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Abstract

Soft body simulation (also called soft body dynamics) is a field in computer
graphics that deals with the deformation of objects. It is an essential part
in the animation industry to create more realistic and believable effects.
Over the last years it became possible to run soft body simulations in real
time. This is because of less calculation intensive models and more powerful
hardware. Soft body simulation was also used more and more in computer
games, first for effect simulation, that only served to improve the look and
feel of the computer game, then also for gameplay changing effects while
playing.

The main focus of this master’s thesis is the implementation of a soft
body simulation that works in real time and could be used in a computer
game. The thesis provides an overview of known soft body models, explains
important parts of a game engine, a detailed look in the implementation and
test results for the implementation.
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Kurzfassung

Soft-Body Simulation (auch bekannt als Soft-Body Dynamics) kommt aus
dem Feld der Computergrafik und beschäftigt sich mit der Deformation von
Objekten. Sie ist ein essenzieller Teil in der animations Industrie um realis-
tische und glaubhafte Effekte zu erzielen. Über die letzten Jahre wurde es
möglich diese in Echt-Zeit zu simulieren. Der ausschlaggebende Grund für
das waren neue, weniger rechenaufwendigere Modelle und stärkere Hard-
ware. Soft-Body Simulation wurde auch vermehrt in Computerspielen ver-
wendet, am Anfang nur zur Darstellung von Effekten, welche das Comput-
erspiel optisch verbessert haben, dann aber auch für Effekte, welche die
Spielmechanik des Computerspiels zur Laufzeit, verändert haben.

Der Hauptfokus der Masterarbeit liegt in der Implementierung einer
Soft-Body Simulation, die in Echt-Zeit funktioniert und in einem Comput-
erspiel verwendet werden kann. Die Arbeit gibt einen Überblick der bekan-
nten Modelle für Soft-Body Simulation, erklärt die wichtigsten Teile einer
Spiele-Engine (engl. game engine) und gibt einen detaillieren Blick in die
Implementation und Testresultate.
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Chapter 1

Introduction

There are organic and non-organic materials that can change their shape
over time because of material behavior or an external force. Soft body simu-
lation (also known as soft body dynamics or deformable objects simulation)
is a field in computer graphics that deals with the motion and properties of
deformable objects [12].

With the evolution of computer hardware, the development of newer
models and more efficient methods soft body simulation has become more
and more interesting. It is used in the fields of computer animation, character
animation, computer games and surgical training [12][7, p. 6]. In the field of
computer animation it helps by simulation materials (fluids, human tissue,
fabrics;) and effects (melting, bending, squashing;) that are hard to animate
by hand. This also helps in the field of character animation by simulation
skin, hair and clothing. In computer games it can immerse the player more
into the game by providing realistic effects during playing [7, p. 6]. This
master’s thesis focuses on the field of computer games and how soft body
simulation can be achieved in computer games.

1.1 Master’s thesis and project target
The target of the master’s thesis is to list current models and methods that
are practical for soft body simulation, evaluates their strengths and weak-
nesses and decides based on these what model fits best for computer game.
The thesis should offer the reader an easy and informative introduction to
the topic. The project to this thesis implements the findings and provides
additional results.

1.2 Personal motivation
The author of this master thesis has a strong interest in computer games and
all the techniques and components that are available to create and improve
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1. Introduction 2

computer games. Soft body simulation is a topic that establishes itself in
the area of physics simulation and became a fix part of physic engines like
Havok [13] and Bullet [14]. Soft body simulation is more and more seen and
experienced in computer games today. Surprisingly not only used in AAA
computer games 1, but also in independent computer games 2. This raised
the interest of the author to get into the topic of soft body simulation. The
thesis should offer an easy, yet sufficient introduction to the topic of soft
body simulation for any interested reader.

1It is pronounced as triple A and is a term to describe games with a high development
and promotion budget.

2It is commonly referred to as indie games and it stands for games without support
from a publisher.



Chapter 2

State of the art

The research for modeling deformable objects is growing for over the last 40
years [7, p. 10]. The following chapter provides an overview of the methods
and models, that are practical for soft body simulation. It gives a short
explanation of each model and lists their strengths and weaknesses. After
that, this master thesis lists important aspects of computer games and game
development. It provides an explanation of this aspects to clear up any
misunderstandings, that might occur in later chapters. In the end it provides
a few examples of computer games, that use soft body simulation to improve
their look and feel. Soft body deformation itself separates in:

• Elastic deformation: The shape of the object deforms, when a force is
applied and returns to the original shape, when the force is removed [7,
p. 2].

• Plastic deformation: The shape of the object deforms, when a force is
applied and partially returns to its original shape, when the force is
removed [7, p. 3].

• Fracture deformation: The shape of the object deforms, in irreversible
ways (breaking, shattering, torn off;) and does not return into its orig-
inal shape, once the force is removed [7, p. 3].

The master’s thesis focuses on elastic deformations.

2.1 Deformation models
The following section reviews existing models that qualify for soft body
simulation. Each of these models are based on physical laws. This section is
the base for the selection process in the beginning of section 4.1.

2.1.1 Finite element method (FEM)

The FEM models the deformable as a continuous connected volume of solid
elements (see Fig. 2.1). The higher the number of the solid elements, the

3



2. State of the art 4

Figure 2.1: Simple model showing a genera setup of a finite element model.
The gray circles are the solid elements and the green lines and dashed lines
are the connection between the solid elements. The dashed lines show hidden
edges and internal connections [6].

more realistic and accurate is the simulation. If an external force is applied
to the object, the energy spread over these solid bodies through the whole
object [6][7, p. 12].

Advantages

It is the most accurate physical model and it gives the most realistic defor-
mation result of all the methods and models. With this method it is possible
to simulate large elastic deformations like melting.

Disadvantages

The biggest disadvantage of this method, is the lack of efficiency. The method
is only efficient for elastic deformations which stay within a small range.
The calculation for larger deformations is a heavy processing task and isn’t
efficient enough to show in real time [7, p. 12].

2.1.2 Mass spring system

This method requires a discrete model of the object. It generates deformable
objects out of the discrete model by using mass points (also referred to as
nodes or particles) and elastic springs that connect them (see Fig. 2.2 (a)).
These springs obey some variant of Hooke’s law [12, 6, 7]. Compared to the
finite element methods, the deformable object is hollow and can collapse
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(a) (b)

Figure 2.2: The image on the left (a) shows the spring (green lines and green
dashed lines) and nodes (gray circles) that make up the surface of the object.
The image on the right (b) shows the structural spring (red dot-dash line)
that are inside the object to keep the object from collapsing into itself [6].

into itself. It adds internal structural springs, in order to prevent it from
collapsing (see Fig. 2.2 (b)).

Advantages

This mass spring system is easy to construct, display and understand. The
individual springs of a model can have different parameters to display dif-
ferent kinds of behavior. It is also a widely used model in computer games.

Disadvantages

It requires additional springs to prevent the object from collapsing. The
number of these additional springs grows with the complexity of the discrete
model. For objects and materials that require a large deformation it isn’t
practical (effects like melting and different fluids) [7, p. 11].

2.1.3 Pressure model

This model is similar to the mass spring model. The deformable object is
build out of a discrete model by using mass points and springs to connect
them. The model gets rid of the internal structural springs by replacing them
with an internal pressure. This pressure acts from the center of the object on
all the mass points and keeps the object from collapsing (see Fig. 2.3 (a)).
Characteristically for this model is, the deformable objects behave similar
to a balloon [7, p. 13][4].
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(a) (b)

Figure 2.3: The image on the left (a) shows the pressure force (blue arrows)
inside of the object. The surface is similar to the surface of the mass spring
model (see Fig. 2.2 (a)) [4]. The image on the right (b) shows the combined
model. The orange and red lines are springs, that prevent sheering. The
purple lines are springs that connect the center of the soft body with the
surface of the soft body. The blue lines in the center are the soft body the
pressure force applies on [7, p. 36].

Advantages

The pressure model does not require additional structural springs and pro-
vides very convincing results for gas filled objects.

Disadvantages

It makes every object appear bloated and gives it a balloon like look. The
usage is limited to gas filled objects. The model requires an inside volume
and an enclosed surface to work [7, p. 13].

2.1.4 Combined model

This model is a combination of the mass spring system and the pressure
model. The combined model has a core that acts like the pressure model.
This core is enclosed by an additional layer that is connected to the core
with structural springs like in the mass spring model (see Fig. 2.3 (b)).

Advantages

The model acts less like the pressure model and the additional layer of
springs helps to give the model less of a balloon like behavior.
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Disadvantages

Additional structural springs are required to prevent sheering between the
pressure core and the shell. The balloon like behavior is not entirely gone [7,
p. 16].

2.2 Computer games
A computer game is a real-time dynamic interactive simulation. This section
provides an overview of all the essential aspects, that are important for game
development and physics simulation.

2.2.1 Game engine

A game engine is a software framework for the development and creation of
video games. Its architecture strongly depends on the scale and the genre of
the game it is used for. There is no fixed set of rules how a game engine should
look like, but it has become an industry standard, to build it in different
layers. To prevent circular dependencies, the upper layers depend on the
lower layers and not vise versa. This speeds up the development of games,
allows to quickly and easily include new or replace old software libraries. It
also makes cross platform development easier. If a physics engine is used in
the game, it’s only a part of this framework1. There are a staggering amount
of game engines available on the web, both open source or free to use for
non commercial projects [2, p. 11].

2.2.2 Render engine

The render engine is usually the largest and most complicated part of any
game engine. With the render engine the visual scene of the game is created.
There are multiple ways and approaches to render the scene and there can
also be different render engines for different platforms [2, p. 40].

2.2.3 Frames per second (FPS)

The number of individual frames (images), a device is able to calculate
and render on the screen per second. For computer games the frames per
second are an important part for the immersion into the game. For computer
games, the frames per second should be usually between 30 or 60. A constant
framework above 60 ensures smooth animations and no flickering on the
screen. A deformation simulation, that is used in a video games needs to be
able to deliver a smooth result with these FPS [2, p. 348][15].

1For a detailed overview of a game engine architecture see [2, p. 13].
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(a) (b)

Figure 2.4: The image on the left (a) shows all the objects in the scenario,
some of them are colliding and some of them are not. The image on the right
(b) shows the same scenario after the broad phase. The colliding pairs have
been identified [1, p. 15].

2.2.4 Timestep

The timestep is the time, that passes during a single update cycle of the
game engine. Different elements in a computer game uses this timestep to
update themself. This elements can be animations, movement, effects or
physics calculations. This timestep can either be variable or set to a fixed
value. An advantage of using a variable time step is that it looks smoother
but it can cause problems with the game physics, when the timestep gets
very small or very big. To counteract this problem the game physic can run
on a fixed timestep, while other parts of the game run on a variable timestep.
If the timestep for the game physics is variable it needs a limit on how big
the timestep can get in order to ensure the simulation does not get out of
control [2, p. 348][16, 17].

2.2.5 Interpolation

Through interpolation new data points get calculated out of existing ones.
With smaller steps in between two points elements like animation, movement
and various other things can run smoother and more precise [2, p. 181]. The
section 3.3 provides an overview of the different interpolation methods and
compares them.



2. State of the art 9

2.2.6 Collision detection

The task of the collision detection (often refereed to as “physics” in the game
development community [2, p. 37]), is to detect colliding objects during the
simulation and prevent these from intersecting. Since computer games run
in real time, the collision detection needs to be fast and efficient. Each object
in the simulation can potentially collide with every other object. This task
becomes a problem when the number of objects increases. To make the
collision detection more efficient, it is split into two different phases:

• Broad phase,
• Narrow phase.

The broad phase goes through all the objects in the simulation and identifies
all object pairs that collide. In order to go through all the objects in the
simulation at a decent speed, it needs an efficient algorithm. These colliding
object pairs are marked for the narrow phase (see Fig. 2.4). The narrow
phase just pays attention to the previously marked object pairs. This phase
can use less efficient algorithms because the number of objects has been
reduced [1, p. 14].

Collision detection libraries

There are a few well-known collision detection engines:
• Havok is the most known industrial-strength physics engine on the

market. It has been used in over 400 computer games and the developer
claims that the engine has become the gold standard in the game
industry [13].

• PhysX is another well-known industrial-strength physics engine that
is available for free from NVIDIA. Game engines like Unity and Unreal
use it as their default physic engine [18, 19].

• Bullet is a powerful, free and open-source physics engine. Game com-
panies as well as movie companies use this engine [14, 20].

2.3 Game examples
Soft body simulation can be used in different ways to display different effects.
The following games use deformation as a gameplay element or to improve
the visual appeal.

2.3.1 Agar.io

Agar.io [11] is a massive multiplayer action game, developed by Matheus
Valadares. Players control a single cell represented by a colored circle and
can move around in a petri dish like environment. The main objective is to
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Figure 2.5: The image shows the player (red sphere) pushed into the corner
of the level and an object in the level (green spiced sphere) [21].

grow bigger by consuming smaller cells that can be also controlled by other
players. The deformation simulation is used to show the players which cell
is consuming the other, warn players if they are about to hurt themself and
it also shows the borders of the level by deforming the circle the players
control [21, 22].

2.3.2 Gang Beasts

Gang Beasts [9] is a local multiplayer beat’em-up, developed by Boneloaf
and published by Double Fine Production. Players control a human shaped
character that looks and feels like it is made out of gelatine or plasticine.
The goal of the game is to throw all the other players out of the fighting
arena. This game shows how deformation simulation can be combined with
a ragdoll-like character [23, 24].

2.3.3 Wreckfest

Wreckfest [10] is a demolition derby-like racing game, developed and pub-
lished by Bugbear Entertainment. Players control various models of cars
and compete in different events against each other. The gameplay does not
differ from other racing games, except, that it is very realistic in both look
and feel. One of the unique and astonishing feature the game is the soft
body damage modeling. Collisions and the deformations are calculated and
applied in real-time [25, 26].
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(a) (b)

Figure 2.6: The images show the player character and different levels of the
game [23].

(a) (b)

Figure 2.7: The image on the left (a) shows a car model that is used on the
game and the image on the right (b) shows a crash that can happen in the
game [25].

2.4 Summary
The beginning of the chapter lists the potential deformable models with their
advantages and disadvantages. This includes the finite element method, mass
spring system, pressure model and combined model. After that, the focus
shifts to computer games and explains important aspects of these to clear
up any misunderstandings. The end of the chapter gives an overview over a
few games that include soft body deformation.



Chapter 3

Calculations

The focus of this chapter is on the formulas and calculations for the imple-
mentation.

3.1 Newton’s laws
Newton’s laws consist of three physical laws, that form the foundation for
mechanics. The rule, that is interesting for this topic is the second one:

The vector sum of the forces 𝐹 on an object is equal to the mass
𝑚 of that object multiplied by the acceleration vector a of the
object: F = 𝑚 a [27].

In general the force 𝐹 is defined as

F = 𝑚 a. (3.1)

The force F and the mass of the object 𝑚 are known. The acceleration 𝑎 is
currently unknown. The velocity v is defined as

v =
∫︁

a 𝑑𝑡. (3.2)

This equation can be solved for a and inserted into equation 3.1

F = 𝑚
𝑑v
𝑑𝑡

. (3.3)

The calculation is put into the numerical number space in order to get rid
of the integral, turning F into

F = 𝑚
Δv(𝑡)

Δ𝑡
. (3.4)

12
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This removes the infinity from the integral and makes it easier to calculate.
The velocity v is then used to calculate the position p with respect to the
time 𝑑𝑡

p =
∫︁

v 𝑑𝑡, (3.5)

p = v(𝑡) Δ𝑡. (3.6)

This equations are the basic for the following calculations, integrators and
the deformation simulation itself [5, p. 10][7, p. 51][27].

3.2 Forces in the simulation
During the simulation the objects experience different forces. F combines
the gravity force F𝐺𝑅, the forces building up in the spring F𝑆𝑃 and external
forces F𝐸𝑋 by adding these up

F = F𝐺𝑅 + F𝑆𝑃 + F𝐸𝑋 . (3.7)

3.2.1 Gravity force

The gravity force F𝐺𝑅 is a constant force that pulls objects towards the
earth based on their mass 𝑚 by 𝑔 [7, p. 16]

F𝐺𝑅 = 𝑚 g. (3.8)

𝐹𝐺 is calculated by multiplying the mass of the object 𝑚 with the the cur-
rently acting gravity g. g is the gravitational strength 𝑔 (on earth 9.81m/(𝑠)2)
along a direction e [5, p. 14]

g = 𝑔 e. (3.9)

In video games it is typical that F𝐺 is treated as a constant and the objects
in the simulation are affected equally regardless of their mass [2, p. 719].

3.2.2 Spring

The springs obey Hooke’s Law and F𝑆𝑃 is a linear force that acts upon
the two connected mass points (also called node or particle) 𝑛1 and 𝑛2 (see
Fig. 3.1). The nodes can act upon the spring by stretching or extending the
spring. For easier understanding this is split into two sections, the calculation
of the spring force F𝑆 and the calculation of the damping force F𝐷 [7, p.
32]

F𝑆𝑃 = F𝑆 + F𝐷. (3.10)
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Figure 3.1: The image shows a schematic representation of a spring that
connects to mass points 𝑛1 and 𝑛2. The spring force 𝐹𝑆 and spring damping
force 𝐹𝐷 act in between the two mass points [12].

Spring force

The spring force F𝑆 is calculated by

𝑛12 = 𝑛2 − 𝑛1 (3.11)
F𝑆 = (||𝑛12|| − 𝑙) 𝑘𝑒 e12. (3.12)

𝑛1 and 𝑛2 are the positions of the two associated mass points of the spring.
𝑙 is the resting length of the spring. The spring tries to maintain this length.
𝑛12 is the current length of the spring. 𝑘𝑒 is the elasticity factor of the
spring, it is a constant factor that states the springs characteristics. e12 is
the directional vector from 𝑛1 to 𝑛2. e12 defines the direction the spring is
able to act in. F𝑆 acts on 𝑛1 and on 𝑛2 in the opposite direction

𝑛12 = 𝑛2 − 𝑛1 (3.13)
F𝑆1 = F𝑆 (3.14)
F𝑆2 = − F𝑆 . (3.15)

F𝑆1 acts on 𝑛1 and F𝑆2 acts on 𝑛2. The spring can have the following
states [7, p. 33]

||𝑛12|| − 𝑙

⎧⎨⎩
= 0 spring resting,
> 0 spring extended,
< 0 spring contracted.

Damping force

The damping force resists the motion and give the spring a natural moving
behavior [7, p. 33]. The damping force F𝐷 is calculated with

F𝐷 = (v2 − v1) ·
(︂

𝑛12
||𝑛12||

)︂
𝑘𝑑. (3.16)

v1 and v2 are the velocities acting in the two associated mass points of the
spring. 𝑘𝑑 is the damping coefficient of the spring [7, p. 34].
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Figure 3.2: Graphic showing the Euler integrator compared to the example
function 𝑦 [7, p. 46].

3.2.3 External forces

The external forces F𝐸 are additional forces that are applied to the object.

3.3 Integrators
Integrators take care of the interpolation (see chap. 2.2.5). This section shows
the different iterators, that are used in the implementation. To solve this
problem, an ordinary differential equation (ODE) is used. An ODE contains
one independent variable and its derivatives. This type of equations are
used to describe, how a dynamic system behaves over time, when given an
initial state [28][7, p. 44]. To illustrate the advantages and disadvantages of
each method, a simple example is constructed with a single time step. In
the example, an arbitrary function 𝑦(𝑥) is used. The range of this function
starts at time step 𝑡 and ends at time step 𝑑𝑡. The variable 𝑡𝑑𝑒𝑙𝑡𝑎 is the time
that has passed between this two points 𝑡 and 𝑑𝑡. The result of the function
𝑦(𝑥) is a curve and each of the following methods has a different level of
approximation to this curve.

3.3.1 Euler integration

The Euler calculation method is the simplest and fastest integrator, but
also the method with the biggest deviation (see Fig. 3.2). The velocity v is
represented in the equation

v(𝑡 + Δ𝑡) = v(𝑡) + Δ𝑡 v′(𝑡). (3.17)
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v0 represents the initial velocity at time step 𝑡

v0 = v(𝑡). (3.18)

At time step 𝑡 the initial velocity is known. v1 represents the derivative at
time step 𝑑𝑡

v1 = Δ𝑡 v′(𝑡). (3.19)

v1 is calculated with the acceleration a

v1 = a(𝑡) Δ𝑡. (3.20)

The acceleration a calculation with the equation 3.1 and solve it for a

a = F
𝑚

. (3.21)

The position p is represented in the equation

p(𝑡 + Δ𝑡) = p(𝑡) + Δ𝑡 p′(𝑡). (3.22)

The equation is again split in two parts

p0 = p(𝑡), (3.23)
p1 = Δ𝑡 p′(𝑡). (3.24)

p0 is the initial position and p1 is calculate with the velocity

p1 = v(𝑡) Δ𝑡. (3.25)

The result of the Euler integrator shows a big deviation to the actual result
of the example curve (see Fig. 3.2) [7, p. 46].

3.3.2 Midpoint integration

The midpoint integration is a symmetric estimate method with a higher
per-step accuracy. The method calculates the derivative in the center of the
interval at 𝑑𝑡/2 and at the end of the interval at time step 𝑑𝑡. The midpoint
method includes the slope at 𝑑𝑡/2 resulting in a lower deviation at time step
𝑑𝑡 (see Fig. 3.3). The velocity v is represented with the equation

v(𝑡 + Δ𝑡) = v(𝑡) + Δ𝑡 v′(𝑡) + Δ𝑡2

2! v′′(𝑡). (3.26)

Like with the Euler integrator, the function of the midpoint integration can
be split in different parts

v0 = v(𝑡), (3.27)
v1 = v′(𝑡) = a(𝑡) Δ𝑡. (3.28)
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Figure 3.3: Graphic showing the midpoint integrator compared to the ex-
ample function 𝑦. The result at time step 𝑑𝑡 is closer then it was with the
Euler integrator [7, p. 48].

𝑣0 is the initial velocity at time step 𝑡 and 𝑣1 is the derivative velocity in
the period Δ𝑡. Next the velocity at time step Δ𝑡/2 is calculated

v2 = v′(𝑡 + Δ𝑡) = v(𝑡) + a(𝑡) Δ𝑡. (3.29)

With these equations the result for the final velocity is

v(𝑡 + Δ𝑡) = v0 + v1 + v2
2 . (3.30)

The position p is calculated by the equation

p(𝑡 + Δ𝑡) = p(𝑡) + Δ𝑡 p′(𝑡) + Δ𝑡2

2! p′′(𝑡). (3.31)

The equation is split up in different parts

p0 = p(𝑡), (3.32)
p1 = p′(𝑡) = v(𝑡) Δ𝑡, (3.33)
p2 = p′(𝑡 + Δ𝑡) = p(𝑡) + v(𝑡) Δ𝑡. (3.34)

The position at time step 𝑑𝑡 is

p(𝑡 + Δ𝑡) = p0 + p1 + p2
2 . (3.35)

The result of the Midpoint integrator compared to the Euler integrator is
more accurate to the actual result, but also the calculation expense has
increased (see Fig. 3.3) [7, p. 47].
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Figure 3.4: Graphic showing the Runge Kutter fourth order integrator com-
pared to the example function 𝑦. The result at time step 𝑑𝑡 is closer then it
was with the Euler integrator and in the Midpoint integrator [7, p. 49].

3.3.3 Runge Kutter fourth order integrator

The Runge Kutter fourth order integrator calculates four derivatives and
is the most accurate integrator, compared to the Euler and the Midpoint
integrator (see Fig. 3.4) [7, p. 49]. The velocity v is represented with the
equation

v(𝑡 + Δ𝑡) = v(𝑡) + Δ𝑡 v′(𝑡) + Δ𝑡2

2! v′′(𝑡) + Δ𝑡3

3! v′′′(𝑡) + Δ𝑡4

4! v′′′′(𝑡). (3.36)

The equation is split up in 𝑣0 . . . 𝑣4

v0 = v(𝑡), (3.37)
v1 = a(𝑡) Δ𝑡, (3.38)

v2 = v0 + v1
2 , (3.39)

v3 = v0 + v2
2 , (3.40)

v4 = v0 + v3. (3.41)

v0 is the initial velocity at time step 𝑡, v1 is the derivative velocity in the
period 𝑑𝑡. v2 is the derivative of the Euler integration in the period 𝑑𝑡/2
based on the previous step. v3 is the derivative velocity of the second ap-
proximation based on the v2 in the period 𝑑𝑡/2. v4 is the final resulting
velocity change from v0 to v3. This makes the new velocity

v(𝑡 + Δ𝑡) = v0 + 1
6Δ𝑡 (v1 + 2v2 + 2v3 + v4) . (3.42)
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The position p is calculated with the equation

p(𝑡 + Δ𝑡) = p(𝑡) + Δ𝑡p′(𝑡) + Δ𝑡2

2! p′′(𝑡) + Δ𝑡3

3! p′′′(𝑡) + Δ𝑡4

4! p′′′′(𝑡). (3.43)

The equation is split up in p0 . . . p4

p0 = p(𝑡), (3.44)
p1 = p(𝑡) Δ𝑡, (3.45)

p2 = p0 + p1
2 , (3.46)

p3 = p0 + p2
2 , (3.47)

p4 = p0 + p3. (3.48)

The calculation for the new position is

p(𝑡 + Δ𝑡) = p0 + 1
6Δ𝑡 (p1 + 2p2 + 2p3 + p4) . (3.49)

The Runge Kutter fourth order integrator is the most accurate integrator,
but also the most calculation expensive integrator, compared to the two
previous integrators (see Fig. 3.4) [7, p. 49].

3.3.4 Position update

The equation for the new position is

p(𝑡 + Δ𝑡) = p(𝑡) + Δ𝑡 p′(𝑡). (3.50)

The equation is split in two parts

p0 = p(𝑡), (3.51)
p1 = Δ𝑡 p′(𝑡). (3.52)

p0 is the initial position at the time 𝑡 and p1 is calculate with the velocity
at the time 𝑡 and Δ𝑡

p1 = v(𝑡) Δ𝑡. (3.53)

3.3.5 Comparison

All three integrators are compared in the aspect of efficiency and accuracy.
For the efficiency, the calculation effort is the main criteria and for the
accuracy, the deviation to the example function is the main criteria.
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Figure 3.5: The image shows the different integrators compared. The orange
line is the original function (OF). The red line is the Euler integration, the
green line is the mid point integrator and the blue line is the Runge Kutter
fourth order integrator.

Efficiency

The Euler integrator is the most efficient integrator out of the three inte-
grators. It only needs one derivative per step. The midpoint integrator uses
two steps to calculate the velocity and position. It requires roughly twice as
much computations as the Euler integrator. The Runge Kutter fourth or-
der integrator uses four steps to calculate velocity and position. It requires
roughly four times as much computation as the Euler integrator.

Accuracy

The Runge Kutter fourth order integrator is the most accurate integrator
out of the three integrators (see Fig. 3.5). It manages to get closest to the
actual result.
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3.3.6 Conclusion

The choice of integrator method depends on the field it is used in. One
criteria are the resources that are available during the simulation and cal-
culation. In a rendering for a computer animation, it may not matter if the
calculations take longer, when the result justifies that in the end. In a real
time application, like a computer game it does matter. So the integrator
is chosen by the resources that are available. If the available resources are
minimal the Euler integrator is enough to ensure the application runs in real
time, but when more resources are available, a more accurate integrator, like
the Midpoint or Runge Kutter integrator offer better results.

3.4 Summary
The main focus of this chapter, is to explain all the calculations, that are
required for the implementation. The chapter begins with Newton’s law
and explains the second law of motion. Then, it lists all the forces that are
required. After that, it explains the three different integrators, that handle
the interpolation in the implementation. At the end of the chapter, there is
a comparison of the three integrators in efficiency and accuracy.



Chapter 4

Implementation and design

This chapter presents the selection process for the deformation model, the
algorithms the implementation uses and the structure and components of the
implementation itself. In the end, it shows the results of the implementation.

4.1 Deformation model selection
In order for the deformation model to work well in computer games, it needs
to fulfill a couple of requirements.

Performance

Important for the model selection is, that the simulation is not resource
intensive. Computer games run in real time and nothing is more frustrating
and immersion breaking for the player, when the frame rate drops, even if
it only lasts for a few seconds. This disqualifies the finite element method.
It is the most accurate and realistic model, but also the most expensive one
to calculate.

Simplicity

The model should be easy to understand and easy to use. The three re-
maining models achieve this, because these models share similarities, but
the pressure model is the simplest model of them all. It does not require
any structural springs, nor does it require a mass spring hull to be modeled
around it.

Usability

Computer games have different genres, some are similar and some or com-
pletely different. The deformation model should be able to be used for dif-
ferent scenarios. The pressure model delivers the best and most believable

22
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Figure 4.1: The interaction cycle between the MVC and the user. The
user enters different inputs to the controller. The controller manipulates the
model, based on this inputs. The view changes, based on the manipulations
in the model and presents the changes to the user. [29].

result for gas filled objects, but not so good results for other types of objects.
The combined model shares some of the same flaws, that the pressure model
has, so the decision is in favor of the mass spring system.

Result of the selection

The mass spring system is the favorite, because of the wider range of usabil-
ity compared to the pressure model and combined model. The mass spring
system has its drawbacks with larger deformations, but in the general con-
text of computer games is the most suitable model.

4.2 Design
The implementation uses the Model-View-Controller (MVC) pattern. This
pattern is ideal for real time simulations because it splits up the project into
three individual parts, the model, the view and the controller. The pattern
establishes clear dependencies between the different parts, a clear interaction
between the different parts (see Fig. 4.1) and gives each part a clear role:

• The model stores all the information, that is needed for the simulation
to run. This includes information about the environment the simula-
tion takes place in, information about the boundaries of the simulation
and information about each object, that is in this environment.

• The view is the on screen representation of the model. It serves as
an interface for the user during the simulation. This gives the user
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a better understanding, what happens in the simulation and allows
interactions with the simulation with the keyboard, mouse and other
input devices.

• The controller processes the input form the user and manipulates the
model, according to these inputs.

In the implementation, the model is the most important part. In the project
it contains all of the important parts for the simulation [7, p. 57].

4.3 Used algorithms
This section lists all the algorithms, that the implementation uses.

4.3.1 Explanation of used terms

A short overview of terms, that appear throughout this section, to clear up
misunderstandings.

• Point: Defines a location in space, for this implementation it is in two
dimensional space (also refereed to as 2D space) [2, p. 166]. In general,
it is represented by a position 𝑝𝑜𝑠 and for this implementation, it can
also have a velocity 𝑣𝑒𝑙 and a force 𝑓 .

• Ray: It is an infinite line, that is represented by a position pos and a
direction dir [2, p. 213].

• Line segment: It is a straight line, bound by two points 𝐴 and 𝐵 at
both ends [2, p. 214].

• Plane: It is a flat surface, that stretches into infinity. It is represented
by a position pos and a normal norm. The normal points in the direc-
tion the plane faces [2, p. 215].

4.3.2 GJK algorithm

The GJK algorithm is a simple and very efficient algorithm to determine
the shortest distance between two convex sets and if there is a collision
between these sets. The algorithm is named after its inventors E. G. Gilbert,
D. W. Johnson and S. S. Keerthi[2, p. 670]. There are many papers and
presentations about this algorithm, but the most easiest explanation is a
blog entry by Casey Murantori that contains an instructional video with the
title “Implementing GJK” [30]. The GJK algorithm relies on the geometric
operation, called the Minkowski difference. This operation creates a result
set 𝑆 of points from the two original sets 𝐴 and 𝐵. The resulting set contains
every point from 𝐴 subtracted with every point from 𝐵

𝑆 = 𝐴−𝐵, (4.1)
𝐴−𝐵 = {a − b | a ∈ 𝐴, b ∈ 𝐵}. (4.2)
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(a) (b)

Figure 4.2: Both images contain the two convex sets 𝐴 and 𝐵 together with
the resulting set 𝐴−𝐵. The image on the left (a) shows the case when there
is no collision (origin is not inside 𝐴 − 𝐵) and the image on the right (b)
shows the case when there is a collision (origin is inside 𝐴−𝐵) [2, p. 671].

The most important part of the set of points created by the Minkowski
difference is the hull. The interior points of 𝑆 are uninteresting for the future
steps. If the origin of the coordinate system is inside the hull of 𝑅, it means
that the two set are colliding (see Fig. 4.2(b)). If the origin is outside of this
hull, then there is no collision between the two sets (see Fig. 4.2 (a)).

To find out if the origin is inside, an additional shape, called simplex, is
build up inside of the hull of 𝑆. The simplex starts from a single point on
the hull of 𝑆 (see Fig. 4.3 (a)). It then extends towards the origin by adding
another point from the hull of 𝑆 to itself in the direction 𝑑, this creates a
line (see Fig. 4.3 (b)). The new point has to be the farthest point of 𝑆 in
𝑑 to assure that the algorithm runs as fast as possible. In a 2D scenario
the simplex gets up to three points big and tries to enclose the origin with
a triangle shape(see Fig. 4.3 (c)). In the 3D scenario the simplex gets up
to four points big and tries the same with a tetrahedron shape(see Fig. 4.3
(d)). The algorithm mostly consists of two essential functions:

• Support function,
• Simplex function.

The function 4.1 returns the furthest points from a set in a specified direc-
tion. This algorithm can also be used to skip calculating the whole Minkowski
difference and instead calculate just the important points. For this the sup-
port function 4.2 uses the function 4.1 to get the furthest point from 𝐴 in
the direction 𝑑 and subtracts it from the furthest point in 𝐵 in the opposite
direction −𝑑. This step avoids the storage of the whole Minkowski difference



4. Implementation and design 26

(a) (b) (c) (d)

Figure 4.3: The different simplex states. The image on the far left (a) shows
the initial state of the simplex. It consists of a single point. The second image
from the left (b) shows the simplex after a point has been added. The third
image from the left (c) shows the simplex after to points have been added to
the simplex. In a 2D scenario the simplex does not get bigger. The image on
the right (d) shows the simplex after four points have been added. In a 3D
scenario the simplex does not get bigger [2, p. 671].

Algorithm 4.1: Returns the furthest point from a set of points in a specified
direction by using the dot product.

1: getFurthestPoint(points, d)
Returns the furthest point from points in the direction d.

2: p ← points[0]
3: maxdot ← dot (p, d) ◁ calculate dot product
4: for 𝑖← 1, . . . , length(points) do ◁ iterate over all the points
5: if (dot (points[i], d)) > maxdot then
6: p ← points[i]
7: maxdot ← dot (p, d)
8: end if
9: end for

10: return p
11: end

Algorithm 4.2: Calculates the Minkowski difference for a specified direc-
tion.

1: supportFunction(𝐴, 𝐵, 𝑑)
Returns the Minkowski difference in the direction d for A and B.

2: return getFurthestPoint(𝐴, 𝑑)− getFurthestPoint(𝐵, -𝑑)
3: end

and always returns points, that would be on the hull of 𝑆 in the direction
𝑑. The simplex function determines the search direction and adds points
to itself or removes them if required. The simplex expands until it either
manages to enclose the origin, which signals it is a positive collision or until
it can no longer expand to a new position on the hull, signaling a negative
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collision. But even a negative collision provides useful data, the shortest dis-
tance between 𝑆 and the origin is the same as the shortest distance between
𝐴 and 𝐵 [1, p. 399][2, p. 670][30].

By picking an intelligent staring point for the GJK algorithm it can
speed up, but not for much, because it finds a solution quite fast even with
a bad starting point [30].

4.3.3 Plane-point-position test

During the simulation the planes act as borders and keep objects from falling
into infinity. This algorithm 4.3 determines if a point 𝑝 is in front, behind
or on a plane 𝑏 by using the dot product.

Algorithm 4.3: Determines if a point 𝑝 is in front, on top or behind a plane
𝑏 [1, p. 207]
.

1: positionPointPlane(𝑝, 𝑏)
Returns 0 if the 𝑝 is in front of 𝑏, 1 if on the 𝑏 and 2 ifs behind the 𝑏.

2: 𝑟 ← dot(𝑏.norm, (𝑛.pos + length(𝑛.pos)))
3: if (𝑟 > 0) then
4: return 0 ◁ in front of the plane
5: else if (𝑟 < 0) then
6: return 2 ◁ behind the plane
7: end if
8: return 1 ◁ on the plane
9: end

4.3.4 Plane-Plane-intersection test

This test determines the intersection point between the point 𝑝 and plane
𝑝𝑙1. The implementation needs this test when a point is behind the plane
and needs to be moved back to the surface of the plane. For the test to
work, it converts 𝑝 into a plane. The position of the new plane 𝑝𝑙2 is the
same position as 𝑝. For the normal of 𝑝𝑙2 the velocity of 𝑝 is normalized and
rotates by 90∘. This is the preparation step of the algorithm 4.4, that to
determine the intersection point between.

4.3.5 Point-in-triangle test

This test uses the barycentric coordinate system. This coordinate system
makes all kind of triangle tests easier by using a parametrized space. Trian-
gles are a common shape in real-time applications because of these reasons:

• Triangles are the simplest type of a polygon with a total of three
vertices.
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Algorithm 4.4: Returns the intersection point between the two planes 𝑝𝑙1
and 𝑝𝑙2. 𝑝 is a reference to a point and it becomes the intersection point [1,
p. 209].

1: intersectionPlanePlane(𝑝𝑙1, 𝑝𝑙2, 𝑝)
2: d11 ← dot(pl1 .𝑛, pl1 .n)
3: d12 ← dot(pl1 .𝑛, pl2 .n)
4: d22 ← dot(pl2 .𝑛, pl2 .n)
5: denom ← d11 · d22 − d12 · d12
6: d1 ← dot(pl1 .𝑛, pl1 .p)
7: d2 ← dot(pl2 .𝑛, pl2 .p)
8: k1 ← (d1 · d22 − d2 · d12 ) / denom
9: k2 ← (d2 · d11 − d1 · d12 ) / denom

10: 𝑝← k1 · pl1 .𝑛 + k2 · pl2 .𝑛
11: end

Figure 4.4: The image shows a triangle in the barycentric coordinate system
with the corner points 𝑎, 𝑏 and 𝑐, the center points 𝑚 and the different axis
𝑢, 𝑣 and 𝑤. The barycentric coordinates for the points in the image are the
same for each triangle [31].

• The surface of a triangle is always planar.
• Triangles remain triangles under most transformations.
• Most of the commercial and non commercial render engines are de-

signed around triangles [2, p. 447].
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In the case of a triangle all the corner points 𝑎, 𝑏, 𝑐 and the center of the
triangle 𝑚 are inside this space (see Fig. 4.4). The test transfers all the
points of the triangle and the test point 𝑝 in the barycentric coordinate
system and checks if 𝑝 is within the corner points of the triangle 𝑎, 𝑏 and 𝑐
(see Alg. 4.5) [1, p. 46].

Algorithm 4.5: Deermines if the point 𝑝 is inside the corner points of the
triangle 𝑏, 𝑏 and 𝑐 using barycentric coordinates [1, p. 46].

1: pointInTriangle(𝑝, 𝑎, 𝑏, 𝑐)
Returns true if 𝑝 is inside 𝑡 else it returns false.

2: v0← 𝑏 − 𝑎
3: v1← 𝑐 − 𝑎
4: v2← 𝑝 − 𝑎
5: 𝑑00← dot(v0, v0)
6: 𝑑01← dot(v0, v1)
7: 𝑑11← dot(v1, v1)
8: 𝑑20← dot(v2, v0)
9: 𝑑21← dot(v2, v1)

10: denom ← 𝑑00 · 𝑑11 − 𝑑01 · 𝑑01
11: 𝑣 ← (𝑑11 · 𝑑20 − 𝑑01 · 𝑑21) / denom
12: 𝑤 ← (𝑑00 · 𝑑21 − 𝑑01 · 𝑑20) / denom
13: 𝑢← 1 − 𝑣 − 𝑤
14: if (𝑣 >= 0 AND 𝑤 >= 0 AND 𝑢 < 1) then
15: return true
16: end if
17: return false
18: end

4.3.6 Line-line-intersection test

This test determines, if the two line segments 𝐴𝐵 and 𝐶𝐷 overlap, for this
it needs to figure out if 𝐴 and 𝐵 are on different sides of 𝐶𝐷 and if 𝐶 and
𝐷 are on different sides of 𝐴𝐵. The test for 𝐶 and 𝐷 is to verify, that the
triangles 𝐴𝐵𝐷 and 𝐴𝐵𝐶 wind in different directions (see Fig. 4.5). Is the
signed area of a triangle positive it winds counterclockwise, if the signed
area is negative it winds clockwise [1, p. 152]. The algorithm 4.6 calculates
the signed area. The algorithm 4.7 then uses the function to determine if
two line segments intersect.

4.3.7 Area of a polygon

In the 2D scenario the area of the polygon is calculated with the following
algorithm.
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(a) (b) (c)

Figure 4.5: The points 𝐴𝐵 and 𝐶𝐷 are the end points of two line segments,
the point 𝑃 marks the intersection point. The image on the left (a) shows the
situation when there is no intersection. The image in the middle (b) shows
the situation when there is an intersection. The image on the right (c) shows
the two created triangles 𝐴𝐵𝐷 (green triangle) and 𝐴𝐵𝐶 (blue triangle)
with their wind [1, p. 152].

Algorithm 4.6: Calculates the signed area of a triangle from the provided
corner points 𝑎, 𝑏 and 𝑐 of a triangle [1, p. 152].

1: signedAreaTriangle(𝑎, 𝑏, 𝑐)
Returns 2 times the signed triangle area.

2: return (𝑎.𝑥 − 𝑐.𝑥) · (𝑏.𝑦 − 𝑐.𝑦) − (𝑎.𝑦 − 𝑐.𝑦) · (𝑏.𝑥 − 𝑐.𝑥)
3: end

Algorithm 4.7: Test if the two line segments 𝐴𝐵 and 𝐶𝐷 have an inter-
section. If there is an intersection point it is stores in 𝑝 which is a reference
to a point. 𝑎 and 𝑏 are the endpoints of 𝐴𝐵 and 𝑐 and 𝑑 are the endpoints
of 𝐶𝐷 [1, p. 152].

1: intersectionLineLine(𝑎, 𝑏, 𝑐, 𝑑, 𝑝)
Returns true if 𝐴𝐵 and 𝐶𝐷 have an intersection and false if not.

2: 𝑎1← signedAreaTriangle(𝑎, 𝑏, 𝑑)
3: 𝑎2← signedAreaTriangle(𝑎, 𝑏, 𝑐)
4: if (𝑎1 · 𝑎2 < 0.0) then ◁ wind in different directions
5: 𝑎3← signedAreaTriangle(𝑐, 𝑑, 𝑎)
6: 𝑎4← signedAreaTriangle(𝑐, 𝑑, 𝑏)
7: if (𝑎3 · 𝑎4 < 0.0) then
8: 𝑡← 𝑎3 / (𝑎3 − 𝑎4)
9: 𝑝← 𝑎 + 𝑡 · (𝑏,− 𝑎)

10: return true
11: end if
12: end if
13: return false
14: end
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Algorithm 4.8: Calculates the area of the 2D polygon 𝑝 [32].

1: calculateArea(𝑠)
Returns the area of 𝑠.

2: tx ← 0 ◁ temporary variable in x direction
3: ty ← 0 ◁ temporary variable in y direction
4: 𝑠← length(𝑝)
5: for 𝑖← 0, . . . , 𝑠 do
6: tx += 𝑝[𝑖].𝑥 · 𝑝[(𝑖 + 1) % 𝑠].𝑦
7: ty += 𝑝[𝑖].𝑦 · 𝑝[(𝑖 + 1) % 𝑠].𝑥
8: end for
9: return (tx − ty) / 2

10: end

4.4 Implementation
The implementation of the test project is written in the programming lan-
guage C++. The project has been split into different classes to separate the
functionality. This makes it easier to understand, explain and update.

4.4.1 Used libraries

The following libraries have been used in the test project.

GLM

A C++ mathematics library based on the OpenGL1 shading language GLSL2.
GLM offers all the functionalists that GLSL has and also provides exten-
sions in various fields. It is a recommended library for physic simulation,
software rendering and image processing [35].

GLFW

Is an open source, cross-platform, lightweight utility library for using OpenGL.
It offers support for multiple windows, creates OpenGL context and manages
inputs from mouse, keyboard and joysticks. GLFW has an active develop-
ment status and that makes this library surpass others [36].

1OpenGL (Open graphics library) is a cross-language and multi-platform API for cre-
ating 2D and 3D content [33].

2GLSL is a shading language based on the programming language C [34].
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Figure 4.6: The image shows the important functions and variables of the
implantation of the Point2D, Spring2D and SoftBodyData class. Getter and
setter functions are not shown in the image.

4.4.2 Test project

This section provides an overview of the most important classes of the im-
plemented test project and gives insight of their structure and functionality.
Each and every class has functions to read, write and update their variables.

Point2D

Is one of the two most basic classes of the simulation. It is the element, that
has been referred to as mass point, node or particle in previous sections. It
stores the following variables:

• position,
• velocity,
• force.

The position stores the current position of the Point2D. The force stores the
sum of all the forces, that are acting on the Point2D. The velocity stores the
current acting velocity on the Point2D.



4. Implementation and design 33

Spring2D

Is the second most basic class and it connects two Point2D objects, which
define the two end points of the spring. To identify the associated Point2D
objects, an index is stored in the class. It also stores all the parameters, that
define the characteristics of the spring:

• point A,
• point B,
• length,
• normal,
• damping factor,
• elasticity factor.

The variables point A and point B are the indexes of the Point2D objects.
The length is the resting length of the spring. The spring tries to maintain
this length during the simulation. The normal is the direction in which the
spring is able to apply its force. The damping factor and elasticity factor
are the material factors that control the behavior of the spring.

SoftBodyData

This class combines Point2D objects and Spring2D objects to a soft body
for the simulation:

• points,
• springs,
• mass,
• external forces.

The vector points holds all the Point2D objects. The index of these Point2D
object in the vector is the index mentioned in section 4.4.2. The vector
springs holds all the Spring2D objects. The mass stores the total weight of
the entire soft body. The queue External forces holds all the forces, that act
from the outside on the SoftBodyData object. The function addExternal-
Force() adds these to the queue. An external force consists of a 𝑓𝑜𝑟𝑐𝑒 and
a 𝑖𝑛𝑑𝑒𝑥, that is a index to the Point2D object.

WorldData

This class defines the environment of the simulation and it contains the
variables:

• gravity,
• softBodies,
• borders.
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Figure 4.7: The image shows the important functions and variables of
the implantation of the Simulator, SoftBodyCreator, CollissionHandling and
WorldData class. To save space SoftBodyData is shortened to SBD. Getter
and setter functions are not shown in the image.

The variable gravity is the acting gravity in the environment. It affects all the
active SoftBodyData objects during the simulation. The vector softBodies
hold all the SoftBodyData objects. The vector borders store the borders of
the simulation and it is a plane object (see Fig. 4.7).
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Simulator

This class calculates all the forces and applies them together with the exter-
nal forces to the associated Point2D objects. The class contains the variables:

• method,
• world.

The variable method states the integration method the class uses. The vari-
able world stores a reference of the WorldData object and over it the class
has access to the SoftBodyData objects. This class also holds the integrators,
mentioned in section 3.3.

The function simulate updates the every object in world with the selected
interpolation method. The whole apply functions calculate the forces that
occur during the simulation and apply them to the individual SoftBodyData
objects.

CollisionHandling

The class detects the collisions in the simulation and also reacts to these
collisions. It contains the variables:

• detector,
• collisionAreas,
• world.

The detector is an implementation of the GJK algorithm (see Fig. 4.8). The
vector collisionAreas holds all the detected collisions. The variable world is
a reference to the WorldData object and allows the class to get access to the
SoftBodyData objects. The class contains all sorts of intersection tests, that
are mentioned in section 4.3. The function checkCollisions() calls the two
functions collisionDetection() (broad phase) and collisionHandling (narrow
phase).

In collisionDetection() all the SoftBodyData objects are compared with
each other with the detector. If there is a positive collision the two Soft-
BodyData objects are marked and stored in the collisionAreas vector.

In collisionHandling the points, that are intersecting another are ex-
tracted from a SoftBodyData couple with the point-in triangle test from
section 4.3.5. These points are added to a new shape, that will become the
collision shape. Then, the spring of the SoftBodyData couples are checked
for intersections with the Line-line-intersection test from section 4.3.6. These
intersection points are added to the collision shape as well. It calculates the
area of the collision shape with algorithm from section 4.3.7. The area sets
the base for the separation force. It adds the separation force as an external
force to the SoftBodyData object and the direction of the separation force
face away from the other SoftBodyData object.
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Figure 4.8: The image shows the important functions and variables of
the implantation of the Simulator, SoftBodyCreator, CollissionHandling and
WorldData class. To save space SoftBodyData is shortened to SBD. Getter
and setter functions are not shown in the image.

The collision with the border planes works a bit different. In the begin-
ning of the narrow phase the individual Point2D objects of each SoftBody-
Data object is tested against the border planes with the plane-point-position
test from section 4.3.3. If the point is behind the plane the plane-plane-
intersection test from section 4.4 determines the intersection point. Then
the position of the Point2D object is set to the intersection point and the
velocity is reflected against the normal of the plane.

SoftBodyCreator

The purpose of this class is to automate the creating of SoftBodyData ob-
jects. If offers different functions to create different types of SoftBodyData
objects and adds these to the WorldData. To do so, it stores a reference to
the WorldData object and adds the new SoftBodyData object to it with the
addSoftBody() function of WorldData (see. Fig. 4.7). The class implements
the creation process for a circle shape. The function createCircle2D() call the
three following functions for the creation process. The function createCir-
cle() creats points on the hull of the circle shape and adds thouse points to
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(a) (b) (c)

Figure 4.9: The image on the left (a) shows the soft body with the initial
hull points. The image in the middle (b) shows the springs (red lines) that
connect the hull points. The image on the right (c) shows the structural
springs (red lines) inside the hull with a center point (red circle).

a SoftBodyData object sb (see Fig. 4.9 (a)). The function needs the number
of point p that are on the hull and the radius r of the circle (see Alg. 4.9).
In the next step it calls the function addCircleSpring(). This function adds

Algorithm 4.9: Adds Point2D objects in a circle shape to a SoftBodyData
object.

1: addCircle(sb, 𝑝, 𝑟)
Adds Point2D objects to sb in a circle shape.

2: for 𝑖← 0, . . . , p do ◁ create the requested number of points
3: angle ← 𝑖 · ((2 · 𝜋) / 𝑝)
4: sb.addPoint(𝑟 · sin (angle), 𝑟 · cos (angle))
5: end for
6: end

Spring2D objects to sb and conects the existing Point2D objects (see Fig. 4.9
(b)). Additional to sb, the function also requires the damping coefficient 𝑑
and the elasticity factor 𝑓 of the spring (see Alg 4.10). The last step is to

Algorithm 4.10: This algorithm adds springs between the individual points
to create a circle shape.

1: addCircleSpring(sb, d, f )
Adds Spring2D objects to sb to create the outside hull.

2: 𝑛← length(sb.points)
3: for 𝑖← 0, . . . , 𝑛 do
4: sb.addSpring(𝑖, (𝑖 + 1) % 𝑛, 𝑑, 𝑓)
5: end for
6: end
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Figure 4.10: The soft body, that is used in the test phase of the simulation.
It is the same soft body from section 4.4.2.

add the structural support spring to the inside of 𝑠𝑏 (see Fig. 4.9 (c)). The
function addSupportCenterPoints() does this (see Alg. 4.11).

Algorithm 4.11: This function adds an internal structure to SoftBodyData
object. It works for convex shapes.

1: addSupportCenterPoint(sb, d, f )
Adds a center point to sb and connects it with the hull points.

2: center ← average (sb)
3: 𝑛← sb.getLength() ◁ Get length before adding center
4: sb.addPoint(center)
5: for 𝑖← 0, . . . , n do
6: sb.addSpring (𝑖, 𝑛, 𝑑, 𝑓)
7: end for
8: end

4.5 Project testing
After the implementation, the project is tested to determine what is possible
and where the limits of the simulation are.
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Table 4.1: The table shows the maximum number of soft body elements,
which the simulation is able to handle, before the frames per second drops
below 60. The test was done with collisions and without collisions of the
individual soft body elements. For each test case the scenario was repeated
5 times and the results averaged.

With collision Without coll.

Euler integrator 132 3534
Mid point integrator 72 1817

RK fourth order integrator 36 912

4.5.1 Test object

The test object is a circle with eight hull points and one middle point (see
Fig. 4.10). The section 4.4.2 shows the whole creation process in detail.

4.5.2 Test scenario

The test scenario will push the implementation to its limits and figure out
how many soft body objects it can handle. The setup consists of one border
plane. It functions as a ground where the soft body objects pile up. New
soft body objects spawn above the ground plane and fall towards it and
onto existing soft body objects. New soft body objects are added until the
FPS fall under 60. This test repeats for each integrator (see Sec. 3.3). In the
second test the collision detection between the individual soft body objects
is turned off. The rest of the setup stays the same and the test is repeated
for each integrator.

Test hardware

The test runs on a HP ZBook 15 business laptop with the following config-
uration:

• Operating system: Windows 7 Professional 64-Bit
• Processor : Intel Core i7-4800MQ CPU @ 2.70 GHz
• RAM : 16 GB

4.5.3 Test result

The table 4.1 shows the maximum number of soft body objects with and
without collision detection. The table confirms, what has been mentioned at
the end of section 3.3.6. The Euler integrator manages to handle the most
soft body elements and the Runge Kutter fourth order integrator manages
the least elements. The result also shows, that when the collision between
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(a) (b)

Figure 4.11: The image on the left (a) shows the test scenario with colli-
sions, during the simulation. The soft body objects pile up and the heavier
objects squeeze and deform the lighter ones. This leads to unwanted defor-
mations and a couple of soft body objects fold into itself. This pressure is
also responsible that a couple of soft body objects overlap. The image on the
right (b) shows the test scenario without collisions. The soft body objects
fall towards the ground where the objects swing until they take on a resting
position.

the soft body objects is turned off, the simulation is able to handle way more
elements. This is possibly the reason why soft body simulation is used more
often as an effect simulation, than as a gameplay element.

4.6 Summary
This chapter starts with the selection of the deformation model. It lists
important aspects, on which the selection is based on. It then clarifies the
MVC pattern and how the implementation applies it. The next section fo-
cuses on algorithms, a special focus is on the GJK algorithm. Then it shows
and explains the architecture of the implementation, it goes into detail on
the most important classes. The last section of this chapter describes the
hardware, the test setup and results and explains them. The test proofs the
assumptions, that the Euler integrator is the less resource intensive one of
the three. The comparison between the simulation with and without colli-
sion proves, that simulations without collisions allow an increase of objects.
This fact makes it more attractive to use soft body simulation mainly for ef-
fects, which improves the look and feel of computer games. In the context of
limited resources the realistic deformation simulation is not efficient enough
in comparison to its calculation effort.
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Conclusion

The master’s thesis deals with the topic of soft body simulation and provides
an overview of potential model to achieve it. It evaluates these models in
the aspect of game development and finds a fitting model based on these
aspects. It provides a detailed look into the calculations, that are necessary
to implement a basic soft body simulation. Furthermore, it shows how an
implementation can look like and what kind of algorithms are important.

A drawback of the thesis is, that the 3D part of the implementation is
missing and just the 2D part has been covered. The collision detection and
handling has been more difficult than expected in the beginning and in the
end the 3D part was cut from the project. The view is functional but lacks
in features. This can be avoided by using a game engine like Unreal or Unity.

5.1 Improvements and future work
A possible improvement is to use a parallel computing method. For example
OpenCL or Cuda can be used to calculate the simulation on the graphics
card (GPU). Tzvetomir Vassilev and Roumen Rousev published a paper
in 2008 for a data structure and algorithm, that calculates a mass spring
system on the GPU [8].

Another improvement is to include a adaptive refinement of the mass
spring model described in an article from Hutchinson Dave, Preston Martin
and Hewitt Terry publishd in 1996. In the article they described an approach
to create visually pleasing results for less computation costs [3].

5.2 Personal statement
A debatable point of the implementation is the usefulness of a self imple-
mented soft body simulation, compared to a already existing physic simu-
lation. The size of the project and the motivation of the creator factor into
this a lot. If a project is small and just needs a simple deformation, it may

41
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be too much to include an existing physics engine or to pay the licenses for
one. On the other side, if the project is big, it is a good idea to include a
existing physic engine. Physic simulation can also be very theoretical and
mathematical. This may discourage one or another, but if the resources,
knowledge and motivation is there it is definitely an option.
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