
Integration of Mobile Devices in
Collaborative Web Applications

Philipp J. Anger

M AS T ER A RB E IT

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Juli 2013



© Copyright 2013 Philipp J. Anger

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/


Declaration

I hereby declare and confirm that this thesis is entirely the result of my own
original work. Where other sources of information have been used, they have
been indicated as such and properly acknowledged. I further declare that
this or similar work has not been submitted for credit elsewhere.

Hagenberg, July 1, 2013

Philipp J. Anger

iii



Contents

Declaration iii

Kurzfassung vii

Abstract viii

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Technical Background and Disambiguation 3
2.1 Related Terms . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Web Application . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Collaborative Web Application . . . . . . . . . . . . . 4
2.1.3 Web-Based Integration . . . . . . . . . . . . . . . . . . 4
2.1.4 Client-Side Web Applications . . . . . . . . . . . . . . 4
2.1.5 Mobile Web . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.6 Mobile Device . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.7 Context-Awareness . . . . . . . . . . . . . . . . . . . . 5

2.2 W3C Standards . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 HTML5 video element . . . . . . . . . . . . . . . . . . 6
2.2.2 HTML5 audio element . . . . . . . . . . . . . . . . . . 6
2.2.3 HTML Media Capture . . . . . . . . . . . . . . . . . . 6
2.2.4 HTML Canvas 2D Context . . . . . . . . . . . . . . . 7
2.2.5 Touch Events Specification . . . . . . . . . . . . . . . 7
2.2.6 Geolocation API . . . . . . . . . . . . . . . . . . . . . 7
2.2.7 Device Orientation Event Specification . . . . . . . . . 8

2.3 Mobile Web Browser . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Communication Technologies . . . . . . . . . . . . . . . . . . 10

2.4.1 W3C APIs . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Node.js and Socket.IO . . . . . . . . . . . . . . . . . . 11
2.4.3 WebRTC . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Sensors and Interaction . . . . . . . . . . . . . . . . . . . . . 11

iv



Contents v

2.6 Accessing device sensors . . . . . . . . . . . . . . . . . . . . . 12
2.6.1 Native APIs . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6.2 JavaScript APIs . . . . . . . . . . . . . . . . . . . . . 13
2.6.3 Hybrid Frameworks . . . . . . . . . . . . . . . . . . . 13

3 State of the Art 14
3.1 Adaption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Related Projects . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Collaborative Applications . . . . . . . . . . . . . . . . 17
3.4.2 Mobile Controllers . . . . . . . . . . . . . . . . . . . . 19

4 Mobile Device Integration Architecture 22
4.1 Integration Approach . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Application Type . . . . . . . . . . . . . . . . . . . . . 22
4.1.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Cross-Platform Compatibility . . . . . . . . . . . . . . 24
4.2.2 Multi-User Capability . . . . . . . . . . . . . . . . . . 25
4.2.3 Asynchronous Communication . . . . . . . . . . . . . 25
4.2.4 State Persistence . . . . . . . . . . . . . . . . . . . . . 26

4.3 Device Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Context-Aware Layer . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.1 Context Detection . . . . . . . . . . . . . . . . . . . . 27
4.4.2 Context Access . . . . . . . . . . . . . . . . . . . . . . 30
4.4.3 Content Processing . . . . . . . . . . . . . . . . . . . . 31
4.4.4 Interface Adaption . . . . . . . . . . . . . . . . . . . . 33

4.5 Logic Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.1 Application Logic . . . . . . . . . . . . . . . . . . . . . 34
4.5.2 Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5.3 User Roles . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5.4 Application State . . . . . . . . . . . . . . . . . . . . . 36

4.6 Communication Layer . . . . . . . . . . . . . . . . . . . . . . 36
4.6.1 Communication Type . . . . . . . . . . . . . . . . . . 36
4.6.2 Data Exchange . . . . . . . . . . . . . . . . . . . . . . 37

4.7 Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.8 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.8.1 Server Storage . . . . . . . . . . . . . . . . . . . . . . 39
4.8.2 Client Storage . . . . . . . . . . . . . . . . . . . . . . . 39

5 Prototype 42
5.1 Single Page Model . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



Contents vi

5.2.1 Web Server . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.3 Logic Workflow . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.1 Node.js Web Server . . . . . . . . . . . . . . . . . . . . 47
5.3.2 Connection . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.3 Context Information . . . . . . . . . . . . . . . . . . . 49
5.3.4 Communication . . . . . . . . . . . . . . . . . . . . . . 50

5.4 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.1 Basic UI elements . . . . . . . . . . . . . . . . . . . . 51
5.4.2 Interaction UI . . . . . . . . . . . . . . . . . . . . . . . 54

6 Evaluation of the Integration Architecture 55
6.1 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.1 Technical Evaluation . . . . . . . . . . . . . . . . . . . 55
6.1.2 Cross-Platform Compatibility . . . . . . . . . . . . . . 56
6.1.3 Multi-User Capability . . . . . . . . . . . . . . . . . . 56
6.1.4 Asynchronous Communication . . . . . . . . . . . . . 56
6.1.5 State Persistence . . . . . . . . . . . . . . . . . . . . . 57
6.1.6 Conceptual Approach . . . . . . . . . . . . . . . . . . 57

6.2 Integration Architecture . . . . . . . . . . . . . . . . . . . . . 58
6.2.1 Context Handling . . . . . . . . . . . . . . . . . . . . . 58
6.2.2 Interaction Features . . . . . . . . . . . . . . . . . . . 58
6.2.3 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2.4 Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Applicability in the Real World . . . . . . . . . . . . . . . . . 61
6.3.1 Developing costs . . . . . . . . . . . . . . . . . . . . . 61
6.3.2 Functional Scalability . . . . . . . . . . . . . . . . . . 62
6.3.3 Collaborative Usability . . . . . . . . . . . . . . . . . . 62

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4.1 Using Polyfills . . . . . . . . . . . . . . . . . . . . . . 63
6.4.2 Module Pattern . . . . . . . . . . . . . . . . . . . . . . 63

7 Conclusion 65

A Contents of the DVD-ROM 67
A.1 PDF files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.2 Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

References 68
Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Online sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



Kurzfassung

Der Markt wurde über die letzten Jahre hinweg mit einer Unzahl technolo-
gisch ausgereifter mobiler Geräte wie Smartphones und Tablets angereichert.
Dieser Trend lenkte den Fokus des Web zunehmend auch in Richtung mobi-
ler Geräte. Web-Entwickler stehen seither vor der Herausforderung, sich an
diese florierende Umgebung anzupassen und die dadurch entstehenden Mög-
lichkeiten zu nutzen. Dies führte zu gut an die mobile Umwelt angepassten
Web-Applikationen, allerdings kaum zur Integration der mobilen Geräte in
Web-Applikationen und die damit verbundene Ausschöpfung deren vollen
Potentials. Web-Applikationen könnten signifikant durch die neuen Interak-
tionsmöglichkeiten verbessert werden, welche sich durch die Fähigkeiten der
Geräte und die Anwendung mobiler Webtechnologien ergeben.

Neben der Einführung in den aktuellen Stand mobiler Web-Technologien
stellt diese Arbeit einen konzeptionellen Ansatz zum Zugang und zur Ver-
arbeitung multimedialer Kontextinformation innerhalb einer kollaborativen
Web-Applikation vor. Insbesondere durch Verwendung traditioneller Web
APIs basierend auf HTML, JavaScript und CSS. Mittelpunkt des konzeptio-
nellen Ansatzes ist ein architektonisches Schichtenmodell zur Separierung der
Applikationslogik und des geräteabhängigen Kontexts, welches eine plattfor-
mübergreifende Integration erleichtern soll. Zusätzlich wird der konzeptionel-
le Ansatz als Machbarkeitsnachweis in eine prototypische Implementierung
integriert und evaluiert.

Die vorgeschlagene Integrationsarchitektur fördert dabei eine strukturier-
te und webbasierte Entwicklung von kollaborativen Web-Applikationen, um
das volle interaktive Potential mobiler Geräte im Web zu nutzen.

vii



Abstract

Intelligent mobile devices – like smartphones and tablets – have been rapidly
emerging in the market within the last few years. Thus, they are gaining
more and more importance to the ubiquitous Web and face developers with
the challenge to adapt to this thriving environment and leverage its arising
possibilities. This has led to well adapted Web applications rather than an
integration of mobile devices in Web applications and therefore the utiliza-
tion of their full potential. Web applications could be enormously enriched
by the new forms of interaction constituted by mobile device capabilities and
mobile Web technologies.

Along with an introduction into the state of the art of mobile Web tech-
nologies, this document introduces a conceptual approach for accessing and
processing rich contextual information within a collaborative Web appli-
cation. The integration thereby uses only traditional Web APIs based on
HTML, JavaScript and CSS. Key aspect of the approach is a layer-based
architecture to separate the application logic from the device’s context in
order to facilitate the cross-platform integration. In addition, the conceptual
approach is integrated and evaluated as a proof of concept in a prototypically
implemented application.

The proposed integration architecture leverages structural web-based de-
velopment of collaborative Web applications to utilize the mobile devices’ full
interaction potential in the Web.

viii



Chapter 1

Introduction

Mobile devices are becoming more and more important in todays society due
to their rapid technological development. Smartphones, tablets and PDAs
expose a noticeable demand for full accessibility, seamless functionality and
instant information sharing across platforms. Developers therefore aim to
satisfy these demands by developing native-, hybrid- or Web applications,
whereby this document targets Web applications using traditional Web tech-
nologies. Especially collaborations profit from the integration of mobile de-
vices in Web applications due to their need for accessibility and information
sharing. Within this document, the state of the art of mobile device inte-
gration in Web applications is analyzed and a novel integration approach is
presented and evaluated.

1.1 Problem Statement

As the mobile environment has barely been accessible from within a Web
browser for a long time, native implementations have been the most pow-
erful way to access mobile context information. Therefore, mobile devices
could not be fully integrated into Web applications using Web APIs such as
JavaScript and HTML. As a result of these circumstances, mobile devices
were mainly handled as smaller screen environments with minor additional
capabilities like sensing touch events or defining the device’s location using
its GPS sensor.

Recent developments in mobile Web APIs have provided the ability to
access and use a wide range of sensors and interaction capabilities through
mobile Web browsers. Although Web applications could be enormously en-
riched by the new forms of interaction constituted by mobile device capa-
bilities and mobile Web features, most applications still use only fractions
of the given possibilities. Particularly collaborative online applications could
benefit from the cross-platform integration to overcome platform limitations
and facilitate communication by rich-media content.

1



1. Introduction 2

1.2 Goals

Based on the problems mentioned before, the lack of mobile device inte-
gration and consequently its use of interaction possibilities, this document
should focus on answering the following scientific hypothesis:

“How can mobile devices be integrated in collaborative Web ap-
plications considering their context information and their specific
interaction capabilities?”

In order to be able to answer this scientific hypothesis, one essential goal
pursued is to understand and reflect the currently given technological possi-
bilities for developers to access and process mobile context information.

Understanding the current state of the art is also fundamental for achiev-
ing the main goal pursued with this document: introducing and evaluating a
conceptual approach to utilize the full potential of mobile devices integrated
in Web applications. This includes the presentation, discussion and in-depth
analysis of the integration approach upon certain requirements.

Furthermore, a prototypical real-world application should be developed
to evaluate the applicability of the proposed architecture and its feasibility
from a developing point-of-view. In addition to the evaluation, future work
should be shortly presented and discussed.

1.3 Structure

This document is structured into several chapters improving understand-
ing and readability of the scientific work along with its presented approach.
Starting with technical background information and state of the art, the in-
tegration approach is presented, followed by a description of the prototypical
application and concluding with a detailed evaluation and discussion.

Chapter 2 provides some fundamental technical background information
and terms of the research field. The information is divided into related sec-
tions for Web applications, mobile devices and communication.

Chapter 3 introduces and reflects the current state of the art in the re-
search fields of cross-platform content adaption, integration and migration.
Furthermore, some real-world applications and projects are presented.

Chapter 4 presents the proposed mobile integration architecture. The
main approach is presented with its significantly important requirements for
the approach to be applicable as well as by discussing each layer individually
upon its functionality.

Chapter 5 discusses and illustrates the developed prototypical application
including its architecture, implementation and user interface.

Chapter 6 evaluates the developed prototype and the conceptual ap-
proach upon its requirements and the applicability in the real world.

Chapter 7 concludes the document with outcomes of this work.



Chapter 2

Technical Background and
Disambiguation

The World Wide Web – or simply the Web – is a thriving environment where
new technologies and terms are frequently presented and known technologies
are quickly outdated or updated. This chapter provides technical background
information about relevant technologies and important terms, profounding
for the understanding of this work. Even though, it is supposed that the
reader has a certain understanding and knowledge of the technologies and
processes in the ubiquitous Web.

2.1 Related Terms

As this work focuses on the specific research area of the Mobile Web, it
is essential to provide a presentation of related terms before discussing the
research topic in the following chapters.

2.1.1 Web Application

The term Web application describes an application that uses a Web browser,
such as Chrome, Firefox, Opera, Safari or Internet Explorer, as a client1

to make functionality accessible to users. This type of application differs
from traditional Web sites on how and which tasks can be accomplished.
Web applications emphasize dynamic tasks like buying products, transferring
money or making reservations, whereas traditional Web sites are content
oriented and facilitate browsing and consumption of static information rather
than working with dynamic data [22].

1Clients are requesting resources from a server and represent the interface between an
application and its users, for example a Web browser displaying Web pages.

3



2. Technical Background and Disambiguation 4

2.1.2 Collaborative Web Application

A collaborative Web application (CWA) describes an application that pro-
vides a centrally shared space for multiple users to work together towards
achieving a common goal. The user-base is often referred to as a commu-
nity, working group or team. Compared to traditional Web applications, a
CWA has higher accessibility regarding the extent to which read/write/cre-
ate/delete permissions are extended to the users. Moreover, a CWA’s content
is driven by the user-base and the hosts primary function is to facilitate the
information sharing process. Key aspects to classify a CWA are the barrier-
to-entry (how a user needs to verify access to the application), accessibility
(permissions to manipulate content) and moderation (how a certain standard
of the shared information is upheld) [23].

2.1.3 Web-Based Integration

Web-based integration in the context of mobile device integration in Web
applications describes the technologies used to access and process the device’s
information. Such technologies in this case are traditional Web development
technologies such as JavaScript, HTML and CSS. This work is focused on
the current state of the art and possibilities of existing Web standards and
their technologies with regards on the accessibility of mobile sensors and rich-
media content, such as video, audio and image files, as well as the sharing of
content between multiple users across various platforms.

2.1.4 Client-Side Web Applications

Web applications have been developed on the server-side ever since due to
a much higher capability, consistency and performance of enterprise-class2

servers in comparison to Web browsers and devices on the client-side. Nev-
ertheless, such applications depend on how fast communications between a
server and its clients can be handled. This strategy is now changing. Over
the past few years, browsers have started to improve their implementations
of Web technologies (especially JavaScript engines like the V83) and Web
standards, which enables Web developers to build larger and more demand-
ing applications on the client-side with less dependency on the servers. Web
applications are sometimes mistakenly also referred to as Web apps, similar
to mobile apps4 which are more like robust stand-alone applications living
outside the Web browser ([8], [11]).

2Widely open, compatible and reliable platform.
3More information on the V8 engine can be found on https://code.google.com/p/v8/.
4Software applications built to run on mobile devices.

https://code.google.com/p/v8/


2. Technical Background and Disambiguation 5

2.1.5 Mobile Web

The Mobile Web refers to browser-based applications, developed especially
for mobile devices. In these days of soaring numbers of mobile devices enter-
ing the market, Web developers are faced with a whole new kind of interac-
tive devices. This challenging development opens up billions of new devices
to the Web on the one hand, but also urges the need for new usability pat-
terns, new knowledge and abilities on the other hand. The new innovative
wireless devices are providing a higher quality of life for today’s users, there-
fore the Web and its developers are focusing more and more on mobile Web
applications ([11], [7]).

2.1.6 Mobile Device

A mobile device can basically be categorized as such if it is portable, per-
sonal, a companion, easy to use and connected to the internet [7]. The market
for mobile devices and especially mobile phones is bursting, for example with
approximately 5,962,000,000 mobile-cellular telephone subscriptions at the
beginning of 20125 (about 85% of the world’s population). A huge devel-
oping process goes along with this trend. Thereupon this work is focusing
on the shining stars of this progress: Smartphones and Tablets. This sec-
tion introduces relevant terms in the mobile world and new possibilities for
developers.

2.1.7 Context-Awareness

According to Hsu in [12], the term context awareness was first mentioned in
1994 describing the user access on information about their current context,
including location, time, identity, activity and preferences. Over the past
few years, the Internet has greatly changed our way of sharing resources
and information. Especially sharing information through mobile devices has
become very popular. Mobile devices equipped with new technologies, such
as location sensors, created the ability to develop multimedia systems by
gathering the desired context information from the user’s environment [4].

2.2 W3C Standards

“The W3C mission is to lead the World Wide Web to its full
potential by developing protocols and guidelines that ensure the
long-term growth of the Web. . . . W3C’s vision of One Web.”6

With this quote the World Wide Web Consortium (W3C) clearly describes
its mission and why standards are so important for future developments.

5http://www.itu.int/
6http://www.w3.org/Consortium/mission

http://www.itu.int/
http://www.w3.org/Consortium/mission


2. Technical Background and Disambiguation 6

WebW3C’sMobile Web Initiative7 is currently emphasizing developments
for mobile Web applications and the adaption of Web applications to as
many kind of devices as possible. Particularly a deepening of integration
on hosting devices for Web applications should be granted trough specified
standards and APIs. These processes are essential and trend-setting for the
development of mobile Web applications. The following sections present some
of the most relevant and already widely supported APIs published by this
initiative, referring to [28].

2.2.1 HTML5 video element

This API is used for playing videos and audio files with captions. The
<video> element has several attributes including poster (display a repre-
sentative frame image when no video is playing), mediagroup (link multiple
media elements) or controls (provide default media controllers). The element
can load a file of the format MP4, WebM or Ogg via its src attribute. As long
as not all browsers support the same video formats, it is recommended to use
the cross-browser compatible version with alternative sources (<source>), as
shown in the following example:

1 <video width="320" height="240" controls autoplay>
2 <source src="video.mp4" type="video/mp4" />
3 <source src="video.webm" type="video/webm" />
4 </video>

2.2.2 HTML5 audio element

The HTML5 <audio> element represents a sound or audio stream. It has
similar attributes to the video element, such as mediagroup, controls and
autoplay (automatically play audio as soon as possible). In addition to the
traditional HTML tag initialization, as shown in the code example, the el-
ement can also be created and processed as a JavaScript object via the
constructors new Audio() or new Audio(src), where src is the URL to a
valid audio file of the format MP3, WebM, Ogg, WAV or AAC.

1 <audio controls>
2 <source src="audio.mp3" type="audio/mp3">
3 <source src="audio.oga" type="audio/ogg; codecs=vorbis">
4 </audio>

2.2.3 HTML Media Capture

This API defines an HTML form extension of the <input> element that fa-
cilitates user access to a device’s media capture mechanism, with the camera

7http://www.w3.org/Mobile/

http://www.w3.org/Mobile/


2. Technical Background and Disambiguation 7

or the microphone, from within a file upload control. Two attributes are in-
troduced with this API to the input element: accept (MIME type) and the
boolean capture. The following example captures any kind of audio file:

1 <input type="file" accept="audio/*" capture>

2.2.4 HTML Canvas 2D Context

The specification defines the 2D Context for the HTML5 <canvas> element,
which provides a surface to draw and manipulate graphics. All objects have to
be created and manipulated with JavaScript on the context object, which is
returned by the getContext() or getContext(”2d”) method. The example
shows how to draw a simple rectangle in the 2D context.

1 <script>
2 var canvas = document.getElementById("myCanvas");
3 var context = canvas.getContext("2d");
4
5 // x=10, y=5, width=120, height=120
6 context.fillRect(10, 5, 120, 120);
7 </script>

2.2.5 Touch Events Specification

This specification defines a set of low-level events for touch interaction with
a touch-sensitive surface. These events handle one or more points of contact,
as well as changes of contact. The most important events are touchstart,
touchmove and touchend, with event action information, such as the target
DOM element (target), touching fingers (touches, targetTouches) and ba-
sic touch information (coordinates, radius and angle). The following example
drags a specific element on touch, if only one finger touches the element.

1 <script>
2 var objectToDrag = document.getElementById("draggableElement");
3 objectToDrag.addEventListener("touchmove", function(event) {
4 if (event.targetTouches.length == 1) {
5 var touch = event.targetTouches[0];
6 objectToDrag.style.left = touch.pageX + " px";
7 objectToDrag.style.top = touch.pageY + " px";
8 }
9 }, false);

10 </script>

2.2.6 Geolocation API

The Geolocation API provides access to geographical location information
associated with the hosting device. The browser creates a specific Position
object on every Geolocation object (navigator.geolocation) request, with
possible values for latitude, longitude, altitude, speed etc. as shown in the



2. Technical Background and Disambiguation 8

following example. Together with the Google Geocoding API8, the location
can then be refined to country, city or street names.

1 <script>
2 navigator.geolocation.getCurrentPosition(success, error);
3
4 function success(position) {
5 alert("Altitude: " + position.coords.altitude);
6 }
7
8 function error(error) {
9 alert(error.message);

10 }
11 </script>

2.2.7 Device Orientation Event Specification

This specification defines three DOM events providing high-level data of the
physical orientation and movement of a hosting device: deviceorientation,
devicemotion and compassneedscalibration. The device orientation de-
scribes the rotation in a “East, North, Up” earth coordinate frame, which
is implemented as the DeviceOrientationEvent or the OrientationEvent.
The device motion describes the rotation as well as the acceleration in the
same earth coordinate frame, implemented as the DeviceMotionEvent.

2.3 Mobile Web Browser

As a mobile device forms a new and utterly different environment compared
to a desktop machine, Web browsers had to be adapted. Consequently,mobile
Web browsers were introduced to meet the demands of smaller screen sizes
and resolutions, bandwidths and user interactions. Nowadays, there are nu-
merous of preinstalled or downloadable mobile Web browsers for smartphones
and tablets. The following examples – furtherly described in [11] and [7] –
are currently the most widely used mobile Web browsers on the market9:

• Mobile Safari,
• Android Browser,
• Opera Mobile,
• Google Chrome
• Mobile Internet Explorer,
• BlackBerry browser,
• Symbian and
• Firefox Mobile.

8https://developers.google.com/maps/documentation/geocoding/
9http://www.netmarketshare.com/

https://developers.google.com/maps/documentation/geocoding/
http://www.netmarketshare.com/


2. Technical Background and Disambiguation 9

Mobile
Safari

BlackBerry 
Browser

Android 
Browser

Mobile
Internet 
Explorer

Firefox 
Mobile

Google 
Chrome

Opera 
Mobile

HTML5 video element 3.2 7 2.3 9 15 18 11

HTML5 audio element 3.2 7 2.3 9 15 18 11

HTML Media Capture 81936

HTML Canvas 2D 3.2 7 2.1 9 15 18 10

Web Audio API 6

Media Queries 3.2 7 2.1 9 15 18 10

Touch Events Specifi cation 3.2 7 2.1 10 15 18 11

Vibration API 11

Web Notifi cations 10 18

Geolocation API 3.2 7 2.1 9 15 18 11

Device Orientation Event 2181513012.4

Battery Status API 10

Proximity Events 15

Ambient Light Events

Media Capture Streams 12

Server-Sent Events 4 7 15 18 11.1

WebSocket API 1.2181510176

WebRTC

= full support = partial support = no support

Third party browsersNative mobile browsers

Figure 2.1: Browser support of native mobile browsers and third party
mobile browsers for W3C’s Mobile Web Application Standards (June 2013).

Figure 2.1 shows the the current state of browser support for the new mobile
standards specified by the W3C group in [28]. The table focuses on the
most widely spread mobile Web browsers – differentiated between native,
preinstalled mobile browsers and third party browsers – and from which
version on they support topic relevant APIs of W3C’s standards for Web
applications on mobile devices.

It can be seen that the Firefox Mobile browser is currently supporting
the widest range of standards, shortly before Mobile Safari, Google Chrome,
Opera Mobile and the BlackBerry Browser. Only the Android Browser and
especially the Mobile Internet Explorer are lacking implementation of major
and recently specified standards.



2. Technical Background and Disambiguation 10

2.4 Communication Technologies

Real-time communication in the Web is one well-defined goal of the two ma-
jor standardization bodies IETF10 and W3C, as stated in [17]. Usually the
communication between a server and client is built around the request/re-
sponse model of HTTP, so the client has to explicitly ask the server for data
changes each time. Real-time communication offers instant data exchange
and notification on changes between server and clients. The following sec-
tions describe recent APIs that seek to accomplish this goal, as stated in
[28], [16] and [18].

2.4.1 W3C APIs

As already described in 2.2, the World Wide Web Consortium is empha-
sizing on standardization of Web technologies. A particular focus is also on
improving the communication between the servers and browsers by intro-
ducing features like WebSockets and Server-Sent Events.

WebSockets

The WebSockets API 11, also specified by W3C’s Mobile Web Initiative, de-
scribes a bidirectional real-time connection between a server and a browser.
This technology provides a persisting connection between two sockets over
TCP (Transmission Control Protocol), which could only be accomplished
before by hacks like long-polling12 or browser plug-ins. The TCP connection
greatly reduces bandwidth usage once the connection is established, because
messages can then be sent back and forth without the overhead of HTTP
headers.

Server-Sent Events

This W3C API is perfect for push-based functionalities in Web applications.
The Server-Sent Events13 offers a one-way real-time transportation of data
with the EventSource object. Similar to WebSockets, this object is con-
necting the browser to the server and waiting for incoming messages to be
processed within the client-side application. A major benefit of Server-Sent
Events is its connection handling and message tracking. It remembers the
last received message ID after the connection dropped, with which it can
request the related backlog from the server.

10The Internet Engineering Task Force – http://www.ietf.org/
11http://www.w3.org/TR/websockets/
12Client constantly sends requests for possibly new available data to server.
13http://www.w3.org/TR/eventsource/

http://www.ietf.org/
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/eventsource/


2. Technical Background and Disambiguation 11

2.4.2 Node.js and Socket.IO

Node.js14 is an event-driven, asynchronous server-side JavaScript Web server,
powered by Google’s V8 JavaScript engine. This technology makes the appli-
cation’s communication significantly faster compared to traditional server-
side implementation. Socket.IO15 is a transport library for Node servers. In
addition to WebSockets, Socket.IO supports several other transport types
among which it can choose at runtime, if a browser doesn’t support Web-
Sockets. This capability gives Socket.IO a brilliant browser support.

2.4.3 WebRTC

The Web Real-Time Communication (WebRTC) is an open source project
that enables Web browsers to establish peer-to-peer connections via a simple
JavaScript API. In contrast to WebSockets and Server-Sent Events, this tech-
nology sends data directly between two browsers over UDP (User Datagram
Protocol) with the Real-Time Transport Protocol16. At the time of writing,
there is only one experimental implementation of the WebRTC API in the
Ericsson Bowser Browser17. Therefore this technology can’t be used for mo-
bile Web applications so far and will be left aside in this work. However, it
will be highly interesting in future real-time connection developments.

2.5 Sensors and Interaction

Numerous new technologies come along with this rapid development for mo-
bile devices. A sensor on a mobile device measures its environment and con-
verts the data into a readable signal for the observer. Most of them are well-
known and well-accessible, such as accelerometer, GPS or proximity. These
sensors offer a broad range of new interaction possibilities for mobile appli-
cations as well as for Web applications. Collectively, these sensors enabled
the development of applications for various new domains, such as healthcare,
social networks, safety and transportation, which is being researched in the
new area of mobile phone sensing. The research also focuses on processing
raw data (coming from external devices) on mobile devices. The following
list give an overview over currently available sensors, as described in [15],
[14] and well documented in the Android SDK (Software development kit)
Guidelines for Sensors18.

14http://nodejs.org/
15http://socket.io/
16http://www.webrtc.org/
17https://labs.ericsson.com/apps/bowser
18http://developer.android.com/guide/topics/sensors

http://nodejs.org/
http://socket.io/
http://www.webrtc.org/
https://labs.ericsson.com/apps/bowser
http://developer.android.com/guide/topics/sensors


2. Technical Background and Disambiguation 12

Accelerometer
This sensor measures the acceleration in a three-dimensional scale,
which is used to detect motions like shaking or tilting.

Digital compass
The digital compass determines the direction in which the device is
pointed to.

Gyroscope
A gyroscope measures the orientation of a device directly and is used
to determine the device’s rotation.

GPS
The Global Positioning System (GPS), allows the detection of a de-
vice’s earth position by satellites. It specifies the position in longitude
and latitude coordinates.

Microphone
Microphones are used to sense sound in the device’s environment.

Camera
A camera takes pictures or videos of its environment.

Touch
Modern displays can sense single and multi-touch actions of a user.

Proximity
The proximity sensor detects objects near to it, for example an ear
during a call.

Atmospheric pressure
This sensor measures the environment’s air pressure, which can be
monitored on the device.

Ambient light
Ambient light sensors are used to adjust the brightness of the screen
according to the environment’s light.

Humidity
A humidity sensor determines the relative humidity value of the sur-
rounding.

Ambient temperature
This sensor measures the air temperature, which can then be monitored
on the device.

2.6 Accessing device sensors

There are basically three ways to access sensor data on a mobile device. The
primary approach is to use native operating system APIs for each platform
(e.g. iOS, Android, Blackberry). Another approach is to access the context
data via JavaScript APIs as they were already mentioned in section 2.2. Also,
hybrid frameworks can be used, which are compiling the application’s code



2. Technical Background and Disambiguation 13

into numerous other preferred platform code. The following sections shortly
introduce the three approaches according to [26].

2.6.1 Native APIs

A native app is directly built leveraging the native APIs provided by the
operating system, such as iOS or Android. Every application is therefore
developed in the operating system’s (OS) specific language, like Objective C
for iOS or Java for Android. The software runs directly on the device and
gives the developer full access to the device’s abilities. It can communicate
with other devices or servers as well. Nevertheless, every implementation of
an application has to be developed separately for each specific OS and users
need to install the application manually on their devices.

2.6.2 JavaScript APIs

JavaScript APIs are used to create mobile Web applications. The provided
features are implemented by the various kinds of mobile and Web browsers.
Although not all browsers implement the same feature or same implemen-
tation of the features, these APIs increasingly provide seamless access to
mobile device abilities.

2.6.3 Hybrid Frameworks

A hybrid app is basically a native app with HTML5 embedded in it. Hybrid
apps aim to use the benefits of both approaches mentioned above, but to
negate their disadvantages. Developing is a fast process in comparison to
native apps or mobile Web applications, because hybrid frameworks reduce
time and effort for implementation due to a simple and well structured de-
velopment approach: implement once, build for several operating systems.
As the implementation is mostly done with Web technologies like HTML5,
such applications are also often referred to as HTML5 apps. This approach is
easy-to-use, well documented and needs minor customization for uncomplex
applications, but doesn’t provide a real native app look-and-feel for com-
plex applications. Examples of such frameworks are PhoneGap19, Corona20

or Titanium21.

19http://phonegap.com/
20http://www.coronalabs.com/
21http://www.appcelerator.com/platform/titanium-platform/

http://phonegap.com/
http://www.coronalabs.com/
http://www.appcelerator.com/platform/titanium-platform/


Chapter 3

State of the Art

This chapter introduces some related work with unique approaches of cross
device Web applications in the ubiquitous Web. All the described approaches
are targeting the same research domain with different research aspects, such
as adaption, integration and migration of Web applications for mobile de-
vices. Following related work, some real world projects with similar or par-
tially similar research aspects are presented and briefly analyzed.

3.1 Adaption

The adaption of Web applications (mostly of existing applications) to mo-
bile devices has been an agile developing field since the first mobile devices
with Web browsers entered the market. Over the past years, we have seen
an increasing variety in mobile devices and therefore different screen sizes,
resolutions and interface representations in mobile browsers. Particularly the
user interface (UI) is in the focus of this adaption processes. As this work
is concentrating on the integration of mobile devices in Web applications,
this section focuses on the adaption of a Web application considering mobile
dependent context-aware information and application structures instead of
the user interface.

One novel generic approach to add context-aware features to an existing
Web site is presented by Van Woensel, Casteleyn, and De Troyer in [20]. The
approach leverages on-the-fly adding of such features, which means that the
context-aware information is added asynchronously to a third party Web site
while the user is browsing the Web site with a mobile device. This is achieved
by extracting the Web site’s semantic information, matching this information
with the gathered user’s context information and finally adapting the Web
site according to the matches. An example for a context-aware feature in a
collaborative Web application could be to show relevant information for a
collaborating team when one of its members arrives at a geographical point
of interest for the team’s subject (e.g. a multiplayer game where users have

14



3. State of the Art 15

to visit locations in the real world). This shouldn’t be added as a displaying
feature but instead directly detectable and processable by the collaborative
application logic.

The researchers of the Human Computer Interaction Group at HIIS Lab-
oratory1 (Human Interfaces in Information Systems Lab) present an entirely
different adaption solution in [2], by using Automatic Reverse Engineering2.
This approach focuses on the adaption of UI elements across platforms, by
scanning the application’s code and translating the core application into
MARIA3, an universal language for service-oriented applications in an ubiq-
uitous environment. The resulting abstract concept includes the document’s
structure, its functionality and its visual representation, which can then be
adapted to any kind of device and refined by specific, device-dependent lan-
guages. This solution enriches the adaptability of Web applications, but also
requires great additional processing time for the reverse engineering and
adaption process. Moreover, the system produces significant inconsistency
in the resulting concept, as it can be seen in the paper’s validation section.

3.2 Integration

This section introduces solutions for the integration of mobile devices from an
architectural point of view, with attention to the user’s and device’s context
information. Some of the following approaches are also capable of working
with mobile sensor data and rich-media content.

One approach of providing context-aware information is presented in [13].
According to Kapitsaki, Kateros and Venieris, it is essential to separate the
application logic from the context adaption in order to provide context-
aware Web applications based on Web services. Thereupon, existing Web
services are modified according to certain mobile context information, before
the services are added to the Web application’s presentation. This paper,
published in 2008, considers an important architectural aspect for modern
context information integration: the separation of the context adaption from
the application logic.

An entirely different approach, concentrating on the integration of mobile
devices in context-aware mobile Web applications, is presented by researchers
of the Department of Computer Science in Oviedo in [6]. They focus on an
architectural solution for handling a device’s context information, by pre-
senting a modular Web browser that is aware of specific context information
XML tags. Any application could then define, in XML tags, which context
information is needed for it to run properly. The modular browser is re-

1http://giove.isti.cnr.it/index.php
2Process to analyze and rebuild the application’s structure, functionality and opera-

tions, based on [2].
3Model-based language for interactive Applications.

http://giove.isti.cnr.it/index.php


3. State of the Art 16

sponsible for detecting incompatibilities between a device and the specified
requirements, asking the user for permission to use the context information
and controlling the scheduled tasks. This is an interesting and expandable
approach, which would state an enormous benefit for Web developers, but
it still needs a lot of developing effort compared to the development using
existing Web technologies.

I-Ching Hsu discusses a mechanism to facilitate the interoperability and
reusability among heterogeneous context-aware systems and various mobile
devices in [12]. He particularly focuses on the integration of Web 2.0 tech-
nologies4 as a backbone in a Multi-layer Context Framework (MCF), in order
to provide uniform access to context information. The MCF separates the
context sensors/information/services and presentation, as well as the mo-
bile devices and the context-aware applications. The described architecture
is distinguished by its interoperability and the uniform access making it a
reasonable approach for developing context-aware collaborative applications.

3.3 Migration

Nowadays, migration of Web applications across devices is experiencing in-
creasing importance, as flexibility is a key necessity for modern multi-device
users. Users want to switch from one device to another instantly with a
seamless experience on all devices. The following approaches introduce some
solutions to accomplish seamless migrations of the structure, state and ses-
sions.

Ghiani, Paternò and Santoro from the HIIS Laboratory are presenting an
approach in [10] to manipulate the Web pages in a way that it can be split
up and shared across devices. Especially certain information at a time (e.g.
form input data, search results, product information etc.) should be shared
between multiple users across platforms. This approach is migrating existing
interfaces to various kinds of devices and concentrates on DOM structure
manipulation rather than device dependent context information.

The article of Bin Cheng [5] shows another good approach of cross-device
collaboration and integration of mobile devices, by the use of a virtual
browser. His research mainly focuses on how to seamlessly perform cross-
device operations. Thereupon, he supposes to separate the logical workflow
of an application from its presentation and to generate a single DOM with
several sub DOM trees to be distributed to the corresponding devices.

The HIIS Laboratory group also performed research in the area of state
persistency on Web application migration across multiple devices, as de-
scribed in [3]. They particularly focused on how to preserve a Web applica-
tion’s state by its links, element ids and JavaScript objects. In this paper,

4Technologies which provide a medium for sharing and exchanging of resources, e.g.
RSS, JavaScript, Ajax, SOAP, REST.



3. State of the Art 17

they present a novel solution by periodically scanning the current state,
wrapping it in a JSON5 object and responding to a client request with a
migrated, state consistent Web page.

Furthermore, the researchers of the HIIS Laboratory group are also tar-
geting an important migration issue: Security. In [9] they analyze the risks
raised by such pervasive applications and present solutions to address them.
Security risks can be the theft of private information or the intrusion of
malicious versions of the migrated applications. Solutions presented by the
research group are for instance to exchange data via the HTTPS protocol,
run the application as a HTTPS connection, use a proxy to preserve correct
data and to migrate the DOM form state between devices.

In addition to security issues, there are papers targeting the new given
possibilities of accessing and migrating Web sessions with mobile devices.
Alexandre Alpetite presents a basic way to migrate a Web session, with its
session state and migration parameters, by dynamically creating a scannable
2D-barcode that embeds the information [1]. Another way of accessing re-
stricted Web services by using biometrics is discussed by Carlos Vivaracho-
Pascual and Juan Pascual-Gaspar in [21]. Biometrics is divided into physio-
logical (e.g. fingerprint, face, iris, etc.) and behavioral (e.g. voice, handwrit-
ing, gait, etc.) categories and can already be partly used on mobile devices
to identify a person and therefore grant access to Web sessions.

3.4 Related Projects

With the thriving development of mobile devices comes a whole range of
real world projects aiming to support collaboration across multiple devices.
Only a few of them are also focusing on the use of mobile device specific
information and the new input and output possibilities. The following sec-
tions present some applications concentrating on the collaboration of mul-
tiple users within one application and/or with mobile devices. First, some
basic collaborative applications are presented, then two real world projects
are analyzed, which are targeting a similar research field as this work.

3.4.1 Collaborative Applications

Most of the currently available collaborative applications are natively built
apps, desktop Web applications or a combination of both. The following
projects are briefly analyzed and evaluated in contrast to the work’s subject.
They are targeting private, business and theoretical uses of such systems.

5JavaScript Object Notation is a compact and readable data interchange object.



3. State of the Art 18

Google Wave alias Wave in a box6

Google Wave is a suspended stand-alone application for instant content shar-
ing and manipulation in collaborative waves. The project is currently under
development as the open source projectWave in a box (WIAB) at the Apache
Software Foundation. WIAB targets on an improved federation between mul-
tiple wave servers and its use as an open source project, rather than the
integration of mobile devices into the application.

Scriblink7

This Web application offers a multi-user online whiteboard to exchange ideas
and sketches with others. The owner also offers a business subscription to
embed a customizable version of the service in other Web applications. Al-
though it’s a neat collaborative service, the application does not focus on
any mobile adaption or integration so far.

Campfire8

Campfire is a web-based group chat tool for multiple users with secured
chat rooms, where text messages and files can be exchanged. Furthermore,
the application can be accessed and used via a native mobile app. The
tool allows multi-device collaborative interaction, but only concentrates on
desktop-oriented input/output possibilities.

aceproject9

This application is a project management, time tracking, human resources
management and collaboration tool. The aceproject is especially designed for
business use and offers a Web application as well as an adapted mobile Web
application. Users only work together synchronously and the collaboration
centers on user activities.

AgileZen10

AgileZen is a fully web-based project management tool for multiple teams
to collaborate on multiple projects. This tool also integrates several collabo-
rative applications like Campfire and github (collaborative code repository),
but there is no explicit mobile integration considered for this tool so far.

6http://www.waveprotocol.org/
7http://www.scriblink.com/
8http://campfirenow.com/
9http://www.aceproject.com/

10http://www.agilezen.com/

http://www.waveprotocol.org/
http://www.scriblink.com/
http://campfirenow.com/
http://www.aceproject.com/
http://www.agilezen.com/


3. State of the Art 19

clinked11

This Web application focuses on project management and data sharing for
multiple users or teams. Clinked also offers mobile apps to always keep track
of the collaborator’s activities and easily share rich-media content. Partic-
ularly the asynchronous information and rich-media data sharing are well
designed collaborative aspects, but the developers decided to implement na-
tive mobile apps for the purpose of use on mobile devices instead of a Web
application.

Dazzle

Dazzle is a remote collaboration tool to improve face-to-face collaboration
of a product designer team during meetings. The process should thereby be
enriched by sharing rich-media content, such as video, audio and image files,
across devices [19]. This paper presents a theoretical possibility to create a
collaboration zone for better sharing, but without taking developing aspects
into account.

3.4.2 Mobile Controllers

The integration of mobile devices in Web applications has always been a
far vision from a Web application’s point of view, until recent developments
took place as introduced in section 2.2 and 2.4. There are two real world ex-
amples, as described in the following sections, concentrating on the aspects
of these new possibilities to use mobile devices as controllers. These exam-
ples are simple games rather than collaborative Web applications. However,
the applications are still relevant to this work, because multiple users are
interacting with one application in one environment with various different
devices at a time.

Unfortunately, the two games could not be tested at the time of writing,
because the applications do not work on the tested platforms: LG Nexus 4
(Android JellyBean 4.2.2), Samsung Galaxy S (Android Eclair 2.1), Samsung
Galaxy Tab 2 (Android 4.0.4), BlackBerry PlayBook (Tablet OS), iPhone 4
(iOS 5.1) and iPhone 5 (iOS 6.1.3). They were tested in all major mobile
browsers with 3G network and WIFI connection.

Space Words

This game was created by GamesForLanguage12, a company offering sim-
ple HTML5 games tailored for adults who want to learn foreign languages
in a playful way. SpaceWords is a HTML5 game where up to 4 users can

11http://clinked.com/
12http://www.gamesforlanguage.com/

http://clinked.com/
http://www.gamesforlanguage.com/


3. State of the Art 20

control spaceships with their smartphones, in order to collect graphical rep-
resentations of foreign words in a space room. The game is available under
http://spacewords.gamesforlanguage.com/.

It was developed to work as a Web application with at least two devices
needed. One device, usually a desktop computer or laptop with a desktop
Web browser, takes the role of the space room, in which the game takes
place and the remotely controlled ships are shown. A Smartphone serves as
a mobile controller for a space ship, where the interface shows touchable
controlling buttons for left, right, front and back. Moreover, the application
is also listening to the device’s acceleration, which is the real purpose of
use for controlling the ships. A representation of the desktop and mobile
interface can be seen in figure figure 3.1. In order to access the Web session,
this game provides a scannable QR-Code with an URL to the active session,
so the camera of the smartphone can also be used for a better interaction
with the Web application.

According to James Burke, developer of the game, accessing and pro-
cessing the mobile device orientation with the new HTML5 standards is no
longer difficult or time consuming. In combination with Node.js, Socket.IO
and HTML5 mobile devices could be well integrated in Web applications [25].

Figure 3.1: SpaceWords mobile and desktop view with remotely controlled
space ships.

Shield Attack

Shield Attack was developed by UNIT913 as a multiplayer, cross-platform
game, where the user can use the smartphone to throw shields into a game
environment, by swiping over the smartphone’s screen, on a Desktop or TV.
The mobile application was developed using Adobe AIR with Flash, which

13http://www.unit9.com/

http://spacewords.gamesforlanguage.com/
http://www.unit9.com/


3. State of the Art 21

is a flexible solution, because the same source can be used for different plat-
forms. The smartphone is seamlessly connected to the Web application, a
3D Unity14 game, through a HTML5 WebSocket [27].

The interesting research aspect in this game is the use of a mobile and
desktop or TV device working together as one application via HTML5 Web-
Sockets. Besides this fact, the application basically uses native applications
and no real Web application. This means that necessary plug-ins in the Web
browser and the mobile apps for the smartphones need to be installed man-
ually. Figure figure 3.2 shows the mobile’s native application view and the
Unity game environment view of a desktop or TV.

Figure 3.2: Shield Attack’s mobile and desktop/tv view with throwing
shields.

14A game development ecosystem.



Chapter 4

Mobile Integration
Architecture

This chapter introduces the main conceptual approach of the research topic.
The presentation of this approach is following an explicit listing of essential
requirements before concluding with a detailed presentation of the architec-
tural layers of the approach.

4.1 Integration Approach

As it has already been described in section 2.1.1, there are different kinds
of Web applications. Either a Web application is developed from a web-
centric, mobile-centric or a hybrid point of view. Therefore there are plenty
of possibilities to access mobile device sensors to gather context information
or rich-media content, as explained in section 2.6. Apparently, developing
mobile native apps, mobile Web applications or hybrid apps are the common
ways to interact with the Internet. Besides, most of the existing pages in
the Web are not designed for mobile use or are “only” Web sites or Web
applications adapted for use on mobile devices.

4.1.1 Application Type

Since mobile devices have seen enormous improvements in processor per-
formance, memory capacity and network connectivity over the past years,
Web applications are gaining more and more attention, as it can be seen in
recently published figures about mobile internet access by the International
Telecommunication Union (ITU). Another noticable reason for the increasing
development of Web applications for mobile use is money. Developing mobile
apps costs a lot of money, because the application has to be reimplemented
for various platforms and mobile Web applications or hybrid apps also need
a lot of adaption to run properly on mobile devices. On the contrary, Web

22



4. Mobile Device Integration Architecture 23

applications are following the “write once, deploy everywhere”1 policy.
This work focuses particularly on Web applications developed with com-

mon Web technologies only, in order to facilitate a web-based integration
of mobile devices. Such Web technologies, with focus on client-side integra-
tion in this work, are HTML, JavaScript and CSS. The recent versions of
the markup language HTML (HTML5) and the style sheet language CSS
(CSS3) have brought groundbreaking innovations for the adaption of Web
applications to mobile devices. JavaScript is the most popular scripting lan-
guage on the Web and revolutionized Web development by introducing asyn-
chronous communication with the XMLHttpRequest object in 2006, the so
called Ajax2 technique. Moreover, JavaScript gains additional importance
by the recent standardization process of the W3C for mobile Web applica-
tions, as already presented in section 2.2, and consequently represents the
key aspect for the integration of mobile devices in Web application by Web
technologies.

4.1.2 Architecture

Technologies for the mobile integration are present and mobile devices pro-
vide powerful platforms, but most of the presented architectures, for example
in [7], [8] or [13], are focusing basically on the adaption to mobile platforms.
On the contrary, some architectures presented in [6] or [5] do build on com-
mon Web technologies and mobile devices, but with the use of additional,
custom services.

The architecture for this approach not only introduces a reasonable adap-
tion for but also an integration of the mobile devices and their new capabil-
ities. These capabilities, especially new interaction opportunities, should be
facilitated in order to provide an enriched, seamless and quick collaboration
between multiple users across devices. A central issue for the integration is
the detection, access and processing of context information (e.g. device type,
sensor capabilities, sensor data, user preferences).

As figure 4.1 on the next page shows, the approach basically consists of
the four layers Device Layer, Context-Aware Layer, Logic Layer and Com-
munication Layer, as well as a Database and a Web Server. These layers
are separated from each other in order to provide an application running
independently from its client devices. Above all, the Context-Aware Layer
should act as an interface between the application and the interacting client
devices. The Context-Aware Layer, the Logic Layer and the Communication
Layer together illustrate the core Web application. Although the Web server
might also be regarded as a main part of the Web application, it is more
considered to be responsible for forwarding requests and the data exchange
in this context rather than handling parts of the application logic.

1Slogan by Sun Microsystems for their Java language.
2Asynchronous JavaScript and XML.



4. Mobile Device Integration Architecture 24

PDA Smartphone Tablet Desktop

Device Layer

Context Detection Context Access Context Processing Interface Adaption

Context-Aware Layer

Application Logic Clients User Roles Application State

Logic Layer

Communication Layer

Database Web Server

W
e

b
 C

lie
n

t

Figure 4.1: Mobile integration architecture for collaborative Web applica-
tions.

4.2 Requirements

The proposed system needs to conform to certain requirements in order to
provide a satisfying functionality. These requirements are defined with atten-
tion to a seamless technical functionality for a collaborative Web application
across multiple devices. Emphasized are cross-platform compatibility, multi-
user capability, asynchronous communication and state persistence, whereas
topics like security or device dependent interface policies are not focused on
in particular.

4.2.1 Cross-Platform Compatibility

One of the central themes of the proposed system is the cross-platform com-
patibility. The application should be fully functional, accessible and interop-
erable across all modern types of smartphones, tablets, PDAs, desktops and
laptops. This can be achieved by an appropriate detection of the device’s
context. Especially the handling of existing or non-existing device capabili-
ties, required by the application, is crucial for its full functionality. It is of
major importance for the compatibility, that the application is aware of the
device’s context and can deal with any possible platform. The context infor-
mation should then be used to execute platform dependent code to access
and process sensor data.



4. Mobile Device Integration Architecture 25

Another fundamental topic for a high cross-platform compatibility is the
adaption of the user interface to the device’s environment. The user interface
is an essential aspect for an application to be compatible, because if the user
can’t cope with the application’s graphical user interface on any device, the
application cannot be considered fully compatible. Therefore the interface
should be built and styled taking the given context information into account.

4.2.2 Multi-User Capability

As this document is dealing with collaborative Web applications, it can be
assumed that the application is intended for multi-user usage. Thus, the
system should be developed to support multiple active users at a time, with
a state dependency upon all users’ activities. Every user should be aware of
other active users and their collaborative activities, because the application’s
state changes according to these activities. For this reason, users should
always be associated with a certain state, coordinated by the application’s
logic and communicated to other client instances to preserve the application’s
interoperability.

It is not compulsory for a multi-user application to run with multiple
users only. Certainly it would not make much sense in most cases for Web
applications, because an application should be usable as soon as a page is
requested, not just when another user joins the Web session. But still there
are some cases this can make sense, for example in the game Space Words,
presented in section 3.4.2, where one user opens up a space room (Web
session) and waits for other users to join the session, before the game starts.

However, it is of major importance that the application is not restricted
to the number of active users. It should be operable by a single user as well
as multiple users, besides the fact that some services may require more users
to work properly.

4.2.3 Asynchronous Communication

A collaborative application highly depends on its communication, like a
project team depends on a comprehensive communication with the purpose
to achieve its corporate goal. Collaborative applications can enrich and facil-
itate this communication between teams by sharing information, documents
and rich-media content in one place, from everywhere, with everybody. Like
in real life, a conversation in a collaboration group does not always work syn-
chronously, because collaborators hear and see others while they are talking
and not only when they finished talking.

Accordingly, the communication should be done asynchronously, to fa-
cilitate the conversations and prevent communication troubles. This means
that data is sent intermittently between the server and its clients when data
should be sent, instead of requesting and/or sending data in a certain time



4. Mobile Device Integration Architecture 26

interval. As soon as the user types words in a chat service or a shared doc-
ument, all other users will see the changes “immediately”, only with a small
latency produced by data processing and transmission delay.

If the communication would be processed synchronously, the application
would require a short time interval for steady requests or an open stream
between client and server, which would cost more processing time and pro-
gramming effort. Although asynchronous communication cannot ensure per-
fect real-time communication, synchronous communication additionally pro-
duces a higher risk of communication and document merging conflicts due
to its lack of continuity.

4.2.4 State Persistence

Another essential requirement for a collaborative multi-user Web application
is to preserve its state persistence. The application needs to be aware of all
active clients and activities, as well as their individual states. Otherwise, the
application’s functionality can break due to invalid states or sudden state
changes. Keeping track of its state as well as the clients’ state is therefore
essential for an application. The states can be saved and modified in a lo-
cal storage (server and/or client device), offline storage or in a connected
database. Each and every application is defined in different ways, therefore
it is not always easy to filter out the needed information to preserve a state.
The following list gives some examples of possible values to save for a client’s
or application’s state:

• Unique Identifier (UID),
• Parent processes and/or child processes,
• Action state (e.g. ready, waiting, processing, stopped),
• JavaScript state,
• Form inputs and
• Socket ID.

State persistence is not only important to avoid errors while using the ap-
plication, but also to provide seamless multi-platform use. If a user changes
from one device to another, the state should be persistent on both devices in
order to provide a satisfying user experience. Furthermore, if a user’s state
is invalid, other users might not be able to communicate properly with this
user and therefore the collaboration within the team gets problematic or
even fails.

4.3 Device Layer

This layer represents mobile devices like smartphones, tablets and PDAs as
well as desktop-like devices such as laptops and standalone computers. In



4. Mobile Device Integration Architecture 27

the case of web-based technologies, the devices are only accessible from the
application through its Web browsers. Consequently, only the Web browsers
are responsible for the supply of context information and sensor data by their
individual implementation.

Major desktop Web browsers, such as Mozilla Firefox, Google Chrome,
Opera, Safari and Internet Explorer, are already well established in the Web
and are not in particular focus of this work. Important mobile Web browsers
were already introduced in section 2.3 and significant differences in the sup-
port of new W3C’s mobile Web technologies are shown in figure 2.1.

4.4 Context-Aware Layer

The context-aware layer is the central layer for the mobile integration system,
as it is the interface between the devices and the application logic. This layer
transmits data between the logic layer as well as the devices and manipulates
the representation on the devices, particularly the application’s representa-
tion in the devices’ Web browsers. The main reason for this separation is
to provide a device independent application logic. Of course the application
might offer services that are dependent of a device’s functionality, such as
orientation event data, but the context-aware layer is only responsible for
context information and not for the logic.

First, the layer detects the device’s capabilities, then it accesses the prede-
fined device sensors and information and lastly it processes all the incoming
and outgoing data between the devices and the application.

4.4.1 Context Detection

Context detection is the initial task of the context-aware layer, which is per-
formed to create a full state of the available device’s context information.
Such context information states represent the accessibility of sensors and
given environmental information. The first step for every mobile Web appli-
cation should be the identification of the browser type, so if it is a mobile
or desktop client. This identification is the first stage in the application’s
logic workflow. As soon as the identification was successful, the context de-
tection detects all possible features implemented by the current browser and
possibly even adds missing features.

Web Browser Type

Basically, there are two approaches for Web developers to identify the browser
type. On the one hand, by parsing the window.navigator.userAgent object
of the browser and on the other hand, by detecting supported features. The
most common way for simple browser type detection, in order to differ be-
tween mobile and desktop browser, is to parse the user agent object. This can



4. Mobile Device Integration Architecture 28

be accomplished by several JavaScript plugins, like the open source project
Detect Mobile Browsers3, Browser Detect4 and Dojo’s Browser (User Agent)
Sniffing5, or by implementing a simple parsing process, as presented in the
following code example.

1 <script>
2 function isMobile () {
3 userAgent = JSON.stringify(window.navigator.userAgent);
4 if (userAgent.match(/Android/i)
5 || userAgent.match(/webOS/i)
6 || userAgent.match(/iPhone/i)
7 || userAgent.match(/iPad/i)
8 || userAgent.match(/BlackBerry/i)
9 || userAgent.match(/Windows Phone/i)

10 || userAgent.match(/IEMobile/i)
11 || userAgent.match(/Opera Mini/i)
12 || userAgent.match(/Opera Mobi/i)
13 ) {
14 return true;
15 } else {
16 return false;
17 }
18 }
19 </script>

Anyway, parsing the user agent is generally not the recommended way to
detect the browser type anymore, because user agent information can be
inaccurate due to user agent spoofing. User agent spoofing describes the pro-
cess of Web browsers spoofing their identity in the user agent object, for
example a Chrome browser pretends to be a Safari browser as well, in order
to receive more server-sent information and therefore increase their compat-
ibility. Furthermore, user agent sniffing – describing the process of parsing
the browser type and eventually also the version – is also a threat to the ap-
plication’s functionality by possibly misinterpreting the client Web browser.
However, only applications with specific browser-based implementations are
confronted with these issues. In contrast, this approach presents a feature-
based architecture, hence parsing the user agent for browser type detection
is no threat to the application.

After the successful identification of the Web browser type, the context-
aware layer needs to detect the supported technologies and context infor-
mation on the device. Therefore it needs to check which APIs are provided
by the browser, especially HTML5 and new mobile APIs. Again, there are
different possibilities to detect and handle features by own standardized im-
plementation or by the use of JavaScript libraries.

3http://detectmobilebrowsers.com/
4http://www.quirksmode.org/js/detect.html
5http://dojotoolkit.org/reference-guide/1.7/quickstart/browser-sniffing.html

http://detectmobilebrowsers.com/
http://www.quirksmode.org/js/detect.html
http://dojotoolkit.org/reference-guide/1.7/quickstart/browser-sniffing.html


4. Mobile Device Integration Architecture 29

Standardized Feature Detection

Basic feature detection can be done via the window or window.navigator
object or DOM elements, as it can be seen in a few examples below. These ex-
amples show simple native JavaScript API object detection, HTML element
tests and CSS module tests. Additionally, Opera 12.10 and Firefox Aurora
already provide the native @supports rule for CSS detection, which tests
requested CSS modules and provides return-blocks for further operations.

1 <script>
2 function defineContext() {
3 orientable = window.DeviceOrientationEvent ||

window.OrientationEvent;
4 streamable = navigator.getUserMedia ||

navigator.webkitGetUserMedia ||
navigator.mozGetUserMedia ||
navigator.msGetUserMedia;

5 vibrateable = "vibrate" in navigator;
6 battery = navigator.battery ||

navigator.webkitBattery ||
navigator.mozBattery;

7 canvasable = !!document.createElement('canvas').getContext;
8 shadowable = !!document.createElement('div').style['MozBoxShadow'];
9 }

10 </script>

Library Feature Detection

Over the past years, several JavaScript libraries emerged for the front-end
Web development community, providing feature detection functionality for
cross-browser compatibility checks. Some famous examples are Has.js6, which
is a library focusing on tests for JavaScript features (e.g. Array, String,
Object, JSON, console, ActiveX, XHR, etc.), or Detector7, a PHP- and
JavaScript-based browser- and feature-detection library. The most widely
used feature detection library is Modernizr8, which is focusing on HTML5
and CSS3 features, as well as other features like Geolocation, Touch Events
and WebGL. The library improves development by its simple use and full
list of detectable features. The following code example illustrates the signifi-
cant difference in the usage compared to the above example with traditional
native feature detection.

1 <script>
2 function defineContext() {
3 orientable = Modernizr.deviceorientation;
4 streamable = Modernizr.getusermedia;
5 vibrateable = Modernizr.vibrate;

6http://badassjs.com/post/1217357060/hasjs
7https://github.com/dmolsen/Detector
8http://modernizr.com/

http://badassjs.com/post/1217357060/hasjs
https://github.com/dmolsen/Detector
http://modernizr.com/


4. Mobile Device Integration Architecture 30

6 battery = Modernizr.battery;
7 canvasable = Modernizr.canvas;
8 shadowable = Modernizr.boxshadow;
9 }

10 </script>

Polyfills

polyfills is a modern technique to handle cross-browser feature compatibility.
A polyfill is a code snippet that implements the required features if they
are not available in the target browser. This technique adds functionality,
especially HTML5 and CSS3, for older browsers or modern major browsers
to ensure a cross-browser support experience in Web applications. Examples
for libraries using polyfill or scripts providing the functionality are Socket.IO,
HTML5Shim9, Respond.js10, MediaElement.js11, Store.js12 and also Has.js
and Modernizr. Modernizr is one of the most popular cross-browser feature
detection libraries, because it not only provides feature detection, but also
polyfills for almost every modern API.

But this does not mean, that every missing API should be polyfilled,
because this would result in a massive overhead. Polyfills should only be
used for really necessary features. Modernizr provides this functionality to
test and conditionally load polyfills by including the asynchronous resource
loader yepnope.js13.

In order to improve the adaption of the user interface, the layer can also
detect the device’s screen size and resolution. Additionally, the layer can
detect device independent environmental context information, such as the
user’s location or the current weather for this specific location. The last, but
most important task of the context detection is to save the gained informa-
tion in states, as it can be seen in the above code examples. This represents
the state of the device’s available context information within the application
and is of significant importance to the application logic. Feature detection
libraries already provide state condition access.

4.4.2 Context Access

After the context was detected and the availability of the features saved
in states, the context-aware layer provides access to the sensors and other
features. This process starts by conditionally checking the availability state
of each feature. If a feature (like camera sensor or vibration) is available,

9https://code.google.com/p/html5shim/
10https://github.com/scottjehl/Respond
11http://mediaelementjs.com/
12https://github.com/StevenBlack/store.js/tree/
13http://yepnopejs.com/

https://code.google.com/p/html5shim/
https://github.com/scottjehl/Respond
http://mediaelementjs.com/
https://github.com/StevenBlack/store.js/tree/
http://yepnopejs.com/


4. Mobile Device Integration Architecture 31

the layer should access the context and sense data as provided by the fea-
ture’s API, which is also depending on the Web browser implementation.
The sensed data is then provided to the context-aware layer for further pro-
cessing.

Data Sensing

Data sensing is one of the main advantages of standardized Web technolo-
gies compared to native mobile technologies, because the standardized APIs
provide single predefined objects and methods to access the desired context.
On the contrary, accessing context with native technologies differs a lot,
for instance the access to the camera between the Android- and iOS SDK.
However there are still minor variations in browser implementations of the
standardized APIs, especially between WebKit-based browsers (Chrome, Sa-
fari, Android etc.), Firefox Mobile and Mobile Internet Explorer. The W3C
and the IETF are emphasizing a standardized implementation and use of
features to reduce the differences between browser implementations.

Basically, data is sensed by event listeners perceiving state changes of
features (e.g. accelerometer, gyroscope, touch, location, audio or battery)
or by simple object methods provided by the API. Especially mobile fea-
tures like sensors require a steady check for state changes. On the other
hand, environmental context information sometimes may only be sensed
once without an event listener for sufficient context information. An ex-
ample is to provide the initially sensed location for further processing by the
navigator.geolocation.getCurrentPosition() method. The data sens-
ing process results in formatted values, specified by the implemented APIs.

4.4.3 Content Processing

As soon as data is available, the context-aware layer processes data for the
application logic or for the view representation. The former process is called
Input Processing and sends formatted data from the device to the application
logic, whereas the latter process is called Output Processing and receives data
from the application logic in order to add new content to the application view.

Input Processing

Once data is sensed, it can be processed by the sensing event listener or by
manipulating the object with the valid sensed data. As the sensed data some-
times varies due to different API implementations, it is of high importance
to process it and provide generalized as well as simplified readable data to
the application logic. Hence, the logic layer does not have to deal with data
validation and can mainly concentrate on the application’s logic.

An example for different implementations of the same feature in Web
browsers is the device orientation event. WebKit-based browsers and the



4. Mobile Device Integration Architecture 32

Gecko-based browsers do have the same W3C implementation of the API
now, but they provided totally different formatted values for orientation
changes until an update of the Gecko version in the end of 2011. Therefore
it is important to process and map the data to a generalized format before
it is used by the application.

Another example for using context processing to prepare sensed data is
when additional services are required for proper information. For instance,
the navigator.geolocation.getCurrentPosition() method returns geo-
graphical values for latitude, longitude, altitude and accuracy, but no infor-
mation about the state, region or city. Especially for Web applications it
might sometimes be more useful to work with human-readable information
instead of numerical values. The Google Geocoding API14 is one popular API
providing this functionality and can be used to enrich the sensed location
data, before sending it to the application logic.

Nevertheless, the use of external services and the implementation of long
processing code is performance intensive and should only be used if really
necessary. Additional services should not be used within event listeners, but
only for initial processing or on seldom state changes.

The context-aware layer is also be able to process innovative types of
interaction, such as scanning 2D barcodes or fingerprints. After the context
was processed, the application logic is notified about the action, results,
possible errors and sensed data, so it can decide what has to be done with
the gained information rather than validating the input.

Output Processing

The layer is not only responsible for sensed device data, but also for process-
ing incoming information from the application. Such incoming information
could be actions to add any kind of new content, notify the user, update other
users’ activities or simply to change content. First of all, the context-aware
layer needs to identify the executable action. Then it checks for support
by the previously detected context states. If the Web browser supports the
action, it can be executed on the client device.

The Vibration API, for instance, offers the ability to trigger a vibration
event on a mobile device. If the application logic decides to send a vibration
action to the device, the context-aware layer first identifies the action, checks
its support and executes the action only if the API is supported by the Web
browser implementation.

Another example for an action could be the adding of a new video file to
the application’s view. Therefore the context-aware layer only adds the new
content, if the output processing process verifies support of the file type and
action.

14https://developers.google.com/maps/documentation/geocoding/?hl=en

https://developers.google.com/maps/documentation/geocoding/?hl=en


4. Mobile Device Integration Architecture 33

4.4.4 Interface Adaption

Interface adaption concentrates on the adaption of the graphical user inter-
face and the application content to the specific device’s environment. This
approach assumes that the Web application is built from scratch and there-
fore the interface adaption does not have to cope with a complex desktop-
oriented design, but can concentrate on a cross-platform design. A cross-
platform design already considers a flexible layout for big and small screens,
with only small basic differences predefined for mobile and desktop versions
of the application.

Screen size/resolution

The adaption process mainly concentrates on the already detected screen
size and screen resolution. This information about the target environment
is essential for the arrangement of the content in the application’s presen-
tation layout. However, the application should not provide specific interface
adaptions for several screen sizes and resolutions, at highest for mobile and
desktop, because the cross-platform design should be flexible enough to dis-
play important content in any environment.

User Preferences

User preferences are gaining more and more popularity in Web applications,
especially for small screen sizes, so the user can modify the representation
according to his/her preferences. Web applications do not have to provide
customizable settings for the user interface, except it improves the appli-
cation’s usability. The following list shows a few examples of feasable user
preference settings for a customized user interface:

• Lock/unlock screen rotation,
• Font size,
• Button sizes,
• Enable/disable shadow effects and
• Background color.

4.5 Logic Layer

The logic layer is the brain of the system and controlling interface of the
whole application. From content management to communication and view
presentation, the logic layer specifies the resulting functionality. It is also
responsible for handling the logical workflow within the application system,
defined by the developer to follow a certain strategy of conditions. Figure
4.2 shows an abstract strategy for processing requests to actions.



4. Mobile Device Integration Architecture 34

Condition

Action

Clients
User Roles

States

+

=

Request

Logic Action

Application State

Client States

A
p

p
lic

a
ti
o

n
 L

o
g

ic

Figure 4.2: Representation of a logic strategy to process requests.

The strategy is defined by workflow conditions and is basically depending
on the application’s state, which is defined by actions the users take. Col-
laborative Web applications require the system to gain additional knowledge
beside the application state. Especially knowledge about all clients connected
to the application instance is important for collaborative Web applications
to provide continuity in a multi-user environment. Furthermore, the logical
workflow should be aware of specific user roles each user has, before process-
ing the actions to other layers. After the action was processed and is sent to
other layers, the strategy updates the application’s and clients’ states.

4.5.1 Application Logic

The application logic is controlled by the logic workflow. By the specification
of the workflow, the developer indicates a certain strategy the application
has to obey. This process interprets user actions as well as raised errors and
decides which actions to take according to the given conditions in the work-
flow. As the context-aware layer is responsible for the interaction between
application logic and client device, this process does not have to cope with
any adaptions and can purely concentrate on the logical workflow.

On initialization of the system in a Web browser, the logic coordinates
actions to be taken before the system is ready, such as the context detection,
-access, -processing and interface adaption considering the user preferences.
The strategy then defines the next action to take based on the corresponding
condition, given clients, applied user roles and states. The resulting logical
actions are finally communicated to the context-aware layer for output pro-
cessing or the communication layer for input processing.



4. Mobile Device Integration Architecture 35

4.5.2 Clients

In collaborative Web applications, every client is regarded as a single col-
laborator. Every user is a client to the application system, no matter which
platform is used. As every client has its own state, the user is able to switch
between devices without significant usability changes. One difference may
occur due to the dependency on the device’s context, because not every de-
vice provides the same sensors and other context services. However, a client
triggers state-changing actions which affect the application and other clients.

It is managed by the logic layer, as a client itself does not necessarily need
to be aware of all connected clients in the application system. It heavily de-
pends on the actions the clients can take, which information is considered to
be necessary or not. For instance, if a collaborator wants to share sketches
with all other collaborators, it is not necessary for the client to be aware of
other connected clients, because the collaborator wants to share them with
all clients anyway. But if a collaborator wants to start a video chat confer-
ence with another collaborator, it is of importance for the client to know
which collaborators are currently connected and ready to accept incoming
video chat calls. Thereupon, the application logic can decide, which state
information should be sent along with action requests. Clients should only
receive and work with information they really need, so the usability for users
can be fully granted.

4.5.3 User Roles

User roles define permissions and/or roles for users within a collaborative
system. The logic layer is responsible for filtering the actions for each con-
cerned client based on its user role. Only if the user is allowed to receive
or take the action, the logic layer will process it. The key aspect of user
roles is to make the collaboration more administrative, which is of particu-
lar importance for collaborations within large teams or if the application’s
functionality requires different types of users.

The former is reflected by real life collaborations within hierarchical sys-
tems, such as a company or project team, where users have different per-
missions on how to act within the system and which actions they can take
(e.g. manager, full-time employee or intern). This role separation implies per-
missions to edit, modify and create content, as well as to access restricted
content or to share information.

The latter indicates another use of the collaborative system depending
on the application’s target functionality. An example was presented with
Space Words in section 3.4.2, where one client is responsible for presenting
the game room and other clients interact with the game room. Although
this game has only one type of user role that actually interacts with the
application system (the controlling smartphones), the space room does take



4. Mobile Device Integration Architecture 36

the user role of visualizing the playground. An extension to this functionality
could introduce a second user role, where the user has to type the wanted
words, whereas the other users have to catch the wanted fruit representations.

4.5.4 Application State

An application state indicates the state of the connected clients, shared con-
tent and application logic. It can change after each request and is essential
for the application to work as expected. Every action has to be filtered and
mapped with the application state before the logic layer can process the
action. This ensures valid processing of requests and prevents invalid state
changes, which could result in breaking the application’s system.

4.6 Communication Layer

As the interaction with mobile devices is done purely on the client-side,
the communication layer basically handles the communication between the
client application and the server application. The former is representing the
processes running on the client-side and therefore on the devices, whereas
the latter is representing the Web server and the database.

This layer acts as an interface between the application and its data source
and is responsible for establishing a connection to the server and possibly
also to the database. It depends on the preferred strategy on how to store
data (see section 4.8) to decide in which way the database should be accessed,
being either directly by the communication layer or via a Web server. The
following sections introduce significant characteristics of the communication
layer for collaborative Web applications.

4.6.1 Communication Type

There are basically two ways to communicate: synchronously and asyn-
chronously [24]. The communication types are the similar between the Web
and the real world, depending on the expectation of a certain time to re-
ply, urgency and importance of the message. Most communication in real
life is done synchronously by talking and listening to other persons, whereas
sending letters represents an asynchronous way of communication. The in-
formation is processed instantly when talking to a person, which cannot be
expected for a letter.

Reflected to collaborative Web applications, synchronous communication
needs to be almost real-time to achieve instant information sharing between
multiple users. It should provide a seamless collaboration experience for in-
stant messaging, phone calls, video chatting or simultaneous file editing. One
major requirement for synchronous communication is the presence of all com-
municating parties, because the connection is exchanging data periodically



4. Mobile Device Integration Architecture 37

and needs a persistent connection between senders and receivers. This type
is quite traffic consuming due to the number of needed requests to provide
a persistent connection. Even if requests of a synchronous connection need
only small traffic space because of the awareness of the other users.

On the other hand, asynchronous communication in CWAs can be used
for tasks where no instant reply is expected or required, for example private
messages, shared document editing or image sharing. It is also well suited
for broadcasting, where one user sends a message to all listening receivers
without expecting an immediate reply. Such tasks are popular, because the
sending user does not have to wait for any response and can continue the in-
teraction with the application. This type of communication leverages higher
flexibility on the usage of the application, but also increases traffic space
because it mostly sends and receives a full request on each transmission.

A collaboration application should provide a reasonable balance between
synchronous and asynchronous communication, as the different tasks may
demand different types. Overall, asynchronous communication can be favored
due to providing more flexibility for users in a collaborative environment.
They can work together with the community but also resolve own tasks in
the same time.

4.6.2 Data Exchange

From a technological point of view synchronous communication is a typi-
cal request/response strategy, where the application logic is waiting for the
transmission to finish before other tasks are handled. In order to provide syn-
chronous communication in Web applications, the system needs to establish
a persistent connection between users with methods including long-polling
or streaming15. In order to keep communication traffic low, it is important
to use synchronous communication only when reasonable.

Ever since AJAX was introduced, asynchronous communication gained
enormous popularity in the Web, enabling small tasks on Web pages to
be processed without a page reload. A user sends a request via the XML-
HttpRequest16 API to the receiver and doesn’t wait for a response, but
provides a specific callback function which will be called with the response.
This progress has led to the development of fully asynchronous tools, Web
services and even Web servers, for instance a Node.js server, as presented
in section 2.4.2. Asynchronous transmission can be established using sockets
and a TCP connection.

The communication layer should be able to transmit data upon its type
of action synchronously or asynchronously. It needs to be capable of trans-
mitting and receiving data simultaneously to facilitate a fast collaboration.

15Streaming is mostly achieved by sending packets (e.g. RTP, RTCP) over the User
Datagram Protocol (UDP).

16API to send HTTP requests directly to a Web server with any possible request method.



4. Mobile Device Integration Architecture 38

Data should thereby exchanged in a lightweight format, such as XML or
JSON. Furthermore, all requests need accurate error handling (passed to the
application logic) to prevent incomplete and erroneous communication.

4.7 Web Server

The Web server is the most important part of a Web application because it
provides access to the necessary source files, such as HTML, CSS, JavaScript
or images, via a unique IP address and processes incoming requests from the
World Wide Web. All application dependent processes on the Web server are
controlled by a server-side script, which dynamically creates HTML pages
and defines the response data. Web developers are faced with a broad variety
of Web server implementations, but the most important ones nowadays are
the Apache HTTP Server and the Microsoft Internet Information Service.

A modern alternative to common Web servers is Node.js, which was al-
ready briefly presented in section 2.4.2. This is a server-side Web server built
atop Chrome’s V8 JavaScript engine. The fact that this Web server is using a
non-blocking I/O model and can be controlled with JavaScript makes Node
incredibly fast and perfectly accessible for the client-side application.

It depends on the application system and the given hardware resources to
decide for a type of Web server. For collaborative applications, the Node Web
server might be the best solution due to its better performance and easier
accessibility compared to other servers. This is the case especially because
the integration of mobile devices is mostly done by client-side JavaScript. But
when it comes to highly complex systems with the use of a lot of different
libraries and a complex database, Node could possibly perform worse than
other servers. Therefore it highly depends on the application system and
its functionality, but Node is basically a reasonable choice for asynchronous
collaborative applications.

4.8 Database

A database represents the collection of application dependent data. It is part
of the back-end application, handling non-user specific tasks such as data
manipulation and data storage. Nowadays, there are numerous of different
ways to store data and it is up to the Web developer which type to choose.
When choosing the type and technology to store data it basically depends
on the Web technologies used to develop the application system. Moreover,
it depends on the targeted functionality and the application requirements.
The following sections present the two main possibilities for storing data: on
a server or locally on the clients.



4. Mobile Device Integration Architecture 39

4.8.1 Server Storage

Each server database type uses its own query language, structure and logic
and can run on the Web application server or on an external server. Efficiency
and scalability are one major benefit of using server storage, because the
hardware can be utilized as the developer wants and is not dependent on any
other machines. There are three main types of server databases: relational,
key-value and document-oriented.

Relational Databases are the most used and popular type of databases in
the Web. These databases can handle almost every complexity of relational
data management structures and usually provide a good administration tool
for developers. The Structured Query Language (SQL) thereby defines the
core of all relational databases. Some of the most important server systems
nowadays are Microsoft SQL Server, Oracle and MySQL.

A key-value database stores key-value entries in a non-relational collec-
tion table. This form of database is a so-called NoSQL database, because it
is not using SQL as a core feature. One popularity gaining key-value storage
database is Redis17, which is using the main memory of the server machine,
in other words the random-access memory (RAM), to store data. Manipu-
lating data in the main memory is really fast compared to the disk memory,
which is still common for server databases. It only writes stored key-value
pairs to the disk memory in a predefined period of time or after a certain
amount of database manipulations.

Document-oriented databases are also NoSQL systems, basically stor-
ing data in documents similar to relational databases, but less rigid. The
databases can store files in different encodings (e.g. JSON, XML, YAML)
and the entries can have different schema. Popular examples for document-
oriented databases are MongoDB18 and CouchDB19.

4.8.2 Client Storage

Client storage, also called local storage, is storing data on the client-side
rather than on the server-side, hence directly in the requesting local client
browser. Server data always needs to be sent form the server to the clients
before it can be represented, whereas locally stored data on the client can
be rendered as soon as the user is requesting a page and recognizes already
stored data.

Native applications are quite powerful in this area for mobile devices,
because a native operating system usually provides a specific layer for ap-
plication data to be stored on the devices. Web applications have not sup-
ported local storage for a long time. Over the past decade, browser plugins

17http://redis.io/
18http://www.mongodb.org/
19http://couchdb.apache.org/

http://redis.io/
http://www.mongodb.org/
http://couchdb.apache.org/


4. Mobile Device Integration Architecture 40

and adapted cookie versions were developed to improve the old fashioned
way of local storage with cookies. A Cookie is stored in a text file with
a maximum size of 4 KB, which is then sent along with every server re-
quest and therefore slows down the application performance. Since a few
years, the W3C has been working on the Web Storage20 specification, often
referred to as DOM storage, which is the first natively implemented local
storage API in Web browsers, having almost full cross-browser support. It
revolutionized modern data handling by enabling persistent local offline data
storage of key-value pairs in data tables on the Web browser. In contrast to
cookies, Web storage data is not automatically included with every server
request and the system offers much more storage space. The storage can
be accessed and manipulated with JavaScript via the window.localStorage
object, where data is stored without an expiration date in a specified file, or
the window.sessionStorage object, which is storing data only for the dura-
tion of one session. Furthermore, Web Storage fires events on data changes,
which is very useful for applications running in multiple windows. There
are already numerous of different libraries available to provide cross-browser
support by the use of different browser implementations. Popular examples
are dojox.storage, jStorage, AmplifyJS or Store.js.

IndexedDB21 and Web SQL22 are further alternatives offering even more
memory space and can store data using indexes, which is especially useful for
large databases. However, W3C is purely concentrating on the specifications
for Web Storage and IndexedDB instead of Web SQL, because Web SQL has
a lack of independent implementations needed to continue the recommenda-
tion process.

Generally speaking, a collaborative Web application seeks for a database
system with plenty of available space, high efficiency and scalability, because
of its need to handle a large amount of shared data and multiple user accesses.
From a collaborative point-of-view, client storage is dangerous, because ev-
ery client has its own local database. Due to asynchronous communication
and a large data exchange rate, this could result in a non-persistent data
collection for shared data and therefore inconsistency in the application.

A database for collaborative applications should guarantee multiple users
to manipulate data simultaneously, which is why server databases could be
preferred over client storage systems for storing shared data. Although client
storage can enormously improve an application’s performance and flexibility
and can be highly useful for client dependent tasks. Such tasks could be to
store user preferences, login credentials, backup saves, static content or to
provide offline use.

20http://www.w3.org/TR/webstorage/
21https://developer.mozilla.org/en-US/docs/IndexedDB
22http://www.w3.org/TR/webdatabase/

http://www.w3.org/TR/webstorage/
https://developer.mozilla.org/en-US/docs/IndexedDB
http://www.w3.org/TR/webdatabase/


4. Mobile Device Integration Architecture 41

Within the presented integration system, the database can be accessed
by the communication layer as well as by the Web server. It depends on
the application system whether it uses a server storage or/and client storage
system.



Chapter 5

Prototype

As this document introduces a theoretical approach for the mobile device
integration in Web applications, it is crucial for the proposed system to test
its practicability in a real-world example. Therefore, this chapter presents a
prototypical application that was developed as a proof of concept.

The prototypical application introduces the Rich Media Collaboration
Tool (RMCT)1 that concentrates on the technological state of the art of
collaborative cross-platform and multi-user Web applications, especially built
with traditional web technologies. It should reflect the given technological
possibilities for developers to access and process mobile context data via Web
APIs. The main goal of the application’s functionality is to facilitate online
rich-media collaboration within communities, teams or project groups.

At first the the used application model will be presented, followed by the
technological architecture and implementation and finally an illustration of
the user interface.

5.1 Single Page Model

The Single Page Model is a programming approach for the Mobile Web. As
the name already implies, this means that the entire content of a web appli-
cation is combined in one single page, as stated by Hales in [11]. Thereupon,
every JavaScript- and CSS-file is included in a single HTML page, which
also contains the complete required DOM tree. The body of the DOM is
thereby usually structured in segments of pages, tools or separate function-
alities. Whenever a user navigates to another page, for instance to a certain
interaction page in the RMCT, the other page’s markup is being hidden and
the requested page markup is being shown by the application logic. These
segments should basically be enclosed by a <div>, as you can see in the fol-
lowing abstract structure of the prototype’s markup:

1The repository can be found on https://bitbucket.org/Aaang/richmediacollaboration.

42

https://bitbucket.org/Aaang/richmediacollaboration


5. Prototype 43

1 <body>
2 <div id="authorized_wrapper">
3 ....
4 <div id="menubox">
5 ...menu to choose which content to display
6 </div>
7 <div id="contentbox">
8 ...interaction pages (e.g chat, image gallery, etc.)
9 </div>

10 </div>
11 </body>

A single page application has primarily one major benefit for interactive
Web applications: it reduces additional HTTP requests. HTTP requests are
often causing performance problems due to additional HTTP requests for
every user navigation. The single page model has only initial requests on the
first page load. Furthermore, this model provides a better mobile-like look
and feel due to its faster page loads and possible smooth transitions between
the pages.

5.2 Architecture

The prototype was built as a single page application based on a Node.js Web
server and the Socket.IO communication API. It consists of one Web server
and multiple client sockets that represent the application’s core functionality.
The architecture also depends on its source files, which are usually found on
the hosting server. Although databases are of significant importance for most
Web applications, the RMCT prototype has not integrated any database,
because data storing is no key aspect of the research topic. Even though
data storing should be essential to provide a proper functionality for long-
time collaborations within the RMCT. Figure 5.1 on the next page illustrates
the given technical architecture of the pototypical application, which will be
described in more detail in the following subsections, following a workflow
presentation.

5.2.1 Web Server

As described in section 2.4.2, Node.js is an event-driven, asynchronous server-
side JavaScript server powered by the V8 engine in order to provide faster
communication in the Web. Especially the asynchronous event-driven com-
munication makes request handling extremely fast, because the server han-
dles every request and I/O by an infinite and non-blocking event-loop, as
it can be seen in figure 5.1. This enables clients to execute code after firing
an event to the server and therefore while they are waiting for the server
response, which is called an event callback.



5. Prototype 44

V8

Event

Loop

Node.js

Collaborations

Web Server

I/O

Files

Clients

C1

C1

C3 C2 C3

C2

Socket.IO

Figure 5.1: Technical architecture of the pototypical application.

The Web server in the RCMT creates an HTTP-server which sends the
HTML pages to the requesting page. As soon as the document has been
loaded, the client script fires and creates a socket connection between the
Web server and the client. This connection is established with the Socket.IO
framework and then the server listens to events from all connected client
sockets. These listeners are representing the communication layer between
client and server, but inside the listeners, the application logic needs to decide
which actions to take on specific incoming events.

Server-Side Logic

In figure 5.1 it can be seen that the clients communicate with the Web server,
but it would be much more efficient for client-centric applications, such as
the RMCT, to communicate directly to other clients via their sockets. This
is called a peer-to-peer connection – as presented in section 2.4.3 – which
is not supported yet in most Web browsers and therefore not integrated in
this prototype. Consequently, the system requires logic to be placed on the
server in order to assure persistent data synchronization.

The server-side logic decides upon certain conditions within the socket
listeners and information about the collaboration’s state. It explicitly reacts
upon the collaboration’s state, because this is the platform for every inter-



5. Prototype 45

action between the clients and the application. A soon as the user submits a
valid name for the collaboration, the logic creates and saves a collaboration
instance and redirects the user to another page, where a new socket connec-
tion is being established. A collaboration is aware of all its connected client
sockets and collaboration data, such as text messages, images, videos and
so on. It can add and remove content and represents the key aspect for the
server-side logic. Additionally, it also broadcasts events to all of its clients
and handles its own state until deallocation.

5.2.2 Clients

As already mentioned in section 2.1.1, clients can be considered as Web
browsers – the environment where the user interacts with the application. A
Client in the RMCT is defined by its state, logic and socket connection to
the server. Sockets represent identified endpoints in Internet communication
processes and can be used to establish a faster, bidirectional connection
between a client and its server. Particularly WebSockets, as presented in
section 2.4.1, provide a good API for this purpose. In order to support access
to this technology for the prototypical application, the Socket.IO transport
library for Node servers was integrated in the system. As briefly described in
section 2.4.2, Socket.IO decides at runtime which of its six possible transport
types to use for transmitting the data. However, the best result in socket
communication is achieved by using Web browsers and a hosting server that
provides an implementation of the WebSocket API.

Basically, every client connecting to the application creates a socket which
is then a client socket, but not every client socket is being added to the
application system. For instance, the desktop client without a circle and a
collaboration instance in figure 5.1 is probably on the landing page and in the
process of creating a new collaboration. A client socket is only added to the
system if the user is connected to a valid collaboration and has submitted a
valid name. As soon as the user is connected to the collaboration, the user’s
socket is listening to events which are then processed by the client-side logic.

Client-Side Logic

The client-side logic is responsible for controlling the interaction between
server and client. It is aware of the socket connection to the server, the
presented view and the client’s state, including user information and context
information. Although the client is the key aspect for the client-side logic, it
highly depends on the collaboration’s state, which is controlled by the server-
side logic. The arrows from the clients to the Socket.IO layer and forth to the
collaborations in figure 5.1 illustrate this logical dependency of the clients to
their collaboration instances. The client socket, the client-side logic and the
view presentation collectively represent the client Web application.



5. Prototype 46

5.2.3 Logic Workflow

Some aspects of the basic workflow for the collaborative application have
already been introduced in the previous sections. The sequence diagram in
figure 5.2 on the following page illustrates the workflow from client con-
nection to collaboration creation and finally message sending. For an easier
understanding of this workflow the actions are readably named rather than
following the exact naming in the implementation.

The first step in the workflow is always the HTTP page request to the
server, which will return a HTTP response with an HTML file in the body.
After the client has requested and loaded all necessary scripts and styling
files, the client-side logic creates a socket and sends an initial HTTP request
to the target server. If the server accepts the connection, it creates a so-called
handshaken-connection and responds with the session-id that signalizes the
successful bidirectional connection between the two sockets.

The next step of the logic is to verify the target collaboration, assuming
that the user is requesting an URL with a valid collaboration id. Therefore
the server filters the list of collaborations and returns a valid response when it
exists in the list. If not, the server will respond with an error message and the
client logic will ask the user to change the id or create a new collaboration.

As soon as the client is connected to a valid collaboration, the logic
prompts the user to input a name visible to other users. This request will then
again be filtered on the server within the list of clients of a valid collaboration.
If the name is available – no other user has the same name – the client shows
the full page content in the browser, hence the user is fully connected to the
system. Afterwards the user can send a message – as demonstrated in figure
5.2 – which will be stored on the server and broadcasted to all connected
client sockets.

5.3 Implementation

This section emphasizes on a concise presentation of the prototypical applica-
tion implementation. The architecture and logical functionality have already
been presented in the previous sections and will therefore not be discussed
in detail again in this section. Moreover, it provides accurate code examples
for essential functionalities of the application system.

The presented code examples are not executable and minor important
lines of code might be missing, which are illustrated as dots (. . . ) within the
code blocks. Furthermore, the code could somewhat differ to the attached
project source code in order to improve the readability and understanding.



5. Prototype 47

Browser Client Socket Web ServerCollaborationServer Socket

Client Server

request page

socket listen

input name

input message

check client name

send message

client name taken?

store message

connect

check collaboration Id

collaboration exists?

connected

collaboration exists

name available

message

client connected

broadcast message

show page

output message

valid collaboration

prompt for name

HTML & JS & CSS

Figure 5.2: Sequence diagram of the basic application workflow.

5.3.1 Node.js Web Server

As already described in section 5.2.1 the Web server was built with the Node
framework. The configuration of the node application, which is the basis for
the server, can take some effort for proper error handling, template engine
integration and data storing. Nevertheless, using this framework facilitates
the creation of the server for Web developers, because only a few lines of
code are necessary to create and handle a simple server-side JavaScript Web
server, as demonstrated in the following code block.

1 var application = require("./app").getApplicationInstance(),
2 http = require('http'),
3 server = http.createServer(application.app),
4 io = require('socket.io').listen(server);



5. Prototype 48

5
6 server.listen(PORT, HOST, function() {
7 console.log("Server is listening on port"+server.address().port);
8 });
9

10 process.on('SIGINT', function () {
11 console.log("Shutting down server...");
12 server.close();
13 process.exit(0);
14 });

5.3.2 Connection

Generally, a client connects to the server by the Socket.IO API, but this
does not automatically connect the client to the collaboration. In order to
identify and validate the desired collaboration, the client-side logic parses
the location URL of the window.location object, which is looking like this:
http://collaborationtool-anger.rhcloud.com:8000/collaboration/
h3Se93Wi. The URL path contains two important parameters: the appli-
cation type (collaboration) and the collaboration ID (h3Se93Wi). This
collaboration ID can then be used by the application logic to identify the
collaboration and connect the client to it.

RMCT’s connection process basically consists of three steps: socket con-
nection, collaboration verification and client validation. At first the client
script creates a socket and tries to connect to the Web server with the given
location host and port, which can either response with connected, discon-
nected or a connection failure. If the client is successfully connected to the
node server, the client-side logic sends a request with the parsed collaboration
ID, as described above. Lastly, after the collaboration verification succeeded,
the user is prompted to input a valid name visible to other users, which will
then be sent to the server and validated for presence. If the username does
not yet exist for the desired collaboration, the client is fully connected to
the application system. The following lines of code show the socket event
listeners for RMCT’s client connection process.

1 client.socket.on('connect', function() { ... });
2 client.socket.on('disconnect', function() { ... });
3 client.socket.on('connect_failed', function() { ... });
4
5 client.socket.on('valid_collaboration', function(data) { ... });
6 client.socket.on('invalid_collaboration', function() { ... });
7
8 client.socket.on('client_already_exists', function() { ... });
9 client.socket.on('client_connected', function(data) { ... });

One possible improvement for the client connection could be to remember
the user’s name on a page reload, so the application could reuse a user
after a page reload. Currently the client is being disconnected and deleted



5. Prototype 49

from the collaboration after a page reload, which means that the user has
to create a new user. In order to recognize a user after a reload in a single
page application, the user’s name could be saved and read with the URL’s
hash object. This information is accessible via the window.location.hash
object, which does not trigger a page reload on manipulation [18].

5.3.3 Context Information

Context information is a collection of information about a device’s envi-
ronment, including available sensors, device type and size, accessible Web
standards and the user. Most of the information is gathered by accessing
Web standard APIs implemented by the presenting browser. A detailed list
of relevant APIs was introduced in section 2.2 and their support in the cur-
rently most widely spread mobile Web browser is illustrated in figure 2.1 on
page 9.

Usually these APIs are accessible via JavaScript, which is predestinated
for applications fully developed in this scripting language, such as the RMCT.
First, the context needs to be detected, for instance the device’s Web browser
type and its supported features, as already presented in detail and with code
examples in section 4.4.1. Afterwards, the detected context needs to be set
up and accessed, as shown in this code block:

1 function setupContext () {
2 if (!client.fileable) {
3 $(".file_input").addClass("not_supported").hide();
4 }
5
6 if (!client.clipable) {
7 $("#videos_button").parent().addClass("not_supported").hide();
8 }
9

10 if (!client.soundable) {
11 $("#audio_button").parent().addClass("not_supported").hide();
12 }
13
14 if (client.drawable) {
15 initDrawing();
16 } else {
17 $("#drawing_button").parent().addClass("not_supported").hide();
18 }
19
20 if (client.streamable) {
21 initVideoStream();
22 } else {
23 $("#videostream_button").parent().addClass("not_supported").hide();
24 }
25
26 if (client.orientable) {
27 initDeviceOrientationListener();
28 } else {



5. Prototype 50

29 $("#orientation_button").parent().addClass("not_supported").hide();
30 }
31 }

This code block only shows the custom initialization function called to set
up the context, but the actual access functionalities would be too much code
to visualize and are mostly well documented in their related APIs.

As soon as the context is set up and the interface is adapted accord-
ingly, the application logic initializes the context event listeners by calling the
function initInputListeners() in the client-side script. This call starts the
defined listeners – which are mostly accessed via JavaScript’s jQuery frame-
work – and therefore also initializes the context processing. The following
listener shows a simplified example code for the access and processing of an
uploaded sound file:

1 jQuery(document).on("change", "#sound_input", function(e) {
2 if(this.files.length > 0) {
3 var file = this.files[0];
4 var name = file.name.substr(0, file.name.lastIndexOf("."));
5 var mimeType = file.type;
6
7 if(isValidAudio(mimeType)) {
8 var reader = new FileReader();
9 reader.onload = function(e) {

10 var data = {type: mimeType, src: e.target.result, name: name};
11 client.socket.emit("send_sound", data);
12 };
13 reader.readAsDataURL(file);
14 } else {
15 console.log("Choose a valid audio format: ogg, wav, mp3, mpeg");
16 if (client.vibrateable) vibrate();
17 }
18 }
19 });

The above example shows the processing of the data to a readable object
format as well as the emission of the information to the Web server. Further-
more the logic chooses to send a vibration event to the device on an error, if
the client device supports the vibration feature.

5.3.4 Communication

The communication within the application system is based on the Socket.IO
framework, as already mention in previous sections and seen in various code
examples. Every client socket connects to the server and is then capable
of transmitting data without the additional HTTP headers, which makes
the connection significantly faster. As the implementation has already been
presented in previous code examples it will not be visualized in this section.

As the application might sometimes handle data broadcasting itself, the
RMCT collaboration object provides a method to broadcast data to every



5. Prototype 51

connected client. In order to leverage transmission filtering, an additional
parameter for an exception was added, which excludes the filtered socket
from the emission. The method can be seen in the following code example:

1 collaboration.broadcast = function (command, data, exception) {
2 for (var i=0; i < clients.length; i++) {
3 if (!exception || clients[i].id != exception) {
4 clients[i].emit(command, data);
5 }
6 }
7 }

5.4 User Interface

The user interface is the graphical representation of a Web application and
the interactive platform for users to communicate with the system. Despite
the fact that the focus of this research topic is on the theoretical approach to
integrate mobile devices in Web applications rather than on the UI, it is of
significant importance for cross-platform applications to provide a responsive
graphical interface. Therefore the RMCT provides a simple responsive UI, as
it can be seen in figure 5.3 on the next page, which aims to support a satisfied
interaction with the Web application and to still provide full functionality.

Figure 5.3: Screenshots of the cross-platform collaborative Web application
Rich Media Collaboration Tool on various devices.

5.4.1 Basic UI elements

As this work is based on a theoretical approach, graphics design was a sec-
ondary objective, but the user interface still must provide crucial elements for
supporting the collaborative purpose of the application. During research and
project processing, it became clear which elements are necessary to support
collaborative functionality. Besides the content interaction elements these
elements are the connector, session information, collaborators box and inter-
action menu.



5. Prototype 52

Connector

The connector is probably the most important element on the application
page, because it is used to share the collaboration with other users. As it
can be seen in figure 5.4, the connector provides four kinds of connection
sharing options. Most notably besides these options is the QR-code image,
which is individually generated by client-side code for each collaboration
and comprehends the URL of the given collaboration. Nearly every modern
smartphone or tablet has an integrated camera, which can scan and read
QR-codes. Therefore this is a highly comfortable way to access an existing
Web session by simply scanning the required code from an application page,
as stated in [1].

Furthermore the connector provides the possibility to open a new tab in
the Web browser window with the collaboration URl, which is intended for
a developing purpose to test and validate the application. It also provides an
email invitation button, which opens the preferred mail service on the client’s
device and contains an invitation message with a link to the collaboration in
the message’s body. The other two options – share on facebook and twitter –
are only for demonstration purposes to be able to share the collaboration on
social networks as well. They are have not been implemented in the prototype
so far.

Figure 5.4: The collaboration connector with the QR-Code and sharing
buttons.

Session Info

Another UI element is the session info. This element, as displayed in figure
5.5 on the next page, is situated at the top of the page and provides the user
with basic information about the collaboration title and the user’s name
visible to other users. This can especially be important if a user has multiple
active collaborations at a time.



5. Prototype 53

Figure 5.5: Interface details about the essential UI elements: session info,
collaborators box, interaction menu.

Collaborators Box

The collaborators box is only displayed on the home page to connected users.
It visualizes the currently connected users/collaborators to this collaboration
and provides information on the users’ name, device type and location. This
functionality is particularly important from a collaborative point-of-view,
because collaborative groups/teams need to be aware of the online users for
fulfilling certain tasks and facilitate the overall communication.

Interaction Menu

Collaborative applications offer numerous kinds of content interaction and
content sharing. These options are displayed in the interaction menu on the
home page of the application. It depends on the device’s capabilities on which
menu buttons are being displayed and therefore provided for the user. Figure
5.5 shows the basic menu for a modern smartphone with several interaction
possibilities, such as chat, image gallery, video conference and whiteboard.



5. Prototype 54

5.4.2 Interaction UI

The interaction UI represents the interface for all different kinds of content
interaction types. Basically, these pages are structured similarly to the home
page, but with focus on the content area. Each type provides input elements
and an output view, as it can be seen in the screenshots of the four different
interaction pages in figure 5.6.

Figure 5.6: Examples for the interaction UI: chat, image gallery, video
conference and whiteboard.



Chapter 6

Evaluation

Within this chapter, the evaluation of the proposed system on the basis of
certain requirements as well as the realized pototypical application will be
discussed. At first, the practical prototype implementation will be evaluated
and described in detail upon its used technologies, predefined requirements
and the conceptual approach. Following this prototype evaluation, the pro-
posed integration architecture will be analyzed and discussed concentrating
on the acquired knowledge about key aspects of the research topic. To round
off the evaluation, to the results of the previous evaluation and the current
state of the art. To round off the evaluation, the applicability of the inte-
gration architecture based on Web technologies will be discussed and put in
contrast to the current state of the art.

6.1 Prototype

As described in chapter 5, the Rich Media Collaboration Tool (RMCT) was
developed as a proof of concept for the proposed mobile integration architec-
ture as well as to leverage new arising possibilities with standardized mobile
Web technologies, as presented in section 2.2 on page 5. Since these standards
are best compatible with the Firefox Mobile and the Google Chrome for An-
droid browsers, the prototype was evaluated on those two Mobile browsers.
The following sections concentrate on evaluating the developed application
upon the used technologies, the requirements defined in 4.2 and most notably
the conceptual approach.

6.1.1 Technical Evaluation

One emerging trend used on developing the application is the single page
model, which is – as presented in section 5.1 – supposed for fully client-
side applications. The RMCT perfectly conforms the requirements of this
approach, because most of the application workflow is encountered at the

55



6. Evaluation of the Integration Architecture 56

client and no complex contents or actions need to be processed. Especially
the mobile representation of the application benefits from this model due
to its never-redirecting capability which creates a more native-like look and
feel for the mobile user. This feeling could even be enriched by the use of
smooth animations for page swipes or menu hiding and showing at a side of
the screen. One pitfall of a single page application is the fact that it breaks
the page history by not reloading the page on navigation. This could produce
a decrease in the user satisfaction while browsing through the application,
but is basically avoidable by a convenient user interface. Furthermore, a
collaborative Web application could have a lot of content that would be
initially loaded on connection and therefore results in high traffic costs.

Another benefit and pitfall at the same time is the use of JavaScript
libraries and jQuery plugins. On the one hand, the Web offers a platform for
developers to share open source code with the World, which is an enormous
profit for developing Web pages and Web applications. On the other hand, a
lot of external code decreases the code’s readability and increases the page’s
overall traffic.

6.1.2 Cross-Platform Compatibility

Generally, the application is cross-platform compatible with most tested
browsers, except the BlackBerry Browser and the desktop and mobile In-
ternet Explorer. This is basically due to their lack of Web standard imple-
mentations, different implementations or problems caused by the JavaScript
libraries used in the application. The project does not concentrate on creat-
ing workarounds to match those individual environmental requirements but
rather investigates the possibilities of the given Web standards. Therefore
those minor cross-platform compatibility issues can be resolved by further
concentrating on this topic in future developments.

6.1.3 Multi-User Capability

One significant difference to the integration architecture is the lack of user
roles, which were not part of the evaluation goal for the prototype. User roles
are necessary in order to provide full collaborative functionality in future
projects.

Nevertheless, the prototype is capable of accepting and managing mul-
tiple users at a time by its fast socket communication and especially by the
event-driven server. Each user is thereby equally handled by the application
logic.

6.1.4 Asynchronous Communication

The prototype uses Node.js and Socket.IO as basic framework technologies,
which saves time and effort to set up a simple server and socket connec-



6. Evaluation of the Integration Architecture 57

tion. Furthermore this combination is extremely fast compared to traditional
server implementations and gives the application excellent cross-browser sup-
port for the socket communication. But it is still quite difficult to find a suit-
able Web hosting provider fulfilling the requirements, such as WebSockets.

6.1.5 State Persistence

As the prototype is a non-database-driven system, the server is mainly aware
of the stored data and states. The integration architecture wants the server
to be only responsible for the event communication controlling between the
connected clients, which can be achieved by integrating a database to the
application system, guaranteeing long-time data storing and therefore state
persistence.

State persistence is guaranteed within the developed prototype due to
the broadcast exchanging routine on state and content changes. Although
collaborations will be closed after a certain period of inactivity and, hence
all content data and saved states will then be deleted.

6.1.6 Conceptual Approach

The proposed conceptual approach presents a layer-based integration archi-
tecture to improve the mobile integration in Web applications. These layers
– described in section 4.1 – basically separate the application into multi-
ple layers for the Web server, database, communication, logic and context-
awareness. Consequently, the prototype’s architecture oriented towards this
structure from a software engineering point of view.

Concentrating on this layer system, the main application logic was sit-
uated on the client-side as well as the context totally separated from the
client-side logic. The separation of the client logic and the context-aware
layer was thereby implemented in two different JavaScript classes. The client
logic class is aware of all the states and follows certain conditions, but also the
context-aware layer needs to be aware of state information in some rare cases
when it comes to input processing. One example in the prototype is video
streaming, where the state of the stream is changed from within a context
listener, but this code could also be extracted to the client-side logic as well
as all socket event emits. Overall the logic and context can be successfully
and reasonably separated.

It takes some additional programming effort to strictly separate the
client-logic from the context adaption and processing, but the implemen-
tation significantly improves readability of the application code and the
workflow. Additionally, this separation leverages code encapsulation which
is reasonable for an automated cross-platform module like the context-aware
layer.



6. Evaluation of the Integration Architecture 58

6.2 Integration Architecture

The integration architecture is the key aspect of this approach, because it
provides is significantly important to concentrate on standardized Web speci-
fications in order to facilitate W3C’s vision of One Web. Section 2.1.3 already
presented the term traditional, which stands for Web technologies such as
JavaScript, HTML and CSS. This means accessing context information on
mobile devices without any native (implemented with a mobile SDK) or
hybrid (implemented in HTML5, compiled into other platform application
code) solutions. The following sections list some benefits and pitfalls of the
web-based integration compared to native- and hybrid integration, as well
as basic Web application approaches for building collaborative applications.
This information was acquired during the research process, work on this
document and the practical realization of the system as a prototype.

6.2.1 Context Handling

With the use of the Web standard APIs, context information can be handled
according to certain standards and processed as preferred in the application
logic. The integration architecture provides the context-aware layer for de-
tecting, accessing and processing context information, as described in 4.4.
The presented layer separation enables context handling independent from
the application’s logic. Particularly the readability of the context implemen-
tation is significantly improved by this technique, because every possible
action the logic can take is provided as a function call within the struc-
tured target area of context detection, context initialization/access, input
processing, output processing and interface adaption.

Different situations may require different context handling, for instance if
an application logic needs an uploaded image file to be processed in a certain
way before transmitting it to the application logic, it would be necessary
to add some logic to the the context-aware layer as well. The prototypical
application has shown that it is reasonable in some situations to add logic to
the context-aware layer in order to save developing effort and traffic costs.

Generally, separating the application logic and the context-awareness is
a reasonable supporting aspect for the mobile device integration. Another
opportunity arising from this approach is to develop the context handling
functionality as a module, which will be described in the following section.

6.2.2 Interaction Features

As already discussed and presented in figure 2.1 on page page 9, the feature
support for devices’ interaction capabilities is insufficient for a wide range of
technologies, but quite good for some basic technologies including HTML5
audio element, HTML5 video element, HTML Canvas 2D and Touch Events.



6. Evaluation of the Integration Architecture 59

Mobile Web standard technologies represent an evolving and thriving
developing area which is more and more accepted by browser developers.
Furthermore, the Mobile Web experiences a steady growth in technological
possibilities by emerging developing processes in the mobile device industry.
Especially hardware improvements on mobile devices and the broadcast-
ing environment are increasing accessibility, performance and usability. This
trend facilitates future Web development and is expected to be utilized in a
broad variety of future Web projects.

API support is a crucial topic particularly for collaborative Web ap-
plications which should provide the best possible interaction. Thereby, the
integration architecture is responsible for the automated adaption of the
system to the given environment while retaining the application’s core func-
tionality. Of course, a collaborative Web application heavily depends on its
interaction possibilities, which are sufficiently supported for primal interac-
tion types including touch, geolocation, device orientation, device direction,
images, canvas sketches, messages and most audio and video files.

Nevertheless, it still takes a lot of development effort and workarounds
to suit every environment with the current state of the art of the APIs. Even
if the all browsers have implemented the same standards, there can still be
major differences in other areas affecting those technologies, for instance the
file type support for audio and video files in the various browsers. Figure 6.1
illustrates the different file type support tested in some of the most widely
spread desktop and mobile browsers (Android and iOS). As shown in the
figure, iOS browsers did not support any of the tested file types. Moreover,

MP3 Ogg Wav MP4 Ogg WebM

Chrome

Firefox

Opera

Safari

Chrome sehsarcsehsarc

Opera Mobile sehsarcsehsarc

Firefox Mobile

Mobile Safari

Chrome

= full support = no support

VideoAudio

D
es

kt
op

A
nd

ro
id

iO
S

Figure 6.1: Support of audio and video file types as tested in different
browsers through the pototypical application.



6. Evaluation of the Integration Architecture 60

playing apparently supported files – types and codecs are being tested for
each and every file before it is rendered and processed on the page – will also
result in the application to crash in the mobile versions of Google Chrome
and Opera, as shown in the figure.

6.2.3 Benefits

Research and work on the proposed integration architecture pointed out
some significant benefits for the use of Web technologies to integrate mobile
devices in collaborative Web applications. Benefits for developers as well as
for users are pointed out in the following list:

Autonomy
The system is able to autonomously detect and adapt to the given
environment by its context information. Hence, the application is not
dependent of the Web browser for the core application to be executable.

Code Readability
Separating the logic and context-awareness implementation creates a
more readable code. This especially benefits Web developers when
working with JavaScript for the logic processes and jQuery to adapt
and manipulate the context in the view representation.

Accessibility
The Web application can be accessed from anywhere and from any
device. It does not matter where and which device the collaborator is
accessing the application from.

One application
The application is developed once and runs everywhere, while native
applications need to be developed separately for each platform and
hybrid applications may require a lot of additional adaptions for other
platforms.

One language
It is possible to build the whole application system in one language.
This prevents language compatibility issues and leverages faster de-
velopment. The pototypical application RMCT is completely imple-
mented in JavaScript.

No installation
As it is a Web application, no explicit software installation and up-
dates are needed. Every modern mobile device provides a built-in Web
browser and the application is updated directly on the hosting server.

Speed
Client-centric applications built on Node.js and Socket.IO considerably
increase the communication speed compared to standard Web applica-
tions.



6. Evaluation of the Integration Architecture 61

6.2.4 Pitfalls

On the contrary, there are also various crucial pitfalls of this integration ar-
chitecture for Web applications. Again emphasized on development aspects
as well as on a usability point of view, the following list gives an overview of
some pitfalls:

JavaScript
JavaScript is essential as a scripting language to access the Web APIs
implemented by the Web browser, but it can be manually disabled by
the user effecting the application to not work properly or brake.

Internet connection
Web applications usually need a persistent connection to the Internet.
It is possible to store data locally on the client device with Web stan-
dard APIs, but these technologies are not as efficient as native local
data storage.

Performance
Client scripting needs more processing time than native applications,
because the Web browser interprets the commands rather than the
native platform. However, V8 is a great performance booster for Web
applications.

Browser support
Unfortunately the interaction possibilities of users with the Web ap-
plication and vice versa are still heavily dependent on the used Web
browser. Hence, a lot of browser-dependent workarounds are necessary.

Programming
It needs advanced JavaScript skills for developers to implement read-
able and separated code, because JavaScript is not an object-orientated
programming language. Therefore it is difficult to apply advanced soft-
ware architectures to such a system.

6.3 Applicability in the Real World

In this section, the integration system will be evaluated according to its
applicability in the Real World. The evaluation will particularly focus on
the applicability from a developing point-of-view as well as the usability for
a collaborative system. The evaluation is based on the current state of the
art and the developed prototype.

6.3.1 Developing costs

When concentrating on the use of Web standard APIs to create collabora-
tive Web applications, it may result in higher developing costs compared to



6. Evaluation of the Integration Architecture 62

native or hybrid application development depending on the APIs used. Eval-
uating the state of the art and the proof of concept pototypical application
shows that it can require costly workarounds to achieve full cross-platform
compatibility. In future, when Web standards are more widely supported,
the integration architecture can provide a simple engineering approach to
structure the application’s client-side implementation and thereby save de-
veloping costs.

6.3.2 Functional Scalability

This paragraph concentrates on the functional scalability of the integration
system, which describes the possibility to easily add functionality to the
existing system. Considering the layer-based architecture, it should be easy
to add additional functionalities to a specific layer, as the communication,
logic and context are separated from each other. For instance, adding Web
APIs can be done in the context-aware layer with functions provided for the
logic layer. Another example could be the integration of an additional tool
using the same context information as an existing tool, without the need to
change the context-aware layer but only add the functionality to the logic
layer. Taking a closer look at the prototype implementation shows that the
single page model additionally facilitates functional scalability in the view
by its recommended view presentation in a content-oriented structure.

6.3.3 Collaborative Usability

As the integration approach not only focuses on the use of traditional Web
technologies to integrate mobile devices in Web applications, but also on the
integration in a collaborative application, the usability of this system in a
collaborative environment needs to be evaluated. Collaborative applications
– as stated in section 2.1.2 – provide a centrally shared space for multiple
users to work together. Therefore the system needs to conform to certain re-
quirements, which will be stated and analyzed according to the integration
system in the following list:

Multi-user capability
As the name already implies, collaborative applications need to be
capable of handling multiple users for a session at a time. The inte-
gration architecture provides a certain structure for collaboration and
client instances in order to support multi-user access. Technologies and
the hosting server should be chosen wisely to support safe and quick
access to the stored data. Another useful functionality for a group or
team is the information sharing of the collaborators state, used as the
collaborators box in the prototype (described in section 5.4.1).



6. Evaluation of the Integration Architecture 63

Accessibility
The application should be accessible from anywhere and from any de-
vice. Web applications basically provide this functionality unless the
user is not connected to the Internet. Especially collaborative applica-
tions profit from the increasing accessibility of mobile devices, because
they can be enriched by rich-media content.

Continuity
Collaboration sessions and their contents should be saved in a database
as long as the session is needed. The collaboration state and content is
synchronized by the logic layers in order to provide the application’s
continuity for each client.

Live
The communication needs to simulate a live face-to-face communica-
tion as much as possible. Therefore, instant communication is crucial
for a satisfying collaboration. The architecture simplifies this process
by the separation of the communication layer and the use of modern
technologies such as Node.js and Socket.IO.

6.4 Future Work

Various possible improvements emerged from research process and work
along this document. The following two examples can be considered for fu-
ture work in this research field.

6.4.1 Using Polyfills

In section 4.4.1 of the proposed system, the possibility of using polyfills to
detect and process context information was introduced. Polyfills are code
snippets that implement required features if they are not supported by the
target Web browser. This technology can be used to reduce the previously
described compatibility issues to a minimum. Although it should only be
a temporary solution, because Web standards are aiming to a standardized
Web where no alternative scripts – which additionally increase traffic and
maintenance costs – should be needed to achieve cross-platform compatibil-
ity. The developed pototypical application did not use any polyfills in order
to be able to evaluate the current state of the art of Web standards.

6.4.2 Module Pattern

As context handling is extracted from the application logic, it can also be
implemented as a module in other applications to support a standardized
cross-platform access to context information by Web technologies. The cen-
tral theme of module context handling is to leverage the mobile device inte-
gration in Web applications. This module pattern was partly introduced by



6. Evaluation of the Integration Architecture 64

the Rich Media Collaboration Tool, but combined with interface adaption
according to processed context. In order to create a fully modular context
handling, the module needs to focus only on the communication with the
browsers’ feature API implementations. View presentations and logic pro-
cesses always depend on the specific application system and should not be
part of the context-aware module.

However, including interface adaption within the context-aware layer
turned out to be an acceptable solution for a fully satisfied environment
where the developer is aware of the DOM structure and the application
logic. This saves programming costs and still provides a certain separation
between the logic and its context.



Chapter 7

Conclusion

Mobile devices has been emerging on the market with rapid technological
development for the last few years. Smartphones and tablets expose a no-
ticeable demand for full accessibility, seamless functionality and instant in-
formation sharing across platforms. This trend has led to the development
of several approaches in the field of Mobile Web, such as Web applications,
hybrid apps and native apps. Web developers are thereby faced with the
challenge to adapt to this new environment.

This trend has mainly led to well-adapted Web Applications rather than
a mobile device integration due to its lack of API support in mobile Web
browsers. Although recent developments in the Mobile Web introduced nu-
merous Web features mobile devices are still mainly handled as smaller screen
environments with minor additional capabilities like sensing touch events or
defining the device’s location.

Based on this research area, this work provided an overview of the given
possibilities and the current state of the art for mobile device integration in
Web applications, with a particular focus on online collaborations. The anal-
ysis and discussion of the presented technologies and approaches revealed the
insufficient cross-platform compatibility and the focused interface adaption
and migration as the main reasons for the lack of mobile device integration.

To address this issue, a layer-based mobile integration architecture was
presented to facilitate access and processing of rich contextual information.
Each layer was discussed by its functionality and necessity within the ap-
plication as well as by its particular utilization for online cross-platform
collaborations.

In order to analyze the practicability of the proposed approach, the pro-
totypical collaborative application Rich Media Collaboration Tool was devel-
oped and published on a hosting service. The prototype particularly focuses
on an autonomic integration of multiple devices and the utilization of as
many interaction capabilities as possible using Web technologies.

As a result of the prototypical implementation, the application was able

65



7. Conclusion 66

to deal with the lack of cross-platform compatibility by automatically detect-
ing the device-dependent context information and adapting the application
accordingly to provide the application’s basic functionality. Thereupon, nu-
merous interaction capabilities were integrated in the prototypical applica-
tion and offered fast rich-media collaboration between multiple devices and
users.

Nevertheless, full cross-platform compatibility cannot be provided with
the current state of the art and the given capabilities of mobile devices. This
may not be achieved in near future, but the approach provides an architec-
ture to build fully functional applications adapted to their environment and
capabilities. The evaluation also showed the complexity and the additional
development effort necessary for implementing the proposed architecture.
Consequently, the structure sometimes had to be adjusted to provide the
desired functionality.

Additionally, some further improvements to the approach – like using
polyfills to achieve full cross-platform compatibility or creating the context
layer as a module pattern for autonomy – were presented for future work.

Integrating mobile devices in Web applications is being facilitated by re-
cent and ongoing developments of Web standardization institutions, but the
full integration is still highly limited by the target platform and therefore far
from full cross-platform compatibility. Still these APIs already provide the
ability for developers to utilize a noticeable number of the devices’ interac-
tion capabilities and thereby to enrich online collaborations and other Web
services.

In conclusion, mobile devices can be integrated in collaborative Web ap-
plications by autonomously detect the device’s capabilities and adapt to its
environment by using its context information as well as separating these
processes from the application logic.



Appendix A

Contents of the DVD-ROM

Format: DVD-ROM, Single Layer, ISO9660-Format

A.1 PDF files

Pfad: /

Anger_Philipp_2013.pdf Master thesis

Pfad: /Online_Sources

AsynchVsSynch.pdf . . [24]
SpaceWords.pdf . . . . [25]
HybridVsNative.pdf . . [26]
ShieldAttack.pdf . . . . [27]
W3CStandards.pdf . . . [28]

A.2 Source Code

Pfad: /Code

RMCT . . . . . . . . . . Rich Media Collaboration Tool – prototypical
implementation of the mobile integration
architecture as described in chapter 4

67

/
Anger_Philipp_2013.pdf
/Online_Sources
AsynchVsSynch.pdf
SpaceWords.pdf
HybridVsNative.pdf
ShieldAttack.pdf
W3CStandards.pdf
/Code
RMCT


References

Literature

[1] Alexandre Alapetite. “Dynamic 2D-barcodes for multi-device Web ses-
sion migration including mobile phones”. In: Journal of Software 14.1
(2010), pp. 45–52.

[2] Federico Bellucci et al. “Automatic reverse engineering of interactive
dynamic Web applications to support adaptation across platforms”. In:
International Conference on Intelligent User Interfaces, Proceedings
IUI. (Lisbon). New York: Association for Computing Machinery, Feb.
2012, pp. 217–226.

[3] Federico Bellucci et al. “Engineering JavaScript state persistence of
web applications migrating across multiple devices”. In: Proceedings of
the 2011 SIGCHI Symposium on Engineering Interactive Computing
Systems, EICS 2011. (Pisa). New York: Association for Computing
Machinery, June 2011, pp. 105–110.

[4] R. Bezerra Braga et al. “A Context-Aware Web Content Generator
Based on Personal Tracking”. In: Web and Wireless Geographical Infor-
mation Systems. Proceedings 11th International Symposium, W2GIS
2012. (Naples). Berlin: Springer Verlag, Apr. 2012, pp. 134–50.

[5] Bin Cheng. “Virtual browser for enabling multi-device web applica-
tions”. In: Proceedings of the International Workshop on Multi-Device
App Middleware 2012, Multi-Device 2012 - Co-located with ACM/I-
FIP/USENIX 13th International Conference on Middleware. (Mon-
treal). New York: Association for Computing Machinery, Dec. 2012.

[6] Jordan Pascual Espada et al. “Extensible architecture for context-
aware mobile web applications”. In: Expert Systems with Applications
39.10 (2012), pp. 9686–9694.

[7] Maximiliano Firtman. Programming the Mobile Web. 1st ed. Se-
bastopol: O’Reilly Media, 2010.

[8] Adam Freeman. Pro JavaScript for Web Apps. 1st ed. New York:
Apress Media, 2012.

68



References 69

[9] Giuseppe Ghiani, Lorenzo Isoni, and Fabio Paterno. “Security in mi-
gratory interactive web applications”. In: Proceedings of the 11th In-
ternational Conference on Mobile and Ubiquitous Multimedia, MUM
2012. (Ulm). New York: Association for Computing Machinery, Dec.
2012.

[10] Giuseppe Ghiani, Fabio Paterno, and Carmen Santoro. “Push and pull
of web user interfaces in multi-device environments”. In: Proceedings
of the 2011 SIGCHI Symposium on Engineering Interactive Comput-
ing Systems, EICS 2011. (Capri Island). New York: Association for
Computing Machinery, May 2007, pp. 10–17.

[11] Wesley Hales. HTML5 and JavaScript Web Apps. 1st ed. Sebastopol:
O’Reilly Media, 2012.

[12] I-Ching Hsu. “An architecture of mobile Web 2.0 context-aware appli-
cations in ubiquitous Web”. In: Journal of Software 6.4 (2011), pp. 705–
715.

[13] Georgia M. Kapitsaki, Dimitrios A. Kateros, and Iakovos S. Venieris.
“Architecture for provision of context-aware web applications based on
web services”. In: IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications, PIMRC. (Poznan). Piscataway:
Institute of Electrical and Electronics Engineers, Sept. 2008.

[14] Wazir Zada Khan et al. “Mobile phone sensing systems: A survey”. In:
IEEE Communications Surveys and Tutorials 15.1 (2013), pp. 402–
427.

[15] Nicholas D. Lane et al. “A survey of mobile phone sensing”. In: IEEE
Communications Magazine 48.9 (2010), pp. 140–150.

[16] Bruce Lawson and Remy Sharp. Introducing HTML5, Second Edition.
2nd ed. Berkeley: New Riders Press, 2011.

[17] Salvatore Loreto and Simon Pietro Romano. “Real-time communica-
tions in the web: Issues, achievements, and ongoing standardization
efforts”. In: IEEE Internet Computing 16.5 (2012), pp. 68–73.

[18] Alex MacCaw. JavaScript Web Applications. 1st ed. Sebastopol:
O’Reilly Media, 2011.

[19] Lora Oehlberg et al. “Dazzle: Supporting framing in co-located de-
sign teams through remote collaboration tool”. In: Proceedings of the
ACM Conference on Computer Supported Cooperative Work, CSCW.
(Seattle). New York: Association for Computing Machinery, Feb. 2012,
pp. 183–186.

[20] William Van Woensel, Sven Casteleyn, and Olga De Troyer. “A generic
approach for on-the-fly adding of context-aware features to existing
websites”. In: HT 2011 - Proceedings of the 22nd ACM Conference on
Hypertext and Hypermedia (2011), pp. 143–152.



References 70

[21] C. Vivaracho-Pascual and J. Pascual-Gaspar. “On the Use of Mobile
Phones and Biometrics for Accessing Restricted Web Services”. In:
IEEE Transactions on Systems, Man and Cybernetics, Part C (Ap-
plications and Reviews) 42.2 (2012), pp. 213–22.

[22] Pawan Vora. Web Application Design Patterns. 1st ed. Burlington:
Morgan Kaufmann Publishers, 2009.

[23] A.G. West et al. “Trust in collaborative web applications”. In: Future
Generation Computer Systems 28.8 (2012), pp. 1238–51.

Online sources

[24] Asynchronous vs. Synchronous Communication. url: http : / /
academictech .doit .wisc .edu/ ideas/otr/communication/asynchronous -
synchronous (visited on 06/29/2013).

[25] James Burke. Using Node.js and your phone to control a Browser game.
2011. url: http://cykod.com/blog/post/2011-08-using-nodejs- and-
your-phone-to-control-a-browser-game (visited on 06/29/2013).

[26] Ata Sasmaz. Hybrid vs. Native Mobile Apps. 2013. url: http://www.
optimum7.com/internet-marketing/web-development/hybrid-vs-native-
mobile-apps-html5.html (visited on 06/29/2013).

[27] Shield Attack. 2012. url: http://www.unit9.com/project/shield-attack
(visited on 06/29/2013).

[28] Standards for Web Applications on Mobile: current state and roadmap.
url: http://www.w3.org/2013/02/mobile-web-app-state/ (visited on
06/29/2013).

http://academictech.doit.wisc.edu/ideas/otr/communication/asynchronous-synchronous
http://academictech.doit.wisc.edu/ideas/otr/communication/asynchronous-synchronous
http://academictech.doit.wisc.edu/ideas/otr/communication/asynchronous-synchronous
http://cykod.com/blog/post/2011-08-using-nodejs-and-your-phone-to-control-a-browser-game
http://cykod.com/blog/post/2011-08-using-nodejs-and-your-phone-to-control-a-browser-game
http://www.optimum7.com/internet-marketing/web-development/hybrid-vs-native-mobile-apps-html5.html
http://www.optimum7.com/internet-marketing/web-development/hybrid-vs-native-mobile-apps-html5.html
http://www.optimum7.com/internet-marketing/web-development/hybrid-vs-native-mobile-apps-html5.html
http://www.unit9.com/project/shield-attack
http://www.w3.org/2013/02/mobile-web-app-state/

	Declaration
	Kurzfassung
	Abstract
	Introduction
	Problem Statement
	Goals
	Structure

	Technical Background and Disambiguation
	Related Terms
	Web Application
	Collaborative Web Application
	Web-Based Integration
	Client-Side Web Applications
	Mobile Web
	Mobile Device
	Context-Awareness

	W3C Standards
	HTML5 video element
	HTML5 audio element
	HTML Media Capture
	HTML Canvas 2D Context
	Touch Events Specification
	Geolocation API
	Device Orientation Event Specification

	Mobile Web Browser
	Communication Technologies
	W3C APIs
	Node.js and Socket.IO
	WebRTC

	Sensors and Interaction
	Accessing device sensors
	Native APIs
	JavaScript APIs
	Hybrid Frameworks


	State of the Art
	Adaption
	Integration
	Migration
	Related Projects
	Collaborative Applications
	Mobile Controllers


	Mobile Device Integration Architecture
	Integration Approach
	Application Type
	Architecture

	Requirements
	Cross-Platform Compatibility
	Multi-User Capability
	Asynchronous Communication
	State Persistence

	Device Layer
	Context-Aware Layer
	Context Detection
	Context Access
	Content Processing
	Interface Adaption

	Logic Layer
	Application Logic
	Clients
	User Roles
	Application State

	Communication Layer
	Communication Type
	Data Exchange

	Web Server
	Database
	Server Storage
	Client Storage


	Prototype
	Single Page Model
	Architecture
	Web Server
	Clients
	Logic Workflow

	Implementation
	Node.js Web Server
	Connection
	Context Information
	Communication

	User Interface
	Basic UI elements
	Interaction UI


	Evaluation of the Integration Architecture
	Prototype
	Technical Evaluation
	Cross-Platform Compatibility
	Multi-User Capability
	Asynchronous Communication
	State Persistence
	Conceptual Approach

	Integration Architecture
	Context Handling
	Interaction Features
	Benefits
	Pitfalls

	Applicability in the Real World
	Developing costs
	Functional Scalability
	Collaborative Usability

	Future Work
	Using Polyfills
	Module Pattern


	Conclusion
	Contents of the DVD-ROM
	PDF files
	Source Code

	References
	Literature
	Online sources


