
Unified Push Messaging for Web
Applications

Paul Emathinger

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2015

© Copyright 2015 Paul Emathinger

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, September 28, 2015

Paul Emathinger

iii

Contents

Declaration iii

Abstract vi

Kurzfassung vii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Goals . 2
1.3 Structure . 2

2 Technical Background and Disambiguation 4
2.1 Terminology . 4

2.1.1 User Agent . 4
2.1.2 Web Application . 5
2.1.3 Native Application . 5
2.1.4 Application Server . 5
2.1.5 Push Service . 5
2.1.6 Relay Service . 5
2.1.7 Push Message . 6
2.1.8 Push Subscription . 6
2.1.9 Permission . 6

2.2 Push Messaging . 6
2.2.1 Push Notifications . 7
2.2.2 Request to Sync . 7

3 State of the Art 9
3.1 Existing Systems for Native Platforms 9

3.1.1 Google Cloud Messaging (GCM) 10
3.1.2 Apple Push Notification Service (APNs) 11
3.1.3 Windows Notification Services (WNS) 13
3.1.4 Mozilla Simple Push 14

3.2 W3C PushAPI . 16
3.2.1 Prerequisites . 16

iv

Contents v

3.2.2 How it Works . 16
3.2.3 Browser Support . 17

3.3 IETF WebPush . 18
3.3.1 Planned Protocol . 18
3.3.2 Push Service Support 20
3.3.3 The Problem with Push Services 20

4 New Approach 22
4.1 Overview . 22
4.2 Mapping Device Tokens . 23
4.3 Security Concerns . 24
4.4 Sending Messages . 25
4.5 Authentication . 25
4.6 Mapping requests and responses 26

4.6.1 Delivery Receipt . 27

5 Implementation 28
5.1 User Agent . 28

5.1.1 Custom Browser for Android 28
5.1.2 Plugin Solution for Existing Systems 30

5.2 Push Relay Service . 31
5.2.1 Technology Stack . 31
5.2.2 Application Structure 34

6 Evaluation 37
6.1 Coverage of Webpush Protocol 37
6.2 Ease of Use . 37
6.3 Performance . 38

6.3.1 Latency . 39
6.3.2 CPU load and memory consumption 40
6.3.3 Bandwidth . 41
6.3.4 Rerun Tests . 42

7 Conclusion 46

A Contents of the CD-ROM/DVD 48
A.1 PDF Files . 48
A.2 Images . 49
A.3 Source Code . 49

References 50
Literature . 50
Online sources . 51

Abstract

In contrast to native applications the web is decentralized and runs on mul-
tiple platforms. Bringing programming interfaces from native to the web is
therefore not always simple. For the new Push API, which aims to deliver
push messages for websites, the problem of how to handle different push
services arises. In an ideal world all push services would run the same pro-
tocol, but unfortunately this is not the case. To communicate with multiple
services the code has to be adjusted for each of them. This thesis takes a
look at a way to tackle this problem by adding a new server that exposes a
unified protocol.

vi

Kurzfassung

Im Gegensatz zu nativen Anwendungen organisiert sich das Web dezen-
tralisiert und läuft auf unterschiedlichen Plattformen. Neue Programmier-
schnittstellen Webanwendungen zur Verfügung zu stellen erweist sich daher
nicht immer als einfach. Dies gilt auch für die “Push API”, welche darauf
abzielt push Nachrichten für Webseiten zu ermöglichen. In einem perfekten
Umfeld würden alle Push Dienstleister das gleiche Protokoll zum Versenden
von Nachrichten verwenden, aber dies ist leider nicht der Fall. Um die un-
terschiedlichen Services verwenden zu können bedarf es einer Anpassung des
Codes. In dieser Arbeit wird ein anderer Versuch gestartet dieses Problem
zu lösen indem ein neuer Server zum System hinzugefügt wird, der ein neues
Standard Protokoll unterstützt.

vii

Chapter 1

Introduction

With the invention of the World Wide Web people got a great tool to com-
municate with other people around the world without big effort. This helped
spread ideas within minutes and build friendships that last a lifetime. But
as the web evolved from just displaying text to offer interactive applications
the technology had to adopt as well. With the appearance of the first smart
phones the demand for new capability was higher than ever but the web
responded too slowly and native applications took over the mobile world.
Ever since there were competition between web and native applications [5].

Browser manufacturers did not find the right way to utilize bookmarks
on mobile [16] and operating systems just recently started treating individual
websites more like native apps1. In recent years the web has evolved into
a feature rich application platform by offering better performing rendering
engines and a bigger set of programming interfaces to developers [8].

Most people would argue native applications load faster than web appli-
cations, but this is not true for first time visits. To open a native app for the
first time the app has to be downloaded and installed. This can take several
minutes, while web applications usually load within seconds. While some
installed apps are used on a daily basis, others are only used occasionally.
For booking a flight on an airplane website for example it makes a lot of
sense to ask the user for permissions to show a notification if there are any
changes for the departure time or gate rather than to install an app for this
specific task. To show this notification a new set of browser APIs is currently
in development.

1.1 Problem Statement
Compared to native applications web applications run on multiple platforms
and do not target one specific device group. This has always been a difficult

1GCM introduced Chrome browsertabs in the overview screen with Android 4.0 Lol-
lipop

1

1. Introduction 2

problem for web and browser developers and this new set of APIs makes
no exception. Sending push messages requires good knowledge of the used
system and unfortunately these systems differ a lot. While for native ap-
plications the implementation of one proprietary protocol is still endurable,
web applications have no theoretical limit of protocols to implement. Ev-
ery browser or operating system can use a different solution. Luckily a new
standardized protocol is being developed so one common way can be used
to send push messages. The only problem with it is that already existing
push services will not adopt this protocol on day one and web developers
are therefore either forced to wait to use this feature or still implement the
proprietary solution if the browser allows it.

1.2 Goals
To tackle the problems of multiple needed implementations of proprietary
protocols the new standardized protocol is the only solution. The scientific
hypothesis of this paper is therefore:

How can decentralized push messaging for web applications be
achieved in a standardized way without changing the currently
existing push services?

The proposed solution adds a new server called relay server that exposes the
new protocol and forwards the messages to the proprietary push services.
The application server should notice no big difference sending the message
to the relay server or sending it to a modern standardized push service.
Furthermore, the goal is to do this with a minimum of added latency and
complexity for good scalability.

1.3 Structure
For a better overview this document is structured into several chapters. Al-
though reading the thesis from beginning to end is recommended it is still
possible to read certain chapters only as well if knowledge about the topic
is present. Chapter 2 provides an overview over the technical background
needed to read the rest of the thesis. This chapter is highly recommended
to read for everyone who is new to this topic but it can be also important
for more experienced people because some terms are used in a certain con-
text. Chapter 3 lists existing push services available and provides detailed
information about the new proposed standards and programming interfaces.
Chapter 4 introduces the concept of the new approach and analyzes how cer-
tain problems can be solved. Also examples of how to map some of the most
common push services to the new relay server are stated. Chapter 5 presents

1. Introduction 3

the prototype of the push relay server as well as a browser mockup imple-
mentation to show the usage of the new approach. Chapter 6 evaluates the
developed prototype by testing the coverage of the new protocol, ease of use
for developers and performance in terms of latency time, CPU load, memory
consumption, and bandwidth usage. Also unfinished parts are discussed and
how the prototype could be extended. Chapter 7 sums up discussed prob-
lems and given solution and tries to give a conclusion about the outcome of
this project.

Chapter 2

Technical Background and
Disambiguation

The web is a rapid changing environment with new frameworks, chart li-
braries, and other tools developed every day. Also JavaScript as a language
is changing with new ECMAScript versions coming out each year [17]. Bring-
ing clarity to this massive amount of new terms and features is not always an
easy task, but detailed descriptions can help understand the fundamentals.
However, a certain understanding and knowledge about web development
and IT infrastructure in general is still needed.

2.1 Terminology
This topic may contains confusing terminology. This section will explain
some of the terms to ensure to talk about the same meanings. Most of the
terms have the same meaning as described in the W3C Push API 1 or the
webpush protocol [14]. This thesis also uses the key words “MAY”, “MUST”,
“MUST NOT”, and “SHOULD” as decribed in RFC2119 [4] to indicate how
the implementation should look like. In contrast to RFCs however this has
only minor importance and is therefore not capitalized.

2.1.1 User Agent

The term User Agent refers to a context a web application runs in. In most
cases this is a web browser like Google Chrome, Mozilla Firefox, Microsoft
Edge, Safari or Opera, but it could also be other type of software. For sake of
simplicity all these other devices and software that are able to receive push
messages implemented with the webpush protocol are also included when
using this term.

1w3c Push API Concepts https://w3c.github.io/push-api/#h-concepts

4

https://w3c.github.io/push-api/#h-concepts

2. Technical Background and Disambiguation 5

2.1.2 Web Application

A Web Application is an application running in a web browser. Used tech-
nologies for this kind of software is HTML, CSS and JavaScript. Via the
Push API the developer has the option to register for Push Messaging over
JavaScript. Basically any website can be called web application, because the
term is not officially specified. In most cases however websites that rely on
user interaction rather than on content are more likely to be called web ap-
plications. In contrast to static pages these websites use mostly JavaScript
to manipulate the website to act more like native programs would.

2.1.3 Native Application

Compared to a web application a Native Application is developed for one
particular operating system of device and is deeper integrated in the sys-
tem. Operating system specific gestures and features can be used as well as
a broader variety of APIs. Native applications can be downloaded in appli-
cation stores or installed manually with the package file. The programming
language of the application depends on the operating system requirements.

2.1.4 Application Server

An Application Server is a server that processes requests, stores data, and
delivers the web application. This server is owned or rented by the website
operator and serves as the backend of the application. This is also the server
that usually requests the delivery of push messages. Many programming
languages for servers are available with JavaScript, PHP, ASP.NET, Java,
Perl, Phyton and C being only some of them. In this thesis code examples
for the application server are however only available in JavaScript so no
mixture of languages is present.

2.1.5 Push Service

A Push Service has the job to deliver a push message sent from the ap-
plication server to the user agent in a timely fashion. The Google Cloud
Messaging (GCM) or Apple Push Notification Service are examples for cur-
rently active push services. These services are highly optimized for a high
number of incoming requests. GCM alone expects to deliver 25 trillion mes-
sages in the year 2015 and is currently serving 1.1 million requests every
second [36].

2.1.6 Relay Service

Relay Service is the name of the developed prototype. It describes the general
system in comparison to Relay Server that describes a specific server the

2. Technical Background and Disambiguation 6

relay service runs on. Although it is possible to run the relay service on
multiple servers this thesis usually assumes the relay service is running on
a single server with one or more instances.

2.1.7 Push Message

A Push Message is data sent from the application server to the web ap-
plication. With the new webpush protocol the contents of the message are
encrypted by the application server and decrypted by the user agent. When
a request is sent the message is contained in the body of the request and
because it is encrypted the content type text/plain is used. Current push
services however also allow to send data with JSON without encryption.
The size of these contents are in any case limited by the push service.

2.1.8 Push Subscription

A push subscription is a message delivery context established between the
user agent and the push service. A web application requests a subscription
by calling the Push API of a service worker. A push subscription has an
associated endpoint in form of a uniquely identified URL exposed by the
push service where the application server can send push messages to. All
Push Messages are re-associated with a single subscription.

2.1.9 Permission

The term Permission refers to the act a user has to fulfill to allow the
application to use certain features. Some native application systems ask
upfront for all permissions whereas web applications ask at runtime. In case
of the Push API the user has to approve the permission before a push
message can be sent. This permission can be revoked at any time by the
user.

2.2 Push Messaging
Push Messaging is used to send data from a server to a client. Traditionally
it is only possible to have a communication between these two parties if
the client sends a request to the server, because only the server has a static
IP and in most cases a domain associated with it. The client changes the
IP, especially on mobile devices, quite frequently and does not listen for
incoming requests.

Some applications however rely on updates to be as quickly as possible.
To achieve this the application could constantly send requests to the server
and ask for updates. Many applications doing this at the same time would
result in multiple requests running at all time and consequently draining

2. Technical Background and Disambiguation 7

computing time and energy. Especially for mobile devices with limited bat-
tery life this is an immense issue [2].

To tackle this problem Push Services have been introduced. The client
establishes one performance optimized connection to a Push Service. Other
servers can now send data to the Push Service where it is forwarded to
the client. In this way only one constant connection has to be held and all
applications can send messages from the server to the client without the
need of even having the application itself running.

2.2.1 Push Notifications

Sometimes Push Messaging gets confused with Push Notifications. However
Push Notifications only display data in a notification in response to a Push
Message. The look of this notification is defined by the operating system.
Most commonly a headline and an informative line are presented next to an
icon. In Android Lollipop notifications from web applications additionally
have a button for settings to make it easier for the user to turn this feature
off. See Figure 2.1 for an example notification.

Push Notifications are frequently used in messaging applications where
only a small amount of data is updated. This form of displaying information
is nonetheless not the only way to deal with incoming data.

2.2.2 Request to Sync

A request to sync is basically a Push Message containing only some bytes
with the information for the client to sync with the server as soon as possible,
because there is new data available. This can be used when bigger updates
are needed, for example a news application adding a new article.

It can also make sense to request data from the server and show a noti-
fication afterward. With this approach the web application makes sure that
the user gets to see the expected result after clicking on the notification.
There would otherwise be cases where the notification gets delivered when
the connection state is good, but the user clicks on it later on when the
connection may be gone. In this case he would end up seeing a “404 - not
available” page or something similar, but not the desired content.

2. Technical Background and Disambiguation 8

Figure 2.1: Notification from a web application on android. In contrast to
regular notifications a button for quick access to the settings is available.
Image frame generated with Android Device Art Generator [18].

Chapter 3

State of the Art

Fortunately there is a new programming interface in development1 that
should offer a solution to some of these problems by introducing a Ser-
viceWorker [12]. Similar to a SharedWorker [7] a ServiceWorker runs in a
new thread, but it can also intercept all network traffic from the website
and serve local files instead. This is done in a programmatic way, so devel-
opers have better control. ServiceWorkers are not bound to a specific site
and don’t even need the website or the browser to be running to be called.
This functionality is used to wake the ServiceWorker up as soon as a new
push message arrives in order to send a notification or update the cache.

As of mid 2015 web push messaging is still under development and will
need some more time to land in all major browsers with a final standard. The
drawback of the web as a platform is that progress is sometimes slow, because
there are many different browsers and operating systems they are running
on. To not end up with different solutions there are two standardization
groups that are both working on a proposal for different parts.

The World Wide Web Consortium (W3C)2 is an international commu-
nity working together to develop new Web standards. This group is mainly
concerned about the front end part of the new standard. The draft they are
working on is called “Push API”.

The Internet Engineering Task Force (IETF) is a community working on
protocol standards and informational documents [1]. They created a Work-
ing Group called “WebPush” with the goal to develop a protocol for the
communication between application server and push service.

3.1 Existing Systems for Native Platforms
To compare this new API with existing technologies this section will sum up
how the most popular services work. Push services for mobile devices are not

1as of early 2015 in W3C Editors Draft
2http://www.w3.org/Consortium/

9

http://www.w3.org/Consortium/

3. State of the Art 10

a new invention. BlackBerry started off in 2003 with instant push emails [19].
Since then it has gone a long way and is by far not email exclusive anymore.
Every major mobile operating system nowadays has their own push service
and app developers are required to use them. To compare all existing systems
a closer look at the most common systems is necessary.

3.1.1 Google Cloud Messaging (GCM)

Google Cloud Messaging is used for the Android operating system and was
first featured in Android 2.2 under the name “Android Cloud to Device
Messaging” (C2DM) [20]. At Google’s annually developer conference Google
I/O 2015 they announced support for iOS as well.

The Procedure of getting GCM to work on Android devices is rather
simple. First a registration on the Google Developer Console is required
where a project is set up and an API key is generated. This API key is used
in the authorization header for every message sent. A HTTP 1.1 POST
request for sending a message looks like the following example from the
Google developers website [21].

1 Content-Type:application/json
2 Authorization:key=AIzaSyZ-1u...0GBYzPu7Udno5aA
3
4 {
5 "to" : "APA91bHun4MxP5egoKMwt2KZFBaFUH-1RYqx...",
6 "data" : {
7 ...
8 },
9 }

The Device ID used in the “to” property is a 183 byte string with letters A
to Z, both lower and uppercase, as well as numbers 0 to 9 and lower dash,
dash and backslash. The data property holds custom information for the
device to show a notification or update the data model. In total the payload
of the whole message is limited to 4kb for data messages.

For only displaying notifications on the user agent the “notification”
property with values for “body” and “title” can be used instead of the data
property. This will show a notification instantly and is limited to 2kb pay-
load.

1 {
2 "to" : "APA91bHun4MxP5egoKMwt2KZFBaFUH-1RYqx...",
3 "notification" : {
4 "body" : "great match!",
5 "title" : "Portugal vs. Denmark"
6 }
7 }

3. State of the Art 11

There are several other predefined properties that can be set. The “regis-
tration_ids” property can be used to send push messages to multiple re-
cipients at once to improve performance of sending a lot of messages. The
“collapse_key” identifies notifications and groups all with the same key into
one collapsed notification. Although GCM usually delivers messages immedi-
ately it could be that the device is turned off, offline or otherwise unavailable.
In this case the “delay_while_idle” property specifies whether to send the
message later or not. In some cases with a short time of importance it can
be better to not show a notification afterward. For example a traffic jam
alert is not of importance after a couple of hours while the default waiting
time would be 4 weeks. With the “time_to_live” property the expiration
date for a message can be set even more precisely.

If the HTTP status of the response is 200 the message is processed
successfully. A status 200 does however not tell if the message is delivered
to the device or not, but additional information about the status of the
message can be found in the body of the response.

1 { "multicast_id": 108,
2 "success": 1,
3 "failure": 0,
4 "canonical_ids": 0,
5 "results": [
6 { "message_id": "1:08" }
7]
8 }

If the message is sent or stored successfully the counter of the success item
increases and an object with “message_id” is added to the result array. If
there is also a property with “registration_id” the registration id in the
database should be updated with this new value. On an error the “mes-
sage_id” property is not present but instead an error property is. All errors
are listed in Table 3.1. A detailed description is shown on the Google devel-
opers website [22].

3.1.2 Apple Push Notification Service (APNs)

Apple’s push service was launched with iOS 3.0 and added to Mac OS X
later. Getting started is more complex than with GCM, because a payed
developer account is required to even test push messaging. Also setting up
push messaging is harder because Apple has a different security concept
that verifies the sender of each message with a certificate. This certificate is
gained after the registration when a new one is generated for your account
and must be used in every request. Apple calls this layer “connection trust”.
Another layer they call “token trust” assures the message is delivered to
the right device. This happens in a similar way as in GCM with a 64 byte

3. State of the Art 12

Table 3.1: Google Cloud Messaging error codes

HTTP Code + Response Error
200 + error:MissingRegistration Missing Registration Token
200 + error:InvalidRegistration Invalid Registration Token
200 + error:NotRegistered Unregistered Device
200 + error:InvalidPackageName Invalid Package Name
401 Authentication Error
200 + error:MismatchSenderId Mismatched Sender
400 Invalid JSON
200 + error:MessageTooBig Message Too Big
200 + error:InvalidDataKey Invalid Data Key
200 + error:InvalidTtl Invalid Time to Live
5xx or 200 + error:Unavailable Timeout
500 or 200 + error:InternalServerError Internal Server Error
200 + error:DeviceMessageRateExceeded Device Message Rate Exceeded
200 + error:TopicsMessageRateExceeded Topics Message Rate Exceeded

hexadecimal encoded string that is obtained by the device after registration
with APNs. The payload of a notification can contain any kind of informa-
tion in JSON format, but must contain the “aps” property with at least one
of the following items:
alert A message to display to the user in form of a notification.
badge A number next to the app icon.
sound A sound of the app bundle to play.
content-available If set to 1 the message is silent, meaning no notification

is shown. This is the equivalent to data messages of GCM.
All other properties of the JSON payload can be used to send up to 2kb
data in total.

1 {
2 "aps" : {
3 "alert" : {
4 "title" : "Game Request",
5 "body" : "Bob wants to play poker"
6 },
7 "badge" : 5,
8 },
9 "foo" : "bar",

10 "foo2" : ["bang", "whiz"]
11 }

3. State of the Art 13

Table 3.2: APNs response status codes

Status code Description
0 No errors encountered
1 Processing error
2 Missing device token
3 Missing topic
4 Missing payload
5 Invalid token size
6 Invalid topic size
7 Invalid payload size
8 Invalid token
10 Shutdown - server closed connection (e.g. maintenance)
255 None (unknown)

Another big difference to GCM is the way of sending data from the applica-
tion server to the push service. Instead of a POST request a streaming TCP
socket design is used. Each push message is sent in one frame and aside from
the payload also the device token, notification identifier, expiration date and
priority have to be set.

In comparison to http response codes APNs uses only one byte status
codes. Table 3.2 lists all possible status codes as also shown on the Apple
developer website [23].

3.1.3 Windows Notification Services (WNS)

Up to 2014 Microsoft used two different services for push messaging. Mi-
crosoft Push Notification Service (MPNS) was used for mobile devices while
Windows Notification Service (WNS) was used for desktop applications.
Technically MPNS can still be used but just works as a shim for WNS,
meaning it forwards all messages to WNS [38]. Therefore this chapter just
covers the new universal solution (WNS).

To get started with WNS the app must be registered on the Windows
Store Dashboard where a Package Secure Identifier (SID) and a secret key
is generated. Each app has an own set of credentials. On first start of the
app a channel URL can be requested. This channel URL can be compared
to the GCM device ID or the APNs device token with the identifying token
set as parameter of the URL. The URL is used as the target for sending
push messages. Microsoft states on their developer website [24] that URLs
expire after 30 days and should be updated in the database on every start
of the app.

3. State of the Art 14

For authentication WNS uses OAuth 2.0 3. First a HTTP 1.1 request to
the microsoft live login is made with the credentials from setting up the app
on the Windows Store Dashboard as seen in the example below.

1 POST /accesstoken.srf HTTP/1.1
2 Content-Type: application/x-www-form-urlencoded
3 Host: https://login.live.com
4 Content-Length: 211
5
6 grant_type=client_credentials&client_id=ms-app

-1-15-...-650196962&client_secret=Vex8L9WOFZuj7XyoDhLJc7
&scope=notify.windows.com

The response to this request includes an access_token that has to be used
when sending a push message until it expires. For sending payload WNS
uses the XML format with a size limit of 5000 bytes.

1 POST https://cloud.notify.windows.com/?token=
AQEbU2fSjZOCvRjjpILow HTTP/1.1

2 Content-Type: text/xml
3 X-WNS-Type: wns/tile
4 Authorization: Bearer Fv4Ck10UrKNmtxRO6Njk2MgA=
5 Host: cloud.notify.windows.com
6 Content-Length: 24
7
8 <body>
9

The header field X-WNS-Type can be set to one of four predefined values.
wns/badge creates an overlay over the tile on the homescreen.
wns/tile updates the content text of a tile.
wns/toast displays a notification.
wns/raw sends custom payload without a visual action.

Other available header fields are X-WNS-Cache-Policy for cache settings,
X-WNS-RequestForStatus for requesting the connection status of the device,
X-WNS-TTL to specify when a message expires, and some more that can
be found on the Microsoft developer website [25].

For response codes WNS uses only HTTP status codes as described in
Table 3.3.

3.1.4 Mozilla Simple Push

Mozilla also got an own push service for their Firefox OS platform. Firefox
OS is based on web technologies so this approach is quite similar to the now

3http://oauth.net/2/

http://oauth.net/2/

3. State of the Art 15

Table 3.3: WNS response status codes

Status code Description
200 OK The push message was accepted
400 Bad request One or more headers specified incorrectly
401 Unauthorized OAuth token invalid
403 Forbidden Not allowed to send to this recipient
404 Not Found Chanel URI not valid or found
405 Method Not Allowed Invalid method (GET, CREATE)
406 Not Acceptable Throttle limit reached
410 Gone The channel expired
413 Request Entity Too Large Payload exceeds 5000 byte size limit
500 Internal Server Error Internal failure caused to fail delivery
503 Service Unavailable The service is currently not available

developed solution and Mozilla wants to adopt the webpush protocol and
PushAPI as soon as they are recommended standards4. For now Mozilla
implemented only a limited service in terms of functionality.

To enabled push messaging for a Firefox app the property “push” has to
be set in the permissions of the manifest file as well as a message property
that indicates the page that will receive the push events.

In the app the device has to register to get an endpoint in form of an
URL with a token inside. This is, as in the other services, sent to the server
and stored until a message should be sent.

1 var req = navigator.push.register();
2
3 req.onsuccess = function(e) {
4 var endpoint = req.result;
5 // send endpoint to server
6 }

To receive events an event listener for push is attached.

1 window.navigator.mozSetMessageHandler('push', function(e) {
2 // display notification or do something else
3 });

If a push subscription expires a “push-register” event is fired and a new
registration should be fulfilled.

To send a push message from the application server a PUT request to the
endpoint has to be made. A custom payload is not accepted, only a version

4See Mozilla Developer Network website for more information: https://developer.
mozilla.org/en-US/docs/Web/API/Simple_Push_API.

https://developer.mozilla.org/en-US/docs/Web/API/Simple_Push_API
https://developer.mozilla.org/en-US/docs/Web/API/Simple_Push_API

3. State of the Art 16

number can be passed in the body of a message. The server responds with
HTTP status code 200 or 202 if the message was accepted and a HTTP
error message with detailed information in JSON if the sending failed.

3.2 W3C PushAPI
The PushAPI is a JavaScript programming interface that is usable by de-
velopers on the front end of the applications, meaning in the context of a
browser.

3.2.1 Prerequisites

To use push messaging for web applications developers have to use Ser-
viceWorkers and Web App Manifests. On an explanation page on Github5

Alex Russell, one of the W3C editors of the ServiceWorker draft, explains
ServiceWorkers like this:

The ServiceWorker is like a SharedWorker in that it:

• Runs in its own global script context (usually own thread)
• Isn’t tied to a particular page
• Has no DOM access

Furthermore Russell writes about the necessity of HTTPS and its event-
driven nature, meaning it can terminate when it is not in use and be woken
up when needed. Also a SericeWorker can run without any page as well and
has a defined upgrade model.

The Web App Manifest6 is usually just a JSON7 file with some meta
information about the web application. This is mainly used for pinning a
website to the homescreen on mobile devices. The manifest states what the
name should be and how the icons should look like.

3.2.2 How it Works

To receive push messages the user has to give permissions. In Chrome for
Android this is done by confirming a dialog appearing on the bottom of the
screen while the app is active. The user has the options to either block or
allow the app to send notifications (as shown in Figure 3.1). After receiving
the permissions a call to the new Push API [6] can be made to get a regis-
tration id and an endpoint URL indicating the location of the push service.

5https://github.com/slightlyoff/ServiceWorker/blob/master/explainer.md
6http://www.w3.org/TR/appmanifest/
7JavaScript Object Notation http://json.org

https://github.com/slightlyoff/ServiceWorker/blob/master/explainer.md
http://www.w3.org/TR/appmanifest/
http://json.org

3. State of the Art 17

Figure 3.1: Facebook asking for permissions to send notifications. Image
frame generated with Android Device Art Generator [18].

This information is now sent to the application server where the web appli-
cation is hosted to store it. This server can now send push messages to the
push service when need, where it is forwarded to the device.

3.2.3 Browser Support

Google Chrome, Mozilla Firefox and Opera are showing enthusiasm for Ser-
viceWorkers and therefore push messaging. However only Chrome has a
working first implementation for the PushAPI with limited functionality as
of version 40. Details and current status for each part of the API can be
found at a website called “is ServiceWorker ready?” [26].

A polyfill8 is unfortunately not possible, because a ServiceWorker is com-
pletely new concept that no other existing web technology can recreate.

Despite the lack of current support it can be expected that other vendors
will implement this functionality if it becomes a success.

8A polyfill is a piece of code that imitates a missing functionality that the browser
would usually provide.

3. State of the Art 18

3.3 IETF WebPush
To deliver messages from the application server to the Push service a uni-
form protocol is necessary. Otherwise developers would have to implement
a different solution for every available Push service and keep all of them
up to date. This protocol is developed by a working group of the Internet
Engineering Task Force with members from Mozilla, Google, Microsoft and
many more big companies. The goal is to find a simple solution for sending
messages in realtime and at the same time minimizing the amount of addi-
tional information that is revealed to the push service as described in the
charter of the working group [27].

3.3.1 Planned Protocol

The main players of this new protocol [14] are the web application running
on the client device, the user agent in which context the application runs, the
push service, and the application server (definitions for these terms can be
found in section 2.1). To initialize the process the web application requests
to subscribe for push messages on the user agent, which sends a HTTP/1.1
POST request over the network to the push service. The responded sub-
scription is the base for the following interaction. It consists of an endpoint
URL which indicates the location where future messages should be sent to, a
link header [9] for receiving push receipts and a location for retrieving push
messages.

1 HTTP/1.1 201 Created
2 Date: Thu, 11 Dec 2014 23:56:52 GMT
3 Link: </p/JzLQ3raZJfFBR0aqvOMsLrt54w4rJUsV>;
4 rel="urn:ietf:params:push"
5 Link: </receipts/xjTG79I3VuptNWS0DsFu4ihT97aE6UQJ>;
6 rel="urn:ietf:params:push:receipt"
7 Location: https://push.example.net/s/LBhhw0OohO-

Wl4Oi971UGsB7sdQGUibx
8 Cache-Control: max-age:864000, private

The user agent stores the location header and does not reveal it to any other
party. The endpoint for sending push messages and requesting receipts are
sent to the application server where they are usually stored in a database
for future usage as seen in Figure 3.2.

For requesting a push message delivery the application server needs to
send a HTTP/1.1 POST request to the stored endpoint (see Figure 3.3) with
the message in the body of the request. The push service then forwards it
to the device and further to the user agent with HTTP/2 server push [3]. In
comparison to existing push services this method relies on standard HTTP
requests rather than XMPP or websockets to make the implementation eas-
ier.

3. State of the Art 19

Figure 3.2: Simplified subscription process of the webpush protocol pro-
posal.

Figure 3.3: Simplified sending process of the webpush protocol proposal.

Security

Security concerns are one major topic in the process of designing this pro-
tocol. Not at last because of recent scandals. Therefore all network commu-
nication must use HTTP over TLS [11]. This however does not protect the
messages from being read by the push service. The solution to this problem
is End-to-end encryption. This additional security is accomplished by an
asynchronous key pair that is generated on subscription by the user agent.
The public key is then sent to the application server whereas the private

3. State of the Art 20

key remains secret and is not even exposed to the web application. When
the application server wants to send a message it encrypts the body of the
message with the public key and sends it to the push service. The message
is decrypted by the user agent and handed over to the web application.

The authorization to send a message to a certain subscriber is given by
knowledge of the capability URL [13]. With a high enough complexity of
at least 120 bits of random entropy the URL is almost impossible to guess.
For further confidentiality the push service can implement an authorization
based on a HTTP-compatible method.

Aggregation

Although delivery of the same message to a large number of recipients is a
common feature in push services the current proposal of the protocol does
not offer a solution for this problem. This is because end-to-end encryption
is used individually for each recipient with a different key. A different ag-
gregated channel would have to be created and is in discussion already, but
the first version of the draft will not include it.

Receipts

To allow seeing the state of a sent push message, the protocol includes
receipts. When a message is sent to the push service a receipt URL is received
in response. This URL can be used by the application server to subscribe
for receipts by sending a HTTP/2 GET request. Once the status changes
the push service can respond with a status code. The code 410 is used if the
message got delivered to the device and is now “gone” from the push service.
To ensure an unmitigated delivery to the app, the user agent acknowledges
a message after successful decryption.

3.3.2 Push Service Support

Currently no push service fully supports this new protocol because it is still
under development, but Google is working on a prototype implementation
[28]. They also mentioned to implement it requiring some sort of sender
authentication [29]. Employees of Mozilla and Microsoft are also contributing
a lot to the current draft, so it is likely9 to see an implementation soon.

3.3.3 The Problem with Push Services

This protocol is the critical part of the whole API, because there are already
a lot of different Push services and all of them have different proprietary
protocols. In theory the new protocol sounds great, but until the protocol

9Mozilla Bugzilla report about Push API can be found here https://bugzilla.mozilla.
org/show_bug.cgi?id=1038811.

https://bugzilla.mozilla.org/show_bug.cgi?id=1038811
https://bugzilla.mozilla.org/show_bug.cgi?id=1038811

3. State of the Art 21

is finished and all push servers offer this protocol a lot of time will pass and
there is no guarantee all push servers will even implement it at all. Until
then browers that offer the PushAPI will probably rely on their existing
proprietary protocol as Google Chrome currently does. To solve this problem
a new approach is necessary.

Chapter 4

New Approach

Existing solutions matured over time and are used by thousands of apps.
Alone GCM delivers messages to 1.5 billion devices [36]. A radical change to
the new webpush protocol is therefore highly unlikely. Push Services need to
implement the new protocol as a second channel, but this could take some
time. An intermediate or even long term solution for this problem could
be to introduce another server in between that handles the authentication
to the proprietary PushService. This relay server offers an API with the
webpush protocol. With the help of it the sender does not need to know
which push service it is talking to and just send a POST request to the
URL it got as endpoint. All traffic for web applications would run over
this relay service, therefore performance and scalability plays an important
role. Key contributors for bad performance and added latency are access to
databases and waiting for other network requests. Also a big amount of kept
alive connections can slow down servers. To guarantee good performance
this relay service should not persist any data and use the push services in
an efficient way with as few kept alive connections as possible.

4.1 Overview
Instead of only three for push messaging a fourth player is introduced as
shown in Figure 4.1 with this new approach. This relay server is strate-
gically best located close to the push service, because it will be the main
communication partner. To offer such a relay service some requirements have
to be fulfilled. This solution can for example not be used as a third party
shim, but has to be implemented by the user agent itself, because it is the
one registering and providing the endpoint URL, so it needs to know the lo-
cation of the relay service. It would however also be possible to let the push
service implement the relay and return the relay endpoint on device regis-
tration. This paper has a focus on the first of these options. Technically this
approach can be used with any push service, but for sake of simplicity this

22

4. New Approach 23

Figure 4.1: A new server is added to the system. This server can also be
integrated in the push service.

paper deals only with GCM, APNs and WNS. An example implementation
for GCM is shown in Chapter 5.

4.2 Mapping Device Tokens
The user agent still uses the proprietary push service to subscribe for mes-
sages (see Figure 4.2). In return to this initial request usually some kind of
token is received. The webpush protocol states in Section 8.3:

Encoding a large amount of random entropy (at least 120 bits)
in the path component ensures that it is difficult to successfully
guess a valid capability URL.

All three tested push services fulfill this requirement, but in the case of WNS
the token consists of a full URL with the origin “sin.notify.windows.com”.
The actual token is set as the “token” parameter of the request. There are
several ways to tackle this problem. If the origin never changes the token can
be extrapolated from the URL and used instead. The origin is stored in the
relay service. However sometimes the origin changes for different subscrip-
tions because of different push service locations or load balancing reasons.
If the origins are static and all are known it is possible to use different relay
service instances for each of them with different URLs or ports. For dynam-
ically generated origins it makes sense to encode the whole URL and use it
as token. The relay service has to decode it later and send the push messages
to the according URL instead of using a static push service location.

4. New Approach 24

Figure 4.2: Subscribing with a relay service does not change much on first
sight, but the device tokens have to be changed.

Once the token generation is done it is added to the base relay server
origin path, set as new endpoint URL, and handed over to the application.
The application then sends this data to the application server where it is
stored in a database.

4.3 Security Concerns
According to the webpush protocol each push subscription is bound to a
user agent generated encryption key. Although none of the three tested push
services however offer a mechanism like this, encryption can still be applied
because it is used independently of the push service. Therefore the user agent
just needs to make sure to generate a key pair. The public key is then sent
to the server along with the endpoint URL and stored in the database. All
push messages for this user agent are encrypted with this key. This ensures
that push services cannot read the data sent in the messages. Because of
this End-to-End Encryption there is not a big risk of introducing another
server in the middle, because no sensitive data is exposed. However the relay
service still needs to be trusted, because it has knowledge of the capability
URLs and is therefore technically authorized to send messages. It cannot
send different data or alternate its content because the decryption of the
message would fail and the message would not be handed over to the web
application. Still it could send the same message over and over again and
start a DDOS attack on the push service that has to deliver the messages.
This could either result in availability problems of the push service or lead
to a ban of the original sender or web app in general.

4. New Approach 25

Figure 4.3: Sending a push message with a relay service.

4.4 Sending Messages
To send messages the application server uses the stored public key to encrypt
the message and transmits it to the also stored endpoint URL with the
standardized request as shown in Figure 4.3.

1 request({
2 'method': 'POST',
3 'url': endpoint,
4 'body': encryptedMessage
5 })

The relay service reacts to the incoming request by sending a request to the
push service with a proprietary protocol and authentication and responds to
the initial request according to the response of the push service. The push
service handles the message as usual and delivers it to the device as soon as
possible.

4.5 Authentication
As described in Section 3.3 the sole knowledge of the endpoint allows the
application server to send messages, because the entropy of the URL is too
high to guess. Some push services however will need further authentication
by requiring developers to sign up and use some sort of key to authenticate
the sending application server. How this authentication looks like in detail
is not directly specified in the current version of the webpush protocol draft
but it is stated in Section 8.3:

4. New Approach 26

A push service MAY choose to authorize requests based on any
HTTP compatible authorization method available, of which there
are numerous options.

GCM already uses a HTTP-compatible authorization method for their first
version of the implementation by setting the “Authorization” header. This
approach is also used for the prototype where the header is read and just
passed along. For WNS the sender has to retrieve a bearer token via OAuth
2.0 first and also set it as Authorization header. APN on the other hand
uses a completely different method by uploading certificates. This cannot be
accomplished with a HTTP-compatible authorization method, so instead the
relay service itself has to authorize using a certificate and let the application
servers send messages without additional authorization. This of course can
result in a ban of the relay service quickly because of too many messages
if there are too many websites sending messages at the same time or a
denial of service attack happens. This problem can be worked around by
running multiple relay server instances with different certificates, but this
also increases cost and complexity of the system.

4.6 Mapping requests and responses
To use existing push services their API has to be mapped to work with
the webpush protocol. A specific call for a proprietary operating system
functionality cannot be considered, instead only the data channel of existing
push services is used, because via the PushAPI it is possible to specify in
the ServiceWorker which action (e.g. show a notification) should take place.
Other OS specific actions (e.g. badges, tiles, toasts, ...) should be shown via
JavaScript APIs.

The response codes can be matched quite easily to webpush as shown
in Tables 4.1 and 4.2. Only APN lacks the direct response of expired token
which is quite important to create no redundant requests when trying to send
messages to non existent devices. For this functionality APN got a “Feedback
Service” that is used to get information about expired registrations. The
feedback service should be queried once a day and returns a list of expired
tokens. Implementing this in the relay service would not be a big problem,
but violate the performance rules set. To know expired tokens is however
necessary and therefore an exception to the rule should be made. In the end
only a list of tokens needs to be stored. Once the application server tries
to send a message to one of these tokens a 410 response is sent and the
token is deleted. It is then the application server’s responsibility to delete
the registration. A problem exists if the application server does not delete
the token and use it again.

4. New Approach 27

Table 4.1: Mapping GCM responses to webpush

Description GCM webpush
Success 200 +message_id 201
Invalid token 200 +error:NotRegistered 404
Expired token 200 +registration_id 410
Payload too large 200 +error:MessageTooBig 413
Rate Exceeded 200 +error:DeviceMessageRateExceeded 406
Invalid TTL 200 +error:InvalidTtl 400
Internal Server Error 500 or 200 +error:InternalServerError 500
Method not allowed - 405

Table 4.2: Mapping APNs and WNS responses to webpush

Description APNs WNS webpush
Success 0 200 201
Invalid token 2, 5 or 8 404 or 403 404
Expired token - 410 410
Payload too large 7 413 413
Rate Exceeded - 406 406
Invalid TTL - 400 400
Internal Server Error 1, 10 or 255 500 500
Method not allowed - 405 405

4.6.1 Delivery Receipt

Webpush however also includes the option of push message receipts. This is
used to ensure the message is properly delivered. GCM does not support this
feature in basic HTTP downstream, but another method of GCM does. The
GCM “Cloud Connection Server” (CCS) uses the XMPP protocol and can
send delivery receipts over a persistent XMPP connection. However CCS
is limited to 100 connections per sender and the results would need to be
stored if the application server requests the receipts later. This plays against
the performance goals of the relay service and cannot be implemented in this
way.

APN and WNS do not have any direct receipt functionality implemented
either. This issue does not allow a full mapping of webpush to existing push
services, but the core functionality is still given. Furthermore an acknowl-
edgment can also be made by the app itself with a request to the application
server.

Chapter 5

Implementation

A relay service can only be used in conjunction with a corresponding user
agent. This constraint is given because the user agent needs knowledge about
the relay service to adopt the endpoint URL. In this example Google’s push
service GCM is used in conjunction with a custom browser running on the
Android operating system. In similar ways this approach could easily be
used for other operating systems.

5.1 User Agent
To represent the standardized format how push messaging registrations
should be handled the user agent has to register to a push service. For
native applications this represents a fairly common procedure and detailed
instructions and examples for this can be found online. On Android a library
has to be included in the project and the API Key needs to be specified in
a configuration file. The connection with the push service is handled by the
operating system itself and not by the app. This means the app does not
register for push messages at the push service directly, but has to ask the
operating system to subscribe for push messages. In contrast to native apps
web applications do not talk to the operating system directly, but to the
browser first. The browser then acts as a regular native app and registers
the web application at the push service. This means a website cannot “poly-
fill” a push service by adding a library if there is no existing underlying
implementation of the user agent.

5.1.1 Custom Browser for Android

The user agent has to know the location of the relay service to hand the
correct URL to the web application. To test the approach with a relay service
a new browser is needed (see Figure 5.1). The easiest way to create an app

28

5. Implementation 29

that works like a browser is to use Apache Cordova™1, which is a native
shell for web application that exposes a set of device APIs to JavaScript
and runs the application in a sandboxed webview. Other frameworks use
similar techniques [10] and would also be possible to use for this project but
the big community around Apache Cordova simplifies error detection and
usage of third party plugins. It also allows to develop applications with web
technologies and publish them to native app stores and look like a native
application. This is possible by rendering the website in a webview without
any URL bar or controls. The numerous plugins available expose otherwise
not accessible device functions to the web application. Two of these which
are used in this prototype are called “InAppBrowser” and “gcm”.

Apache Cordova Plugins

The plugin “InAppBrowser” is used to work like a basic web browser with
an editable URL status bar. The original version of the plugin is designed to
offer a preview of a website within an app without giving the possibility to
change to URL. It is used for sign-in forms and quick preview of newspaper
articles. For this prototype however the status bar needs to be editable
and therefore the plugin had to be adopted by creating fork of the main
repository and changing parts of the code. This fork can be found on a
Github repository [30].

Usually Cordova applications use local HTML files to show content and
whitelist all external calls, because otherwise all websites would have access
to the Cordova API and therefore all permissions the app got granted on
installation. The InAppBrowser provides a save context where websites can
run without access to these developer interfaces. For the prototype websites
will however need access to one of these interfaces. The gcm plugin provides
access to the Google Cloud Messaging service over a proprietary API. To
register for push messages the register function has to be called inside the
app.

Whenever a new site loads in the InAppBrowser a piece of JavaScript is
injected that sets the endpoint and therefore exposes parts of the original
API. This could all be done in a more elegant way by modifying the open
source chromium browser to let it provide the new endpoint itself, but for a
prototype this solution is sufficient. The only drawback of this approach is
the delay it takes until the script is successfully injected into the website.

Push API Mock

Webviews lack the support of ServiceWorkers and can therefore not offer the
API needed for subscribing for push messages, therefore it has to be imitated
by mocking ServiceWorker and PushManager registration. Also receiving

1https://cordova.apache.org/

https://cordova.apache.org/

5. Implementation 30

Figure 5.1: Custom browser based on Apache Cordova. Image frame gen-
erated with Android Device Art Generator [18].

push messages inside the application would not be possible because this can
only happen inside a ServiceWorker according to the Push API. To still see
a result the contents of the push message are sent to the application where
a notification can be shown.

5.1.2 Plugin Solution for Existing Systems

Chrome announced partial support for push messages in version 42. How-
ever, the messages are still sent over the regular GCM API and not with the
new webpush protocol. On registration the browser returns the proprietary
endpoint for GCM. This endpoint consists of a location from which the push
server is reachable. To use the relay service the token has to be extracted
by the plugin and added to the relay server location as shown in Figure 5.2.
This plugin solution won’t work in user agents that do not support push
messaging, because the registration and connection is still handled by the
user agent itself.

5. Implementation 31

https://android.googleapis.com/gcm/send/ APA91bHI5gSx3pE2...cAzbEXSxQJwMQtYnKbsMs

tokenpush server location

https://paulem.eu/~/gcm-relay/p/ APA91bHI5gSx3pE2...cAzbEXSxQJwMQtYnKbsMs
relay server location

Figure 5.2: Plugin based solution changes server URL.

5.2 Push Relay Service
The push relay service is the main focus of the implementation, because the
performance relevant parts happen here. With an enormous high number of
incoming requests this service needs to perform perfectly without sacrificing
too many features of the proposed webpush protocol. As described in chap-
ter 4 a way of achieving this performance is to avoid using databases and
CPU intensive tasks. Luckily CPU critical operations like encryption and de-
cryption take place on the application server and user agent and databases
were be avoided in this approach.

5.2.1 Technology Stack

Choosing the right tools for a project is the key for getting good performance.
A well working technology stack does not only utilize the best programming
language but also its best libraries and features.

Language Comparison

While some programming languages are designed to do CPU intensive cal-
culation others perform well in networking operations. Some are known for
a good community while others offer long term support for enterprise cus-
tomers. To find the best fit for a relay service a small benchmark setup with
different langsuages is revealing the strengths and weaknesses clearly.

In this test the popular web server languages GO, Java, JavaScript
(node.js), PHP, Python and Ruby are compared in a setup that simulates
the relay server by forwarding an incoming POST request to another service.
This other service also runs locally and waits 100ms the respond. In combi-
nation with a high number of concurrent requests this creates congestion on
the tested systems. It is important to note that all test servers are deliber-
ately kept small (maximum 60 lines of code) and do not use any framework
or libraries. Performance of some of these tests could dramatically increase
with the right tools in use or further code optimizations. Therefore the cap-
tured data should provide only an approximate value about strengths and
weaknesses of the according languages. Detailed information on how to rerun

5. Implementation 32

Figure 5.3: Success rate of requests on different levels of concurrency.

tests on a different system and where to find the code for this benchmark
can be found in Section 6.3.4.

The tests start of with a concurrency of one and rise up to 200. While
some programming languages queue the incoming amount of requests others
drop requests because of an overfull buffer as shown in Figure 5.3. Python
drops the first request at concurrency of 9 and almost stops serving requests
afterward. The same effect applies for Java where requests start to drop at 30
concurrent requests. The other languages have considerably less problems
with a first decrease of the success rate at around 120 parallel requests.
JavaScript and Ruby did not even drop a single request during the test and
are therefore clear winners.

However, another view at the collected data reveals some even more
interesting results. While comparing the success rate is one major factor for
good performance another one is the time the requests need to be processed.
In Figure 5.4 the request per seconds in conjunction with concurrency are
compared. Although Ruby was able to process all incoming requests it could
only handle five at a time. This means some requests at a concurrency of
100 took as long as 20 seconds. Java and Python behave similar by steadily
increasing the requests per second but lack far behind GO, JavaScript or
PHP. While GO starts to perform best the dropped requests are noticeable
at 130 parallel requests where also PHP starts to have problems. JavaScript
shows no drops of requests per second with a mean average duration of only
414ms per request at a concurrency of 200. This means the JavaScript server
did not even reach its limits in this benchmark and therefore suits perfectly
for a prototype implementation of a relay server.

5. Implementation 33

Figure 5.4: Request per second language comparison. Go, PHP, and
JavaScript start off with similar characteristics but only JavaScript keeps
a constant performance.

Node.js

To run JavaScript on a server node.js2 is used. It has good scaling charac-
teristics for real-time networking applications as also other tests show [15].
Node.js uses Google’s V8 engine for JavaScript interpretation and just-in-
time compilation (JIT). To extend the basic JavaScript functionality node of-
fers core modules for accessing the file system and operating system functions
as well as cryptography libraries and much more. Compared to JavaScript
in the browser in node.js there is no DOM available and therefore the DOM
API is neither. Also node.js uses a simple module loading system for better
separation of concerns instead of including all files. This can contribute to a
better code overview as dependencies are included with a require statement
at the beginning of the file.

Although it is a relatively new runtime with its first release in 2009 big
companies like ebay [31] and Walmart [37] are using it already in parts of
their websites. Because of the asynchronous event driven nature of JavaScript
an incoming request does not block other requests. This allows node.js to
run in a single thread and use less memory than other multi-threaded frame-
works. JSON manipulation is no problem with JavaScript and the problem of
bad CPU intensive performance of node.js is made less relevant by reducing
the complexity of the program.

2https://nodejs.org/

https://nodejs.org/

5. Implementation 34

Modules

Furthermore, node.js offers a rich ecosystem of modules available via the
node package manager (npm). This project uses “restify” for setting up a
“Representational State Transfer” (REST) http server which is later used
as endpoint for push messages. Also used are “request” for simple http re-
quests, “minimist” for reading command line inputs and “pem” to generate
self signed certificates if non is set via the command line interface. The
certificates are necessary because the server runs on SSL to provide bet-
ter security. Although the actual content of the message is encrypted by
the application server with a separated key the meta information about the
message sent in the header as well as the registration token in the URL
should be encrypted as well.

5.2.2 Application Structure

To send the request to GCM the registration key needs to be set in the “to”
property and the content of the request body in a nested data property, be-
cause there are only certain properties allowed. Web push messages just use
the data channel which is used by the data property inside of the general data
property. The TTL header can be mapped directly to the “time_to_live”
property and “dryrun” is used only for testing.
59 request({
60 'method': 'POST',
61 'headers': {
62 'Content-Type': 'application/json',
63 'Authorization': req.headers.authorization
64 },
65 'uri': 'https://android.googleapis.com:443/gcm/send',
66 'json': true,
67 'body': {
68 'to': req.params.id,
69 'data': {
70 'data': req.body
71 },
72 'time_to_live': req.headers.ttl,
73 'dry_run': dryRun
74 }
75 }, function (err, resService, resBody) {

The server uses if and switch statements to map the response from GCM
to the webpush protocol. First a check is made for any internal errors like
network errors. In the webpush protocol it is not defined which status to send
in this case but status 500 seems appropriate. The detailed error description
is not set as body of the message for security reasons. The error should

5. Implementation 35

however be logged and frequently observed, because the push service could
for example ban the IP of the relay server.

77 if (err) {
78 return res.send(500);
79 }

Next the status code of the response is tested. If the code is not 200 there
could be a chance of an invalid registration. In this case a 404 is returned,
indicating the subscription could not be found and should be deleted on the
application server. Otherwise the same status code is sent. This should be
rarely the case, because GCM handles errors in the response body rather
than in the status. Sending a status that is not specified in the webpush
protocol could lead to some discrepancy but is still more informative than
sending an Internal Server Error status.

81 if (resService.statusCode !== 200) {
82 if (resService.statusCode === 400 && resBody.indexOf('

INVALID_REGISTRATION') !== -1) {
83 return res.send(404);
84 }
85 return res.send(resService.statusCode);
86 }

If there were no erros so far the JSON response body can be examined. Is the
success property set to 1 the message was processed by the push server and a
201 response can be sent. Only the “registration_id” field has to be checked.
If it is set, there is a new registration id available and the old one should be
discarded. There is no such process in the webpush protocol, but setting the
expiration header to 0 should indicate that this registration is expired and
a new registration is needed. The application server is in charge of deleting
the subscription from its database and requesting a new subscription from
the application.

88 if (resBody.success === 1) {
89 if (resBody.results[0].registration_id) {
90 res.set('Expires', '0');
91 }
92 return res.send(201);
93 }

Finally if the success property was not set to 1 the error property of the
result is mapped to the status code of the webpush protocol. By doing so
some errors have to be merged because the protocol does not support them
and therefore information is lost. By adding the detailed information to the
body of the response it can be preserved and developers can at least see the
reason in the server logs.

5. Implementation 36

95 switch (resBody.results[0].error) {
96 case 'NotRegistered':
97 case 'MissingRegistration':
98 case 'InvalidRegistration':
99 res.send(404);

100 break;
101 case 'MessageTooBig':
102 res.send(413);
103 break;
104 case 'InvalidTtl':
105 res.send(400);
106 break;
107 case 'DeviceMessageRateExceeded':
108 case 'TopicsMessageRateExceeded':
109 res.send(406);
110 break;
111 case 'InternalServerError':
112 case 'InvalidDataKey':
113 case 'Unavailable':
114 default:
115 res.send(500, resBody.results[0].error);
116 }

Chapter 6

Evaluation

To evaluate how good this prototype performs and if it actually makes sense
it is important to keep the goals in mind. Web developers should be able to
use the new standard faster to make development easier, without having to
change the code later on if the push service fully supports the protocol. The
problems about who has to implement this relay service however remains.
Only browser manufacturers themselves are able to do this but it can be a
huge benefit for them as well because they can have a low cost alternative
to make the new API available without having to implement their existing
solution for native applications again for the web. With the approach de-
scribed in this thesis they can test the response of developers and see if it is
worth the effort to develop a complete solution.

6.1 Coverage of Webpush Protocol
An important role of the relay approach is to behave as closely as possible
like an actual implementation of the push protocol from the view of the
application server and web application. The biggest problem are receipts,
because current push services do not offer similar methods. This could re-
sult in problems for developers if they rely on this feature to be available,
because in the webpush protocol it is stated as required and not optional.
The browser vendor has to make this clear to the developers. If they know
about the absence of this feature a simple if statement would be enough to
detect a not exiting push-receipt header. To make this even more obvious to
developers a new header could be set indicating that the application server
is talking to a relay service and therefore functionality is limited.

6.2 Ease of Use
The new protocol will reduce the amount of code and complexity a lot and
will bring more developers to use this energy saving method of sending mes-

37

6. Evaluation 38

sages to devices. In the best case developers would have to implement the
protocol once without bothering about differences between different push
services. In real life this will however not be completely true, because com-
panies like Google already announced to require authentication to use the
service, so developers still need to differentiate between them. A common
way to do so is by scanning the endpoint URL for certain words. In a sample
endpoint that looks like this

1 https://android.googleapis.com/gcm/send/APA91bHDsiWcJT50...

it would make sense to search for the appearance of the first part of the
string without the token to set the the authorization header.

1 var GCM_URL = 'https://android.googleapis.com/gcm/send';
2 var GCM_AUTH = 'key=AIzaSyCjwXopyMFOpL0C5SOzvKdC9U3hVe2LZ';
3
4 var authorization;
5 if(endpoint.indexOf(GCM_URL) === 0){
6 authorization = GCM_AUTH;
7 }
8 request({
9 'method': 'POST',

10 'url': endpoint,
11 'content-type': 'text/plain;charset=utf8',
12 'headers': {
13 'Authorization': authorization
14 },
15 'body': message
16 }, function (error, response, body) {
17 // ...
18 });

This URL is hence hardcoded into application and difficult to change. This
has to be considered when offering a temporary solution with a relay service.
If the authentication method or key changes a different URL has to be chosen
as well so the if statement does not match any more. The same is valid for
the opposite: If the authentication method and key stay the same, the URL
should stay the same as well to not require an additional statement. This
can be accomplished by adding a different sub path.

1 https://android.googleapis.com/gcm/send/relay/APA91bHDsi...

6.3 Performance
Node.js is known as a high performance framework for applications with
high numbers of requests and little needed CPU intense calculations. To

6. Evaluation 39

test the performance of the relay service actual requests are sent to GCM
with the flag “dryrun” set to true so the push messages are not processed by
Google, but still a real status message is returned. This way actual latency
and load can be measured without risking to get a “Rate Exceeded Error”
while testing.

As a test setup for the relay server a virtual server from hosteurope
is used [32]. It runs on two virtual cores with 4GB RAM and 100Mbit/s
guaranteed peak bandwidth. As operating system Ubuntu 12.04.5 LTS is
used. This system is deliberately chosen to be relatively low powered com-
pared to commonly used hardware in production systems to easier discover
bottlenecks and weaknesses of the application.

6.3.1 Latency

Some applications have tight time constraints and require the delivery of
push messages to be as fast as possible or otherwise the push message is not
of importance any more. One case would be a call app in which a message
about an incoming call should be sent as quickly as possible. An additional
relay server in the middle adds additional latency to the whole process,
because one more request has to be made.

To measure this added time a computer on another location sends re-
quests to the relay server as well as to GCM directly and measures the
difference in time it takes to get a response. On a production system a high
amount of requests can be expected. To simulate this load concurrent re-
quests are sent. The test starts with one and measures until 50 simultaneous
requests. For every step of this test 100 requests per concurrency are sent
and stored. Out of these results a mean average is calculated and plotted in
combination with the number of concurrency as shown in Figure 6.1.

The results show an expected small increase of latency with the relay
service but it is not a significant increase and even with higher concurrency
there is no additional latency added. In total 127.500 requests were sent
with an error quote of 0.13% (502 Gateway errors) and on average 47ms
added delay. For most applications this is not easily distinguishable from
the regular sending.

Another test measures the time added from the application server to the
device. This test is what is going to be most relevant for real time applica-
tions but at the same time it is harder to measure because the application
server and the device clock need to be in sync. With the Network Time
Protocol (NTP) this can be accomplished but even rooted Android devices
do not get synced to a server highly accurate. To solve this problem all re-
quests got normalized so the slowest request takes 100 milliseconds and all
others are relative to this one. The important part in this test is not the
time it takes in general but the delta time between the two approaches. 1000
requests are sent to both the relay service and GCM directly and the time

6. Evaluation 40

Figure 6.1: Latency comparison of relay service and plain GCM requests
with different concurrency and mean average of 100 requests per concurrency.

is measured until the message arrives in a sample Corodova Phongap app.
The time of the requests are grouped into segments of 10ms and plotted
on chart as shown in Figure 6.2. While plain GCM performs overall better
with a mean average of 184ms compared to 257ms of the relay service not a
huge difference is visible. The better Google servers perform more reliably
than the cheap relay service but this problem could be solved because push
service providers have the possibilities to put the relay service on the same
location as the push service to further reduce the latency to a minimum.

6.3.2 CPU load and memory consumption

Push services have to handle a big load of requests and servers can therefore
be very expensive. The next test is aimed to monitor CPU load on a high
number of concurrent requests as well as memory consumption. One request
is sent to the relay service at the beginning and gradually more are added
until a concurrency of 80 is reached. The CPU load, shown in Figure 6.3
quickly climbs up to around 70% beginning at 20 concurrent requests, but
as the latency test shows it has no significant impact on time usage. The
whole test averages a CPU load at 63 percent with a peak at 97. Node.js is
single threaded and uses only one CPU core. It is easy to run more instances
to use the other cores because no session states have to be stored.

Memory consumption is always low because no state has to be stored.
In Figure 6.4 a constant value between 140 and 160MB can be seen. With
an average of 147MB the process uses little memory and therefore a high
number of instances can run on the same server.

6. Evaluation 41

Figure 6.2: End to end latency comparison of relay service and plain GCM
requests normalized to 100ms for the lowest request.

Figure 6.3: CPU load of the tested system.

6.3.3 Bandwidth

As CPU load and memory consumption don’t seem to be of a big problem
the bottleneck is more likely to be the network itself. A single request can
have a maximum payload of 4.096 bytes, but not a high amount of request
will use all of it. It is rather likely to send a request to sync which only uses
few bytes. A theoretical average of 100 bytes payload per request should

6. Evaluation 42

Figure 6.4: Memory consumption of the tested system.

be applicable. A full request including an authorization header with a 100
byte payload would be around 200 bytes depending on other set headers
and length of the endpoint URL. This may not seem a lot but with a high
amount of requests the limit is quickly reached if the servers are not very
powerful. A solution for this bottleneck is to integrate the relay service into
the existing push service to use the bandwidth of it and forward messages
over the internal network.

6.3.4 Rerun Tests

The measured results only reflect one single tested server and can vary highly
with different hardware. All tests can be found in the project added to
this thesis or on Github [33]. Requirements for testing are a free Google
Developer account, a server for running the relay prototype and computer to
send the requests. For testing latency to the device an Android smartphone
is needed. All tests are written in node.js and use the module “loadtest”
[34] to create requests and “usage” [35] to monitor CPU load and memory
consumption. To run these tests the relay prototype must be available on
a remote server. This can be confirmed by opening the root location in
a browser. If the message “Relay server running” appears in the browser it
started successfully. Furthermore, all tests need some adoption of parameters
as described in the according README files in the test directories.

6. Evaluation 43

Return Latency

For this test the relay service has to run with the flag “dryrun” to not
actually send the messages to the tested device. The test can be started by
entering the following commands:

1 cd tests/returnLatency
2 node index.js

. This will send requests to GCM and the relay service and save the results
in the results.json file. Not only the mean latency of all requests but also
detailed information about statistical percentiles can be found as well as the
error rate of the requests.

Device Latency

This test is a more complex version of the simple return latency test and
measures the time between sending the message from the application server
and receiving the message on the device. In this case the “dryrun” flag on
the relay service needs to be disabled so messages are sent.

Additionally to sending requests to the relay service and GCM directly
the time has to be measured on the device as well as on the sending com-
puter. Therefore they should be in sync as described in section 6.3.1. On
Windows, Linux or MacOS these tasks can be accomplished rather easily,
but on Android this takes root access. It is however also sufficient to sync
them to roughly have the same time and normalize the data afterwards.

On the Android device a Cordova Phonegap application has to be in-
stalled which registers on GCM and prints the registration token. The send-
ing computer can then be connected to the phone to inspect the application
with Chrome device inspector to copy the registration token as well as the
gathered data afterward. The copied token has to be inserted into the send-
ing script to finish the setup process.

Once these steps are done the sending script can be started by entering
the commands

1 cd tests/deviceLatency
2 node ./applicationServerTest/sendPush.js

. This will send 1000 request to the relay service and GCM directly and save
the results in a local variable on the phone. This variable can then be copied
with the device inspector to a file called results.json. To better sort the data
a script called mapResults.js can be run which will store the mapped data
in mappedResutls.json for further evaluation.

CPU and Memory

To measure CPU load and memory consumption the test is split into two
different locations again. One part is the measurement of the CPU and

6. Evaluation 44

memory on the relay server and the other one is sending the requests and
storing how many concurrent requests were sent at a certain time. The
“dryrun” flag should be turned off for this test because a high amount of
requests (up to half a million) are sent to GCM.

First the index file must be started on the relay server to monitor the
system and store the results in a file every minute. Then the local computer
can start sending the requests be initiating the sendLoad script with

1 cd tests/cpuRam
2 node sendLoad.js

which results in logs appearing in the console informing about the status
of the test. This test can take up to an hour to finish and once it is done
the monitor script on the relay should not be stopped immediately but after
the next automatic save of the file. This saved file with name results.json
should then be copied to the local computer where it can be mapped with
the timetable by running the map.js script to combine to CPU and memory
data with the request intensity.

Bandwidth

Testing the bandwidth cannot be easily done in node.js and requires to use
other tools to monitor the system. In Ubuntu for example the command
“iftop” can be used to measure incoming data. On the local computer load
is sent by calling

1 cd tests\bandwidth
2 node index.js

to the relay server. The test can be aborted when sufficient data was col-
lected.

Language Comparison

As discussed in chapter 5.2 the programming language comparison shows
a clear outcome. To rerun the benchmark all the tested languages (GO,
Java, Node.js, PHP, Python and Ruby) need to be installed in the newest
version. In the folder “tests languages” all implementations as well as the
tools needed to run the test can be found. First the endpoint server needs
to be started by running the command

1 cd tests\lanuages
2 node _endpoint\index

on the project root. Next the language specific server needs to be started
by running the proper command in the language directory. For GO the
command go run index.go is used while for all other languages the run
keyword is removed. PHP has to be treated a bit differently because it

6. Evaluation 45

requires an Apache server to run and to adopt the URL to send POST
requests to in the file tests\languages\load_index.js. Note that only
one language can be tested at a time. To finally run the test enter the
command

1 node tests\languages_load\index

and the script will start to send requests. When finished the data is written
in a file called “results.json”.

Chapter 7

Conclusion

As I started with the research what topic to write my thesis about, it was
clear I wanted it to have something to do with new web technologies and
new ways to create better mobile web experiences, because compared to
native the web still lags behind on mobile devices. Not only statistics but
also my personal experience showed this. As I was creating slides for a talk
about good mobile websites and their native counterparts I realized that even
I, a web developer, had dozens of apps installed that had really good web
applications as well. I was asking myself about why this is a case and quickly
I realized that notifications are a big part of the problems web applications
have. So I tried to create my own push systems with websockets and native
apps that would act as a push service, but got to the limits of the operating
system or the browser context quite fast.

After further research I found out about the w3c push API and read
everything I could find about it. At this time (August 2014) there was not
a lot to find though, but I found out about the IETF webpush protocol
and joined their working group. The problem I had with all this work was
the slow progress. Not only the progress of the protocol itself, but also the
insights that for example Apple has no people working on it. This showed
me that it would take several years before this technology could be used
for a broad audience and I wanted to do something about it. As part of
my research and development of the prototype I participated in the 93rd
IETF meeting in Prague and got to know the other people working on the
standard and got some good feedback about my work.

The webpush protocol is a great idea and developers should have the
chance to use it as quickly as possible. A relay service helps to speed up
that process but browser producers still need to show commitment to even
want to offer this API. The relay service makes most sense for browsers that
do not have their own push service running in the OS and want to make the
webpush API available although the used push service does not allow it. In
this case there is no way to change the existing push service but a solution

46

7. Conclusion 47

would be to offer a relay service that looks like it supports the protocol. The
cost of the relay service would not be high as the performance evaluation
shows. Probably the biggest problem with the relay service however is the
lack of push receipts. In the actual implementation it should be evaluated
again if it is possible to add this feature for given operating system and
used push service and if the performance would decrease too much because
of it. Also the webpush encryption mechanism should be implemented in a
production environment which is missing in this prototype.

Appendix A

Contents of the
CD-ROM/DVD

Format: CD-ROM, Single Layer, ISO9660-Format

A.1 PDF Files
Pfad: /

Emathinger_Paul_2015.pdf Master thesis with instructions (entire
document)

Pfad: /OnlineSources
ECMA-262.pdf [17]
DeviceArtGenerator.pdf [18]
BlackBerryHistor.pdf . [19]
Android2.pdf [20]
GCM.pdf [21]
GCM-errors.pdf [22]
apns.pdf [23]
wns.pdf [24]
wns2.pdf [25]
sw.pdf [26]
charter.pdf [27]
webpush-demo.pdf . . . [28]
webpush-auth.pdf . . . [29]
cordova-inapp.pdf . . . [30]
ebay.pdf [31]

48

/
Emathinger_Paul_2015.pdf
/OnlineSources
ECMA-262.pdf
DeviceArtGenerator.pdf
BlackBerryHistor.pdf
Android2.pdf
GCM.pdf
GCM-errors.pdf
apns.pdf
wns.pdf
wns2.pdf
sw.pdf
charter.pdf
webpush-demo.pdf
webpush-auth.pdf
cordova-inapp.pdf
ebay.pdf

A. Contents of the CD-ROM/DVD 49

hosteurope.pdf [32]
gcm-relay.pdf [33]
loadtest.pdf [34]
usage.pdf [35]
gcm-stats.mp4 [36]
walmart.mp4 [37]
channel9.mp4 [38]

A.2 Images
Pfad: /images

*.ai Original Adobe Illustrator files
*.png Rendered images

A.3 Source Code
Pfad: /source

relay.zip Source code and tests of the developed
prototype

hosteurope.pdf
gcm-relay.pdf
loadtest.pdf
usage.pdf
gcm-stats.mp4
walmart.mp4
channel9.mp4
/images
*.ai
*.png
/source
relay.zip

References

Literature
[1] H. Alvestrand. A Mission Statement for the IETF. RFC 3935. Internet

Engineering Task Force, 2004. url: http://www.ietf.org/rfc/rfc3935.txt
(cit. on p. 9).

[2] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun
Venkataramani. “Energy consumption in mobile phones”. In: Proceed-
ings of the 9th ACM SIGCOMM Conference on Internet Measurement
Conference - IMC ’09 (2009), p. 14. url: http://www.scopus.com/
inward/record.url?eid=2-s2.0-84877730481%5C&partnerID=tZOtx3y1
(cit. on p. 7).

[3] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer Protocol
Version 2 (HTTP/2). RFC 7540. Internet Engineering Task Force,
2015. url: http://www.ietf.org/rfc/rfc7540.txt (cit. on p. 18).

[4] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels.
RFC 2119. Internet Engineering Task Force, 1997. url: http://www.
ietf.org/rfc/rfc2119.txt (cit. on p. 4).

[5] Andre Charland and Brian LeRoux. “Mobile Application Develop-
ment: Web vs. Native”. In: Communications of the ACM 54.5 (2011),
pp. 49–53 (cit. on p. 1).

[6] Eduardo Fullea and Bryan Sullivan. Push API. W3C Working Draft.
W3C, Apr. 2015. url: http://www.w3.org/TR/2015/WD-push-api-
20150427/ (cit. on p. 16).

[7] Ian Hickson. “Web Workers - W3C Candidate Recommendation 01
May 2012”. 2012. url: http://www.w3.org/TR/workers/ (cit. on p. 9).

[8] Mehdi Jazayeri and Navid Ahmadi. “End-user programming of web-
native interactive applications”. In: Proceedings of the 12th Interna-
tional Conference on Computer Systems and Technologies - CompSys-
Tech ’11 (2011), pp. 11–16 (cit. on p. 1).

[9] M. Nottingham. Web Linking. RFC 5988. Internet Engineering Task
Force, 2010. url: http://www.ietf.org/rfc/rfc5988.txt (cit. on p. 18).

50

http://www.ietf.org/rfc/rfc3935.txt
http://www.scopus.com/inward/record.url?eid=2-s2.0-84877730481%5C&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84877730481%5C&partnerID=tZOtx3y1
http://www.ietf.org/rfc/rfc7540.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/2015/WD-push-api-20150427/
http://www.w3.org/TR/2015/WD-push-api-20150427/
http://www.w3.org/TR/workers/
http://www.ietf.org/rfc/rfc5988.txt

References 51

[10] Arno Puder, Nikolai Tillmann, and Michał Moskal. “Exposing native
device APIs to web apps”. In: Proceedings of the 1st International Con-
ference on Mobile Software Engineering and Systems - MOBILESoft
2014 (2014), pp. 18–26 (cit. on p. 29).

[11] E Rescorla. HTTP Over TLS. RFC 2818. Internet Engineering Task
Force, 2000. url: http://www.ietf.org/rfc/rfc2818.txt (cit. on p. 19).

[12] Alex Russel and Jungkee Song. “Service Workers - W3C Working Draft
18 November 2014”. 2014. url: http : / / www . w3 . org / TR / service -
workers/ (cit. on p. 9).

[13] Jeni Tennison. Good Practices for Capability URLs. W3C Working
Draft. W3C, Feb. 2014. url: http ://www.w3.org/TR/2014/WD-
capability-urls-20140218/ (cit. on p. 20).

[14] M. Thomson, E. Damaggio, and B. Raymor. “Generic Event Delivery
Using HTTP Push”. 2015. url: https://tools.ietf.org/html/draft-ietf-
webpush-protocol-00 (cit. on pp. 4, 18).

[15] Stefan Tilkov and Steve Vinoski. “Node.js: Using JavaScript to build
high-performance network programs”. In: IEEE Internet Computing
14.6 (2010), pp. 80–83 (cit. on p. 33).

[16] Chad Tossell et al. “Characterizing web use on smartphones”. In: Pro-
ceedings of the 2012 ACM annual conference on Human Factors in
Computing Systems - CHI ’12 (2012), pp. 2769–2778 (cit. on p. 1).

Online sources
[17] url: http://www.ecma- international.org/ecma-262/6.0/ (visited on

09/09/2015) (cit. on pp. 4, 48).
[18] url: https://developer.android.com/distribute/tools/promote/device-

art.html (visited on 09/09/2015) (cit. on pp. 8, 17, 30, 48).
[19] url: http://www.bbscnw.com/a-short-history-of- the-blackberry.php

(visited on 08/07/2015) (cit. on pp. 10, 48).
[20] url: http : / / developer . android . com / about / versions / android - 2 . 2 -

highlights.html (visited on 09/09/2015) (cit. on pp. 10, 48).
[21] url: https://developers.google.com/cloud-messaging/server (visited on

09/09/2015) (cit. on pp. 10, 48).
[22] url: https://developers.google.com/cloud-messaging/server-ref#error-

codes (visited on 09/09/2015) (cit. on pp. 11, 48).
[23] url: https : / / developer . apple . com / library / ios / documentation /

NetworkingInternet / Conceptual / RemoteNotificationsPG / Chapters /
CommunicatingWIthAPS.html (visited on 09/09/2015) (cit. on pp. 13,
48).

http://www.ietf.org/rfc/rfc2818.txt
http://www.w3.org/TR/service-workers/
http://www.w3.org/TR/service-workers/
http://www.w3.org/TR/2014/WD-capability-urls-20140218/
http://www.w3.org/TR/2014/WD-capability-urls-20140218/
https://tools.ietf.org/html/draft-ietf-webpush-protocol-00
https://tools.ietf.org/html/draft-ietf-webpush-protocol-00
http://www.ecma-international.org/ecma-262/6.0/
https://developer.android.com/distribute/tools/promote/device-art.html
https://developer.android.com/distribute/tools/promote/device-art.html
http://www.bbscnw.com/a-short-history-of-the-blackberry.php
http://developer.android.com/about/versions/android-2.2-highlights.html
http://developer.android.com/about/versions/android-2.2-highlights.html
https://developers.google.com/cloud-messaging/server
https://developers.google.com/cloud-messaging/server-ref#error-codes
https://developers.google.com/cloud-messaging/server-ref#error-codes
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/CommunicatingWIthAPS.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/CommunicatingWIthAPS.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/CommunicatingWIthAPS.html

References 52

[24] url: https : / / msdn . microsoft . com / en - us / library / windows / apps /
hh913756.aspx (visited on 09/09/2015) (cit. on pp. 13, 48).

[25] url: https://msdn.microsoft.com/en-us/library/windows/apps/xaml/
hh868245.aspx (visited on 09/09/2015) (cit. on pp. 14, 48).

[26] url: https://jakearchibald.github.io/isserviceworkerready/ (visited on
09/09/2015) (cit. on pp. 17, 48).

[27] url: https://datatracker.ietf.org/doc/charter-ietf-webpush/ (visited on
09/09/2015) (cit. on pp. 18, 48).

[28] url: https : / / docs . google . com / document / d /
1kDVLMddPJL6iHLJ6QuqNFc1D5X9rASx0PfDd1llxUE4 (visited
on 09/09/2015) (cit. on pp. 20, 48).

[29] url: https ://github.com/webpush- wg/webpush- protocol/ issues/44
(visited on 09/09/2015) (cit. on pp. 20, 48).

[30] url: https://github.com/paul-em/cordova-plugin-inappbrowser (visited
on 09/09/2015) (cit. on pp. 29, 48).

[31] url: http://www.ebaytechblog.com/2013/05/17/how-we-built-ebays-
first-node-js-application/ (visited on 09/09/2015) (cit. on pp. 33, 48).

[32] url: https://www.hosteurope.de/en/Server/Virtual-Server/Advanced/
(visited on 09/09/2015) (cit. on pp. 39, 49).

[33] url: https : / / github . com / paul - em / push - relay - gcm (visited on
09/09/2015) (cit. on pp. 42, 49).

[34] url: https : / / github . com / alexfernandez / loadtest (visited on
09/09/2015) (cit. on pp. 42, 49).

[35] url: https://github.com/arunoda/node-usage (visited on 09/09/2015)
(cit. on pp. 42, 49).

[36] Google I/O 2015 - Google Cloud Messaging 3.0. 2015. url: https :
//www.youtube.com/watch?v=gJatfdattno (cit. on pp. 5, 22, 49).

[37] Node.js at Walmart: Introduction. 2013. url: https : //www. joyent .
com/developers/videos/node-js-at-walmart-introduction (cit. on pp. 33,
49).

[38] Notification Platform Development on Windows. 2014. url: https://
channel9.msdn.com/Events/Build/2014/2-521 (cit. on pp. 13, 49).

https://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh868245.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh868245.aspx
https://jakearchibald.github.io/isserviceworkerready/
https://datatracker.ietf.org/doc/charter-ietf-webpush/
https://docs.google.com/document/d/1kDVLMddPJL6iHLJ6QuqNFc1D5X9rASx0PfDd1llxUE4
https://docs.google.com/document/d/1kDVLMddPJL6iHLJ6QuqNFc1D5X9rASx0PfDd1llxUE4
https://github.com/webpush-wg/webpush-protocol/issues/44
https://github.com/paul-em/cordova-plugin-inappbrowser
http://www.ebaytechblog.com/2013/05/17/how-we-built-ebays-first-node-js-application/
http://www.ebaytechblog.com/2013/05/17/how-we-built-ebays-first-node-js-application/
https://www.hosteurope.de/en/Server/Virtual-Server/Advanced/
https://github.com/paul-em/push-relay-gcm
https://github.com/alexfernandez/loadtest
https://github.com/arunoda/node-usage
https://www.youtube.com/watch?v=gJatfdattno
https://www.youtube.com/watch?v=gJatfdattno
https://www.joyent.com/developers/videos/node-js-at-walmart-introduction
https://www.joyent.com/developers/videos/node-js-at-walmart-introduction
https://channel9.msdn.com/Events/Build/2014/2-521
https://channel9.msdn.com/Events/Build/2014/2-521

Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

Breite = 100 mm
Höhe = 50 mm

— Diese Seite nach dem Druck entfernen! —

53

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Problem Statement
	Goals
	Structure

	Technical Background and Disambiguation
	Terminology
	User Agent
	Web Application
	Native Application
	Application Server
	Push Service
	Relay Service
	Push Message
	Push Subscription
	Permission

	Push Messaging
	Push Notifications
	Request to Sync

	State of the Art
	Existing Systems for Native Platforms
	Google Cloud Messaging (GCM)
	Apple Push Notification Service (APNs)
	Windows Notification Services (WNS)
	Mozilla Simple Push

	W3C PushAPI
	Prerequisites
	How it Works
	Browser Support

	IETF WebPush
	Planned Protocol
	Push Service Support
	The Problem with Push Services

	New Approach
	Overview
	Mapping Device Tokens
	Security Concerns
	Sending Messages
	Authentication
	Mapping requests and responses
	Delivery Receipt

	Implementation
	User Agent
	Custom Browser for Android
	Plugin Solution for Existing Systems

	Push Relay Service
	Technology Stack
	Application Structure

	Evaluation
	Coverage of Webpush Protocol
	Ease of Use
	Performance
	Latency
	CPU load and memory consumption
	Bandwidth
	Rerun Tests

	Conclusion
	Contents of the CD-ROM/DVD
	PDF Files
	Images
	Source Code

	References
	Literature
	Online sources

