience can be when writing extensive
amounts of D3 code. D3 is a reasonably old library as its development started in early
2011 when the scripting language JavaScript was in a completely different state than
it is now. In that era, most developers would have never even thought about utilizing
JavaScript as the primary technology to use to realize big enterprise web projects.

Even though D3 went through a few significant rewrites and got refactored multiple
times throughout some major versions; the base API is still quite similar to the original
API. This fact is quite noticeable when writing large amounts of D3 production code
that—while still performing well—must be kept maintainable for multiple developers.

Since the API might be hard to use in production environments, the idea to combine
the D3 library with a widely used JavaScript library called React came to mind. React
is currently used in big projects like Facebook, Airbnb, Netflix, and Spotify. The claim
that developer experience improves by using D3 through React might be subjective,
but even if only a few developers are willing to use React combined with D3 over native
D3 in their software the thesis project is a valuable addition to the React developer
community. The exciting research aspect would then be if the combination is possible
without losing render performance but still providing the convenience of writing React
code.

1.2 Goals of the Project
The central research aspect of the master’s thesis focuses on the performance aspect of
the combination of React and D3, not how the React version might provide a better de-
veloper experience than native D3 version. Subjective opinions can hardly be measured
scientifically as the number of probands to measure developer experience on different

1

1. Introduction 2

library versions would have to be quite high to be able to get accurate heuristic results.
Performance numbers, on the other hand, can easily be measured. A combination of
the two libraries which would allow programmers to use some of D3’s functionality by
writing declarative React code without introducing any performance penalties would be
a valuable software addition to the React community. Methods of how a combination
of the technologies can be achieved are elaborated in this thesis. Also, some already
existing work is explained and analyzed.

The thesis aims to introduce the reader to the general concept of the two libraries—
React and D3—which are combined in the thesis project. The master’s thesis provides
not only a general overview but also an introduction to the two libraries for an even bet-
ter understanding of the thesis project. The first chapters explain the required knowledge
to understand the performance discussion. Later chapters compare different approaches
of possible implementations regarding the combination of the libraries. It is then easy
to follow the discussion by already having the necessary knowledge to understand all
required aspects of the mentioned technologies.

Another significant part of the thesis is the description of the thesis project itself.
The combination of the libraries React and D3 is a software project that was created
out of a requirement. The goal is to create a software that allows developers to write
declarative React code and to avoid imperative D3 code while still using D3’s data
visualization capabilities. Another goal is to keep performance losses at a minimum but
still use the full extent of React’s features of writing web components. Of course, there
are many ways to achieve the same goal; that’s also why the thesis project provides
three discussable prototypes. The thesis project chapter explains the implementation
and functionality of each prototype. Ultimately, all prototypes are compared to each
other.

The performance comparison of the prototypes is one of the most important parts of
the thesis. Each prototype is tested on different devices and in different browsers, which
generates some performance numbers that are also compared and discussed. While dis-
cussing raw performance numbers can give an insight into how the prototypes perform,
they can also be essential to measure user experience. A vital part of the thesis is the
explanation of user perception of animated content in the browser. The focus primarily
lies on researching the threshold on which users do not percieve an animation as smooth
anymore.

Last but not least, there is the goal of introducing the reader to the open source
concept that is planned for the thesis project. Initially, a specific use-case was the reason
to create the library that connects D3 and React, but there are most certainly other
developers that can make use of the thesis project as well. The thesis provides a general
overview of how the public API of the technology is designed and how the project is
published on a widely available package registry to allow for including the library in
any project.

Chapter 2

D3.js – Data-Driven Documents

This chapter provides an overview of the popular JavaScript library D3 1 which is used
to simplify implementations of data visualizations in the web for developers. It not only
offers insights about the libraries beginnings but also goes into detail about how to
implement projects with D3. The knowledge is required to understand the performance
comparisons in chapters 5 and 7.

2.1 Introduction to D3
D3 is a JavaScript library that helps developers create highly sophisticated data visu-
alizations on the web via a universal tool that is platform agnostic: the browser. The
official documentation of D3 in [19] explains the library as a toolkit that allows binding
data to the DOM. The documentation also provides an overview of the vast amount of
helpful tools that can be used to visualize data in the browser. The library includes all
kinds of functionality, ranging from simple array and mathematic operations to complex
simulations that are calculated in real time.

One of the most popular features of D3 is to render user interactable animated
charts. Not only is it possible to easily create a bar chart, for instance, but all other
kinds of charts as well. A full list of available packages is available online in [12]. The
library is prevalent amongst data scientists as it is quite easy to create complex data
visualizations in the web quickly.

D3 also provides some other utility functions that can be useful in many use-cases.
There is, for example, a module that calculates chromatic colors for charts to get colors
that have the maximum diversity to each other to be easily distinguishable as seen in
D3’s documentation2. Another example of the documentation3 shows that the library
also provides some useful array manipulating functions which come in handy when hav-
ing to deal with big data sets. Also, generating random numbers via various distributions
is no problem when using the d3-random package4. The list of useful data manipulation
tools goes on, and dealing with every aspect of the library would go far beyond the

1https://d3js.org/
2https://github.com/d3/d3-scale-chromatic
3https://github.com/d3/d3-array
4https://github.com/d3/d3-random

3

https://d3js.org/
https://github.com/d3/d3-scale-chromatic
https://github.com/d3/d3-array
https://github.com/d3/d3-random

2. D3.js – Data-Driven Documents 4

scope of this thesis.
What makes D3 unique is the possibility to create individual data structures for

rendering sophisticated data visualizations. The library provides scatter plots5 or pie
charts, line charts, area charts, radial bar charts, tree maps6 to name a few. D3 also
provides utility functions to add labels or user interaction to every mentioned but also
not mentioned data visualization type. A significant benefit of using D3 is that it pro-
vides simple methods to transform any D3 visualization into being user interactable by
creating floating tooltips and sliders, switches, or knobs, which control the visualization.

Due to the immense size of the library and its many data manipulation tools, D3 is
divided into different sub-modules to prevent users of the library having to download
the full library code bundle in the browser to be able to use the library. [12] shows a
full list of every available tool that can be used in composition with the base package
of D3. When using D3 in a big production project, every available D3 module can be
integrated into any project by using the package manager npm7 via downloading it from
its registry8.

There are multiple examples on the documentation’s example page in [20] which
show what developers can achieve by using the D3 library. The API documentation is
a comprehensive documentation of the complete feature set of D3 as seen in [12].

2.2 Explaining the D3 API
This section aims to discuss the most vital aspects of the D3 API to understand code
samples that are presented in later chapters. Some general knowledge of D3’s API is
of utmost importance as the knowledge is crucial for understanding the comparisons
of React and D3 in chapter 4. As mentioned before, the D3 API mostly consists of
consecutive chained imperative function calls that not only manipulate the visualization
and its data but also bind the data to the DOM. [5, p. 625] describes the imperative
programming pattern as a static division of a program into its concurrent tasks which
means that the programmer uses statements to change the programs state.

According to the documentation in [12] the library D3 was created in 2010. Thus it
can be noticed that the API of the library originates from a time, where developers did
not even think about using JavaScript in productive or even enterprise environments.
Therefore, large codebases written with D3 tend to be hardly scalable and difficult
to maintain. Multiple instruction function calls in program 2.1 show that D3 code is
indeed imperative. Also, the library makes use of a software pattern called “chaining.”
The pattern works because each function returns an instance of itself to enable the
addition of an infinite amount of functions that can be added to the chain.

Selecting DOM nodes and creating a D3 selection model is a vital aspect of D3’s API.
Via selection D3 can connect JavaScript application data to actual DOM nodes as [12]
shows. An example can be seen in the code example in program 2.1. Because the library
is imperative each node that is added or removed is handled via a chained function
call as the append function in program 2.1 shows very well. When adding or removing

5https://github.com/d3/d3-scale
6https://github.com/d3/d3-shape
7https://www.npmjs.com/
8https://www.npmjs.com/search?q=d3

https://github.com/d3/d3-scale
https://github.com/d3/d3-shape
https://www.npmjs.com/
https://www.npmjs.com/search?q=d3

2. D3.js – Data-Driven Documents 5

Program 2.1: D3 selection, enter, and exit example.

1 // earlier in the script
2
3 const svg = d3.select('.container')
4 const node = svg.selectAll('.node')
5
6 // handling data changes of the simulation
7
8 node
9 .exit()

10 .style('fill', '#b26745')
11 .transition(t)
12 .attr('r', 1e-6)
13 .remove()
14
15 node
16 .transition(t)
17 .style('fill', '#3a403d')
18 .attr('r', (node) => node.size)
19
20 node
21 .enter()
22 .append('circle')
23 .style('fill', '#45b29d')
24 .attr('r', (node) => node.size)
25 .attr('id', (node) => node.name)

multiple DOM nodes and the individual nodes of the simulation are complicated DOM
structures, the code quickly gets very incomprehensive as demonstrated in program 2.2.
The provided code example in program 2.1 showcases a simple append operation of a
single circle element, for instance, in comparison to the much more complex example in
program 2.2.

Not only is it possible to select DOM nodes via D3 but the library also contains the
feature of selecting entering and exiting nodes as lines 9 and 21 showcase in program 2.1.
The enter and exit selection function calls can be used to explicitly handle nodes that
enter and exit the visualiization according to the data that is bound to the DOM. The
chained function calls can then handle the enter and exit selections accordingly. Line 21
in program 2.1 shows an enter selection which appends a circle SVG element for each
new data object and also applies various attributes and style.

When the data of a visualization changes, nodes might be deleted, new nodes might
appear but nodes might also stay in the visualization but change their position. D3
covers these use-cases by including the possibility to add transitions to node selections.
The transition feature lets developers specify how to handle DOM elements that stay in
the visualization when the data is updated. Advanced animations and transitions can
be added via a simple function call.

For example, line 9 in program 2.1 shows a selection where all nodes are selected
that are removed after the data has changed. Furthermore, the color is changed and
a transition effect is added, which transforms the radius attribute of the node until it

2. D3.js – Data-Driven Documents 6

Program 2.2: Negative example of how confusing and unmaintainable D3 code can
become.

1 d3.select(_this).classed('active', true)
2 d3.select(_this)
3 .select('.circle')
4 .transition(500)
5 .attr('stroke', function(d) {
6 if (d.rings && d.rings.length > 0) return '#404348'
7 return d.color || COLORS[d.type.toUpperCase()] || '#27292c'
8 })
9 .attr('fill', function(d) {

10 return '#404348'
11 })
12 .style('filter', 'drop-shadow(0 3px 4.7px rgba(0,0,0,.54))')
13 d3.select(_this)
14 .selectAll('.ring')
15 .transition(500)
16 .attr('opacity', 1)
17 d3.select(_this)
18 .selectAll('.node-background')
19 .transition(500)
20 .attr('opacity', 0)
21 d3.select(_this)
22 .selectAll('.sub-circle')
23 .transition(500)
24 .attr('cx', function(d, i) {
25 let deg = ((Math.PI * 2) / 8) * i - Math.PI
26 let x = Math.sin(deg)
27 let offset = event.rings ? event.rings.length * 15 : 0
28 return x * (d.r + 5 + offset)
29 })
30 .attr('cy', (d, i) => {
31 let deg = ((Math.PI * 2) / 8) * i - Math.PI
32 let y = Math.cos(deg)
33 let offset = event.rings ? event.rings.length * 15 : 0
34 return y * (d.r + 5 + offset)
35 })
36 .attr('stroke', '#FFF')

reaches the specified amount. Finally the node is then removed completely from the
DOM resulting in a nice animation of the node exiting the visualization.

The code in program 2.1 also clearly shows that every attribute and style instruction
of added DOM nodes has to be handled via a chained function call. On line 23 in
program 2.1 the fill property is added to the <circle> SVG element. Each additional
style property would require a consecutive call of the style(‘property’, [style])
function.

Also, a key component of D3’s API is the possibility to pass attribute handling
functions instead of hardcoded values. Those computed properties can be found in
lines 24 and 25 in program 2.1. By passing a function to property or attribute setters
like the .style(‘attribute’, [style]) method, the passed handler is called by D3

2. D3.js – Data-Driven Documents 7

Figure 2.1: The force graph with default center force. All nodes are attracted to the
same center without overlapping each other.

as a callback by providing each node’s data to the callback. Therefore, when rendering
10 nodes, the attribute function on line 24 in program 2.1 which sets the radius of the
node would be called 10 times, setting the radius for each specific node individually.

The code example in program 2.2 is taken from production code and shows how hard
to read D3 code can become if multiple DOM changes have to be handled imperatively.
Not only the addition of the nodes has to be handled via function calls, but also some
general node properties like CSS styles or custom attributes.

Over the years better software patterns emerged and experience shows that chain-
ing is a software pattern that was new at the time but can cause code that is hard to
maintain. Nowadays this library would probably be written with a functional approach,
letting developers compose their simulations via functional composition as various li-
braries and frameworks on the internet already do.

The problem with the example in program 2.1 is that the code cannot be reused,
as it is hardcoded into a chain. Nowadays many frameworks for building front end
applications use a declarative approach for binding the view to the data model. More
information about declarative approaches can be found in chapter 3. D3’s API still
uses the imperative software pattern which forces developers to chain library function
statements to control multiple elements in the DOM.

2.3 Force Graphs – Real Time Rendered Data Visualizations
Due to the immense size of D3, the focus of this thesis and its project lies on a rather
“small” but quite important part of the library – the force graph simulation. It is the
graph type that was integrated into React during the implementation phase of the
thesis project. The visualizations consist of objects that interact with each other in
a two-dimensional space. By interacting and moving objects all other objects in the
animation are also affected.

Figures 2.1 and 2.2 show an example of D3’s force simulation. In figure 2.1 there is

2. D3.js – Data-Driven Documents 8

Figure 2.2: A sample force graph with more than one center force. Having multiple force
centers causes each node to be attracted to their assigned center force.

Figure 2.3: A sample force graph where the top node is dragged up to the left and the
other nodes are dragged along. The force keeps the other nodes apart but also draws them
to the center.

a single center force that drags all nodes towards the center but also prevents individual
nodes from overlapping each other. Force graphs can also be configured to make nodes
reject each other even further than their actual size as figure 2.4 shows. It is also possible
to implement so-called links that also add some complexity to the simulation, as nodes
are dependent on each other and not only reject each other but also attract linked nodes
as figures 2.2 and 2.5 show.

As previously mentioned, all force simulations are calculated, animated, and ren-
dered in the browser which also includes user interaction. The user can, for example,
drag nodes around which of course affects other nodes and the whole simulation as well.
Figure 2.3 shows well, how dragging one node affects the whole force graph, as all con-
nected nodes follow the dragged node while still rejecting each other and while being
attracted to the center force.

2. D3.js – Data-Driven Documents 9

Figure 2.4: A sample force graph with one center force. The nodes are configured to
reject each other with the function r+r/2.

Program 2.3: Code snippets for D3 force simulation code.

1 simulation.forceSimulation([nodes]) // factory method for a standard force simulation
2 simulation.tick([iterations]) // called on every tick the simulation goes through
3 simulation.start() // starts a stopped simulation
4 simulation.stop() // stops a started simulation
5 simulation.restart() // restarts a simuliation, resets alpha
6 simulation.alpha([alpha]) // directly sets alpha value
7 simulation.alphaTarget([alphaTarget]) // sets alpha target value
8 simulation.alphaMin([min]) // sets minimum alpha value

Program 2.4: Sample initialization of a D3 force graph.

1 const simulation = forceSimulation(data)
2 .force('charge', forceManyBody().strength(-150))
3 .force('forceX', forceX().strength(0.1))
4 .force('forceY', forceY().strength(0.1))
5 .force('center', forceCenter())
6 .alphaTarget(1)
7 .on('tick', ticked)

D3 provides a somewhat simplified API to be able to quickly implement force
graphs9 in the browser. The way force simulations work is that developers first have
to define or build the simulation. There is a factory method as seen in line 1 of pro-
gram 2.3 which takes the nodes of the graph as an argument and builds a default
simulation. The nodes have to be provided in a particular scheme10 so D3 can correctly
parse the node array.

9https://github.com/d3/d3-force
10https://github.com/d3/d3-force#simulation_nodes

https://github.com/d3/d3-force
https://github.com/d3/d3-force#simulation_nodes

2. D3.js – Data-Driven Documents 10

Figure 2.5: A sample force graph where some nodes are linked together while still
rejecting each other.

Another very important aspect of force graphs is the so called “alpha” value sys-
tem11, which controls how long the simulation is active. The alpha value is a gradually
decaying value that makes the simulation stop if a certain value is reached. Every sim-
ulation’s tick handling function is called every “tick” of the simulation. Also, every
time a “tick” is executed the alpha value decays via a predefinable function, it happens
logarithmically per default tough. The tick handling function is not only called every
tick but also for each individual node. It receives every node position in the simulation
which lets developers link the data to the DOM with D3 again. Knowing about the tick
function is very important later on when the combination of D3 and React is explained
in more detail. Program 2.4 is a simple example that shows how to initialize a D3 force
simulation.

If there is a user interaction, the simulation sometimes has to be restarted or re-
heated. Programmers can set alpha values and targets to reheat or restart the simulation
in case a node is dragged by the user which would possibly require many other nodes
in the simulation to react to that user input. That way also the speed of the simulation
can be controlled via setting a custom decay function. D3’s documentation about force
simulations12 points to a few methods that can achieve said functionality. The functions
on line 3, 4, and 5 of program 2.3 can be used to reheat a simulation. Also the func-
tions in line 6, 7, and 8 of program 2.3 can be used to set values directly to alter the
simulation’s life span.

If a functional approach would be used the code from program 2.4 would look more
like in example 2.5. The difference between the two code examples in programs 2.4
and 2.5 might appear to be very subtle, but in reality, it is very significant. By looking
closer, it is clear that the variable forceParams is a functional composition of methods
that can be reused multiple times in the application. In the first example in program 2.4
the simulation configuration is locked in the function chain. Chaining is a pattern which

11https://github.com/d3/d3-force#forces
12https://github.com/d3/d3-force

https://github.com/d3/d3-force#forces
https://github.com/d3/d3-force

2. D3.js – Data-Driven Documents 11

Program 2.5: D3 written in a fictional functional way.

1 const forceParams = compose(
2 force('charge', pipe(forceManyBody(), strength(-150))),
3 force('forceX', pipe(forceX(), strength(0.1))),
4 force('forceY', pipe(forceY(), strength(0.1))),
5 force('center', forceCenter()),
6)
7
8 const simulation = compose(
9 forceParams,

10 alphaTarget(1),
11 on('tick', ticked),
12 forceSimulation
13)(data)

can easily cause duplicated code in any codebase.
Writing functional D3 code could also alleviate the confusing unmaintainable code in

program 2.2 as developers can easily compose repeating DOM manipulation sequences
and reuse them throughout the codebase without having to touch code on multiple files
in case there is a bug that effects multiple aspects of the application.

Chapter 3

React – A JavaScript Library for Building
User Interfaces

This chapter introduces the reader to the prevalent and widespread front end library
called React. It explains an essential aspect of React—its rendering cycle—which the
reader needs to understand at least on a high level to be able to follow upcoming expla-
nations of how the thesis project was implemented. Additionally, the thesis elaborates
how React uses declarative code to render data, whereas D3 uses an imperative API to
render its data.

3.1 Introduction to React

The easiest way to find information about React is to visit its official website1. There is
a statement in [21] up front that says: “React is a JavaScript library for building user
interfaces” which describes React very well. A Facebook engineer called Jordan Walke
founded the library in 2011, as presented in [9, 05:30]. Walke wanted to create a tool that
would improve the code quality of their internal tool called “Facebook ads.” Facebook
continued to develop and use React internally, but since the year 2013, the project is
entirely open source. Starting with the initial open source release up until now not only
technical engineers of Facebook but also the React open source community itself has
been maintaining the library. In late 2017, Facebook even changed React’s BSD license
to the MIT license, which is even better for the React community, as the MIT license
has fewer restrictions than the BSD license.

According to [21], Facebook sees React as a declarative and component-based library.
However, a question might come to mind: “What exactly does it mean for a library
to be declarative and component-based?” The answer to this question might be more
straightforward than initially anticipated. In [3] declarative programming is described
as a programming pattern that expresses the logic of a program without describing its
control flow. This means that the actual code only describes what has to be computed
not necessarily how it should be done exactly by stating every action explicitly via a
function call. Declarative programming can be understood as a layer of abstraction that

1https://reactjs.org

12

https://reactjs.org

3. React – A JavaScript Library for Building User Interfaces 13

makes software easier to understand for readers of the code. Declarative programming is
therefore very different from the imperative programming pattern described in chapter 2.
React’s approach of handling the presentation layer is declarative since its API lets
developers describe how the application has to look like at any given data variation,
which is quite the contrary to D3’s API. Further insights into React’s API can be found
in section 3.2 though.

Enabling developers to create a highly component oriented architecture in their
software is a fundamental aspect of React as well. Using a component-based library can
increase productivity a tremendous amount. However, what does it mean for a library
to favor component based architecture? After the initial setup of some boilerplate code,
React makes it exceptionally easy to reuse existing components in the codebase to allow
even faster development cycles. Once standard input components like buttons or text
fields and layout components like page or header components are implemented, they
can be reused throughout the whole app. Thus, significant progress can be achieved
in a very short amount of time. Components can be manipulated by passing different
properties which might result in different presentation results of the components. More
in-depth information on how React handles components and its props can be found in
the upcoming section 3.2.

React components can have multiple applications. There are presentational compo-
nents, for example, which are pure functions that represent the current application state.
Though, there are also stateful components which can hold some application state and
react to state changes accordingly via rendering again. React makes no assumptions
about the technology stack that is used in a project as [21] claims. This means that
users of the library can decide for themselves if they want to use the built-in state man-
agement functionality or if they want to use a third-party library for solving specific
problems like global application state for example.

React’s documentation2 claims that the library makes use of a so-called “virtual
DOM.” This means that React keeps track of its state data to prevent unnecessary writes
to the actual DOM object. JavaScript performs exceptionally well when handling pure
JavaScript objects in memory. Keeping the application’s DOM tree in the JavaScript
engine’s heap as a representation of objects enables React to primarily apply updates
this so-called virtual DOM. React compares the newly applied data with the old tree to
then being able to decide if updates need to be committed to the real DOM. Writing
or committing to the DOM is the most expensive type of work in the browser, so
React tries to keep DOM manipulating actions to a minimum. The React team calls the
diffing algorithm “reconciliation algorithm.” It would go out of the scope of this thesis
to to explore the algorithm in more depth, so it is recommended to read about React’s
reconciliation algorithm in its documentation3.

React is a view layer that favors unidirectional data-flow. Every time the application
state changes, the whole new data object is passed to React once again. As mentioned
in [9, 6:50], the speaker describes the functionality very well via explaining React as a
simplified function that could look like this: f(data) = UI. Hence, React can be seen as
the view layer that handles presentation as a function of state and data. Once the data
has updated the virtual DOM, the virtual DOM is then passed to React’s reconciliation

2https://reactjs.org/docs
3https://reactjs.org/docs/reconciliation.html

https://reactjs.org/docs
https://reactjs.org/docs/reconciliation.html

3. React – A JavaScript Library for Building User Interfaces 14

algorithm, which determines if some nodes have to be changed on the real DOM. If there
was a React component that would always render the same <div> with the same data,
rendering that component multiple times would not result in React writing multiple
DOM nodes to the browser. The reconciliation algorithm would acknowledge that the
virtual DOM’s old tree matched the new data tree in this case, which would also result
in React not updating the browser’s DOM. Of course, if the component’s content was
dynamic, it would sometimes have to be re-rendered according to the data changes. If
some parts of the data stay the same even after being reapplied to a component, only
newly added, removed, or updated nodes are committed to the DOM. Even though
the reconciliation algorithm prevents expensive DOM operations, the algorithm itself
can also be expensive. There is an article4 in React’s documentation which advises
developers to try to avoid reconciliation to further improve performance.

Unidirectional data-flow implicitly also implies that there is no data binding and no
template language. The library only uses createElement([element]) calls internally,
which are hidden behind the so-called “JSX” JavaScript language extension. JSX will
be explained more in depth in section 3.2. As mentioned before, React is just a pure
idempotent function of its application state, which means that the same data always
produces the same presentation. That fact also implies that if the application data has
to be changed, a new “patched” version of the application data has to be created instead
of mutating the currently available application state. The newly created data then flows
into the React render cycle again. Unidirectional data-flow is also the reason why React
works well with immutable data structures. This paper assumes that the reader knows
about immutable data structures, but [13] explains exceptionally well, what immutable
data structures are and how they are used in JavaScript. Going more in-depth on how
React works well with immutable state would go out of the scope of this thesis though.
It is just essential to know that every time the data changes, React triggers a whole
new render cycle of the component tree. The immutable data structures help React to
work out changes in the data structure when using immutable data structures. Instead
of having to implement recursive data comparison functions, nested data object tree
differences can be checked via a cheap equality check.

3.2 Explaining the React API
To follow performance discussions and elaborations about the thesis project’s proto-
types, a general high-level understanding of the API is required. This section introduces
the reader to React’s public API. The section does not aim to be a tutorial on how to
program React applications, but rather to be a high-level explanation of how the API
works. Reading this section makes it easy to understand the differences and similarities
of React and D3. After reading this section, it should not only be clear how the two
libraries play together but also how they are also entirely different.

3.2.1 JSX in General
Probably one of the most important aspects of React’s API is the JavaScript language
extension called “JSX” which simplifies the use of React greatly and produces much

4https://reactjs.org/docs/optimizing-performance.html#avoid-reconciliation

https://reactjs.org/docs/optimizing-performance.html#avoid-reconciliation

3. React – A JavaScript Library for Building User Interfaces 15

Program 3.1: Creating a React element with JSX.

1 const ReactElement = (
2 <div className="hello-world">
3 Hello World!
4 </div>
5)

Program 3.2: Creating a React element without JSX.

1 const ReactElement = React.createElement(
2 "div",
3 { className: "hello-world" },
4 "Hello ",
5 React.createElement(
6 "span",
7 { className: "emph-text" },
8 "World"
9),

10 "!"
11);

more readable code. The example in program 3.1 shows an example React element
that is written in JSX. When looking at the transpiled output in program 3.2 it is
clear how JSX helps to reduce the amount of code and how it greatly improves read-
ability. The code in program 3.2 also shows that React is just a big composition of
createElement([element]) calls under the hood. When writing JSX code, in reality,
it is writing declarative code that is just a functional composition of React components.

Notice, how the createElement() function takes two to infinite parameters as shown
in React’s documentation5. The first parameter is the element type (the type can also
be a custom component that was created by a user or a downloaded third-party compo-
nent). The second parameter is used to pass the element’s current properties, and the
third and ongoing parameters describe the component’s children. The infinite amount of
children parameters makes it possible to compose multiple React components together,
as children are nestable.

Line 2 and 3 in program 3.2 show how a React element is created. A node of type div
is created and the property {className: “hello-world”} is passed. Each parameter
after line 3 is a child of the created <div> node. The React element has three children
which is demonstrated by the code example where the element is written in JSX in
program 3.1. First, there is the string “Hello ”, then there is a which also
has children, and finally there is the exclamation mark string at the end. When going
back to the transpiled code example in program 3.2, lines 4 to 10 exactly show what
kind of children are passed to React’s element creating function. Notice that the class
property has to be “className” in JSX instead of “class” because JSX is not HTML,
but extended JavaScript. Something also worth looking at is line 5 in program 3.2. A

5https://reactjs.org/docs/react-api.html

https://reactjs.org/docs/react-api.html

3. React – A JavaScript Library for Building User Interfaces 16

nested createElement() call shows how components can be composed together.
Because JSX is a language extension, a transpilation step is needed to produce

production code that can be interpreted by the browser. The common tool to use is
called “Babel.” There is a caption in [10] that says, “Use next-generation JavaScript
today.” The documentation in [10] explains, how modern JavaScript features can be used
in any JavaScript project. The code which includes those modern features is normalized
and transpiled by Babel to not only work in modern but also older browsers. The tool
accomplishes this by transforming the JavaScript code via its core implementation but
also via some third-party plugins. A babel plugin has been created to transform JSX
components into the syntax that can be seen in the code in program 3.2. Just as a side
note, although JSX became popular in conjunction with React, there are also other web
technologies that make use of JSX like Vue.js6 for example.

3.2.2 Explaining React Components
React’s components can be split up in two categories: stateful and stateless components.
The following paragraphs explain the difference between the two types of components
and how they can be used in a React application.

Functional Stateless Components

As mentioned before, React is an extremely component oriented web technology. The
example code in program 3.3 includes a purely presentational component called Hello-
Component on line 4, a page layout component called PageComponent on line 9, and
the base App component called App on line 20. React enables developers to create
reusable and configurable components by providing the possibility to pass an arbitrary
number of props to components. Generally speaking, props are used to not only control
presentational details like color or layout variations but also to configure some initial
state, for example, or to pass some application state data to a textbox component.

Without going too deep into the details of how a React application is rendered,
lines 33 and 34 in program 3.3 show how the app component is rendered into a specific
entry point in the static index.html page. The app component on line 20 renders
the page layout component, passes a few props—which should demonstrate what types
of props are possible—and then renders the HelloComponent twice inside the layout
component. One time the HelloComponent receives the prop name and one time the
property is omitted. The output of the hello world example can be seen in figure 3.1.

The example in program 3.3 visualizes, how components can be reused throughout
the application with different configurations and in different arrangements. The page
layout component could be declared in an individual file to be reused in every page of
the app. Via props React provides a reliable mechanism to control static state of the
components that receive the props.

One of the most important aspects of React is that props—once they are passed
to a component—are static and immutable inside the receiving component as React’s
documentation7 demonstrates. Components that only render props and do not man-

6https://vuejs.org/
7https://reactjs.org/docs/components-and-props.html#props-are-read-only

https://vuejs.org/
https://reactjs.org/docs/components-and-props.html#props-are-read-only

3. React – A JavaScript Library for Building User Interfaces 17

Program 3.3: Simple example of a React component and its usage.

1 import React from "react";
2 import ReactDOM from "react-dom";
3
4 const HelloComponent = props => {
5 const name = props.name;
6 return <div>Hello World to {name ? name : "you"}!</div>;
7 };
8
9 const PageComponent = props => {

10 props.customFn("I get passed to the handler function!");
11 return (
12 <div>
13 <h1>{props.title}</h1>
14 <div>{props.content}</div>
15 here are my children: [{props.children}]
16 </div>
17);
18 };
19
20 const App = () => {
21 return (
22 <PageComponent
23 customFn={console.log}
24 title="I render the title prop"
25 content="I render the content prop"
26 >
27 <HelloComponent />
28 <HelloComponent name={"Max"} />
29 </PageComponent>
30);
31 };
32
33 const rootElement = document.getElementById("root");
34 ReactDOM.render(<App />, rootElement);

Figure 3.1: React hello world sample output.

age their own application state can be seen as pure functions which render the exact
data they receive every render cycle. Props could thus be understood as parameters
of a pure function, leading us back to the previously explained context of the function
f(data) = UI in section 3.1. Another important aspect of React’s prop mechanism is
that props cannot be changed inside the receiving component. Props that are passed

3. React – A JavaScript Library for Building User Interfaces 18

Program 3.4: Simple example of a React component and its usage.

1 import React from "react";
2 import ReactDOM from "react-dom";
3
4 const Count = props => (
5 <div>
6 <div>I render the count</div>
7 <div>The count is currently {props.count}</div>
8 </div>
9);

10
11 class StatefulComponent extends React.Component {
12 constructor(props) {
13 super(props);
14 this.state = {
15 count: 1
16 };
17 }
18
19 counterHandler = () => {
20 this.setState(state => ({ count: state.count + 1 }));
21 };
22
23 render() {
24 return (
25 <div>
26 <h1>{this.props.title}</div>
27 <Count count={this.state.count} />
28 <button onClick={this.counterHandler}>+1</button>
29 </div>
30);
31 }
32 }
33
34 const App = () => <StatefulComponent title={"Counter Example"} />;
35
36 const rootElement = document.getElementById("root");
37 ReactDOM.render(<App />, rootElement);

into a component are immutable and trying to mutate them results in React not noticing
any changes in the data and therefore not activating a new render cycle.

Stateful Components

The attentive reader now probably has the following questions: “How do I introduce
mutable application state, if data coming from props is immutable?” or “How does React
notice if I introduce changes to the application state?” At this point, it is important
to remember that React works best when keeping the unidirectional data-flow model
in mind. The library provides a built-in mechanism for handling mutable application
state out of the box. The code example in program 3.5 shows the difference between a
purely presentational component on line 4 and a stateful component that keeps track

3. React – A JavaScript Library for Building User Interfaces 19

Figure 3.2: React counter component output.

of its application state on line 11.
First of, creating stateful components is quite effortless, as the component class sim-

ply derives from React.Component as shown on line 11 of the program in program 3.4.
The constructor on line 12 calls its super constructor—React.Component in that case—
and then initializes its state to {count: 1} right away even before the component has
even mounted for the first time. The state object is available throughout the whole class
component and can be used to render UI components that depend on that current state.

The example program in program 3.4 demonstrates well, how the current state is
used in the render method on line 27. Once the component calls its render method, the
current state is accessed and rendered. Note that the state cannot be altered and is
immutable and read-only as well as the component’s props. To introduce state changes,
React provides a class member function which is called setState, which takes a callback
to update the internal component state as shown on line 20 of the program 3.4. When
the this.setState method is called, React is informed that there has been a state
update and initiates a new render cycle which, as a consequence, triggers the whole
lifecycle of the component again. The next section is all about React’s lifecycle methods
and how developers can utilize them.

3.3 React’s Component Lifecycle
React components consist of a set of lifecycle methods that are called every render cycle
of React, which is different from stateless functional components, as they are just pure
functions. The previous code example in program 3.4 was enhanced in program 3.5. A
few lifecycle methods—some of which can be found on lines 12, 19, 23, 27, 31, and 39
in program 3.5—make it possible to exactly control how components react to certain
application state updates. Their names make it pretty clear what aspect of the lifecycle
they handle.

React’s documentation includes a comprehensive guide8 on component lifecycle
methods. By overriding the lifecycle methods inside their components, developers can
add their specific logic to each lifecycle in every render cycle of the components. Overrid-
ing lifecycle methods is optional; it is, therefore, possible to not implement any lifecycle
method at all. Notice, how class components always have to override the render()
function to being able to even render content. The render function is called every time
the component goes through a new render cycle.

A good visualization of the full lifecycle of a React component can be found in
the GitHub repo in [15]. The web application in [24] visualizes the separation of the

8https://reactjs.org/docs/react-component.html

https://reactjs.org/docs/react-component.html

3. React – A JavaScript Library for Building User Interfaces 20

Program 3.5: Simple example of a React component and its usage.

1 import React from "react";
2 import ReactDOM from "react-dom";
3
4 const Count = props => (
5 <div>
6 <div>I render the count</div>
7 <div>The count is currently {props.count}</div>
8 </div>
9);

10
11 class StatefulComponent extends React.Component {
12 constructor(props) {
13 super(props);
14 this.state = {
15 count: 1
16 };
17 }
18
19 componentDidMount() {
20 console.log("I did mount.");
21 }
22
23 shouldComponentUpdate(nextProps, nextState) {
24 return this.state.count !== nextState.count;
25 }
26
27 componentDidUpdate(prevProps) {
28 console.log("I did uptate, previous props are", prevProps);
29 }
30
31 componentWillUnmount() {
32 console.log("I am about to vanish...");
33 }
34
35 counterHandler = () => {
36 this.setState(state => ({ count: state.count + 1 }));
37 };
38
39 render() {
40 return (
41 <div>
42 <Count count={this.state.count} />
43 <button onClick={this.counterHandler}>+1</button>
44 </div>
45);
46 }
47 }
48
49 const App = () => <StatefulComponent />;
50
51 const rootElement = document.getElementById("root");
52 ReactDOM.render(<App />, rootElement);

3. React – A JavaScript Library for Building User Interfaces 21

different phases a component goes through when iterating through its lifecycle methods.
Figure 3.3 shows a screenshot of the application for the sake of being able to demonstrate
the diagram in the thesis. The diagram is based off a tweet in [18] from Dan Abramov,
one of the core contributors to the React library.

The whole lifecycle consists of three phases: The “Render phase”, the “Pre-commit
phase” and the “Commit phase.” Also, the component can be in three different states:
The mounting state, the updating state, and finally, the unmounting state. The visual-
ization in figure 3.3 shows the horizontal states and vertical phases of a React component.
Every state of the component has to iterate all the phases each cycle vertically. Notice,
how the update-render cycle does not call the constructor. What is also interesting is
the fact that the unmounting state only calls the componentWillUnmount method.

The most important lifecycle methods in React’s render cycle are componentDid-
Mount, componentDidUpdate and componentWillUnmount. The componentShouldUp-
date method is also important for improving performance, as explained later in this
section. There are also more uncommon lifecycle methods for special occasions like the
getDerivedStateFromProps method or the getSnapshotBeforeUpdate method. Those
methods are rarely used and are not elaborated as it would go out of the scope of the
thesis. It is important to know that the render phase is pure and can safely be aborted
completely, resulting in a canceled lifecycle. Early cancelations of complete lifecycles
can immensely improve performance.

The program in 3.5 is a good demonstration of how lifecycle methods can be used.
The lifecycle method on line 23, for example, controls if the component should even go
through it’s rendering cycle or not. As mentioned before, Facebook advises avoiding rec-
onciliation where ever possible. The shouldComponentUpdate lifecycle method already
aborts the render cycle in the so-called “render phase” which allows developers to not
only avoid unnecessary commits to the DOM but also unnecessary reconciliation cycles
which can greatly improve performance.

The shouldComponentUpdate method is the first lifecycle method that gets called in
the example in program 3.5, aside from the constructor, which is only called once in the
mounting state of the component. The shouldComponentUpdate method gets passed
all future props and state which can then be compared to previous data. The example
in program 3.5 shows that the count from the current and the next state is compared,
and, if they differ, true is returned, which means to React that a new render cycle is
necessary.

If, for example, the StatefulComponent on line 11 in program 3.5 would have a
parent that renders it 100 times, the stateful component is now smart enough to only
run through its lifecycle methods only once, as shouldComponentUpdate method tells
the component that nothing has changed. Therefore, the rest of the lifecycle methods
are omitted. Not calling the render function and its createElement() methods under
the hood also has the implication that no reconciliation has to be performed for the
stateful component, resulting in improved rendering performance of the app.

The other lifecycle methods in the code example in program 3.3 are pretty self
explanatory. There are a few best practices though, according to the documentation,
in [21]. The componentDidMount method is the one to handle side effects when fetching
data from an API, for example. Another use-case would be registering event handlers
in the componentDidUpdate method and unregistering them in the componentWill

3. React – A JavaScript Library for Building User Interfaces 22

Figure 3.3: React lifecycle methods diagram taken from [24].

Unmount method.

3.4 Conclusion
All in all, understanding the lifecycle of React components is a key aspect of also under-
standing how the thesis project was implemented. Lifecycle methods play a crucial role
when combining the rendering cycle of D3 with React’s rendering cycle. It is essential
to know that React has a virtual DOM, which it uses to compare versions of virtual
component trees to decide if any updates have to be committed to the DOM. Render-
ing a component with the same state multiple times results in React not committing
anything to the DOM as the consecutive virtual DOM tree versions are equal to each
other. It is also important to remember that these so-called “reconciliation cycles” can
completely be avoided by implementing the shouldComponentUpdate lifecycle method.

Chapter 4

Combining React and D3

The most important aspect of the master’s thesis is the thesis project. This chapter
introduces the reader to the project implementation and the resulting prototypes that
were developed during the development phase of the thesis project. A complete walk-
through helps the reader to understand the implementation differences of all prototypes.
Finally, the chapter introduces the reader to the performance testing methodology and
the different devices that were used to benchmark the prototypes.

4.1 Introduction and Motivation of the Project
When trying to find the best combination of two libraries, developing prototypes is
extremely important. Combining React and D3 in a few different ways in the thesis
project ultimately lead to one prototype that then came out on top. The project was
primarily realized to provide React developers with an alternative to native D3 force
implementations. The resulting software makes it possible to use D3’s force simulations
by writing React code. Finding a React implementation of D3’s force simulation which
performs better than the native D3 implementation was not the primary goal of the
project.

The obvious question “Why do I even need a combination of React and D3 if I
could just use native D3 instead?” can quickly be answered. The initial idea of the
project came to mind when a client requested a fully fledged React web application,
which also included some complex data visualization aspects that have to be animated
in the browser. Instead of implementing the visualization part of the application in
native D3, the combination of React and D3 enables all developers of the project to
write declarative React code. Using a combination layer API results in only one code
base that has to be maintained, instead of two. Also, as mentioned before, D3 code
bases tend to become exponentially more challenging to maintain as the project grows.

4.2 Project Setup
To be able to test multiple prototypes, one crucial aspect of the project is the force
simulation builder setup. All prototypes are based on the simulation builder module
which contains a few D3 specific methods that allow developers to construct their

23

4. Combining React and D3 24

own individual force simulation variants. The prototypes can reuse some of the already
composed methods, and some new custom methods can be implemented as well.

By implementing a force simulation builder module, it is possible to ensure that
all prototype D3 simulations are initialized and updated the same way. The most in-
teresting code snippet of the module can be seen in program 4.1. Individual building
blocks of the simulation can be piped together because the module uses a functional
approach. Lines 12, 21 and 30 show how the updater functions for the three prototypes
are composed together by using smaller force simulation function blocks.

The buildForceSimulation() method in line 42 in program 4.1 is the most impor-
tant function in the module. The options parameter has to contain a type, which is used
to determine what updater function is applied to the force simulation. The functional
switch case statement on line 36 in program 4.1 decides based on the type which updater
function to return. The builder function returns an instance of a D3 force simulation
and the associated updater function that can be used by each prototype to update the
simulation every time the data changes.

Another interesting aspect of the code snippet in program 4.1 is that the functional
compositions can be nested. Lines 1 and 7 show the composition of two functions that
in turn can then be composed with all three force simulation variants. Even though
they are piped together, the result can then be piped again into every updater function
composition as shown in lines 16, 25, and 32, for example, where the composed method
applyForceHandlers is piped into the updater functions of the different prototypes.
Again, the way the updater function composition is implemented ensures the equality
of the force simulation initialization of all three prototypes.

Of course, since all three prototypes work fundamentally different, some custom ap-
ply functions have to be implemented to ensure the functionality of all three prototypes.
Applying the custom functions is no problem, as all updater functions are functional
compositions. If some custom method has to be added, it can just be applied to the
function composition of the associated prototype. Line 23 in program 4.1 shows how a
custom node reference applying function is composed into the updater function.

Each prototype implements the same API interface and receives its data via props.
All visualization data and every setting parameter, therefore, has to be passed to the
prototype component via React component props. Using props also means that the
data and the settings must be updateable. The parent container which renders a proto-
type component must be able to update the prototype’s data by just passing different
props. The newly applied props, as a consequence, have to be handled correctly in each
prototype individually.

4. Combining React and D3 25

Program 4.1: Simple example of a React component and its usage.

1 const applyForceHandlers = pipeAppliers(
2 applyGeneralForce,
3 applyLinkForce,
4 applyCollisionForce
5)
6
7 const applyEndHandlers = pipeAppliers(
8 applyOnEndHandler,
9 applySimulationReheating

10)
11
12 const pureD3Updater = pipeAppliers(
13 applyNewNodeData,
14 applyPureD3Selection,
15 applyTickHandler,
16 applyForceHandlers,
17 applyDragHandlers,
18 applyEndHandlers,
19)
20
21 const hybridUpdater = pipeAppliers(
22 applyNewNodeData,
23 applyNewRefs,
24 applyTickHandler,
25 applyForceHandlers,
26 applyDragHandlers,
27 applyEndHandlers,
28)
29
30 const pureReactUpdater = pipeAppliers(
31 applyNewNodeData,
32 applyForceHandlers,
33 applyEndHandlers
34)
35
36 const getUpdaterFunction = switchCase({
37 [SIMULATION_TYPE.PURE_D3]: pureD3Updater,
38 [SIMULATION_TYPE.REACT_D3_HYBRID]: hybridUpdater,
39 [SIMULATION_TYPE.PURE_REACT]: pureReactUpdater,
40 })(null)
41
42 export const buildForceSimulation = (options) => {
43 const simulation = forceSimulation()
44 const updateSimulation = getUpdaterFunction(options.type)
45 updateSimulation({ simulation, options })
46 return { simulation, updateSimulation }
47 }

4. Combining React and D3 26

<g x={x} y={y}>

 <circle r={r} color={c}/>

 <path stroke={c} />

</g> 

D3

<Component />

render() componentDidMount()

tick()

didComponentUpdate()

Data

<svg id=“d3-root”/>

Figure 4.1: Pure D3 force graph life cycle visualization.

4.3 Prototypes
This section introduces the reader to the prototypes of the thesis project. It also ex-
plains how the project initially originated. Furthermore, every resulting prototype of
the project is listed and explained extensively. All in all, the thesis project yielded three
viable prototypes that are described in this chapter.

4.3.1 Pure D3 Prototype
The first prototype of the project was developed from an early experimental imple-
mentation. The sole reason it was realized was to test if it is even possible to combine
React and D3 but still maintaining React’s philosophy of unidirectional dataflow and
idempotent render function components. The main goal, therefore, was to create a pro-
totype that would always correctly update itself and thus visualize current data props
on every render cycle. If the parent component updated the visualization component’s
data or options, the prototype would have to instantly reflect the changes as well. The
main difficulty with this prototype is to combine React’s declarative approach with D3’s
imperative way of rendering data.

The implementation heavily relies on the fact that React’s reconciliation algorithm
omits updates to the DOM if the same element is rendered consecutively. The pure D3
graph component renders a single static base SVG, as shown in the code snippet in
program 4.2. After the component mounts, D3 hooks into the base SVG component
via the provided reference to the actual base DOM node and builds its force simulation

4. Combining React and D3 27

Program 4.2: Render function of the pure D3 prototype.

1 render() {
2 const { width, height } = this.props
3 return <svg ref={this.ref} width={width} height={height} />
4 }

on top. D3 also appends and removes the DOM nodes according to the data that was
passed to D3. Figure 4.1 demonstrates via color coding how React only renders the SVG
element and D3 renders the simulation via the tick function.

As a result, React’s reconciliation algorithm does not handle nodes that are inside
the D3 force simulation if the data changes. The component only renders a static SVG
element that is not updated. Because the SVG element is static, React’s reconciliation
algorithm does not commit anything to the DOM since every time the render function
is called the SVG tag stays the same. Instead, D3 entirely takes over the DOM manip-
ulation and adequately handles the simulation by itself without React interfering in any
way.

Every time the data updates, the new data is provided directly to D3 via the life cycle
method componentDidUpdate() as figure 4.1 shows. Of course, every data update causes
React to render the base SVG component, but, due to the virtual DOM implementation
of React, the SVG is never newly rendered, as it never changes. A static component is a
React node that does not contain any dynamic content and is therefore never updated
by the reconciliation phase. React’s reconciliation algorithm prevents the browser from
newly committing the SVG tag to the DOM. D3, therefore, works completely separate
from React. D3, on the other hand, can be implemented like in any other native D3 web
project. Not only the initial force graph generation functionality has to be implemented
but also the update logic that handles the updated data and applies it to the force graph
simulation.

There are two component life cycle methods from React that are crucial to this
implementation. First, componentDidMount() is used to initialize D3, select the base
node, and then build the whole force simulation on top as demonstrated in program 4.1.
It is important to use the life cycle method that triggers after the initial commit phase,
as it makes sure, the component has already been rendered once for D3 to being able
to select the existing real SVG DOM node. Looking at figure 4.1 again, it is apparent
that the second important life cycle method is componentDidUpdate() which provides
the latest most up to date data directly to D3. That way D3 can handle the update in
the force graph.

Implementation Details

Once the component is initialized, the componentDidMount() life cycle method directly
calls the initializer function which can be seen on line 1 in the code snippet in pro-
gram 4.3. The initializing function appends the base <g> tag and also handles the
translation of the current height and width of the component. Then the buildForce-
Simulation() function is called with the current options and parameters in order to

4. Combining React and D3 28

Program 4.3: Pure D3 force graph initializing function.

1 initGraph = () => {
2 const { width, height, onSimulationStart } = this.props
3
4 onSimulationStart()
5
6 const svg = select(this.ref.current)
7 svg
8 .append('g')
9 .attr('transform', 'translate(' + width / 2 + ',' + height / 2 + ')')

10
11 const simOptions = this.extractSimOptions()
12 const { simulation, updateSimulation } = buildForceSimulation({
13 type: SIMULATION_TYPE.PURE_D3,
14 ...simOptions,
15 })
16
17 this.simulation = simulation
18 this.updateSimulation = updateSimulation
19 }

get the simulation and the correct updater function. Note how the simulation type is
passed to the builder function as well. The resulting simulation and updater function is
then saved in the current component.

What is also worth mentioning is the fact that the simulation and the updating
functions are saved directly to the this context as seen in lines 17 and 18 of the code
snippet in program 4.3. As stateful components are just plain JavaScript classes, they
are capable of having member variables as well. It is of utmost importance not to confuse
member variables with React’s component state, as React is agnostic to class member
variables. React not noticing the member variables is a desired effect in this case, as the
simulation and the updater function have to be saved in the component without React
going through a new render cycle.

Looking at the code in program 4.4, the update applying functionality can be seen
very well. If given a current simulation object, the function handles all newly entering,
transitioning, and exiting nodes accordingly. Even an animation is applied. Each time,
the pure D3 React component goes through the componentDidUpdate() function, the
applyNodeUpdateCycle() function is called as well. The force simulation building mod-
ule can take in the updater function from the example in program 4.4 and composes it
directly into the updating function as seen in line 14 in program 4.1.

Another vital function of the pure D3 force graph is the tick handler that can be
seen in program 4.5. The ticking function also gets passed to the force simulation builder
function. Each iteration of D3’s simulation tick the function updates the position of all
nodes and links in the simulation.

4. Combining React and D3 29

Program 4.4: Function that applies the data update to D3 on data changes.

1 applyNodeUpdateCycle = (simulation) => {
2 simulation.linkSel.exit().remove()
3
4 simulation.linkSel = simulation.linkSel
5 .enter()
6 .append('path')
7 .attr('stroke', '#45b29d')
8 .attr('fill', 'none')
9 .merge(simulation.linkSel)

10
11 let t = transition().duration(750)
12
13 simulation.nodeSel
14 .exit()
15 .style('fill', '#b26745')
16 .transition(t)
17 .attr('r', 1e-6)
18 .remove()
19
20 simulation.nodeSel
21 .transition(t)
22 .style('fill', '#3a403d')
23 .attr('r', ({ size }) => size)
24
25 simulation.nodeSel = simulation.nodeSel
26 .enter()
27 .append('circle')
28 .style('fill', '#45b29d')
29 .attr('r', ({ size }) => size)
30 .attr('id', ({ name }) => name)
31 .merge(simulation.nodeSel)
32 }

Program 4.5: Tick handling function of the pure D3 prototype.

1 ticked = () => {
2 this.simulation.nodeSel.attr('cx', ({ x }) => x).attr('cy', ({ y }) => y)
3 this.simulation.linkSel.attr('d', (d) =>
4 this.props.linkType === LINK_TYPES.CURVED ? getCurvedLinkPath(d) :

getStraightLinkPath(d),
5)
6 }

Advantages

One of the most apparent advantages of the pure D3 force graph implementation is its
performance, of course. Since the implementation uses a native D3 approach to render
and update the nodes and links in the simulation, the performance is also comparable
to a native D3 implementation. In chapter 5, the performance of the pure D3 prototype

4. Combining React and D3 30

<svg>

 <g x={x} y={y}>

 <circle r={r} color={c}/>

 <path stroke={c} />

 </g>

</svg> 

D3

<Component />

render() componentDidMount()

tick()

didComponentUpdate()

Data

Figure 4.2: Pure React force graph life cycle visualization.

is compared to the other implementations.

Disadvantages

The most significant disadvantage of the pure D3 implementation is the fact that all
DOM manipulations are handled via imperatively chained function calls on the node
selections of D3 which also implies that the node rendering functionality cannot be
customized by passing custom render functions for instance. The force graph’s code
itself has to be changed to get different node and link appearances, which leads to the
previously described problem of encountering unmaintainable code over time.

4.3.2 Pure React Prototype
The pure React force graph implementation is far more complicated than the pure D3
force graph, as the D3 implementation is just a React wrapper for D3. To achieve a
pure React implementation, D3 needs to be deeply integrated into the rendering cycle
of React itself. As mentioned in chapter 2, D3 provides developers a tick function when
using animated simulations. This tick function is executed as often as the browser has
an animation frame available according to D3’s documentation1. Explaining the request
animation frame functionality of the browser would go out of the scope of this thesis,
but MDN provides a good explanation on the MDN website in [22].

As figure 4.2 shows, the complete presentation layer is handled by React itself. The
whole SVG component tree is completely rendered by React. The figure also demon-

1https://github.com/d3/d3-timer

https://github.com/d3/d3-timer

4. Combining React and D3 31

strates how the data is handled not only in the component’s constructor but also in its
shouldComponentUpdate() life cycle method. As mentioned in the previous chapter 3,
the constructor is the first life cycle method that is executed in any React component.
The pure React prototype takes advantage of that fact and initializes the complete D3
force simulation before any data is rendered. The shouldComponentUpdate() life cy-
cle is used to determine if the component’s props have changed and possibly apply an
update to the D3 force simulation.

The key to the integration of D3 into React’s render cycle is the tick function on the
D3 force simulation. Every time the tick function is executed, the applied tick handler
then queries the force simulation data, fetches all link and node positions, calculates
the current position and then passes the newly calculated data to the React component
again via a setState() call. Figure 4.2 demonstrates how the data flows back into the
component after each tick cycle of the force simulation.

Keeping all node and link positions in the React component state, as a result, unlocks
full control to the presentation layer. Thus, React acting as a function of state can
completely handle each element in the force simulation. The component state includes
not only appearance properties like background or stroke color but also exact node and
link positions. As a consequence, the data has to pass the complete rendering cycle of
React on every tick execution, including the reconciliation phase, which can lead to poor
rendering performance. Not only does it take time for D3 to calculate a new version of
the force data each tick, but also React then has to process the whole new data tree.
If the simulation contains a high number of nodes, the whole rendering process—which
figure 4.2 shows—should massively impact performance in theory.

An existing project of Uber2 strongly inspired the pure React implementation. Uber’s
project is called vis-force and can be found on its git page in [17]. During the research
phase of the thesis project, Uber’s project was found and also thoroughly examined.
The pure React prototype implementation is essential as it can be used to compare the
render performance to the other two prototypes of the thesis project.

Implementation Details

The initialization of the pure React force graph pretty much looks the same as in line 12
in the pure D3 code example in program 4.3. The pure React prototype passes its
correct simulation type of course though. The biggest and most important difference
to the pure D3 implementation is that the initialization of the force simulation takes
place inside the constructor instead of the componentDidMount() life cycle method. As
mentioned before, the pure React prototype contains all node and link positions in the
internal state. Consequently, the internal state must exist before calling the render()
life cycle method the first time.

Due to the fact that the pure React force graph component provides the complete
dataset about all nodes and links in the simulation, the render function can be 100%
declarative code as seen in the code example in program 4.6. The link and node proper-
ties which contain presentational data like the size of a node or the color of a link come
from the component’s props, as they are passed in from the parent container. However,
the link and node positions come from the components internal state. The example code

2https://www.uber.com

https://www.uber.com

4. Combining React and D3 32

Program 4.6: Render life cycle method of the pure React force graph prototype.

1 render() {
2 const { height, width, nodes, links } = this.props
3 const { linkPositions, nodePositions } = this.state
4
5 return (
6
7 <svg height={height} width={width}>
8 <g style={gStyle} transform={`translate(${width / 2},${height / 2})`}>
9 <Links links={links} linkPositions={linkPositions} />

10 <Nodes nodes={nodes} nodePositions={nodePositions} />
11 </g>
12 </svg>
13
14)
15 }

in program 4.6 shows very well, how the nodes and links components have direct access
to the link and node positions. Figure 4.2 also shows how the React components handle
all the SVG properties.

Another vital aspect of the pure React force graph’s implementation is the up-
date handling mechanism. Due to the fact that the component is updated on every
free animation frame of the browser, it is of utmost importance to only update the
component if necessary. The shouldComponentUpdate() function in the code snippet
in program 4.7 shows that not only internal state but also the props are checked, if
they have updated. Only if the props provided by the parent component have changed,
the component calls the force simulation updater function which it obtained via the
buildForceSimulation() call in the constructor. The component should update though
if either its props or its state has changed. If the props have changed, the simulation
updater function makes sure that the force simulation calculates the data for the new
nodes and links. By doing so, the next render call can already process the new node
and link positions.

Unfortunately calling the handleSimulationUpdate() function inside React’s life
cycle method shouldComponentUpdate() is considered an anti-pattern according to
Facebooks article3, as side-effects should always be handled inside the component-
DidUpdate() life cycle method. The force simulation updater function is a so-called
“side effect.” Facebook strongly advises against using any side effects in the should-
ComponentUpdate() life cycle method, as it should be as fast and efficient as possible
to prevent possible render cycles. In the case of the pure React force component calling
the simulation updater function is fine though, as the side-effect is not called on every
state update, but only if the component’s props change. Props only change, if the par-
ent component passes different props, which does not happen that often. The internal
component state, on the other hand, updates multiple times per second and preventing
the simulation update function call on every state change is crucially important for good
rendering performance.

3https://reactjs.org/docs/react-component.html

https://reactjs.org/docs/react-component.html

4. Combining React and D3 33

Program 4.7: Update method of the pure React force graph prototype.

1 shouldComponentUpdate(nextProps, nextState) => {
2 const propsChanged = shallowCompare(this.props, nextProps)
3 const stateChanged = shallowCompare(this.state, nextState)
4 const shouldUpdate = propsChanged || stateChanged
5 propsChanged && this.handleSimulationUpdate(nextProps)
6 return shouldUpdate
7 }

Program 4.8: Simulation tick handler of the pure React force graph prototype.

1 updatePositions = () => {
2 this.setState({
3 linkPositions: getLinkPaths(this.simulation),
4 nodePositions: getNodePositions(this.simulation),
5 })
6 }

Another interesting aspect of the pure React prototype implementation is the fact
that the tick handler function does not manipulate the DOM directly as the pure D3
example does. Instead, the code example in program 4.8 demonstrates how React’s
setState() component function is called which updates the component’s state with
the new link and node positions. The functions on lines 3 and 4 take in the current
force simulation as a parameter and extract either the node or link positions and return
them. As mentioned before, the update function is called as often, as the simulation tick
function ticks.

Every setState() call updates the component and triggers a new render cycle
of the force component. The component update loop goes on until the alpha in the
simulation has fully decayed. The updatePositions() call on line 1 in the code snippet
in program 4.8 itself is also wrapped inside a requestAnimationFrame() call to ensure
a consistent framerate in the browser. The component updater function should only be
called if the browser is ready to render a new simulation tick.

Advantages

A considerable advantage of a pure React implementation is the excellent developer
experience. Programmers have full control over the simulation data. All force data can
be represented declaratively via React components. The most significant difference to
D3 is that bigger D3 codebases often contain a significant amount of hardly maintain-
able code, as DOM nodes have to be added via imperative append() and removed via
imperative remove() calls which exist on multiple different places in the code base.
Since DOM nodes have to be conditionally added, changed, and removed, the code
quickly gets confusing and possibly produces inconsistent UI states. When writing the
components with React, the library accurately renders nodes and links that exist in the
currently calculated data tree that was produced by the current ticking cycle of the D3

4. Combining React and D3 34

force simulation. React itself can not only completely handle properties like filling color
or stroke properties but also the nodes’ positions.

Rendering the complete force graph via React components yields one other signifi-
cant advantage compared to the pure D3 prototype. If desired, the force graph com-
ponent can be upgraded to accept custom rendering functions that can be passed from
outside. If the pure React force graph component offered a custom rendering function,
users of the component could write their personal rendering functions with React code
to achieve a customized version of the force graph.

Disadvantages

The most significant advantage sadly is also the biggest disadvantage of the pure Re-
act force graph. Because the pure React prototype not only stores all node and link
positions in the internal component state but also updates them every fraction of a
second more CPU cycles are lost by calculating not only the D3 tick cycles but also
complete React render cycles as a consequence. Even though sometimes some node and
link positions are only changed ever so slightly when the alpha value approaches the
minimum value, React’s reconciliation algorithm determines an updated DOM node and
completely recommits the whole node to the DOM, which, of course, has an impact on
performance.

Another considerable disadvantage of the pure React force graph implementation
is that some native D3 functionalities like dragging nodes or zooming in and out of
the graph have to be implemented from scratch in pure React which can be a tedious
task. Due to the component being rendered multiple times a second, implementing well
performing drag handlers is a very complicated task, for example.

4.3.3 D3 and React Hybrid Prototype
Last but not least, there is the D3 and React hybrid force graph implementation. The
prototype not only provides the developing experience of writing declarative React code
but also puts the complete feature set of D3 at the developers’ disposal. The hybrid
implementation makes it possible to handle the representational aspect of the simulation
via React and let D3 not only calculate but also manipulate the DOM node positions
of the individual nodes and links in the force graph. Figure 4.3 demonstrates via color
coding what parts of the DOM content are handled by React and D3.

The way the prototype achieves the previously mentioned functionality is that the
D3 force simulation is constructed after the hybrid React component is initialized and
mounted. As in the other two prototypes, all force data is passed into the hybrid force
graph component via props from the parent component. React renders the nodes and
links which are represented in the props’ data and after the render phase has been passed,
the data is then handed to D3 via the componentDidUpdate() life cycle method. D3
selects the already committed DOM nodes and applies the internally calculated force
position data. Figure 4.3 demonstrates how only post render phase life cycle methods
are used to pass data to D3.

As described in chapter 3, during the component’s render phase the reconciliation
algorithm compares newly applied data of the component’s state or props with the
virtual DOM and then decides which DOM nodes need to be committed to or removed

4. Combining React and D3 35

x={x} y={y}
<svg>

 <g >

 <circle r={r} color={c}/>

 <path stroke={c} />

 </g>

</svg> 

D3

<Component />

render() componentDidMount()

tick()

didComponentUpdate()

Data

Figure 4.3: Pure React force graph life cycle visualization.

from the DOM. Once the simulation data updates via a prop update from the parent
component, some nodes or links, therefore, might be added, changed or could just be
removed, if they are non-existent anymore in the new version of the applied data.

The most important aspect of the hybrid prototype is that D3 selects already ex-
isting DOM nodes and connects them to the current force simulation data. Since the
selection process is executed in React’s commit phase, D3 can read the up to date ver-
sion of the DOM. As described in chapter 3, reading or manipulating the DOM in the
commit phase guarantees the DOM to be a representation of the component’s current
state and data. Therefore D3’s selection happens after the render phase to always apply
its selection to the most recent version of the DOM.

Implementation Details

As the name of the component already reveals, the implementation of the hybrid pro-
totype is a combination of the previous two prototypes. The initialization of the hybrid
graph component also looks very similar to the initialization on line 12 in the code snip-
pet in program 4.3. The only difference in the hybrid implementation is that the hybrid
simulation type is passed to the builder function. A very notable difference to the pure
React component is that the initializer function is called in the componentDidMount()
life cycle method, not in the component’s constructor. As described before in the intro-
duction of section 4.3.3, the component needs to be in the commit phase for D3 being
able to hook into already committed DOM nodes.

As described in section 4.2, the buildForceSimulation() function is very important

4. Combining React and D3 36

Program 4.9: Component update handler of the hybrid force graph prototype.

1 componentDidUpdate() {
2 this.updateSimulation(this.extractSimUpdateParams())
3 }

to ensure every prototype the same D3 force simulation object. Any changes in given
option parameters yield a different simulation of course, but the builder function is an
idempotent function. If every prototype calls the builder function with the same force
simulation option parameters, the method always returns the same simulation for every
prototype. Like the other prototypes, the hybrid implementation of course also uses the
force simulation builder function.

In contrast to the other prototypes, updating the hybrid graph component is quite
simple. The code snippet in program 4.9 shows that the componentDidUpdate() life
cycle method just calls the updater function that was obtained from the buildForce-
Simulation() call. Since D3 handles the positioning of the nodes, updates in the com-
ponents simulation data have to be passed to D3 to update its force calculation. While
the pure React prototype has to pass a complete render-cycle multiple times a sec-
ond, the hybrid component only updates, if the parent container passes some new
simulation data. As a consequence, the hybrid component can be rendered multiple
times by the parent container but prevents itself from updating via implementing the
shouldComponentUpdate() life cycle method.

The tick handler, on the other hand, contains a few D3 specific instructions to
display the current force simulation state. As mentioned before, the hybrid component
makes D3 responsible for positioning the DOM nodes correctly according to the current
simulation data. Line 4 in program 4.10 demonstrates, how the tick handler works in
the hybrid prototype. To enable users of the component to pass custom simulation
handlers, the node and link handlers are extracted from the props of the component
first. If they are set from the parent container, they are utilized to handle the simulation
tick. Otherwise the standard tick handlers on lines 1 and 2 are used. More information
on how to customize the usage of the hybrid component can be read in chapter 6 later
on.

Like the pure D3 prototype, the hybrid prototype also supports transitions. To
achieve D3’s transition functionality, a library called react-move—which can be found
on its GitHub page in [14]—provides the functionality for React components. Because
React only renders its current state as a function of state, it is not possible to keep
track of data throughout multiple render cycles. If, for example, a node with index “42”
exists in render cycle one but not in render cycle two, there is no way for React to know
that there was a node with index “42” in the first render cycle. React move provides an
animation mechanism to tackle the previously mentioned problem. All of the simulation
data is passed to the react-move component inside the hybrid node component, which
then keeps track of data changes via an internal system. Via animation hook functions
the behaviors of entering, transitioning, and exiting nodes can be specified, which is
similar to the D3 prototype. Information about the usage and how the react-move
library works internally can be found on the GitHub project in [14].

4. Combining React and D3 37

Program 4.10: Simulation tick handler of the hybrid force graph prototype.

1 applyNodeTick = (nodeSel) => nodeSel.attr('cx', (d) => d.x).attr('cy', (d) => d.y)
2 applyLinkTick = (linkSel) => linkSel.attr('d', this.getLinkPath)
3
4 ticked = () => {
5 const { nodeTickHandler, linkTickHandler } = this.props
6
7 nodeTickHandler
8 ? nodeTickHandler(this.simulation.nodeSel)
9 : this.applyNodeTick(this.simulation.nodeSel)

10
11 linkTickHandler
12 ? linkTickHandler(this.simulation.linkSel)
13 : this.applyLinkTick(this.simulation.linkSel)
14 }

Advantages

The benefit of the hybrid implementation is that React can handle the node and link
representation. Writing React code also implies that there are no disjointed code frag-
ments of appending and removing components like in D3 code. Using React components
to render the force simulation nodes also implies that custom node components can be
written and used in the force component, which makes the hybrid implementation highly
versatile.

The rendering performance is probably close to a pure D3 implementation, as React
has to render the nodes for the simulation only once every data update. D3 then takes
over by altering the positions on the actual DOM nodes via its internal ticking function.
Technically there is no difference between rendering the initial nodes and links of a force
graph via React or D3 as the DOM nodes have to be committed nevertheless. D3’s force
simulation tick cycles then directly alter the position attributes of the DOM SVG nodes.
React is agnostic of D3 being hooked into the DOM nodes, as the component only
updates if the outside data changes. When the parent passes new simulation data, the
simulation is fully updated in any case. Final numbers on performance are elaborated
in chapter 5 though.

Disadvantages

A significant disadvantage of the hybrid prototype is that it might be unclear to main-
tainers of the library that D3 handles the positions of the nodes and links and not
React. Of course, documenting the positioning aspect could be a solution to the prob-
lem. Writing proper documentation is not only time but also resource consuming for
maintainers. New maintainers of the library would have to completely understand how
the hybrid combination of React and D3 works to start being productive on the library.

4. Combining React and D3 38

4.4 Comparison of the Different Proposed Prototypes
When comparing the prototypes, an essential aspect is to understand, which technol-
ogy renders what aspects of the simulation’s nodes and links. Looking at the pure D3
prototype, React only renders the base SVG element so D3 can hook into the SVG
base node and build up its simulation. The pure React prototype, on the other hand,
renders the complete DOM node tree of the whole simulation, including the nodes’ and
links’ positions. Last but not least, the hybrid prototype introduces a mixed rendering
strategy, where React renders the whole DOM node tree, but D3 selects the already
rendered nodes and only manipulates their positions.

The performance of the pure D3 prototype should act as a baseline for testing
the other prototypes, as the whole simulation is handled by native D3 code. The pure
React prototype has to iterate a whole React render cycle on each simulation tick, which
technically is performing worse than letting D3 manipulate the DOM nodes directly.
Therefore the hybrid prototype takes advantage of both worlds by leaving the expensive
calculations and node position manipulations to D3 while Rendering the nodes with
declarative React code.

Looking at the figures 4.1, 4.2, and 4.3 again, they might appear to be quite similar.
There are some subtle differences which make big differences though. Even though all
prototypes mostly use two life cycle methods, it is of utmost importance to recall in
which component life cycle phase the methods are called though. Figure 3.3 can help to
look up all common life cycle methods again. While the pure D3 and hybrid prototype
pass the simulation to D3 only in the commit phase, the pure React prototype has to
pass its data to D3 in the render phase.

4.5 Prototype Storybook
The thesis project furthermore contains one additional aspect that makes it quite easy
to compare and test out all available prototypes. A community project called Storybook
was utilized to compare and present the prototype results. The GitHub page in [16]
explains the Storybook software as a development environment for UI components. The
library lets developers build component browsers for their projects which showcase the
project’s components in so-called “stories.” A story is a self-contained page which renders
a component with a pre-applied configuration and state. In the case of the thesis project,
the Storybook library was used to present all three prototypes in action and to make
them interactive and browsable.

Figure 4.4 shows a visualization of the Storybook, which was developed for the thesis
project. Users can select a prototype and a particular configuration from the sidebar
and view the result in the main content section. All components are rendered inside
a state container that provides data manipulation functionalities. For instance, via a
simple click, the force data can be updated, links can be toggled, data or links can be
shuffled and so on. All possible data manipulation functions can be seen in figure 4.4
on top of the component section.

4. Combining React and D3 39

Figure 4.4: React Storybook currently showing the hybrid prototype.

4.6 Conclusion
All in all, each prototype has an interesting implementation on its own. The implmenta-
tion phase of the thesis project showed that every prototype has certain advantages and
disadvantages. The question of which prototype is the best is a subjective decision in the
end. An aspect that can be measured though is performance. Chapter 5 shows how the
particular prototypes perform in comparison to each other. As letting other developers
profit from the findings of this master project is desired, the hybrid prototype will be
an open source project in the near future. More information about the plans of making
the newly invented hybrid prototype open source can be read in chapter 6.

Chapter 5

Performance Testing and User Perception

The research question of the thesis is if React can be combined with D3 without losing
any performance in the browser. The following sections introduce the reader not only to
the benchmark setup and testing methodologies but also present the final results of the
benchmarks. There is also a discussion which elaborates all test results. Since humans
cannot measure the exact amount of frames per second, a special section introduces the
reader to the human perception of fluent animations and how the testing results can be
interpreted even further with that knowledge.

5.1 Test Environment Setup
This section describes the testing environment that was implemented to compare the
three force simulation component prototypes. There are a few challenges that had to
be taken into account when realizing the testing environment. Also, the implementa-
tion details are elaborated and explained. Last but not least, the testing devices are
introduced which are used to run the benchmark.

5.1.1 Challenges
One of the most challenging aspects of the thesis project is the performance measurement
of the prototypes. Modern browsers have an uncountable amount of features that help
to smooth out the performance to improve user perception. Getting some consistent
performance numbers is much harder due to inconsistent browser optimizations. Using
different browsers for benchmarks also means that different JavaScript runtimes are
used to run the benchmarks. All engines have different execution and parsing speeds.
Also, the mechanism to speed up frequently accessed script code is different, which also
makes it harder to get consistent performance numbers.

When benchmarking web applications, it is very complicated to get performance
values that have scientific relevance, which can be compared to get some accurate results.
The next section introduces a system that was primarily implemented to measure the
performance of JavaScript web applications. The system tries to tackle all challenges to
producing detailed benchmark results.

Another big problem is the fact that browsers detect the refresh rate of monitors
when utilizing the request animation frame functionality. Monitors with a refresh rate

40

5. Performance Testing and User Perception 41

Figure 5.1: Hybrid prototype benchmark results.

of 144 Hertz allow browsers to produce up to 144 frames per second. 60-Hertz monitors,
on the other hand, limit the browser’s framerate to 60 FPS. The maximum amount of
animation frame executions in any browser can only ever go up to the monitor’s amount
of Hertz the browser window is running in.

Speaking of utilizing the request animation frame functionality, it must be mentioned
that each browser has a different implementation of the functionality. The Chrome1

browser, for example, is smoothing out the performance by trying to execute animation
frames regularly, which means that the overall performance might be lowered to achieve
a smoother framerate as explained in [23]. Experience shows that Firefox2, on the other
hand, always fires its animation frames whenever a frame is available, which can result
in higher overall but not as consistent framerates.

Last but not least, another challenge was to build a performance measuring envi-
ronment that can be used without adding code to the prototypes. Theoretically, each
prototype should be a complete component that can be shipped as a third party library.
By adding performance measurement specific code, the components would contain func-
tionality that is not needed when shipping production builds of the components.

5.1.2 Building a Stable Testing Environment
A testing environment which produces consistent data input across multiple iterations
yields the best testing results when benchmarking all three prototypes. Testing the force
simulation prototypes with the same data across multiple benchmarks, environments,
and devices is of utmost importance. A valid solution is to use a pseudo-random data
generator which can be restarted and reseeded each benchmark iteration.

Generating an arbitrary amount of random node and link positions is not a problem,
as JavaScript has a built-in random generator which can be utilized to generate ran-
dom data. Unfortunately, JavaScript’s random generator cannot be seeded to achieve
consistent pseudo-random results. The library seedrandom in [11] is the perfect technol-

1https://www.google.com/intl/de/chrome/
2https://www.mozilla.org/de/firefox/new/

https://www.google.com/intl/de/chrome/
https://www.mozilla.org/de/firefox/new/

5. Performance Testing and User Perception 42

Figure 5.2: Overview of the benchmark application.

ogy to solve the problem of generating consistent data across multiple iterations of the
benchmark tests.

Since browsers frequently yield different performance numbers across iterations with
identical data, the amount of cycles per test data iteration has to be increased. When
testing one specific iteration multiple times, the average value has much more signifi-
cance than testing an iteration only once. Therefore the testing environment must have
support for different iteration configurations, which can be run an arbitrary amount of
times.

The testing environment is designed to be a stateful container which generates some
random data and then passes it to the desired prototype. D3 simulations provide a
mechanism to add an event handler whenever the simulation stops. Therefore, it is no
problem to pass a handler to the benchmark component that is executed whenever the
simulation stops. The handler can be used to restart the benchmark with some newly
generated data until the desired amount of benchmark iteration cycles is reached.

Pseudo-randomly generated data is obtained by a specially implemented custom
helper utility module. The custom module is designed to generate a specified amount of
random nodes and links. The method to generate random data takes two parameters—
the number of nodes and the number of links. Generating consistent pseudo-random
data is possible by internally using the previously mentioned seedrandom module.

Tackling the performance measurement problem is a much harder task, however. To
be able to measure the number of frames per second, the request animation browser func-
tionality can be used. Another custom implemented module provides some functionality
that is specifically designed to measure performance intensive JavaScript animations.
By requesting an animation frame as often as possible in a terminable infinite loop, a
reference timestamp can be used to measure the amount of animation frame executions
per second which is equal to the frames per second the browser produces.

Presenting the performance results must not be underestimated either. To provide
benchmark results appealingly, each iteration is represented via a visual container that
contains all relevant information for a specific test iteration. If there are six test it-
erations, six containers are rendered after the benchmark. The containers contain the
number of cycles per iteration, the test configuration, the number of frames per second,
the overall execution time per cycle, the average frame time, and also the highest frame
time. Figure 5.1 shows how the benchmark results visually look like.

Finally, the benchmark tool has to be easy to use on all kinds of devices. The thesis
project also contains a small React application which can be deployed on any static
web hosting service that can serve single page applications. A visual representation of
the basic benchmark app can be seen in figure 5.2. The React application is a wrapper

5. Performance Testing and User Perception 43

Figure 5.3: The benchmark currently iterating through hybrid prototype iterations.

Table 5.1: The table shows a list of low-end testing de-
vices.

Device CPU GPU RAM
OnePlus 1 Snapdragon 801 Adreno 330 3GB

OnePlus 5T Snapdragon 835 Adreno 540 8GB
SurfaceBook Intel i5-6300U Intel HD 520 8GB

around the testing environment, which lets users select the desired benchmark for any of
the three force simulation prototypes and then runs it in the browser. Each benchmark
also has an easily distinguishable URL to be able to copy paste a specific benchmark
URL into any browser. Figures 5.2 and 5.3 show how the URL contains all relevant
benchmark parameters. That way the benchmark URLs can be pasted into any browser
to execute the benchmark.

5.2 Testing Setup
Having a bulletproof testing setup plays a fundamental role in producing scientifically
releveant test results. Therefore, the following sections of the thesis provide a thor-
ough insight into the testing devices and on how the whole benchmark methodology is
conceptionalized.

5.2.1 Testing Devices
The amount of test devices should be as high as possible while still being reasonable
regarding to the effort it takes to process all resulting benchmark data. A total amount of
six devices is enough to retrieve scientifically significant results because each prototype
is not only tested on each device, but also on two browsers with multiple iteration

5. Performance Testing and User Perception 44

Table 5.2: The table shows a list of high-end high refresh rate testing devices.

Device CPU GPU RAM
Tower (Max Z.) Intel i9-7900X 2x Nvidia GTX 1080Ti 32GB

Razer Blade 15 (2018) Intel i7-8750H Nvidia GTX 1070 Max-Q 16GB
Tower (Patrick M.) Intel i7-6700k Nvidia GTX 1080 16GB

1 2 3 4 5 6

Nodes 10 50 100 250 500 1000

Links 5 30 100 150 250 500

0

200

400

600

800

1000

1200

Figure 5.4: Benchmark iteration configuration.

difficulties which are executed multiple times. The range of devices is divided into two
sections: high-end devices and low-end devices.

The mobile devices used for testing are a OnePlus 1 phone, a OnePlus 5t phone,
and a SurfaceBook in tablet mode. All low-end devices and their specs are listed in
table 5.1. It must be noted that every selected low-end device has a monitor refresh rate
of 60-Hertz.

Table 5.2 introduces all high-end devices which have a monitor refresh rate of 144-
Hertz. Two of the listed devices are custom tower builds with custom specs and one
device is a Razer Blade 15 laptop with specs defined by its manufacturer. All in all the
devices should provide a good overview of the performance of the force graph compo-
nents.

5.2.2 Testing Methodologies
Running the benchmarks to get good quality testing results is relatively straight forward.
To get the most declarative performance numbers it is best to mainly use devices with
a high monitor refresh rate. Devices with a low monitor refresh rate can possibly falsify
some testing results. If, for example, a browser could possibly render 100 frames per
second during an iteration, a system with a 60-Hertz monitor would only be able to

5. Performance Testing and User Perception 45

measure a maximum of 60FPS as the theoretically possible 100 FPS would be capped
to the monitor’s 60-Hertz refresh rate.

Devices with high refresh rates can be sufficient for measuring the overall best per-
forming prototype. One of the more interesting research aspects of the thesis though is
the question, how well the prototypes perform on mobile devices with lower performance
specifications than desktop PCs. Thus the testing results must be split up into different
categories as a consequence. Due to the fact that not only frames per second, but also
other perfromance aspects like total execution time are measured, the lower performing
devices can also be compared to each other.

Each device runs through six iterations per prototype with exponentially increasing
rendering difficulty. Figure 5.4 shows the benchmark configuration for the benchmark.
Starting with a node count of 10 and a link count of five, the configuration ultimately
goes up to 1000 nodes and 500 links. The third iteration is special, as the number of
nodes and links is the same. The special configuration was added to test an extreme
scenario of all nodes being connected to each other to induce some extra performance
heavy force calculations.

Each iteration runs through 10 cycles which equals to a grand total of 60 cycles per
prototype, browser, and device combination. Three high-end devices with 144-Hertz
monitors and the three low-end devices with 60-Hertz monitors run the benchmark
iterations in the Chrome and in the Firefox browser. The two browsers were selected,
because they are the most significantly used, platform independent browsers worldwide
according to the statistics in [25] and [26]. Taking into account that there are six devices,
three prototypes, and two browsers, the total number of iterations is 36.

5.3 Benchmark Results
This section answers the research question if React can be combined with D3 without
introducing any performance losses in the browser. Extensive benchmark testing sessions
resulted in some remarkable research results which are presented below. After presenting
the test results, an introduction to the human perception of fluent animations helps the
reader to follow the subsequent interpretation of the benchmark results.

5.3.1 Introducing the Test Results
First of all, the thesis project is a success, as the overall performance numbers show
a clear trend that the hybrid prototype is ahead of Uber’s pure react implementation.
The total execution time of all combined benchmark iteration cycles is exactly 25326s
when combining the average execution times of each test. When converting milliseconds
to hours, the result is 7.04 hours. Since the benchmark environment was designed for
extensive benchmark sessions, the time between running the benchmarks was minimized.
The only manual task was to write down the actual benchmark results. Letting devices
run the tests required no further user interaction.

Figure 5.5 shows the average FPS of the low-end devices. An overall downwards
trend can immediately be seen in the FPS chart, which is expected. The more DOM
nodes the browsers have to calculate, the lower the frames per second get per iteration.
Each group of bars in the chart represents an average value for each prototype per

5. Performance Testing and User Perception 46

60
 F

PS

38
 F

PS

30
 F

PS

25
 F

PS

21
 F

PS

14
 F

PS

58
 F

PS

37
 F

PS

27
 F

PS

22
 F

PS

18
 F

PS

12
 F

PS

58
 F

PS

37
 F

PS

26
 F

PS

21
 F

PS

16
 F

PS

10
 F

PS

1 0 / 5 5 0 / 3 0 1 0 0 / 1 0 0 2 5 0 / 1 5 0 5 0 0 / 2 5 0 1 0 0 0 / 5 0 0

FPS
D3 Hybrid React

Figure 5.5: Low-end devices’ average frames per second per benchmark iteration cycle
(higher is better).

benchmark iteration. Note that all values are the average taken from 10 iteration cycles
of the Chrome and the Firefox browser. The prototypes mostly yielded the expected
performance numbers starting with the reference performance of the pure D3 prototype,
followed by the hybrid component and then finally followed by the pure React force
graph component.

Figure 5.6 shows the average FPS values of the high-end devices’ benchmark itera-
tions. Looking at the bar chart, it is apparent that the high-end devices hit the FPS cap
of 144 FPS throughout the first few iteration cycles. From the third iteration a steady
decrease of FPS can be observed though, as the iteration difficulty is high enough for
all devices not to hit the monitor refresh rate limit anymore.

The bar chart in figure 5.7 shows the average time it took to complete the benchmark
fully. Via the browsers’ performance API, exact timestamps can be measured once a
benchmark cycle starts, and once it ends. By subtracting the start timestamp from the
end timestamp the overall time to execute is calculated. Like the FPS chart, the time
to complete (TTC) chart also shows all average values it took the different prototypes
to complete the benchmark cycles.

Continuing with the high-end devices, the chart in figure 5.8 shows the average time
in milliseconds it took the devices to finish one iteration cycle. The results show that
not only FPS can be capped at maximum values but also the TTC can be capped at a
minimum value as shown in the first iteration cycles. Since the performance measure-
ment utility is tied to the browsers’ animation frame functionality, being capped at a
maximum value also means being restricted on minimum values.

Measuring the average frame time of animations can provide insights into the user’s
perception of fluent animation. If the value is too high, the animation may not be

5. Performance Testing and User Perception 47

14
3

FP
S

14
3

FP
S

13
8

FP
S

11
4

FP
S

85
 F

PS

49
 F

PS

14
3

FP
S

14
2

FP
S

13
3

FP
S

10
3

FP
S

70
 F

PS

45
 F

PS

14
4

FP
S

14
3

FP
S

13
3

FP
S

95
 F

PS

62
 F

PS

33
 F

PS

1 0 / 5 5 0 / 3 0 1 0 0 / 1 0 0 2 5 0 / 1 5 0 5 0 0 / 2 5 0 1 0 0 0 / 5 0 0

FPS
D3 Hybrid React

Figure 5.6: High-end devices’ average frames per second per benchmark iteration cycle
(higher is better).

experienced as a smooth animation. Therefore measuring the value is crucial when
comparing the prototypes to each other. Figure 5.9 shows a bar chart of the low-end
device benchmark. Towards the last two iterations, the benchmark configuration seems
to have hit a certain threshold since the values rise exponentially. The other performance
results show a similar pattern to the previous results, however.

Looking at the high-end results in figure 5.10 the same pattern as before can be
observed, where the first iterations are capped to a specific minimum value. However,
the rest of the results increase exponentially, which correlates to the rest of the high-end
performance results. The average frame time of the last iteration stands out and spikes
with an exceptionally high value.

Last but not least, a critical aspect of any animation performance measurement is
the maximum time between frames measured. The value can provide critical insights
to some performance issues even though the average frame time per second might look
okay. The chart in figure 5.11 shows an average of the maximum frame time value to
each iteration cycle. One unanticipated result was that the maximum frame rate of the
hybrid component is significantly higher throughout the testing results than the pure
D3 or pure React components.

However, the performance graph in figure 5.12 shows the high-end devices’ maximum
frame time results which are more expected. Again, the average maximum frame time
rises exponentially. The results contain a few irregularities, though. The maximum frame
time of the reference pure D3 prototype, for example, is sometimes higher as the value
of the other two prototypes. The maximum frame time values, therefore, must be taken
with a grain of salt, as any maximum value could be caused by an unexpected system or
browser activity which could have decreased the overall performance of any prototype.

5. Performance Testing and User Perception 48

49
71

m
s

94
51

m
s

14
98

9m
s 19

34
4m

s

21
43

5m
s

38
75

9m
s

50
99

m
s

10
50

8m
s

17
28

6m
s 22

20
2m

s

24
17

8m
s

42
32

6m
s

51
71

m
s

10
50

6m
s

17
59

1m
s

22
77

3m
s

25
79

4m
s

46
56

3m
s

1 0 / 5 50 / 3 0 1 00 / 1 00 25 0 / 15 0 5 00 / 2 50 10 00 / 5 00

TIME TO COMPLETE
D3 Hybrid React

Figure 5.7: Low-end devices’ average time to complete for one benchmark iteration cycle
in milliseconds (lower is better).

As mentioned before, the problem is mitigated by executing one iteration multiple times,
but there is still a margin of error, though.

5.3.2 Human Perception of Fluent Animations
Human vision is a very complicated topic, as there has been a large volume of studies
over many years which tried to determine at which point humans perceive a series of
images as fluent motion. Read & Meyer claim in [6] that humans perceive motion if
the animation is displayed with at least 12 frames per second. During further research,
another article in [4] was found which states that humans can detect specific images in
a rapid serial visual representation (RSVP) of a series of multiple pictures. The paper
in [4] found that participants could determine if the RSVP stream contained a specific
picture even with a frequency of displaying each picture for just 13ms.

Another vital question is at which point an observer does not perceive an animation
as fluent anymore. As mentioned before, the time per frame should be below 13ms
in the best case to provide the perception of fluent animation. Although animations
with at least 12 frames per second can be perceived as motion, they are not necessarily
experienced as fluent motion though. As the performance measurements of the thesis
project yield some final numbers, they can be used to determine if the animation of the
test can be experienced as fluent motion or not.

Further research in the field of human perception of animation revealed yet another
interesting result. Countless studies throughout the last decades have tried to find an
answer to the question at which point humans do not experience an animation as stutter-
ing or flickering anymore. Previous research has established that flickering or so-called
“stuttering” cannot be detected if the human perception cannot distinguish between

5. Performance Testing and User Perception 49

20
89

m
s

20
96

m
s

21
78

m
s

26
54

m
s

36
06

m
s

62
22

m
s

20
85

m
s

20
96

m
s

22
97

m
s 29
50

m
s

43
52

m
s

70
15

m
s

21
00

m
s

20
95

m
s

23
00

m
s

31
98

m
s

48
42

m
s

89
94

m
s

1 0 / 5 50 / 3 0 1 00 / 1 00 25 0 / 15 0 5 00 / 2 50 10 00 / 5 00

TIME TO COMPLETE
D3 Hybrid React

Figure 5.8: High-end devices’ average time to complete for one benchmark iteration
cycle in milliseconds (lower is better).

modulated light and a stable field anymore. The rate seems to be between 50 and 90
Hertz according to several resources in [1, 2, 7]. Even though the findings are mostly
about the refresh rate of monitors, the same principle also applies for the displayed
frames per second of an animation rendered in the browser.

5.3.3 Interpreting the Test Results
When interpreting the test results, it is essential to keep in mind that the hybrid imple-
mentation uses a custom animation library internally, as mentioned in subsection 4.3.3
which can be turned off to improve performance. The animation feature was turned
on during the execution of the benchmark tests even though the test iterations do not
include any individual node animation. As a result, the pure React component has a
clear advantage over the hybrid component by not having to calculate node animations
as they are not implemented on the pure React component. Even though the additional
performance decreasing feature was kept on during all tests, the hybrid component gen-
erally yielded equal or better performance numbers in comparison to the pure React
prototype.

Another clear advantage of the React prototype is that newer versions of React
provide functionality which assigns a lower priority to DOM nodes which are outside
the viewport of the browser. Lin Clark explains the functionality of the library during
the React conference in [8], where the feature was first introduced. Due to the fact that
mobile devices mostly have smaller viewports, a large proportion of the nodes in higher
iteration difficulties is rendered outside of the viewport again providing an advantage
to the React prototype.

Looking at the frames per seconds, the charts in figures 5.5 and 5.8 indicate how

5. Performance Testing and User Perception 50

17
m
s

32
m
s

50
m
s

65
m
s 72
m
s

12
0m

s

17
m
s

35
m
s

58
m
s

74
m
s 81
m
s

14
1m

s

17
m
s

35
m
s

59
m
s

76
m
s 86

m
s

15
6m

s

1 0 / 5 50 / 3 0 1 00 / 1 00 25 0 / 15 0 5 00 / 2 50 10 00 / 5 00

FRAME TIME
D3 Hybrid React

Figure 5.9: Low-end devices’ average frame time per benchmark iteration cycle (lower
is better).

the D3 prototype yields the best result in every iteration, followed by the hybrid im-
plementation with the second best results and lastly the pure React prototype with the
slowest results. Closer inspection of the two charts shows that the performance decrease
is linear, whereas the increase of render difficulty in figure 5.4 is exponential. Because
the frames per second are calculated via the requestAnimationFrame() function, the
results show that the browsers regularly try to provide animation frames even though
the calculations get exponentially harder.

In comparison to the earlier presented results, the overall TTC values in figures 5.7
and 5.8 do not correlate with the frames per second which is a rather unexpected result.
As mentioned before, browsers try to provide as many animation frames as possible,
whereas the overall TTC is measured via two timestamps. A remarkable outcome though
is the fact that the first and most lightweight iteration results show that the low-end
devices’ TTC is roughly 40% of the high-end devices’ TTC. This supports the theory
that the monitor refresh rate is directly tied to the browsers’ request animation frame
functionality as 40% of 144 roughly equals 60.

The high-end and low-end TTC values do not correlate either. While the high-end
benchmark values in figure 5.8 show the expected exponential increase of TTC, the
low-end results in figure 5.7 show a linear increase for the TTC one iteration cycle.
The findings can be explained that browsers cannot complete full render and paint
cycles anymore during one animation frame due to the low-end hardware. By generating
a constant backlog of due animation frames, some of them might get dropped due
to new animation frame requests that are more recent. Once animation frames get
canceled because of more recently requested animation frames, the pattern of increasing
completion time is more comparable to the pattern of the overall FPS increase in the

5. Performance Testing and User Perception 51

7m
s

7m
s

7m
s 9m

s

12
m
s

21
m
s

7m
s

7m
s

8m
s

10
m
s

15
m
s

24
m
s

7m
s

7m
s 8m
s

11
m
s

16
m
s

30
m
s

1 0 / 5 50 / 3 0 1 00 / 1 00 25 0 / 15 0 5 00 / 2 50 10 00 / 5 00

FRAME TIME
D3 Hybrid React

Figure 5.10: High-end devices’ average frame time per benchmark iteration cycle (lower
is better).

charts in figures 5.5 and 5.8. The high-end results in figure 5.8 show the expected
exponential increase of TTC an iteration cycle, as browsers can process the calculations
completely within the requested animation frame.

Figures 5.9 and 5.10 show the average frame times of the prototypes. The results can
be seen as another way to describe frames per second. As described in section 5.3.2, the
frame times play a crucial role for humans to percieve an animation as fluent without
stuttering. For all low-end devices, benchmarks showed rather high average frame times
starting from the second benchmark iteration. While the results stayed well above the
previously mentioned 12 frames per second threshold, the lower frame time is definitely
noticeable. Probably one of the most significant findings when looking at the general
trend, the hybrid prototype regularly comes out ahead, when comparing the average
frame times. The high-end chart in figure 5.10 shows a clear spike of the pure React
implementation in the last iteration. A possible explanation for this outcome might be
that React reaches the previously already mentioned threshold when performing the
calculation for an animation frame. React performs pretty well, considering it has to
process 1500 DOM nodes every 30ms completely and put them through a complete
render cycle.

Last but not least, the maximum frame time results can also provide valuable in-
sights into how the prototypes perform compared to each other. These results must
be interpreted with caution though, because various unforeseeable reasons can cause
maximum frame time spikes. The results for the low-end devices in figure 5.11 show, for
example, that the hybrid component had the highest maximum frame time in the last
two iterations. Now, if this only happens once in the animation, this might not be no-
ticeable, but if this would be a continuous trend, the data could point to a performance

5. Performance Testing and User Perception 52

29
m
s

63
m
s 93

m
s

13
7m

s

22
5m

s

42
0m

s

29
m
s

68
m
s 96

m
s

15
2m

s

26
1m

s

47
4m

s

30
m
s

66
m
s

10
6m

s

16
1m

s

24
8m

s

42
6m

s

1 0 / 5 50 / 3 0 1 00 / 1 00 25 0 / 15 0 5 00 / 2 50 10 00 / 5 00

MAXIMUM FRAME TIME
D3 Hybrid React

Figure 5.11: Low-end devices’ average maximum frame time per benchmark iteration
cycle (lower is better).

problem in the implementation of the prototype. The explanation for the performance
spikes is most likely also tied to the fact that low-end devices run into the animation
frame limit of not being able to calculate a full render cycle in one animation frame. The
hybrid component not only has to build up the whole component tree via react but also
calculate the animations with react move. If both instances are limited to animation
frame constraints, the calculation could be spread out across multiple frames, making
the whole animation slower in the process.

On the contrary, the high-end maximum frame time tests in figure 5.12 yield more
expected results. When having to deal with many nodes and links, the maximum frame
times should be equally affected as a consequence. The last iteration shows the longest
time between frames for the pure React prototype, which is 76 milliseconds. The pure
D3 and hybrid component seem to be able to maintain a maximum frame time at about
60 milliseconds during the cycles of the last iteration.

5.4 Conclusion
All in all, the different prototypes performed quite well in general. The question “Why
does the benchmark use numbers as high as 1000 nodes and 500 links?” which might
come up during the examination of the testing results can quickly be answered. The test
that was used to benchmark the prototypes uses a simple force simulation configuration
where each base node is just a single circle element, and each link is a path element.
When using more sophisticated nodes which contain multiple SVG elements, the out-
come could be the same. If an example simulation would use ten SVG elements in just
one node, rendering 100 of those nodes would yield a similar outcome as rendering the

5. Performance Testing and User Perception 53

13
m
s

14
m
s

20
m
s 23
m
s

31
m
s

58
m
s

14
m
s

15
m
s 18
m
s

25
m
s

35
m
s

60
m
s

12
m
s

15
m
s 19

m
s

27
m
s

43
m
s

76
m
s

1 0 / 5 50 / 3 0 1 00 / 1 00 25 0 / 15 0 5 00 / 2 50 10 00 / 5 00

MAXIMUM FRAME TIME
D3 Hybrid React

Figure 5.12: High-end devices’ average maximum frame time per benchmark iteration
cycle (lower is better).

6th benchmark iteration.
Overall all the prototypes performed pretty well. As mentioned before, the pure D3

component is the clear winner and best performing prototype, but that was the expected
result, as it was developed to serve as a baseline for the results of the other prototypes.
When glancing over the rest of the results, the hybrid nearly always comes out ahead
of the pure React prototype. The primary purpose of the study was if React can be
combined with D3 without losing performance in the browser. The definitive answer
to that question has to be no, unfortunately, as there are some performance penalties
when combining two full grown libraries. The test results also support the answer to
the research question.

When talking about user experience though, the prototypes are pretty much all
usable in production projects, as the divergence of the performance numbers mostly
stays within the bounds of a smooth animation experience. The benchmark results of
the third and fourth iteration are acceptable when looking at the FPS and average frame
time. When using the force graphs on mobile devices, the performance is worse overall,
but due to the fact that even the pure D3 prototypes performed a lot worse on low-end
devices, the combination prototypes cannot magically yield a better performance, as
they technically not only have to calculate D3 force simulation ticks but also React
render cycles. As a consequence, the performance is worse than just letting D3 handle
the whole simulation on its own.

Chapter 6

Open Source and the React Community

Ultimately the thesis project was always planned to be an open source project at some
point in the future. The current React community is extremely active and productive
because of countless open source projects that provide useful libraries that can be used
in any project free of charge. As the thesis project is quite the success in terms of
the achieved goals and the performance numbers, the overall result should not only be
presented in this masters’ thesis. Instead, the project should be published to the React
community who truly benefits from the software.

This chapter is about the publishing plans of the hybrid prototype and what API
it should have to provide the most benefit to the users of the component. The thesis
project was created out of necessity for a component that would handle a D3 force
simulation but can be written in React code. The first versions of the API are probably
very opinionated, as there was a particular use case for the component. However, the
community might alter the proposed component API in the future.

6.1 Building an Open Source Library Component
Conceptionally speaking, if there is a library that ships a single component, the React
component has to be somehow packaged and then published to npm1 to be usable by
other developers. Since npm is one of the biggest package managers for web projects,
the component can be installed in any web project once it has been published to the
npm registry. Bundler tools like webpack2, rollup3, or parcel4 make it easy to create
static library assets that can be published to npm.

Furthermore, the code should be hosted on a public collaboration platform. The
best option to host a public VCS repository is GitHub5 of course, as public projects
can be hosted free of charge. As a consequence the ultimate goal of open-sourcing the
component is not only to publish the component to npm but also to GitHub. Most if
not almost all of the open source third-party react component code bases are hosted on

1https://www.npmjs.com/
2https://webpack.js.org/
3https://rollupjs.org
4https://parceljs.org/
5https://github.com/

54

https://www.npmjs.com/
https://webpack.js.org/
https://rollupjs.org
https://parceljs.org/
https://github.com/

6. Open Source and the React Community 55

Program 6.1: Alpha version of the force graph component API.

1 <HybridForceGraph
2 height={height}
3 width={width}
4 nodes={nodes}
5 links={links}
6 forceOptions={simulationOptions}
7 nodeTickHandler={nodeTickHandler}
8 renderNode={customNodeRenderer}
9 renderLink={customLinkRenderer}

10 animation={animationConfig}
11 />

GitHub.
The usage of the react component should be as easy and straigt forward as possible

to enable developers an easy starting point to using the component. The API should
be designed in a way that programmers can incrementally opt into more complicated
features. By simply using the component with the standard required props, a standard
D3 force simulation should be rendered. After going through the documentation and
the tutorial, developers should also be able to gracefully opt into the more complicated
features of the component like custom node and link rendering.

As mentioned in section 4.3.3, a big disadvantage of the hybrid component is the
fact that developers must understand how the hybrid implementation works in order
to being able to start contributing to the open source component. The library should
therefore have a very elaborated and well written contribution documentation to make
it easier to contribute to the component.

6.2 Technical Details of the Component API
A draft version of the API was already implemented throught the implementation phase
of the master thesis project. The storybook already utilizes the API to show customized
versions of the hybrid force graph. The program 6.1 shows, how the component API
looks like. There are a few mandatory props like the height and width of the SVG
element. The nodes and links could be omitted, but it wouldn’t make any sense, as the
force graph has to get its data from somewhere. The two data properties are designed
to take falsey values in case the data comes from a web API and is not available during
the first parent component render cycle. Every prop starting on line 6 and onwards is
optional and can be fully customized by the user of the component.

In chapter 4 the figure 4.4 shows a component story of a customized force graph
component. The snippet in program 6.2 shows the source code for the custom compo-
nent. Instead of using the default node renderer, a custom node rendering function is
used as it can be seen on lines 4 and 19. The custom node renderer renders a base <g>
SVG element per node, which contains three circles with different radius settings.

Due to the fact that the base element is not a circle element anymore, the ticking
function has to be customized as well. Line 1 in program 6.2 shows the implementation

6. Open Source and the React Community 56

Program 6.2: Alpha version of the force graph component API.

1 const customTickHandler = (nodeSel) =>
2 nodeSel.attr('transform', ({ x, y }) => `translate(${x},${y})`)
3
4 const customNodeRenderer = ({ id, size }) => (
5 <g id={id} key={id} className={'node'}>
6 <circle r={size} fill={'lightblue'} />
7 <circle r={size - 5} fill={'pink'} />
8 <circle r={size - 10} fill={'palevioletred'} />
9 </g>

10)
11
12 const CustomForceGraph = ({ height, width, nodes, links }) => (
13 <HybridForceGraph
14 height={height}
15 width={width}
16 nodes={nodes}
17 links={links}
18 nodeTickHandler={customTickHandler}
19 renderNode={customNodeRenderer}
20 animation={null}
21 />
22)

of the custom tick handler. Instead of passing the position via cx and cy coordinates,
the function applies a transform property to the the node selection which translates the
base node to the x and y coordinates. The translation is necessary, as the group SVG
element cannot directly accept x and y coordinates.

The code example in program 6.2 demonstrates really well, how the graceful opt-in
strategy of the API works. The example does not use every possible prop that can be
added to the force graph like demonstrated in the code example in program 6.1. The
implementation of the custom graph omits the forceOptions prop for example. The
hybrid force graph component falls back to the standard force simulation configuration
as a result. The custom link render function prop is also omitted as the default link
implementation is sufficient for the custom force graph.

6.3 Final Thoughts
In the end only time will tell, if the component is useful for the community once it
is published and if there are some open source developers willing to contribute to the
project. Due to fact that the force graph component is already utilized in at least one
production project the library component is already a success.

Chapter 7

Conclusion

This chapter is the conclusion of all the findings of this master’s thesis. Not only the
prototypes are recapitulated, but also the test results are summarized. The most appar-
ent finding emerging from this thesis is the fact that there is a possible combination of
React and D3 which only sacrifices a small proportion of performance to enable React
developers to use D3 functionalities, but write React code.

7.1 Prototypes
Three prototypes were developed to implement a combination of React and D3. Every
prototype has its advantages and disadvantages. They all pursue the same goal though,
which is to provide a React component that completely encapsulates the complete D3
force simulation functionality. The force graph component has to be usable like any
other React component, which means that the component has to be a declarative rep-
resentation of state. To get a force simulation component that is a function of state, all
prototypes have to React to state changes accordingly.

7.1.1 Pure D3 Prototype
The first prototype is the pure D3 variant as introduced in section 4.3.1. The compo-
nent is a React wrapper that renders a base element which D3 then hooks into. D3 is
completely in charge of the whole simulation. Not only does D3 append and remove
the nodes from the DOM but also D3 controls all node positions of the simulation. The
prototype relies on React’s reconciliation algorithm, which never detects any change
in the staticly rendered base element and always keeps the reference to the real SVG
element intact.

The implementation is very similar to a D3 only implementation, as React is only
used to render the static base SVG element. Much imperative D3 code is used to append
and remove nodes. Furthermore, the code contains a lot of D3’s imperative selection
functions, which help to keep track of entering and exiting nodes to apply transitions to
them. The complete presentation layer is handled by D3, which includes not only style
attributes but also the positions of the nodes and links.

A significant advantage of the pure D3 prototype is that its performance is close
to if not the same as a native D3 implementation. The most notable disadvantage is

57

7. Conclusion 58

that almost the entire code of the component is written in pure D3 code, which could
lead to a poor developer experience if the component advances in the future. Also, no
custom render functions can be used, as a custom mechanism would have to be added
to enable user customized D3 code in the component.

7.1.2 Pure React Prototype
Section 4.3.2 introduces the pure React prototype. React is completely in charge of the
presentational layer. As a consequence, not only the nodes’ and links’ positions but also
their styling and node types are completely handled by React. When the component
mounts, D3’s force simulation is initialized with the data. The prototype then pulls the
data via the tick function and sets it in its internal state. Due to the nature of React,
the component goes through a new render cycle to render the newly fetched node and
link position. The complete cycle happens multiple times a second.

As mentioned before, the component’s constructor is used to initialize D3 even before
React renders anything. The tick handling function pulls all node and link positions
from the simulation every tick and sets it via React’s set state function every fraction
of a second as often as D3’s tick function is called. The component then completely
rerenders with the newly set node and link positions. Because the component’s state
updates every fraction of a second, component prop updates have to be distinguished
from state updates. The shouldComponentUpdate() function is used to update the D3
force simulation only if the props have changed.

One of the most significant advantages of the prototype is that maintainers of the
component can use declarative React code to handle the complete presentation layer of
the simulation. In addition to the styling and node type, also the position is entirely
handled by React. The fact that React is used to handle the whole simulation tree is
also the most considerable disadvantage because it implies that React has to go through
a complete rendering cycle every time the simulation’s tick handler is called. Another
advantage is that props can customize the prototype’s render functions. However, it is
quite complicated to achieve the full D3 functionality like dragging and enter and exit
animations, as they have to be implemented from scratch.

7.1.3 React and D3 Hybrid Prototype
Last but not least, there is the React and D3 hybrid prototype, which is presented in
section 4.3.3. The hybrid component works by initially rendering all the simulation’s
nodes via React and then letting D3 select the already existing nodes to handle the
nodes’ positioning. React handles the styling and node shape and D3 handles the node
and link positions. The hybrid component uses all the lifecycle methods in React’s
commit phase to being able to read the DOM nodes that have already been committed
to the DOM.

The implementation of the hybrid component is very straight forward. The React
lifecycle method componentDidMount() is used to initialize the D3 simulation and the
componentDidUpdate() lifecycle method is used to update the D3 force simulation if
the simulation data props have changed. The render method takes care of the complete
simulation presentation except for the positions, which are handled in the tick updater
function. The tick handler function is one of the few instances in the hybrid component

7. Conclusion 59

where D3 code is used.
Being able to make the render functions pluggable is also a significant advantage of

the hybrid component. Also, D3 functionality like dragging nodes, zooming, and adding
transitions is easy to implement with the hybrid prototype. The only disadvantage might
be that maintainers of the prototype would have to completely understand how the
rendering process works to be able to contribute to the component.

7.2 Performance Results
This thesis aims to find a well-performing combination of React and D3. The research
question “Can React be combined with D3 without losing performance in the browser”
unfortunately has to be answered with “React can be combined with D3, but there
are some slight render performance losses.” The results of the performance benchmarks
clearly show how the newly invented hybrid component is always ahead of Uber’s take
on combining the two libraries.

However, when looking at the performance numbers, research shows that every pro-
totype can be used on high-end devices without notable performance issues. The low-end
devices suffer from low calculation speeds and low monitor refresh rates in general. Even
though the hybrid prototype is ahead of the pure React component when measuring the
raw performance, it is clear though that the performance differences are hardly measur-
able without knowing the exact numbers.

7.3 Open Source
Because the hybrid prototype is easily extensible with not only D3 but also React func-
tionality, the decision was made to open source the component. The React community
lives off of free to use components that can be integrated into any project free of charge.
The hybrid component was developed out of necessity for a better solution of combining
React and D3, and maybe other developers find it useful as well.

7.4 Final Thoughts
Even though the performance numbers could have been better, the project is considered
a success nevertheless due to the fact that the hybrid prototype’s performance is not
only on par or even superior to Uber’s pure React variant. The performance is worse
than a native D3 implementation, but that is to be expected when two big libraries
are combined. The hybrid’s component API also turned out to be very useful as the
storybook examples demonstrate. Being able to not only use the power of D3 but also
to write almost pure declarative React code to implement a force simulation is definitely
considered a success.

Appendix A

CD-ROM Contents

Format: CD-ROM, Single Layer

A.1 Master’s Thesis

/
thesis

latex-source ... latex source files
online-references snapshots of online references
thesis_EN.pdf...........................master’s thesis (main document)
benchmark-results.xlsx...excel file containing all results and calcluations

A.2 Thesis Project – Combining React and D3

/
combining-react-and-d3

.storybook... storybook config files
public ... publicly served files
src..application source

assets ... static assets
components prototypes and generic app components
lib...utility functions
pages..application pages
stories ... storybook stories
app.js.. root application file
index.js..index file
routes.js..............................application route configuration
serviceWorker.js.........................service worker configuration

*..config files

60

References

Literature

[1] J. E. Farrell, Brian L. Benson, and Carl R. Haynie. “Predicting flicker thresholds
for video display terminals”. In: Proceedings of the System Insight Display. Vol. 28.
1987, pp. 449–453 (cit. on p. 49).

[2] David M. Hoffman, Vasiliy I. Karasev, and Martin S. Banks. “Temporal presen-
tation protocols in stereoscopic displays: Flicker visibility, perceived motion, and
perceived depth”. Journal of the Society for Information Display 19.3 (2011),
pp. 271–297 (cit. on p. 49).

[3] JW. Lloyd. “Practical advantages of declarative programming”. In: Conference
Proceedings/Title of Journal: Joint Conference on Declarative Programming.
1994, pp. 3–17 (cit. on p. 12).

[4] Mary C. Potter et al. “Detecting meaning in RSVP at 13 ms per picture”. Atten-
tion, Perception, & Psychophysics 76.2 (Feb. 2014), pp. 270–279 (cit. on p. 48).

[5] Terrence W. Pratt and Marvin V. Zelkowitz. Programming Languages - Design
and Implementation. 4th ed. London: Prentice Hall, 2001 (cit. on p. 4).

[6] Paul Read and Mark-Paul Meyer. Restoration of Motion Picture Film -. 1st ed.
Amsterdam: Elsevier, 2000 (cit. on p. 48).

[7] X. Wu and G. Zhai. “Temporal Psychovisual Modulation: A New Paradigm of
Information Display [Exploratory DSP]”. IEEE Signal Processing Magazine 30.1
(Jan. 2013), pp. 136–141 (cit. on p. 49).

Audio-visual media

[8] Facebook Developers. Lin Clark - A Cartoon Intro to Fiber - React Conf 2017.
Youtube. Lin Clark talking about React and its fiber reconciliation algorithm.
Mar. 2017. url: https : //www .youtube . com/watch?v =ZCuYPiUIONs (cit. on
p. 49).

[9] TXJS. Pete Hunt | TXJS 2015. Youtube. Pete Hunt talking about React and
when it was founded. June 2015. url: https://www.youtube.com/watch?v=A0Kj4
9z6WdM (cit. on pp. 12, 13).

61

https://www.youtube.com/watch?v=ZCuYPiUIONs
https://www.youtube.com/watch?v=A0Kj49z6WdM
https://www.youtube.com/watch?v=A0Kj49z6WdM

References 62

Software

[10] Babel. Babel Babel is a JavaScript compiler. Version 7.4.0. url: https://babeljs.i
o/ (visited on 05/02/2019) (cit. on p. 16).

[11] David Bau. seeded random number generator for Javascript. Version 3.0.1. url: h
ttps://github.com/davidbau/seedrandom (visited on 05/30/2019) (cit. on p. 41).

[12] Mike Bostock. D3 Data Driven Documents. Version 5.9.2. 2011. url: https://git
hub.com/d3 (visited on 01/10/2019) (cit. on pp. 3, 4).

[13] Lee Byron. Immutable Immutable collections for JavaScript. Version 3.8.2. url:
https://github.com/immutable- js/immutable- js (visited on 05/02/2019) (cit. on
p. 14).

[14] Steve Hall. React Move Beautiful, data-driven animations for React. Version 5.2.1.
url: https://github.com/react-tools/react-move (visited on 05/29/2019) (cit. on
p. 36).

[15] Wojciech Maj. React Lifecycle Methods diagram. Version 1.0.0. url: https://githu
b.com/wojtekmaj/react-lifecycle-methods-diagram (visited on 05/10/2019) (cit. on
p. 19).

[16] storybookjs. UI component dev & test: React, Vue, Angular, React Native, Ember,
Web Components & more! Version 5.1.0. url: https://github.com/storybookjs/st
orybook (visited on 06/03/2019) (cit. on p. 38).

[17] Uber. UberVisForce d3-force graphs as React Components. Version 0.3.1. url: ht
tps://github.com/uber/react-vis-force (visited on 01/10/2019) (cit. on p. 31).

Online sources

[18] Dan Abramov. Twitter Post: I just made this diagram of modern React lifecycle
methods. Hope you’ll find it helpful! url: https://twitter.com/dan_abramov/stat
us/981712092611989509 (visited on 05/10/2019) (cit. on p. 21).

[19] Mike Bostock. D3 Data Driven Documents. Version 5.9.2. 2011. url: https://d3j
s.org (visited on 01/10/2019) (cit. on p. 3).

[20] Mike Bostock. Mike Bostock’s Blocks. url: https://bl.ocks.org/mbostock (visited
on 01/10/2019) (cit. on p. 4).

[21] Facebook. React A JavaScript library for building user interfaces. 2014. url: htt
ps://reactjs.org (visited on 01/10/2019) (cit. on pp. 12, 13, 21).

[22] Mozilla Foundation. Mozilla Request Animation Frame. url: https://developer
.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame (visited on
01/25/2019) (cit. on p. 30).

[23] Google. Chrome Request Animation Frame. url: https://developers.google.com/w
eb/updates/2012/05/requestAnimationFrame-API-now-with-sub-millisecond-precisi
on (visited on 01/25/2019) (cit. on p. 41).

https://babeljs.io/
https://babeljs.io/
https://github.com/davidbau/seedrandom
https://github.com/davidbau/seedrandom
https://github.com/d3
https://github.com/d3
https://github.com/immutable-js/immutable-js
https://github.com/react-tools/react-move
https://github.com/wojtekmaj/react-lifecycle-methods-diagram
https://github.com/wojtekmaj/react-lifecycle-methods-diagram
https://github.com/storybookjs/storybook
https://github.com/storybookjs/storybook
https://github.com/uber/react-vis-force
https://github.com/uber/react-vis-force
https://twitter.com/dan_abramov/status/981712092611989509
https://twitter.com/dan_abramov/status/981712092611989509
https://d3js.org
https://d3js.org
https://bl.ocks.org/mbostock
https://reactjs.org
https://reactjs.org
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://developers.google.com/web/updates/2012/05/requestAnimationFrame-API-now-with-sub-millisecond-precision
https://developers.google.com/web/updates/2012/05/requestAnimationFrame-API-now-with-sub-millisecond-precision
https://developers.google.com/web/updates/2012/05/requestAnimationFrame-API-now-with-sub-millisecond-precision

References 63

[24] Wojciech Maj. React lifecycle methods diagram. url: http://projects.wojtekmaj.pl
/react-lifecycle-methods-diagram/ (visited on 05/10/2019) (cit. on pp. 19, 22).

[25] StatCounter. statcounter Browser Market Share Worldwide. url: http://gs.statc
ounter.com/ (visited on 06/07/2019) (cit. on p. 45).

[26] W3C. W3C Browser & Platform Market Share. url: https://www.w3counter.co
m/globalstats.php (visited on 06/07/2019) (cit. on p. 45).

http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/
http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/
http://gs.statcounter.com/
http://gs.statcounter.com/
https://www.w3counter.com/globalstats.php
https://www.w3counter.com/globalstats.php

Check Final Print Size

— Check final print size! —

width = 100mm
height = 50mm

— Remove this page after printing! —

64

	Declaration
	Preface
	Abstract
	Kurzfassung
	Introduction
	Problem Description and Motivation
	Goals of the Project

	D3.js – Data-Driven Documents
	Introduction to D3
	Explaining the D3 API
	Force Graphs – Real Time Rendered Data Visualizations

	React – A JavaScript Library for Building User Interfaces
	Introduction to React
	Explaining the React API
	JSX in General
	Explaining React Components

	React's Component Lifecycle
	Conclusion

	Combining React and D3
	Introduction and Motivation of the Project
	Project Setup
	Prototypes
	Pure D3 Prototype
	Pure React Prototype
	D3 and React Hybrid Prototype

	Comparison of the Different Proposed Prototypes
	Prototype Storybook
	Conclusion

	Performance Testing and User Perception
	Test Environment Setup
	Challenges
	Building a Stable Testing Environment

	Testing Setup
	Testing Devices
	Testing Methodologies

	Benchmark Results
	Introducing the Test Results
	Human Perception of Fluent Animations
	Interpreting the Test Results

	Conclusion

	Open Source and the React Community
	Building an Open Source Library Component
	Technical Details of the Component API
	Final Thoughts

	Conclusion
	Prototypes
	Pure D3 Prototype
	Pure React Prototype
	React and D3 Hybrid Prototype

	Performance Results
	Open Source
	Final Thoughts

	CD-ROM Contents
	Master's Thesis
	Thesis Project – Combining React and D3

	References
	Literature
	Audio-visual media
	Software
	Online sources

