
Code-Comment Inconsistency Detection
in Java Projects with Focus on Ranges

Michael Cuénez

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Juni 2017

© Copyright 2017 Michael Cuénez

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, June 26, 2017

Michael Cuénez

iii

Contents

Declaration iii

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Relevance . 2
1.3 Structure . 2

2 Concepts 4
2.1 Javadoc . 4
2.2 Range . 4
2.3 Inadequate Comment . 4
2.4 Code-Comment Inconsistency 5
2.5 Formal Information . 6
2.6 Informal Information . 6
2.7 Defensive Programming . 6
2.8 Design by Contract . 6

2.8.1 Precondition . 7
2.8.2 Postcondition . 7

2.9 Wrapper Class . 7
2.10 Abstract Syntax Tree . 8

3 State of the Art 9
3.1 Code-Comment Analysis . 9

3.1.1 Approach . 9
3.2 Interrupt Related Annotations 10

3.2.1 Approach . 10
3.3 Exception Testing . 11

3.3.1 Approach . 11
3.4 Resource Specification . 13

3.4.1 Approach . 13

iv

Contents v

3.5 Directive Defects . 14
3.5.1 Approach . 14

3.6 Related Work . 14
3.6.1 Static Analysis . 15
3.6.2 Automatic Quality Assessment 15
3.6.3 Action-Oriented Graph 15
3.6.4 Custom Javadoc Tags 15
3.6.5 Custom Class Loader 16

4 Implementation 17
4.1 Relevant Libraries . 17

4.1.1 Doclet . 17
4.1.2 Randoop . 18
4.1.3 JUnit . 18
4.1.4 Rythm Engine . 18

4.2 Same But Different . 18
4.2.1 Approach . 19

4.3 Range Extraction . 19
4.3.1 Converting Informal Information to Code 20
4.3.2 Approach . 20

5 Evaluation 23
5.1 Relevant Metrics . 23

5.1.1 General Metrics . 23
5.1.2 Tag Metrics . 23
5.1.3 Specification Metrics 25

5.2 Statistics . 26
5.2.1 Confusion Matrix . 26

5.3 Methodology . 27
5.3.1 Reports . 27
5.3.2 Wrapper Analysis . 29

5.4 Results . 32
5.4.1 Apache Commons Collections 32
5.4.2 Java . 36

5.5 Comparison . 38
5.5.1 Original Approach . 39
5.5.2 Directive Defects . 41

6 Conclusion 44
6.1 Summary . 44
6.2 Discussion . 45
6.3 Future Work . 46

6.3.1 Considering Additional Tags 46
6.3.2 Natural Language Processing 46

Contents vi

6.3.3 Using a Different Approach 46

A Natural Language Processing Approach 47
A.1 Techniques . 47

A.1.1 Tokenization . 47
A.1.2 Stemming . 48
A.1.3 Part-Of-Speech Tagging 48
A.1.4 Parsing . 49
A.1.5 Dependency Graph . 50

A.2 Code Example . 51

B Wrapper Generation 52
B.1 Algorithm . 52
B.2 Example . 53

C Metrics 57

D Library Setup 62
D.1 Java . 62
D.2 Apache Commons Collections 65

E CD-ROM/DVD Content 66
E.1 PDF-Dateien . 66
E.2 Results . 66
E.3 Online Sources . 66
E.4 Miscellaneous . 66

References 67
Literature . 67
Online sources . 68

Abstract

Documenting source code is a routine that occurs almost on a daily basis
for any programmer, regardless of the programming field. However, due to
time limits, too little motivation and possibly other factors, often times
only little effort is made to properly document any implemented feature.
Especially, if the functionality of the code was altered. This can lead to bugs
in source code, written by a programmer who relies on third party libraries
and, therefore, their documentation.

Automatically analyzing such documentation – usually written in form
of comments – may help detect code-comment inconsistencies (i.e., the docu-
mentation implies different behavior than the source code). By doing so, the
inconsistencies can be fixed and any programmer using a third party library
can rely on the documentation. Therefore, less bugs will be introduced be-
cause of inadequate comments. For this reason, a project was implemented
and evaluated, in order to determine the feasibility of code-comment in-
consistency detection. The implemented approach is based on an existing
project and has been extended to focus on ranges, rather than null-related
information (which is the focus of the original approach).

The evaluation was conducted manually, with the help of automatically
created reports. Ultimately, this lead to an overall accuracy of approximately
98% for the inference algorithm. However, as expected, due to rather low
metrics, the code-comment inconsistency detection is only about 56%. Ad-
ditionally, the results of the evaluation are compared to other projects and
discussed extensively.

vii

Kurzfassung

Jeder Programmierer – unabhängig vom Bereich der Spezialisierung – ist
zwangsläufig (zumindest teilweise) damit beschäftigt, Programmcode zu kom-
mentieren und somit zu dokumentieren. Allerdings wird diese Aufgabe oft
nur unvollständig umgesetzt. Dies begründet sich durch viele verschiedene
Faktoren – unter anderem, durch zu wenig Zeit und Motivation. Besonders
dann, wenn sich die Funktionalität des Codes ändert, wird das zugehöri-
ge Kommentar oft nicht auf den neuesten Stand gebracht. Programmierer,
die andere Projekte verwenden, um das Rad nicht neu zu erfinden, sind al-
lerdings auf die Dokumentation ebendieser Projekte angewiesen. Ist diese
Dokumentation nicht korrekt, kann dies zu Fehlern im Code führen. Es ist
daher wünschenswert, die vorhandene Dokumentation (in Form von Kom-
mentaren) automatisch zu analysieren, um an Hand dieser Analyse festzu-
stellen, ob sie mit der Funktionalität des Codes übereinstimmt.

Sollten solche sogenannten Inkonsistenzen gefunden werden, können die
verantwortlichen Programmierer die Dokumentation (bzw. das Kommen-
tar) berichtigen. Dies führt dazu, dass sich andere Programmierer (welche
externe Projekte verwenden) auf die Dokumentation verlassen können. So-
mit wird Fehlern im Programmcode vorgebeugt. Aus diesem Grund wurde
ein Projekt umgesetzt, welches Kommentare analysiert und entsprechende
Metriken und Statistiken aufstellt. Basierend auf einem Ansatz für null-
bezogene Inkonsistenzen, wurde das Projekt erweitert, um Wertebereiche
analysieren zu können.

Die Evaluierung des Projekts erfolgte manuell, durch das Analysieren
von automatisch generierten Berichten. Der Algorithmus für das Ableiten
von Spezifikationen erreichte dabei eine durchschnittliche Genauigkeit von
ungefähr 98%. Im Vergleich dazu wurde für das automatische Erkennen von
Inkonsistenzen eine eher geringe Genauigkeit von 56% festgestellt. Die resul-
tierenden Werte wurden ausführlich besprochen und zusätzlich mit Arbeiten
im selben Bereich verglichen.

viii

Chapter 1

Introduction

This chapter focuses on a concise introduction, by explaining the relevance
of the topic, the problem which originated in insufficient documentation and
the structure of this Master’s thesis.

1.1 Problem Statement
Any software producing company has to ensure code quality to some degree.
Of course, this degree is supposed to be as high as possible. Only by keeping
high quality the production costs can be hold at a minimum – as already
cited by [9]:

Elshoff and Marcotty states that the comments, as well as the
structure of the source code are good aids for understanding
programs and therefore reduce maintenance costs [...].

However, this can be a struggle-some task to fulfill without any tools at
hand. Even with the current tools in use, such as JUnit and the likes, it is a
– at least – time-consuming task. Furthermore, developers tend to become
discouraged after hours of searching for an error – where the search-time
sometimes would stretch over days. This can introduce errors based on slop-
piness, due to unmotivated programmers.

When programming, exceptions will eventually arise (if exceptions are
supported by the programming language in use). While exceptions are useful,
it is hard to handle them correctly if they are not documented. Imagine a
programmer who is relying on a third-party API (such as Apache Common
Collections1). In order for the programmer to know how to properly use
any method within the API, she will have to read the documentation at
least once. If the documentation is non-existent, outdated (i.e., incorrect,
due to a change of code) or simply inaccurate the programmer will have

1https://commons.apache.org/proper/commons-collections/

1

https://commons.apache.org/proper/commons-collections/

1. Introduction 2

a hard time finding any error that causes an undocumented exception. Of
course, checked exceptions2 will cause a compile-time error. Thus, using an
IDE should help mark such exceptions as error before the developer could
execute the code. By doing so, this types of exceptions will be handled in
any case. Additionally, this type of exception is documented in the top-level
code (throws clause) and does not necessarily have to be documented in the
Javadoc – though it should be, for the sake of completeness. On the contrary,
unchecked exceptions (i.e., RuntimeException, Error, and their subclasses)
do not cause compile-time errors. Thus, the code can be executed without
handling the exceptions. Oracle explains that the reason for this is, because
the user of an API does not necessarily know how to handle the exception
correctly, however, the developer of the API does [18].

Without proper documentation, the user might encounter a bug, due
to an unexpected exception. In order to avoid bugs originated in inade-
quate comments (see section 2.3), the developer would need to take the time
to check every Javadoc comment. This is a time consuming task. Further-
more, due to laziness, deadlines, obliviousness and other factors, inadequate
Javadoc comments might increase rapidly during the life-cycle of an API.
Leading, again, to bugs in the user’s code.

1.2 Relevance
Detecting code-comment inconsistencies can prevent bugs – by showing out-
dated or wrongly stated comments. These detected comments can then be
removed or updated. Once this is done, other programmers can rely on the
information found within this documentation. The importance of updating
comments was also concluded by Malik et al. [9].

If the detected comment is not an inadequate one (see section 2.3) then
there is a chance that a bug was detected (i.e., a logical error within the code
itself). Also, as other work already suggests (see chapter 3), code-comment
inconsistency detection does help to improve code. It is noteworthy that
these approaches often found bugs rather than an inadequate comment.
Thus, having a tool which provides a (semi-)automated code-comment in-
consistency detection is useful, considering the problem stated in section 1.1.
This is also discussed in chapter 6.

1.3 Structure
After this chapter’s brief introduction, chapter 2 continues with context-
dependent explanations of relevant terms and introduces the libraries used
or currently in use. This is necessary, in order to comprehend the chap-

2https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html

1. Introduction 3

ters following afterwards. Next, to be able to compare this work with ex-
isting work, some state-of-the-art approaches are explained in chapter 3.
Also, related work is listed – which is thought to be not as closely related
as state-of-the-art work. Afterwards, chapter 4 highlights the difference of
the basis implementation compared to the original approach, which was re-
quired to be re-implemented in order to improve it. This improvement is
described in the very same chapter by giving an overview of the approach
in use and utilizing examples to clarify the intention of this thesis’ project.
Furthermore, to provide metrics and a proof of concept, an evaluation was
concluded and is elucidated in detail in chapter 5. Not only does it describe
the used measures, but it also shows the final results and their comparison
with existing work. Last but not least, the final chapter (see chapter 6) con-
cludes the insights and results of this thesis and provides ideas for future
work. Additionally, an extensive discussion of the relevance of the project
and its fields of application can be found within this chapter. Last but not
least, a few appendixes are provided in order to complement this Master’s
thesis content.

Chapter 2

Concepts

This chapter discusses the terms used in this thesis and explains the concrete
meaning in this context.

2.1 Javadoc
A Javadoc comment is a header comment as defined by Jiang and Hassan in
their study of PostgreSQL1 comments [5]. Additionally, Javadoc comments
consist of natural language and special keywords, namely tags. Where each
tag is related to a certain part of the method the Javadoc comment describes.
If a tag is missing, even though the corresponding code element is available
then this comment is most likely an inadequate comment (see section 2.3).

2.2 Range
As the focus of the analysis lies on ranges, it is important to explicitly define
how a range is denoted. A range can hold any number 𝑛r, where 𝑛r ∈ R. For
example, a range for an index is usually defined as 0, . . . , 𝑙 – where 𝑙 is the
length of the object that accesses any element accordingly. However, there
are multiple ways of denoting a range, when it comes to informal information
(i.e., natural language – see section 2.6). Examples of how such a sentence
might be written – explaining why an exception is thrown – are shown in
table 2.1.

2.3 Inadequate Comment
An inadequate comment in this context is defined as either outdated, inaccu-
rate or incomplete. Where outdated comments are usually created through
code refactoring. When code is updated (as such that the functionality

1https://www.postgresql.org/

4

https://www.postgresql.org/

2. Concepts 5

Table 2.1: Examples of extracted ranges corresponding to their textual
counterpart. The variable len refers to the length of the object access-
ing any element accordingly. These kinds of text, usually, appear after an
@throws tag.

Informal Information Range

if the index is out of bounds index < 0 && index >= len

if the index is negative index < 0

changes), but the comment is not then an outdated comment is created.
An inaccurate comment, however, holds text without proper specifications.

For example, a comment defined as @param index the index does only
give a hint about the specification of the index (i.e., its permitted range).
This is, because absolutely no information about the range is given within
the parameter’s description. Only when a proper @throws tag is available,
the range extraction might still be possible (refer to table 2.1 for some ex-
amples).

Furthermore, an incomplete comment is lacking information. Using pro-
gram 4.1 as an example for a proper comment, imagine one of the tags
listed in the Javadoc was missing. In this case the comment would be in-
complete. Finally, auto-generated comments (i.e., comments generated by
using a shortcut of the IDE in use) that are not updated hold no informa-
tion at all and should be avoided.

2.4 Code-Comment Inconsistency
A code-comment inconsistency is an unwanted difference between a com-
ment’s description and the functionality of the code it describes. Introducing
such inconsistencies to the user might cause a misinterpretation of the code’s
functionality, thus, leading to possible errors or bugs [13]. In order to detect
such code-comment inconsistencies, the functionality of the code has to be
inferred (using the Javadoc comments) and compared to the actual behavior
of the code. Any unexpected behavior is treated as an inconsistency. How-
ever, if the comment appears to be correct even though a code-comment in-
consistency was detected, an implementation-wise bug was probably found.
While this would be the best case scenario, it is also possible that a false
positive was detected.

2. Concepts 6

2.5 Formal Information
Formal information is, basically, a rule-set used to generate languages as
Harrison explains [3]:

Formal theory concerns itself with sets of strings called ”lan-
guages” and different mechanisms for generating and recogniz-
ing them. Certain finitary processes for generating these sets are
called ”grammars”.

Harrison also explains how formal information is defined. Interpreting his
explanation, an example for the English language can be conducted. An
alphabet Σ is a non-empty, finite set of elements. Let Σ = {𝑎, 𝑏, 𝑐, . . . , 𝑧}.
Letters, words and sentences can be created (so called Σ-sequences), when
using Σ in combination with grammars.

2.6 Informal Information
Based on the definition of formal information in section 2.5, natural language
(used as input in the project) is categorized as informal information. This
informal information will be converted into code (an example is given in
table 2.1), in order to check the code’s functionality.

2.7 Defensive Programming
Defensive programming is the type of programming where every parameter
is always checked, even if the method call before validated its integrity al-
ready. This ensures that any given, invalid parameter is handled correctly
in any existing method. However, it clutters the code tremendously, which
is why another technique called design by contract (see section 2.8) should
be preferred [4].

2.8 Design by Contract
The purpose of design by contract, basically, is to ensure that fundamental
specifications are stated closely to the code [4]. Furthermore, Meyer states:

One of the principles of design by contract, [...], is that any soft-
ware element that has such a fundamental constraint should state
it explicitly, as part of a mechanism present in the language.

For Java, this means a Javadoc comment is probably the best place to de-
scribe any specifications. Especially, since a user of any API will most likely
read such comments and infer the proper use of the methods, based on

2. Concepts 7

the comments. Of course, it is possible to use assertions within the code
(i.e., assert condition : "Error message";), in order to both have a
run-time check (if assertions are enabled) and a proper documentation of
specifications. However, the end-user of an API might use the documenta-
tion created from the Javadoc comments instead of the source code directly
– at least in the beginning. Thus, documenting specifications in Javadoc
comments is essential, especially if the source code is not available.

2.8.1 Precondition

When further reading the work of [4], it get’s clear that preconditions are
usually obligations for the callee (i.e., the user of a service). If, and only if,
these conditions are fulfilled, the callee can expect the benefits denoted in
the contract. When programming, such a precondition is the use of a correct
value, since using an invalid value will result in a compile- or runtime error.

For example, if the callee uses a method provided by the service to re-
trieve an object within a list (e.g., getObject(index);) then the precondi-
tion could be that only positive integer values are valid. Usually, a proper
range is – implicitly or explicitly – given, such as index > 0 && index <
list.size. If this precondition is fulfilled by the callee, then the result will
be as expected, according to the contract (e.g., an object will be returned).

2.8.2 Postcondition

On the contrary to preconditions, postconditions are the obligations for a
service (used by the callee). These obligations have to be fulfilled if, and
only if, all preconditions are satisfied.

For example, calling the getObject(index) method (see section 2.8.1)
with an invalid value (e.g., index < 0 || index >= list.size) will lead
to an error – usually some kind of IndexOutOfBoundsException. However,
if the given value is valid and the service fails to fulfill its obligations denoted
in the contract then the service has to improve its algorithm [4].

2.9 Wrapper Class
A wrapper class is merely a class that wraps around another class. Depending
on the use case, this may have different advantages.

For example, Java uses wrapper classes for its primitive types (e.g., the
integer primitive int) [19]. However, in the project of this Master’s thesis
the main advantage is a significant reduction of unnecessary test creation –
due to only relevant methods of the API’s classes being wrapped. Therefore,
Randoop (see section 4.1.2) will not check irrelevant methods (which would
happen without wrapper classes).

2. Concepts 8

Figure 2.1: The AST View for the java.lang.String class. Note that it
is not fully extended, as it would simply take too much space.

2.10 Abstract Syntax Tree

An Abstract Syntax Tree (AST) is a model created from source code. It
gives access to code and comment information, in such that certain data
structures are used to represent any part of the source code (e.g. a method
declaration, Javadoc comments, . . .). For this thesis’ project the JDT AST 2

is used in combination with Eclipse’s AST View3 (which visualizes the AST
model of a Java file). An example of the AST View’s visualization is shown
in figure 2.1.

2http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/
eclipse/jdt/core/dom/AST.html

3http://www.eclipse.org/jdt/ui/astview/

http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/AST.html
http://help.eclipse.org/luna/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/dom/AST.html
http://www.eclipse.org/jdt/ui/astview/

Chapter 3

State of the Art

This chapter details with state-of-the-art work and their approaches of code-
comment inconsistency detection.

3.1 Code-Comment Analysis

According to [12], Tan et al. (not to be confused with Tan et al. in [13]) are
the pioneers in the field of code-comment analysis, with the tool iComment.
It is emphasized that no solution existed beforehand [12]:

This paper takes the first step in automatically analyzing com-
ments written in natural language to extract implicit program
rules [...].

Furthermore, iComment uses different techniques (e.g., Natural Language
Processing) and focuses on another domain (i.e., C/C++).

3.1.1 Approach

As the domain varies and does not have Javadoc comments (see section 2.1),
it is necessary to detect rule containing comments [12]. This is done using
Natural Language Processing (NLP) and other techniques. Figure 3.1 shows
the complete process of iComment (including optional steps).

Every step within the dotted rectangle is optional and might be desired
by the user. This is, because the in-house training (see figure 3.1) was already
done once and may or may not suffice. In any case, once the optional phase
is completed, the topic keywords, used as part of the input for the TR-
Comment Extractor, are given by the user directly. Based on the model
used as input for the Rule Generator, certain rules are conducted, which
will then be used to check for code-comment inconsistencies. The results
are error reports and the generated rules themselves. Further details can be
found in [12].

9

3. State of the Art 10

Figure 3.1: Every element within the dotted rectangle is an optional step,
referred to as In-House Training / Program-Specific Training. However, every
colored element is a fixed part of the process that occurs after all optional
steps (referred to as Comment Analysis & Checking). Note that this overview
is taken from [12].

3.2 Interrupt Related Annotations

In addition to iComment (see section 3.1), Tan et al. further developed
aComment [11]. One of the differences is that the new approach also lever-
ages code, instead of comments only. Furthermore, annotations are used in
order to detect interrupt related bugs [11]:

As we are concerned with the OS synchronization in the spe-
cial interrupt context, we design annotations in the following
format: @IRQ(Precondition, Postcondition), where Precondition
and Postcondition can have one of the 4 values, i.e., 0, 1, X and P.

Examples of how a concrete annotation may look like within source code
and the meaning of these four values are available in [11].

3.2.1 Approach

The approach of aComment utilizes the Comment Parser of iComment (see
figure 3.1). However, it is altered in order to properly extract comments that
contain interrupt-related preconditions. As figure 3.2 indicates, heuristics
are used to determine whether the comment is relevant. After this step is

3. State of the Art 11

Figure 3.2: An overview of the approach used in the aComment tool.

completed – or maybe simultaneously (depending on the implementation)
– the code is statically analyzed in order to find further preconditions. All
preconditions are then used to generate abstract annotations (i.e., the values
of the annotations are not known yet). In order to propagate these values to
the annotations, the code is traversed in a bottom-up fashion. Once this is
done, a report is created – with the found bugs ranked by various confidence
values (e.g., seed annotation confidence and violation confidence [11]). This
report can then be adjusted by the user – in a sense that the user may change
proposed annotation values, for example. After the user’s adjustments are
completed, the code is altered to contain these annotations (as additional
comment, for backwards compatibility).

3.3 Exception Testing
The work of Tan et al. regarding exception testing is extensively explained
in [13]. Even though it was a first step in the very direction of Javadoc
comment analysis, it leaves a lot of room for enhancement1. Which is why
a re-implemented version is used as the basis of this work.

3.3.1 Approach

Two different tools are used in Tan’s approach, namely Doclet and Ran-
doop (see subsections 4.1.1 and 4.1.2, respectively). The complete approach
is shown in figure 3.3 (for a detailed explanation see [13]). While Doclet is
used to parse the Javadoc comments, Randoop is extended (namely, @Ran-

1As of October 2016 the tool @tComment is publicly available on GitHub [24]

3. State of the Art 12

Figure 3.3: An overview of the architecture of the approach by [13].

Program 3.1: This example is taken from [13] (part of Figure 2). It shows
the method under test, while program 3.2 shows the resulting JUnit test.

1 /**
2 * ...
3 * @param map the map to synchronize, must not be null
4 * @return a synchronized map backed by the given map
5 * @throws IllegalArgumentException if the map is null
6 */
7 static Map synchronizedMap(Map map){
8 // Omitted...
9 }

doop) to gain fine-grained control over Randoop’s test generation. Basically,
the source code of a Java file is used as input. It is then parsed using Do-
clet, in order to retrieve Javadoc comments. Next, the specifications are
extracted (i.e., informal information is converted to code – see subsection
4.3.1). These specifications are then fed into the Randoop extension (as de-
scribed in [13]), which then generates JUnit tests automatically, if any. An
example of a method under investigation (and its corresponding Javadoc
comment) is shown in program 3.1. The corresponding JUnit test can be
found in program 3.2.

3. State of the Art 13

Program 3.2: This example is taken from [13] (part of Figure 2). It shows
the resulting JUnit test, while program 3.1 shows the method under test.

1 void test2() throws Throwable{
2 java.util.Map var0 = null;
3 try{
4 java.util.Map var1 = org.apache.commons.collections.MapUtils.

synchronizedMap(var0);
5 fail("Expected IllegalArgumentException, " + "got

NullPointerException");
6 }catch(IllegalArgumentException expected){}
7 }

Figure 3.4: Doc2Spec’s approach. This overview is taken from [14].

3.4 Resource Specification
Similar to iComment, a tool to infer specifications from documentation,
namely Doc2Spec, is available. However, the approaches and their focus differ
significantly. Doc2Spec focuses mainly on resource-related specifications and
utilizes the online documentation of Java APIs instead of Javadoc comments
(as stated in [14]).

3.4.1 Approach

Figure 3.4 shows the overview of the approach, as described in [14]. The
Javadoc element, however, describes an actual webpage of any documen-
tation under inspection. This differs from other approaches (see sections
3.1, 3.2, 3.3, 3.5), as these use the comments found within the source code.
Nonetheless, the information available does not differ – only the way of re-
trieving it does. Furthermore, the use of Natural Language Processing and
Machine Learning allows for the extraction of action-resource pairs, which
are then used in combination with the class/interface hierarchies in order
to infer specifications (see [14] for an explanation of the various terms).

3. State of the Art 14

Figure 3.5: This approaches overview is taken from [15].

3.5 Directive Defects

Similar to this thesis’ work, the work by Zhou et al. [15] focuses on incon-
sistencies (called defects). The main differences are the additional step of
code analysis, the use of NLP and other techniques and the check for type
restriction. It was published in 2017 and is, thus, the most recent work.

3.5.1 Approach

The source code is split into code and documentation – this creates two
branches, as seen in figure 3.5. Considering the upper branch first, an Ab-
stract Syntax Tree is constructed (see section 2.10), then any information
about exceptions is extracted, calibrated and classified. To complete the
branch, constraints are generated. As for the lower branch, the comments
are pre-processed (i.e., tags and other irrelevant characters – such as HTML
tags – are removed). Further Natural Language Processing techniques (e.g.,
POS-Tagging, Dependency Parsing) are leveraged. Afterwards, heuristics are
used to analyze any occurring patterns in order to generate constraints. Last
but not least, a satisfiability modulo theories solver (SMT Solver) is used to
detect defects. A detailed explanation is available in [15].

3.6 Related Work
This section contains related work that might be of interest due to either
some part of or their complete approach.

3. State of the Art 15

3.6.1 Static Analysis

FindBugsTM2 is a tool dedicated to bug detection in Java code through static
analysis [23]. It is specifically closely related to @tComment, as it also checks
for NullPointerException errors (and others) – however, the approach is
completely different (compare [23] with [13]).

3.6.2 Automatic Quality Assessment

JavadocMiner is a tool that automatically assesses the quality of source code
comments. While the tool itself was not to be found, the paper describing
it was. JavadocMiner differs from other approaches, as it uses heuristics –
based on heavy use of Natural Language Processing – to assess the quality
of comments. These heuristics are split into two categories [7]:

The heuristics are grouped into two categories, (i) internal (NL
quality only), (ii) code/comment inconsistency.

Obviously, the second category establishes a relation to this Master’s thesis
(as well as other work – see chapter 3).

3.6.3 Action-Oriented Graph

The approach by Fry et al. analyses both, code and comments in order to
find verb-DO pairs and leverage them to create an action-oriented graph [2].
The comment analysis is based on Natural Language Processing (e.g., POS-
Tagging, Chunking, etc.).

According to [2], existing software maintenance tools do help compre-
hending, navigating, testing, debugging and refactoring and therefore an-
swer a lot of questions asked by developers. However, some questions seem
to be unanswered:

[...] often this information is not sufficient to assist the user in an-
swering high-level questions that software maintainers want an-
swered (e.g. Which class represents concept X? or Where is there
any code involved in the implementation of behaviour Y?)[...].

While the result is different to other work and used to enhance software
maintenance tools, it is related to this work, due to its comment analysis.

3.6.4 Custom Javadoc Tags

Another interesting approach is the one used by iContract [8]. It uses custom
Javadoc tags, such as @pre and @post (and others), in order to detect pre-

2The latest version of the project can be found on GitHub [22] with the last update
being on March, 15th 2017 at the time of writing.

3. State of the Art 16

Program 3.3: An example class for the jContractor tool. This example is
taken from [6].

1 class Dictionary_CONTRACT extends Dictionary {
2
3 protected boolean put_PostCondition(Object x, String key){
4 return ((has (x)) && (item (key) == x) && (count == OLD. count + 1))
5 }
6
7 protected boolean Dictionary_ClassInvariant() {
8 return (count >= 0);
9 }

10 }

and postconditions, respectively. These pre- and postconditions are then
converted into assertions and inserted into the code. If the assertions fail,
corresponding exceptions are thrown.

3.6.5 Custom Class Loader

The jContractor tool allows a programmer to declare special methods and
classes, which define pre- and postconditions. An example of such a class
is shown in program 3.3. With this class defined, the custom class loader
(used by jContractor) does not only load the Dictionary class, but also
tries to load the Dictionary_CONTRACT class [6]. Since it is available, the
put method will now be checked for its class invariant and postcondition
(during runtime). If a check fails (i.e., returns false) then a corresponding
exception is thrown.

Chapter 4

Implementation

This chapter contours the basis implementation of the project, which is based
on Tan’s approach, @tComment (see [13]). Furthermore, the extension of the
approach – considering ranges – is explained.

4.1 Relevant Libraries
This section briefly explains the libraries used or currently in use – which is
necessary to fully comprehend the implementation’s approach.

4.1.1 Doclet

As in Oracle’s official definition, a doclet is an extension to define the format
of the output of the Javadoc tool1 (which is used to generate documentation
based on Javadoc comments) [17].

Doclets are programs written in the Java™ programming lan-
guage that use the doclet API to specify the content and format
of the output of the Javadoc tool. By default, the Javadoc tool
uses the "standard" doclet provided by Sun™ to generate API
documentation in HTML form. However, you can supply your
own doclets to customize the output of Javadoc as you like. You
can write the doclets from scratch using the doclet API, or you
can start with the standard doclet and modify it to suit your
needs.

When referring to Doclet the implementation of the @tComment approach
is meant (see [13] and chapter 3).

1http://www.oracle.com/technetwork/articles/java/index-jsp-135444.html

17

http://www.oracle.com/technetwork/articles/java/index-jsp-135444.html

4. Implementation 18

4.1.2 Randoop

Randoop is a tool used to automatically generate JUnit tests [10]. These
tests are randomly generated, in order to provide various test cases of which
a programmer might not think. While there are various settings to configure
Randoop, to fit the needs of its current purpose, the most relevant setting
is the time used to generate the tests per class (referred to as time). For
example, using a time of 15 seconds will result in less results than a time of
60 seconds. Obviously, the trade-off is coverage versus computation time.

Additionally, the null-ratio can be set. It defines the probability of null
being used as parameter. This is used in the original approach [13], however,
since ranges are denoted as numbers, this ratio is set to default. So, as to
cover both the re-implementation of the first part and the extension.

4.1.3 JUnit

Using JUnit, either regression or error tests are generated. Where regression
tests fail only if the behavior of the method changed after it was altered.
This ensures that the programmer does not accidentally introduce a bug.
Error tests, however, fail every time, since an error was detected (i.e., the
programmer defines preconditions and assumes postconditions, but they are
not fulfilled). Therefore, JUnit is a simple framework, providing functionality
to create repeatable tests [16]. JUnit is, thus, used to execute the tests
created with Randoop (see section 4.1.2). It will notify the programmer with
any error message thrown while testing for code-comment inconsistencies.

4.1.4 Rythm Engine

RythmEngine (Rythm) is a tool to create templates. Its main purpose is
to create HTML templates, either statically or dynamically (using Java).
However, the ability to compute plain text allows for a utilization of Rythm,
in order to create Java code. For the project of this work, the template is
constructed as so it creates a wrapper class (see section 2.9). This is achieved
by leveraging the possibility of Java code within the template in order to
use dynamic templates.

4.2 Same But Different

While the new approach utilizes the original approaches idea (see section
3.3), the tools in use differ significantly. Furthermore, the implementation
varies completely. Figure 4.1 shows the architecture of the new implemen-
tation.

4. Implementation 19

Figure 4.1: An overview of the new approaches architecture. All differences
to the approach in [13] are highlighted.

4.2.1 Approach

Instead of Doclet an Abstract Syntax Tree is in use. This allows for a more
fine-grained control over the parsed source files, as the AST provides addi-
tional information (besides comments – see section 2.10). Since the Javadoc
comments are the main focus, it is arguable whether to use an AST at this
state of the project. However, future extensions (see section 6.3) might de-
pend on it. Especially, if the focus changes or extends to consider method
declarations as well, for example.

The @tComment re-implementation leverages the idea described in [13],
but differs significantly from the original implementation. This also explains
any variations in the results of the evaluation (see chapter 5 for evaluation
details). Next, the extracted specifications are fed into Rythm templates (see
section 4.1.4), with which wrapper classes are created (see section 2.9). This
allows to avoid unnecessary tests being created by Randoop (see section
4.1.2). For example, if the original class is used to create JUnit tests (see
section 4.1.3) via Randoop then all of the methods are checked, regardless
of the information available in the Javadoc. Randoop uses all methods of
the wrapper class as well, but since the wrapper class contains only methods
relevant for testing, more useful JUnit tests will be generated. Additionally,
the flexibility of the new approach is tremendously increased, since there
is no dependency on Randoop – the @Randoop extension is not required.
This means that any other tool for automatically creating JUnit tests can
be used.

4.3 Range Extraction
As an extension for the approach described in section 4.2 and therefore
an enhancement of the @tComment tool by [13], a precondition extraction
based on ranges was implemented (and evaluated – see chapter 5).

4. Implementation 20

4.3.1 Converting Informal Information to Code

In order to convert informal information (see sections 2.5 and 2.6) to code,
various alphabets need to be defined:

𝒜 = {𝑎, 𝑏, 𝑐, . . . , 𝑧}, (4.1)
ℛ = {<, >, =}, (4.2)
𝒩 = {0, 1, . . . , 9}. (4.3)

Firstly, 𝒜 is used to create a sequence 𝑝, which contains any arbitrary pa-
rameter name. Furthermore, ℛ is used to create a combination of operators
𝑟 (e.g., 𝑟 = (<, =) or 𝑟 = (=, =)). Finally, 𝒩 is used to create any real num-
ber 𝑛, which may or may not occur within a range notation in a Javadoc
comment. These sequences build the required basis for the definition of a
proper grammar

𝐺 = ⟨𝑝, 𝑟, 𝑛⟩. (4.4)

Note that 𝑝 and 𝑛 can be exchanged with each other, to result in any
combination. For example, exchanging 𝑛 with 𝑝 will result in the gram-
mer 𝐺 = ⟨𝑝, 𝑟, 𝑝⟩. Applying this operation will lead to the desired output,
namely conditions. These conditions can then be used within the wrapper
classes (see section 2.9) to check for code-comment inconsistencies.

4.3.2 Approach

The approach compared to the one described in section 4.2 only differs in
two steps. Addtionally to the @tComment extension, the range extraction
logic is available (see figure 4.2). Obviously, any following steps have been
altered too be able to work with the new input (i.e., the extracted ranges).
Furthermore, reports (see section 5.3.1) are now part of the final result. They
aid in reasoning about why a specification was or was not extracted.

Considering the example given in program 4.1, manually extracting the
conditions for the range defined in this Javadoc comment – incorporating the
alphabets and grammar defined in section 4.3.1 – the result is as follows. The
parameters srcBegin, srcEnd, dst and dstBegin are recognized, but do not
contain ranges themselves (i.e., within their corresponding, descriptive text).
Next, the IndexOutOfBoundsException is recognized and checked against
the parameters. The list (i.e., ...) contains all the conditions in
this case. Converting them into code yields the following results:

• srcBegin < 0,
• srcBegin > srcEnd,
• srcEnd > this.delegate.length(),
• dstBegin < 0,
• dstBegin + (srcEnd - srcBegin) > dst.length.

4. Implementation 21

Figure 4.2: An overview of the new approaches extension. All differences
to the approach in section 4.2 are highlighted.

Logically combining them with or allows for checking against any violation
in a later step (wrapper classes). Note that this.delegate.length() is
used due to wrapper classes using the delegation pattern 2.

2http://www.oracle.com/technetwork/java/businessdelegate-137562.html

http://www.oracle.com/technetwork/java/businessdelegate-137562.html

4. Implementation 22

Program 4.1: An example of a real-world use of a Javadoc comment. The
code was taken from the java.lang.String class.

1 /**
2 * Copies characters from this string into the destination character
3 * array.
4 * <p>
5 * The first character to be copied is at index {@code srcBegin};
6 * the last character to be copied is at index {@code srcEnd-1}
7 * (thus the total number of characters to be copied is
8 * {@code srcEnd-srcBegin}). The characters are copied into the
9 * subarray of {@code dst} starting at index {@code dstBegin}

10 * and ending at index:
11 * <blockquote><pre>
12 * dstBegin + (srcEnd-srcBegin) - 1
13 * </pre></blockquote>
14 *
15 * @param srcBegin index of the first character in the string
16 * to copy.
17 * @param srcEnd index after the last character in the string
18 * to copy.
19 * @param dst the destination array.
20 * @param dstBegin the start offset in the destination array.
21 * @exception IndexOutOfBoundsException If any of the following
22 * is true:
23 * {@code srcBegin} is negative.
24 * {@code srcBegin} is greater than {@code srcEnd}
25 * {@code srcEnd} is greater than the length of this
26 * string
27 * {@code dstBegin} is negative
28 * {@code dstBegin+(srcEnd-srcBegin)} is larger than
29 * {@code dst.length}
30 */

Program 4.2: The method signature corresponding to the Javadoc comment
shown in program 4.1. The code was taken from the java.lang.String class
– only the formatting was changed for the sake of readability.

1 public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin)
2 {
3 // Omitted...
4 }

Chapter 5

Evaluation

This chapter examines the implementation of this Master’s thesis’ project.
It contains all relevant metrics for the conducted evaluation and their corre-
sponding meanings. However, some metrics are not described in this chapter,
as they are not relevant for the evaluation. Refer to appendix C for a com-
plete overview of all metrics. Additionally, commonly used measures were
conducted in order to compare the implemented approach to state-of-the-
art work (see section 5.2).

5.1 Relevant Metrics
This section provides an overview of all relevant metrics, in order to under-
stand the results displayed in the sections 5.4 and 5.5.

5.1.1 General Metrics

The general metrics (see table 5.1) show the extent of the size of the API
under investigation. They also show the amount of accessible classes (i.e.,
classes that can be used within wrappers), and give an overview of some
general Javadoc statistics.

5.1.2 Tag Metrics

All metrics regarding tags are shown in table 5.2. The most interesting tags,
however, are most likely the @param, @throws, @exception and faulty tags
count (𝑡𝑝, 𝑡𝑡, 𝑡𝑒 and 𝑡𝑓 , respectively). Other metrics in this table, such as
All Tags and Unsupported Tags (i.e., 𝑡𝑎𝑙𝑙 and 𝑡𝑢, respectively), are merely
an overview of additional statistics, or hold interesting but not too relevant
information (e.g., the amount of deprecated tags, 𝑡𝑑). The conducted met-
rics also list every unsupported tag by name. These tags can be found in
table C.5.

23

5. Evaluation 24

Table 5.1: General metrics. Note that 𝑐𝑙 and 𝑐𝑎𝑛 may show only a part of
the non-accessible classes. For example, private classes are not accessible as
well. However, they are not counted.

Metric Identifier Description

All Files 𝑓𝑎𝑙𝑙 All Java files of the API.
All Classes 𝑐𝑎𝑙𝑙 All classes found in 𝑓𝑎𝑙𝑙.
Local Classes 𝑐𝑙 All local classes in 𝑓𝑎𝑙𝑙.

These are not accessible.
Anonymous Classes 𝑐𝑎𝑛 All anonymous classes in

𝑓𝑎𝑙𝑙. These are not acces-
sible.

Accessible Classes 𝑐𝑎 All classes accessible for
the wrappers.

Useful Classes 𝑐𝑢 All classes (in 𝑐𝑎) contain-
ing possible specifications.

Non-Useful Classes 𝑐𝑛𝑢 𝑐𝑎 - 𝑐𝑢

Created Wrappers 𝑤𝑎𝑙𝑙 All created wrappers.
All Javadocs 𝑗𝑎𝑙𝑙 All Javadoc comments re-

lated to a method.
Useful Javadocs 𝑗𝑢 All Javadoc comments in

𝑗𝑎𝑙𝑙 containing tags.
Non-Useful Javadocs 𝑗𝑛𝑢 𝑗𝑎𝑙𝑙 - 𝑗𝑢

Table 5.2: Tag-Related metrics.

Metric Identifier Description

All Tags 𝑡𝑎𝑙𝑙 All tags in 𝑗𝑎𝑙𝑙.
@param Tags 𝑡𝑝 All @param tags.
@throws Tags 𝑡𝑡 All @throws tags.
@exception Tags 𝑡𝑒 All @exception tags.
@deprecated Tags 𝑡𝑑 All @deprecated tags.
Faulty Tags 𝑡𝑓 Tags that are not properly

formatted.
Unsupported Tags 𝑡𝑢 All unsupported tags.

5. Evaluation 25

Table 5.3: All metrics regarding the specifications that were extracted from
the Javadocs.

Metric Identifier

Null Unknown Specifications 𝑠𝑛𝑢

Null Normal Specifications 𝑠𝑛𝑛

Null Any Exception Specifications 𝑠𝑛𝑎

Null Specific Exception Specifications 𝑠𝑛𝑠

Range Unknown Specifications 𝑠𝑟𝑢

Range Normal Specifications 𝑠𝑟𝑛

Range Any Exception Specifications 𝑠𝑟𝑎

Range Specific Exception Specifications 𝑠𝑟𝑠

All Unknown Specifications 𝑠𝑢

All Normal Specifications 𝑠𝑛

All Any Exception Specifications 𝑠𝑎

All Specific Exception Specifications 𝑠𝑠

All Null Specifications 𝑠𝑛𝑢𝑙𝑙

All Range Specifications 𝑠𝑟𝑎𝑛𝑔𝑒

All Specifications 𝑠𝑎𝑙𝑙

5.1.3 Specification Metrics

All metrics related to specifications are shown in table 5.3. However, at this
point, the meanings of the specification metrics might not be clear. Thus,
they are further explained – for the sake of comprehension.

Null Specifications

Specifications related to null are named accordingly (e.g., Null Unknown
Specification). The meaning of each null-related specification is defined in
[13]. Concretely, Null Unknown (NullUnknown) means that no information
about null was found (within the current tag description). Every other
null-related specification defines the expected behavior of the corresponding
method. For every Null Normal (NullNormal) specification it is expected
that the code will execute normally if null is passed as value. An error
is expected for Null Any Exception (NullAny) and Null Specific Exception
(NullSpecific) specifications. Where NullAny expects any error, regardless
of type – unlike NullSpecific, which is expecting a certain type of error.

5. Evaluation 26

Range Specifications

Similar to null-related specifications, range-related specifications are con-
structed. The only difference is the relation to a range, rather than null.
They will be referred to as RangeUnknown, RangeNormal, RangeAny and
RangeSpecific, with respect to the naming convention of the null-related
specifications.

Note that RangeAny is not yet supported in the implementation, as this
case can only be inferred from @param tags (i.e., their description), but
it was examined that ranges, denoted in @param tags, are always of type
RangeNormal. At least, for every manually inspected @param tag (this in-
spection was executed before the implementation).

5.2 Statistics
In addition to the metrics described in section 5.1, various statistics were
constructed. Namely, true and false positives and negatives were counted
(where applicable), in order to calculate commonly used measures. In this
evaluation, the measures are dichotomous (i.e., either 1 or 0 – true or false,
respectively). They are usually displayed in a contingency table (also known
as confusion matrix) [1] – see section 5.2.1.

5.2.1 Confusion Matrix

A confusion matrix (CM) holds the values for true positives (TP), false
positives (FP), true negatives (TN) and false negatives (FN). An example
of such a CM can be found in [1]. From this CM, certain (commonly used)
measures can be calculated. Namely, accuracy 𝐴, error ratio 𝐸, precision
𝑃 and recall 𝑅 (note that the chosen identifiers may not coincide with the
ones chosen in other work). These values are defined in [1] as:

𝐴 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
, (5.1)

𝐸 = 𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
, (5.2)

𝑃 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (5.3)

𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (5.4)

Using these values, it is possible to reason about the reliability of the infer-
ence algorithm. Furthermore, TP and FP can be used to approximate the
accuracy of the wrapper classes (when executed with JUnit). Where 𝐴, 𝑃

5. Evaluation 27

and 𝑅 are at their best when they are equal to 1. With the accuracy denoting
the correctness of the approach (i.e., how often is the true or false positive
or negative correctly inferred). The precision describes the rate of how of-
ten the inference correctly inferred a true positive, considering all (true and
false) positives. The recall, however, denotes the rate of all true positives
inferred, considering all actual true positives (since an FN is a non-inferred
true positive). On the contrary, the error rate 𝐸 is at its best when it is 0.
It can also be defined as 𝐸 = 1−𝐴.

5.3 Methodology
Realizing an evaluation for an API is a rather troublesome task, as it needs a
lot of manual effort. Especially, for huge libraries like Java (which has more
than 7689 files in which over 10500 classes were detected). To significantly
decrease this manual effort (i.e., step-by-step debugging and recording by
hand) reports were created for every file and examined afterwards (see sec-
tion 5.3.1). Additionally, the wrapper classes (created by the project) were
audited manually, by executing JUnit for all error tests (see section 5.3.2).
Once an error and, thus, a code-comment inconsistency was detected, it was
examined whether the error showed a true inconsistency (i.e., the code’s
functionality really varied from the comment). The reports and error tests
were marked accordingly (see tables 5.4 and 5.5 for an overview of the used
markers), which enabled the software to count some of the measures dis-
cussed in section 5.2.

5.3.1 Reports

The reports, which are a part of the final result of the implemented software,
give further insight into the text created from the AST parser, how the
implementation parsed this text, what conditions were computed and which
specifications were extracted. These reports were checked extensively, to see
whether they are reliable (i.e., the filtering processes are and the information
contained in the reports is correct).

For example, figure 5.1 shows the CommandHandler report. It is com-
pletely filtered, as there is no relevant information (which is, in fact, correct).
Since the reports were inspected and are correctly constructed, they are the
only required resource for the evaluation of the specification inference. This
evaluation will allow for a compensation of and reasoning about the metrics
inaccuracy.

Markers in Reports

When inspecting the reports, the possible conditions (i.e., the conditions cre-
ated before they are sanitized) attract the most attention. This is, because

5. Evaluation 28

Figure 5.1: An example of a created report. Note that this report contains
only one class, which was pre-filtered, as it contains no information about
specifications. This example was chosen for the sake of readability. Addition-
ally, the report was checked manually and found to be correct.

they allow to check whether the inference algorithm works as expected. How-
ever, the reports are missing an additional parsing step (due to readability).
This step is also considered in the evaluation, which may lead to a result that
is not obvious at first (i.e., a marker, different from the one firstly expected,
is used). See table 5.4, for all markers.

When considering false positives, for example, the parameter seedLen
of the class DSAGenParameterSpec was described as (omitted...), shall
be equal to or greater than subprimeQLen. From this description, it
is expected that the possible condition seedLen >= subprimeQLen is ex-
tracted. However, instead of one condition, two are extracted. Concretely,
seedLen == seedLen and seedLen > subprimeQLen. Obviously, both con-
ditions are false positives. However, in order to safely determine that the
first one is an FP, it is necessary to understand why this condition was
extracted. Now, it is clear that the first condition is incorrect, since it was
stated that the condition results from parsing the description of the seedLen
parameter. However, when examining the reports, other tags are available
as well. Thus, the description – from which the condition resulted – has
to be detected first. This means, depending on the comment, a lot of text
may have to be read before actually determining the correct marker for only
those two conditions.

Another example clarifies the use of a TN . For a method setModel,
the parameter dataModel and its corresponding description was found. The
description itself does not give any hint about null or ranges: the new data

5. Evaluation 29

Table 5.4: The markers used to alter the reports and error tests. Note
that two underscores (”__”) are used as both prefix and appendix for the
markers.

Marker Description

RTP Range-Related true positive.
RTN Range-Related true negative.
RFP Range-Related false positive.
RFN Range-Related false negative.

NTP Null-Related true positive.
NTN Null-Related true negative.
NFP Null-Related false positive.
NFN Null-Related false negative.

source for this table. However, the second tag (@throws) describes an
IllegalArgumentException with the description being if newModel is
null. Apparently, the Javadoc comment was altered at some point of the
code’s life cycle. But the parameter name was not updated at all places
necessary, for the comment to be adequate. Since newModel is not the same
as dataModel the algorithm infers no condition, which is, in fact, correct
and therefore a true negative.

As for a TP, the class SizeRequirements is a fitting example. Various
parameters are described, of which all have range-related information. Pick-
ing the first parameter, namely min, the description is the minimum size
>= 0. This will result in the possible condition min >= 0, as expected.

Last but not least, an example for an FN was found in Java’s class
TextLayout. The hitToPoint method describes the parameters hit and
point, as well as a NullPointerException. The exception’s description is
if hit or point is null. While the expected possible conditions are hit
== null and point == null, only the latter was inferred. Thus, with the
latter being a TP, the former is an FN .

5.3.2 Wrapper Analysis

Similar to the reports, the wrapper classes are analyzed. This allows to
validate the functionality of the project’s main purpose. Using JUnit, the
created error tests are executed, which will, in return, call the corresponding
methods of the wrapper classes. If an error is thrown then the user will get
notified accordingly. The corresponding method is then examined (code and
comment) in order to determine whether the error is a true or false code-

5. Evaluation 30

Table 5.5: The markers used to alter the error tests. Note that two under-
scores (”__”) are used as both prefix and appendix for the markers.

Marker Description

TP A true inconsistency (i.e., an error was thrown and
the Javadoc comment wrongly describes the code’s
functionality).

FP A false inconsistency (i.e., an error was thrown but
the Javaodc correctly describes the code’s functional-
ity).

DC Dismissed due to a constructor that was required for
the instantiation, but did not hold any specifications
in the Javadoc comment, thus, always denoting an
FP.

DS Dismissed due to an unsupported part of the com-
ment (i.e., an exception was thrown, but the Javadoc
comment has an unsupported descriptive text, which
couldn’t be parsed).

PB Possible bug found; not related to the wrappers. For
example, if the equals method was not properly im-
plemented.

comment inconsistency (TP and FP, respectively).
Note that syntactical errors within the wrapper classes are always true

positives. These errors should be fixed (by either updating the comment or
the code) and then re-analyzed. An example for such a case is shown in
program 5.1.

Markers in Wrappers

While TP and FP are the main measures, some additional markers were in-
troduced during the evaluation (see table 5.5), as other errors were detected
as well. All of these errors are, in the end, false positives. However, since
they cannot be avoided with the chosen approach (specifically, due to using
Randoop), they are counted separately.

For example, a false positive denoted as DS (as defined in table 5.5) was
found for the ArrayListIterator class in the Apache Commons Collections
library. Program 5.2 shows the code within the corresponding wrapper class.
The Javadoc comment of the classes constructor defines two exceptions, of
which the IllegalArgumentException – with the descriptive text being if
array is not an array – is the cause of the false positive. Now, Randoop

5. Evaluation 31

Program 5.1: A syntactical error in the wrapper classes, due to an invalid
comment. The exception NAMESPACE_ERR does not exist.

1 /**
2 * Omitted...
3 *
4 * @throws NAMESPACE_ERR
5 * : Raised if the qualifiedName has a prefix that is "xml" and
6 * the namespaceURI is neither null nor an empty string nor
7 * "http://www.w3.org/XML/1998/namespace", or if the
8 * qualifiedName has a prefix that is "xmlns" but the
9 * namespaceURI is neither null nor an empty string, or if if

10 * the qualifiedName has a prefix different from "xml" and
11 * "xmlns" and the namespaceURI is null or an empty string.
12 * @since WD-DOM-Level-2-19990923
13 */
14 public void setAttributeNS(String namespaceURI, String qualifiedName,

String value) throws Throwable {
15 try {
16 this.delegate0.setAttributeNS(namespaceURI, qualifiedName, value);
17 assert !((namespaceURI == null)) : "Expected NAMESPACE_ERR, but none

was thrown.";
18 }catch (NAMESPACE_ERR specific) {
19 if ((namespaceURI == null)) {
20 throw specific;
21 }
22 assert false : "No exception expected, but NAMESPACE_ERR was thrown.

";
23 }catch (Exception any) {
24 assert !((namespaceURI == null)) : "Expected NAMESPACE_ERR, but " +

any.getClass().getCanonicalName() + " was thrown.";
25 assert false : "No exception expected, but " + any.getClass().

getCanonicalName() + " was thrown.";
26 }
27 }

created an error test, passing a non-array value as parameter, causing the
test to fail with an IllegalArgumentException. Thus, the software detects
a code-comment inconsistency, even though the comment is correct. There-
fore, an FP was detected, however, since the text cannot be parsed (as this
is not supported), the marker used was DS, rather than FP.

Every time the marker DC is used, a false positive was caused by a con-
structor without any relevant Javadoc comment. These constructors are not
filtered, as they are needed for instantiation of the class under investigation.

When using PB to mark an error test, the issue does not lie within
the wrapper classes, but rather the original files. Thus, a possible bug was
detected. The emphasis is on possible, because it was not feasible to debug
the analyzed libraries. It is possible that this behavior is desired, however, a

5. Evaluation 32

Program 5.2: An example of a false positive, marked as DS (due to the
IllegalArgumentException).

1 /**
2 * Constructs an ArrayListIterator that will iterate over the values in
3 * the specified array.
4 *
5 * @param array
6 * the array to iterate over
7 * @throws IllegalArgumentException
8 * if <code>array</code> is not an array.
9 * @throws NullPointerException

10 * if <code>array</code> is <code>null</code>
11 */
12 public ArrayListIteratorWrapper(Object array) throws Throwable {
13 try {
14 this.delegate0 = new ArrayListIterator(array);
15 assert !((array == null)) : "Expected NullPointerException, but none

was thrown.";
16 }catch (NullPointerException specific) {
17 if ((array == null)) {
18 throw specific;
19 }
20 assert false : "No exception expected, but NullPointerException was

thrown.";
21 }catch (Exception any) {
22 assert !((array == null)) : "Expected NullPointerException, but " +

any.getClass().getCanonicalName() + " was thrown.";
23 assert false : "No exception expected, but " + any.getClass().

getCanonicalName() + " was thrown.";
24 }
25 }

PB was always detected in correlation with the equals method of the classes.
This means that it is highly likely that all PBs are bugs. Randoop will
directly comment the issue for the according line of code. Such a comment
may be defined as // This assertion (symmetry of equals) fails.

5.4 Results
This chapter deals with the results of the evaluation. It shows concrete statis-
tics and metrics for the corresponding libraries. Furthermore, the results are
interpreted immediately afterwards.

5.4.1 Apache Commons Collections

The Apache Commons Collections library, version 3.2.1, was analyzed, in
order to compare the results to the original approach (see chapter 3).

5. Evaluation 33

Table 5.6: The results of the analysis for the Apache Commons Collections
library – version 3.2.1.

Identifier Count Identifier Count

𝑓𝑎𝑙𝑙 273 𝑐𝑛𝑢 276
𝑐𝑎𝑙𝑙 412 𝑤𝑎𝑙𝑙 131
𝑐𝑙 0 𝑗𝑎𝑙𝑙 2487

𝑐𝑎𝑛 0 𝑗𝑢 2059
𝑐𝑎 407 𝑗𝑛𝑢 428
𝑐𝑢 131 – –

𝑡𝑎𝑙𝑙 5648 𝑡𝑝 2348
𝑡𝑡 1135 𝑡𝑒 18
𝑡𝑑 3 𝑡𝑓 0
𝑡𝑢 2144 – –

𝑠𝑛𝑢 1852 𝑠𝑛𝑎 439
𝑠𝑛𝑛 123 𝑠𝑛𝑠 339
𝑠𝑟𝑢 1852 𝑠𝑟𝑎 0
𝑠𝑟𝑛 1 𝑠𝑟𝑠 3

𝑠𝑢 3704 𝑠𝑎 439
𝑠𝑛 124 𝑠𝑠 342

𝑠𝑛𝑢𝑙𝑙 2753 𝑠𝑟𝑎𝑛𝑔𝑒 1856
𝑠𝑎𝑙𝑙 4609 – –

Overview

The concrete values for the conducted metrics are shown in table 5.6. Refer
to section 5.5, to see the results of the comparison. Furthermore, the concrete
statistics (as defined in section 5.2) can be found in table 5.7. Additionally,
the result of the analysis of the wrapper classes is shown in table 5.8. Finally,
an example of detected code-comment inconsistencies for both a true and a
false positive error test can be found in programs 5.3 and 5.4, respectively.

Interpretation

The results of the analysis for the Apache Commons Collections (see table
5.6) are rather unsatisfying. Those oddly low results lead to an additional
inspection of the inference algorithm, which then shed light on the main

5. Evaluation 34

Table 5.7: The results of the analysis of the inference algorithm – Apache
Commons Collections library (version 3.2.1).

Identifier Value Identifier Value

NTP 859 NFN 85
NFP 62 NTN 1939

𝐴 95% 𝐸 4.99%
𝑃 93.26% 𝑅 90.99%

RTP 55 RFN 8
RFP 5 RTN 2877

𝐴 99.55% 𝐸 0.44%
𝑃 91.66% 𝑅 87.30%

Table 5.8: The results of the analysis of the wrapper classes – Apache Com-
mons Collections library (version 3.2.1). Note that 𝑃𝑎𝑙𝑙 uses TP + DC +
PB + FP as divisor, rather than TP + FP.

Identifier Value Identifier Value

TP 13 FP 10
DC 15 DS 40
PB 29 – –
𝑃 56.52% 𝑃𝑎𝑙𝑙 12.14%

issue. While the results of the inference are more than satisfying (reaching
95% accuracy for null-related and 99.55% accuracy for range-related specifi-
cations – see table 5.7), the counts for the range-related metrics 𝑠𝑟𝑎, 𝑠𝑟𝑛 and
𝑠𝑟𝑠 are way too low. Especially, when considering the inference algorithm’s
accuracy. Closely inspecting the reports (see section 5.3.1), it quickly became
clear that the implemented sanitation for conditions causes the numbers to
drop to (almost) zero. This is, because possible conditions (such as index
< 0) are inferred correctly, but when trying to sanitize the conditions (in
order to filter other, syntactically incorrect conditions), the legit condition
is falsely removed. This will cause the software to discard the specification,
therefore, it is not counted. Furthermore, the condition is also not available
within the wrapper, causing a lot of false positives, or (if all possible con-
ditions get removed) a method not being added to its wrapper class (which
corresponds to a false negative). Fixing this issue will result in a higher
count for the metrics 𝑠𝑟𝑎, 𝑠𝑟𝑛 and 𝑠𝑟𝑠. It was also found that this happens

5. Evaluation 35

Program 5.3: Example of a true code-comment inconsistency – correctly
detected. Randoop used null as value for the predicate parameter, which
is not permitted (according to the comment), but no exception was thrown.

1 /**
2 * Constructor that performs no validation. Use <code>getInstance</code>
3 * if you want that.
4 *
5 * @param predicate
6 * predicate to switch on, not null
7 * @param trueClosure
8 * closure used if true, not null
9 * @param falseClosure

10 * closure used if false, not null
11 */
12 public IfClosureWrapper(Predicate predicate, Closure trueClosure,

Closure falseClosure) throws Throwable {
13 // Omitted...
14 }

mostly for range-related conditions, which is reflected in the results of the
evaluation (again, refer to table 5.6) as the corresponding null-related val-
ues 𝑠𝑛𝑎, 𝑠𝑛𝑛 and 𝑠𝑛𝑠 are significantly higher. The range-related accuracy (of
the inference algorithm), however, is surprisingly high – even though this
was hoped for. During the evaluation of the reports, it was found that the
inference is highly accurate. However, it is noteworthy that the supported
phrases are quite few, compared to the variety of phrases available. Thus,
every time a syntactically wrong condition was inferred from unsupported
phrases, the condition was considered a true negative.

Since the main focus of this thesis is the detection of code-comment
inconsistencies, the wrapper classes were also inspected (see table 5.8). Un-
fortunately, the values are unsatisfying, due to the conditions being filtered
(as mentioned before). Out of 107 created error tests, only 13 true pos-
itives were detected. This leads to an overall precision of approximately
12%. While DC, DS and PB are considered to be false positives, it really
depends on the definition. For example, a PB is a possible bug – found by
Randoop – due to an error in the implementation of the original source file.
The end user of the software will get notified about this error. However,
considering only supported and wrapper-related error tests will result in a
much higher accuracy of approximately 56% (due to DC, DS and PB being
ignored). Obviously, by doing so, it would be better to inspect more than
the remaining 23 error tests.

5. Evaluation 36

Program 5.4: Example of a true code-comment inconsistency – falsely de-
tected. The range-check was correctly inferred by the algorithm, but the
conditions got filtered. Randoop used an index equal to the size, but the
comment denotes that this should be okay (note the missing equals sign
after >).

1 /**
2 * Set the Iterator at the given index
3 *
4 * @param index
5 * index of the Iterator to replace
6 * @param iterator
7 * Iterator to place at the given index
8 * @throws IndexOutOfBoundsException
9 * if index < 0 or index > size()

10 * @throws IllegalStateException
11 * if I've already started iterating
12 * @throws NullPointerException
13 * if the iterator is null
14 */
15 public void setIterator(int index, Iterator iterator) throws Throwable {
16 // Omitted...
17 }

5.4.2 Java

Java itself (version 1.8.0_121) was analyzed, to show the effectiveness of this
Master’s thesis’ project in a large-scaled API. Furthermore, for the sake of
comparing this work with the approach by [15], a stripped-off Java version
was used (i.e., only the packages stated in [15].

Overview

The conducted metrics are shown in table 5.9. The metrics for the analysis of
the smaller version are available in table 5.10. As it is not feasible to manually
analyze a library as huge as Java [15], the statistics were conducted for the
smaller version only – which can be found in table 5.11. See section 5.2 for
an explanation of the statistics.

Interpretation

The rather disappointing results in section 5.4.1 (regarding the wrapper
classes) resulted in the decision not to analyze the wrapper classes for Java,
for it is not worth the effort (since respectively low results are expected any-
way). Instead, the complete Java library was analyzed, as well as a stripped-
off version. Where the results are surprisingly high (see tables 5.9 and 5.10),
compared to Apache Commons Collections. Even though range-related con-

5. Evaluation 37

Table 5.9: The results of the analysis for the Java library – version
1.8.0_121.

Identifier Count Identifier Count

𝑓𝑎𝑙𝑙 7689 𝑐𝑛𝑢 9234
𝑐𝑎𝑙𝑙 10578 𝑤𝑎𝑙𝑙 850
𝑐𝑙 117 𝑗𝑎𝑙𝑙 59544

𝑐𝑎𝑛 43 𝑗𝑢 43974
𝑐𝑎 10084 𝑗𝑛𝑢 15570
𝑐𝑢 850 – –

𝑡𝑎𝑙𝑙 167319 𝑡𝑝 48946
𝑡𝑡 13095 𝑡𝑒 9408
𝑡𝑑 433 𝑡𝑓 1
𝑡𝑢 95437 – –

𝑠𝑛𝑢 29033 𝑠𝑛𝑎 372
𝑠𝑛𝑛 1595 𝑠𝑛𝑠 1127
𝑠𝑟𝑢 29033 𝑠𝑟𝑎 0
𝑠𝑟𝑛 60 𝑠𝑟𝑠 126

𝑠𝑢 58066 𝑠𝑎 372
𝑠𝑛 1655 𝑠𝑠 1253

𝑠𝑛𝑢𝑙𝑙 32127 𝑠𝑟𝑎𝑛𝑔𝑒 29219
𝑠𝑎𝑙𝑙 61346 – –

ditions are falsely removed, some of them pass the sanitation step. Usually,
these conditions compare two parameters or a parameter with a method call.
For example, the condition index >= size() may be inferred from a Javadoc
comment. In this case, the sanitation will consider the condition as syntac-
tically correct (which it is, indeed), and, thus, not discard the condition.
Of course, there are some more cases like this, which explains the higher
counts for range-related values (compare 𝑠𝑟𝑎, 𝑠𝑟𝑛 and 𝑠𝑟𝑠 in table 5.6 with
the values in the tables 5.9 and 5.10). However, while the counts are higher
than for the Apache Commons Collections, they are still extremely low. In-
terestingly, the range-related accuracy and precision are only a little lower
than they are for the Apache Commons Collections library. Even better, the
null-related accuracy and precision actually increased. Since these libraries
are completely different, the high values for accuracy and precision indicate
that the inference algorithm works rather well for differently sized libraries.

5. Evaluation 38

Table 5.10: The results of the analysis for the stripped Java library – version
1.8.0_121. These results are used for the comparison with the results by [15].

Identifier Count Identifier Count

𝑓𝑎𝑙𝑙 2514 𝑐𝑛𝑢 3658
𝑐𝑎𝑙𝑙 4430 𝑤𝑎𝑙𝑙 465
𝑐𝑙 106 𝑗𝑎𝑙𝑙 29613

𝑐𝑎𝑛 36 𝑗𝑢 22938
𝑐𝑎 4123 𝑗𝑛𝑢 6675
𝑐𝑢 465 – –

𝑡𝑎𝑙𝑙 99243 𝑡𝑝 26403
𝑡𝑡 6788 𝑡𝑒 4298
𝑡𝑑 300 𝑡𝑓 0
𝑡𝑢 61454 – –

𝑠𝑛𝑢 15749 𝑠𝑛𝑎 102
𝑠𝑛𝑛 849 𝑠𝑛𝑠 754
𝑠𝑟𝑢 15749 𝑠𝑟𝑎 0
𝑠𝑟𝑛 48 𝑠𝑟𝑠 83

𝑠𝑢 31498 𝑠𝑎 102
𝑠𝑛 897 𝑠𝑠 837

𝑠𝑛𝑢𝑙𝑙 17454 𝑠𝑟𝑎𝑛𝑔𝑒 15880
𝑠𝑎𝑙𝑙 33334 – –

Most likely, similar values can be expected for other libraries with a similarly
well-documented source code.

Note that the values in table 5.11 are conducted for the stripped-off
version only, as it is not feasible to completely, manually evaluate a library
with over 10500 classes [15].

5.5 Comparison
In order to comprehend the impact of the elucidated metrics and statistics,
it is necessary to compare them to previous work [13, 15] – where applicable.

5. Evaluation 39

Table 5.11: The results of the analysis of the inference algorithm – stripped-
off Java library (JDK 1.8.0_121). Note that the sum of 𝑇𝑃 +𝐹𝑃 +𝑇𝑁 +𝐹𝑁
for null-related inferences differs by a value of 2, compared to range-related
specifications. This indicates an error during the analysis. Since the error is
so little, it is considered negligible.

Identifier Value Identifier Value

NTP 1624 NFN 176
NFP 106 NTN 18306

𝐴 98.6% 𝐸 1.39%
𝑃 93.87% 𝑅 90.22%

RTP 661 RFN 163
RFP 130 RTN 19260

𝐴 98.55% 𝐸 1.44%
𝑃 83.56% 𝑅 80.21%

5.5.1 Original Approach

The results of the evaluation of the original approach by Tan et al. are shown
in [13]. However, for the sake of the comparison, the most important values
are shown in table 5.12 – these values are mapped to the metrics of this
thesis (i.e., their name may have changed). Interestingly, the metrics vary
completely (compare table 5.6 with table 5.12). Figures 5.2 and 5.3 show the
differences more clearly, as they directly show the values of interest compared
to each other as chart. According to these charts, the original approach
finds a lot more @param tags, but also significantly less of both @throws
tags and any specification type (see 𝑠𝑛𝑢, 𝑠𝑛𝑛, 𝑠𝑛𝑎 and 𝑠𝑛𝑠 in figure 5.3). As
for the accuracy, the original approach states 99% (as seen in table 5.12),
which correspond to the inference algorithm, rather than code-comment
inconsistencies (see [13]). Knowing this, the value to compare this accuracy
with, is the one found in table 5.7 (upper left section), denoted as 𝐴 – which
is 95% and, thus, less.

Interpretation

Considering the charts shown in figures 5.2 and 5.3, the conducted metrics
seem quite off. Not only is the @param tags count (𝑡𝑝) of the original ap-
proach significantly higher, but also the @throws tag count (𝑡𝑡) considerably
lower than the values of this thesis. Even more confusing is that the the-
sis approach finds more NullNormal specifications (𝑠𝑛𝑛). According to the
difference in the count for 𝑡𝑝, this should be vice-versa. Furthermore, the

5. Evaluation 40

Figure 5.2: The comparison of this work’s project with the original approach
(see [13]). The metrics refer to the counts of all @param (𝑡𝑝) and @throws
(𝑡𝑒) tags.

Figure 5.3: The comparison of this work’s project with the original approach
(see [13]). The metrics refer to the null-related specifications NullUnknown
(𝑠𝑛𝑢), NullNormal (𝑠𝑛𝑛), NullAny (𝑠𝑛𝑎) and NullSpecific (𝑠𝑛𝑠).

5. Evaluation 41

Table 5.12: The results of the analysis conducted by [13]. Note that these
values are mapped to the metrics of this thesis (i.e., their name may have
changed).

Identifier Count Identifier Count

𝑡𝑝 2996 𝑡𝑡 862
𝑠𝑛𝑢 375 𝑠𝑛𝑎 54
𝑠𝑛𝑛 83 𝑠𝑛𝑠 190
𝐴 99% – –

extreme difference for NullUknown specifications (𝑠𝑛𝑢) is beyond odd.
In order to properly investigate the differences, the @tComment project

was set up and executed. The resulting counts differed from the ones in the
work by Tan et al., which was rather unexpected. Since the values shown in
[13] were not reproducible, an approximation of the count was conducted,
using the Linux command grep in combination with a word count wc. The
count displayed by the terminal was 2349, which is only 1 off (compared
to the value of this work). This indicates that the values of the original
approach are faulty. Knowing this, an utterly high accuracy of 99% for the
original approach seems questionable. While the accuracy of this thesis is
95% – and, thus, less – it is not feasible to directly compare the values, as
long as they cannot be reproduced. As last resort, one of the authors was
contacted, namely Shin Hwei Tan. While discussing the issue, she came to
the following conclusion:

It could be that some files are not loaded so that their comments
are not parsed.

This means that a further examination of the @tComment is necessary, in
order to determine whether Tan is correct. However, this is not feasible
within the scope of this thesis.

5.5.2 Directive Defects

Similar to the comparison shown in section 5.5.1, the results of the evaluation
conducted by [15] are mapped to fit this work’s naming conventions.

Overview

The results can be found in table 5.13. Figure 5.4 shows the tag-related
comparison. While the approach by [15] also varies, regarding the detected
tags, the difference is not as significant as in the comparison with the orig-
inal approach (see section 5.5.1). When comparing the statistics, however,

5. Evaluation 42

Table 5.13: The results of the analysis conducted by [15]. Note that these
values are mapped to the metrics of this thesis (i.e., their names may have
changed). Additionally, the results were summed up, in order to compare the
overall values.

Identifier Value Identifier Value

𝑡𝑝 26692 𝑇𝑃 1629
𝑡𝑒 4303 𝐹𝑃 758
𝑡𝑡 6810 𝐹𝑁 276
𝑃 69.71% 𝑅 82.19%

Figure 5.4: The comparison of the Master’s thesis’ project with the directive
defects approach (see [15]). The contrast between the detected tags is shown.

the difference clearly rises (see figure 5.5). Not only does the approach by
[15] find less true positives, but also more false positives. False negatives,
however, are slightly less than in this Master’s thesis’ approach. Oddly, the
accuracy is never calculated in [15], only the precision (69.71%) and the re-
call (82.19%) are calculated. The overall precision and recall values for this
work are 88.71% and 85.21%, respectively. Comparing these values with the
ones shown in table 5.13 emphasizes that the implemented approach achieves
slightly higher values than the approach by [15].

5. Evaluation 43

Figure 5.5: The comparison of this work’s project with the directive defects
approach (see [15]). The contrast between TP, FP and FN is shown.

Interpretation

Since the approach by [15] is the newest one, analyzing a stripped-off version
of Java, it is quite interesting to see differences as shown in figures 5.4 and
5.5). Figure 5.4 seems to show almost no difference at all. While the differ-
ence is not as huge as for the original approach, the scale (which resulted
from the high count of 𝑡𝑝) dissolves the differences for 𝑡𝑡 and 𝑡𝑒. They are
different, however. This difference results from the fact that Zhou et al. uses
additional 10% of the Java library for the evaluation, which is not the case
to this Master’s thesis evaluation. Curiously, even without these additional
10%, the inference seems to be considerably better, as shown in figure 5.5.
This was unexpected, due to Zhou et al. using rather advanced techniques,
compared to this thesis. However, only little support for different phrases in
the approach implemented for this work is available. It is highly likely that
the high false positives conducted by [15] result from a higher support of
different phrases. Thus, supporting more, different phrases than the current
approach does, is desirable. Finally, the precision and recall of this thesis
are higher than the ones of Zhou et al., which is expected (considering the
differences shown in figure 5.5).

Chapter 6

Conclusion

During the project’s implementation (see chapter 4) it quickly became clear
that analyzing Javadoc comments is a highly complex task. While this was
expected – due to statements in other work (see [13]) – the real extent of
the issue reaches way beyond the expected complexity.

Probably, one of the biggest issues during the analysis and its imple-
mentation was ambiguity, as it is simply not feasible to cover all possible
phrases. However, working with third party libraries can also have its disad-
vantages (e.g., bad documentation makes it hard to properly use these tools
– ironically, this was also mentioned in section 1.1).

Finally, a project of such a huge scale is rather hard to develop single-
handedly. While it was clear that the project is of greater extent, the overall
magnitude was rather unexpected.

6.1 Summary
This thesis discusses the examination of Javadoc comments and any occur-
ring tags, in order to detect code-comment inconsistencies. This detection
shall help to improve documentation, which, ultimately, may lead to less
bugs in software code.

For the examination to take place, a project was implemented, as dis-
cussed in chapter 4. After the implementation was finished, a further ex-
tension was implemented to create reports and specify metrics. Where the
reports (see section 5.3.1) give detailed insight into (almost) every step of
the implementation. This helped finding bugs and reason about why some
specifications were or were not extracted. Which allowed to justify some
unexpected results during the evaluation (see chapter 5). The metrics, on
the other hand, are supposed to be the absolute values for the evaluation.
However, as there are still bugs in the implementation, they are not (yet)
reliable.

44

6. Conclusion 45

6.2 Discussion
When it comes to Javadoc comment analysis, various approaches have al-
ready been introduced (see chapter 3). The most relevant approaches are
described in section 3.3, 3.4 and 3.5. The approach by [13] (which is the
original approach) investigates null-related values. Due to the remarkable
results, the relevance of analyzing Javadoc comments is emphasized. Not
only were many code-comment inconsistencies found, but also actual bugs
in the analyzed libraries [13]. When re-implementing this approach, however,
the results varied significantly. While the evaluation showed a similarly high
accuracy for the project of this thesis, the differences in the conducted met-
rics indicate that such an analysis is highly complex and error-prone.

Comparatively, the work by [14] leverages more advanced techniques,
such as Natural Language Processing (NLP) and Automata Inference. Fur-
thermore, the tool analyzes the online documentation of the libraries under
investigation. While using NLP seems to be an advantage (refer to appendix
A), analyzing the online documentation might be a huge disadvantage. This
is because, besides the class/interface hierarchies and method descriptions
(see section 3.4), almost no other information is available. This means that
an extension of the approach is not possible – in a sense that techniques,
such as static code analysis, cannot be leveraged (since no information about
the code is available).

On the contrary to [13, 14], the approach by [15] is rather advanced.
While supporting range- and null-related analysis, Zhou et al. also check for
type restriction (see section 3.5). Furthermore, the source code is statically
analyzed and Natural Language Processing is in use, as well. This allows for
an aided parsing of the Javadoc comment (through NLP) and to addition-
ally access further information. As this approach also uses heuristics for its
inference algorithm, it heavily depends on the amount of the manually de-
fined heuristics. The higher the amount, the better will the approach detect
specifications.

When comparing the advantages and disadvantages of the approaches
with the ones of this project’s approach, it quickly becomes clear that a
combination of some of the techniques of the different approaches should
be used. Ultimately, the AST parser in combination with Natural Language
Processing can help inferring specifications. Furthermore, removing the Ran-
doop, Rythm and JUnit dependencies (by leveraging other techniques, such
as the one used by iContract [8]) might further improve the software – due
to fewer dependencies.

6. Conclusion 46

6.3 Future Work
With the current state of the software, various enhancements are possible
(besides some bug-fixes), which will be stated in this section.

6.3.1 Considering Additional Tags

Besides the currently parsed @param and @throws tags there are many more,
some of which might contain relevant information.

For example, the @return tag could be parsed and the extracted infor-
mation compared to the actual return value, in order to find code-comment
inconsistencies (i.e., extract postconditions – see section 2.8.2). Furthermore,
it was found that often times the specifications for parameters are defined
in the @return tag rather than the @param or @throws tag.

6.3.2 Natural Language Processing

As other work suggests already (see chapter 3), NLP can be leveraged for
a project like the one of this Master’s thesis. Therefore, the parsing of the
Javaodoc comments could be altered to use NLP, as well. Further informa-
tion can be found in appendix A.

6.3.3 Using a Different Approach

Chapter 3 states many different approaches, of which the approach described
in section 3.6.4 is quite promising. Leveraging the tool iContract and its abil-
ity to pre-compile code based on custom Javadoc tags, may help simplifying
the current approach.

For example, instead of creating wrapper classes, the extracted specifi-
cations could be converted into the format used by [8]. After this conversion
the result could be added to the corresponding Javadoc comment. After
the Javadoc comment was altered, iContract could be executed in order to
find contract violations (see section 2.8). By doing so, Randoop becomes
obsolete, which also means that no JUnit tests will be generated anymore.
Additionally, this will significantly decrease the amount of files created and,
therefore, the required disc space.

Appendix A

Natural Language Processing
Approach

As other tools already leveraged Natural Language Processing (NLP), and
working with natural language clearly suggests, using NLP techniques can
be of advantage. Due to constraints (i.e., deadlines, team size, etc.), however,
NLP is not (yet) in use.

In any case, NLP techniques were tested in various approaches (see [15],
for example) and seem to be the way to go. However, while testing NLP,
it quickly became clear that it is not to be used as only-technique. Instead,
other – more advanced – techniques, such as Machine Learning should be
used in combination with NLP (as shown by some state-of-the-art work).
Therefore, this section focuses on explaining some available techniques in
the field of NLP. Especially, the technique called dependency graph seems to
be promising (see section A.1.5).

A.1 Techniques
This section briefly discusses common techniques in the field of NLP, in
order to give a basic overview of the possibilities, which may be leveraged
for an extension of the project.

A.1.1 Tokenization

Tokenization is the task of creating tokens out of some character sequence,
as the StanfordNLP Group describes [21]:

Given a character sequence and a defined document unit, tok-
enization is the task of chopping it up into pieces, called tokens,
perhaps at the same time throwing away certain characters, such
as punctuation.

47

A. Natural Language Processing Approach 48

Table A.1: The resulting tokens after tokenization took place. Note that
not all are shown – for the sake of readability. Read from left to right, top
to bottom.

Tokens

If any of the
following is true :
srcBegin is negative .

For example, consider the IndexOutOfBoundsException in the comment
in program 4.1. Using the StanfordNLP library, the tokenization yields the
tokens shown in table A.1. Obviously, tokenization, as is, does not improve
anything, as this can be achieved with a simple split as well. Therefore, it is
only the basis for further techniques.

A.1.2 Stemming

In order to stem words, various algorithms are available (such as Porter or
Lovins stemming algorithm). Depending on the chosen algorithm the re-
sults may differ. However, stemming could help improving the resolution
of code references in comments. For example, the comment if the index
is greater than this list’s size has to be converted into index >
this.size(), if the word list’s refers to the class. If not, it might refer
to a parameter within the method declaration. In order to find the refer-
ence, stemming is necessary. This means, after the tokens (see section A.1.1)
were computed, the word list’s is stemmed into list. Using this informa-
tion to check for the same stem word in the classes name, a reference can
be detected. Thus, if a reference was found this.size() can be used (of
course, the brackets should only be appended if there is a method available).
However, if no reference was found then the parameters within the method
declaration could be checked. If there is still no reference found, there might
be a code-comment inconsistency.

A.1.3 Part-Of-Speech Tagging

Part-Of-Speech Tagging (POS-Tagging) is a technique that allows to identify
the type of a word. For example, the words or, and and others are called
coordinating conjunction (CC). Detecting these CC’s is essential in order
to resolve logical combinations. Using POS-Tagging to tag any word, might
yield CC’s within a sentence (see StackOverflow1 for a complete list of the
Peen Tree Bank Project). These tags could be used (instead of the words

1https://stackoverflow.com/a/1833718/6656268

https://stackoverflow.com/a/1833718/6656268

A. Natural Language Processing Approach 49

Table A.2: The POS-Tagging result, using the tokens from subsection A.1.1.
Note only the POS-Tags for table A.1 are shown – for the sake of readability.

Token POS-Tag

If IN
any DT
of IN

the DT
following VBG

is VBZ
true JJ

: :
srcBegin NN

is VBZ
negative JJ

. .

themselves) to allow for higher abstraction, which is, thus, desirable. See
table A.2 for an example. With this information, certain tokens can easily
be searched for, however, sometimes it is necessary to have information about
the dependency between the words (see subsection A.1.5).

A.1.4 Parsing

Parsing is the technique used to create parse trees (PT). For every sentence,
a PT can be created, in order to provide the structure of a sentence [20]:

A natural language parser is a program that works out the
grammatical structure of sentences, for instance, which groups
of words go together (as ”phrases”) and which words are the
subject or object of a verb.

Using the same sentence as in table A.1, the result is as shown in figure
A.1 (created with a tool provided by VISL2). Not only does the created PT
contain the tags created via POS-Tagging (see subsection A.1.3), but also
shows the constitution for each sentence. While this is great, it is also an
example of an NLP technique that is not suited to aid the Javadoc analysis.

2http://visl.sdu.dk/visl/en/parsing/automatic/trees.php

http://visl.sdu.dk/visl/en/parsing/automatic/trees.php

A. Natural Language Processing Approach 50

Figure A.1: The parse tree of a part of the sentence used as example in
section A.1.1. The parse tree was create with a tool provided by VISL.

Figure A.2: The dependency graph for the sentence If map is null or
index is negative.

A.1.5 Dependency Graph

A dependency graph is quite similar to a parse tree. The main difference is
that information about the dependency between the words of a sentence is
available, rather than information about how a sentence is constituted.

An example is shown in figure A.2. The dependencies for index is
negative and map is null can be detected. Ultimately, these are also the
conditions of interest. A corresponding algorithm for detecting these condi-
tions, allows for a rather simple conversion to the corresponding code repre-
sentations (i.e., map == null and index < 0, respectively). Obviously, this
algorithm also needs to be implemented, as such that it is able to parse
arbitrary sentences.

A. Natural Language Processing Approach 51

Program A.1: Example code, using the StanfordNLP API, to create a parse
tree.

1 import edu.stanford.nlp.simple.Document;
2 import edu.stanford.nlp.simple.Sentence;
3
4 public class Main {
5 public static void main(String[] args) {
6 String comment = "If any of the following is true: srcBegin is

negative. ";
7 comment += "srcBegin is greater than srcEnd srcEnd is greater than

the length ";
8 comment += "of this string dstBegin is negative dstBegin+(srcEnd-

srcBegin) is larger than dst.length";
9

10 // Create a document. No computation is done yet.
11 Document document = new Document(comment);
12 for (Sentence sentence: document.sentences()) {
13 // When we ask for the parse, it will load and run the parser
14 System.out.println(sentence.parse());
15 }
16 }
17 }

A.2 Code Example
The StanfordNLP API is a comprehensive library. Thus, the code required
to create a PT (see subsection A.1.4) is rather simple, as shown in pro-
gram A.1).

Appendix B

Wrapper Generation

In order to automatically create wrappers (see section 2.9), Rythm is used
(refer to section 4.1.4). This allows for dynamic creation of Java code (even
though Rythm is usually used to create HTML templates). However, to
fully comprehend how such a wrapper is created, this chapter will explain
the developed algorithm and give a concrete example (starting with the
comment and ending with the resulting code).

B.1 Algorithm
The algorithm for creating a wrapper is shown as pseudo code. For better
comprehension, the pseudo code is split up in three different parts:

• algorithm B.1 for generating code inside the try-block.
• algorithm B.2 for generating the catch-block for specific exceptions

(i.e., the exceptions are explicitly stated).
• algorithm B.3 for generating code inside the general catch-block (i.e.,

every exception not declared in a specific catch-block is caught here).
Algorithm B.1 is rather simple, as it only is supposed to print the code
required for the invocation of the method being analyzed, as well as the
assertions for every expected exception. Note that the methods, starting
with remove, are supposed to filter certain, negligible specifications. If the
specification is unknown then no assertion is possible. If the specification is
normal then the method should be executed without errors (regardless of
the value of the parameter), therefore, no assertion is required.

Compared to algorithm B.1, algorithm B.2 is way more complex. Only
extracted specifications that throw a specific exception are relevant. For ev-
ery different exception, a separate catch-block has to be created. Within
the catch-block, the correct checks and assertions have to be printed. In
order to do so, all conditions for the same exception are logically merged
(or-wise). While this will avoid false positives, the end-user is left to some

52

B. Wrapper Generation 53

manual effort, as it might not be immediately clear by which parameter
the exception was caused. Similarly, all checks for the exception of the type
any (i.e., NullAny and RangeAny – see chapter 5) are printed (afterwards).
Next, the remaining specifications of type specific (i.e., NullSpecific and
RangeSpecific – see chapter 5) have to be printed. This ensures incon-
sistency detection, in case of a specific exception being document but not
actually thrown. Last but not least, a failing assertion (i.e., always throw-
ing an error) is printed, in order to mark an inconsistency. This is necessary,
because at this point no exception was expected at all.

Finally, algorithm B.3 handles all other types of exceptions that are not
explicitly declared. First of all, every specific exception has to be asserted
(as discussed before). This check helps to detect bugs within algorithm B.2
(i.e., whether a specific exception did not create a proper catch-block), as
well as inconsistencies. Next, the specifications, expecting any exception,
have to be asserted. These specifications are merged again, to create one
single assertion. If this assertion passes then no exception was expected at
all. Therefore, a failing assertion has to be printed.

Algorithm B.1: Pseudo code for the content of the try-block.

1: CreateTryBlockContent(method)
2: specifications ← getSpecifications(method)
3: specifications ← removeUnknownSpecifications(specifications)
4: specifications ← removeNormalSpecifications(specifications)

5: printInvocation(method)

6: for each spec ∈ specifications do
7: condition ← getCondition(spec)
8: 𝑝𝑟𝑖𝑛𝑡𝐴𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
9: end for

10: end

B.2 Example
Imagine a method with four parameters, namely index, map, coll, obj,
as seen in program B.1. When analyzing its Javadoc comment, specifica-
tions and conditions will be extracted, as shown in table B.1. Based on the
algorithms explained in section B.1, the wrapper as seen in program B.2
will be created. While this example might not be applicable in a real pro-
gram, it clarifies the case when different specifications were inferred during
the analysis. Every other case is also handled, as the only difference is less
code. This is, because – depending on the specifications – the wrapper is

B. Wrapper Generation 54

Algorithm B.2: Pseudo code for the catch-blocks with specific exceptions.

1: CreateSpecificCatchBlocks(method)
2: specifications ← getSpecifications(method)
3: specifics ← getSpecifics(specifications)
4: anys ← getAnys(specifications)

5: for each specific ∈ specifics do
6: exception ← getException(specific)

7: if not alreadyCreated(exception) then
8: printCatchBlockOpening(exception)

9: printCurrentSpecificCheck(specific)
10: printAnyChecks(anys)
11: printRemainingSpecificAssertions(specifics)
12: printFailingAssertion()

13: printCatchBlockClosing()
14: end if
15: end for
16: end

Algorithm B.3: Pseudo code for the content of the general catch-block.

1: CreateAnyBlockContent(method)
2: specifications ← getSpecifications(method)
3: specifics ← getSpecifics(specifications)
4: anys ← getAnys(specifications)

5: printAllSpecificAssertions(specifics)
6: printAnyChecks(anys)
7: printFailingAssertion()
8: end

build in the same way, but some lines may not be created. For example, if
there is no specific exception inferred then the catch-blocks handling the
IndexOutOfBoundsException and the NullPointerException in program
B.2 will not be created (same applies for any assertions or if-statements).

The generated wrapper for the method, shown in program B.1, will be
used by Randoop (see section 4.1.2), in order to create JUnit tests (see
section 4.1.3). These JUnit tests can then be executed, which will lead to
any found inconsistency being detected, as the end user will get notified by
Eclipse (if Eclipse is in use).

B. Wrapper Generation 55

Program B.1: An example for explaining the wrapper generation algorithm.
This is the input for the analysis, which extracts specifications. These spec-
ifications are used to generate wrappers. Note that such a method is highly
unlikely to be written in actual source code. However, it helps clarifying the
wrapper creation for different specification types.

1 /**
2 * Omitted...
3 *
4 * @param index no range declared here
5 * @param map may not be null
6 * @param coll may be null
7 * @param obj no specification here
8 *
9 * @throws IndexOutOfBoundsException if the index is negative

10 * @throws NullPointerException if obj is null
11 */
12 public void method(int index, Map<?, ?> map, List<?> coll, Object obj){
13 // Omitted...
14 }

Table B.1: Extracted specifications and their corresponding conditions, ac-
cording to the Javadoc comment, shown in program B.1. Note that lines
without information are omitted.

Comment Description Specification Condition

may not be null NullAny map != null

coll may be null NullNormal coll == null

if the index is
negative

RangeSpecific index < 0

if obj is null NullSpecific obj == null

B. Wrapper Generation 56

Program B.2: The wrapper created from the Javadoc comment shown in
program B.1.

1 public void method(int index, Map<?, ?> map, List<?> coll, Object obj){
2 try{
3 this.delegate.method(index, map, coll, obj);
4
5 assert !(index < 0) : "IndexOutOfBoundsException expected, but none

was thrown.";
6 assert (map != null) : "Any exception expected, but none was thrown.

";
7 assert !(obj == null) : "NullPointerException expected, but none was

thrown.";
8 }catch(IndexOutOfBoundsException specific){
9 if((index < 0)){

10 throw specific;
11 }
12 if(!(map != null)){
13 throw specific;
14 }
15 assert !(obj == null) : "NullPointerException expected, but

IndexOutOfBoundsException was thrown.";
16
17 assert false : "No exception expected.";
18 }catch(NullpointerException specific){
19 if((obj == null)){
20 throw specific;
21 }
22 if(!(map != null)){
23 throw specific;
24 }
25 assert !(index < 0) : "IndexOutOfBoundsException expected, but

NullPointerException was thrown.";
26
27 assert false : "No exception expected.";
28 }catch(Exception any){
29 assert !(index < 0) : "IndexOutOfBoundsException expected, but " +

any.getClass().getCanonicalName() + "was thrown.";
30 assert !(obj == null) : "NullPointerException expected, but " + any.

getClass().getCanonicalName() + "was thrown.";
31
32 if(!(map != null)){
33 throw any;
34 }
35 assert false : "No exception expected.";
36 }
37 }

Appendix C

Metrics

This section lists the metrics conducted by the project of this work. It merely
contains tables, listing all metrics and briefly describing their meanings,
their names used in this thesis (if used), and their names used in the project’s
output.

Table C.1: General metrics.

Metric Identifier Description

All Files 𝑓𝑎𝑙𝑙 All Java files of the API.
All Classes 𝑐𝑎𝑙𝑙 All classes found in 𝑓𝑎𝑙𝑙.
Local Classes 𝑐𝑙 All local classes in 𝑓all.

These are not accessible.
Anonymous Classes 𝑐𝑎𝑛 All anonymous classes in

𝑓𝑎𝑙𝑙. These are not acces-
sible.

Accessible Classes 𝑐𝑎 All classes accessible for
the wrappers.

Useful Classes 𝑐𝑢 All classes containing pos-
sible specifications.

Non-Useful Classes 𝑐𝑛𝑢 𝑐𝑎 - 𝑐𝑢

Created Wrappers 𝑤𝑎𝑙𝑙 All created wrappers.
All Javadocs 𝑗𝑎𝑙𝑙 All Javadoc comments re-

lated to a method.
Useful Javadocs 𝑗𝑢 All Javadoc comments in

𝑗𝑎𝑙𝑙 containing tags.
Non-Useful Javadocs 𝑗𝑛𝑢 𝑗𝑎𝑙𝑙 - 𝑗𝑢

57

C. Metrics 58

Table C.2: All metrics regarding the specifications that were extracted from
the Javadocs. The Metric column reflects the description, which is, thus,
omitted.

Metric Identifier

Null Unknown Specifications 𝑠𝑛𝑢

Null Normal Specifications 𝑠𝑛𝑛

Null Any Exception Specifications 𝑠𝑛𝑎

Null Specific Exception Specifications 𝑠𝑛𝑠

Range Unknown Specifications 𝑠𝑟𝑢

Range Normal Specifications 𝑠𝑟𝑛

Range Any Exception Specifications 𝑠𝑟𝑎

Range Specific Exception Specifications 𝑠𝑟𝑠

All Unknown Specifications 𝑠𝑢

All Normal Specifications 𝑠𝑛

All Any Exception Specifications 𝑠𝑎

All Specific Exception Specifications 𝑠𝑠

All Null Specifications 𝑠𝑛𝑢𝑙𝑙

All Range Specifications 𝑠𝑟𝑎𝑛𝑔𝑒

All Specifications 𝑠𝑎𝑙𝑙

Table C.3: Tag-Related metrics. Note that other tables (e.g., table C.5)
might contain tag-related metrics as well.

Metric Identifier Description

All Tags 𝑡𝑎𝑙𝑙 All tags in 𝑗𝑎𝑙𝑙.
@param Tags 𝑡𝑝 All @param tags.
@throws Tags 𝑡𝑡 All @throws tags.
@exception Tags 𝑡𝑒 All @exception tags.
@deprecated Tags 𝑡𝑑 All @deprecated tags.
Faulty Tags 𝑡𝑓 Tags that are not properly

formatted.
Unsupported Tags 𝑡𝑢 All unsupported tags.

C. Metrics 59

Table C.4: Filter information.

Metric Description

Filtered Tags All filtered tags.
@param All filtered @param tags.
@exception All filtered @exception tags.
@see All filtered @see tags.
@return All filtered @return tags.
@deprecated All filtered @deprecated tags.
@inheritDoc All filtered @inheritDoc tags.
@throws All filtered @throws tags.
Accessibility Tags filtered due to accessibil-

ity.
Accessibility &
No Javadoc

Tags filtered due to accessibil-
ity and no available Javadoc.

No Javadoc Tags filtered due to no avail-
able Javadoc.

Accessibility &
Deprecation

Tags filtered due to accessibil-
ity and deprecation.

Accessibility &
Deprecation &
No Javadoc

Tags filtered due to accessibil-
ity, deprecation and no avail-
able Javadoc.

Deprecation &
No Javadoc

Tags filtered due to depreca-
tion and no available Javadoc.

Deprecation Tags filtered due to depreca-
tion.

C. Metrics 60

Table C.5: All unsupported tags that were found during the analysis. Note
that some tags have typos (e.g., @pararm) and are, thus, not the detected by
the software.

Tag

@spec @long

@result @since

@link @implNote

@literal @returns

@docRoot @serialData

@see @code

@implSpec @xsl.usage

@out @pararm

@value @serial

@raises @linkplain

@ocde @params

@return @apiNote

@throw @beaninfo

@jls @revised

@author @baseID

@linke @gsee

@inheritDoc @comp

Table C.6: All metrics related to parsing errors. The lower the value, the
better the algorithm is able to infer specifications.

Metric Identifier Description

Parse Exceptions 𝑒𝑝 All exceptions that oc-
curred while parsing
the input.

Null Parse Exceptions 𝑒𝑛𝑝 Null-Related parsing
errors.

Range Parse Exceptions 𝑒𝑟𝑝 Range-Related parsing
errors.

C. Metrics 61

Table C.7: All metrics regarding the created conditions. Every time such a
type of a condition is detected, the condition is filtered.

Metric Identifier Description

Null-Checks
Against Primi-
tives

𝑐𝑛𝑝 A parameter of prim-
itive type cannot be
checked against null.

Primitive-
Checks
Against Non-
Primitives

𝑐𝑝𝑛𝑝 A parameter of prim-
itive type cannot be
checked against a
parameter of non-
primitive type (i.e.,
an object). Unless the
object is the wrapper
class of the primitive
parameter.

Parameter-
Check Against
Itself

𝑐𝑝𝑝 A condition, where a
parameter is checked
against itself, does not
make sense.

Appendix D

Library Setup

Not only is the setup of a library necessary to fetch Javadoc comments for
the analysis, but also to resolve any dependency issues that might otherwise
occur (i.e., when using the source code only). Thus, this chapter focuses
on explanations of how to set up different libraries, of which all within this
chapter were used to evaluate the project of this work.

Note that even with a library set up, some dependencies may not be
resolved. This is, because the import might not be explicitly stated in the
original file, which leads to a missing import within the created wrappers.
These missing imports need to be resolved manually, as Eclipse might not
be able to infer the correct import (due to multiple classes with the same
name in different packages).

D.1 Java
Setting up Java is rather complex, compared to other projects, such as
Apache Commons Collections (see section D.2). In order to avoid or resolve
any errors that might occur, the following step-by-step instruction may aid:

1. Open Eclipse.
2. Create a new project and name it properly.

• For example, jdk1.8.0_121 if that is the used JDK version.
3. Locate the file src.zip.

• This file is within the Java installation folder.
• For Windows1: C:\Program Files\Java\jdk1.8.0_121.

4. Extract the files from src.zip to the project’s src folder.
5. Refresh the project within Eclipse (if necessary).
1No other OS was in use.

62

D. Library Setup 63

Figure D.1: A screen shot of the modal window that appears when navigat-
ing to Help > Eclipse Marketplace... (in Eclipse’s menu). Search for Maven,
find the version compatible with Eclipses version and simply click Install.

At this point, there is a chance (due to previous project setups or other
reasons) that the library is all set up. If not, see the following steps on how
to resolve these issues2:

1. Right-Click on the project (in Eclipse).
2. Use the context menu to navigate to Properties and click it.
3. Within the appearing modal window, find Java Compiler > Errors/Warn-

ings > Deprecated and restricted API and change Forbidden reference
(access rules) to Warning.

2Not all issues might be covered.

D. Library Setup 64

Program D.1: This code is semantic-wise equal to the original code. How-
ever, it resolves the issue as Eclipse is then able to resolve the type properly.
Credits for this fix go to Mario Winterer. Note that the formatting was
changed – for the sake of readability.

1 @Override
2 @SuppressWarnings("unchecked")
3 public final <A> A[] toArray(IntFunction<A[]> generator){
4 // Since A has no relation to U (not possible to declare that A is an
5 // upper bound of U)
6 // there will be no static type checking.
7 // Therefore use a raw type and assume A == U rather than propagating
8 // the separation of A and U
9 // throughout the code-base.

10 // The runtime type of U is never checked for equality with the
component

11 // type of the runtime type of A[].
12 // Runtime checking will be performed when an element is stored in A

[], thus
13 // if A is not a
14 // super type of U an ArrayStpreException will be thrown.
15 @SuppressWarnings("rawtypes")
16 IntFunction rawGenerator = (IntFunction) generator;
17 Node<A> evaluateToArrayNode = evaluateToArrayNode(rawGenerator);
18 return (A[]) Nodes.flatten(evaluateToArrayNode, generator).asArray(

rawGenerator);
19 }

Once this is done, most of the errors should be gone (if this configuration
was not set before). However, there might be more errors. Resolve those
errors like this:

1. Find the package com.sun.java.swing.plaf.gtk and delete it.
• The dependencies for this package do not come with the Java

installation for Windows, as they are only UNIX related.
• If deleting is not desired, the project’s configuration could be

used to exclude the folder from being read. However, this will not
resolve the dependency errors.

Last but not least, another error – found during the setup for the project’s
evaluation – lies within the java.util.stream package of Java. This is-
sue, however, can be fixed by re-writing the code in question as seen in
program D.1.

D. Library Setup 65

D.2 Apache Commons Collections
This library is quite straightforward to set up. Since this project uses Maven
it has to be installed before the actual setup can take place. Refer to fig-
ure D.1, to see how Eclipse’s integrated marketplace can be used to install
Maven. Once this is done, the actual installation can take place:

1. Create a new project within Eclipse.
2. Convert the project into a Maven project.

• Right-Click on the project, navigate to Configure > Convert to
Maven Project.

3. Download3 the Apache Common Collections library.
• Either clone the files directly into your project folder,
• or download them manually and extract them accordingly.

4. Use the context menu to navigate to Maven > Update Project....
Note that Eclipse may detect some issues within the pom.xml file. Simply
use another IDE to update the project, if required. IntelliJ IDEA4 should
be able to achieve the desired result and, therefore, finish the setup.

3https://github.com/apache/commons-collections
4https://www.jetbrains.com/idea/

https://github.com/apache/commons-collections
https://www.jetbrains.com/idea/

Appendix E

CD-ROM/DVD Content

Format: CD-ROM, Single Layer, ISO9660-Format

E.1 PDF-Dateien
Path: /

_Thesis.pdf Master’s thesis regarding code-comment
inconsistencies

E.2 Results
Path: /project/*

* All relevant files of the project

Path: /reports/*
*.md Evaluated reports

E.3 Online Sources
Path: /online-sources

*.jpg, *.png Screenshots of online sources

E.4 Miscellaneous
Path: /images

*.pdf Logo of the Upper Austria University of
Applied Sciences

*.jpg, *.png Original images

66

/
_Thesis.pdf
/project/*
*
/reports/*
*.md
/online-sources
*.jpg, *.png
/images
*.pdf
*.jpg, *.png

References

Literature

[1] Tom Fawcett. “An Introduction to ROC Analysis”. Pattern Recogni-
tion Letters 27.8 (June 2006), pp. 861–874 (cit. on p. 26).

[2] Z. P. Fry et al. “Analysing source code: looking for useful verb-direct
object pairs in all the right places”. IET Software 2.1 (Feb. 2008),
pp. 27–36 (cit. on p. 15).

[3] M. A. Harrison. Introduction to Formal Language Theory. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1978 (cit.
on p. 6).

[4] J. M. Jazequel and B. Meyer. “Design by contract: the lessons of Ari-
ane”. Computer 30.1 (Jan. 1997), pp. 129–130 (cit. on pp. 6, 7).

[5] Zhen Ming Jiang and Ahmed E. Hassan. “Examining the Evolution of
Code Comments in PostgreSQL”. In: Proceedings of the 2006 Interna-
tional Workshop on Mining Software Repositories. MSR ’06. Shanghai,
China: ACM, 2006, pp. 179–180 (cit. on p. 4).

[6] Murat Karaorman, Urs Holzle, and John Bruno. jContractor: A Re-
flective Java Library to Support Design by Contract. Tech. rep. Santa
Barbara, CA, USA, 1999. University of California at Santa Barbara
(cit. on p. 16).

[7] Ninus Khamis, René Witte, and Juergen Rilling. “Automatic Qual-
ity Assessment of Source Code Comments: The JavadocMiner”. In:
Proceedings of the Natural Language Processing and Information Sys-
tems, and 15th International Conference on Applications of Natural
Language to Information Systems. NLDB’10. Cardiff, UK: Springer-
Verlag, 2010, pp. 68–79 (cit. on p. 15).

[8] R. Kramer. “iContract - The Java(Tm) Design by Contract(Tm)
Tool”. In: Proceedings of the Technology of Object-Oriented Languages
and Systems. TOOLS ’98. Washington, DC, USA: IEEE Computer
Society, 1998, pp. 295– (cit. on pp. 15, 45, 46).

67

References 68

[9] H. Malik et al. “Understanding the rationale for updating a function’s
comment”. In: Proceedings of the 2008 IEEE International Conference
on Software Maintenance. Sept. 2008, pp. 167–176 (cit. on pp. 1, 2).

[10] Carlos Pacheco and Michael D. Ernst. “Randoop: Feedback-directed
Random Testing for Java”. In: Companion to the 22Nd ACM SIG-
PLAN Conference on Object-oriented Programming Systems and Ap-
plications Companion. OOPSLA ’07. Montreal, Quebec, Canada:
ACM, 2007, pp. 815–816 (cit. on p. 18).

[11] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. “aComment: Mining
Annotations from Comments and Code to Detect Interrupt Related
Concurrency Bugs”. In: Proceedings of the 33rd International Confer-
ence on Software Engineering. ICSE ’11. Waikiki, Honolulu, HI, USA:
ACM, 2011, pp. 11–20 (cit. on pp. 10, 11).

[12] Lin Tan et al. “/*Icomment: Bugs or Bad Comments?*/”. SIGOPS
Operating Systems Review 41.6 (Oct. 2007), pp. 145–158 (cit. on pp. 9,
10).

[13] Shin Hwei Tan et al. “@tComment: Testing Javadoc Comments to
Detect Comment-Code Inconsistencies”. In: Proceedings of the 2012
IEEE Fifth International Conference on Software Testing, Verification
and Validation. ICST ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 260–269 (cit. on pp. 5, 9, 11–13, 15, 17–19, 25, 38–
41, 44, 45).

[14] Hao Zhong et al. “Inferring Specifications for Resources from Natu-
ral Language API Documentation”. Automated Software Engineering
18.3-4 (Dec. 2011), pp. 227–261 (cit. on pp. 13, 45).

[15] Yu Zhou et al. “Analyzing APIs Documentation and Code to Detect
Directive Defects”. In: Proceedings of the 39th International Confer-
ence on Software Engineering. ICSE ’17. Buenos Aires, Argentina:
IEEE Press, 2017, pp. 27–37 (cit. on pp. 14, 36, 38, 41–43, 45, 47).

Online sources

[16] JUnit. JUnit. url: http://junit.org/junit4/ (cit. on p. 18).
[17] Oracle. Doclet Overview. url: http://docs.oracle.com/javase/7/docs/

technotes/guides/javadoc/doclet/overview.html (cit. on p. 17).
[18] Oracle. Lesson: Exceptions. url: https : / / docs . oracle . com / javase /

tutorial/essential/exceptions/index.html (cit. on p. 2).
[19] Oracle. The Numbers Classes. url: https://docs.oracle.com/javase/

tutorial/java/data/numberclasses.html (cit. on p. 7).
[20] Cambridge University Press. The Stanford Parser: A statistical parser.

url: https://nlp.stanford.edu/software/lex-parser.shtml (cit. on p. 49).

http://junit.org/junit4/
http://docs.oracle.com/javase/7/docs/technotes/guides/javadoc/doclet/overview.html
http://docs.oracle.com/javase/7/docs/technotes/guides/javadoc/doclet/overview.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html
https://docs.oracle.com/javase/tutorial/java/data/numberclasses.html
https://docs.oracle.com/javase/tutorial/java/data/numberclasses.html
https://nlp.stanford.edu/software/lex-parser.shtml

References 69

[21] Cambridge University Press. Tokenization. url: https://nlp.stanford.
edu/IR-book/html/htmledition/tokenization-1.html (cit. on p. 47).

[22] Bill Pugh and Andrey Loskutov. FindBugs. url: https://github.com/
findbugsproject/findbugs (cit. on p. 15).

[23] Bill Pugh and Andrey Loskutov. FindBugsTM - Find Bugs in Java
Programs. url: http://findbugs.sourceforge.net/ (cit. on p. 15).

[24] Lin Tan. atComment. url: https://github.com/stan6/atComment (cit.
on p. 11).

https://nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/tokenization-1.html
https://github.com/findbugsproject/findbugs
https://github.com/findbugsproject/findbugs
http://findbugs.sourceforge.net/
https://github.com/stan6/atComment

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Problem Statement
	Relevance
	Structure

	Concepts
	Javadoc
	Range
	Inadequate Comment
	Code-Comment Inconsistency
	Formal Information
	Informal Information
	Defensive Programming
	Design by Contract
	Precondition
	Postcondition

	Wrapper Class
	Abstract Syntax Tree

	State of the Art
	Code-Comment Analysis
	Approach

	Interrupt Related Annotations
	Approach

	Exception Testing
	Approach

	Resource Specification
	Approach

	Directive Defects
	Approach

	Related Work
	Static Analysis
	Automatic Quality Assessment
	Action-Oriented Graph
	Custom Javadoc Tags
	Custom Class Loader

	Implementation
	Relevant Libraries
	Doclet
	Randoop
	JUnit
	Rythm Engine

	Same But Different
	Approach

	Range Extraction
	Converting Informal Information to Code
	Approach

	Evaluation
	Relevant Metrics
	General Metrics
	Tag Metrics
	Specification Metrics

	Statistics
	Confusion Matrix

	Methodology
	Reports
	Wrapper Analysis

	Results
	Apache Commons Collections
	Java

	Comparison
	Original Approach
	Directive Defects

	Conclusion
	Summary
	Discussion
	Future Work
	Considering Additional Tags
	Natural Language Processing
	Using a Different Approach

	Natural Language Processing Approach
	Techniques
	Tokenization
	Stemming
	Part-Of-Speech Tagging
	Parsing
	Dependency Graph

	Code Example

	Wrapper Generation
	Algorithm
	Example

	Metrics
	Library Setup
	Java
	Apache Commons Collections

	CD-ROM/DVD Content
	PDF-Dateien
	Results
	Online Sources
	Miscellaneous

	References
	Literature
	Online sources

