
3D-Board: A Remote Collaborative
Workspace Featuring Virtual 3D

Embodiments

Jakob Zillner

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2014



© Copyright 2014 Jakob Zillner

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives 4.0 International (CC
BY-NC-ND 4.0)—see http://creativecommons.org/licenses/by-nc-nd/4.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/4.0/


Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, September 19, 2014

Jakob Zillner

iii



Contents

Declaration iii

Acknowledgments vii

Kurzfassung viii

Abstract ix

1 Introduction 1
1.1 3D-Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Sensing a remote user . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Inspiration and Concepts 5
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Social Presence . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Embodiments . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Teleimmersion . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Whole Body Interaction . . . . . . . . . . . . . . . . . 9
2.2.2 Embodiment Superposition . . . . . . . . . . . . . . . 9
2.2.3 Perception . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Implementation 12
3.1 Setup and Hardware . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Camera Placement . . . . . . . . . . . . . . . . . . . . 12

3.2 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Extrinsic Camera Parameters . . . . . . . . . . . . . . 15
3.2.2 Intrinsic Camera Parameters . . . . . . . . . . . . . . 16
3.2.3 Projective Transformation . . . . . . . . . . . . . . . . 18
3.2.4 Lens Distortion . . . . . . . . . . . . . . . . . . . . . . 18
3.2.5 The Calibration Procedure . . . . . . . . . . . . . . . 18
3.2.6 Using Camera Calibration for 3D Reconstruction . . . 21

iv



Contents v

3.3 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Point Cloud Rendering . . . . . . . . . . . . . . . . . . 29
3.3.3 Head Tracking . . . . . . . . . . . . . . . . . . . . . . 37
3.3.4 Post-Processing . . . . . . . . . . . . . . . . . . . . . . 38
3.3.5 Merging Embodiment and Application . . . . . . . . . 41
3.3.6 Results and Performance . . . . . . . . . . . . . . . . 43

4 Demo Applications 47
4.1 Remote Sketching . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Map Surveillance . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Evaluation 50
5.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.3 Techniques . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Experiment 1: Abstracted Environment . . . . . . . . . . . . 54
5.2.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.3 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.4 Quantitative Results . . . . . . . . . . . . . . . . . . . 58
5.2.5 Qualitative Results . . . . . . . . . . . . . . . . . . . . 60

5.3 Experiment 2: Interior Design . . . . . . . . . . . . . . . . . . 62
5.3.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.3 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.4 Quantitative Results . . . . . . . . . . . . . . . . . . . 66
5.3.5 Qualitative Results . . . . . . . . . . . . . . . . . . . . 66

5.4 Interviews and Observations . . . . . . . . . . . . . . . . . . . 68

6 Conclusion and Future Work 71

A Sourcecode 73
A.1 Vertex Shader . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2 Geometry Shader . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.3 Pixel Shader . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B CD Content 77
B.1 PDF-Dateien . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
B.2 Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
B.3 Study Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
B.4 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



Contents vi

References 78
Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Online sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



Acknowledgments

The first ideas for 3D-Board sparked almost two years ago. From that time
on Dr. Michael Haller constantly provided support and guidance far beyond
the duties of a supervisor. During countless discussions he and the patient
colleagues of the Media Interaction Lab always offered an open ear and a
helping hand. Gratitude is also due to Dr. Wilhelm Burger for his advice
and my fellow students for their help.

With the completion of this thesis, the five-year long chapter of studying
comes to an end. There are no words to describe how grateful I am to have
a girlfriend that supported me with all her love and wisdom ever since.
Never forgotten will be the encouragement of my parents and the inspiration
received from my brother. Without all these people this thesis would have
never been possible.

vii



Kurzfassung

3D-Board ist ein interaktives Whiteboard-System, dass eine intuitive Zu-
sammenarbeit räumlich getrennter Personen ermöglicht. Werden großflächi-
ge Bildschirme für verteiltes Arbeiten eingesetzt, ist die Wahrnehmung der
Gestik, Mimik und Interaktion des Gegenübers von besonderer Bedeutung.
Daher liegt der Fokus dieser Arbeit auf der effizienten und natürlichen Zu-
sammenarbeit zwischen den verteilten Benutzern. Dies wird erreicht, indem
ein lebensechtes, dreidimensionales Abbild der entfernten Person mit der
gemeinsam genutzten Arbeitsfläche überblendet wird. Dadurch entsteht der
Eindruck, als könnte der Betrachter durch ein transparentes Whiteboard
hindurch, in den gegenüberliegenden Raum hinein sehen. Diese neuartige
Art der Visualisierung ermöglicht eine intuitive Interaktion mit den Kolla-
borateuren. Das System wurde in einer Studie evaluiert, welche belegt, dass
3D-Board die Effektivität von verteiltem Arbeiten auf interaktiven White-
boards steigert.

viii



Abstract

3D-Board is a telepresence system for interactive whiteboards. When using
a large-scale screen for remote collaboration, awareness for the distributed
user’s gestures and actions is paramount. Thus, the presented system cap-
tures life-sized virtual embodiments of a geographically distributed user.
By blending the front-facing 3D embodiment of a remote collaborator with
the shared workspace, an illusion is created as if the observer was looking
through the transparent whiteboard into the remote user’s room. This novel
visualization technique conveys the full-body pose and gestures to facilitate
intuitive cooperation. 3D-Board was evaluated in a usability study, showing
that it significantly improves the effectiveness of remote collaboration on a
large interactive surface.

ix



Chapter 1

Introduction

In times of globalization, working remotely becomes evermore important.
Computer supported cooperative work is often the only feasible option to
exchange with geographically distributed colleagues. An important aspect of
remote collaboration is to give the impression that a distant user is present
[24, 50, 56]. However, most of the telepresence systems [53] available to
date fail to provide the same experience a co-located working environment
would offer. One reason is the visual disjunction between the distributed
collaborator’s representation and the visualization of the shared data [55].
Thus, relating important non-verbal cues of a remote user with the corre-
sponding distributed information often becomes impossible due to the lack
of social presence [29]. However, workspace awareness, gestures and facial
expressions, are highly relevant for effective collaboration [15, 23, 38].

1.1 3D-Board
This thesis presents 3D-Board, a remote collaboration system for large in-
teractive whiteboards. The system facilitates social presence in a shared
working environment by blending a virtual, front-facing 3D embodiment
of the remote user with the digital content of the interactive whiteboard.
This novel visualization technique creates the impression as if the remote
collaborator would stand behind the shared whiteboard, as depicted in Fig-
ure 1.1. Thus, the presented work strives to provide an experience as if all
distributed users would work face-to-face on the same interactive, transpar-
ent surface. Summarizing, the main contributions of this thesis towards an
effective remote collaboration are:

• Enabling remote, face-to-face collaboration on a large, interactive sur-
face. The simple and novel visualization technique facilitates full body,
3D virtual embodiments of the remote user.

• A study that demonstrates the benefits of the remote embodiments.
The evaluation shows that the 3D front facing approach improves the

1



1. Introduction 2

Figure 1.1: 3D-Board blends the virtual 3D embodiment of the remote user
with the digital content of the interactive whiteboard.

user awareness and provides additional features that makes remote
collaboration tasks more efficient.

• Robustly segmenting the remote user from the background to blend the
visualization with any virtual content and avoid occlusion of important
content.

• And finally, featuring a self-contained hardware setup. Since the re-
quired cameras can easily be mounted on the edges of the whiteboard
and do not have to be behind or in front of the screen, no holographic
screens or half-silvered mirrors are needed.

The implementation of 3D-Board, depicted in Chapter 3 represents an
alternative approach to the first version of 3D-Board [65]. The evaluation,
described in Chapter 5, was conducted with the earlier implementation.
Both prototypes differ only in their approach to visualize the remote user
but feature comparable visual quality. All images presented in this thesis,
with the exception of Chapter 3, show the first implementation of 3D-Board.



1. Introduction 3

1.2 Sensing a remote user
Creating a virtual embodiment of the remote user in 3D requires special
depth sensors. 3D-Board uses multiple Microsoft Kinect v1 sensors (cf. Fig-
ure 1.2 (a)) to reconstruct the scene in front of the whiteboard.

The Kinect is a structured light sensor. The infrared emitter projects a
structured dot pattern onto an object and the infrared camera captures the
projected dots (cf. Figure 1.2 (b)). Based on the displacement of the known
pattern, depth positions can be computed for each pixel in the image (cf.
Figure 1.2 (c)) [4, 63]. An additional RGB camera captures a color image
of the scene (cf. Figure 1.2 (d)) that is used to reconstruct a colored 3D
embodiment of the user. In addition, the pose of a person can be estimated
from the depth map [52]. The inferred joint positions of that person are
utilized by 3D-Board for tracking the head of an observer. This allows for
motion parallax effects to perceive the virtual embodiment in 3D.

However, when the dot patterns of multiple structured light depth sen-
sors overlap, the sensors cannot determine all of their corresponding dots.
This leads to missing depth readings and partly incomplete depth maps. Al-
though hardware solutions exist [10], a software implementation was chosen
for handling the interference, as will be shown in Chapter 3.

Infrared Projector Infrared SensorRGB-Camera

(a)

(b) (c) (d)

Figure 1.2: The Kinect v1 sensor (a) outputs the color (b) and the depth
image (c) computed from a structured infrared light pattern (d).



1. Introduction 4

1.3 Outline
This thesis covers in detail every aspect of 3D-Board. At first, the most in-
fluential related work is discussed. The conclusions drawn for designing an
efficient remote collaboration system are elaborated thereafter. Chapter 3
deals exhaustively with the implementation of the system, utilizing the men-
tioned depth sensing cameras. After talking about the system’s performance
and potential applications, Chapter 5 compares 3D-Board with two other
techniques of collaboration. The concluding evaluation highlights the ef-
ficiency of the front-facing embodiments blended with the digital content
before reasoning about further improvements and final thoughts.



Chapter 2

Inspiration and Concepts

Remote collaboration is a very active field of research. The quantity of liter-
ature that influenced the development of 3D-Board is vast. Thus, the most
important findings from related literature will be discussed first, before de-
ducing the concepts.

2.1 Related Work
The main lesson learned from related work is that collaboration efficiency
can be raised by raising the social presence of the remote participant.

2.1.1 Social Presence

Social presence defines the degree of salience that a collaborator has in
collaborative tasks [5]. The higher the social presence, the more aware a
user becomes of the remote partner. Awareness for the common workspace
is very important for coordinating actions of all participants. It is defined
by Gutwin et al. [24, p. 197] as

the up-to-the-moment understanding of another person’s inter-
action with the shared workspace.

Awareness is influenced by multiple factors such as: the presence and location
of another person, the identity of that person, the gaze of the partner as
well as the actions and interaction radius of the collaborator [24]. Hence, a
remote collaboration system should enable the user to see the participant’s
face to raise the awareness for facial expressions and gaze [15]. In addition,
deictic gestures and gestures in general are highly essential for a distributed
conversation [18, 20, 34].

Summarized, a lack of social presence can cause misunderstandings and
ineffective teamwork. Therefore, distributed tabletop and whiteboard appli-
cations often provide user embodiments to improve the awareness among
collaborators [2].

5



2. Inspiration and Concepts 6

2.1.2 Embodiments

In computer supported cooperative work, the video image is serving as the
connection between the distributed users [3]. However, to raise the social
presence, the video image and the shared content has to fuse into a single,
common workspace [32, 35, 57]. By utilizing virtual embodiments of a remote
collaborator the visual disjunction between the collaborator’s actions and
the actual data is minimized.

Tabletops

The visualization and presentation of the virtual embodiment has a vast
influence on the workspace awareness. Different possibilities have mostly
been evaluated in the context of tabletops [13, 19, 50, 59].

Doucette et al. [13], for instance, used different levels of abstraction for
arm embodiments while interacting with the tabletop. The remote collabo-
rator therefore sees the local user’s arms as either just a thin line, a colorized
arm, or as a real picture. In the context of a tabletop setup, the results show
that the arm visualization, does not significantly raise the awareness for
the remote user. The participants did not associate the embodiment with
their partner, since they did only see the arms but the rest of the body was
missing.

Another evaluation has shown that being able to look the collaborator
in the eye raises the social presence [29]. At the same time, the efficiency is
lowered due to a higher cognitive load. However, the mental demands might
as well be influenced by additional factors like the setup and interaction
techniques.

Whiteboards and Vertical Displays

When collaboration over larger scale screens, the presence of a virtual em-
bodiment is highly relevant since the full body of the collaborator is visible.
Gaze awareness, facial expressions, and hand pointing play a much bigger
role while interacting with another person on such devices.

ClearBoard [31] is one of the most influential setups supporting face-to-
face conversations and shared drawing activities on one screen. By utilizing
a polarizing film between a projection screen and a half mirror the user can
be captured by a camera while drawing on a whiteboard. At the same time
the remote collaborator can be seen, thus creating the impression of [31, p.
525]:

talking through and drawing on a transparent glass window

This metaphor was also adopted for 3D-Board and served as an inspiration.
Based on the ideas of ClearBoard, Gumienny et al. developed Tele-

Board [22]. Tele-Board features video- and data-conferencing by overlaying



2. Inspiration and Concepts 7

Figure 2.1: The two-sided transparent display allows for face-to-face col-
laboration. Image source [43].

the transparent content of an interactive whiteboard over the full-screen rear
or side video view of the remote collaborators.

CollaBoard [41] takes the idea one step further by separating the user
from the background. Thus, the full-sized back-view of the upper body of a
user can be superimposed on top of the digital data. While both approaches
provide accurate deictic gestures, natural interaction is limited since the
face-to-face communication is restricted.

ConnectBoard on the other hand, focuses on gaze awareness [54]. By
utilizing a large see-through display and face detection the system supports
eye contact by offsetting the video stream based on the viewer’s position.

EyeGaze [39] facilitates gaze awareness by creating a 3D model of a
person from multiple Kinects and rendering the output from the observer’s
point of view.

TeleHuman [37] is a videoconferencing system that uses a cylindrical 3D
display portal to display a 360∘ view of a geographically distributed user.
By supporting stereoscopic 3D and motion parallax, the system is capable
of accurately conveying hand pointing gestures and body poses.

Li et al. [43] concentrate their work on the collaborative interaction with
a transparent display. The screen accepts input and can visualize different
content on both sides. The shared workspace is projected onto a special fab-
ric. The hole size of the fabric is large enough to see the other collaborator
manipulating the shared elements through the projection (cf. Figure 2.1).
This face-to-face collaboration concept is very similar to the remote confer-
encing vision of Corning Inc. [66].



2. Inspiration and Concepts 8

Onespace [42] utilizes a depth-sensing camera to segment users from the
background and to get their position in 3D space. Therefore, a 2D represen-
tation can be placed in a virtual environment and the distributed partners
can collaboratively interact with their digital surroundings. The front-view
makes gaze-awareness and gestures possible. However, the depth-sensing
camera, mounted on top of the display, forces users to keep a certain dis-
tance to the screen. In addition, a mirrored representation of the co-located
person needs to be displayed in order to raise the awareness of one’s position
in 3D space.

Maimone et al. [46] also utilize multiple depth-sensing cameras to cap-
ture a scene in 3D. The reconstructed environment can then be viewed by
utilizing a head-tracking system and an auto stereoscopic display. This cre-
ates the illusion as if the remote user could be seen through a glass window,
as envisioned by Ishii’s ClearBoard. However, the system does not support
collaboration.

Edelmann et al. focus on the interaction with digital content [14]. The
system consists of a stereo camera setup behind a semitransparent, holo-
graphic, multi-touch screen to capture the remote scene. This allows for a
natural, face-to-face collaboration on the interactive surface. However, the
need for shutter glasses and the opaque holographic screen disrupts the
telepresence experience. In addition, the remote user is not separated from
the background, thus the video occludes the shared workspace.

2.1.3 Teleimmersion

Teleimmersion focuses on a credible remote collaboration experience. Most
often a Computer Assisted Virtual Environment1 (CAVE) like system is used
in combination with reconstructed 3D avatars to let the remote collaborators
immerse into a shared, virtual environment [60].

Teleimmersion can for example be used in remote injury assessment [48].
A therapist can treat a remote patient and demonstrate specific exercises.
Forte et al. [17] use the shared virtual environment for cyberarchaeology.
The collaborators can examine 3D archeological models and interact with
them in real-time. Similarly, Beck et al. present an immersive group-to-
group telepresence setup by using multiple Kinect sensors [1] (cf. Figure 2.2).
Distributed groups of people can virtually meet. Pointing as well as tracing
gestures are mutually understood in order to interact with virtual objects.

2.2 Concepts
3D-Board strives to maximize the social presence and collaboration efficiency
based on three main concepts deduced from the related work.

1 http://en.wikipedia.org/wiki/Cave_automatic_virtual_environment



2. Inspiration and Concepts 9

Figure 2.2: Group-to-group teleimmersion system. Image source [1].

2.2.1 Whole Body Interaction

Providing a life-sized embodiment of a remote user is paramount for large
scale screens. It does not suffice to show only parts of the body, but an au-
thentic representation is mandatory. Only then can an observer comprehend
the full range of gestures of the collaborator, resulting in a raised workspace
awareness [24]. At the same time, the embodiment needs to face the user.
Facial expressions and gaze awareness are very important for quickly grasp-
ing the collaborator’s intentions [54]. A rear view embodiment [22, 41] of-
ten leads to occlusion of deictic gestures and limits the natural interaction
between the users. Thus, 3D-Board is reconstructing a front-facing embod-
iment to convey deictic gestures and gaze awareness (cf. Figure 2.3).

2.2.2 Embodiment Superposition

In order to raise the social presence of the remote user, the virtual em-
bodiment needs to be fused with the shared data [29]. The implementa-
tion of 3D-Board is an independent application. Consequently, it is possible
to superimpose the virtual embodiment on top of any content. Occlusion
of important elements is avoided by making the virtual embodiment semi-
transparent (cf. Figure 2.4). Thus, a face-to-face interaction with the remote
collaborator is made possible and workspace awareness is raised to the level
of co-located interaction.

2.2.3 Perception

As mentioned, 3D-Board adopted the key metaphor of ClearBoard [31].
Thus, the screen should become a transparent glass window that functions
as an interactive portal into the remote user’s room. In order to create the



2. Inspiration and Concepts 10

Figure 2.3: The front-facing virtual embodiment allows to perceive deixis
and gaze as if the remote user would be standing behind the transparent,
interactive whiteboard.

illusion that the geographically distributed person is actually standing be-
hind the shared whiteboard requires the remote collaboration experience to
be immersive. Therefore, a user should be able to perceive the remote em-
bodiment in 3D in the same way a real person behind a glass window can be
observed. The evaluation conducted by Kim et al. [37] suggests that using

Figure 2.4: The virtual embodiment can be superimpose on top of the
shared workspace to raise the social presence of the remote user.



2. Inspiration and Concepts 11

(a) (b)

Figure 2.5: Tracking the observer’s head allows to perceive the virtual em-
bodiment in 3D while moving from left (a) to right (b).

3D instead of 2D virtual embodiments results in a significant increase in the
assessment of deictic gestures.

However, an encumbrance free experience is desired. The system needs
to be accurate and should not constrain the user but support the remote
collaboration. Thus, 3D-Board avoids a CAVE like system and the need
for shutter glasses. Instead, the whiteboard and the cameras for 3D recon-
struction are a self-contained unit. The 3D embodiment’s pose and deictic
gestures can be perceived by providing motion parallax via head tracking
(cf. Figure 2.5).



Chapter 3

Implementation

This chapter describes the recording, visualization and perception of the vir-
tual, front-facing 3D embodiment of a geographically distributed collabora-
tor. The implementation of 3D-Board is based on the requirements discussed
in Section 2.2.

3.1 Setup and Hardware
With the previously discussed concepts in mind a prototypical setup was
built to simulate distributed workplaces.

3.1.1 Prototype

The setup consists of two interactive whiteboards: the remote workplace for
capturing the user in front of the screen and the local setup for observing
the virtual embodiment. Both boards have a size of 1.6 m × 1.2 m and are
operated by two Vivitek D795WT short throw projectors at a resolution
of 1280 × 800 pixels. User input was captured through Anoto digital pens1

(ADP 601) [26]. To avoid networking issues, both whiteboards are driven by
the same PC with an Intel Core i7-3770, 8GB RAM and a Nvidia Quadro
K2000, 2GB GDDR5.

3.1.2 Camera Placement

For capturing a remote user and visualizing the virtual embodiment three
Kinect v1 depth sensors (cf. Section 1.2) are utilized (cf. Figure 5.1). All are
operated at a color and depth resolution of 640 × 480 pixels at 30 frames
per second.

Two cameras are attached to the top left and top right corner of the
remote user’s whiteboard. The depth sensors’ data are used to reconstruct

1http://www.anoto.com/products/anoto-live-digital-pen/

12



3. Implementation 13

First, Remote
Workspace

Second, Local
Workspace

Kinects for 3D-Reconstruction

Kinect for Head Tracking

Figure 3.1: The prototype of 3D-Board uses two Kinects to capture the
interaction of the remote user with the whiteboard (left). The local user can
observe the remote virtual embodiment in 3D by utilizing a third Kinect for
head tracking (right).

a 3D virtual embodiment of the geographically distributed person. Rotated
downwards at a 45° angle, the two depth sensors capture the user’s actions
from directly on the whiteboard’s surface up to 1.2 m in front of the screen.
Each of the sensors are capturing exactly half of the upper body of the user,
with only very small overlapping regions. Both sensors are operated in near-
mode (featuring valid depth data from 40 cm up to 3 m) in order to cover
the whole width and height of the board. Only a minimal loss of interaction
radius of about 10 cm exists in the upper corner regions of the whiteboard.
Since the two Kinects are rotated inwards to track the user, their output
also appears tilted (cf. Figure 3.2). In order to reconstruct a virtual 3D
embodiment of the user out of the two rotated images, the cameras need to
be calibrated. Thereby, the output of both Kinects can be transformed into
a common coordinate space. This will fuse the output and enable rendering
the scene from a single, virtual viewpoint.

This virtual viewpoint is determined by the third Kinect. At the second,
local workspace, this sensor is capturing the full size of the whiteboard from
the back of the room. The camera tracks the head of the local observer to
support motion parallax by changing the viewpoint of the rendering accord-
ingly.



3. Implementation 14

(a) (b)

(c) (d)

Figure 3.2: The color and depth frame of the left sensor are shown in (a)
and (b) and the frames of the right Kinect in (c) and (d). Placed in the upper
corners of the whiteboard and rotated inwards, both cameras capture half of
the upper body of the user, with only very little overlap. Valid depth values
range from 40 cm up to 3 m.

3.2 Camera Calibration
As briefly mentioned, calibrating the two Kinect sensors, is essential for
reconstructing the virtual embodiment. Otherwise rendering the recorded
depth data and merging the output of multiple Kinects into a single image
would not be possible. The camera calibration computes the intrinsic (focal
length, principal point, distortion coefficients) and extrinsic (position and
pose of the camera) parameters. Thus, before explaining the calibration
procedure the camera’s parameters are discussed.



3. Implementation 15

3.2.1 Extrinsic Camera Parameters

The extrinsic parameters consist of the translation vector 𝑡⃗ and rotation
matrix 𝑅

𝑡⃗ =

⎛⎝𝑡𝑥

𝑡𝑦

𝑡𝑧

⎞⎠ 𝑅 =

⎛⎝𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

⎞⎠ . (3.1)

This transformation describes the pose of a calibration pattern, as it is used
during the calibration procedure (discussed in Sec. 3.2.5), relative to the
camera [6, p. 394]. Paraphrased, the calibration pattern defines a world co-
ordinate system that is viewed from the two camera coordinate systems
centered at the Kinect sensors. By applying the extrinsic rigid body trans-
formation, the point 𝑃𝑤 =

(︀
𝑥𝑤, 𝑦𝑤, 𝑧𝑤

)︀
of an object, such as the user in

front of the screen, is transformed from the world coordinate system to the
camera coordinate system, resulting in the point 𝑃𝑐 =

(︀
𝑥𝑐, 𝑦𝑐, 𝑧𝑐

)︀
:

𝑃𝑐 = 𝑅𝑃𝑤 + 𝑡⃗. (3.2)

Transforming from world to camera space, as depicted in Figure 3.3, can
also be written in matrix notation. Therefore, homogeneous coordinates are
used to combine the translation matrix 𝑇 with the rotation matrix 𝑅 to
form a single extrinsic transformation matrix 𝑀𝑒:

𝑃𝑐 = 𝑇 ·𝑅 · 𝑃𝑤 = 𝑀𝑒 · 𝑃𝑤 =

⎛⎜⎜⎝
𝑟11 𝑟12 𝑟13 𝑡𝑥

𝑟21 𝑟22 𝑟23 𝑡𝑦

𝑟31 𝑟32 𝑟33 𝑡𝑧

0 0 0 1

⎞⎟⎟⎠ ·
⎛⎜⎜⎝

𝑥𝑤

𝑦𝑤

𝑧𝑤

1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑥𝑐

𝑦𝑐

𝑧𝑐

1

⎞⎟⎟⎠ . (3.3)

Y

Z
X

w

w

w Y
Z X

P P = T R P   . .w c

c

c

c
w Pc

Figure 3.3: The pose of the checkerboard calibration target relative to the
camera is described by the rotation 𝑅 and translation 𝑇 . Applying this trans-
formation to a point 𝑃𝑤 in the world coordinate system transforms it to the
camera coordinate system, resulting in 𝑃𝑐.



3. Implementation 16

3.2.2 Intrinsic Camera Parameters

There are two important intrinsic camera parameters, the focal length and
the principal point.

Focal Length

Assuming an ideal pinhole camera model with a frontal image plane (cf. Fig-
ure 3.4), the focal length 𝑓 is the distance of the image plane (image sensor)
to the optical center 𝑂. The elements of an image sensor are not necessarily
square but can be rectangular. Thus, the focal length is actually the product
of the physical focal length and the size 𝑠𝑥 and 𝑠𝑦 of the elements:

𝑓𝑥 = 𝑓 · 𝑠𝑥, 𝑓𝑦 = 𝑓 · 𝑠𝑦. (3.4)

Principal Point

The principal point 𝑐 is the point at the intersection of the optical axis
with the image plane. It is very likely that the image sensor of a camera is

pi

Pc

y

x

c

Image
 Plan

e

Optical Axis

f

Y

Z
X

O

Figure 3.4: An ideal pinhole camera model with a frontal image plane.



3. Implementation 17

displaced from the optical axis by 𝑐𝑥 and 𝑐𝑦, resulting in the principal point

𝑐 =

⎛⎝𝑐𝑥

𝑐𝑦

𝑓

⎞⎠ . (3.5)

Therefore, a point 𝑝𝑖 =
(︀
𝑥𝑖, 𝑦𝑖

)︀
on the image plane with continuous co-

ordinates is mapped to a point 𝑝′
𝑖 on the image sensor with actual pixel

coordinates2 𝑢 and 𝑣 by adding the displacement:

𝑝′
𝑖 =

(︂
𝑥𝑖

𝑦𝑖

)︂
+
(︂

𝑐𝑥

𝑐𝑦

)︂
=

(︂
𝑢
𝑣

)︂
. (3.6)

Projecting from camera to image space

As the 3D point 𝑃𝑐 of an object in camera space3 is imaged by the Kinect
sensor, it is projected onto the image plane, resulting in the 2D point 𝑝′

𝑖.
The relation between 𝑝′

𝑖 and 𝑃𝑐 is given via similar triangles (cf. Figure 3.4):
𝑥𝑐

𝑧𝑐
= 𝑥𝑖

𝑓𝑥
,

𝑦𝑐

𝑧𝑐
= 𝑦𝑖

𝑓𝑦
. (3.7)

Perspectively mapping the 3D point 𝑃𝑐 to the 2D point 𝑝𝑖 is therefore de-
scribed as

𝑢 = 𝑓𝑥
𝑥𝑐

𝑧𝑐
+ 𝑐𝑥, 𝑣 = 𝑓𝑦

𝑦𝑐

𝑧𝑐
+ 𝑐𝑦. (3.8)

In order to easily process this nonlinear, perspective transformation as a
linear matrix-vector multiplication, homogeneous coordinates are used. At
first, a projection matrix 𝑀𝑝 can be constructed [45, pp. 52–53] by combining
the canonical projection matrix 𝑀0 and the camera intrinsics matrix 𝑀𝑖 that
is composed out of the focal length (3.4) and principal point (3.5) as

𝑀𝑝 = 𝑀𝑖·𝑀0 =

⎛⎝𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

⎞⎠·
⎛⎝1 0 0 0

0 1 0 0
0 0 1 0

⎞⎠ =

⎛⎝𝑓𝑥 0 𝑐𝑥 0
0 𝑓𝑦 𝑐𝑦 0
0 0 1 0

⎞⎠ . (3.9)

Then, by utilizing homogeneous coordinates and the projection matrix 𝑀𝑝,
a point in world space is projected into image space:

𝑝′
𝑖 ·𝑧𝑐 = 𝑀𝑝 ·𝑃𝑐 =

⎛⎝𝑓𝑥 0 𝑐𝑥 0
0 𝑓𝑦 𝑐𝑦 0
0 0 1 0

⎞⎠ ·
⎛⎜⎜⎝

𝑥𝑐

𝑦𝑐

𝑧𝑐

1

⎞⎟⎟⎠ =

⎛⎝𝑢 · 𝑧𝑐

𝑣 · 𝑧𝑐

𝑧𝑐

⎞⎠ =

⎛⎝𝑢
𝑣
1

⎞⎠ ·𝑧𝑐. (3.10)

2As will be discussed in section 3.2.6, 𝑝′
𝑖 is a pixel on the depth texture received from

the Kinect sensor.
3Leaving the extrinsic transformation aside, the camera space is equal to the world

space originating at the camera’s optical center.



3. Implementation 18

This projection can also be described as shifting the imaged pixel back along
the light ray. The point 𝑝′

𝑖 and the center of the camera 𝑂 describe the
vector 𝑞⃗ =

(︀
𝑢, 𝑣, 1

)︀𝑇 . Scaling the point along the vector by the factor of
𝑧𝑐 results in 𝑃𝑐, the point in camera space4, as depicted in Figure 3.4.

3.2.3 Projective Transformation

The complete projective transformation comprises of the intrinsic projection
matrix 𝑀𝑝 (3.9) and the extrinsic transformation matrix 𝑀𝑒 (3.3). It can be
used to transform a world coordinate point 𝑃𝑤 to a point 𝑝𝑖 in image space

𝑝′
𝑖 ·𝑧𝑐 =

⎛⎜⎜⎝
𝑓𝑥 0 𝑐𝑥 0
0 𝑓𝑦 𝑐𝑦 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠·
⎛⎜⎜⎝

𝑟11 𝑟12 𝑟13 𝑡𝑥

𝑟21 𝑟22 𝑟23 𝑡𝑦

𝑟31 𝑟32 𝑟33 𝑡𝑧

0 0 0 1

⎞⎟⎟⎠·
⎛⎜⎜⎝

𝑥𝑤

𝑦𝑤

𝑧𝑤

1

⎞⎟⎟⎠ =

⎛⎝𝑢
𝑣
1

⎞⎠·𝑧𝑐. (3.11)

3.2.4 Lens Distortion

So far, the discussed camera was based on an ideal pinhole model. However,
the lenses of real cameras introduce additional distortion coefficients [33,
Sec. 12.9]:

1. Radial distortion occurs when light rays farther away from the cen-
ter of the lens are bent more than rays close to the center due to poor
quality lenses.

2. Tangential distortion is the result of the lens being decentered from
the optical axis.

The skewedness or diagonal distortion of the image sensor is insignificant
in most case and therefore not discussed. The radial distortion parameters
𝑘1, 𝑘2, 𝑘3 and tangential distortion coefficients 𝑝1, 𝑝2 can be modeled as
polynomials [6, p. 375–376]. Since the lens of the camera is placed in front
of the image sensor, the distortion takes effect after the projection. Thus, the
distortion parameters are applied after the projection matrix 𝑀0, but before
the image to sensor mapping, using the intrinsics matrix 𝑀𝑖 of equation
(3.9). For the sake of brevity, the more complex camera model including the
lens distortion is not explained in depth, but the interested reader is referred
to [33, p. 341–357] and [6, p. 375–378].

3.2.5 The Calibration Procedure

Since the cameras are static, computing the intrinsic and extrinsic param-
eters of the camera is an offline process that needs to be done once before

4Since 𝑝′
𝑖 is equal to a pixel on the Kinect’s depth texture, the value of this pixel is the

depth 𝑧𝑐 of the point in 3D space (cf. Sec. 3.2.6).



3. Implementation 19

Figure 3.5: The detected corners of the checkerboard.

the scene can be rendered. The calibration routines are implemented in C++

using OpenCV 2.4.8 5 [6, p. 389] and are based on Zhang [64] and Brown [7].

Computing the Calibration Parameters

In order to compute the previously discussed intrinsic and extrinsic parame-
ters, multiple images of a checkerboard (9×6 inner corners of the black and
white squares with a side length of 59 mm) calibration target in different
poses need to be taken. The corner points of the checkerboard in each image
can be identified by calling OpenCV’s findChessboardCorners method (cf.
Figure 3.5).

An identified corner point 𝑃𝑤 in world coordinates is perspecitvely trans-
formed onto the image sensor, resulting in 𝑝′

𝑖, as previously described (cf.
Equation 3.11). Thus, the linear mapping from a plane in 3D space onto a
plane in 2D space, results in a planar homography [6, p. 384–387]. The ho-
mography matrix 𝐻 is the combination of the intrinsic projection 𝑀𝑝 (3.10)
and the extrinsic transformation 𝑀𝑒 (3.3), that is

𝐻 = 𝑀𝑝 ·𝑀𝑒. (3.12)

Thus, 𝐻 is holding the intrinsic and extrinsic parameters and can be com-
puted based on multiple 2D-3D point correspondences of the form

𝑝′
𝑖 = 𝑠𝐻𝑃𝑤. (3.13)

5http://opencv.org/



3. Implementation 20

The arbitrary scale factor 𝑠 is unknown and can be ignored since only the
ratio of the elements of the homogeneous matrix 𝐻 is of importance [27, p.
33]. In addition, the points on the calibration target can be considered as
lying in one plane at depth 𝑧𝑤 = 0. This further reduces the homography
to a 3 × 3 matrix if the rotation matrix is broken up into three columns
𝑅 =

(︀
𝑟1, 𝑟2, 𝑟3

)︀
[6, p. 386]. Therefore, 𝑝′

𝑖 can be computed as

⎛⎝𝑢
𝑣
1

⎞⎠ = 𝑠 ·𝑀𝑝 ·
(︀
𝑟1, 𝑟2, 𝑟3, 𝑡⃗

)︀
·

⎛⎜⎜⎝
𝑥𝑤

𝑦𝑤

0
1

⎞⎟⎟⎠
= 𝑠 ·𝑀𝑝 ·

(︀
𝑟1, 𝑟2, 𝑡⃗

)︀
·

⎛⎝𝑥𝑤

𝑦𝑤

1

⎞⎠ .

(3.14)

From this homography the unknown parameters can be solved by deriving
a system of linear equations of the form 𝐴 · 𝑏 = 0 [6, p. 389–392]. 𝐴 is
holding the equations of the known homographies and 𝑏 is the vector of
the unknown intrinsic and extrinsic parameters. In order to determine the
lens distortion parameters, the calibration parameters computed without
distortion are used to numerically solve a larger system of equations [6,
p. 391–392]. The parameters are then refined again for each image of the
calibration target.

The homography of a single image yields eight parameters when map-
ping the four corner points of the plane of the calibration pattern to the 𝑢
and 𝑣 coordinates of the image plane. The five distortion coefficients depend
only on the mapped 2D points and can thus theoretically be solved using
one image. The four intrinsic parameters are bound to the six extrinsics that
are unique for each view. Therefore, at least two images of the calibration
pattern are needed to solve all unknowns. However, due to noise and numer-
ical stability, usually more than 20 images proved to be needed per camera
for an accurate measurement of all parameters [6, p. 388].

Procedure

The calibration procedure to compute the intrinsic, distortion and extrinsic
parameter comprises of the following steps:

1. For higher precision, the Kinect’s RGB sensor is set to take pictures
at a resolution of 1280 × 960 with 15 frames per second. Since the
resolution used for rendering is set to 640 × 480, the obtained intrin-
sic parameters need to be divided in half accordingly. However, the
extrinsic parameters as well as the distortion coefficients do not scale
with an increased resolution.



3. Implementation 21

2. For each of the two Kinect sensors in the upper left and upper right
corners of the whiteboard, more than 20 images of different poses of the
checkerboard calibration target are taken separately for each sensor.

3. The corner points are computed at the time of each taken image
and can then be used for OpenCV’s calibrateCamera routine. This
method computes the intrinsic, extrinsic and distortion parameters for
each of the images by using the planar homography.

4. For the last picture, the calibration target is imaged from both Kinect
cameras simultaneously (cf. Figure 3.5), in order to be able to compute
the extrinsics for both cameras for the same calibration target. The
rotation and transformation between the two cameras could also be
computed using stereo camera calibration [6, p. 427–430].

3.2.6 Using Camera Calibration for 3D Reconstruction

Once finished with the calibration, the computed coefficients can be used for
rendering the 3D virtual embodiment imaged by the two Kinect cameras.

The projective transformation (cf. Equation 3.11) was used to project
the imaged world coordinate point 𝑃𝑤 onto the image sensor, resulting in
the 2D point 𝑝′

𝑖 scaled by 𝑧𝑐. In order to reconstruct an imaged object, this
transformation needs to be reversed by first projecting the Kinects’ image
data into 3D space and then transforming the output of both Kinects into
a common coordinate system.

Undistorting the camera image

Before reconstructing the scene the lens distortion needs to be removed.
Undistorting an image requires the computation of an undistortion map
by calling OpenCV’s initUndistortRectifyMap function [6, p. 396–397].
Based on the distortion coefficients the map relates an pixel in the image to
the mapped, undistorted point. Once the map is computed for the sensor,
it can be used to quickly undistort every image using remap. The Kinect
sensors seem to have high quality lenses and thus undistorting an image has
only very little influence (cf. Figure 3.6).

Projecting from image to camera space

The point 𝑝′
𝑖 (3.6) represents a pixel of a Kinect’s depth texture. The value

of the pixel stored in the texture is equal to the corresponding depth 𝑧𝑐 of
the imaged point in 3D space. In analogy to (3.8), the image space point 𝑝′

𝑖

can be projected to the 3D point 𝑃𝑐 in camera space:

𝑥𝑐 = 𝑧𝑐
𝑥𝑖

𝑓𝑥
= 𝑧𝑐

𝑢− 𝑐𝑥

𝑓𝑥
, 𝑦𝑐 = 𝑧𝑐

𝑦𝑖

𝑓𝑦
= 𝑧𝑐

𝑣 − 𝑐𝑦

𝑓𝑦
. (3.15)



3. Implementation 22

(a) (b)

Figure 3.6: Due to the high quality lenses of the Kinect the undistortion of
the color image (a) has almost no effect (b).

This is equal to the left inverse [28, p. 79] of the projection matrix 𝑀𝑝 (3.9)
to invert Equation (3.10):

𝑃𝑐 = 𝑀−1
𝑝 · 𝑝′

𝑖 · 𝑧𝑐 =

⎛⎜⎜⎜⎝
1

𝑓𝑥
0 − 𝑐𝑥

𝑓𝑥

0 1
𝑓𝑦
− 𝑐𝑦

𝑓𝑥

0 0 1
0 0 1

𝑧𝑐

⎞⎟⎟⎟⎠ ·
⎛⎝𝑢

𝑣
1

⎞⎠ · 𝑧𝑐 =

⎛⎜⎜⎝
𝑥𝑐

𝑦𝑐

𝑧𝑐

1

⎞⎟⎟⎠ . (3.16)

Hence, a depth reading acquired from a Kinect sensor will be projected
into 3D space from the camera’s point of view, resulting in a point 𝑃𝑐 in
the camera coordinate space. In this way, a cloud of 3D points is produced
using all the depth readings of the Kinect (as will be explained in detail
in Section 3.3.2). Hence, a point 𝑃𝑤 on the object imaged by both cameras
results in a point 𝑃𝑐1 in the first camera coordinate system and a point 𝑃𝑐2 in
the second camera coordinate system (cf. Figure 3.7(a)). Consequential, the
point clouds of both Kinects are defined in two different coordinate systems
and are thus misaligned (cf. Figure 3.7(b)).

Transforming from the Camera to the World Coordinate System

In order to reconstruct the object, the point clouds need to be transformed
into the shared world coordinate system originating at the calibration pat-
tern imaged by both Kinect sensors. This can be done by applying the inverse
of the extrinsic transformation (3.2) to each point 𝑃𝑐 of the point cloud in
the camera coordinate system (cf. Figure 3.7(c)). Since rotation matrices
are orthonormal, the inverse of 𝑅 is its transposed 𝑅𝑇 [49, p. 96], resulting
in the equation:

𝑃𝑤 = 𝑅𝑇 𝑃𝑐 −𝑅𝑇 𝑡⃗. (3.17)



3. Implementation 23

Yw

Zw

Xw

Yc

Zc Xc

Pw, Pc  ,Pc1 2

1

11

Yc2

Zc2

Xc2

Pc =T  R  Pw.   .
2 2 2 Pc =T  R  Pw.   .

1 1 1

Yc

Zc

Xc

Pc2

1

1

1

Yc2

Zc2

Xc2

Virtual

Camera

Pc1

(a) (b)

Yw

Zw

Xw

Yc

Zc Xc

Pw, Pc  ,Pc1 2

1

11

Yc2

Zc2

Xc2

Pw=R    T  Pc.     .
1 1 1-TPw=R    T  Pc.     .

2 2 2-T

Yw

Zw

Xw

Pw=Pc =Pc1 2

Virtual

Camera

(c) (d)

Figure 3.7: An object imaged by both Kinects (a) results in two recon-
structed embodiments in two different camera coordinate systems, if visual-
ized using a virtual camera (b). Applying the inverse of the extrinsic trans-
formation (c) aligns both point clouds in the same coordinate system and
merges the two images (d).

Applying the inverse to each point cloud will transform the points 𝑃𝑐1 of the
first camera and the points 𝑃𝑐2 of the second camera into the common world
coordinate system. Thus, both renderings of the same object will align (cf.
Figure 3.7(d)).

Coordinate systems in OpenCV and DirectX

The transformation acquired from OpenCV will be used to transform the
point clouds in DirectX6, as will be discussed in the visualization Sec-
tion 3.3.2. Since DirectX uses a left handed coordinate system and OpenCV
an image coordinate system (cf. Figure 3.8), the mirrored 𝑦-axis needs to be
accounted for.

Thus, to convert the extrinsic transformation obtained from the camera
calibration from OpenCV to DirectX the second element 𝑡𝑦 of the trans-
lation vector needs to become its additive inverse: 𝑡⃗ =

(︀
𝑡𝑥, −𝑡𝑦, 𝑡𝑧

)︀𝑇 .
For the rotation, OpenCV’s calibration routine returns a 3-tuple vector

6http://en.wikipedia.org/wiki/DirectX



3. Implementation 24

0

Y

Z X

0

Y

Z

X
(a) (b)

Figure 3.8: The difference between the image coordinate system of OpenCV
(a) and the left handed coordinate system of DirectX (b) is the flipped 𝑦-axis.

𝑟⃗ =
(︀
𝑟𝑥, 𝑟𝑦, 𝑟𝑧

)︀𝑇 describing an axis-angle rotation [61, Ch. 5.4]. This
three dimensional vector normalized to unit length defines the axis of rota-
tion, while the length of the vector is equal to the magnitude of the angle
about this axis. Hence, to invert only the 𝑦-coefficient of the rotation it suf-
fices to invert the second element of the rotation vector. This vector can
then be transformed into the rotation matrix 𝑅 by using the Rodrigues
transform [6, p. 401–403] for building the extrinsic transformation Equa-
tion (3.17). Similarly, the additive inverse of 𝑓𝑦, the intrinsic focal length in
𝑦, needs to be built.

Inaccuracy and Manual Refinement

Although OpenCV’s camera calibration routines feature sub-pixel accuracy,
the point clouds of both Kinect cameras are still misplaced by a few centime-
ters (cf. Figure 3.9(b)) after the calibration. The author assumes that the
observed misalignment between the two point clouds has multiple causes:

1. The official Kinect SDK is used to map the Kinect’s depth texture into
the same space of the color texture, as will be discussed in the visual-
ization section 3.3.1. The method uses factory calibration parameters
that probably do not match the intrinsics of the used Kinect models.
For lack of time the mapping was not implemented with the accurately
computed camera parameters (as will be described in Section 3.3.1).

2. Maimone et al. [47] evaluated that the Kinect’s depth resolution falls
off quadratically with increased distance. At a distance of 1500 mm
(the common operational distance of 3D-Board) the measured dis-
tances vary by 30 mm on average. Also Kainz et al. [36] witnessed
inaccuracies between the depth readings of multiple Kinects. The mis-
alignment was overcome by triangulating a calibration object and fit-
ting a polynomial function to the depth errors.



3. Implementation 25

(a) (b) (c)

Figure 3.9: The reprojected point clouds of both Kinects without any cali-
bration (a), with Zhang’s calibration (b) and additional manual fitting (c).

3. Due to the placement of the cameras, the calibration target covers
only a small viewing area when imaged from both Kinects for extrinsic
calibration. This could lead to a misalignment for the larger portion
of the Kinect’s view.

In order to correct the reprojection error two approaches were tested:
1. The Iterative Closest Point (ICP) algorithm [51, 62] tries to minimize

the distance between a reference and a source point cloud by itera-
tively revising the transformation between the corresponding points.
A variant of this algorithm implemented in Meshlab 1.3.3 7 was tested.
The reprojected point clouds of both Kinects were saved to a file and
reloaded in Meshlab in order to utilize the ICP implementation. How-
ever, registering the point clouds is only successful if their overlap is
big enough. Due to the large distance between the Kinect camera’s
this is almost never the case.

2. A more promising but likewise tedious approach is to manually re-
fine the extrinsic transformation of both point clouds by adding ad-
ditional transformation matrices until the output visually aligns (cf.
Figure 3.9(c)).

3.3 Visualization
This section describes the visualization of the virtual embodiments using
the obtained camera parameters. For programming the Kinects the official
Kinect SDK8 was used. The rendering of the 3D scene is implemented in

7http://meshlab.sourceforge.net/
8http://www.microsoft.com/en-us/kinectforwindowsdev/



3. Implementation 26

C++, DirectX 11 and the HLSL shading language. Image processing tech-
niques are realized using OpenCV 2.4.8. The final output is rendered into a
Windows Presentation Foundation9(WPF) window using C#.

Undistort and
Map Depth

to Color

Whiteboard Kinect 1

Depth Color

Color
Texture

Mapped
Depth
Texture

Remove Back-
ground and

Render Scene
to Texture

Remove Noise
and

Inpaint holes

Post-Processed
Texture

Display
Transparent

WPF-Window

Undistort and
Map Depth

to Color

CPU

GPU

WPF

HeadTracking
Kinect

Observer’s
Head Position

Whiteboard Kinect 1

HeadTracking

Texture

Output

P
re

-P
ro

c
e
ss

in
g

R
e
n
d
e
ri
n
g

P
o
st

-P
ro

c
e
ss

in
g

Whiteboard Kinect 2

Color
Texture

Mapped
Depth
Texture

DepthColor

Figure 3.10: The data processing and rendering pipeline of 3D-Board.

The implemented data processing and rendering pipeline (cf. Figure 3.10)
is composed of a pre-processing, rendering and post-processing stage:

1. Pre-Processing: the pre-processing stage prepares the color and depth
data for rendering on the GPU.

2. Rendering: the processed color and depth textures are handed over to
the GPU. The geometry shader creates the point clouds out of the

9http://msdn.microsoft.com/de-de/library/ms754130(v=vs.110).aspx



3. Implementation 27

depth data and transforms it into a common coordinate system to
merge the visual output of both cameras.

3. Post-Processing: the image rendered by the GPU is copied to system
memory for further post-processing on the CPU. Holes are filled before
displaying the processed output in a WPF window.

3.3.1 Pre-Processing

The color and depth frames need to be pre-processed in preparation for the
rendering stage. Part of this stage is to undistort each frame obtained from
a Kinect sensor, as previously described in Section 3.2.6. However, besides
the undistortion further processing needs to be executed.

Depth to Color Registration

Since the RGB camera and the IR sensor of a Kinect are placed apart from
each other by a few centimeters (cf. Section 1.2), the color and depth data are
not received from the same viewport and thus need to be registered. Because
the extrinsic camera parameters were obtained from the color camera, the
depth frame needs to be mapped onto the RGB frame. This registration
can be done using the MapDepthFrameToColorFrame function of the official
Kinect SDK. The function outputs the position of the depth pixels mapped
on the color frame. Thus, the depth map needs to be filled with the depth
values of the corresponding mapped positions (cf. Listing 3.1).

Algorithm 3.1: Algorithm for mapping depth to the color.
Compute new values for depth map 𝐷 after mapping to the color frame.

1: MapDepthToColor(𝐷)
◁ Compute mapped depth positions 𝑀

2: 𝑀 ←MapDepthFrameToColorFrame(𝐷)
3:
4: ◁ Compute depth value for the corresponding mapped depth position
5: 𝐶 ← 𝐷 ◁ Copy the original depth map values
6: for 𝑖← 0, 𝑖 < 𝐷count do
7: 𝑥, 𝑦 ← GetPos(𝑀𝑖)
8: 𝑗 ← 𝑥 + 𝑦 ·𝐷width
9: if 𝑥 ≥ 0 ∧ 𝑥 < 𝐷width ∧ 𝑦 ≥ 0 ∧ 𝑦 < 𝐷height then

10: 𝐷𝑖 = 𝐶𝑗

11: else
12: 𝐷𝑖 = 0
13: end if
14: end for
15: end



3. Implementation 28

Since MapDepthFrameToColorFrame uses predefined values for the reg-
istration that do not fit perfectly for each model of the Kinect, it lacks
accuracy (as previously discussed in Section 3.2.6). A more precise solution,
that was not performed, would have been to map the depth values based on
the camera calibration parameters:

1. At first, stereo camera calibration [6, p. 427–430] needs to be performed
with both the RGB and the depth camera. This results in the intrinsic
matrix 𝑀𝑖𝑑

of the depth camera and the intrinsic matrix 𝑀𝑖𝑐 of the
color camera as well as the rotation matrix 𝑅 and the translation vector
𝑡 describing the relative transformation between the two sensors.

2. Next, each pixel of the depth texture 𝑝′
𝑖𝑑

has to be projected into 3D
space using the corresponding depth value 𝑧𝑖 stored in the texture and
the inverse of 𝑀𝑖𝑑

(cf. Equation (3.16)):

𝑃𝑐 = 𝑀−1
𝑖𝑑
· 𝑝′

𝑖𝑑
· 𝑧𝑖. (3.18)

3. The resulting 3D point 𝑃𝑐𝑑
in the camera space of the depth sensor

is transformed to a 3D point 𝑃𝑐𝑐 in the camera space of the color
sensor by applying the extrinsic parameters of the stereo calibration
(cf. Equation (3.2)):

𝑃𝑐𝑐 = 𝑅 · 𝑃𝑐𝑑
+ 𝑡. (3.19)

4. Once the point is transformed to the color camera space, it can be
reprojected onto the RGB sensor, resulting in the color pixel 𝑝′

𝑖𝑐
, by

applying 𝑀𝑖𝑐 (cf. Equation (3.10)):

𝑝′
𝑖𝑐

= 𝑀𝑖𝑐 · 𝑃𝑐𝑐

𝑧𝑖
. (3.20)

Color Matching

The Kinect’s color camera has white balancing and exposure time enabled
by default. Thus, to obtain consistent RGB values across all sensors, the
white balancing is set to a fixed value of 5200 kelvin and auto exposure is
disabled for every camera via the SDK’s ColorCameraSettings.

For the presented prototype the produced results were deemed good
enough and no further enhancements were implemented. However, to im-
prove the quality, all RGB cameras should be calibrated towards a physical
color checker target [30] or even match the corresponding colors in each
frame based on the depth data [46].

Depth Map Filtering

The Kinect’s depth data show a considerable amount of noise. Especially for
an increased depth range and at the region of interference of both Kinect



3. Implementation 29

(a) (b)

Figure 3.11: The median filter with the kernel size of 3× 3 pixels smooths
the depth map and closes small holes while preserving the edges.

cameras missing depth readings occur. In order to smooth the depth map
and fill small holes, a median filter is applied (cf. Figure 3.11). It replaces
the pixels at position (𝑢, 𝑣) of the depth map 𝐷𝑖 with the median of all
pixels in the filter region 𝑅 [9, Ch. 5.4.2]:

𝐷𝑖(𝑢, 𝑣)← median {𝐼(𝑢 + 𝑖, 𝑣 + 𝑗)|(𝑖, 𝑗) ∈ 𝑅} . (3.21)

The advantage of a median filter is its edge preserving capability. However,
the edge preservation is not pixel exact and can thus lead to extended edges
that consequently pick up wrong color values from the background. Although
the effect is very small, more advanced methods, such as a bilateral filter [8,
Ch. 5.2] that conserves border regions in conjunction with the color texture
[12, 40], could improve the overall quality.

The median filter was implemented using OpenCV’s medianBlur func-
tion. For the kernel size a relatively small number of 3×3 pixels was chosen,
since the OpenCV implementation is rather costly and has to be executed
for every utilized depth map.

3.3.2 Point Cloud Rendering

Both, the pre-processed color and depth textures are used for rendering a col-
ored cloud of 3D points. The point cloud consists of fixed-size quads created
for each pixel of the depth texture in the geometry shader. The geometry
shader is based on a modified Kinect for Windows Sample Program10 re-
leased under the Apache License11. The data flow between the program and
the shaders for rendering a Kinect’s output is depicted in Figure 3.12.

10http://kinectforwindows.codeplex.com/
11http://www.apache.org/licenses/LICENSE-2.0.html



3. Implementation 30

Fragment Shader

Vertex Count

Color Texture

Depth Texture

Dummy Vertex

Extrinsic World
Matrix

Projection
Matrix

View Matrix

Intrinsics

Depth Reference
Texture

Output Color

Position

Quad Color

Fixed Size Quad

RenderTarget
Texture

Rendering Manager Vertex Shader

Geometry Shader

Figure 3.12: The data flow between the program and the shaders to render
a point cloud into a texture that can be used for post-processing.

Initialization

Distilled, the initialization of rendering a Kinect’s depth and color output
comprises of the following steps:

1. Rendering a 3D point for each depth pixel requires the primitive topol-
ogy to be set to a POINTLIST.

2. The color and depth as well as a depth reference texture are set as a
resource for the geometry shader. The depth reference frame is later
on used for removing the background of the scene.

3. Since all vertices are created in the geometry shader, the vertex buffer
provided for the shader pipeline is empty. In order to trigger the ver-
tex shader without providing any vertices, the Draw(vertexCount,
startLocation) call needs to be executed with vertexCount set to
the resolution of the depth imager to render a vertex for each pixel of
the depth texture.

The following listing depicts the initialization of the DirectX context and
the rendering pipeline:



3. Implementation 31

1 void InitDirectXDevice()
2 {
3 // create empty vertex buffer
4 D3D11_SUBRESOURCE_DATA* vertices = NULL
5 dxDevice->CreateBuffer(&bufferDescription, vertices, &vertexBuffer);
6
7 // set primitive topology for rendering to a pointlist
8 dxContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_POINTLIST);
9 ...

10 }
11
12 void RenderScene()
13 {
14 for (auto kinect : sensors)
15 {
16 ...
17 // Init the textures for the geometry shader
18 dxContext->GSSetShaderResources(0, 1, kinect->depthTex);
19 dxContext->GSSetShaderResources(1, 1, kinect->depthReferenceTex);
20 dxContext->GSSetShaderResources(2, 1, kinect->colorTex);
21
22 // Draw the point cloud
23 dxContext->Draw(kinect->depthPixelCount, 0);
24 }
25 ...
26 }

3D Point Acquisition

The 3D points for rendering the point cloud are acquired from the depth
texture in the geometry shader (the complete source code can be found in
the Appendix A.2). Hence, the vertex shader does nothing but calling the
geometry shader by passing an empty structure:

1 struct GeoShaderInput { };
2
3 GeoShaderInput VertexShader()
4 {
5 return (GeoShaderInput)0;
6 }

Therefore, the geometry shader is executed as often as there are pixels in
the depth texture, specified by depthPixelCount in the Draw() call. Con-
sequently, the subsequent PrimitiveID is equal to the index of a pixel. By
using this index, the depth value of the corresponding pixel can be read
from the depth texture as well as from the depth reference texture used for
background subtraction:

1 Texture2D<int> depthTex : register(t0);
2 Texture2D<int> depthRefTex : register(t0);
3 static const int depthWidth = 640;
4 static const int depthHeight = 480;



3. Implementation 32

5
6 void GeometryShader(..., uint primID : SV_PrimitiveID)
7 {
8 // sample depth from texture using the current pixel index primID
9 int3 texCoord = int3(primID % depthWidth, primID / depthWidth, 0);

10 // depth from texture in millimeters - converted to meters
11 float depth = depthTex.Load(texCoord) / 1000.0f;
12 float depthRef = depthRefTex.Load(texCoord) / 1000.0f;
13
14 // background subtraction
15 if (invalidPixel(depth, depthRef)) { return; }
16 ...
17 }

Background Removal

Since only the virtual representation of the user is of importance, the back-
ground scene is removed in the geometry shader. To this end, a reference
depth frame 𝐷𝑟 is prerecorded for simple frame differencing. This reference
frame shows the background scene without any foreground objects (e.g. the
user), as depicted in Figure 3.13 (a). A pixel at position (𝑢, 𝑣) is considered
being part of a valid foreground object if the difference between the reference
frame and the current depth frame 𝐷𝑖 (cf. Figure 3.13 (b)) is larger than
a threshold 𝜏 , empirically chosen as 0.5 m. Otherwise it is deemed to be a
background pixel and thus discarded as in

𝐷𝑖(𝑢, 𝑣) =
{︃

𝐷𝑖(𝑢, 𝑣) for |𝐷𝑖(𝑢, 𝑣)−𝐷𝑟(𝑢, 𝑣)| > 𝜏,

0 otherwise.
(3.22)

Therefore, only the foreground pixels (cf. Figure 3.13 (c)) for every depth
texture 𝑖 = 1, ..., 𝑛 remain for further processing.

The skeleton data provided by the Kinect could also have been used to
segment the user from the background. However, a Kinect sensor can only

(a) (b) (c)

Figure 3.13: Out of a depth reference frame (a) and the current depth
frame (b) the scene is reconstructed showing only the foreground objects (c).
Most of the remaining noise will not be visible in the final rendering since it
is outside of the observable scene.



3. Implementation 33

compute the skeleton data in horizontal orientation. All cameras used for
reconstruction are tilted. Therefore, the Kinect SDK’s background removal
capabilities cannot be utilized.

Scene Reconstruction

After removing the background, the 3D points, acquired from the depth
texture, are used to reconstruct the foreground objects. This is done by pro-
jecting the pixels on the imager into camera space, as described previously
in Section 3.2.6. Each pixel of the depth map is equal to a point 𝑝′

𝑖 (cf.
Equation (3.6)) on the image plane with the coordinates (𝑢, 𝑣)12. The value
stored for each pixel is the corresponding depth value 𝑧𝑖 of the point 𝑃𝑐 (cf.
Equation (3.2)) in 3D camera space. Thus, a depth pixel in image space can
be projected into camera space by using the inverse of the intrinsic matrix,
as previously shown in Equation (3.16).

Next, the resulting point cloud is transformed to world space to merge the
output of both Kinects in a common coordinate system (cf. Section 3.2.6). As
shown in Equation (3.17), 𝑃𝑐 is transformed to a point in world coordinates
𝑃𝑤 by applying the inverse of the extrinsic transformation:

1 cbuffer constantBuffer : register(b0)
2 {
3 matrix instrinsicsInverse;
4 matrix extrinsicsInverse;
5 ...
6 };
7
8 void GeometryShader(...)
9 {

10 // read depth from texture
11 ...
12 // project from image to camera space using the intrinsic matrix
13 float4 imagePos = float4(texCoord.xy * depth, depth, 1.0f);
14 float4 cameraPos = mul(imagePos, instrinsicsInverse);
15
16 // project from camera to world space using the extrinsic matrix
17 float4 worldPos = mul(cameraPos, extrinsicsInverse);
18 ...
19 }

The point cloud in world space needs to be transformed to the camera
space of the virtual, head-tracked camera (described in detail in the next
Section 3.3.3). From the point in view space, vertices will be extracted by a
fixed scale value and expanded further by the sampled depth value. However,
before expanding the point, the corresponding color for each point can be
sampled from the color texture and added to the output structure that will
be processed by the pixel shader:

12In this case the variables 𝑢 and 𝑣 range from 0 to the width (640) and height (480) of
the texture and not from 0.0 to 1.0 as it is common for texture coordinates.



3. Implementation 34

1 struct PixelShaderInput { float4 Pos:SV_POSITION; float4 Col:COLOR; };
2
3 Texture2D<float4> colorTex : register(t1);
4 SamplerState colorSampler : register(s0);
5
6 cbuffer constantBuffer : register(b0)
7 {
8 ...
9 matrix viewMatrix; // virtual camera view matrix

10 matrix projectionMatrix; // virtual camera projection matrix
11 };
12 ...
13 // expand quad to create continuous surface
14 static const float quadSize = 2.5f;
15 static const float4 quadScale = float4(1.0/depthWidth, 1.0/depthHeight,

0.0, 0.0) * quadSize;
16
17 void GeometryShader(point GeoShaderInput vertex[1], uint primID :

SV_PrimitiveID, inout TriangleStream<PixelShaderInput> triStream)
18 {
19 // transform the acquired point to its position in world space
20 ...
21 // transform from world space to space of virtual, head tracked camera
22 float4 viewPos = mul(worldPos, viewMatrix);
23
24 // expand quad based on depth - points farther away will scale up
25 float4 viewspaceScale = quadScale * depth;
26
27 // output variable holding the quad
28 PixelShaderInput output;
29
30 // base color texture sample lookup coords, in [0,1]
31 float2 depthWidthHeight = float2(depthWidth, depthHeight);
32 float2 colorTexCoords = texCoord.xy/depthWidthHeight;
33 // sample the color texture
34 output.Col = colorTex.SampleLevel(colorSampler, colorTexCoords, 0);
35
36 // extract a fixed-size quad
37 ExtractQuad(viewPos, viewspaceScale, triStream, output);
38 }

Each point is visualized by extracting four vertices in viewspace by the
determined scale value to form a fixed-size quad. The resulting vertices are
multiplied with the projection matrix of the head-tracked camera (cf. Sec-
tion 3.3.3) and added to the output TriangleStream for rendering:

1 static float4 quadOffsets[4] =
2 {
3 float4(-0.5f, -0.5f, 0.0f, 0.0f),
4 float4( 0.5f, -0.5f, 0.0f, 0.0f),
5 float4(-0.5f, 0.5f, 0.0f, 0.0f),
6 float4( 0.5f, 0.5f, 0.0f, 0.0f)
7 };
8



3. Implementation 35

9 void ExtractQuad(float4 viewPos, float4 viewspaceScale, inout
TriangleStream<PixelShaderInput> triStream, PixelShaderInput output)

10 {
11 // expand the current point into four vertices
12 [unroll]
13 for (uint i = 0; i < 4; ++i)
14 {
15 // expand quad in view space - it always faces the camera
16 float4 viewPosExpanded = viewPos + quadOffsets[i] * viewspaceScale;
17 // project vertex onto virtual camera
18 output.Pos = mul(viewPosExpanded, projectionMatrix);
19 // append vertex to output triangle stream
20 triStream.Append(output);
21 }
22 }

The resulting quads are colorized in the pixel shader with the RGB values
sampled from the color texture:

1 struct PixelShaderInput { float4 Pos:SV_POSITION; float4 Col:COLOR; };
2
3 float4 PixelShader(PixelShaderInput input) : SV_Target
4 {
5 return float4(input.Col.rgb, 1.0);
6 }

Since each quad is expanded in view space, it always faces the camera13.
In addition, because quads are scaled based on their corresponding depth
they increase in size with increasing distance to the camera. Therefore, the
reconstructed point cloud appears as a continuous surface although it con-
sists of numerous planes. Due to the efficient point-based visualization the
two point clouds, coming from each Kinect, can simply be rendered on top
of each other without the need for any merging techniques (cf. Figure 3.14).

Render to Texture

The final point cloud is not going to be rendered to the screen right away
but will undergo further post-processing (cf. Section 3.3.4). Since all the
post-processing will be done on the CPU the output will have to be copied
from the GPU to a texture that is accessible by the CPU. In DirectX the
buffer for rendering to a texture instead of the back buffer can be set via a
Render Target14 [44, Ch. 4.1.6]. Making the GPU rendering modifiable for
post-processing comprises of the following steps:

1. At first, a texture needs to be created with the BindFlag set to
D3D11_BIND_RENDER_TARGET. This will allow the texture to be set as
a Render Target.

13Similar to a billboard: http://en.wikipedia.org/wiki/Sprite_(computer_graphics)
14The off-screen rendering equivalent in OpenGL would be a FrameBuffer Object



3. Implementation 36

(a) (b)

(c) (d)

Figure 3.14: The transformed output of the left (a) and right (b) Kinect
are merged and rendered as fixed size quads. For small sized quads (c) the
embodiment shows holes, while it appears as a continuous surface with bigger
quads (d).

2. Thus, the point clouds can be rendered to the texture by setting it as
the corresponding Render Target.

3. Since this texture is stored on the GPU’s memory it cannot be accessed
by the CPU. Therefore, a second texture needs to be created with
the Usage flag D3D11_USAGE_STAGING and the CPUAccessFlags set to
D3D11_CPU_ACCESS_READ to support data transfer from GPU to CPU.



3. Implementation 37

Virtual Space Local Workspace

Tracked
ObserverW

h
it
e
b
o
a
rd

Virtual
Embodiment

Tracking
Kinect

Figure 3.15: Tracking the observer’s head provides motion parallax effects.

4. The content of the Render Target can be copied to the STAGING tex-
ture by calling DeviceContext::CopyResource().

5. Finally, issuing DeviceContext::Map() maps the STAGING texture to
RAM, providing access to the pixels for post-processing on the CPU.

3.3.3 Head Tracking

As already mentioned when discussing the reconstruction of the scene in
Section 3.3.2, the view matrix, used to position the virtual camera, and the
perspective matrix, used for projecting the 3D scene onto the 2D canvas,
are determined by tracking the observer’s head.

Positioning the Virtual Camera

By using the Kinect SDK’s skeletal tracking function, the head position
is acquired from the third sensor (cf. Section 3.1.2) placed behind the user
(cf. Figure 3.15). XMMatrixLookAtLH(EyePos, FocusPos, UpDir)15 is used
to build the view matrix for the left handed coordinate system out of the
(𝑥, 𝑦, 𝑧) coordinates of the detected head joint:

1 void UpdateViewMatrix(float headX, float headY, float headZ)
2 {
3 XMVECTOR Eye = XMVectorSet(headX, headY, headZ, 0.0f);
4 XMVECTOR At = XMVectorSet(headX, headY, 0.0f, 0.0f);
5 XMVECTOR Up = XMVectorSet(0.0f, 1.0f, 0.0f, 0.0f);
6 View = XMMatrixLookAtLH(Eye, At, Up);
7 }

Since the Eye-vector and the At-vector share the same 𝑥 and 𝑦 coordinate
and 𝑧 of At is set to 0, the view vector of the camera always faces perpen-
dicular to the screen.

15OpenGL’s equivalent would be gluLookAt.



3. Implementation 38

Off-axis perspective projection

Because the user is free to move in front of the screen, the viewing posi-
tion is not necessarily at the center of the whiteboard. Therefore, the com-
monly used perspective projection given by XMMatrixPerspectiveFovLH(
FovAngleY, AspectRatio, NearZ, FarZ)16 cannot be utilized to project
the 3D scene onto the screen, since it assumes that the camera is positioned
along the screen axis 𝑠𝑛. This axis is perpendicular to the screen and cen-
tered at the screen space origin (cf. Figure 3.16). Thus, the viewing frustum
must be calculated for the needed off-axis projection based on the observer’s
head position [67]. With the tracking Kinect placed precisely at the center
of the whiteboard, the head’s position ℎ =

(︀
ℎ𝑥, ℎ𝑦, ℎ𝑧

)︀
is equal to the

apex of the viewing frustum (cf. Figure 3.16). The viewing frustum’s left
𝑙, right 𝑟, top 𝑡 and bottom 𝑏 extents can thus be calculated by using the
screen’s width 𝑠𝑤 and height 𝑠ℎ. As the viewing frustum is specified from the
predefined near 𝑛 to the far plane 𝑓 the boundaries have to be scaled back
from the screen’s distance ℎ𝑧 to the near plane by using similar triangles:

𝑙 =
(︁𝑠𝑤

2 + ℎ𝑥

)︁
· 𝑛

ℎ𝑧
, 𝑟 =

(︁𝑠𝑤

2 − ℎ𝑥

)︁
· 𝑛

ℎ𝑧
, (3.23)

𝑡 =
(︁𝑠ℎ

2 + ℎ𝑦

)︁
· 𝑛

ℎ𝑧
, 𝑏 =

(︁𝑠ℎ

2 − ℎ𝑦

)︁
· 𝑛

ℎ𝑧
. (3.24)

Based on the frustum extents, the projection matrix

𝑃 =

⎛⎜⎜⎜⎝
2𝑛
𝑟−𝑙 0 𝑟+𝑙

𝑟−𝑙 0
0 2𝑛

𝑡−𝑏
𝑡+𝑏
𝑡−𝑏 0

0 0 −𝑓+𝑛
𝑓−𝑛 − 2𝑓𝑛

𝑓−𝑛

0 0 −1 0

⎞⎟⎟⎟⎠ (3.25)

can be built using the function XMMatrixPerspectiveOffCenterLH(Left,
Right, Bottom, Top, NearZ, FarZ)17. The viewing frustum lies in the
xy-plane. The virtual camera is perpendicular to the screen and is equal to
the apex of the frustum.

Since only the head joint was used for tracking more accurate meth-
ods exist [47]. However, the basic motion parallax effect is convincing (cf.
Figure 3.17).

3.3.4 Post-Processing

The rendering of the virtual embodiment is of inferior visual quality (cf.
Figure 3.18(a)). The virtual embodiment shows holes where depth readings
are missing and at the seam of both point clouds. The latter is caused by the

16OpenGL’s Utility Library equivalent would be gluPerspective.
17The OpenGL equivalent is glFrustum



3. Implementation 39

Head Position

n
f

l

r

t

b

sy

sn

hy

hx

hz

sx sh

hy

hx

sw
2

2

Viewing Frustum

Trac
kin

g K
ine

ct

Figure 3.16: The viewing frustum of the off-axis perspective projection.
Adapted from [67].

interference of the two Kinect sensors (cf. Section 1.2) although the overlap
of both dot patterns is rather small.

The post-processing stage tries to beautify the results of the first render
pass. Since the output was rendered to a staging texture (cf. Section 3.3.2)
that can be accessed by the CPU, the image processing techniques to fill
holes were implemented using C++ and OpenCV 2.4.8. The hole filling al-
gorithm tries to detect small gaps in the rendering that were not removed
by the median filter (cf. Section 3.3.1). Those gaps are subsequently filled
using an inpainting18 technique.

Connected Component Analysis

In order to find holes in the virtual embodiment, a connected component
analysis19 is performed. It was implemented using the cvBlob 0.10.4 20 li-
brary that builds on OpenCV and uses the algorithm of Chang et al. [11]. Af-

18http://en.wikipedia.org/wiki/Inpainting
19http://en.wikipedia.org/wiki/Connected-component_labeling
20https://code.google.com/p/cvblob/



3. Implementation 40

(a) (b)

Figure 3.17: The same scene rendered from the left (a) and from the right
(b) as it can be perceived by an observer moving in front of the whiteboard.

ter transforming the rendered output to a binary image (cf. Figure 3.18(b)),
the connected component analysis scans for blobs of connected pixels. Only
blobs smaller than a threshold 𝜆 of connected pixels are detected and la-
beled (cf. Figure 3.18(c)). To avoid an unwanted merging of disconnected
regions, 𝜆 is empirically chosen as a low value of 1500 pixels for a screen res-
olution of 1280× 800 pixels. The detected blobs are equal to the small holes
in the rendered virtual embodiment, since the algorithm is scanning for the
background pixels. The contours of the holes can be fuzzy and of ambiguous
colors. Thus, a morphologically dilation is applied onto the binary image to
enlarge the selected holes (cf. Figure 3.18(d)) and perform the filling with
more reliable contour pixels.

Hole Filling

Filling the detected holes is performed by using OpenCV’s inpaint method
that is based on Telea [58]. The binary image of the blobs is utilized as
an inpainting mask. The algorithm gradually fills up the boundaries of the
detected blobs in the source image. It inpaints each pixel by a weighted sum
of all neighboring pixels.

For small holes enough boundary information is given and the reconstruc-
tion of the embodiment achieves good results (cf. Figure 3.18(e)). However,
if a too large threshold is used, a merging of separated regions can occur (cf.
Figure 3.18(f)). The complete sequence is given in Listing 3.2.



3. Implementation 41

(a) (b) (c)

(d) (e) (f)

Figure 3.18: The sequence of filling holes in the post-processing stage. The
original rendering output (a) is transformed to a binary image (b) to perform
a connected component analysis (c). The binary image with the detected
blobs is morphological dilated (d) to use them as an inpainting mask. For
small holes the inpainting achieves good results (e) while for larger thresholds
also the space in between the arm and the body is filled (f).

3.3.5 Merging Embodiment and Application

Superimposing the embodiment on top of any shared content to raise the
social presence is a primary goal of 3D-Board. Thereby, the virtual embodi-
ment should be rendered independently of any other application. To achieve
this goal, the output is displayed in a WPF window, written in C#. This



3. Implementation 42

Algorithm 3.2: Hole filling algorithm.
Detect and fill holes in the RGB image 𝐼 using the threshold 𝜆.

1: HoleFilling(𝐼, 𝜆)
2: 𝐼𝑔 ← ConvertGrayscale(𝐼) ◁ Grayscale for binary threshold
3: 𝐼bw ← Threshold(𝐼𝑔, 0) ◁ BG is black, binary threshold values > 0
4:
5: 𝐵 ← DetectBlobs(𝐼bw) ◁ Get list of blobs
6: 𝐼𝑏 ← 0 ◁ Create binary blob mask
7: for all 𝑏 ∈ 𝐵 do
8: if 𝑏size ≤ 𝜆 then
9: AddBlob(𝑏, 𝐼𝑏) ◁ Add blobs smaller than 𝜆 pixels to 𝐼𝑏

10: end if
11: end for
12: 𝐼𝑏 ←MorphDilate(𝐼𝑏)
13: 𝐼 ← Inpaint(𝐼, 𝐼𝑏) ◁ Inpaint image 𝐼 using the binary mask 𝐼𝑏

14: end

window is set to being transparent, borderless and the topmost element on
the screen. In addition, it does not capture input events of any kind (mouse,
keyboard or digital pen) but passes the events to the underlying application.
Thus, the virtual embodiment can be superimposed on top of any content
and is independent of the shared workspace.

Application Integration

The native rendering application is compiled as a Dynamic Link Library21

and is invoked by the managed client application by using the Platform
Invocation Services22. Interoperability between WPF and DirectX is accom-
plished via the D3DImage element. Embedded into the output window, this
element functions as an alternative input source for a WPF Image element.
It can host a Direct3D Surface (equal to a render buffer) and triggers an
update of the Image’s content after each render cycle (cf. Figure 3.19).

Thus, the post-processed texture can simply be copied to a render target
that is then used as the input for the D3DImage element. The D3DImage does
support transparency to blend the virtual embodiment with the underlying
content by rendering the remote user semitransparent. Additional effects,
such as adding an opacity-gradient to the superimposed embodiment, can
easily be applied in WPF (cf. Figure 3.20).

21http://de.wikipedia.org/wiki/Dynamic_Link_Library
22http://msdn.microsoft.com/en-us/library/aa288468(v=vs.71).aspx



3. Implementation 43

P/Invoke

Managed WPF Client

Interop Handler

D3D Image

WPF Window

Initialize

Render

Shutdown

Texture

Rendering
Pipeline

Native Rendering DLL

Rendering Manager

Figure 3.19: The interoperability between the native rendering application
and the managed client.

3.3.6 Results and Performance

The presented rendering pipeline transforms the color and depth data of
two Kinect sensors into a single virtual representation of a remote user that
supports gaze awareness, facial expressions and gestures. This concluding
section recapitulates the individual rendering steps and depicts their perfor-
mance impact.

Step by Step

Considering the simplicity of the frame differencing approach for removing
the background (cf. Figure 3.21 (a)) it is very effective. The remaining noise
is mostly present in the distant background that is not perceivable by the
observer.

Figure 3.20: Additional effects, such as 75% transparency and an opacity-
gradient at the bottom are applied for superimposing the embodiment.



3. Implementation 44

Table 3.1: The frames per second for the raw point cloud, the background
removal, the median filtering, WPF transparency effects and the inpainting
(average and large hole sizes) for different display resolutions.

Display
Raw

Remove Median WPF Inpaint Inpaint
Resolution BG Filter Effects Avg. Large
1024× 768 67 70 58 58 25 22
1280× 800 67 69 56 55 22 20

Although utilizing the Kinect SDK to match the colors (cf. Figure 3.21
(b)) of the individual cameras can achieve good results, it is rather unreli-
able. The sensors are very sensitive to changing light conditions and a more
sophisticated implementation would be needed, as discussed in Section 3.3.1.

The raw point cloud (cf. Figure 3.21 (c)) does show holes for missing
depth readings. Small holes often occur due to the noisy depth maps. Larger
gaps are the result of blind spots for example at the throat, the eyeholes or
where the arms occlude the body. Also the interference between the struc-
tured dot patterns at the seam of both point clouds can generate incomplete
depth maps.

Applying a median filter (cf. Figure 3.21 (d)) to the depth maps is ef-
fective in filling very small holes and smoothing the depth readings without
altering the appearance of the embodiment. In addition, this leads to a re-
duction of background noise since also the reference depth map is filtered.
However, larger gaps can only be filled by the inpainting step (cf. Figure 3.21
(e)). Since the inpainting is applied to the final output, as it is seen by an
observer, it is very successful in filling all visible holes as long as they are
small in size and enclosed by valid data. In rare cases inpainting leads to
inferior visual quality if the surrounding color quality is poor or unwanted
mergings occur. A better option would be to add more cameras to gain ad-
ditional depth and color readings. However, this comes at other costs such
as a more complicated setup and calibration process as well as additional
performance penalties.

The Price of Beauty

The extensive rendering pipeline comes at a high performance cost. Table 3.1
shows the frames per second for each rendering step added to the pipeline
executed on the hardware described in Section 3.1.1.

Rendering the point cloud as billboards in the geometry shader is rather
efficient. The simple background removal provides a performance gain, since
the depth readings in the background are discarded and thus no quads need
to be created and rendered. The 3 × 3 median filter is very costly since it



3. Implementation 45

(a) (b) (c)

(d) (e) (f)

Figure 3.21: Removing the background (a) and matching the color (b)
is essential for rendering the calibrated point clouds (c). In addition, the
median filter fills small holes, smooths the depth map and thus also removes
some noise (d). Larger gaps are inpainted (e) and the transparency effects
are added (f) for merging the embodiment with an application.

is executed on the CPU for each depth map. So far, each step depended
solely on the Kinect’s depth resolution. The screen’s resolution had very
little influence. The transparency effects added to the WPF output and the
inpainting are applied to the full size of the whiteboard. Therefore the per-



3. Implementation 46

formance penalty increases with the output resolution. While the cost of
the WPF effects is almost negligible, most frames are lost to the hole filling
approach. It strongly depends on the number of pixels on the screen and
the hole count. Thus, it was tested for two different quantities of holes. The
average hole count refers to the filling as seen in Figure 3.18(e), while the
larger count is equal to Figure 3.18(f). The main cause of the large perfor-
mance impact is the CPU based implementation. The higher the resolution
and hole count, the more pixels the single execution thread has to fill.

The immersive effect of the virtual embodiment is already convincing
without the hole filling at a very high performance. However, in order to
achieve full fidelity and a stable frame rate with an increased display reso-
lution, parallelization or a GPU based implementation of the median filter
as well as the inpainting is inevitable.



Chapter 4

Demo Applications

Two applications were developed to demonstrate the capabilities of 3D-
Board. The two programs differ in the way the remote user’s embodiment
was integrated (cf. Figure 4.1). Both scenarios were built on existing soft-
ware, written in C# and WPF. Because the applications were tested using
the setup described in Section 3.1.1, the shared data was simply mirrored on
both whiteboards while the virtual embodiment was superimposed on top
of only one screen.

Virtual
Embodiment

Sketching
Application

Virtual
Embodiment

Map
Application

Foreground
Menu

(a) (b)

Figure 4.1: While in the first demonstration the virtual embodiment is
superimposed on top of the shared data, in the second application the visu-
alization is embedded in between the content and important menus.

47



4. Demo Applications 48

Figure 4.2: 3D-Board enables shared drawing activities and ideation.

4.1 Remote Sketching
The first application consists of a simple remote sketching tool (cf. Figure
4.2). The users can utilize the shared drawing area for creating new ideas.
In order to improve the coordination, the transparent virtual embodiment is
superimposed on top of the entire content, as described in Section 3.3.5. Due
to the raised awareness, users can manage their workspace as they would to
in a co-located setup.

4.2 Map Surveillance
The idea of 3D-Board has its background in a research project conducted in
close collaboration with the local police forces. For large scale operations,
rescue teams need to trace their units in the field and keep an overview of
the situation. Therefore, the available data needs to be shared between all
geographically distributed teams. An intuitive Common Operational Picture
(COP) was developed that is based on an interactive map application for
large scale, digital whiteboards. With simple gestures relevant data such as
labels, text, signs and pictures can be added the shared map at their exact
location. Thus, the distributed users have to collaborate to compile the COP.

The remote embodiment is again superimposed on top of the interactive
map. However, in order to enable an effective cooperation between all par-



4. Demo Applications 49

Figure 4.3: 3D-Board can be used to collaboratively keep track of crucial
operational information. To increase the social presence of the remote user,
the virtual embodiment is superimposed on top of the shared content, while
important elements are not occluded.

ties, important menus for selecting tools and items should never be occluded.
Therefore, 3D-Board is directly integrated into the application. This allows
crucial elements to stay visible, while the virtual embodiment is embedded
in between the COP (cf. Figure 4.3) and the menus.

3D-Board is easy to use and easy to integrate into existing applications.
In addition, it is also very effective and improves the remote collaboration,
as the evaluation in the next chapter proves.



Chapter 5

Evaluation

This chapter presents the empirical user study conducted to explore the ben-
efits and limitations of 3D-Board. In two experiments the performance and
effectiveness were put to a test and compared against different techniques.
This chapter gives an in depth explanation of the study design and states
the results of each experiment. In addition, the last section will reason about
the conclusions drawn from observations and the interviews.

5.1 Study Design
All participants conducted both experiments using the same apparatus and
techniques. Each participant was given an overview of the project and the
experiment procedure. After filling out a background questionnaire, they
were given time to practice with the techniques until they felt comfort-
able with the system. Participants were asked to complete each trial as fast
and as accurately as possible. For both experiments computer logs captured
the pen input and selections for evaluation. Preference data were collected
through post-experiment and exit questionnaires. Both experiments were
implemented using C# and WPF

5.1.1 Participants

In total, 12 paid students (6 female, 6 male) participated. Their age ranged
from 20 to 29 years (Mean(𝑀) = 24.08, Standard Deviation(𝑆𝐷) = 2.53).
Participants performed the study in pairs of two. One was acting as an
instructor giving commands to the operator. The operator on the other hand,
had to interpret the given instructions and act accordingly. After finishing
all trial runs for one constellation, participants switched roles in order to act
as both, the instructor and the operator, for all experiments.

An important aspect of the study was to find out whether users felt com-
fortable with a technique when cooperating very closely with their partner.

50



5. Evaluation 51

For the course of the study it was therefore crucial that the group mem-
bers had never met each other before. This increased the impact of close
collaboration on the proxemic behavior, as defined by Hall [25, p. 113–129].
Proxemics describes how the physical distance between people can influence
the interpersonal communication. Two users, not knowing each other, are
thus more likely to show defensive behavior when they feel their personal
space is being violated.

While 75% of the participants reported not being familiar with interac-
tive whiteboards, 6 out of 12 of the participants had more experience with
pen-based interfaces. Finally, 67% of the participants are using voice-over-IP
application on a weekly or even daily basis.

5.1.2 Apparatus

The study was conducted in a quiet room using an extended apparatus (cf.
Figure 5.1) of the setup described in Section 3.1. The workplaces were sep-
arated from each other by a metal frame with blinds for visual cover. Thus,
participants were unable to see the other whiteboard, but could communi-
cate via voice commands and the technique in use. In addition, a fourth
Kinect camera was placed behind the remote instructor. This sensor was
solely used during evaluation for the 2D-Back-Facing technique and was
not part of the 3D-Board setup.

5.1.3 Techniques

Both experiments were conducted using the techniques 3D-Board, 2D-Back-
Facing and Co-Located.

Technique 1: 3D-Board

When using the 3D-Board technique a front-facing 3D embodiment of the
instructor could be seen on the operator’s whiteboard (cf. Figure 5.2). Ad-
ditionally the perspective view of the operator changed according to the
head-tracking of the operator. Thus the operator and the instructor were
facing each other through the whiteboard and could simultaneously work
on the same spot on the whiteboard without any interference. It remained
to observe, however, if the operator would feel a violation of the personal
space when working in close proximity.

The 3D-Board technique used during the evaluation is based on an ear-
lier implementation presented in [65]. While the usage and interaction tech-
nique are the same for the earlier implementation as well as the approach
presented in Chapter 3, the latest proof-of-concept implementation does not
meet the performance requirements to guarantee a stable frame rate (cf.
Section 3.3.6). Thus, to conduct an encumbrance free evaluation the earlier
implementation was chosen for conducting the study since it ensures a 30Hz



5. Evaluation 52

Remote
Instructor

Local
Operator

Kinects for 3D-Reconstruction

Kinect for Head TrackingKinect for 2D-Back-Facing

(a)

(b)

Figure 5.1: The sketch (a) and the picture (b) of the apparatus as it was
used for the evaluation. On the left side, the instructor is giving the orders,
while on the right side, the operator has to react accordingly.

frame-rate. The visual quality of the first prototype is comparable with the
latest prototype and provides enough fidelity to clearly grasp all actions of
the virtual embodiment.

Technique 2: 2D-Back-Facing

In this condition a similar setup as proposed by CollaBoard [41] was used.
A fourth Kinect camera captured the backside of the instructor with a video



5. Evaluation 53

(a) (b)

Figure 5.2: The 3D-Board technique allowed the instructor (a) and the
operator (b) to work on the same data at the same time.

resolution of 640 × 480, as depicted in Figure 5.1 (a). The instructor was
separated from the background of the video image by using the Kinect for
Windows SDK’s1 background removal feature. Therefore, a clean image of
the instructor could be orthogonally projected onto the whiteboard. How-
ever, the orthogonal projection is often not perfectly aligned with the actual
gestures of the user. Thus, in order to make the instructor aware of his
own actions, the 2D embodiment was superimposed over the content of the
whiteboard of both users with a transparency of 75% (cf. Figure 5.3).

(a) (b)

Figure 5.3: The 2D-Back-Facing technique was visualized as the orthog-
onal projection of the instructor (a) onto the operator’s (b) as well as the
instructor’s whiteboard.

1http://www.microsoft.com/en-us/kinectforwindows/



5. Evaluation 54

Figure 5.4: Co-Located was used as the ideal baseline scenario. For close
collaboration users often violated each other’s personal space by crossing
their arms.

Technique 3: Co-Located

The last technique was used as a baseline for comparison. Both participants
were collaboratively working in front of the same whiteboard, thus simulat-
ing a co-located situation (cf. Figure 5.4). Although this is an ideal scenario,
the participants could easily invade the partner’s personal space and would
interfere with each other when working on the same data.

5.2 Experiment 1: Abstracted Environment
The first experiment investigated how well the participants could understand
the connection between the remotely located person and the digital content.
The goal of this experiment was to measure mainly quantitative data by
evaluating whether the techniques differ in terms of accuracy and speed.

5.2.1 Task

The task environment, based on the experiment of Grossman et al. [21],
consists of a grid of points. A certain amount of points, arranged in different
target structures, were candidates for selection. While the instructor had to
show the targets to the operator by pointing at them, the operator had to
select the points in question as quickly as possible. The participants were
not allowed to talk during the trials in order to keep the test focused on



5. Evaluation 55

Show Targets Start

(a) (b)

End

(c) (d)

Figure 5.5: The Show-Targets button (a) reveals the targets for the in-
structor only (b). The Start button triggers the timer and the instructor can
point out the targets (c). Once the operator is finished marking all points,
the End button stops the timer and the number of mistakes are counted (d).

the deictic gestures. The complete procedure is illustrated in Figure 5.5 and
consisted of the following steps:

1. Both participants were presented with a grid of inactive target points
(cf. Figure 5.5 (a)).

2. When the instructor tapped on the Show-Targets button, a set of
targets turned blue, only visible to the instructor (cf. Figure 5.5 (b)).
When testing the Co-Located technique the operator turned around
and faced the wall to avoid seeing the targets.

3. After memorizing the target points the instructor could press the
Start button to activate a timer taking the time for each trial. Then
the instructor was asked to point at the targets, showing the operator
which targets to select (cf. Figure 5.6).

4. The operator had to select the targets as quickly as possible with a
single tap on the object (cf. Figure 5.5 (c)). Once finished, the operator
pressed the End button to stop the timer and take the time for the
trial run (cf. Figure 5.5 (d)). The instructor was not allowed to correct
any mistakes made by the operator.

5. The users switched roles after completing all trials for one turn.



5. Evaluation 56

Figure 5.6: In the first experiment, the instructor pointed at target struc-
tures of different complexity levels. The operator had to mark the target
points accordingly.

Two different levels of target complexities (Simple and Complex) were
tested. Simple targets consisted of points arranged in a single line in either
horizontal or vertical orientation. Complex objects were shaped as two or
three chains that could either be linked together or separated by a small
amount of inactive points (cf. Figure 5.6). The diameter of the target as
displayed on the interactive whiteboard under the Simple condition was
3.5 cm and 2 cm under the Complex condition.

5.2.2 Procedure

A repeated measures within-subject design was used. Technique (3D-Board,
2D-Back-Facing, Co-Located) and Complexity (Simple, Complex) were used
as independent variables. The presentation order for the techniques was
counterbalanced while the complexity level always started with Simple and
ended with Complex. For each turn, a total of three trials had to be com-
pleted. After these three trials the Complexity was raised, resulting in six
tests per Technique per person. Thus each group completed a total of 36
trials, resulting in a total trial count of 216:



5. Evaluation 57

12 participants
× 3 Techniques (3D-Board, 2D-Back-Facing, Co-Located)
× 2 Complexities (Simple, Complex)
× 3 task trials

216 total trials.

A total of 18 unique target structures (3 Techniques × 2 Complexities ×
3 trials = 18 targets) were repeated in a predefined order after all three
techniques were tested with both complexities. Since the techniques were
counterbalanced, all techniques were tested four times with each unique
target. The variety and amount of target structures made it impossible for
the users to remember the pattern. The procedure and sequence of trials is
shown in Table 5.1.

Table 5.1: Counterbalancing of the independent variables Technique (CL
= Co-Located; 2D = 2D-Back-Facing; 3D = 3D-Board) and Complexity and
the 18 Target structures for each participant.

Part. Ind.Var. Sequence
1 & 4 Compl. Simple Complex

& Techn. CL 2D 3D CL 2D 3D
7 & 10 Target 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2 & 5 Compl. Simple Complex

& Techn. 3D CL 2D 3D CL 2D
8 & 11 Target 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
3 & 6 Compl. Simple Complex

& Techn. 2D 3D CL 2D 3D CL
9 & 12 Target 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

In addition, qualitative feedback was collected after each technique using
user experience questionnaires. Participants had to rate the techniques based
on the following criteria: easy-to-use, accuracy, and pointing awareness on a
5-point Likert scale. Task load ratings were collected using the NASA Task
Load Index (TLX) questionnaires. The whole test including training sessions
and questionnaires lasted for approximately 40 minutes for each group.

5.2.3 Hypotheses

The following hypotheses were defined covering overall preference, speed and
accuracy of the techniques:



5. Evaluation 58

Hypothesis 1: 3D-Board would be at least equally fast as the Co-Located
technique.
When using 3D-Board, both users are able to work on the same area of the
workspace without stepping on each other’s toes. Therefore it allows for si-
multaneously pointing at a target and marking the target. Thus it has an
advantage over the Co-Located setup and will perform at least equally well
in terms of speed.

Hypothesis 2: 2D-Back-Facing would be the slowest technique.
The 2D-Back-Facing technique will be the slowest technique since deictic
gestures are often occluded and it will take time for the instructor to find
the right posture.

Hypothesis 3: 3D-Board is more accurate than 2D-Back-Facing.
The head-tracking capability of 3D-Board allows for a much better recogni-
tion of the other participant’s gesture and posture. However, 3D-Board will
not be more accurate than the Co-Located technique.

5.2.4 Quantitative Results

Quantitative data, such as missed selections and trial completion times, were
analyzed using a repeated measures ANOVA (𝛼 = 0.05) separately for each
level of complexity. The Greenhouse-Geisser correction was used if the as-
sumption of sphericity was violated. Main Effects were shown by a repeated
measures analyses of variance. In order to confirm or reject the formulated
hypotheses post-hoc analyses on the main effects were conducted. These con-
sisted of paired-samples t-tests with family wise error rate controlled across
the test using Holm’s sequential Bonferroni approach [16]. For all bar charts,
the error bars indicate the range of two standard errors of the mean (above
and below the mean).

Trial Completion Time

For the trial completion time, a repeated measures analysis of variance
showed main effects for the Technique (𝐹2,10 = 20.075, 𝑝 < 0.0001) as well
as for the Complexity (𝐹1,11 = 82.227, 𝑝 < 0.0001). Figure 5.7 depicts the
overall mean time for each technique.

Post-hoc analysis showed that the 3D-Board technique was significantly
faster (𝑀 = 13.5 s, SD = 3.3 s) than 2D-Back-Facing (𝑀 = 20.98 s, SD =
6.97 s) with 𝑝 < 0.001 for the Complex task. The 3D-Board technique is
faster since natural deictic gestures are immediately understood due to the
front facing view of the virtual embodiment. When using the 2D-Back-
Facing technique the body of the instructor will occlude the visualization



5. Evaluation 59

 -

 5,00

 10,00

 15,00

 20,00

 25,00

Simple Complex

C
o
m

p
le

ti
o
n
 T

im
e
 (

s)

Complexity

3D-Board

2D-Back-Facing

Co-Located

Figure 5.7: Overall completion time by Techniques and Complexity (Simple
vs. Complex).

of the hands, since the camera image is projected orthogonally from the
back of the room onto the whiteboard. Thus, the instructor has to find the
correct posture to avoid occlusion and make the deictic gesture clear to the
operator (cf. Figure 5.8). This can take a significant amount of time causing
the 2D-Back-Facing technique to be slower, thus confirming Hypothesis 2.

Participants performed slightly faster in the Co-Located scenario (𝑀 =
12.37 s, SD = 3.67 s) than in the 3D-Board setup. A pairwise comparison,
however, showed no statistical significance (𝑝 = 0.596). This confirms Hy-
pothesis 1 since 3D-Board can be considered as fast as the Co-Located tech-

(a) (b)

Figure 5.8: In (a) the hands are occluded by the body of the participant.
Only in the sideways stance the deictic gesture is clearly visible (b).



5. Evaluation 60

nique. Similar conclusions can be drawn for the simple task since 3D-Board
(𝑀 = 9.52 s, SD = 4.27 s) was significantly faster than 2D-Back-Facing
(𝑀 = 14.42 s, SD = 4.64 s) with 𝑝 = 0.01 and no significant difference
was measured for the Co-Located technique (𝑀 = 8.22 s, SD = 2.21 s) with
𝑝 = 0.346.

Error rate

In addition to the trial times the number of errors were counted. However,
out of a total of 775 target points in the Complex scenario only 29 targets
were selected incorrectly. On average 7.44 points were candidates for selec-
tion per trial, for Complex structures. 7.22 (SD = 1.08) targets have been se-
lected correctly using the 3D-Board technique compared to 7.25 (SD = 1.01)
targets using the Co-Located technique, and 7.06 (SD = 1.47) using the
2D-Back-Facing technique respectively. Given such small error rates, no sig-
nificant differences could be found for any technique with 𝑝 = 1.0. Simple
target structures resulted in very similar data with no significant difference.
Thus Hypothesis 3 needs to be rejected since all three techniques appear to
be very accurate, given participants take their time. In addition, the visual
quality of 3D-Board can be considered as being good enough, even when
interacting with very small objects.

5.2.5 Qualitative Results

After each technique block, participants were asked to rate the different
techniques from the instructor’s as well as the observer’s point of view. The
rating was based on a 5-point Likert scale (1 = strongly agree; 5 = strongly
disagree). Overall, 91.67% of the participants found the 3D-Board technique
either very easy or easy to use. This confirms that working with 3D-Board is
almost as intuitive as working in a Co-Located setup. In contrast, 75.0% of
the participants rated 2D-Back-Facing to be difficult or very difficult to uti-
lize, as can be seen in Figure 5.9 (a). The outcome suggests that finding the
correct posture as an instructor was very cumbersome for most participants,
as discussed in the previous chapter. Very similar results were measured with
the perceived accuracy of the techniques, visualized in Figure 5.9 (b). All
participants agreed that 3D-Board was accurate or very accurate, whereas
11 out of 12 or 91.67% disagreed when using the 2D-Back-Facing technique.
However, when asked if it was easy to recognize what the partner was refer-
ring to when using 3D-Board, the agreement rate declined to 9 participants
or 75.0%. While 3D-Board is very accurate, the limited quality of the visual-
ization can sometimes be cumbersome for the perception of the other user’s
actions. The hands of the instructor, for example, could be hard to recognize
immediately if the skin color matched the color of the background or the
cloth of a person. Participants had also trouble to interpret the partner’s



5. Evaluation 61

0% 20% 40% 60% 80% 100%

3D-Board

2D-Back-Facing

Co-Located

Ease of Use

strongly disagree

disagree

undecided

agree

strongly agree

(a)

0% 20% 40% 60% 80% 100%

3D-Board

2D-Back-Facing

Co-Located

Accuracy

strongly disagree

disagree

undecided

agree

strongly agree

(b)

0% 20% 40% 60% 80% 100%

3D-Board

2D-Back-Facing

Co-Located

Ease of Recognition

strongly disagree

disagree

undecided

agree

strongly agree

(c)

Figure 5.9: The 5-point Likert scale ratings for the ease of use (a), the
accuracy (b) and the ease of recognition of what the other user was referring
to (c).

actions when using the 2D-Back-Facing technique since important infor-
mation is often being occluded. Thus, 10 out of 12 participants or 83,33%
disagree or strongly disagree when using 2D-Back-Facing, as also depicted
in Figure 5.9 (c).

Figure 5.10 shows the task load ratings (1 = very low; 5 = very high)
for all techniques, focusing on Physical Demand, Performance, Effort, and



5. Evaluation 62

Figure 5.10: Task load ratings for the first experiment for 3D-Board, 2D-
Back-Facing, and Co-Located, where significant differences could be found.

Frustration, where significant differences have been found. No significant
main effects could be found for both Mental and Temporal Demand. The
results show that 3D-Board was almost as easy to use as when working
co-located.

5.3 Experiment 2: Interior Design
While the first experiment was focused on accuracy and deictic gestures, the
second experiment tested the performance of 3D-Board in a more realistic
scenario. The idea behind this experiment is to mainly get qualitative feed-



5. Evaluation 63

Start EndEndEE

(a) (b)

Figure 5.11: The operator received instructions (a) on how to draw inner
walls and rearrange furniture on the floor plan with the intuitive tools (b).

back and impressions from the participants. However, in addition the time
for each trial was logged.

5.3.1 Task

In the second task, the instructor was presented a printed out floor plan.
The operator had to redraw the plan on an interactive whiteboard based
on the orders of the instructor. The procedure, illustrated in Figure 5.11, is
similar to the sequence of the first task:

1. Both participants were presented with the same empty floor plan, only
the outer walls were given (cf. Figure 5.11 (a)). The furniture to place
was arranged randomly at the outer border of the whiteboard. Only
the instructor knew the final design of the plan.

2. After pressing the Start button to start the timer, the instructor
showed the operator how to draw the inner walls and arrange the
furniture (cf. Figure 5.11 (b)). The instructor was allowed to use both
of his hands and voice commands to guide the operator. This should
foster a natural interaction with extensive use of gestures.

3. The operator had to draw the missing inner walls with a simple pen
tool. The furniture could be arranged by using intuitive pen gestures
for translation, scale and rotation (cf. Figure 5.12).

4. Once the instructor was satisfied with the floor plan the trial was
completed with the End button. In order to keep the completion time
equal across all trial runs, the different floor plans consisted of varying
arrangements of two pieces of furniture and two inner walls.

5.3.2 Procedure

A within-subject design was used. Per participant one trial run per technique
had to be completed, resulting in a total of 36 trials:



5. Evaluation 64

12 participants
× 3 Techniques (3D-Board, 2D-Back-Facing, Co-Located)
× 1 task trials

36 total trials.

For each of the six trial runs per group a unique floor plan was used. Since
the three techniques (3D-Board, 2D-Back-Facing, Co-Located) were counter-
balanced, all techniques were tested equally often with the same floor plan,
as shown in Table 5.2.

Before the trials began the participants could familiarized themselves
with the tools. User feedback was collected through interviews and ques-
tionnaires, where participants had to rate their satisfaction, ease-of-use, and
engagement. Task load ratings were collected using NASA TLX question-
naires. On average the second experiment lasted for 20 minutes per group.

5.3.3 Hypotheses

Since the second experiment is focused on evaluating the user experience,
also the hypotheses target the preferences of the user.

Figure 5.12: In the second experiment both participants had to cooperate
to rearrange furniture on a floor plan. The yellow handle around a selected
object was used to intuitively translate, rotate and scale the furniture.



5. Evaluation 65

Table 5.2: Counterbalancing of the independent variables Technique and
Floor Plan.

Part. Ind.Var Sequence

1 & 7
Technique Co-Located 2D-Back-Facing 3D-Board
Floor Plan 1 2 3

2 & 8
Technique 2D-Back-Facing 3D-Board Co-Located
Floor Plan 4 5 6

3 & 9
Technique 3D-Board Co-Located 2D-Back-Facing
Floor Plan 1 2 3

4 & 10
Technique Co-Located 2D-Back-Facing 3D-Board
Floor Plan 4 5 6

5 & 11
Technique 2D-Back-Facing 3D-Board Co-Located
Floor Plan 1 2 3

6 & 12
Technique 3D-Board Co-Located 2D-Back-Facing
Floor Plan 4 5 6

Hypothesis 4 : Co-Located is the preferred technique.
The Co-Located technique was chosen as a baseline because it is the most
natural way of interaction. Facial expressions and gestures, an integral part
of close collaboration, will be clearest and thus the Co-Located technique
will be the most preferred.

Hypothesis 5 : 3D-Board raises workspace awareness.
The front-facing visualization of 3D-Board raises the awareness for the col-
laborator’s actions. Important cues are obtained from the partner’s facial ex-
pressions and gestures. This is an advantage over both the 2D-Back-Facing
as well as the Co-Located technique since awareness will be greater when
facing someone directly.

Hypothesis 6 : The 3D-Board embodiment does not violate the collaborator’s
personal space.
Users will not feel a violation of their personal space even when getting
very close while working on the same data. This will also be true for the 2D-
Back-Facing technique but is a definite advantage over the Co-Located setup.



5. Evaluation 66

5.3.4 Quantitative Results

As in the first experiment, 3D-Board (𝑀 = 72.8 s, SD = 19.0 s) was faster
than the 2D-Back-Facing technique (𝑀 = 79.9 s, SD = 25.7 s). The Co-
Located (𝑀 = 68.6 s, SD = 23.4 s) technique was again quicker than 3D-
Board. However, the second experiment focused on gathering qualitative
data and thus the trial count was too low to correctly measure time dif-
ferences. Therefore, no statistical significance was given (𝑝 = 1.0) for all
techniques.

5.3.5 Qualitative Results

Qualitative user feedback showed that participants were highly positive
about the concept of 3D-Board. Half of all participants preferred 3D-Board
over all other techniques, and no one of them mentioned 3D-Board as their
least favorite. Thus, Hypothesis 4 has to be rejected since 3D-Board and
Co-Located were equally popular. On a five-point Likert scale (1 = very
easy/strongly agree; 5 = very difficult/strongly disagree), participants found
3D-Board easy to use (Median(ME) = 1.5) and easy to learn (ME = 1.0).
In contrast, the 2D-Back-Facing technique was rated as being moderate to
use (ME = 3.0) and moderate to learn (ME = 2.5). In addition to that,
66.67% of the participants also felt a high or very high personal engagement
when using 3D-Board. The Co-Located scenario achieved better results with
83.33% while only 58.33% felt high or very high engagement when using 2D-
Back-Facing. A Wilcoxon signed-rank test showed significant differences for
both usability (𝑧 = 2.375, 𝑝 = 0.018) and learnability (𝑧 = 2.326, 𝑝 = 0.020),
for the comparison of 3D-Board and 2D-Back-Facing.

Figure 5.13 depicts the task load ratings (1 = very low; 5 = very high)
for all techniques, focusing on Physical Demand, Performance, Effort, and
Frustration, where significant differences have been found. As in the first
experiment, no significant main effects could be found for both Mental and
Temporal Demand. The post-condition questionnaire data (1 = very low;
5 = very high) were analyzed using two related samples Wilcoxon signed-
rank tests. Overall, participants found 3D-Board (ME = 2.0) less physically
challenging than the 2D technique (ME = 3.5), 𝑧 = −2.414, 𝑝 = 0.016. In
addition, most of the participants also felt the performance was better when
using 3D-Board (ME = 4.5) than with 2D-Back-Facing (ME = 4.0), 𝑧 =
−2.449, 𝑝 = 0.014. Also the effort was rated lower for 3D-Board (ME = 2.0)
than for 2D-Back-Facing (ME = 3.0), with 𝑧 = −2.972, 𝑝 = 0.003. Finally,
participant felt less frustration using the 3D technique (ME = 2.0) than
using the 2D technique (ME = 3.0), 𝑧 = −2.739, 𝑝 = 0.006.



5. Evaluation 67

0% 20% 40% 60% 80% 100%

Physical Demand

Performance

Effort

Frustration

2D-Back-Facing

very high

high

moderate

low

very low

0% 20% 40% 60% 80% 100%

Physical Demand

Performance

Effort

Frustration

Co-Located

very high

high

moderate

low

very low

0% 20% 40% 60% 80% 100%

Physical Demand

Performance

Effort

Frustration

2D-Back-Facing

very high

high

moderate

low

very low

0% 20% 40% 60% 80% 100%

Physical Demand

Performance

Effort

Frustration

Co-Located

very high

high

moderate

low

very low

0% 20% 40% 60% 80% 100%

Physical Demand

Performance

Effort

Frustration

2D-Back-Facing

very high

high

moderate

low

very low

0% 20% 40% 60% 80% 100%

Physical Demand

Performance

Effort

Frustration

Co-Located

very high

high

moderate

low

very low

Figure 5.13: Task load ratings for the second experiment for 3D-Board, 2D-
Back-Facing, and Co-Located, where significant differences could be found.

Awareness

Once asked about how easy it was to make oneself well understood as an
instructor, the majority of the participants voted in favor of the front-facing
3D-Board technique (ME = 1.0) compared to the back-facing technique
(ME = 2.0), 𝑧 = 2.714, 𝑝 = 0.007 (cf. Figure 5.14 (a)). When acting as the
operator, the majority of the participants knew better what the instructor
was doing when using 3D-Board (ME = 1.5) compared to 2D-Back-Facing
(ME = 2.0), 𝑧 = 2.810, 𝑝 = 0.005 (cf. Figure 5.14 (b)). These results sug-
gest that participants had a harder time to make themselves understood
with the orthogonal 2D projection. 3D-Board on the other hand allowed for
more natural gestures and it was easy to grasp the collaborator’s intentions.



5. Evaluation 68

However, the Co-Located technique outperformed 3D-Board (ME = 1.0) in
terms of awareness with 𝑧 = −2.236, 𝑝 = 0.025. The root cause of this is the
visual quality of 3D-Board. When asking participants if they could clearly
perceive the other user’s facial expressions the 3D-visualization (ME = 2.5)
achieved better results than the 2D-visualization (ME = 3.0) but without
any significant difference, 𝑧 = 0.16, 𝑝 = 0.873 (cf. Figure 5.14 (c)). The Co-
Located technique performed flawlessly (ME = 1.0), 𝑧 = 0.003, 𝑝 = −3.017.
Thus, although 3D-Board can raise the workspace awareness better than 2D-
Back-Facing, Hypothesis 5 needs to be rejected. The Co-Located technique
is raising the awareness better due to the rendering artifacts of 3D-Board.

Territoriality

Similar to Doucette et al. [13], the participants were asked to rate their
agreement with the statements, “I often had the feeling that my personal
space was violated by my partner”, and “I often had the feeling of invading
my partner’s personal space”. While 75% of the participants disagreed or
strongly disagreed with the first statement of being invaded by the partner
under the 3D-Board condition, only 58.33% did so under the Co-Located con-
dition. For the second question, again 75% of the participants disagreed when
using the 3D front-facing setup, while 66.67% of all participants disagreed in
the Co-Located setup. In combination with the concluding interviews, dis-
cussed in the next section, this confirms Hypothesis 6 since participants felt
their private space less violated when working with 3D-Board. However, a
Wilcoxon signed-rank test showed no main effects.

5.4 Interviews and Observations
Concluding interviews were conducted at the end of the study. Participants
were asked to state the advantages and disadvantages of 3D-Board. Includ-
ing these interviews, the entire study resulted in a total duration of approx-
imately 75 minutes per group.

According to the participants, the major advantages of 3D-Board were
that the digital content was augmented with a virtual 3D embodiment. This
leads to an intuitive gestural interaction and a direct connection between
the digital content and the remote user.

While using 3D-Board, it was easy to see where the instructor
was pointing to, because it gave me the impression that my part-
ner was behind the wall. The interaction with someone who is
behind the wall is exciting. – Participant 2A

The face-to-face communication in life-size with the remote user made par-
ticipants feel collaborating very closely with the remote user.



5. Evaluation 69

(a)

(b)

(c)

Figure 5.14: Awareness ratings for the ease of comprehending instructions
(a), making oneself understood (b) and perceiving facial expressions (c).

I liked the feeling of communication in the 3D-Board condition,
because the other person was looking at me, which made me feel
more in contact with him. – Participant 5B

Some of the participants also explicitly mentioned the advantage of not
physically interfering with their partner, while working on the same content.

The collaboration was easier once you see the remote person in
front of you - it gives you the feeling to work really face-to-face.
And this, without stepping on someone’s toes. – Participant 5A



5. Evaluation 70

Observations showed increased gesticulation when using 3D-Board. In the
Co-Located setup users had less space and would thus act more defensively
since they did not dare to cross the other user’s workspace with their arms.

The disadvantage mentioned by most participants was the visual quality
of 3D-Board. While virtual embodiment was good enough to easily recognize
gestures, participants often failed to read the other user’s face.

I had a hard time perceiving the facial expressions. However,
for the given tasks they were irrelevant and I only looked at my
partner’s gestures. – Participant 2A

Another problem was the perception of spatial depth. It was hard to estimate
the distance of the collaborator from the whiteboard, since spatial reference
points were missing. In addition, for some participants it was sometimes
hard to recognize the hand of the remote user since the transparency of
the virtual embodiment made it hard to distinguish skin color from similar
colored clothes.

The interviews and observations conclude that the possibility to collab-
orate face-to-face without any physical interference more than compensates
for the inferior visual quality. Overall, participants expressed that they very
much enjoyed working with 3D-Board. It was the preferred technique for 6
out of 12 participants, as mentioned in the previous section.



Chapter 6

Conclusion and Future Work

This thesis presented 3D-Board, a digital whiteboard featuring life-sized,
virtual 3D embodiments of geographically distributed users. Capturing the
whole body of the remote collaborator from the front increases the social
presence and raises the awareness for gestures as well as gaze. Blending the
visualization with the common workspace resolves the disparity between
the representation of the distant user and the shared data. By tracking
the observers head, the 3D embodiment appears to be standing behind the
shared surface. Poses and deixis can be perceived and the teleimmersive
impressions are enhance due to the motion parallax effects.

The facilitated intuitive interaction between the participants was evalu-
ated in a usability assessment. The study showed the effectiveness of the pro-
posed system. The compared 2D-Back-Facing approach was outperformed
in almost all categories. In certain situations 3D-Board was even compara-
ble to a co-located collaboration. This can be explained by the possibility of
working simultaneously at the same spot without any physical interference,
while co-located users kept a certain distance. Overall, the illusion of observ-
ing the remote cooperator standing behind the shared surface was pleasant
for most participants and had a very high rate of acceptance.

However, there are many ways to improve the system, as the study re-
sults suggest. Users complained that the visual quality of the embodiment
was often too low to fully grasp the facial expressions of the collaborator.
In addition, the system cannot compensate very large holes in the render-
ing, caused when the arms are covering the body. The depth resolution of
the Kinect sensor is inferior and the quad based visualization results in
a low-resolution picture. Additionally, higher quality cameras, such as the
Kinect v2, mounted at the top and bottom of the system could capture
a cleaner image of the user. However, more cameras come at the cost of
increased computational demands. While the point-based rendering is effi-
cient, the extensive post-processing stage for filling holes is implemented on
the CPU and therefore fairly slow. Hence, for the highest image quality, a

71



6. Conclusion and Future Work 72

parallelized or GPU-based implementation would be required to facilitate
stable frame rates at high display resolutions with the used hardware sys-
tem. If the system’s performance is increased, the current implementation
could be combined with the capabilities of the first prototype [65] to further
enhance the rendering quality.

Future work could also include an evaluation of a collaboration between
more than two whiteboards. Multiple virtual embodiments lead to an in-
creased occlusion of the screen. In addition, multiple overlapping embodi-
ments decrease the legibility and awareness for the other users. Thus, the
visualization of the partner should be switched off on demand or the embodi-
ment could change its transparency based on the distance to the whiteboard.
The virtual representation is only of interest, if the user is working directly
on the whiteboard. Stepping away from the screen should automatically
decrease the transparency.

When multiple users are working simultaneously on the same screen,
motion parallax enabled via the head tracking is not supported anymore.
Whiteout the 3D effects the front-facing embodiment would still feature
awareness for gestures and gaze but the hand pointing would be harder to
perceive. This could be compensated by visualizing direct interaction with
the whiteboard.

This thesis provided insights in the implementation of a novel telep-
resence system and the possibilities for further improvements are endless.
3D-Board is nonetheless one small step towards intuitive remote collabora-
tion.



Appendix A

Sourcecode

A.1 Vertex Shader

1 struct GeoShaderInput { };
2
3 GeoShaderInput VertexShader()
4 {
5 return (GeoShaderInput)0;
6 }

A.2 Geometry Shader

1 //–––––––––––––––––––––––––––––––––––––––––––
2 // Structures
3 //–––––––––––––––––––––––––––––––––––––––––––
4 struct GeoShaderInput { };
5
6 struct PixelShaderInput { float4 Pos:SV_POSITION; float4 Col:COLOR; };
7
8 //–––––––––––––––––––––––––––––––––––––––––––
9 // Textures

10 //–––––––––––––––––––––––––––––––––––––––––––
11 Texture2D<int> depthTex : register(t0);
12 Texture2D<float4> colorTex : register(t1);
13 Texture2D<int> depthRefTex : register(t2);
14 SamplerState colorSampler : register(s0);
15
16 //–––––––––––––––––––––––––––––––––––––––––––
17 // Constant Buffer Variables
18 //–––––––––––––––––––––––––––––––––––––––––––
19 cbuffer cbChangesEveryFrame : register(b0)
20 {
21 matrix instrinsicsInverse;
22 matrix extrinsicsInverse;
23 matrix viewMatrix;
24 matrix projectionMatrix;
25 };

73



A. Sourcecode 74

26
27 //–––––––––––––––––––––––––––––––––––––––––––
28 // Constants
29 //–––––––––––––––––––––––––––––––––––––––––––
30 static const int depthWidth = 640;
31 static const int depthHeight = 480;
32 static const float quadSize = 2.5f;
33 static const float4 quadScale = float4(1.0/depthWidth, 1.0/depthHeight,

0.0, 0.0) * quadSize;
34
35 // vertex offsets for building a quad from a depth pixel
36 static float4 quadOffsets[4] =
37 {
38 float4(-0.5f, -0.5f, 0.0f, 0.0f),
39 float4( 0.5f, -0.5f, 0.0f, 0.0f),
40 float4(-0.5f, 0.5f, 0.0f, 0.0f),
41 float4( 0.5f, 0.5f, 0.0f, 0.0f)
42 };
43
44 //–––––––––––––––––––––––––––––––––––––––––––
45 // Functions
46 //–––––––––––––––––––––––––––––––––––––––––––
47
48 bool invalidPixel(float depth, float depthRef)
49 {
50 // use the minimum of near mode
51 static const float minDepth = 0.3f;
52 // use the maximum of standard mode
53 static const float maxDepth = 4.0f;
54 // difference in meters between reference frame and current frame
55 static const float maxDepthDiffTheta = 0.5f;
56 // check that depth is in the valid range
57 if (depth < minDepth || depth > maxDepth || abs(depth - depthRef) <

maxDepthDiffTheta)
58 {
59 return true;
60 }
61
62 return false;
63 }
64
65 void ExtractQuad(float4 viewPos, float4 viewspaceScale, inout

TriangleStream<PixelShaderInput> triStream, PixelShaderInput output)
66 {
67 // expand the current point into four vertices
68 [unroll]
69 for (uint i = 0; i < 4; ++i)
70 {
71 // expand quad in view space - it always faces the camera
72 float4 viewPosExpanded = viewPos + quadOffsets[i] * viewspaceScale;
73 // project vertex onto virtual camera
74 output.Pos = mul(viewPosExpanded, projectionMatrix);
75 // append vertex to output triangle stream
76 triStream.Append(output);



A. Sourcecode 75

77 }
78 }
79
80 //–––––––––––––––––––––––––––––––––––––––––––
81 // Geometry Shader
82 //
83 // takes single vertex and expands it into the 4 vertices of a quad;
84 // depth sampled from Kinect’s depth texture mapped to color space;
85 // color sampled from Kinect’s color texture;
86 //–––––––––––––––––––––––––––––––––––––––––––
87 [maxvertexcount(4)]
88 void GeometryShader(point GeoShaderInput vertex[1], uint primID :

SV_PrimitiveID, inout TriangleStream<PixelShaderInput> triStream)
89 {
90 // sample depth from texture using the current pixel index primID
91 int3 texCoord = int3(primID % depthWidth, primID / depthWidth, 0);
92 // depth from texture in millimeters - converted to meters
93 float depth = depthTex.Load(texCoord) / 1000.0f;
94 float depthRef = depthRefTex.Load(texCoord) / 1000.0f;
95
96 // background subtraction
97 if (invalidPixel(depth, depthRef)) { return; }
98
99 // project from image to camera space using the intrinsic matrix

100 float4 imagePos = float4(texCoord.xy * depth, depth, 1.0f);
101 float4 cameraPos = mul(imagePos, instrinsicsInverse);
102
103 // project from camera to world space using the extrinsic matrix
104 float4 worldPos = mul(cameraPos, extrinsicsInverse);
105
106 // transform from world space to space of virtual, head tracked camera
107 float4 viewPos = mul(worldPos, viewMatrix);
108
109 // expand quad based on depth - points farther away will scale up
110 float4 viewspaceScale = quadScale * depth;
111
112 // output variable holding the quad
113 PixelShaderInput output;
114
115 // base color texture sample lookup coords, in [0,1]
116 float2 depthWidthHeight = float2(depthWidth, depthHeight);
117 float2 colorTexCoords = texCoord.xy/depthWidthHeight;
118 // sample the color texture
119 output.Col = colorTex.SampleLevel(colorSampler, colorTexCoords, 0);
120
121 // extract a fixed-size quad
122 ExtractQuad(viewPos, viewspaceScale, triStream, output);
123 }

A.3 Pixel Shader

1 struct PixelShaderInput { float4 Pos:SV_POSITION; float4 Col:COLOR; };
2



A. Sourcecode 76

3 float4 PixelShader(PixelShaderInput input) : SV_Target
4 {
5 return float4(input.Col.rgb, 1.0);
6 }



Appendix B

CD Content

Format: CD-ROM, Single Layer, ISO9660-Format

B.1 PDF-Dateien
Pfad: /

3D-Board_JakobZillner.pdf . Master Thesis

B.2 Source Code
Pfad: /source_code/

3DBoard/ . . . . . . . . . . . source code of 3D-Board
EvaluationApplications/ . . . source code of experiments

B.3 Study Data
Pfad: /study_data/

evaluation_data/ . . . . . . . collected evaluation data
questionnaires/ . . . . . . . . evaluation questionnaires

B.4 Images
Pfad: /images/

1_introduction/ . . . . . . . figures used in Chapter 1
2_inspiration_concepts/ . . figures used in Chapter 2
3_implementation/ . . . . . figures used in Chapter 3
4_demo_applications/ . . . figures used in Chapter 4
5_evaluation/ . . . . . . . . figures used in Chapter 5

77

/
3D-Board_JakobZillner.pdf
/source_code/
3DBoard/
EvaluationApplications/
/study_data/
evaluation_data/
questionnaires/
/images/
1_introduction/
2_inspiration_concepts/
3_implementation/
4_demo_applications/
5_evaluation/


References

Literature
[1] Stephan Beck et al. “Immersive Group-to-Group Telepresence”. In:

IEEE Transactions on Visualization and Computer Graphics 19.4
(2013), pp. 616–625 (cit. on pp. 8, 9).

[2] Steve Benford et al. “User Embodiment in Collaborative Virtual
Environments”. In: Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems. Denver, Colorado, USA: ACM
Press/Addison-Wesley Publishing Co., 1995, pp. 242–249 (cit. on p. 5).

[3] Sara A. Bly, Steve R. Harrison, and Susan Irwin. “Media Spaces:
Bringing People Together in a Video, Audio, and Computing Envi-
ronment”. In: Communications of the ACM 36.1 (1993), pp. 28–46
(cit. on p. 6).

[4] Greg Borenstein. Making Things See. O’Reilly Media, Inc., 2012 (cit.
on p. 3).

[5] Erin Bradner and Gloria Mark. “Social Presence with Video and Ap-
plication Sharing”. In: GROUP ’01. Boulder, Colorado, USA: ACM,
2001, pp. 154–161 (cit. on p. 5).

[6] Gary Bradski and Adrian Kaehler. Learning OpenCV. O’Reilly, 2008
(cit. on pp. 15, 18–21, 24, 28).

[7] Duane C. Brown. “Close-range camera calibration”. In: Photogram-
metric Engineering 37.8 (1971), pp. 855–866 (cit. on p. 19).

[8] Wilhelm Burger and Burge Mark J. Principles of Digital Image Pro-
cessing – Advanced Methods. Vol. 3. Springer Undergraduate Topics
in Computer Science, 2013 (cit. on p. 29).

[9] Wilhelm Burger and Burge Mark J. Principles of Digital Image Pro-
cessing – Fundamental Techniques. Vol. 1. Springer Undergraduate
Topics in Computer Science, 2009 (cit. on p. 29).

78



References 79

[10] D. Alex Butler et al. “Shake’N’Sense: Reducing Interference for
Overlapping Structured Light Depth Cameras”. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems.
Austin, Texas, USA: ACM, 2012, pp. 1933–1936 (cit. on p. 3).

[11] Fu Chang, Chun-Jen Chen, and Chi-Jen Lu. “A Linear-time
Component-labeling Algorithm Using Contour Tracing Technique”.
In: Computer Vision and Image Understanding 93.2 (2004), pp. 206–
220 (cit. on p. 39).

[12] Li Chen, Hui Lin, and Shutao Li. “Depth image enhancement for
Kinect using region growing and bilateral filter”. In: International
Conference on Pattern Recognition. Tsukuba, Japan: IEEE, 2012,
pp. 3070–3073 (cit. on p. 29).

[13] Andre Doucette et al. “Sometimes when we touch: how arm embod-
iments change reaching and collaboration on digital tables”. In: Pro-
ceedings of the Conference on Computer Supported Cooperative Work.
San Antonio, Texas, USA: ACM, 2013, pp. 193–202 (cit. on pp. 6, 68).

[14] Jörg Edelmann et al. “Face2Face – A System for Multi-Touch Collab-
oration With Telepresence”. In: International Conference on Emerg-
ing Signal Processing Applications. Las Vegas, NV, USA: IEEE, 2012,
pp. 159–162 (cit. on p. 8).

[15] Rob van Eijk et al. “Human sensitivity to eye contact in 2D and 3D
videoconferencing”. In: Proceedings of the International Workshop on
Quality of Multimedia Experience. IEEE, 2010, pp. 76–81 (cit. on pp. 1,
5).

[16] Andy Field. Discovering Statistics using IBM SPSS Statistics. 4th ed.
Sage Publications Ltd., 2013 (cit. on p. 58).

[17] M. Forte and G. Kurillo. “Cyberarchaeology: Experimenting with
Teleimmersive Archaeology”. In: International Conference on Virtual
Systems and Multimedia. Seoul, Korea: IEEE, 2010, pp. 155–162 (cit.
on p. 8).

[18] Susan R. Fussell et al. “Gestures over Video Streams to Support Re-
mote Collaboration on Physical Tasks”. In: International Journal of
Human-Computer Interaction 19.3 (2004), pp. 273–309 (cit. on p. 5).

[19] Aaron M. Genest et al. “KinectArms: A Toolkit for Capturing and
Displaying Arm Embodiments in Distributed Tabletop Groupware”.
In: Proceedings of the Conference on Computer Supported Cooperative
Work. San Antonio, Texas, USA: ACM, 2013, pp. 157–166 (cit. on
p. 6).



References 80

[20] Aaron Genest and Carl Gutwin. “Characterizing Deixis over Surfaces
to Improve Remote Embodiments”. In: Proceedings of the European
Conference on Computer Supported Cooperative Work. Aarhus, Den-
mark: Springer London, 2011, pp. 253–272 (cit. on p. 5).

[21] Tovi Grossman, Patrick Baudisch, and Ken Hinckley. “Handle Flags:
Efficient and Flexible Selections for Inking Applications”. In: Pro-
ceedings of Graphical Interfaces. Kelowna, British Columbia, Canada:
Canadian Information Processing Society, 2009, pp. 167–174 (cit. on
p. 54).

[22] Raja Gumienny et al. “Tele-Board: Enabling Efficient Collaboration
In Digital Design Spaces”. In: Conference on Computer Supported Co-
operative Work in Design. Lausanne, Switzerland: IEEE, 2011, pp. 47–
54 (cit. on pp. 6, 9).

[23] Carl Gutwin and Saul Greenberg. “A Descriptive Framework of
Workspace Awareness for Real-Time Groupware”. In: Computer Sup-
ported Cooperative Work 11.3-4 (2002), pp. 411–446 (cit. on p. 1).

[24] Carl Gutwin and Greenberg Saul. “The Importance of Awareness
for Team Cognition in Distributed Collaboration”. In: Team Cogni-
tion: Understanding the Factors That Drive Process and Performance.
American Psychological Association Press, 2004, pp. 177–203 (cit. on
pp. 1, 5, 9).

[25] Edward T. Hall. The Hidden Dimension. Anchor Books, 1990 (cit. on
p. 51).

[26] Michael Haller et al. “The NiCE Discussion Room: Integrating Pa-
per and Digital Media to Support Co-Located Group Meetings”. In:
Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems. Atlanta, Georgia, USA: ACM, 2010, pp. 609–618 (cit. on
p. 12).

[27] Richard Hartley and Andrew Zisserman. Multiple View Geometry.
Cambridge University Press, 2004 (cit. on p. 20).

[28] David A. Harville. Matrix Algebra From a Statistician’s Perspective.
Springer, 2008 (cit. on p. 22).

[29] Jörg Hauber et al. “Spatiality in Videoconferencing: Trade-offs Be-
tween Efficiency and Social Presence”. In: Proceedings of the Con-
ference on Computer Supported Cooperative Work. Banff, Alberta,
Canada: ACM, 2006, pp. 413–422 (cit. on pp. 1, 6, 9).

[30] Adrian Ilie and Greg Welch. “Ensuring Color Consistency Across Mul-
tiple Cameras”. In: International Conference on Computer Vision.
Beijing, China: IEEE, 2005, pp. 1268–1275 (cit. on p. 28).



References 81

[31] Hiroshi Ishii and Minoru Kobayashi. “ClearBoard: A Seamless Medium
for Shared Drawing and Conversation with Eye Contact”. In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Sys-
tems. Monterey, California, USA: ACM, 1992, pp. 525–532 (cit. on
pp. 6, 9).

[32] Shahram Izadi et al. “C-Slate: A Multi-Touch and Object Recogni-
tion System for Remote Collaboration using Horizontal Surfaces”. In:
Tabletop – International Workshop on Horizontal Interactive Human-
Computer Systems. Newport, Rhode Island, USA: IEEE, 2007, pp. 3–
10 (cit. on p. 6).

[33] Ramesh Jain, Rangachar Kasturi, and Brian G. Schnuck. Machine
Vision. McGraw-Hill, 1995 (cit. on p. 18).

[34] Ricardo Jota et al. “A Comparison of Ray Pointing Techniques for
Very Large Displays”. In: Proceedings of Graphics Interface. Ottawa,
Ontario, Canada: Canadian Information Processing Society, 2010,
pp. 269–276 (cit. on p. 5).

[35] Sasa Junuzovic et al. “IllumiShare: Sharing Any Surface”. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems. Austin, Texas, USA: ACM, 2012, pp. 1919–1928 (cit. on p. 6).

[36] Bernhard Kainz et al. “OmniKinect: Real-time Dense Volumetric Data
Acquisition and Applications”. In: Symposium on Virtual Reality Soft-
ware and Technology. Toronto, Ontario, Canada: ACM, 2012, pp. 25–
32 (cit. on p. 24).

[37] Kibum Kim et al. “TeleHuman: Effects of 3D Perspective on Gaze
and Pose Estimation with a Life-size Cylindrical Telepresence Pod”.
In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. Austin, Texas, USA: ACM, 2012, pp. 2531–2540 (cit.
on pp. 7, 10).

[38] David Kirk, Tom Rodden, and Danaë Stanton Fraser. “Turn It This
Way: Grounding Collaborative Action with Remote Gestures”. In:
Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. San Jose, California, USA: ACM, 2007, pp. 1039–
1048 (cit. on p. 1).

[39] Jesper Kjeldskov et al. “Eye Contact over Video”. In: SIGCHI Ex-
tended Abstracts on Human Factors in Computing Systems. Toronto,
Canada: ACM, 2014, pp. 1561–1566 (cit. on p. 7).

[40] Johannes Kopf et al. “Joint Bilateral Upsampling”. In: ACM Trans-
actions on Graphics 26.3 (2007) (cit. on p. 29).



References 82

[41] A. Kunz, T. Nescher, and M. Küchler. “CollaBoard: A Novel Inter-
active Electronic Whiteboard for Remote Collaboration with People
on Content”. In: International Conference on Cyberworlds. Singapore:
IEEE, 2010, pp. 430–437 (cit. on pp. 7, 9, 52).

[42] David Ledo et al. “OneSpace: Shared Depth-corrected Video Interac-
tion”. In: SIGCHI Extended Abstracts on Human Factors in Comput-
ing Systems. Paris, France: ACM, 2013, pp. 997–1002 (cit. on p. 8).

[43] Jiannan Li et al. “Interactive Two-sided Transparent Displays: De-
signing for Collaboration”. In: Conference on Designing Interactive
Systems. Vancouver, BC, Canada: ACM, 2014, pp. 395–404 (cit. on
p. 7).

[44] Frank Luna. Introduction to 3D Game Programming with DirectX 11.
Mercury Learning Information, 2012 (cit. on p. 35).

[45] Yi Ma et al. An Invitation to 3-D Vision: From Images to Geometric
Models. Springer, 2004 (cit. on p. 17).

[46] Andrew Maimone and Henry Fuchs. “Encumbrance-Free Telepresence
System with Real-Time 3D Capture and Display using Commodity
Depth Cameras”. In: International Symposium on Mixed and Aug-
mented Reality. Basel, Switzerland: IEEE, 2011, pp. 137–146 (cit. on
pp. 8, 28).

[47] Andrew Maimone et al. “Enhanced Personal Autostereoscopic Telep-
resence System using Commodity Depth Cameras”. In: Computers &
Graphics 36.7 (2012), pp. 791–807 (cit. on pp. 24, 38).

[48] Klara Nahrstedt. “3D Teleimmersion for Remote Injury Assessment”.
In: International Conference on Security and Management. Las Vegas,
USA: ACM, 2012, pp. 21–24 (cit. on p. 8).

[49] Anthony J. Pettofrezzo. Matrices and Transformations. 1st ed. Dover
Publications Inc., 1978 (cit. on p. 22).

[50] David Pinelle et al. “The Effects of Co-present Embodiments on
Awareness and Collaboration in Tabletop Groupware”. In: Proceedings
of Graphics Interface. Windsor, Ontario, Canada: Canadian Informa-
tion Processing Society, 2008, pp. 1–8 (cit. on pp. 1, 6).

[51] Szymon Rusinkiewicz and Marc Levoy. “Efficient variants of the ICP
algorithm”. In: International Conference on 3-D Digital Imaging and
Modeling. Quebec, Canada: IEEE, 2001, pp. 145–152 (cit. on p. 25).

[52] Jamie Shotton et al. “Real-time Human Pose Recognition in Parts
from Single Depth Images”. In: Proceedings of the Conference on Com-
puter Vision and Pattern Recognition. Colorado Springs, USA: IEEE,
2011, pp. 1297–1304 (cit. on p. 3).



References 83

[53] Jonathan Steuer. “Defining Virtual Reality: Dimensions Determining
Telepresence”. In: Communication in the Age of Virtual Reality. L.
Erlbaum Associates Inc., 1995, pp. 33–56 (cit. on p. 1).

[54] Kar-Han Tan et al. “ConnectBoard: Enabling Genuine Eye Contact
and Accurate Gaze in Remote Collaboration”. In: IEEE Transactions
on Multimedia 13.3 (2011), pp. 466–473 (cit. on pp. 7, 9).

[55] Anthony Tang, Michael Boyle, and Saul Greenberg. “Display and Pres-
ence Disparity in Mixed Presence Groupware”. In: Proceedings of the
Conference on Australasian User Interface. Dunedin, New Zealand:
Australian Computer Society, Inc., 2004, pp. 73–82 (cit. on p. 1).

[56] Anthony Tang, Carman Neustaedter, and Greenberg Saul.
“VideoArms: Embodiments for Mixed Presence Groupware”. In:
People and Computers XX – Engage (Proceedings of HCI 2006).
IEEE Computer Society: Springer, 2006, pp. 85–102 (cit. on p. 1).

[57] John C. Tang and Scott Minneman. “VideoWhiteboard: Video Shad-
ows to Support Remote Collaboration”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. New Orleans,
Louisiana, USA: ACM, 1991, pp. 315–322 (cit. on p. 6).

[58] Alexandru Telea. “An Image Inpainting Technique Based on the Fast
Marching Method”. In: Journal Graphics, GPU & Game Tools 9.1
(2004), pp. 23–34 (cit. on p. 40).

[59] Philip Tuddenham and Peter Robinson. “Territorial Coordination and
Workspace Awareness in Remote Tabletop Collaboration”. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems. Boston, MA, USA: ACM, 2009, pp. 2139–2148 (cit. on p. 6).

[60] R. Vasudevan et al. “High-Quality Visualization for Geographically
Distributed 3-D Teleimmersive Applications”. In: IEEE Transactions
on Multimedia 13.3 (2011), pp. 573–584 (cit. on p. 8).

[61] James M. van Verth and Lars M. Bishop. Essential Mathematics for
Games and Interactive Applications: A Programmer’s Guide. 2nd ed.
Taylor & Francis Ltd., 2008 (cit. on p. 24).

[62] Jun Xie et al. “Fine registration of 3D point clouds with iterative
closest point using an RGB-D camera”. In: International Symposium
on Circuits and Systems. Beijing, China: IEEE, 2013, pp. 2904–2907
(cit. on p. 25).

[63] Song Zhang. “High-resolution, Real-time 3-D Shape Measurement”.
PhD thesis. New York, USA: Stony Brook University, 2005 (cit. on
p. 3).

[64] Zhengyou Zhang. “A Flexible New Technique for Camera Calibration”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence
22.11 (2000), pp. 1330–1334 (cit. on p. 19).



References 84

[65] Jakob Zillner et al. “3D-Board: A Whole-body Remote Collaborative
Whiteboard”. In: Symposium on User Interface Software and Technol-
ogy. Honululu, USA: ACM, 2014, to appear (cit. on pp. 2, 51, 72).

Online sources
[66] A Day Made of Glass Extended Montage. 2013. url: https://www.

youtube.com/watch?v=PfgmlVxLC9w&feature=c4-overview-vl&list=
PL363989F7BCF53A36 (cit. on p. 7).

[67] Robert Kooima. Generalized Perspective Projection. 2009. url: http://
csc.lsu.edu/∼kooima/pdfs/gen-perspective.pdf (visited on 07/01/2014)
(cit. on pp. 38, 39).

https://www.youtube.com/watch?v=PfgmlVxLC9w&feature=c4-overview-vl&list=PL363989F7BCF53A36
https://www.youtube.com/watch?v=PfgmlVxLC9w&feature=c4-overview-vl&list=PL363989F7BCF53A36
https://www.youtube.com/watch?v=PfgmlVxLC9w&feature=c4-overview-vl&list=PL363989F7BCF53A36
http://csc.lsu.edu/~kooima/pdfs/gen-perspective.pdf
http://csc.lsu.edu/~kooima/pdfs/gen-perspective.pdf

	Declaration
	Acknowledgments
	Kurzfassung
	Abstract
	Introduction
	3D-Board
	Sensing a remote user
	Outline

	Inspiration and Concepts
	Related Work
	Social Presence
	Embodiments
	Teleimmersion

	Concepts
	Whole Body Interaction
	Embodiment Superposition
	Perception


	Implementation
	Setup and Hardware
	Prototype
	Camera Placement

	Camera Calibration
	Extrinsic Camera Parameters
	Intrinsic Camera Parameters
	Projective Transformation
	Lens Distortion
	The Calibration Procedure
	Using Camera Calibration for 3D Reconstruction

	Visualization
	Pre-Processing
	Point Cloud Rendering
	Head Tracking
	Post-Processing
	Merging Embodiment and Application
	Results and Performance


	Demo Applications
	Remote Sketching
	Map Surveillance

	Evaluation
	Study Design
	Participants
	Apparatus
	Techniques

	Experiment 1: Abstracted Environment
	Task
	Procedure
	Hypotheses
	Quantitative Results
	Qualitative Results

	Experiment 2: Interior Design
	Task
	Procedure
	Hypotheses
	Quantitative Results
	Qualitative Results

	Interviews and Observations

	Conclusion and Future Work
	Sourcecode
	Vertex Shader
	Geometry Shader
	Pixel Shader

	CD Content
	PDF-Dateien
	Source Code
	Study Data
	Images

	References
	Literature
	Online sources


