
Domain-Driven Design Refactoring Tool

Manuel Baumgartner

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Juni 2019

© Copyright 2019 Manuel Baumgartner

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, June 25, 2019

Manuel Baumgartner

iii

Contents

Declaration iii

Abstract vi

Kurzfassung vii

1 Introduction 1
1.1 Structure . 1

2 Background 2
2.1 Domain-Driven Design . 2

2.1.1 Domain . 2
2.1.2 Model-Driven Design . 3
2.1.3 Ubiquitous Language . 3
2.1.4 Bounded Context . 4
2.1.5 DDD-Based Architecture . 5
2.1.6 Entities . 6
2.1.7 Value Objects . 7
2.1.8 Services . 8
2.1.9 Aggregates . 8
2.1.10 Factories . 8

2.2 Refactoring . 9
2.2.1 Refactoring Methods . 9
2.2.2 Disadvantages . 10
2.2.3 Advantages . 10
2.2.4 Designs . 11
2.2.5 Tools . 11

2.3 UML . 12
2.3.1 Class Diagram . 12
2.3.2 Package Diagram . 14

3 Related Work 15
3.1 Visual Studio Entity Framework . 15
3.2 Eclipse Modeling Framework . 17
3.3 UMLet . 18
3.4 Comparison . 20

iv

Contents v

4 Own Approach 21
4.1 Class Structure . 21
4.2 Import . 22
4.3 Refactoring . 23

4.3.1 Classes . 24
4.3.2 Properties . 24
4.3.3 Methods . 25
4.3.4 Bounded Context . 26
4.3.5 Relations . 27
4.3.6 Ubiquitous Language . 28

4.4 Validation . 29
4.5 Export . 30

5 Implementation 33
5.1 Integration with UMLet . 33
5.2 Import a Database Model . 36
5.3 Refactoring . 37

5.3.1 Classes . 37
5.3.2 Properties . 38
5.3.3 Methods . 40
5.3.4 Bounded Context . 41
5.3.5 Relations . 43

5.4 Validation . 44
5.5 Export . 45

5.5.1 Model . 45
5.5.2 Database . 46
5.5.3 Repository . 47

6 Evaluation 49
6.1 Functionality . 49
6.2 Usability . 50
6.3 Diagram Layout . 52
6.4 Possible Extensions . 52

7 Summary 54

A CD-ROM Contents 56
A.1 Thesis File . 56
A.2 Project File . 56
A.3 Online Sources . 56

References 57
Literature . 57
Online sources . 58

Abstract

Nowadays, changes in a software model occur more often than expected. The simple
modification of a single method can cause errors in different parts of the model. A
boundary within the model and detailed diagrams are not available in most cases. It
would be helpful to consider these before the implementation. Moreover, there might be
misunderstandings between the domain experts (targeting the primary audience) and
the developers. Domain-Driven Design was invented by Eric Evans in 2003 to make
models more flexible and make clear decisions for the boundaries within them. Graph-
ical visualisations and the definition of a ubiquitous language should help to develop
the model. However, changing the current model to a DDD model is not a simple oper-
ation. The Domain-Driven Design Refactoring Tool was developed to support such an
endeavour with a graphical view. The main focus is to load an existing model from the
database and convert it, according to the DDD specifications. After that, the finished
and converted model can be exported directly as a Java project and a database model.

vi

Kurzfassung

Veränderungen in Software Modellen passieren heutzutage öfter als gedacht. Das ein-
fache Entfernen von nur einer Methode kann dabei schon zu ungewollten Fehlern in
einem ganz anderen Bereich des Modells führen. Eine Abgrenzung, sowie detaillierte
Diagramme sind dabei meist nicht vorhanden, um sich schon vorab über die Imple-
mentierung Gedanken zu machen. Außerdem kann es auch zu Missverständnissen zwi-
schen der Zielgruppe der Applikation (Domain Experten) und den Entwicklern kommen.
Domain-Driven Design wurde 2003 von Eric Evans entwickelt um Modelle flexibler für
Änderungen zu machen und auch klare Abgrenzungen zu treffen. Es soll dabei auch
mithilfe von einer grafische Veranschaulichung und dem Definieren einer gemeinsamen
Sprache der Entwicklung des Modelles und dem Aufbau der Software helfen. Es ist aber
nicht trivial das aktuelle Modell auf DDD umzustellen. Dafür wurde das Domain-Driven
Design Refactoring Tool mit grafischer Unterstützung entwickelt, um eine einfache gra-
fische Veranschaulichung des Modelles zu ermöglichen und vor allem die Unterstützung
ein bestehendes Modell aus einer bestehenden Datenbank abzuleiten und dieses anhand
der DDD Spezifikationen umzuformen. Anschließend kann das fertige umgeformte Mo-
dell direkt als Java Projekt und Datenbank Modell exportiert werden.

vii

Chapter 1

Introduction

Changing a complete software model is a cost-intensive and long process. Each class
should be taken into account with different choices in the Domain-Driven Design (DDD)
methodology. The goal of the thesis is to create a graphical supporting tool for such an
endeavour, with choices and refactoring steps according to DDD. The import should
work on any database model. Consequently, it converts it to a new DDD model.

Although the user can freely design in a graphical editor, some restrictions are
necessary for the export of a real Java model. The export itself should create an Eclipse
project containing the model classes together with a repository. Additionally, the system
should create the necessary tables for the representation in a SQL-based database.

Changes of a model do occur sometimes and can be hard to handle because even
small changes in the model can lead to side effects. DDD should make such modifications
easier. The concept of Bounded Contexts helps to avoid unexpected side effects. Fur-
thermore, defining a Ubiquitous Language supports the communication between different
teams working on the software. However, changing the complete model by introducing
this new approach may appear difficult. That is why a graphical tool should help.

Moreover, several operations might occur during the refactoring process. These can
be typical DDD changes or also default changes which occur more often, such as creating
a new class or properties in this class. The tool should also help with a general overview
of the model by providing different zoom levels.

1.1 Structure
The thesis starts with the background topics Domain-Driven Design, Refactoring and
UML in chapter 2. The main focus is on DDD and how it is used in a software model.
Chapter 3 presents popular UML software. The three selected ones are Visual Studio
Entity Framework, Eclipse Modeling Framework and also UMLet. UMLet is the most
important one because it is the foundation of the project. The required modifications
that are used are written in chapter 4, focusing on some typical DDD cases and the
theory of the import and export. Chapter 5 shows the Implementation where some
code snippets and screenshots are shown. In conclusion, the notes with some experts
are summarised in chapter 6, including how they see the result of the refactoring tool.
Finally, chapter 7 gives a quick review of the project and its outcomes.

1

Chapter 2

Background

The Domain-Driven Design Refactoring Tool builds on the concept of Domain-Driven
Design. The user can import an existing model or design it from scratch. Some Refac-
toring methods support the user to convert a standard class model to a DDD model.
All these operations are shown in a graphical way using the Unified Modeling Language
(UML). The foundations follow in this chapter.

2.1 Domain-Driven Design
The term Domain-Driven Design, or often referred to as DDD, was coined by Eric Evans
in his book Domain-Driven Design: Tackling Complexity in the Heart of Software [16].
It talks about how to improve the model of a domain and the resulting software as well
as making refactoring operations faster with fewer side-effects.

2.1.1 Domain
The term Domain-Driven Design rises the question of what a domain is. It is the entire
area where a business is based on a realm, know-how and methodology [25, pp. 43–44].
Every person in the company works within this domain.

The domain can be seen as all-inclusive and is difficult to understand initially. How-
ever, almost always, the domain consists of different smaller areas called subdomains.
In DDD each of the subdomains can consist of single or multiple bounded contexts. It
should guarantee a separation, whereby none of them should stand alone and should
have clearly defined connections to other subdomains.

With all these subdomains one of them should be of the highest importance. The
team should think of the main success of the business – especially where the source of the
most revenues is. An example is a customer booking a visit to a veterinary clinic. This
important subdomain is called the Core Domain. The business should stand out with
this core domain, which means that the business invests most effort in this subdomain.

However, the core domain should not stand on its own. All the other subdomains
are still relevant. These surrounding subdomains can also be categorised in two areas.
The Supporting Subdomain is, as it is written here, support for the core domain. With
the veterinarian example, it can be an agenda for all the appointments of the clinic or
a reminder function for the customer. All the other subdomains still being required for

2

2. Background 3

the overall business are called Generic Subdomains. The billing for the customer is an
example.

2.1.2 Model-Driven Design
Unlike the model-driven approach, there is the anaemic approach [28]. These models
are widely used in enterprise applications alongside with the MVC pattern, whereby the
controller handles all operations with the model, and the model itself consists only of
the properties with public getters and setters. The structure with getters and setters
is also required for ORM software such as Hibernate1 because these frameworks have
to access the properties for persistence and to read the data [25, p. 15]. This approach
helps due to the separation, but it also brings some difficulties and can cause problems.
Manipulation of the model is possible wherever an instance of the model is used in the
entire application. For example, a veterinarian doctor stores the clients with a simple
boolean flag for the first visit. The controller method for the visit visitDoctor() has
to handle this flag, but if another method is added to the controller or this method is
modified forgetting about this boolean flag, it will cause problems.

The model-driven design brings the behaviour directly to the model by declaring
methods and leaving all the properties hidden with private visibility. The access is only
possible through the defined behaviour avoiding manipulation from outside.

Another aspect is to make the model the central part of the software. In kind of
small projects, the model might not matter, meaning that the model can be at several
places of the software being the result of bad design. With the model as the central
parts, it means that all the other parts, for example, the graphical user interface, has to
access this model directly or via controller methods and a change of the model means
that the parts depending on the model have to be changed as well.

2.1.3 Ubiquitous Language
Domain experts being specialised people in their area might use a different jargon than
the software developers working on the same project. Developers usually use differ-
ent terms and acronyms compared to domain experts, making communication difficult.
Some people have to work as translators between them. It will be a bottleneck in com-
munication. As a result, the exchange of knowledge usually fails or becomes at least
very difficult.

Domain-Driven Design comes up with the idea of using the same terms across the
project team. All these terms together should be part of this Ubiquitous language that
is based on working with the model. It has to involve the domain expert’s scope as
well as the developers’ scope, bringing them together. In cases of misunderstandings,
domain experts have to point out the terms that are tricky or unsuitable for them. For
example, the term Class might confuse people as they might think of a school class or a
working class. In order to avoid confusion, a better term has to be defined. In this case,
this might be the term Template. Nevertheless, the terms have to be used for the model
construction including the name and properties and behaviour of the classes, although,
it is vital that changes of the ubiquitous language automatically means changes in the

1http://hibernate.org/

2. Background 4

model.
An example is a veterinary clinic with a customer and a patient. A doctor as the

domain expert should know that the patient is the pet and the customer is its owner.
However, this might be confusing for a software developer as he might not usually
work in this area thinking that the customer is the pet and not the person owning it.
Clarifying these terms among the team helps setting up the ubiquitous language.

2.1.4 Bounded Context
A bounded context is a specific area, where a dedicated project team works. These teams
should work independently from all other teams. The full project context is the general
domain that is separated into several subdomains. However, the borders of bounded
contexts and subdomains can vary since the linguistic differences matter here, defined
in the ubiquitous language. The ubiquitous language also means that each bounded
context needs to define its terms and phrases that matter only within its boundaries.
Moreover, it is possible to use the same term in two different bounded contexts with
two different meanings. For example, the term “Account” can mean a social network
account but also a bank account [25, p. 63].

Models usually consist of various elements, whereby each element has its own pur-
pose. Relations between elements show that there are dependencies. In the view of
design, a large number of different objects without any grouping might be confusing on
first sight and takes more time to figure out the topic of this model.

Grouping elements together by drawing a boundary around them helps the project
team to understand where the separations are. In a Java environment, packages are
commonly used. In DDD these are specific elements, and most of the communication
should be done in between these elements and coupling with different bounded contexts
should be clearly defined and done with services.

A particular type of bounded context is the shared kernel. It should contain classes
that are used in multiple other bounded contexts because replications of the classes/ele-
ments in two or more bounded contexts should be avoided.

According to Eric Evans, Modules are useful to split the responsibilities by using
the package structure [16, pp. 109–116]. However, this is also the concept of bounded
contexts. Nevertheless, he points out that the main differences between bounded con-
texts and modules are the patterns and the motivation but with the vital aspect that
modules also organise the elements within a model. However, Vaughn Vernon means
that modules are part of bounded contexts [25, p. 344]. According to this concept, all
the connections on the outside should be controlled and done via services, whereby, the
modules are located beside each other inside the bounded context also being loosely
coupled, and more interactions can happen between them.

However, smaller sized grouping might not be necessary, in particular for small and
medium-sized projects which the refactoring tool supports. Each bounded context has
only one module or package. The main reason for this is simply because of the limited
drawing area.

2. Background 5

2.1.5 DDD-Based Architecture
In a developmental perspective, DDD is not an architecture by itself, but developers
are using the following architectures in a model-driven context [25, pp. 113–168]. Addi-
tionally, it is also possible to combine them.
Layers: Putting all the logic in encapsulated layers is common in larger projects and

even in networking with the ISO/OSI layers [23]. The key aspect is that each layer
has distinctive responsibilities, whereby all the other layers should be encapsulated
from it. However, there are some differences in DDD. Dependencies are allowed in
one direction beyond the adjacent layers. These layers are the Presentation Layer,
Application Layer, Domain Layer and Infrastructure Layer [16, pp. 68–71]. The
top presentation layer has access to all lower layers, but the infrastructure layer
has no access to the layers above. Also, the mediator and observer pattern can
be used to access them. The aspect of encapsulation ensures easier maintenance
efforts because changes should not affect other areas; however, it also means that
the lower layers might have more dependencies than the higher layers influencing
the maintenance costs.

Dependency Inversion Principle (DIP): Higher classes should not depend on
lower subclasses. Both the superclass and the subclass should extend from the
same interface or abstract class [21]. It means that the model should not depend
on the repository, avoiding simple code lines using the instanceof operation.
The repository depends on the model. An appropriate example for the DIP is
the InputStream abstract class in the java.io framework. The subclass of the
stream (e.g. FileInputStream) implements all the methods, whereby, the super-
class reader does not need to know which implementation is used. It can be either
a file or a network connection.

Hexagonal: This architecture has multiple names such as Ports or Adaptors. It sep-
arates to model to an inner and an outer part. The inner part is about the core
domain. All the access from the outside works with adaptors and these adaptors
handle the connection to the inside. The idea of using the hexagon is to create a
category of the adaptors for each side with a maximum of six categories.
The drawback of this architecture is that it focuses more on the technical side and
not on the business side [19].

Service Oriented: The service-oriented architecture (SOA) has multiple meanings
and structures. It can be designed as abstraction, loosely coupled, or stateless
depending on its purpose. The central concept of this service orientation is that
business values are more important than the technical strategy and the strategic
goals are more important than project-specific benefits [27]. It is about web ser-
vices interacting with the model via SOAP or REST. The benefit is that it can be
combined with a hexagonal architecture where the services are part of the outer
part, besides the adaptors and other connectors. With this combination, it allows
the developer to add new services for new purposes or customers. However, SOA
does not support a technical definition. Just DDD defines the usage of bounded
contexts, but influence by this architecture should be avoided as it may require to
create a bounded context for each service, missing a primary purpose of DDD [25,
p. 132]. However, if the business goals are considered higher than the technical

2. Background 6

goals, as described in [27], it will work well with the bounded contexts, as they
also focus on fragmenting the business needs.

REST: Representational State Transfer can be seen as an access method for the items
in the model, which are connected via HTTP services. The access to the model is
defined with four of the HTTP request methods [13]. They are GET, POST, PUT
and DELETE, whereby, GET, PUT and DELETE can be called again without
any problems, in case of an error. The key aspect here is that behind each request
is a resource that will be modified or, if it is a GET request, it is only fetched.
REST also means that the web service does not store any state. This has to
be handled on the client’s side [22]. As a result, requests should not depend on
previous requests or clients.
Although the architecture should not influence the model, it might help to create a
separate bounded context for the REST operations in the interface layer. However,
it decouples its core from the interface model, because changes of an object struc-
ture can influence the remote interface, and break the access for the clients [25,
p. 137]. That means that changes in the object’s structure of the core model will
need a formal decision if they should also be added to the remote models.
A solution to this problem might be using the media type parameter in the HTTP
header (MIME-Type). Standard types can be used (e.g. text/html) or custom type
names. The idea is here to provide a domain model for each format. Another
solution might also be to use a version parameter in case of structural changes.
An adaptor maps the current version of the object to the requested version and
delivers the result.

Others: Besides all these underlying architectures, there are also some architectures
that might be worth to be mentioned.
One of them is the Command-Query Responsibility Segregation [4, pp. 223–234].
The idea is to use two different databases. One of them is for gathering information
(Query) and the other one for modifications (Command). The reading operation
might be faster; however, as soon as a modification occurs, the command database
has to push an update to the query database.
Another storage method is to store events with the Event-Sourcing Architecture [4,
pp. 235–246]. On one hand, it stores permanent data; on the other hand, also all
the modification operations are permanently stored. It can be compared with an
undo/redo stack of any text editor, allowing the user to undo changes and helping
to verify all the changes.

2.1.6 Entities
Entities can be seen everywhere in the world, and they contain multiple and sometimes
thousands of attributes. It is also one of the fundamental elements of a database model
alongside with relationships. That is why a database diagram is often called a Entity
Relationship Diagram (ERD) [15]. These entities are very similar to those of DDD. In
typical Java applications, the model is usually a representation of the database with
minor adjustments (e.g. types), but they still use the same foundation of an entity.

Entities store a couple of properties and access methods to these properties. The

2. Background 7

significant aspect that defines an entity is the identification. At least one property has
to identify an entity uniquely. In database management systems (DBMS), this is defined
as Primary Key. Java uses a default identification via the memory location [17, p. 35]
(== operation with two objects) but it is not suitable as this identification is different on
other machines and even instances and cannot be transferred to the database. Finding a
unique identification inside the application is crucial for the entity. Failing to do so can
lead to data corruption. There are several examples in the real world for identification.
The social insurance number can identify a person but not everybody has an insurance
number. In such a case, a symbol consisting of numbers and letters has to be added
to the entity, ensuring a truly unique key. This symbol can be either generated on the
database or the user side. Ensuring true uniqueness is more comfortable with an auto-
increment number on the database. Nevertheless, Java already supports a generator
for a unique identifier with the UUID (Universally Unique Identifier) class [17, p. 823].
They always have the same length of 128 bits represented as a zero-filled hexadecimal
digit string [11]. Besides that, this ID must be immutable in all circumstances because
a change can also lead to data corruption. Additionally, the ID can also be used to
create references to other entities storing the foreign id in a property element. It creates
a Foreign Key constraint that is also used in databases. The class structure can either use
the ID or the direct reference to the object. Moreover, a reconstructing of the reference
only needs the ID of the referenced element.

2.1.7 Value Objects
If an object only cares about its values without requiring an identification, it will be
most certainly a Value Object. The goal is to reduce complexity because identification
does not need to be tracked. A database usually automatically tracks the primary key
with an auto-increment or a sequence, but on a Java platform, this might get a bit more
complicated.

The absence of an identity is not the only aspect of value objects. The value objects
can be reused to save memory. The problem is that several elements can use this object
at the same time. If one value of this value object changes, the system might break. A
solution to overcome this is to make them immutable. The life cycle is reduced to only
two steps. The creation, being the first step, has to provide all the necessary values, and
the second and last step is the deletion of the object. It must not allow changes during
existence, avoiding side effects for multiple referencing objects. However, if a value has
to be changed, a completely new value object can be created and reassigned.

Some of them are often used in Java. One of them is the String class for example
or colours in the AWT toolkit. They are also immutable because all changes will create
a new instance, and the original object stays the same.

Moreover, value objects can also reference other objects reusing the values directly.
Connection of prices with the name of the product and the price itself is an example.
The name of the product is the main value object referencing the value object of the
price. However, a value object should not reference an entity as it can break the im-
mutability [25, p. 222]. On the other hand, at least one entity has to reference the value
object.

The storage of value object in the database is also an essential aspect because it has

2. Background 8

to be a property of an entity. The database table has to have a column for the value
object and stores a string representation containing all the values (e.g. JSON string).

2.1.8 Services
Some elements in the model cannot be clearly defined as an entity or a value object.
It does not help to change the structure to fit them into one of these two categories.
It means that only functions are used without any properties, and this is the definition
of services. They are not encapsulated compared to the entities and value objects and
provide access across the bounded contexts [26]. They should be stateless moving the
state part either into the entities, value objects or the requester of the service. Although
only functions are invoked with the service, it is possible to call methods of entities and
value objects.

Services can also be categorised in domain services (microservices) and external
services. A domain service provides access only within the system by either different
bounded contexts, from a controller or the graphical user interface. Besides that, a
service can be shared externally as a web-service (REST/SOAP).

2.1.9 Aggregates
Changes in the objects tend to happen quite often. In an entity, some records most cer-
tainly will be modified or deleted. It can influence the relations and the other referenced
classes. An example is the removal of a user. All the user data should be cleared as well
but the data might be shared with other users.

In this case, this should be handled by a single, specific Entity using a specific
element as the root of a cluster that consists of several Entities and Value Objects. This
element is the Aggregate Root with the primary purpose to provide access methods and
saving references to the underlying Entities and Value Objects. The chosen entity may
be referenced by classes outside of the aggregate and also for the services to provide
access to other Bounded Contexts [16, p. 127].

2.1.10 Factories
In smaller software projects a class constructor can be created without parameters, and
the settings of the values can be done afterwards via getters and setters, as it is default in
anaemic models. Nonetheless, DDD uses rich client models transferring the operations
in the method part of the model classes. It means that not all properties are accessible
from outside. In this case, only the constructor is accessible, and this definition can
be ambiguous in larger projects. Moreover, it might be the case for aggregate roots to
create some entities or value object for several properties.

A solution for all these construction problems is to create factories [5]. They take the
responsibility to create and instantiate new objects, including the references. An example
is creating a new appointment to visit the veterinary doctor with the customer’s phone
number and the name of the pet. The factory for the appointment needs the phone
number, name of the pet, name of the doctor and the time of the appointment. With
all this information, it can automatically generate all the objects required to be stored
in the database. With the phone number, the user can be searched in the system, and

2. Background 9

with the user, the pet can be found. It is the same for the doctor as this person should
also be on the doctor’s table. As a result, this should all be combined in the aggregate
root appointment and can be stored in the database.

In case of a new customer, the system might require additional information similar to
a registration form when visiting a doctor for the first time. It also means that another
factory should be created as it is for a different purpose, although, it is useful to make
methods reusable for the factory steps trying to avoid redundancy.

2.2 Refactoring
Refactoring is also essential in software development. It is reworking bad-designed code
into well-designed one avoiding changes to the external environment [9, p. 9]. Speak-
ing about DDD, this means that the internal model should be changed including the
database structure. However, all the services accessible from the outside should still
receive the same requests and send the same response. To sum it up, refactoring can
also be described in these three questions:

• What should be done?
• Why should it be done?
• When should it be done?

2.2.1 Refactoring Methods
It is starting with the question “what” connecting to processes that come from Test
Driven Development because tests should be written before even starting the refactoring
process. They should ensure the functionality of the code as changes may cause different
results, even though they should not. After the tests have been defined, some changes can
be made to the code with a test being executed after each modification. This loop should
last until the code is well-designed meaning that no more changes seem to be necessary.
Martin Fowler points out three general refactoring operations with an example [9, pp.
18–45]. They also indicate how refactoring can be done.
Extracting Methods and Classes: They are opportunities to avoid duplication and

also points out that a method should have only one responsibility. Development
IDEs such as Eclipse support this method using a simple dialogue and automatic
creation of the method header, including a method call at the original position.
Moreover, it keeps the code flow, and in case of a return value, it will also create
the return statement and type. A similar method is also available for classes as
they should also not grow too big.

Polymorphism over conditions: The goal here is to use the advantages of object-
oriented programming. It is also combined with a class extraction because the
superclass defines abstract methods, and the lower classes have to implement
these methods. The advantage of this method is that adding extensions is easy
and can be done by just adding new subclasses.

Move Method: Coming back to the responsibilities of methods, in the example of
Martin Fowler, the full amount of video rentals is calculated for a customer. It is
done by only one method in the customer class, although each rental has its price,

2. Background 10

meaning that this calculation should be extracted and done within the rental class
delivering the result to the customer class. Nevertheless, the price calculation of
a single video is also not the responsibility of the rental. Therefore it should be
in the video class. The advantage of the result can be seen after a change in the
price calculation of a video.

The second question: “Why should it be done?” A reason might be the time that
adding new functionality and bug-fixing wastes. If the new developer needs more than
a week to understand the code, when it could have been learnt in a couple of hours, it
will be an alarm for code improvement.

Even for companies, there is the aspect of time, answering the “when” question. It
is useful to do it in regular cycles. On one hand, it might take too much time but, but
on the other hand, it should not be a side task that will be done if there is nothing else
to do. A process model has already been developed to include the refactoring process in
regular cycles called Extreme Programming [14]. Another functional theory is the Rule
of Three. In case of similar changes in row for three times, a refactoring process should
follow [9, p. 49]. Another indicator is to see how long bug-fixes take. In case of very long
duration and not understanding the concept after several days, refactoring should be
considered as well. Intensive use of the copy-paste function also indicates redundancy
that might cause troubles after some time. Extracting this copied code most certainly
is useful.

2.2.2 Disadvantages
However, there are also some cases when a refactoring should not happen at all. If the
code does not work at all or produces a wrong output, refactoring will not be useful as
the semantic before and after should, in general, stay the same. If there are too many
refactoring possibilities, it will be easier to rewrite the complete code part thinking
about a new structure. A strong encapsulation might also make the refactoring difficult.
Interfaces should also be an area of high importance due to their possible public access
from the outside. They should not be published prematurely [9, p. 55], and changes have
to be pointed out as well as the consideration of keeping the old signature of methods
with a deprecated annotation. Thinking about publishing and releasing the product,
refactoring should not happen if the team is already very close to the deadline, at least
not at this particular moment.

2.2.3 Advantages
Besides these cases, refactoring might be useful, but this can also mean that maintaining
more classes and methods might become more difficult. In particular, it may get more
challenging to find them, and it can lead to more responsibilities. Nevertheless, creating
new methods also has some distinct advantages.
Shared Logic: If lines of code are copied to other places because they have to be

executed in different parts of the application, it will lead to code redundancy.
This logic can be shared by creating a new method and call it from the original
code location.

Isolate Changes: A method could be called in two different places and the behaviour

2. Background 11

should be changed in one place. Changing the shared method changes both cases
but can be avoided by creating a subclass implementation of this function and
adding the additional code without changing the original method. The advantage
is that the other case will not be affected.

Ensure Conditional Logic: This brings polymorphism over conditional structures by
creating an abstract method and let the subclasses implement this method. The
flexibility is higher for changes and extensions.

All these three advantages are also connected since either a subclass is created or new
methods and classes. Refactoring mostly works with this methodology by using Object-
Oriented Programming.

2.2.4 Designs
Also, the factor design in a software project is essential. Refactoring might get compli-
cated if the current code should be changed to a new design guideline. That is why it is
easier to start with a design approach and keep it for the project. Design is also essential
for a program. However, it can also be done by creating a solution for the problem and
redesign it afterwards, as this is more the case in Extreme Programming. Nevertheless,
keeping the design might seem easier finding a reasonable and also a flexible solution,
but sometimes it is the case that a flexible solution is not needed or not in this level,
and a more straightforward solution might be better. It is mostly the case if a simple
solution can be quickly changed into a flexible solution [9, p. 57].

2.2.5 Tools
With development IDEs such as Eclipse refactoring processes may have become faster
and also simpler for the developers. An example is the Extract Method functionality
as described in the section 2.2.1. Keeping it this way, Martin Fowler points out some
practical criteria for them [9, pp. 331–332].
Speed: Putting a method from the one class to another seems to be comfortable with

a copy/paste operations. However, access to variables are not considered, and
new parameters have to be added. The tool should automatically scan them and
create them automatically. Nevertheless, if this operation takes more time than
just copying and pasting, including the variable access check, it will not be used
by the developers.

Undo: The tool has been designed by the guidelines that the original developer of it
had. It might not be the same for a new project. Considering the outcome after
the refactoring process, the user might not be happy about the result. In such a
case, it would be helpful to undo these changes.

Integration: The developer should also find the refactoring extension, and with a
separation of the refactoring and the IDE, it might not be used as it cannot be
found. For more extensive refactoring operations it might help to create them as
an external application, especially for model creation and modification tools.

2. Background 12

2.3 UML
In the DDD environment, the code itself is crucial, but sketching the software is an even
more significant part. All the ideas are delighted to be designed on paper. However,
it might be easier to design them in an editor. A UML diagram will open a way for
communication and understanding [10, p. 6]. These UML diagrams usually do not affect
the source code directly but should bring up the ideas for the software. The ideas should
be much easier to understand and also helps to communicate between different teams
in an Object-Oriented Environment, but therefore, standardisation is required.

In a DDD environment, the most valuable kind of UML diagram is the class diagram.
However, this is not the only used diagram type. For example, Bounded Contexts, are
usually not supported by default UML class diagrams but another kind of diagram can
be used for this purpose. Package Diagrams are handy for grouping elements together.
Moreover, some modifications can be done to display DDD diagrams.

2.3.1 Class Diagram
UML consists of multiple types of diagrams whereby the most widely used is the class
diagram [10, p. 35]. In all object-oriented Programming languages, they are helpful
in designing the properties and methods and having a quick overview. With UMLet,
it is possible to create such diagrams by defining the properties and methods in the
properties input-field. The specific rules about the structure of properties are:
Visibility: It defines the accessibility of the property. In Java classes and anaemic mod-

els, this is per default “private”, but it can also be in “package” visibility, meaning
that only classes from the same package can access the variable. Additionally, the
“protected” keyword adds the subclasses to gain access. Finally, to be accessible
from everywhere, the visibility has to be set to “public”. Four symbols are used in
the UML standard to display the visibility quickly. - is for private, ~ for package,
for protected and + for public [10, p. 38].

Name: The name of the property is a combination of letters and numbers, whereby
the first character has to be a letter.

Type: The type makes the property either an elementary type (String, int, et al.) or
a reference to another object (Date, Colour, et al.) including references to other
classes in the same diagram.

Default Value: In case of an undefined property in the constructor, a default value
can be declared here.

Property String: A string here is for additional properties defining the behaviour of
the attribute. It can be a final declaration for a constant.

Figure 2.1 shows the properties in the central part of the class diagram. In a default
UML environment, the user is not bound to this structure. The goal of it is to be flexible
as not all the components have to be added to the property definition, but the name is
always necessary [10, p. 37]. However, building a real model out of this design requires
more elements of the standard with the right order. For that reason, the input of the
already mentioned elements needs to have a better-controlled input.

It is also true for the relations because they have to be clearly defined by each prop-

2. Background 13

Order

- orderId: Int {auto increment}
- date: Date = Date.now {date of order}
paid: Boolean = false {user has paid}
+ items: Product[] = null {ordered items}

+ placeOrder(item: Product, date: Date): Int {new order}
+ removeOrder(orderId: Int): Boolean = false

Figure 2.1: UML Class Diagram Example

erty using the reference to another class. This type of relation is called an association.
The stored instance is the property using its type from the class it references. An arrow
is drawn from the property to the desired class being the position of the arrowhead to
show this reference.

Associations need to define a multiplicity or also called cardinality. It declares how
many objects can be assigned to the property [10, pp. 38–39]. It can be compared to a
foreign key constraint in a database column because the constraint only allows values
from the other table’s primary key being the unique identifier of the class. In general,
it is a one-to-many relationship.

An example is a relationship between the pet and the owner visiting the veterinarian
clinic. The pet has only one owner that is the customer, but the customer can have more
than one pet.

If a collection for storing multiple instances in one property is used, the multiplicity
will be many-to-many because the list can grow to an infinite amount and also the
number of possible references are not limited.

Besides the properties, there is also a notation for the methods. They have a similar
structure starting again with the visibility.
Visibility: The visibility is the same as the properties but with the difference that

methods are usually declared as public.
Name: The name is also with a combination of letters and numbers.
Parameter List: The parameter-list as a list of parameters that are handed over to

the method with each parameter having the notation name: type being separated
by a comma.

Return Type: The return type is the type that will be returned after the method has
been finished or void in case of a procedural method without a return value.

Property String: This is also for declaring additional properties.
Figure 2.1 shows the methods in the lower part of the class diagram.

2. Background 14

com.package1.package2

com.package1.package2

package2

com.package1

com.package1

Figure 2.2: UML Package Diagram Examples

2.3.2 Package Diagram
Class diagrams show the structure of a model, but for larger models, more visualisations
with more abstraction levels are needed [10, p. 73]. An approach is the package diagram
because it allows elements to be split into several groups and only shows the group
without its contents for a higher level of abstraction. Elements with more dependencies
should be put together similar to packages in Java.

The default form for the packages is a tabbed folder, whereby, the name of the
package is inside this tab which can be either the fully qualified path or just the rel-
ative name. Nonetheless, it is also possible to use a rectangle with the title either on
top or in the centre. Sub-packages can also be included within the package to form a
nesting package. An example of these different package diagram notations can be seen
in figure 2.2.

It can be a difficult question to determine which classes should be put in which
package. Whereas, the DDD approach already defines a useful way to determine the
packages, concerning the classes, by creating bounded contexts, defining which elements
should be in the same context, and which ones should be in another bounded context. A
bounded context should be a package hiding the core model from others using visibility.
Services and aggregate roots, however, should be visible. In Java, packages do not handle
visibility. It depends on the classes inside. In this case, services and aggregate roots are
public, and the rest is only visible within the same package.

Chapter 3

Related Work

UML design software is widely used in the software development process presented here.
It can either be used for the documentation or communication across the project team.
Some of them support to create and a database or code model out of it. The three
selected tools are the Visual Studio Entity Framework, Eclipse Modelling Framework
and UMLet due to its widespread use. Besides that, UMLet is the foundation for the
refactoring tool created for the thesis.

3.1 Visual Studio Entity Framework

Visual Studio itself is a development software developed by Microsoft1. It supports mul-
tiple programming languages like Visual Basic, C++, C# and even more common .NET
programming languages, but the most widely used one is C# with different technologies
and frameworks available. One of these frameworks handles the interaction between the
database and the model of the software, which is also called repository. In Visual Studio,
it is called the Entity Framework [20].

The creation of the model, including the database and the code, works with three
different approaches. They depend on the source for the entity framework and how to
start.
Database First: This approach is used for projects with an existing and working

database, including the model (tables, views, et al.) meaning that the project
does not have to start from scratch. With an import dialogue, the user has to se-
lect the tables that should be part of the model. With the import, the framework
automatically creates the UML representation allowing the user to customise the
code that should be created out of it.

Code First: The code first means that instead of the database, the code is created
first. The database tables are going to be created from this code, including the
UML representation. The only drawback using this approach is that all changes
in the code have to be pushed again to the database.

Model First: This is a different approach via the UML diagram designer. An example
of this designer showing the example of the veterinarian clinic for the appoint-

1https://visualstudio.microsoft.com

15

3. Related Work 16

Figure 3.1: Visual Studio Entity Framework example

ment can be seen at figure 3.1. The user creates all the classes in this designer,
including the relations between the entities. The elementary properties are listed
in the properties pane, and the foreign key properties are listed in the Navigation
Properties panel. The code representation of the model will always be created if
a change occurs, but this is not true for the database. After having finished the
design, the Generate Database from Model task has to be executed via the context
menu pushing the changes to the database; however, it just creates the SQL script
that the user has to execute.

With all these three approaches, the Model First approach is used to create the concep-
tual model by using Domain-Driven patterns and let the database and code created out
of it. Additionally, the creation of the model can be supported via the database input
using the Database First approach.

Besides the task of creating the model, the entity framework brings more advantages
for the developers. After having created a model from the database or designed the
model from scratch, all the code, representing the model, is automatically generated.
Moreover, all changes in the designer that are made afterwards are also transferred to
the source code, keeping it up-to-date. Moreover, the connection from the program to
the database is handled by the framework, decreasing the amount of code that has to
be written for the database requests [20].

The designer itself is both for checking the current state of the data model as it
has been imported from the database or the code and refactoring this model. Most of
the refactoring operations start from the context menu and the toolbox. Adding a new

3. Related Work 17

entity and relations are examples for typical refactoring operations. Additionally, the
creation operations are mostly in dialogues determining the name of an entity and the
key property (primary key). This is also true for the associations because the dialogue
here needs both ends of the relation with the multiplicity being 0, 1 or * and the names
of the properties for the access called the navigation properties.

3.2 Eclipse Modeling Framework

Eclipse2, being a free IDE mostly for Java, is using a lot of tools and frameworks to
support the developers. The particular framework Eclipse Modeling Framework is used
for the class model creation. It is primarily made for the modelling first approach. First,
the model is designed. Second, other tasks are considered, such as the user interface. The
Eclipse Modeling Framework should help with designing this model and providing code
generation functionality [1]. It is a unification of UML, XML and Java [3]. XML here can
be used for the description of a model and also for storing it as a file. This unification
also means that the definition of the model has to be in one of these formats and the
modelling framework will create the other two formats from it. With DDD, an example
is to create the UML diagram first and the EMF creates the Java implementation as
well as the XML representation.

The model to describe models is defined in the ECore model that contains informa-
tion about the defined classes. This is also called a meta-model [12]. This meta-model
is based on XML, and the root element is the EPackage storing the package name. All
the classes are children of this EPackage. Additionally, each class can consist of these
four elements:
EClass: This is for the EMF representation of a class with at least a name. Attributes

and references are optional, but in most cases, it should have a couple of attributes,
whereby, there might be no references or very few of them. The attributes are
described as an EAttribute.

EAttribute: They contain a name and a type but mostly primitive types such as int,
char and long or object types extending from the EDateType.

EDateType: They are used for the type representation and are a bit different to
default Java data types because all of them use an “E” prefix. Examples are
EString, EInt and EDate. However, in the case of referencing another class in a
diagram, the EReference is used for it.

EReference: They replace the EAttribute as a definition of the relationship between
two classes by associating the type of the destination class. The main attributes of
a reference are also the name with the target type, which is here the type of another
class in the same diagram. Additionally, it requires a boolean flag indicating the
representation of a containment.

These ECore models can be created in the editor as a tree structure or via the XML
file, but for DDD the UML designer is the main area of interest. An example of the
designer can be seen in figure 3.2. The designer allows the user to create new classes,
adding attributes and handle the association between the elements. All these operations

2https://www.eclipse.org/

3. Related Work 18

Patient

patientID : EString
patientName : EString

Customer

custId : EString
custName : EString

ScheduleTime

startTime : EDate
endTime : EDate

Appointment

appointmentID : EString
createAppointment(patient Patient,
startTime EDate, endTime EDate)
getAppointments(cust Customer) :
Appointment

[0..-2] patientOwner

[0..-2] appointmentPatient

[0..-2] appointmentTime

Figure 3.2: Eclipse Modelling Framework example

can be done with the toolbox. After the selection of an element, the user has to select
the desired location for a new class or the class for new attributes or associations.

The next step is to build the Java model out of the designed UML model.

3.3 UMLet

UML is the de facto standard for graphical class model design [6]. Most products here
are part of a framework or an IDE and they work only in their development environment.
UMLet is an open source software for designing UML diagrams. It is written in Java also
with the functionality of gathering information from Java source or object files using
external libraries such as “JaPa” (Java Parser)3. This is kind of a code first approach,
whereby, the code will not be modified. Although this part is limited to Java, it should
help without being restricted to any development area. It does already contain the
elements to create a graphical representation of the model by quickly drawing them
with a simple mark-up and without input dialogues [8, p. 1].

The GUI is using several containers and controls of the Java Swing [7] library. An
example can be seen in figure 3.3. The main drawing area can open up multiple files
with different tab-folders. The toolbar on the right side is similar to the main drawing
area with different toolbar types. Furthermore, it allows the user to drag and drop an
object from the toolbar into the drawing area. A copy will be created in this process.

UML itself supports multiple types of diagrams. The most important one is the class
diagram. In all object-oriented programming languages class diagrams are very helpful
in designing the properties and methods by having a quick overview. With UMLet,
it is possible to create such diagrams by defining the properties and methods in the
properties input-field on the right bottom corner. The specific rules about the structure

3https://javaparser.org/

3. Related Work 19

Figure 3.3: UMLet example

of properties are:
• visibility (private, package, protected, public),
• name and
• type (String, int, et al.).

This is described in detail in section 2.3.1. However, in UMLet this structure is just a
recommendation because the goal of the software is to be a lightweight editor for UML
diagrams.

Relations can be drawn to connect elements. They will keep the same relative po-
sition of the bounding polygon after the element has been moved to another position.
Moreover, types can also be changed more quickly compared to different platform de-
pendent modelling tools by the properties text-input. All the other defined elements,
such as the multiplicity, are reused.

This is also true for whole classes and all other elements because a copy of them has
the same properties and size. Nonetheless, it is an entirely new element, and changes
will not affect the original one [8, p. 4]. As a summary, this means that almost all of the
user-defined definitions and customisations happen in this text form supporting default
keyboard shortcuts and avoiding the usage of multiple dialogues.

It is also useful to share these diagrams across the team or use them in presentations.
Communication is also an essential aspect in UML [10, p. 6]. The user of this diagram
might require this in a specific format such as a high or low-resolution raster graphic
(JPEG, PNG) or a vector graphic (SVG, PDF). External open-source libraries are used, such
as Batik for SVG files, making it extendable for more formats.

3. Related Work 20

Table 3.1: UML Tools Comparison

Visual Studio
Entity Framework Eclipse EMF UMLet

Start
Approaches Model, Code, DB Model Model, Code

Create
DB Yes No No

Read from
Code Yes No Yes

(Java only)
Generate
Code Yes Yes No

Supported
Languages

C#, Visual Basic,
.NET Java Independent

Export Model
Image No Yes

(.png, .svg)
Yes
(.png, .pdf, .svg)

Customised
Elements No No Yes

Open Source No Yes Yes

3.4 Comparison
Table 3.1 shows these three UML tools with different aspects that are required for the
thesis project. UMLet has been chosen as the foundation because it is open source and
uses the UI framework “Java Swing”. The model can be exported as an image file, but
it does not support the export to a real Java or database model. Although Eclipse EMF
supports it, there are no customisable elements. The Visual Studio Entity Framework is
closed source, that is why extensions and modifications might not be possible. Besides
that, Visual Studio does not support Java as a programming language.

Chapter 4

Own Approach

This chapter describes how the concepts of DDD and UML methodology are used in
the project for the thesis (DDDrt). There are several steps to create a DDD model from
a usual object-oriented one. In the planned application, a model is created either from
scratch or by loading an existing model from the database. This model will be refactored
via the methods described in section 4.3. In the end, a Java project should be exported
with a suitable database and code for a repository, as described in section 4.5.

4.1 Class Structure
The DDD approach requires a different kind of class elements, for example, entities or
value objects, and almost all of them can be seen as regular Java classes. The general
structure of them are:
Name: A unique name for the class,
Properties: variables and
Methods: control the changes of variables and add behaviour.
An example of an entity can be seen in figure 4.1.

In general the three elements (Entities, Value Objects and Aggregate Root) contain

<<Entity>>
Entity1

Properties

Methods

- e1IdProperty1 : String

e1Property2 : long

e1Property3 : Date

e1Property4 : Entity2

-
-
-

e1Method1 : void+
param1: long, param2: Date, param3: UUID

Figure 4.1: Entity example example

21

4. Own Approach 22

these three parts. Services, however, do not require properties because they provide only
methods for external access. Moreover, Entities and Aggregate Roots need to define a
unique identity as a primary key. Only the name of the property is required to keep
diagrams clear and readable, details like visibility and type specifications are omitted.
Nevertheless, they are required in Java.

4.2 Import
Using an already existing model is a major aspect for refactoring existing code. In the
case of this project, this model can be imported either from Java classes or directly from
the database. The advantage of using a Java model is that it only requires the Java files
without any database connection, but it requires extensions for other programming lan-
guages. On the other hand, working with a database is independent of the programming
language. For example, the task is to change from a simple CRUD (Create, Read, Up-
date, Delete) application, written in Oracle APEX, to a Java-based technology. This
means that a local Java class model is not available. Business software and websites
usually use a database behind the scene with all the entities and relations. The goal is
to reuse them for the new DDD approach. [24] describes the reverse engineering process
in two major steps.
Model Extraction: The first step is gathering the name and the type of the tables

and its columns. Methods such as PL/SQL functions, procedures and triggers do
not have to be considered.

Constraints Extraction: The second step is loading the constraints of the tables and
especially of the columns. These are Primary Keys for a unique property and
Foreign Keys for the relations.

Additionally, the reverse engineering of a database works with the meta-tables of
the database. The three major elements for the loading procedure are Tables, Columns
and Relations. This means that three loading steps are required due to this database
structure. The real steps for a real database are:

1. the name of all tables from the current user trying to avoid loading other meta-
tables,

2. the name, data type, length, et al. of the columns and
3. finally the constraints.

Both step one and step two are separate steps here. An example import can be seen in
figure 4.2. It takes the model from the ERD (Entity Relationship Diagram) and converts
it to the DDD diagram.

The database tables have to be converted to Java classes. This, in particular, includes
the name of the class and the properties but also the type of each property. In particular,
property types show some differences. For example, the type NUMBER as in table 4.1
can be a different type in Java depending on its length, but the length in the database
can have customised limits for some types, particularly numbers. However, in Java, there
is only a general limit depending on the byte length of the given type. Nonetheless, it
can be simulated either with an array or storing the length in annotations and checking
this length in the setter.

4. Own Approach 23

PK

FK

E1_ID_PROPERTY1

E1_PROPERTY2
E1_PROPERTY3
E1_PROPERTY4

PK E2_ID_PROPERTY1

E2_PROPERTY2
E2_PROPERTY3
E2_PROPERTY4

Entity1Entity2

<<Entity>>
Entity1

Properties

Methods

- e1IdProperty1 : String

e1Property2 : long

e1Property3 : Date

e1Property4 : Entity2

-
-
-

<<Entity>>
Entity2

Properties

Methods

- e2IdProperty1 : String

e2Property2 : String

e2Property3 : int

e2Property4 : String

-
-
- *

1

Import

Figure 4.2: Database Import example

Table 4.1: Java Types versus Database Types

Java Type Database Type
byte NUMBER(<3, 0)
short NUMBER(<5, 0)
int NUMBER(<10, 0)
long NUMBER(≥10, 0)
double NUMBER(X, X)
java.util.Date DATE
String VARCHAR2(X), CLOB, CHAR(X), ...

The names of both the database table and the column are usually written in upper
case letters with underline separators. This might be a bit unusual in Java. That is why
the names should be converted to camel case notation for the Java classes, properties
and methods. An example of this conversion from database tables to Java classes can
be seen in figure 4.2.

4.3 Refactoring
The central part of the tool is to refactor the model from the database or Java classes
and convert it to be DDD conform. For this several steps have to be taken by the
user, and the tool supports this. The operations can be done in a custom order, but
some operations can only be performed on particular classes, whereby, the Change type
operation can influence it, as it changes the type of a particular class. For example, a
value object does not have a primary key.

Also, the refactoring methods are categorised in the sections of DDD. These are

4. Own Approach 24

<<Entity>>
Doctor

Properties

Methods

- :doctorName : String

doctorTel : String

doctorStreet : String
-
-

doctorHouseNumber : int-
doctorZipCode : String-
doctorTown : String-
doctorCountry : String-
doctorApprobation : String-
doctorSpecialisation : String-
doctorRank : int-

<<Value Object>>
Doctor

Properties

Methods

- :doctorName : String

doctorTel : String

doctorStreet : String
-
-

doctorHouseNumber : int-
doctorZipCode : String-
doctorTown : String-
doctorCountry : String-
doctorApprobation : String-
doctorSpecialisation : String-
doctorRank : int-

Figure 4.3: Class Type Change

elements, properties, methods, bounded contexts and relations. The refactoring of one
section should not affect others except for the “Change type” operation.

4.3.1 Classes
In the first step, the user needs to decide whether a class should be an Entity, a Value
Object, an Aggregate Root or a Service. It enables more or less functionality for the given
element. Entities and aggregate roots require a unique property being also the primary
key column in the table. This type can also be changed later.

Nevertheless, changing back to a value object or a service removes the unique iden-
tity. Besides that, an aggregate root is very similar to an Entity. It can be seen as an
associative table in the database for a many-to-many relationship. It is also the case
here to make relations easier. Another part of the aggregate root is to provide methods
for the services. Services only contain methods without any properties. Services and ag-
gregate roots should provide almost all of the public methods and the changing objects
within the bounded context.
Adding new classes: This can also be the case if the user decides to create a new

model from scratch. A new element of the three types Entity, Value Object, Ag-
gregate Root or Service can be created.

Removing classes: In case an element is not required anymore, this particular element
can be removed from the model.

Change type: After the import from the database, a dedicated entity should become
the element root; therefore, it should be possible to change the type of an element.
Another case is to change an entity to a value object as in figure 4.3.

4.3.2 Properties
All the properties have to be checked. The type in the database model might be a
different one than the user expects. NUMBER is an example of such a type because it
can be both a floating point number or an integer number. Besides the type, the name

4. Own Approach 25

<<Entity>>
Doctor

Properties

Methods

- doctorId : UUID

doctorName : String

doctorTel : String

doctorStreet : String

-
-
-

doctorHouseNumber : int-
doctorZipCode : String-
doctorTown : String-
doctorCountry : String-
doctorApprobation : String-
doctorSpecialisation : String-
doctorRank : int-

<<Value Object>>
Address

Properties

Methods

- street : String

houseNumber : int

zipCode : String

town : String

-
-
-

country : String-

Figure 4.4: Properties extraction example

can also be changed. Additionally, it is possible to add other properties or remove some
of them.
New properties: It should be possible to add new properties with a simple plus but-

ton. Both imported classes and new classes support this function.
Property modifications: Besides adding and removing properties, it is possible to

modify each part of the property. This also means that the name from in the
database form (underline case) should be changed to the standard Java notation
(camel case).

Property extraction: The columns of the database columns can grow in size, and
after the import, the user will see a large number of properties in the entity.
Keeping an eye on it might become difficult. A solution might be to create another
entity or a value object out of a group of properties. Extraction from an entity to
a new value object can be done, for example, the case in figure 4.4.

4.3.3 Methods
Besides the properties, the user can define the headers of methods. The parts of them
are visibility, name, return type and also the parameters. With these arguments, the
method header is defined, but the method body has to be defined by the user after the
export in the Java class. The idea is to declare simple CRUD (Create, Read, Update,
Delete) methods for a class, ensuring the encapsulation and the access to the properties.
They should be created automatically via all the current properties as the example in
figure 4.5.

It is not recommended to create only getter and setter methods because the model
should not become an anaemic model again. All the access with the class should be with
behaviour functionality that is defined in sentences. An example of such behaviour is
“The customer arranges an appointment with a doctor”. The method for this behaviour
is arrangeAppointment(Customer customer, Doctor doctor, Date time).

4. Own Approach 26

<<Entity>>
Doctor

Properties

Methods

- id : UUID

name : String

tel : String

specialisation : String

-
-
-

rank : int-

<<Entity>>
Doctor

Properties

Methods

- id : UUID

name : String

tel : String

specialisation : String

-
-
-

rank : int-

add : void+
_id: UUID, _name: String, _tel: String, _specialisation: String, _rank: int

update : boolean+
_id: UUID, _name: String, _tel: String, _specialisation: String, _rank: int

delete : boolean+
_id: UUID

read : void+
_id: UUID

 add CRUD methods

Figure 4.5: CRUD methods example

Additionally, most methods should be in a package or protected visibility because
the aggregate root and the services should provide the functionality to the outside to
ensure a side-effect free functionality.

From the database, only the properties, relations between properties and other
classes are loaded. That is why the user can declare new methods of the element, in-
cluding the parameters.

4.3.4 Bounded Context
All the elements have to be organised in at least one bounded context. This means an
encapsulation of the class elements by avoiding too many dependencies to elements of
other bounded contexts. For DDD, it helps to avoid unwanted side-effects after any
modification. For a start, all elements can be put in the same bounded context, but the
user should think about this separation. It might be possible that a particular element

4. Own Approach 27

has to be used in more than one bounded context. Replication should be avoided by
copying the same element in two or more bounded contexts. As a result, they should be
put into a shared kernel [25, p. 92].

It should also be possible to move an element to another bounded context or even
copy this element to be used in a different version. An example is the User class. In
the Appointment bounded context only the name and the e-mail address have to be
known. However, for payments, the system requires data such as a credit card number.
This encapsulates these usages of the user, but the database table still keeps the order.
If some data is required in almost all bounded contexts, this class should probably be
moved to the shared kernel. This kernel stores all the classes used by more than one
element of a different bounded context. It can be seen as the core part of the model.
On the other hand, the core classes are less flexible to changes as they might be used
in several other places of the software.
Add elements: An important operation concerning bounded context is to add new

elements to it. A simple way to do so is dragging them inside the bounded context.
There might be a situation when more than one element should be added or moved
from another bounded context. A simple multi-select should help. In the example
in figure 4.6, two elements without a context are selected and added to a new
bounded context.

Move elements: It can also be the situation that an element should be in another
bounded context. In one case, it should be really in this different bounded context,
but in another example, the desired element should get to the shared kernel. The
operation can be almost the same but with a different outcome for the exported
Java project. It can be done with merely dragging the element to another bounded
context or via selecting this operation in the context menu.

Copy elements: In some situations, a similar class should be used in another context
and retyping all the properties and methods can be much work. A simple copy
operation should make this faster. This can be done in the context menu deciding
to which bounded context the element should be copied. As in figure 4.7, an entity
is copied from bounded context 1 to bounded context 2.

4.3.5 Relations
A relation means that property uses the type of another element in the diagram. Rela-
tions across the application should be kept to a minimum and used with the services.

Before moving and configuring the relation, all the class elements of the application
have to be added to the type dropdown element. If the user selects a type from this
dropdown element or enters the name of the other element, the relation will be created
as a drawn arrow from the property to the destination class.

Besides that, there are two types of relations concerning multiplicity. Typically it
uses a one-to-many relation, meaning that only one element is used in the other class,
but there are several decisions which element is going to be used. The other relation type
comes up with collections (e.g. list, array) with more than one element being stored in
the property of the starting class. This is a many-to-many relationship. Several elements
can be used, and there are still the decisions which element should be added to this
collection.

4. Own Approach 28

<<Entity>>
Doctor

Properties

Methods

- doctorId : UUID

doctorName : String

doctorTel : String

doctorAddress : Address

-
-
-

doctorApprobation : String-
doctorSpecialisation : String-
doctorRank : int-

<<Value Object>>
Address

Properties

Methods

- street : String

houseNumber : int

zipCode : String

town : String

-
-
-

country : String-

<<Entity>>
Doctor

Properties

Methods

- doctorId : UUID

doctorName : String

doctorTel : String

doctorAddress : Address

-
-
-

doctorApprobation : String-
doctorSpecialisation : String-
doctorRank : int-

<<Value Object>>
Address

Properties

Methods

- street : String

houseNumber : int

zipCode : String

town : String

-
-
-

country : String-

com.example.boundedContext
BoundedContext

1

*

1

*

to new bounded context

Figure 4.6: Add to new Bounded Context

4.3.6 Ubiquitous Language
Another key aspect of the DDD approach is to create a ubiquitous language across
each project team working with the model. However, supporting the creation and de-
velopment of it is difficult to handle. Nevertheless, each element can store notes in the
property table. It ensures to keep these notes about the ubiquitous language for each
element. After the export, all these notes will be added as comments to the specified
element keeping it still in the model.

Usually, the ubiquitous language has already been decided across the project team.
With these notes, all the decision can be written down to remember them later. For
example, why this class has been called with this name or why there are these properties.
The shared kernel should have a higher priority because a change here can cause more
changes than other bounded contexts.

4. Own Approach 29

<<Entity>>
Doctor

Properties

Methods

- doctorId : UUID

doctorName : String

doctorTel : String

doctorAddress : Address

-
-
-

doctorApprobation : String-
doctorSpecialisation : String-
doctorRank : int-

com.example.boundedContext1
BoundedContext1

com.example.boundedContex2
BoundedContext2

Copy to bounded context

<<Entity>>
Doctor

Properties

Methods

- doctorId : UUID

doctorName : String

doctorTel : String

doctorAddress : Address

-
-
-

doctorApprobation : String-
doctorSpecialisation : String-
doctorRank : int-

com.example.boundedContext1
BoundedContext1

com.example.boundedContex2
BoundedContext2

<<Entity>>
Doctor

Properties

Methods

- doctorId : UUID

doctorName : String

doctorTel : String

doctorAddress : Address

-
-
-

doctorApprobation : String-
doctorSpecialisation : String-
doctorRank : int-

Figure 4.7: Copy to Bounded Context

4.4 Validation
Very important for the export is that the model is valid for this operation. Several
names, types and relations have to be considered for this validation.

Each name of bounded contexts must be unique and all elements within it. This
is even more important for the package name as two equally named packages are also
considered equal. In case of a duplicated name, the context name or the package name
has to be tagged with a red colour and a tooltip text telling the user about the validation
error.

All the classes, including the entities, value objects, aggregate roots and services,
have to be checked. This means the names of each class as well as its contents. The
name has to be unique in each package, and all the characters must be valid. This
should comply with the rules of naming variables and classes in Java. For example, only
alphanumeric letters may be used without the usage of a keyword and each variable has
to start with a letter. It can be checked with a regular expression and checking if the
name is not equal to a keyword.

The types of these properties and methods have to be checked. All the types can be
either selected via a dropdown or via text input. If the entered text is also visible in the
dropdown, it can be seen as a valid type. In case of a custom type, it is difficult to say
if this is a valid one. After the export, another library might be imported using some of

4. Own Approach 30

these types. In case of the project, it should reduce the error rate with this validation
and therefore it is considered as an error but, in this particular case, the user can select
the Object type to use a different type later.

The start and end points of the relations are also checked. If a relation line is drawn
across more than one bounded context accessing a class not being an aggregate root, it
will be considered as a violation error. Services should be used. However, the relations
only show the dependencies of properties and relations of methods are not shown. That
is why the relations to services will not be shown here.

4.5 Export
After the refactoring process follows the export process with the creation of a new
Java model, the database representation with SQL statements and a repository for the
connection between them. The export format should be a Java project as an archive.
As a result, a basic zip file already containing the relevant information for the Eclipse
IDE and the Java build path is loaded. This archive has already been generated by the
IDE before and lies in the resources folder. It also includes the repository.

The user sees all the export information in a dialogue window. An example can be
seen in figure 4.8. The Java project export requires the output file path, and the database
requires all the connection information. These are the connection string, username and
password. The export process itself starts after the user clicks the start button.

The export process starts with the Java project. All the necessary data from the
graphical representation has to be loaded and converted to a Java source code form.
This process is done for every single entity, value object, aggregate root and service.
After that, each class will be added to a specified package folder of the zip archive.
Entities and aggregates should be a subclass of a generic Entity class that creates and
handles the operations in the repository. Additionally, another generic class is generated
to support Value Objects. Both of them should support the import and export of all the
containing properties enabling access through the repository. Besides that, the main
difference between entities and value objects is that all elements in the value object
should not be modified having the same state all the time and changes will result in a
new instance.

The types of properties are automatically added as they are written in the graphical
representation. Additionally, the properties containing a relation need to store the full
path of the related one. This means that the full package name is written before each
type.

After that, Java export is finished. The zip archive will be stored where the user has
defined it. This is also the only setting required for the Java export. The structure of
the finished zip files is similar to the one in figure 4.9. All the other information is used
for the database export that is the following step.

The export to the database should also be done in a programmed function that
creates SQL modification statements. In particular, these are statements for creating or
replacing the tables in the database. However, all the required tables may have to be
deleted before the actual creation. The user should decide whether this is required. For
that reason, the user sees the full text of all the SQL statements and has to press the
Start button to start the export process.

4. Own Approach 31

...
Java / Database Export

Project Archive

DB Connection
Username
Password
DROP TABLE "NewAggregate" CASCADE CONSTRAINTS;
DROP TABLE "NewEntity" CASCADE CONSTRAINTS;
CREATE TABLE "NewAggregate"(
 "UNIQUE_ID" VARCHAR2(1024) PRIMARY KEY);

CREATE TABLE "NewEntity"(
 "UNIQUE_ID" VARCHAR2(1024) PRIMARY KEY);

commit;

jdbc:oracle:thin:@localhost:1521:xe
user

C:\export�le.zip

Start Cancel

Figure 4.8: Java/Database Export Dialogue

DDDrtProject
.settings

lib

src

.classpath

.project

org.eclipse.jdt.core.prefs

dddrtRepository.jar
ojdbc8.jar

boundedContext1
Entity1.javaJ

boundedContext2
Entity2.javaJ

Figure 4.9: Exported ZIP Structure

4. Own Approach 32

Also meaningful is the connection between the database and the Java model. For
this purpose, the repository has to know which table and column are responsible for
a particular Java class and property. A solution for this might be annotations giving
information about the database table/column. The repository can load it and build the
SQL statements with this information.

Chapter 5

Implementation

The first part of the project is the integration with UMLet described in section 5.1.
It uses the DDD class diagrams, and section 4.1 describes their structure. Classes can
be either created from scratch or via an import from a database model, mentioned in
section 4.2. The resulting SQL statements with the mapping are shown in section 5.2.
After the import, the refactoring methods were implemented. These are the methods
that are listed in section 4.3. The resulting code with some screenshots can be found
in section 5.3. Although the restriction in the model creation and modification process,
a validation is executed after any operation and modification. A part of the validation
process is shown in section 5.4. A validation error results in the background colour
change to red for the particular element. After successful validation, the project can be
exported. This is described in section 5.5.

5.1 Integration with UMLet
In general, the integration is all the modification that is necessary to convert UMLet to
DDDrt. The original idea behind UMLet is to quickly draw a UML diagram, including
the textual representation for both the attributes and texts inside elements. The design
here is in the foreground here, whereby, creating code out of the model, has not been con-
sidered at all. All the designing elements have a standard class called NewGridElement.
The original software supports the creation of customised elements. However, all the
elements do not support any direct text input such as text fields or combo boxes. That
is why a new a connection from the NewGridElement to the ComponentSwing is nec-
essary. The ComponentSwing is an extension of JComponent and allows to add these
direct input elements. The reason for this extension is that it is also possible to export
the current version of UMLet as an Eclipse plugin but, in this case, the standalone
version is adequate. For each case, there is an own particular class extending from the
GridElement class. The NewGridElement class is used in the standalone version.

The new parts of the tool are the bounded contexts as a package container and
the field composite for the classes, whereby, all the four DDD class types extend from
the field composite. These four subclasses here are aggregate root, entity, service and
value object. Each of them consists of two collapsible panels for both the properties
and methods, except for services because they do not have properties. Almost always

33

5. Implementation 34

using the same superclass for all of these elements helped for the modifications and
extension of them. Also, the properties and methods are considered to have common
elements because only value objects are different here. Bounded contexts were quite
different from all the class elements because they are a container. However, they are not
supported by UMLet. Package diagram elements are used for the bounded contexts.
Nevertheless, any movement operation of the package will not change the position of
the containing elements making this a required extension. An example of a diagram
with the four DDD class types in the bounded context Core can be seen in figure 5.1.

All of the class elements (Field Composites) use the superclass NewGridElement
having the abstract method drawCommonContent where all the drawing happens. The
new field composite adjusts all the position and lines of it, and the framework handles
the drawing of them. Besides that, the elements should appear in the toolbox on the
right side, and the definition of them has been written in particular UXF files in the
palettes folder, located within the project directory. All the available elements are
defined there, For new DDD elements, a new UXF file (Domain-Driven Design.uxf)
has to be added as separate toolbox category. An example of the DDD entity class:

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <diagram program="umlet" version="13.3">
3 <zoom_level>10</zoom_level>
4 <element>
5 <id>DDDEntity</id>
6 <coordinates>
7 <x>320</x>
8 <y>0</y>
9 <w>300</w>

10 <h>218</h>
11 </coordinates>
12 <panel_attributes></panel_attributes>
13 <additional_attributes></additional_attributes>
14 </element>
15 </diagram>

After that, the registration of the ID (here DDDEntity) must be added in the
com.baselet.control.enums.ElementId enum. The new class has to return this ID
in the getId() function. The last step is the integration of the new element in the
ElementFactory class by adding a new CASE entry.

1 protected static NewGridElement createAssociatedGridElement(ElementId id) {
2 switch (id) {
3 ...
4 case UMLClass:
5 return new Class();
6 //New DDD Entity element
7 case DDDEntity:
8 return new EntityComposite();
9 ...

10 }
11 }

From now on the new DDDEntity element is visible in the Domain-Driven Design
toolbox and elements can be dragged from it to the main drawing area.

5. Implementation 35

 Methods

 Properties

:value2 String-

:value1 String-

ValueObject1
«Value Object»

 Methods
:

(Object inputParam)

getAllAggregates String+

Service1
«Service»

 Methods
:

(name: String, number: int, numbers: List<int>)

addEntity void+

 Properties

:valueObject1 ValueObject1-

:entity1 Entity1-

:aggregateId UUID-

Aggregate1
«Root Aggregate»

 Methods

 Properties

:numbers List<int>-

:number int-

:name String-

:entityID UUID-

Entity1
«Entity»

model.core
Core

1

*

1

*

Figure 5.1: UML example diagram with the four DDD class types

5. Implementation 36

5.2 Import a Database Model
The database most likely stores only the model and it might be difficult to define where
the model is in the Java application. That is why importing a database should be
considered.

The import takes two steps as described in section 4.2. Starting with the model
information, in particular, the tables and its columns. After that, the constraints for
the relations are loaded. The database itself stores more tables than a default user
can see. They are called meta-tables, and in an Oracle database, they can be used for
gathering information from the tables, column and constraints [2].
ALL_TABLES: It stores information about all tables accessible by the user.
ALL_TAB_COLUMNS: Every table contains columns. All the columns of tables,

views and clusters are stored here referencing the name of the parent element (e.g.
name of the table).

ALL_CONSTRAINTS: All the constraints are shown here, such as Primary Key
and Foreign Key.

ALL_CONS_COLUMNS: The information of this view are the references to the
column and the name of the constraint. This name is equal to the name in
ALL_CONSTRAINTS.

With these four meta-tables, it is possible to retrieve the information needed for the
class diagram and converting it to DDD. The import from the database in the DDDrt is
performed via a JDBC connection with SELECT statements from these meta-tables. The
table names are loaded via this statement on the ALL_TABLES meta-table.

1 SELECT
2 table_name
3 FROM all_tables
4 WHERE
5 owner='__USERNAME__' AND
6 tablespace_name IS NOT NULL AND
7 table_name not like '%$%'
8 ORDER BY
9 TABLE_NAME asc;

Retrieving the columns gets more sophisticated because the primary key is loaded
in the same request; however, this requires a join of three meta-tables. The first one
is for the central column information in the ALL_TAB_COLUMNS. The second one is
the ALL_CONS_COLUMNS, and ALL_CONSTRAINTS, which are used to get the constraints
for the column of this table but, in this case, only to get the primary key.

1 SELECT
2 a.column_name as COLUMN_NAME,
3 a.data_type as COLUMN_DATA_TYPE,
4 a.data_length as COLUMN_DATA_LENGTH,
5 a.nullable AS COLUMN_NULLABLE,
6 CASE WHEN c.constraint_type = 'P' THEN 'Y' ELSE 'N' END as
7 PRIMARY_KEY
8 FROM ALL_TAB_COLUMNS a
9 LEFT OUTER JOIN

10 all_cons_columns b ON a.owner = b.owner AND
11 a.table_name = b.table_name AND

5. Implementation 37

12 a.column_name = b.column_name
13 LEFT OUTER JOIN all_constraints c ON b.owner = c.owner AND
14 b.constraint_name = c.constraint_name
15 WHERE
16 a.OWNER = 'AFACI' AND
17 a.TABLE_NAME = 'SPACESHIP'
18 ORDER BY
19 a.column_id ASC;

Similar to [24], the second part of reverse engineering is to load the relations. They
are gathered and recreated on the DDD model. The statement uses three meta-tables
again. The ALL_CONS_COLUMNS table is used to see the columns with constraints with a
join to the ALL_CONSTRAINTS table to figure out the related tables and columns.

1 SELECT
2 a.table_name start_table,
3 a.column_name start_column,
4 b.table_name end_table,
5 b.column_name end_column
6 FROM all_cons_columns a
7 JOIN
8 all_constraints c ON a.owner = c.owner AND
9 a.constraint_name = c.constraint_name

10 JOIN
11 all_cons_columns b ON c.owner = b.owner AND
12 c.r_constraint_name = b.constraint_name
13 WHERE
14 a.owner = '__OWNER__'
15 AND a.table_name = '__TABLE_NAME__';

With all these statements, the entities and relations are loaded and are converted
to DDD classes. This, in particular, means the names of the classes itself, the property
names as well as property types. The type conversion is described in the table 4.1. In
particular, the import considers the number type while all the other types are converted
to a string, except for the DATE type.

5.3 Refactoring
The main purpose of the application is the conversion of a typical database generated
model to a DDD model. This process consists of various steps, where each step is in
a specific section of DDD. These sections are classes, properties, methods, bounded
contexts and relations. One section should not influence another one. For example,
changing a property of a class should not change the surrounding bounded context.

5.3.1 Classes
A class has to be one of four types. These types are entities, value objects, aggregate
roots and services. The refactoring methods, as mentioned in section 4.3.1, consists of
the class being added, removed or changed. Another part is to change the type of the
class.

The UMLet tool itself already supports the add and remove operations and there-
fore, does not require adjustments. The focus here lies in changing the type of the

5. Implementation 38

element because database tables are usually entities, and the user may want to change
one of them to an aggregate root or a value object. In the graphical user interface
the changed element looks quite similar to the original one, as in figure 4.3. However,
the operation behind it is more sophisticated because the operation loads the data
from the first class and creates a new class by calling the static creation method of
the ElementFactorySwing class, providing the original rectangle (location, size), the
panel attributes, the additional attributes and the UUID. In particular, the additional
attributes are essential here, as they store all the element data, including all the prop-
erties and methods of the class. Besides that, the relations have to be changed, and the
class has to be added again to the same bounded context. Afterwards, the last operation
is to remove the original (old) element from the drawing panel. An example of the full
operation with the original and new type can be seen in figure 5.2. It shows how new
type changes in the type specification text on top as well as its background colour.

1 private void changeType(DiagramHandler handler, FieldComposite
originalFieldComposite, ElementId newElementType) {

2 DrawPanel drawPanel = handler.getDrawPanel();
3 newFieldComposite = (FieldComposite) ElementFactorySwing
4 .create(
5 newElementType,
6 originalFieldComposite.getRectangle(),
7 originalFieldComposite.getPanelAttributes(),
8 originalFieldComposite.getAdditionalAttributes(),
9 handler, originalFieldComposite.getUUID());

10 List<DDDRelation> relations = drawPanel.getRelationsOfFieldComposite(
originalFieldComposite);

11 for (DDDRelation relation : relations) {
12 relation.changeFieldComposite(originalFieldComposite, newFieldComposite);
13 }
14 drawPanel.addElement(newFieldComposite);
15 drawPanel.removeElement(originalFieldComposite);
16 drawPanel.getSelector().deselectAll();
17 drawPanel.getSelector().select(newFieldComposite);
18 newFieldComposite.updateBoundedContext(originalFieldComposite.getBoundedContext

());
19 }

5.3.2 Properties
Each class element, except for services, contains properties. The import method converts
the column names and types to the new property names and types by using the camel
case notation and Java types.

All the other operations for DDD are adding new properties, modifying or removing
them. The UMLet tool does not cover the handling of these operations with properties
yet. It means that the project has to handle them. For the layout, both properties and
methods are shown in a collapsible panel using a grid layout within this panel. The
advantage of this collapsible panel is to have a general overview of all class elements
without the properties and methods, but they can be opened if required.

After opening a panel, properties can be modified inline. Besides that, properties
can be selected to perform modifications in the properties table on the right-bottom.
With the plus button on top of the panel, it is possible to add a new property, and the

5. Implementation 39

 Methods

 Properties

:doctorRank int-

:doctorSpecialisation String-

:doctorApprobation String-

:doctorCountry String-

:doctorTown String-

:doctorZipCode String-

:doctorHouseNumber int-

:doctorStreet String-

:doctorTel String-

:doctorName String-

Doctor
«Entity»

model.vetclinic
VetClinic

 Methods

 Properties

:doctorRank int-

:doctorSpecialisation String-

:doctorApprobation String-

:doctorCountry String-

:doctorTown String-

:doctorZipCode String-

:doctorHouseNumber int-

:doctorStreet String-

:doctorTel String-

:doctorName String-

Doctor
«Value Object»

model.vetclinic
VetClinic

(a) Original Type (b) New Type

Figure 5.2: Change Type

remove button on the right side of each property removes it.
Coming to the selections, the user can select multiple properties holding down the

control key, and extract them to a new value object. It helps to reduce the number of
properties for an element.

The function for the extraction takes the selected properties from the class, cre-
ates a new value object with the element factory and adds the selected properties to
it. After that, a relation property has to be created in the original entity to keep the
connection between the original element and the new value object. This relation prop-
erty in the entity is called extractedValueObject and the name of the value object
ExtractedValueObject, which is also the type of the property. Afterwards, the connec-
tion is created between them. The example in figure 5.3 shows the original doctor with
the extraction of the address, being a new value object.

1 private void extractPropertiesToValueObject(final FieldComposite fieldComp, final
List<FieldProperty> properties) {

2 Rectangle rect = fieldComp.getRectangle();
3 rect.y += 10;
4 FieldComposite valueObjectComp = (FieldComposite) ElementFactorySwing.create(
5 ElementId.DDDValueObject,
6 rect,
7 "",
8 null,
9 CurrentDiagram.getInstance().getDiagramHandler(),

10 null);

5. Implementation 40

 Methods

 Properties

:country String-

:town String-

:zipCode String-

:houseNumber int-

:street String-

DoctorAddress
«Value Object»

 Methods

 Properties

:doctorAddress DoctorAddress-

:doctorRank int-

:doctorSpecialisation String-

:doctorApprobation String-

:doctorTel String-

:doctorName String-

Doctor
«Entity»

model.vetclinic
VetClinic

1

*

Figure 5.3: Extraction of an Entity

11 DiagramHandler handler = CurrentDiagram.getInstance().getDiagramHandler();
12 DrawPanel drawPanel = handler.getDrawPanel();
13 drawPanel.addElement(valueObjectComp);
14 valueObjectComp.removeAllFieldProperties();
15 valueObjectComp.addFieldProperties(properties);
16 fieldComp.removeFieldProperties(properties);
17 valueObjectComp.setName("ExtractedValueObject");
18 FieldProperty startProperty = EntityProperty.createFromName("

extractedValueObject", "ExtractedValueObject");
19 fieldComp.addFieldProperty(startProperty);
20 createRelation(valueObjectComp, drawPanel, startProperty);
21 updateBoundedContext(fieldComp, valueObjectComp);
22 }

5.3.3 Methods
The methods are displayed directly below the properties with almost the same structure.
The only difference here is that a list of parameters can be typed-in providing method
headers for the classes. Relations are also not shown as these relations are usually
handled in the method body (implemented code) afterwards. The view here is also in a

5. Implementation 41

collapsible panel that is in the collapsed state per default after its creation.
The methods should define the behaviour of the underlying class with its properties

and might change their state. However, only the aggregate root should call these meth-
ods. A typical case is the usage of CRUD methods (CREATE, READ, UPDATE, DELETE)
modifying the entity except for the read method. These headers are created with the
addCRUDMethods operations started after pressing the context menu entry.

1 private void createCRUDMethods(final FieldComposite fieldComp) {
2 FieldMethod.Builder readMethod = new FieldMethod.Builder("#", "read", fieldComp.

getName());
3 FieldMethod.Builder deleteMethod = new FieldMethod.Builder("#", "delete", "void"

);
4 FieldMethod.Builder createMethod = new FieldMethod.Builder("#", "create", "void"

);
5 FieldMethod.Builder updateMethod = new FieldMethod.Builder("#", "update", "void"

);
6 FieldProperty idProperty = fieldComp.getIDProperty();
7 if (idProperty != null) {
8 readMethod.addParameter(idProperty.getPropertyType(), idProperty.

getPropertyName());
9 deleteMethod.addParameter(idProperty.getPropertyType(), idProperty.

getPropertyName());
10 }
11 for (ExportProperty property : fieldComp.getProperties()) {
12 createMethod.addParameter(property.getType(), property.getName());
13 updateMethod.addParameter(property.getType(), property.getName());
14 }
15 fieldComp.addMethod(createMethod.build());
16 fieldComp.addMethod(updateMethod.build());
17 fieldComp.addMethod(deleteMethod.build());
18 fieldComp.addMethod(readMethod.build());
19 fieldComp.updateModelFromText();
20 }

5.3.4 Bounded Context
The group where most of the communications and relations should happen is within
these bounded contexts. The typical refactoring steps here are the creation, removal
and changing the name or package name of it. Moreover, the more widely used op-
erations here are for the class elements. For example, adding them or removing them
from a bounded context. It should also be possible to copy a class element to another
context. Two operations are available from the context menu for both moving the el-
ement to a bounded context and copying it. This function described here is for the
move operation. The menu item is created with a loop over all bounded contexts to
provide a selection of them. The user chooses the desired bounded context, and with
the selection of it, the actionPerformed method is called. It forwards the event to the
moveSelectionTo(BoundedContext bc) method, and this one moves the selected class
elements to the selected bounded context.

1 private void moveSelectionTo(final BoundedContext bc) {
2 DiagramHandler handler = CurrentDiagram.getInstance().getDiagramHandler();
3 int startY = 60;
4 int defaultElementHeight = 120;

5. Implementation 42

 Methods

 Properties

:country String-

:town String-

:zipCode String-

:houseNumber int-

:street String-

DoctorAddress
«Value Object»

 Methods

 Properties

:doctorAddress DoctorAddress-

:doctorRank int-

:doctorSpecialisation String-

:doctorApprobation String-

:doctorTel String-

:doctorName String-

Doctor
«Entity»

1

*

model.vetclinic
VetClinic

 Methods

 Properties

:country String-

:town String-

:zipCode String-

:houseNumber int-

:street String-

DoctorAddress
«Value Object»

 Methods

 Properties

:doctorAddress DoctorAddress-

:doctorRank int-

:doctorSpecialisation String-

:doctorApprobation String-

:doctorTel String-

:doctorName String-

Doctor
«Entity»

1

*

(a) without bounded context (b) with bounded context

Figure 5.4: Select elements and create them in a bounded context

5 startY = bc.organiseBoundedContextElements(startY);
6
7 List<GridElement> selection = handler.getDrawPanel().getSelector().

getSelectedElements();
8
9 for (int i = 0; i < selection.size(); i++) {

10 GridElement copy = selection.get(i);
11 int width = bc.getRectangle().width;
12 Rectangle rect = copy.getRectangle();
13 rect.x = bc.getRectangle().x + 10;
14 rect.y = bc.getRectangle().y + startY;
15 startY += defaultElementHeight;
16 rect.width = width - 20;
17 copy.setRectangle(rect);
18 copy.dragEnd();
19 copy.updateModelFromText();
20 }
21 }

The copy operation is similar, but with the difference that classes are copied before
the move operation. Additionally, it is also possible to add the classes to a new bounded
context, but this requires its creation in advance. The example in figure 5.4 shows how
to create the new bounded context.

The method called organiseBoundedContextElements creates the structure for all

5. Implementation 43

bounded contexts to be in a row beside each other. This newly created bounded context
will be the furthest right one.

5.3.5 Relations
The usage of a type in the property creates a relation. It means that this class is used
within another class either in a one-to-many or a many-to-many relationship. The first
step is to add all the available types to the dropdown selection of the property. If the
user selects a relation type, it will create the relation by drawing the arrow from the
property to the destination class. The create relation method createRelation needs the
starting property, end class (FieldComposite) and if the relationship is a one-to-many
(single type) or a many-to-many relationships (collection type). The DDDRelation is
a new element type that extends from the Relation type from UMLet. The original
relation type needs the surrounding rectangle with absolute positions. This rectangle
knows two corners at the start and the end point of the relation. The calculation of the
parameters for the full rectangle works via the more left and higher point and adding
the width and height to the more right and lower point. This class also requires the
arrow type, including the multiplicities in the property string or also called the relation
text. The new relation is created via the default factory class ElementFactorySwing.
Afterwards, this new class requires both the start field property and the destination field
composite for future calculations after any position change. The method for updates of
the positions of the relation is the createRelationLine method.

1 public static DDDRelation createRelation(FieldProperty startProperty, FieldComposite
endComposite, boolean manyToManyRelation) {

2 java.awt.Point startPoint = startProperty.getAbsolutePosition(false);
3 java.awt.Point endPoint = endComposite.getAbsolutePosition(false);
4 if (startPoint.x < endPoint.x) {
5 startPoint = startProperty.getAbsolutePosition(true);
6 }
7 if (startPoint.y > endPoint.y + endComposite.getRectangle().height / 2) {
8 endPoint = endComposite.getAbsolutePosition(true);
9 }

10 Rectangle boundingRectangle = createBoundingRectangle(startPoint, endPoint);
11 DDDRelation dddRelation = (DDDRelation) ElementFactorySwing.create(
12 ElementId.DDDRelation,
13 boundingRectangle,
14 manyToManyRelation ? "lt=<-\nm1=*\nm2=*" : "lt=<-\nm1=1\nm2=*",
15 null,
16 CurrentDiagram.getInstance().getDiagramHandler(),
17 null);
18 dddRelation.startProperty = startProperty;
19 dddRelation.endComposite = endComposite;
20 dddRelation.collection = manyToManyRelation;
21 dddRelation.createRelationLine();
22 return dddRelation;
23 }

5. Implementation 44

5.4 Validation
Before the export, the validation has to be done. In particular, the checks performed
here are using names without any keyword and duplication, but also includes the type
check and checking that every class is within a bounded context.

The most sophisticated check might be the parameters of the methods because they
can be entered freely. This check also includes the parsing of the parameters as they
will be used later for generating the method header. As for UML, the default writing
style is name“:” type but in Java it is type name. The parser here allows both of them.
First of all, the whole string is split by the commas because they separate every single
parameter. After that, it checks if there is a colon present. If true, the parameter is
split by the colon and the text before it is the name and after it is the type. If false,
the string splits by a blank space and the first part is the type and the second part is
the name. In both cases, the resulting types and names are removed from blank spaces
and the process checks if there are exactly two text elements after the split. Otherwise,
it throws an exception. The validation catches all exceptions and might return a false
validation state.

1 public String validateParameters() {
2 try {
3 Set<String> names = new HashSet<String>();
4 for (Parameter parameter : parseParameters()) {
5 boolean unique = names.add(parameter.name);
6 if (!unique) {
7 throw new Exception(parameter.name + " has duplicates. Please rename

them.");
8 }
9 }

10 return null;
11 } catch (Exception ex) {
12 return ex.getMessage();
13 }
14 }

The validation check also includes more general issues. The property names are
checked for their uniqueness considering all the other properties within the same class.
For this purpose, hash maps are used with the name as a key element and the field
composite itself as a value element. This is also true for the field composites because
they use the same check methods within the same bounded context. A bounded context
should be a package with a unique bounded context name and package name.

Another aspect of the validation is the time and the frequency of its execution. In
the case of the export, it is essential to do a complete validation before the export to
the database and the Java model. Naming might cause a problem in the creation, and
therefore, the execution has to be prohibited. Moreover, the tool also helps to check the
naming even before the export. After a keyboard type in a naming field, it checks the
current naming and marks the text field red in case of an invalid name.

The method for checking the names is implemented in the validateElementNames
method and uses two hash maps because the database column names are validated at
the same time. A duplicated name here means that this value has already been put in
the map returning its value in the put method. The property method setNameValidity

5. Implementation 45

uses this return value and handles the error message with the decoration of the text
field. In case of an invalid state, the field adds a red frame and a tooltip text showing
the error message. Figure 5.5 shows some typical validation errors.

1 public boolean validateElementNames() {
2 boolean validationState = true;
3 HashMap<String, FieldProperty> propertyNames = new HashMap<String, FieldProperty

>();
4 HashMap<String, FieldProperty> databaseNames = new HashMap<String, FieldProperty

>();
5 for (java.awt.Component comp : propertiesPane.getComponents()) {
6 if (comp instanceof FieldProperty) {
7 FieldProperty fieldProperty = (FieldProperty) comp;
8 FieldProperty previous = propertyNames.put(fieldProperty.getPropertyName

(), fieldProperty);
9 FieldProperty previousDB = databaseNames.put(fieldProperty.

getDatabaseName(), fieldProperty);
10 boolean newValidation = fieldProperty.setNameValidity(previous,

previousDB);
11 if (!newValidation) {
12 validationState = false;
13 }
14 newValidation = fieldProperty.validateType();
15 if (!newValidation) {
16 validationState = false;
17 }
18 }
19 }
20 HashMap<String, FieldMethod> methodNames = new HashMap<String, FieldMethod>();
21 for (java.awt.Component comp : methodsPane.getComponents()) {
22 if (comp instanceof FieldMethod) {
23 FieldMethod fieldMethod = (FieldMethod) comp;
24 FieldMethod previous = methodNames.put(fieldMethod.getMethodName(),

fieldMethod);
25 boolean newValidation = fieldMethod.setNameValidity(previous);
26 if (!newValidation) {
27 validationState = false;
28 }
29 }
30 }
31 return validationState;
32 }

5.5 Export
After successful validation, the project is ready to be exported to the database and the
Java project, including a repository.

5.5.1 Model
The model is, according to Eric Evans, the heart of the software [16]. The database also
represents the model. Data types might be different. In particular Value Objects are
stored inside the table as String representation.

5. Implementation 46

 Methods
:

(param: String, int)

int void-

 Properties

Doctor
«Entity»

model.vetclinic
VetClinic

 Methods

 Properties

Doctor
«Entity»

Figure 5.5: Validation Example

The properties itself can be written down sequentially with the desired visibility,
type and name. Non-elementary types such as Date might require an additional import
or they are written with the full package definition, e.g. java.util.Date. This is also
true for the relations as they might be part of another package but should be in the
same bounded context. The conversion from the Java data in this DDDrt project to
real Java code representation works with the JavaParser API1) because it also supports
exporting Java classes to real Java source code.

The packages also reveal the structure of the new project. Development IDEs use
a folder structure for all the projects that can be both exported and imported via
ZIP-archives. The idea is to create and export an almost empty project with only the
necessary information from the IDE. The application creates a copy of it and adds the
new Java source files. After the export, this archive can be imported in the IDE, and
the new project can start. An example for the Eclipse IDE is in figure 4.9.

5.5.2 Database
SQL, used for the import statements, is a commonly used query language for databases.
The import function itself only retrieves data without doing any changes. However, this
is part of the Data Manipulation Language because all these requests only affect the
data in a particular table without changing the table structure.

Nevertheless, SQL is also for the creation of the model on the database with the
manipulation requests that are also part of it in the Data Definition Language used for
changing the structure of the tables or creating new ones. Each entity or aggregate root
is a table. The creation of it works with these CREATE TABLE requests, as it can be seen
here:

1 CREATE TABLE entity1 (

1https://javaparser.org/

5. Implementation 47

2 property1 VARCHAR2(1024) PRIMARY KEY,
3 property2 CLOB,
4 property3 CLOB
5);

Each entity requires a table name, and all the properties need a name and a type. The
Primary Keys or Foreign keys do not have to be set inside this statement because a
statement can create them later. Nevertheless, foreign keys need primary keys.

SQL supports the alter statement after the creation of the table. In this case, it is
about adding a foreign key to the table.

1 ALTER TABLE AGGREGATE_1
2 ADD CONSTRAINT fk_startentity_endentity
3 FOREIGN KEY (startentity)
4 REFERENCES endentity (id_endentity);

The foreign key requires the start point and the end point of the relation. The start point
requires the name of the table and the property using the reference, and the endpoint
requires the name and the primary key of the table it references. Additionally, the
ALTER TABLE statement supports even more manipulation, such as adding and removing
properties.

A property containing more than one element, using a relation type, is called a
many-to-many relationship. The starting property is a list or an array using the type
of the related class. There are multiple methods of how to bring this relationship to
the database. Typically a table is added between these two tables called an associative
table. Another more straightforward approach is to store a list of foreign keys in the
table column with either a separator or using a JSON-array.

5.5.3 Repository
The repository is the connection between the Java model and the database. There are
already several frameworks or libraries to manage a repository. However, the concept of
value objects is a distinct use-case that needs extra support because Eric Evans suggests
storing them as a column of the entity table [16, p. 102]. Moreover, classes of the model
should not always allow universal access via getters and setters to the properties because
it should not become an anaemic model again.

In this case, a JSON is used by converting all the value objects to JSON arrays and
store its string representation directly within the database column. In this particular
case, all elements within the value object are added sequentially to the JSON-array,
and afterwards, this JSON-array is converted to a string. The database column uses
the CLOB type to store it. The loading process in the select statements reconverts this
CLOB back to the JSON-array and then to the value object.

For this particular case, a new Java ORM concept has been developed using an-
notations and their information in JDBC statements. The main idea of a repository
is connecting the database with the Java classes. All the operations such as SELECT,
INSERT, UPDATE and DELETE are used to synchronise the current Java model to the
database and also read the current model after the start of the application. A reposi-
tory is introduced to handle these operations. This connection also requires some smaller
aspects. The Java class name needs the database table name, and all the properties need
to know the corresponding column name, including the database type. The storage of

5. Implementation 48

the meta-data works with annotations because they provide more and detailed informa-
tion. The mapping requires two different annotations. One is for the class connecting it
with the table, and the other one is for the property connecting it with the database
column. An example class can be seen here:

1 @DDDEntity(tableName="ENTITY1")
2 public class Entity1 {
3 @DDDProperty(primary=true, columnName="PROPERTY1", columnType="VARCHAR2(1024)")
4 private String property1;
5
6 @DDDProperty(columnName="PROPERTY2", columnType="CLOB")
7 private double property2;
8 }

The synchronisation with the database is possible via the Repository class in the
Java project. Example code can be seen here:

1 Repository repository = new Repository(
2 "jdbc:oracle:thin:@localhost:1521:xe",
3 "afaci",
4 "afaci");
5 Entity2 entity2 = new Entity2("Entity2", null);
6 List<Entity2> listEntity2 = new LinkedList<Entity2>();
7 listEntity2.add(entity2);
8 Entity1 entity1 = new Entity1(
9 "Test1",

10 listEntity2,
11 new Date(System.currentTimeMillis()));
12 repository.update(entity1);
13 List<Entity1> resultList = repository.selectAll(Entity1.class);
14 for(Entity1 entity : resultList) {
15 System.out.println(entity.toString());
16 }
17 repository.disconnect();

Chapter 6

Evaluation

The evaluation process was done both during and after finishing the implementation.
It led to some changes in the development process. The refactoring part is particularly
noteworthy because it is the primary focus of the application. This is especially true
for refactoring methods. The three parts of this evaluation of the refactoring tool are
the functionality, the usability, as well as the diagram layout, according to DDD. In
addition, some possible extensions are listed.

6.1 Functionality
This evaluation was done with a team of five senior software developers who are experts
in implementing software tools with over ten years of experience. The tool was shown on
a screen with this default use case: the user imports a model from the database, converts
this to a DDD model with the provided functionality, and finally, the person uses the
export service to create a new Java and database model. Afterwards, a feedback talk
was held about existing refactoring methods, including a discussion about new methods
as a sensible complement.

The main idea of the project is to bring the software development team closer to
DDD. It should convey the basic concepts such as using more value objects instead of
entities, and why it is important to separate the domain in several bounded contexts.
The main focus of this evaluation is the functionality, especially with regard to finding
the required elements, in order to make the developer’s work easier. The evaluation team
is also familiar with some similar UML tools such as the Eclipse Modeling Framework
(in section 3.2), which is beneficial for comparison. A toolbar shows icons on the left
side and double-click or drag-and-drop creates the new element in the working area.
However, UMLet has a different approach. It displays the same graphical representation
in the toolbox as in the main drawing area. The feedback here was that the elements
in the toolbar should be smaller as in the main drawing area, due to the limited space.
That is why all DDD elements there are shown with both panels collapsed.

Furthermore, for large entities, refactoring is an essential operation. It helps to make
them smaller by extracting them, creating several entities or value objects from them
and then linking them together. This can be done with fundamental functions, such as
adding a new entity and moving some of the properties to it.

49

6. Evaluation 50

Nonetheless, the evaluation during the development process showed that these fun-
damental operations take much time, and certain faster-refactoring operations were
necessary. Examples are the extraction of larger classes to value objects, or selecting
one or more classes that are outside of any bounded context and combining these ele-
ments in either a new or an already existing bounded context. Besides that, there are
also some nice-to-have features, such as adding the default CRUD methods (create,
read, update, delete) to an element.

Moreover, services are also a significant aspect of DDD, because they are part of
the application layer, as well as being the interface between the domain model and
the rest of the application. The full definition of services can be added later because an
extensive description of services is only necessary to create them automatically. The tool
only supports the basic description with the name of the service and method headers.

6.2 Usability
The usability evaluation was done with a UI expert. This person is not a software
developer but is trained in UI design, UX design and usability.

The application should still use the UML format with class diagrams for the entities,
value objects, aggregate roots and services. Package diagrams are used for the bounded
contexts. In the beginning, the idea was to show the bounded contexts as ovals and the
classes within them as rectangles. However, the circular shapes took too much space, and
space was limited. That is why the bounded contexts changed to rounded rectangular
shapes with dashed border lines because they should be distinct from the classes. The
classes still use standard rectangular shapes with solid lines. A class or field composite
can have one of four different types. In the beginning, the design was the same for all
of the four types, with different text at the top to show the current type. However, it
was difficult to see a type of change. For example, when changing from «Entity» to
«Aggregate Root», only the change of the text at the top was difficult for the user
to notice. As a result, it became necessary to find a better approach to this usability
aspect. The solution was to use four different background colours for each type.

Another part of the tool is the structure. In UMLet, the user can freely design the
diagram with fewer restrictions. Although this is helpful for the design phase, it might
be difficult for a code generation tool, because of code and structural limitations in
Java, databases and the DDD approach itself.

Despite these limitations, the structure is still essential for giving a quick overview
of the model. The location of the classes and the bounded contexts were not restricted
in the version before the review. It helped to design the new Java model freely, but as
the model grew to a larger size, it became more challenging to keep a structure. The
solution for this was to introduce a strict structure for the locations and sizes of both
the bounded contexts and the containing classes. All bounded contexts are located next
to each other horizontally, and all the classes inside a bounded context are ordered
vertically. The example in figure 6.1 shows the veterinarian clinic with the bounded
context Appointment.

Due to the restricted space within the drawing area, not all elements should always
be shown with the properties and method headers. There has to be a possibility to hide
them, and they should be hidden after starting the application. The user should only

6. Evaluation 51

Title

 Properties

:endTime Date-

:startTime Date-

ScheduleTime
«Value Object»

at.mic.example.appointment
Appointment

 Methods

:
(patient: Patient, startTime: Date, endTime: Date)

addAppointment void-

:
(cust: Customer)

getAppointments Appointment+

 Properties

:time ScheduleTime-

:patient Patient-

:appointmentId UUID-

Appointment
«Root Aggregate»

Title

 Properties

:patientOwner Customer-

:parientName String-

:patientId UUID-

Patient
«Entity»

Title

 Properties

:custName String-

:custId UUID-

Customer
«Entity»

1

*

1

*

1

*

 Methods

 Properties

:custName String-

:custId UUID-

Customer
«Entity»

 Methods

 Properties

:endTime Date-

:startTime Date-

ScheduleTime
«Value Object»

 Methods

 Properties

:patientOwner Customer-

:patientName String-

:patientId UUID-

Patient
«Entity»

 Methods

:
(patient: Patient, startTime: Date, endTime: Date)

addAppointment void+

:
(cust: Customer)

getAppointments Appointment+

 Properties

:time ScheduleTime-

:patient Patient-

:appointmentId UUID-

Appointment
«Root Aggregate»

at.mic.example.appointment
Appointment

1

*

1

*

1

*

(a) free approach (b) structured approach

Figure 6.1: Veterinarian example

see the class names and can choose a class to open its properties and methods.
Another aspect is that the domain might also contain stories, or, even in the case

of DDD, it is defined in a universal (ubiquitous) language. The design should bring
this information, adding some notes to the class or property. The story here can be: “a
veterinarian treats the patient (pet), and the customer owns the patient.” Out of this
sentence, the developer can create three classes. However, this sentence is only visible
after selecting the element, and the description is only in one line. For the future, it

6. Evaluation 52

might be better to show this textual representation in multiple lines.

6.3 Diagram Layout
The layout evaluation was done with a DDD expert. The person knows the concept
and how to use it. The layout here is important because the tool’s primary subject is
to help the user with the concept of DDD. The first concept of a value object might
be difficult to understand because most developers with databases think of entities
only. However, value objects should be unchangeable, creating a new instance for every
operation similar to the String class. This aspect is shown after the export because no
setters will be created, and the call of the constructor has to provide all properties. The
separation of entities and value objects are also shown with different background colours
and the aspect that they have to be part of an entity.

Another more specific DDD part is the grouping and encapsulation with bounded
contexts. Most developers may know packages or modules. Nevertheless, bounded con-
texts are a bit different than them because they can contain multiple packages (described
in section 2.1.4). However, smaller sized grouping might not be necessary, in particular
for small and medium-sized projects which the refactoring tool supports. Each bounded
context has only one module or package. The main reason for this is simply because
of the limited space. These are some of the challenges a developer might face when a
person starts working with DDD.

Nevertheless, each software design has a particular structure. The structure of DDD
as in figure 6.2 shows the central aspect lying the in the core model with value objects
and entities connected via aggregates. Repositories and factories provide access to this
core domain, but the more important aspect is the interface between the domain and
the application controlled via services.

6.4 Possible Extensions
There are still some extensions that are optional and useful for DDD. Services are also
typical class elements in the refactoring tool. To be considered here is that the user
does not see this separation in these two different layers. A solution for this problem
is to show them with different background colours in the bounded context, including a
hierarchy. In particular, services are put above all other classes using the sorting process
in the organiseBoundedContextElements method. It is also helpful to provide a full
definition of services to make an automated export possible.

In addition to the three main components of the domain layer, there are two more
elements in this layer. These are factories, which are for creating new elements with the
support of design patterns, and repositories, which provide access to infrastructure. An
infrastructure can be a file system or a database.

The refactoring tool provides a repository with simple database access operations.
Typical operations are inserting a new record; modifying an already existing record, and
reading all the records from the database table. This single repository supports all of
these and is extendable. A possible extension is to customise the repository and create
one for each bounded context.

6. Evaluation 53

Figure 6.2: DDD General Structure

However, factories are more customisable. That is why this is not part of the DDD
refactoring tool. A factory can, for example, create an aggregate root, and within the
same creation process, it adds some entities or value objects and automatically creates
the relations between them. Services might also interact with them as in figure 6.2.

Chapter 7

Summary

The thesis is about the modification of an existing model to DDD and its process. It
began with with looking at Domain-Driven Design, Refactoring and UML as theoreti-
cal background to this research. After that, UML tools were described, explained and
compared. UMLet was found to be the most useful one because it was modifiable and
extendable.

The part of the project was about modifying this tool in order to refactor an ex-
isting project to DDD. The import of an existing model could be done from an Oracle
database model with the JDBC driver. Nonetheless, the central part was the refactoring
process within the software tool, including the designing of the new model. After the
modification, the project was exportable as a new Java project and an automatically
generated database script that is executable via the database connection.

The idea of DDD was also to help the developers in cases of ongoing changes in
the software model. A particular part was the usage of bounded contexts because they
brought clearly defined borders and changes should not affect other parts in different
bounded contexts. As a result, it avoided side-effects after any modification.

Nevertheless, a software model does not usually stay the same for its entire usage.
Some changes might be urgent without focusing on the code quality. These could be
either unnecessary code in the model with help variables as new properties, or additional
methods using properties from other classes. DDD took into account the access to the
model, unlike in the anaemic model, getters and setters were more sophisticated. Help
variables were modified in the model and not in the controller.

The separations in layers, as in figure 6.2, showed that services were responsible for
connections between various bounded contexts. Additionally, they had an essential role
because changes could impact other elements. Nevertheless, it kept the responsibility to
a minimum, and a versioning system helped with compatibility to all API users.

Additionally, factories and repositories were also part of DDD. The refactoring tool
added a single repository to the new Java project. JPA would have been an alternative
for the repository using annotations for the model. These annotations were read by
the parser and the information provided could be accessed with the meta-class object
(Class<?>) [18]. However, value objects were not included in the model as they were
part of the entity stored as a string representation. The Javascript Object Notation
(JSON) already supported this. That is why it also played a role in the repository
and the database. The repository was also an Object Relational Mapping (ORM) that

54

7. Summary 55

automatically serialised complete entities, including the value objects — likewise; it
deserialised the JSON string from the database back to the value object.

DDD was a good start for proper software development because it dealt with the
typical problems of growing projects. Companies tended to use SCRUM instead of
the Waterfall Model because it was more flexible to changes. DDD was also more flexible
to changes and should work fine with SCRUM.

In the future companies should use more strategic and conceptual models in order
to keep them flexible because time and money is still an essential factor. Modifications
and extensions will be quicker and more straightforward. Nonetheless, it helps to start
in DDD because changing from a default anaemic model is still more challenging than
already using DDD in the early stages of development. As a result, the project also
supports creating models from scratch. The concept of a ubiquitous language should
also be considered as necessary due to the communication with domain experts. They
know the targets of the project beyond technical aspects. That is why they should
be included even after the model has been created. For example, they should test the
software before the release to ensure its quality.

Appendix A

CD-ROM Contents

Format: CD-ROM, Single Layer, ISO9660-Format

A.1 Thesis File
Path: /Thesis

DDDrt-Thesis.pdf . . . Master Thesis Document

A.2 Project File
Path: Project/

dddrt-1.0.1.zip All the Domain-Driven Design Refactoring Tool project
in a single zip file

A.3 Online Sources
Path: /Online-Sources

[27]SOA_Manifesto.pdf Printed version of: Thomas Erl et. al – SOA Manifesto
(http://www.soa-manifesto.org/)

[28]Anaemic_Domain_Model.pdf Printed version of: Martin Fowler – Anaemic
Domain Model (https://martinfowler.com/bliki/
AnemicDomainModel.html)

56

References

Literature

[1] Bill Moore et al. Eclipse Development using the Graphical Editing Framework and
the Eclipse Modeling Framework. IBM Redbooks, Feb. 2004 (cit. on p. 17).

[2] Coral Calero et al. “Measuring Oracle Database Schemas”. The 3rd IMACS/IEEE
International Multiconference on: Circuits, Systems, Communications and Com-
puters (CSCC’99) 99 (1999), pp. 7101–7107 (cit. on p. 36).

[3] David Steinberg et al. Eclipse Modeling Framework: A Developer’s Guide. Addi-
sion Wesley, Aug. 2003 (cit. on p. 17).

[4] Dominic Betts et al. Exploring CQRS and Event Sourcing: A Journey into High
Scalability, Availability, and Maintainability with Windows Azure. 1st ed. Mi-
crosoft patterns & practices, 2013 (cit. on p. 6).

[5] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1994 (cit. on p. 8).

[6] James Rumbaugh et al. The Unified Modeling Language Reference Manual.
Addison-Wesley, 2005 (cit. on p. 18).

[7] Marc Loy et al. Java Swing. O’Reilly Media, 1998 (cit. on p. 18).
[8] Martin Auer et al. “A Flyweight UML Modelling Tool for Software Development

in Heterogeneous Environments”. In: Proceedings of the 29th EUROMICRO Con-
ference. (Washington, DC, USA). IEEE Computer Society, 2003, pp. 267–272 (cit.
on pp. 18, 19).

[9] Martin Fowler et al. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999 (cit. on pp. 9–11).

[10] Martin Fowler et al. UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Addison-Wesley, 2004 (cit. on pp. 12–14, 19).

[11] P. Leach et al. A Universally Unique IDentifier (UUID) URN Namespace. RFC
4122. Network Working Group, July 2005. url: https://tools.ietf.org/html/rfc41
22 (cit. on p. 7).

[12] Philip Langer et al. “EMF Profiles: A Lightweight Extension Approach for EMF
Models.” Journal of Object Technology 11.1 (2012), pp. 1–29 (cit. on p. 17).

57

https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4122

References 58

[13] Tim Berners-Lee et al. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. Net-
work Working Group, June 1999. url: https://tools.ietf.org/html/rfc2616 (cit. on
p. 6).

[14] Kent Beck. Extreme Programming Explained. Addison-Wesley, Oct. 1999 (cit. on
p. 10).

[15] Peter Pin-Shan Chen. “The Entity-Relationship Model – Toward a Unified View
of Data”. ACM Transactions on Database Systems 1.1 (Mar. 1976), pp. 9–36 (cit.
on p. 6).

[16] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Pearson Education, 2003 (cit. on pp. 2, 4, 5, 8, 45, 47).

[17] David Flanagan. Java in a Nutshell. 5th ed. O’Reilly Media, 2005 (cit. on p. 7).
[18] M. Keith and M. Schincariol. Pro EJB 3: Java Persistence API. Expert’s voice

in Java. Apress, 2006 (cit. on p. 54).
[19] Sebastian Łaskawiec. “The Evolution of Java Based Software Architectures”. Jour-

nal of Cloud Computing 2.1 (2016), pp. 1–17 (cit. on p. 5).
[20] Julia Lerman. Programming Entity Framework. 2nd ed. O’Reilly Media, 2010 (cit.

on pp. 15, 16).
[21] Robert Cecil Martin. “The Dependency Inversion Principle”. C++ Report 8.6

(June 1996), pp. 61–66 (cit. on p. 5).
[22] M. Masse. REST API Design Rulebook: Designing Consistent RESTful Web Ser-

vice Interfaces. O’Reilly Media, 2011 (cit. on p. 6).
[23] David M. Piscitello and A. Lyman Chapin. Open Systems Networking: TCP/IP

and OSI. Addison-Wesley, 1993 (cit. on p. 5).
[24] Fouad Toufik and Mohamed Bahaj. “Reverse Engineering of Object Relational

Database”. In: Proceedings of the 2018 International Conference on Software En-
gineering and Information Management. (New York, NY, USA). Casablanca, Mo-
rocco: ACM, Jan. 2018, pp. 73–76 (cit. on pp. 22, 37).

[25] Vaughn Vernon. Implementing Domain-Driven Design. Pearson Education, 2013
(cit. on pp. 2–7, 27).

[26] Eberhard Wolff. Microservices: Flexible Software Architecture. Addison-Wesley,
2016 (cit. on p. 8).

Online sources

[27] Thomas Erl et al. SOA Manifesto. 2009. url: http://www.soa-manifesto.org/
(visited on 06/16/2019) (cit. on pp. 5, 6).

[28] Martin Fowler. Anemic Domain Model. 2003. url: https://martinfowler.com/bliki
/AnemicDomainModel.html (visited on 06/19/2019) (cit. on p. 3).

https://tools.ietf.org/html/rfc2616
http://www.soa-manifesto.org/
https://martinfowler.com/bliki/AnemicDomainModel.html
https://martinfowler.com/bliki/AnemicDomainModel.html

Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

width = 100mm
height = 50mm

— Diese Seite nach dem Druck entfernen! —

59

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Structure

	Background
	Domain-Driven Design
	Domain
	Model-Driven Design
	Ubiquitous Language
	Bounded Context
	DDD-Based Architecture
	Entities
	Value Objects
	Services
	Aggregates
	Factories

	Refactoring
	Refactoring Methods
	Disadvantages
	Advantages
	Designs
	Tools

	UML
	Class Diagram
	Package Diagram

	Related Work
	Visual Studio Entity Framework
	Eclipse Modeling Framework
	UMLet
	Comparison

	Own Approach
	Class Structure
	Import
	Refactoring
	Classes
	Properties
	Methods
	Bounded Context
	Relations
	Ubiquitous Language

	Validation
	Export

	Implementation
	Integration with UMLet
	Import a Database Model
	Refactoring
	Classes
	Properties
	Methods
	Bounded Context
	Relations

	Validation
	Export
	Model
	Database
	Repository

	Evaluation
	Functionality
	Usability
	Diagram Layout
	Possible Extensions

	Summary
	CD-ROM Contents
	Thesis File
	Project File
	Online Sources

	References
	Literature
	Online sources

