
Semi-Automatic Parameterization of
Relevant Video Regions in

Surveillance Images

Benjamin Fellner

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2014

© Copyright 2014 Benjamin Fellner

All Rights Reserved

ii

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, September 29, 2014

Benjamin Fellner

iii

Contents

Declaration iii

Kurzfassung vii

Abstract viii

1 Introduction 1
1.1 Problem definition . 2
1.2 Expected end result . 3

2 Related work 6
2.1 Automotive features . 6
2.2 Generic system . 7

2.2.1 Image pre-processing 8
2.2.2 Feature extraction . 8
2.2.3 Model fitting . 9
2.2.4 Time integration . 10
2.2.5 Image to world correspondence 10

3 Alternative approaches 12
3.1 Color segmentation . 12
3.2 Texture-based segmentation 14
3.3 Watershed segmentation . 15
3.4 Hough transform . 17
3.5 Vanishing point detection . 19

3.5.1 General detection . 20
3.5.2 Detection in image space 21
3.5.3 Problems and conclusion 23

4 Road marker detection 27
4.1 Thresholding . 28
4.2 Region labeling . 29
4.3 Detection algorithm . 30
4.4 Merging algorithm . 31

iv

Contents v

4.5 Challenges . 34

5 Incremental image warping principle 37
5.1 One image line as a discrete 1D-signal 38
5.2 Transformation of a single image line 40
5.3 Algorithms . 40

5.3.1 Incremental image warping 41
5.3.2 Road detection . 42

5.4 Relative and absolute transformation 42
5.5 Correlation between normal and transformed space 43
5.6 Results . 43

6 Comparing two image lines 48
6.1 L2 norm score . 49
6.2 L2 norm score with a weighting line 50

6.2.1 Weighting line on positions 50
6.2.2 Weighting line from the image 51

7 Image line matching as an optimization problem 56
7.1 General definition . 57
7.2 Local problem definition . 57

7.2.1 Prediction enhancement 58
7.2.2 Line offset restriction 59

7.3 Global problem definition . 60
7.4 Solving the optimization problem 61

7.4.1 Brute-force method . 61
7.4.2 Derivative-free methods 62

8 Results and challenges 64
8.1 Challenges and solutions . 64

8.1.1 Other image structures 64
8.1.2 Image errors and black lines 64
8.1.3 Camera image and smoothing 65

9 Implementation 73
9.1 Bresenham drawing and ellipse voting 73
9.2 Binary regions implementation 76
9.3 Matching (Java package) . 76

9.3.1 Optimization Problem (Java package) 79
9.3.2 Score (Java package) 81

9.4 Application examples . 83
9.4.1 Image warping using the local method 83
9.4.2 Image warping using the global method 83

9.5 Testing . 84

Contents vi

10 Conclusion and future work 86

References 88
Literature . 88
Online sources . 90

Kurzfassung

Straßenerkennung und das Analysieren des Bildinhaltes sind wesentliche
Voraussetzungen für unterschiedliche Fahrerassistenzsysteme, welche heut-
zutage in allen modernen Autos eingebaut werden. Beide Erfordernisse sind
große Forschungsgebiete im Computer Vision Segment mit vielen verschie-
denen Anwendungsgebieten, welche alle ihre eigenen Anforderungen an die
Straßenerkennung an sich stellen. Die meisten Veröffentlichungen beschäfti-
gen sich mit einem direkt auf dem Auto angebrachten Kamerasystem.

Dieses System unterscheidet sich in vielen Bereichen im Vergleich zur hier
behandelten Aufgabenstellung. Das definierte Ziel dieser Problemstellung
umfasst individuelle Fahrbahnspur- und Straßenerkennung auf Bildern, wel-
che innerhalb eines Tunnels erstellt wurden. Die Daten kommen hierbei von
mehreren Videokameras, die in den Tunnels installiert sind. Diese können
an unterschiedlichen Stellen, z. B. an der Decke oder der Wand, positioniert
werden. Die verschiedenen Tunnels, gemeinsam mit den unterschiedlichen
Aufbauten, erschweren die Straßenerkennung erheblich.

In dieser Arbeit werden zusätzlich die verwandten Arbeiten thematisiert
und die unterschiedlichen Methoden getestet, welche sich mehr oder weni-
ger für eine Segmentierung eignen. Weiters wird ein neuartiger, schrittweise
durchgeführter Image Warping Algorithmus für Straßenerkennung vorge-
stellt. Dieser wird in mehrere Subprobleme unterteilt, welche einzeln aufge-
schlüsselt und am Schluss zusammengefügt werden.

Abschließend wird im letzten Kapitel das dazugehörige Projekt beschrie-
ben, welches für einen Industriepartner erstellt wurde.

vii

Abstract

Road understanding and street detection are essential requirements for ad-
vanced driver assistance systems. This are active fields of research in com-
puter vision with many different application areas. All of these diverse areas
have various requirements for the street and lane detection step. Most of the
publications focus on visual systems, installed on the car itself.

This setup differs in many ways, compared to the specified problem,
which is elaborated here. The goal is to develop a system, which performs
street and lane detection on road images taken inside a tunnel. The input
source are multiple video cameras, which are mounted on various positions
inside the tunnel. They can be on the ceiling or on any side of the wall. The
diversity of the environment intensifies the detection problem.

This thesis elaborates the related work with different approaches, which
are more or less suitable for the given task, leading to a new incremental
image warping algorithm for street and lane detection. This approach is
divided into several sub-problems, which are all worked out individually
and put together at the end.

Finally an associated project was done with an industrial partner, which
is covered in the implementation chapter and completes the theoretical work.

viii

Chapter 1

Introduction

Understanding the content of an image is essential for any kind of surveil-
lance system. In this master thesis the main focus is on road and lane de-
tection in traffic surveillance videos. This is a crucial part for the further
analysis and automatic event detection done by an industrial partner. The
associated thesis project was done in cooperation with this company and will
be used in their next program release. Some images are partially obscured
in order to fulfill the signed non disclosure agreement.

The main task is to improve the parameterization of a security camera,
which is most of the time inside a motorway tunnel. Multiple polygon struc-
tures should be created, which represent the road with its corresponding
lanes, see Figure 1.1. Up to this point, drawing the different polygons onto
the video stream was done by hand and took quite some time. The fact that

(a) (b)

Figure 1.1: The desired goal. Given is an image, which shows a tunnel
scene without any cars (a). The program should find the road (green) with
its corresponding lanes (red). The output should be a polygon, which can be
used in other parts of the program. Additionally the result should be drawn
onto the video stream (b).

1

1. Introduction 2

Input - Camera 1!
(Multiple Cameras)! Parameterize! Input – Camera 2!

Street and lanes are
detected. General
and specific
information is used
to enhance
parameterization.!
User can change the
output.!

User defines general
parameters for this
set of cameras!
•  Orientation!
•  Number of lanes!

Specific / General
information like!
•  Orientation!
•  Number of Lanes!
•  Position of prev.

Lanes!
•  Type of Lane

Markers!
is propagated.!

Figure 1.2: The desired architecture of the parameterization algorithm. The
main focus of this thesis will be on the street and lane detection and therefore
the parameterization of one camera.

numerous video cameras must be parameterized for one surveillance project
intensifies the workload.

Now the main goal is to develop an algorithm, which improves this pa-
rameterization process by making it faster1 and more convenient for the
operator. Taking into account that multiple cameras are filming the same
tunnel, the previous information should be passed along to the next input
image in the current sequence in order to enhance the detection algorithm,
see Figure 1.2.

1.1 Problem definition
Although we as humans can immediately see the road with its corresponding
lanes, it is not an easy task to do this semi-automatically. There are numer-
ous factors, which impede the detection process. These problems can be cat-
egorized into Environmental, the surroundings of the street, Self-induced, the
street and lane markings itself and Input, the image quality. Environmental
problems are:

• Most of the times the tunnel itself describes a curve due to different
security reasons, see Figure 1.3 (a).

• Dashed lane markings do not have the same distance to each other.
1Achievable with fewer mouse clicks.

1. Introduction 3

• Road-like structures appear on the tunnel walls.
• The road is divided due to a motorway exit, which has a completely

different appearance, see Figure 1.3 (b).
• Street bays can be installed in the tunnel and therefore appear in some

images, see Figure 1.3 (c).
• The detection itself should work on the outside as well.
• The entrance and the exit of a tunnel change the whole appearance

completely, see Figure 1.3 (d).
Self-induced problems apply to the street with its lane markings. These
come into play especially if the algorithm uses these markings for the lane
detection process. Some of them are:

• Lane markings appear with different sizes, shapes and color values.
• Sometimes only a curbside is installed and therefore the side marks of

the road does not exist.
• Different types of dashed lane markings can appear in one image.
• The surface of the road itself does not have a unique structure, which

would make it suitable for some segmentation methods.
• The surface of the road is inconsistent throughout the whole tunnel

due to abrasion and wet street. The whole surface can change and new
structures can appear.

• Other road markings like arrows or labels can appear anywhere.
Input problems apply to the given input image. These can vary greatly based
on the used camera. Some of them are:

• Reflections on the road, caused by wet asphalt, imitate lane markings.
• The image quality itself is not good and has a very small resolution

(352× 288).
• Straight lines in the real environment do not appear as straight lines

in the image due to the different cameras, which are not calibrated.
• In the rear part of the street (the upper part of the image) the lane

markings are only some pixels big.
• Clipping can occur, therefore the street markings itself can start in the

middle of the image.
These problems must be kept in mind when creating the different approaches.
In Figure 1.3 some of them are displayed.

1.2 Expected end result
The optimal solution would be that the road detection algorithm should
work on every image regardless of the road type, see Figure 1.4. This is not

1. Introduction 4

(a) (b)

(c) (d)

Figure 1.3: Detection challenges. Most of the time the tunnel describes a
curve (a). A motorway exit changes the appearance completely (b). Street
bays can occur (c). An exit of a tunnel with very bad lighting conditions (d).

expected, because it is very hard to achieve and greatly depends on the used
detection algorithm.

However, the algorithm should be able to detect the road with its cor-
responding lanes in an image with good visible lane markings. The user
should have the possibility to modify the resulting polygon structure. This
should be doable by either setting different starting points for the detec-
tion algorithm or by changing the polygon directly. Additionally the desired
polygon structure with the surrounding street polygon, which includes all
the individual lane polygons, should be created in a finishing step.

Nevertheless this work focuses on road and lane detection including an
overview of related work in Chapter 2 with alternative approaches explained
in Chapter 3. Road marker detection is described in Chapter 4 and the
Chapters 5 - 7 explain the incremental image warping algorithm, which
is the main part of this work. Results are shown in Chapter 8 and the
implementation is outlined in Chapter 9. The thesis will be completed by
the conclusion and future work in Chapter 10.

1. Introduction 5

(a) (b)

(c) (d)

(e) (f)

Figure 1.4: A subset of different road types. A road with three lanes and
different dashed lane markings (a); a road with two lanes and clutter (b);
an outside scene with cones on the street (c); a tunnel entrance with a wet
street (d); an exit of a tunnel (e) and a worn road with dirty markings (f).

Chapter 2

Related work

In a modern car numerous systems support the driver in different ways and
they are getting smarter and more reliable with every new edition. It goes
from lane change assistance over accident prevention to parking aid. The
problem of visual road and lane detection is crucial for these systems, al-
though many other sensors are used additionally. Driver assistance systems,
which can reduce the risk of car accidents are getting more and more reli-
able. These systems can either alert the driver in dangerous situations or
engage actively in the driving process.

However, full autonomous driving in urban and rural environments is still
not fully achieved yet. It is a huge field with many published contributions.
Very good surveys were published in 2006 [18] and 2012 [1], which give a
good overview over this interesting topic. The following chapter is a brief
summary of the expected features and the different approaches. A more
accurate comparison of alternative approaches with their pros and cons is
given in Chapter 3.

2.1 Automotive features
Current and future automotive features have their different lane and road
understanding demands. At this time some of them work quite reliable,
but others, like full autonomous driving, have their limitations. The follow-
ing driver assistance systems were summarized by [1] and provide a good
overview:

• Lane Departure Warning (LDW) [10] issues warnings for near lane
departure events.

• Adaptive Cruise Control (ACC) follows the nearest vehicle in the cur-
rent lane with a safe headway distance.

• A lane keeping system returns the car to the lane center when un-
signaled lane departure occurs.

6

2. Related work 7

(a) (b)

Figure 2.1: DARPA Urban Challenge. A typical vehicle in the DARPA
Urban Challenge [31]. Multiple computers (a) evaluate and combine the data
of the different sensors (b) [24].

• A lane centering system keeps the car in the middle of the lane.
• A lane change assistant system changes the lane autonomously on

demand.
• A turn assistant system turns on driver or automatic navigation de-

mand autonomously.
• Full autonomous driving for paved roads in cities and on highways.
• Full autonomous driving for cross country driving in non-paved areas.

Nowadays full autonomous driving is possible, but has its limitations, espe-
cially for cross country driving [15]. In an urban environment such a system
would need to achieve road and lane perception with obstacle detection,
based on the infrastructure provided for human drivers. This type of com-
putational scene understanding with a low error tolerance, is beyond the
reach of current perceptual systems.

A lot of research efforts were made for the DARPA Grand Challenge
(2005)1 [30] and the Urban Challenge (2007)2 [31]. However, this can not
be compared to a vehicle, which performs autonomous driving by using
only one camera. In these challenges a typical vehicle has multiple Light
Detection And Ranging (LIDAR), geographic information systems (GIS),
global position system (GPS), internal measurement units (IMU) and the
computing power of a dozen computers [24], see Figure 2.1.

2.2 Generic system
Numerous approaches can achieve lane detection and road segmentation. In
[1] a generic system (see Figure 2.2) was presented, which can be applied to
almost all of the published techniques. This system decomposes the detection

1Wikipedia site (http://en.wikipedia.org/wiki/DARPA_Grand_Challenge_(2005)).
2Wikipedia site (http://en.wikipedia.org/wiki/DARPA_Grand_Challenge_(2007)).

2. Related work 8

Image
Pre-processing
Obstacle Detection
Exposure Correction
Shadow Removal

Feature Extraction
Road Detection
Lane Detection

Model Fitting
Longitudinal Model
Lateral Model

Time Integration
Temporal Consistency
Position Consistency

Image to World
Correspondence

Camera LIDAR Vehicle Dynamics, IMU GPS+map

Figure 2.2: Architecture of a generic system for road detection. Input for
the different modules is the camera image, Light Detection And Ranging
(LIDAR), vehicle dynamics and internal measurement units (IMU). Image
taken from [1].

process into five modules, image pre-processing, feature extraction, model
fitting, time integration and image to world correspondence. Depending on
the requirements, some of the models can be ignored. In a way the developed
algorithm proposed in Chapter 5 can be applied to this system as well. The
input can be from a simple camera image, stereo imaging, Light Detection
And Ranging (LIDAR), vehicle dynamics and internal measurement units
(IMU). Stereo imaging as well as the LIDAR system can be used for obstacle
identification and curb detection [12].

2.2.1 Image pre-processing

Several operations can be applied to the image in order to remove image
artifacts and to enhance the desired features. This step can also reduce errors
introduced by illumination-related effects, shadows on the road, image noise
and many more.

For the proposed incremental image warping algorithm (Chapter 5) a
smoothing filter and edge detection were applied. The road marker detection
algorithm (Chapter 4) performs region labeling on the input image.

2.2.2 Feature extraction

Image features like lane markings and road boundaries are detected in this
step of the overall process. Ridgeness and RANSAC [17] (see Figure 2.3) are
used as well as thresholding [25]. In general the appearance of lane boundary
features can vary greatly. The size, the color and the distance to each other
can not be assumed to be constant. This appearance variety is worked out
in [18].

2. Related work 9

Figure 2.3: Extracted road features. The road markings are extracted into
features, these features are then further processed. Image taken from [17].

(a) (b)

Figure 2.4: B-Snake lane model. A lane model using 3 control points where
𝑄0 is on the previously detected vanishing line (a). Another model using 4
control points (b). Image taken from [26].

For the road marker detection (Chapter 4) feature extraction was done
by using the Niblack [19] algorithm, which performs adaptive thresholding
on an image, see Figure 4.4.

2.2.3 Model fitting

Usually a geometric model is fitted to the extracted visual features. In some
cases B-Snakes [26], see Figure 2.4 are used as well as other geometrical
models [28]. Normally Random Sampling Consensus (RANSAC) [14] is used
for model fitting for all model types. In addition image features like the
position of the vanishing point and the vanishing line are used in order to
enhance the fitting process.

In the proposed incremental image warping algorithm a model is de-

2. Related work 10

signed as a combination of many transformation parameters, see Chapter 5.
It is fitted step by step, analyzing every horizontal image line.

2.2.4 Time integration

Propagating the already processed information from one frame to another
can benefit the road and lane detection in the next step, see Figure 1.2. In
order for this to work it requires great similarity between the individual time
steps. Time integration is not used for the developed algorithm, because the
similarity constraint is not fulfilled in a satisfying way.

2.2.5 Image to world correspondence

The process of finding straight and parallel lines really improves if the dis-
torted camera image is transformed into a perspective-free view, see Fig-
ure 2.5. With the transformed image methods like statistical Hough trans-
form and particle filter [16] can then be used to find these lines. Nevertheless
such a perspective-free view can be very beneficial in almost every other
stage of the road detection algorithm.

However, the camera position in correlation to the road plane must be
known, see Figure 2.5 (a). This is not the case for the given problem scope.
The parameters could be estimated, but due to the huge case diversity and
road property deviations, see Section 1.1, the result would be inaccurate and
not supportive.

2. Related work 11

ℎ

𝑥

𝑦

𝑧

𝑢

𝑣

𝛼road plane

camera

image plane

(a)

(b) (c)

Figure 2.5: Transformation of the camera image. With the known position
of the camera in relation to the road plane (a), a transformation matrix can
be defined, which transforms the original image (b) into the rectified one (c).
Image (b) and (c) taken from [16].

Chapter 3

Alternative approaches

During the progress of the associated thesis project, several processing proce-
dures were implemented and tested in order to achieve a good segmentation.
Some of them have a high possibility for a good road segmentation, but oth-
ers will fail completely due to the given problem. All of the implemented
approaches, including road marker detection, see Chapter 4 and the final
incremental image warping algorithm, see Chapter 5, work directly on the
2D image plane without any information of the 3D geometry. This was done
because the environment, the cameras itself, the view angle and the position
of the camera are different in every project.

However, this does not mean that no 3D geometry information can be
gained by analyzing the result. For example the vanishing point algorithm,
see Section 3.5 and the detected road markings can provide a clue about the
overall environment. Nevertheless some methods like the Hough transform,
see Section 3.4, would not benefit from a known image to world transforma-
tion due to the fact that curved roads remain curved in a transformed image,
see Figure 3.1. Additionally some model fitting methods, see Section 2.2.3,
require a vanishing point as an anchor for the used models and can therefore
not work with the transformed image.

So the following chapter gives an overview about the several process-
ing algorithms that are tested and implemented in order to achieve a good
segmentation. See Table 3.1 - 3.3 for a short description, advantages and
disadvantages of the different methods.

3.1 Color segmentation
Road segmentation based on the color range of the street surface is not
successful due to several factors, see Figure 3.2. Some of them are, that

• the color range is very limited or even restricted to black and white,
• the walls of the tunnel have the same color and
• unbalanced lighting produces light spots on the roadway.

12

3. Alternative approaches 13

Table 3.1: Different segmentation approaches. These methods use segmen-
tation in order to achieve road and lane detection.

Methods Pros
Cons

Color Segmentation:
The road should be
segmented based on a defined
color range. One color sample
of the road is taken and a
specific range around that
color is set, see Section 3.1.

• Simple approach.
• Color range can be tuned to han-

dle uneven lighting.
• Different color spaces can be used.

• Very limited for grayscale images.
• Greatly depends on the road sur-

roundings.
• Does not work in tunnels were the

walls have the same color.

Texture-based
segmentation:
The road should be
segmented based on a defined
texture. Usually the textures
in road images are strongly
anisotropic with a dominant
orientation and can be
grouped together, see
Section 3.2.

• Unsupervised segmentation.
• Can compensate for uneven light-

ing.

• Greatly depends on the road sur-
roundings.

• Individual lanes are not distin-
guishable.

• Sidewalks and other structures
can lead to a false segmentation.

• Correcting an incorrect result can
be difficult.

Watershed segmentation:
The road with its lanes
should be segmented using
the watershed algorithm, see
Section 3.3.

• Few input is required.
• It is simple to use.
• The image is divided in useable

areas.

• Dashed lane markings propose a
problem.

• Segments can bleed into each
other.

• Analyzing and fixing the result
can be hard.

3. Alternative approaches 14

(a) (b)

Figure 3.1: Transformed image. The original image (a) shows the expected
image distortion. The width of the street is getting smaller and smaller while
advancing to the vanishing point. In (b) a part of the transformed image is
shown. The width remains the same throughout the image.

𝑃1

𝑃2

(a) (b)

Figure 3.2: Segmentation based on color range. The points 𝑃1 in (a) and
𝑃2 in (b) indicate the position of the color sample. The red area shows the
color range given the sample points. This approach will not be successful
due to several factors like unbalanced lighting and limited color range of the
grayscale image.

So in this scenario color segmentation fails completely due to the given
circumstances, but this simple technique can be successful on other task
settings. Like in [11] color based segmentation is used in order to detect lane
boundaries of a road, using a region of interest and an auto threshold value.

3.2 Texture-based segmentation
Texture-based segmentation can deliver good results, especially on road im-
ages in rural areas without any lane markings, see Figure 3.3. Other methods

3. Alternative approaches 15

Table 3.2: Different approaches for image feature extraction. These methods
can provide additional information about specific road and lane features, but
they do not deliver a complete segmentation.

Methods Pros
Cons

Hough transform:
The street lines should be
segmented with the Hough
transform, see Section 3.4.

• Straight lines are detected.
• Dashed lane markings in a

straight line can be detected.

• Curved lines can not be handled.
• Many lines are produced that

have nothing to do with the street.
• A correlation between the set of

lines and the street needs to be
done.

Vanishing point detection:
The vanishing point (VP) of
the street should be detected,
see Section 3.5.

• The VP provides useful informa-
tion.

• A road model can use the VP as
an anchor.

• There is no individual VP for
curved roads.

• For those the image needs to be
divided into sections.

• These individual results need to
be merged.

that rely on those markings or on a color difference between the surface and
the environment would fail here. Usually the textures in road images are
strongly anisotropic with a dominant orientation. Based on these features
and a proper classification a good segmentation can be achieved [27]. Addi-
tionally other image features like vanishing point estimation can be done by
grouping the dominant orientations of the road texture together [22].

3.3 Watershed segmentation
Watershed Segmentation [3] can produce quite good results, see Figure 3.4 (b),
but needs a lot of initial input, which must be known in advance. Different
factors make the segmentation more difficult. The following road properties,

3. Alternative approaches 16

Table 3.3: Methods to solve the problem. The algorithms used for these
methods were implemented during the thesis project and extensively tested.
Especially the incremental image warping algorithm produces the best re-
sults.

Methods Pros
Cons

Road marker detection:
The road markings of the
street should be detected and
merged together, see
Chapter 4.

• Dashed lane markings can be
merged.

• The Lane orientation can be cal-
culated.

• Hard to decide which region is a
dashed lane marker.

• A high enough resolution is re-
quired in order to detect markers
robustly throughout the image.

Incremental image
warping:
The algorithm should
straighten and rectify an
image of a curved road
without any prior knowledge
about the content itself, see
Chapter 5.

• Very few user input is required.
• Can even work unsupervised.
• A correct result provides a com-

plete rectification and
• a detailed road model.

• Dashed lane markings can pro-
pose a problem.

• Other structures can hinder the
warping algorithm.

• Good visible markings and strong
edges are required.

like
• the amount of road lanes,
• the initial position and
• the initial orientation

must be known in advance. If thats not the case, the algorithm must be
designed to estimate these parameters. However, the different appearances
of various roads can make this a hard task. Additionally the output needs
to be evaluated by a system, which can determine

• whether the solution is correct,

3. Alternative approaches 17

Figure 3.3: Gravel road image. Texture-based segmentation can be quite
successful in this case.

• which region is a lane and which not,
• where does the lane end and
• which parts need to be removed.

Understanding the output of the watershed algorithm and identifying and
removing false parts is not trivial. Additionally streets with dashed lane
markings, see Figure 3.4 (c), represent a problem for the segmentation. These
images need to be pre-processed in order to improve the result. This can be
done by the proposed lane merging algorithm, see Section 4.4.

In [2] a fast watershed transformation was introduced, which achieves
road segmentation and obstacle detection on a video stream of a moving
car. Here the connection of the ground markings is done by a temporal
filter applied on consecutive images and the initial input for the watershed
algorithm is gained from the previous image.

3.4 Hough transform
The Hough transform [13] can be used to find the best straight lines in one
image, see Figure 3.5. The problem with this approach is that the parameters
of the algorithm vary greatly for different images. This is because in this case
the Hough transform is applied to a canny edge image [8], which has of course
its own parameter set. The threshold value, which defines how long a line
should be, depends heavily on the image content. If this value is set very
low, see Figure 3.5 (d), then a lot of short straight lines are found. These
lines must then be set in relation to each other in order to eliminate all the

3. Alternative approaches 18

(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Watershed segmentation examples. The input (white strokes)
of the algorithm was user generated. In order to do this automatically, road
properties like the orientation and the amount of lanes must be known in
advance. Street lanes with clear and solid boundaries (a) can be detected
quite good (b). Problems occur when dashed lane markings are present (c).
This produces, depending on the marker distance, inaccurate results (d).
Merging these individual markers (e) really improves the result of the seg-
mentation (f).

3. Alternative approaches 19

(a) (b)

(c) (d)

Figure 3.5: Hough Transform. A really strong curved road (a). The result
of the canny edge detection and Hough transform (b), which does not work
in this case. Another example (c), which delivers better results (d). However,
after the Hough transform all the different lines must be put in relation to
each other in order to eliminate all the false positives and to detect the road.

false positives and to detect the road itself.
However, road segmentation based only on the Hough transform is not

practicable, but it is heavily used for other purposes throughout the litera-
ture.

3.5 Vanishing point detection
The vanishing point in one image provides additional helpful information
about the 3D environment of the scene. Given a valid detection, it shows
where the street is converging to. This can be useful in order to fit a specific
model of the road where the vanishing point can serve as an anchor point
in the fitting process.

However, the vanishing point can be outside of the image ore may not
be present at all. This must be considered in the algorithms, which use it.

3. Alternative approaches 20

𝑉𝑝

Figure 3.6: Vanishing Point of a straight road. The straight visible image
lines make the detection of the vanishing point 𝑉𝑝 (red dot) very accurate
and easy. Image taken from [33].

𝑉𝑝1∙
𝑉𝑝2∙

𝑉𝑝1∙
𝑉𝑝2∙

(a) (b)

Figure 3.7: Vanishing Point of a curved road. The original image with a few
straight lines drawn into it resulting in two approximate positions of 𝑉𝑝1 and
𝑉𝑝2 (a). Result of the proposed algorithm with the original positions (b). It
is clearly visible, that a unique vanishing point for the whole image cannot
be found.

3.5.1 General detection

Normally the vanishing point is found by the intersection of the visible
straight lines in one image, see Figure 3.6. Detecting the vanishing point on
a curved road is not trivial, because no clear intersection of the different
straight lines is given, see Figure 3.7. In [26] an algorithm was presented

3. Alternative approaches 21

𝑉𝑝1

Segment 1

Segment 2

Segment 3

Segment 4

Vanishing Line
𝑉𝑝1

𝑉𝑝2

Segment 1

Segment 2

Segment 3

Segment 4

Vanishing Line

(a) (b)

Figure 3.8: Vanishing Point of image segments. All points lie on the van-
ishing line, which has to be defined first. The vanishing point 𝑉𝑝1 for the
first segment is calculated (a). If no point is found for a segment then the
vanishing point from the previous segment is duplicated. The vanishing point
𝑉𝑝2 for the second segment is found and placed on the vanishing line (b).

that deals with that problem. It consists of the following steps.
1. The image is divided into a small number of segments.
2. A vanishing line is defined where all the following points are located.
3. For every segment an individual vanishing point is located.

The process is illustrated in Figure 3.8.

3.5.2 Detection in image space

In [9] two algorithms were proposed to find vanishing points in natural
images. They are not limited to work on road images alone. The second
approach, which works directly in the image plane, was implemented and
tested. The image is used as an accumulation space for a particular version
of the Hough transform. The algorithm is composed of the following steps,
which are illustrated in Figure 3.9.

Input: The input for this algorithm is the original grayscale image I of
size 𝑀 ×𝑁 . The resulting accumulated image A has the same size.

1. An edge detection operation is performed on the original image I.
This is done by using a convolution with a 3× 3 kernel. The proposed
kernels, 𝐻𝑥 in 𝑥- and 𝐻𝑦 in 𝑦-direction are defined as,

𝐻𝑥 =

⎡⎣ −1 0 1
−
√

2 0
√

2
−1 0 1

⎤⎦ and 𝐻𝑦 =

⎡⎣−1 −
√

2 −1
0 0 0
1

√
2 1

⎤⎦. (3.1)

3. Alternative approaches 22

(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Vanishing point detection algorithm example. The original
grayscale image I (a). The image convolved with kernel 𝐻𝑥 resulting in
D𝑥 = I * 𝐻𝑥 an edge image in 𝑥-direction (b). The same image convolved
with kernel 𝐻𝑦 resulting in D𝑦 = I*𝐻𝑦 an edge image in 𝑦-direction (c). The
normalized absolute image N of both edge images (d). Applying a threshold
𝑡, which depends on the image, results in the binary image (e). The accumu-
lated image A (f).

3. Alternative approaches 23

These kernels are very simple and were exchanged with

𝐻𝑥 = 1
32 ·

⎡⎣ −3 0 3
−10 0 10
−3 0 3

⎤⎦ and 𝐻𝑦 = 1
32 ·

⎡⎣−3 −10 −3
0 0 0
3 10 3

⎤⎦, (3.2)

to achieve better results, see [7]. So the edge images in 𝑥-direction D𝑥

and in 𝑦-direction D𝑦 are defined as,

D𝑥 = I *𝐻𝑥 and D𝑦 = I *𝐻𝑦. (3.3)

This is illustrated in Figure 3.9 (b) and (c).
2. The normalized image N is the summation of both edge images D𝑥

and D𝑦, divided by the maximum image value Nmax. It is defined as

N = |𝐷𝑥|+ |𝐷𝑦|
Nmax

with Nmax = max
(𝑥,𝑦)∈N

N(𝑥, 𝑦). (3.4)

This is illustrated in Figure 3.9 (d).
3. In this optional step a binary image B is created by using a defined

threshold value, see Figure 3.9 (e).
4. For every point 𝑝(𝑥, 𝑦) ∈ B the orientation 𝜑(𝑥, 𝑦) is calculated by

𝜑(𝑥, 𝑦) = arctan |𝐷𝑦(𝑥, 𝑦)|
|𝐷𝑥(𝑥, 𝑦)| . (3.5)

With the given slope 𝜑(𝑥, 𝑦) a line passing through 𝑝(𝑥, 𝑦) can be
added to the accumulated image A, see Figure 3.9 (f).

5. Now a suitable maximum detection method should calculate the posi-
tion of the vanishing point 𝑉𝑝(𝑥, 𝑦) in A.

The calculation of binary image B is not necessary for the algorithm and
can be skipped. This procedure is described in Alg. 3.1.

3.5.3 Problems and conclusion

Different problems with the proposed algorithm occur very quickly.
• The vanishing point of an image of a curved road can not be detected

exactly, see Figure 3.7.
• The threshold value 𝑡 depends on the image content and must be set

separately, see Figure 3.9 (e).
• The vanishing point can lie outside the image window. In that case the

parameter space A must be extended. An automatic event detection
of this must be developed.

• Multiple maxima can occur in the parameter space A.

3. Alternative approaches 24

Algorithm 3.1: Simplified vanishing point detection algorithm. Given a
grayscale image this algorithm calculates the probable vanishing point.

1: VP Detection(I, 𝑡)
The image I of size 𝑀 ×𝑁 and the threshold 𝑡 are given.
The algorithm returns the position of the vanishing point 𝑉𝑝(𝑥, 𝑦).

2: D𝑥 = I *𝐻𝑥 ◁ see Eqn. 3.2 and Figure 3.9 (b)
3: D𝑦 = I *𝐻𝑦 ◁ see Eqn. 3.2 and Figure 3.9 (c)
4: Nmax ← max

(𝑥,𝑦)∈N
N(𝑥, 𝑦)

5: N← D𝑥+D𝑦

Nmax
◁ see Eqn. 3.4 and Figure 3.9 (d)

6: A← () ◁ accumulated image of size 𝑀 ×𝑁
7: for all 𝑝(𝑥, 𝑦) ∈ N do ◁ for every pixel 𝑝 in N
8: if N(𝑥, 𝑦) > 𝑡 then ◁ if value > threshold
9: 𝜑(𝑥, 𝑦)← arctan |𝐷𝑦(𝑥,𝑦)|

|𝐷𝑥(𝑥,𝑦)|
10: A← CalcAndAddLine(𝜑(𝑥, 𝑦), A)
11: end if
12: end for
13: 𝑉𝑝(𝑥, 𝑦)← DetectMaximum(A)
14: return 𝑉
15: end

16: CalcAndAddLine(𝜑(𝑥, 𝑦), A)
The orientation 𝜑(𝑥, 𝑦) at position 𝑥, 𝑦 as well as
the current accumulated image A of size 𝑀 ×𝑁 are given.
A line 𝐿 of length 𝑁 , the height of the image A, is created and
added to the accumulated image A.
The process is illustrated in Figure 3.9 (f).
The updated accumulated image A is returned.

17: 𝑥1 ← 𝑥 + 𝑁 · cos(𝜑)
18: 𝑦1 ← 𝑦 + 𝑁 · sin(𝜑)
19: 𝑥2 ← 𝑥 + 𝑁 · cos(−𝜑)
20: 𝑦2 ← 𝑦 + 𝑁 · sin(−𝜑)
21: 𝐿← CreateLine(𝑥1, 𝑦1, 𝑥2, 𝑦2) ◁ A new line is created.
22: A← DrawLineInImage(𝐿, A) ◁ 𝐿 is added to the image A.
23: return A
24: end

25: DetectMaximum(A)
The accumulated image A of size 𝑀 ×𝑁 is given.
Different methods can be used. In [9] A is averaged
by an 11× 11 kernel 𝐻 around each pixel.
The position 𝑥, 𝑦 of the maximum in A is returned.

26: A← A *𝐻
27: return max

(𝑥,𝑦)∈N
A(𝑥, 𝑦)

28: end

3. Alternative approaches 25

(a)

(b)

𝑉𝑝

(c)

Figure 3.10: Vanishing point detection result. The original image converted
to grayscale (a). The normalized edge image N (b). The accumulated image
A with the detected vanishing point 𝑉𝑝 (c). A specific threshold 𝑡 was set in
order to eliminate weak edges, see Alg. 3.1.

3. Alternative approaches 26

Nevertheless the algorithm can produce quite accurate results, see Fig-
ure 3.10. As a pre-processing step the input image can be smoothed in
order to improve the edge detection step. Additionally the calculation of
the orientation 𝜑 may be omitted if another line drawing algorithm is used,
which does not need an orientation in degrees. If the exact position of the
vanishing point can not be calculated, then the algorithm can provide a hint
of the street orientation, which can be used for other purposes.

Chapter 4

Road marker detection

The basic idea of the road marker detection algorithm is that dashed road
markings should be detected and in another step merged together. The focus
lies on these interrupted markers, because they stand out in the image, see
Figure 4.1. If they are present and correctly detected, they can provide useful
information about the road properties. This includes

• the number of lanes,
• the position and
• the orientation of the street.

In addition to the watershed algorithm, dashed lane markers want to be
merged in order to get a better segmentation, see Section 3.3.

However, the main problem is to distinguish a marker from another sim-
ilar structure in the image in a robust way. This is not a trivial task due to
several challenges that will be explained in this chapter.

(a) (b)

Figure 4.1: Road markings. Good visible dashed road markings, but with-
out any border lines (a). A curved tunnel with good visible continuous lane
markings (b).

27

4. Road marker detection 28

(a) (b)

(c) (d)

Figure 4.2: Comparison of global threshold values 𝑡. The original image (a),
is being thresholded with a factor 𝑡 = 100 (b), 𝑡 = 140 (c) and 𝑡 = 160 (d).
Obviously this is not a good solution, because the threshold value is very
sensitive and vary greatly for different images. Additionally features get lost,
because its a global threshold value.

4.1 Thresholding
Normally the road markings are white and good visible, so the first ap-
proach will be to detect them via thresholding. However, a global thresh-
olding method isn’t useful for this case, see Figure 4.2. Using an adaptive
threshold algorithm like Niblack [19], produces better results. It can retrieve
more information, because of its adaptive local behavior and the parame-
ters of the algorithm are more robust. This means that they can be used
for a large variety of images. An example is shown in Figure 4.3 with the
implementation deployed in a Java Archive of [29]. Additionally the imple-
mentation is described in [5].

However, different circumstances like wet streets, abrasion and soiled
markings make this problem more difficult. This issue intensifies if dashed
lane markings want to be clearly detected and merged.

4. Road marker detection 29

(a) (b)

Figure 4.3: Adaptive threshold algorithm. The parameters of the Niblack
algorithm are radius 𝑟 = 30, 𝜅 = 0.8, 𝑑min = 15 and the region type is
Gaussian. Normally the Niblack algorithm does not provide a Gaussian dis-
tribution, but this was added in addition by [5]. These parameters can be
applied without change to different images, achieving a similar result.

(a) (b)

Figure 4.4: Extracted road features. First the original picture (a) is pro-
cessed with an adaptive thresholder, then the road markings are detected via
region labeling (b). Note that unwanted regions are already eliminated.

4.2 Region labeling
On the result of the thresholding step, which is a binary image B, region
labeling is applied. Some pre-processing steps like closing or other morpho-
logical operators [34] could be performed on B, but they are not necessary,
because unwanted regions can be discarded later. Then the size, orientation
and eccentricity can be calculated for every region, see Figure 4.4.

4. Road marker detection 30

(a) (b)

(c) (d)

Figure 4.5: Dashed lane marker detection example 1. On the original image
I (a) an adaptive threshold algorithm is applied, resulting in B (b). Now for
every found region, combined in a set S = {𝑟1, 𝑟2, . . . , 𝑟𝑛}, the orientation
and its bounding box is calculated and drawn (c). Based on their size and
orientation many unwanted regions can be discarded (d), resulting in the final
set S′. The images were made partially obscured due to the confidentiality
agreement.

4.3 Detection algorithm
The following section describes the steps of the road marker detection algo-
rithm. Additionally the procedure is illustrated in Figure 4.5.

Input: The input for this algorithm is the original grayscale image I, the
values for the size constraint 𝑠min and 𝑠max and the values for the orientation
constraint 𝜑min and 𝜑max.

1. The original grayscale image I is processed with an adaptive thresh-
olding algorithm, which results in a binary image B.

2. Pre-processing steps, in this case morphological operators [34] like ero-
sion, dilation, opening and closing, can be applied on B in order to
remove image errors.

4. Road marker detection 31

3. Region labeling1 is performed on B, resulting in a set S = {𝑟1, 𝑟2, . . . , 𝑟𝑛}
of binary regions 𝑟𝑖.

4. For every binary region 𝑟𝑖 ∈ S the size 𝑠𝑖, the orientation 𝜑𝑖, the
bounding box, the center, the central moments and the eccentricity
are calculated.

5. Every region is discarded, which does not meet the given requirements.
This includes the region size 𝑠𝑖, which has to be in the defined range of
𝑠min < 𝑠𝑖 < 𝑠max and its orientation 𝜑min < 𝜑𝑖 < 𝜑max, but of course
it is not limited to that. Note that the orientation can only be used, if
the angle of the road is approximately known, which can be achieved
by the vanishing point calculation, see Section 3.5. The size constraint
discards regions, which are either too small or too big. This results in
an adjusted binary region set S′.

6. Now the remaining regions 𝑟𝑖 ∈ S′ can be merged together, based on
their orientation. This can be done by searching for another region,
which lies in the direction of the region itself, see Section 4.4.

Nevertheless the size and orientation constraint must be set individually for
every image, because the dashed lane markings appear in different shapes
and sizes. At first the size range can be set just to eliminate all the very
small and very large regions. In addition to that, the size constraint must be
flexible depending on where you are in the image. This is necessary, because
the size of the individual markers decrease in the upper part of the picture.
In this region a marker can be very small, but in the lower part of the image
a region of this size must be rejected, otherwise the constraint would be
useless. False detection can occur if the range values are not set correctly,
see Figure 4.6.

4.4 Merging algorithm
An image with successfully merged markers and therefore the already known
orientation can be the input for the watershed algorithm, in order to achieve
a better segmentation, see Section 3.3. The following section describes the
steps of the road marker merging algorithm. Additionally the procedure is
illustrated in Figure 4.7.

Input: The inputs for this algorithm are the original grayscale image I, the
values for the size constraint 𝑠min and 𝑠max and the values for the orientation
constraint 𝜑min and 𝜑max. Additionally the start region 𝑅𝑠 in step 2 is defined
manually or from another merging pass.

1. The first steps, including the adaptive thresholding process, region la-
beling and the region parameter calculation, must be performed as

1Depth first labeling was used, but this has no effect on the result.

4. Road marker detection 32

(a) (b)

𝑀1 𝑀1

(c) (d)

Figure 4.6: Dashed lane marker detection example 2. As before on the
original picture (a), an adaptive threshold algorithm is applied (b). In (c)
every detected region is drawn and in (d) unwanted regions are eliminated.
Here the elimination based on the region size discards the good visible marker
𝑀1, which should not happen. So the range values need to be tuned for every
image, which is not optimal, see Section 4.4. The images were made partially
obscured due to the confidentiality agreement.

well. Then based on its size and orientation every region is discarded,
which does not meet the constraint parameters. These steps are de-
scribed in Section 4.3 and in Figure 4.5.

2. A start region 𝑅𝑠 is defined manually or from a previous merging pass.

3. The next region is searched within a specific length 𝑙 in direction d
of 𝑅𝑠. This is done by calculating a Bresenham line L from 𝑃1, the
center of 𝑅𝑠, to 𝑃2, which can be calculated by

𝑃2 = 𝑃1 + 𝑙 · d, (4.1)(︂
𝑥2
𝑦2

)︂
=

(︂
𝑥1
𝑦1

)︂
+ 𝑙 ·

(︂
𝑑1
𝑑2

)︂
. (4.2)

Seen as a vector addition Eqn. 4.1 results in Eqn. 4.2.

4. Road marker detection 33

(a) (b)

𝑅𝑠𝑃1 ∙

𝑃2 ∙
L

𝑅𝑠

(c) (d)

Figure 4.7: Dashed lane marker merge. The original image (a) is thresholded
with an adaptive algorithm (b). Only the regions which satisfy the orientation
and size constraint remain (c). A start region 𝑅𝑆 is defined and based on it
the next one is searched using a Bresenham line L from 𝑃1 to 𝑃2 which can
be calculated by Eqn. 4.1. If another region is found, it will be connected
with the first one (d). This is done multiple times.

4. If the Bresenham line L hits a bounding box from another region, see
Figure 4.7 (c), then the procedure is repeated starting from step 2.
However, the bounding box greatly depends on the orientation of the
region. It would be better to use a specific perimeter around the center
in order to check if the region is hit or not. Of course there are many
other solutions to this problem and this is just one of them.

The algorithm can produce quite good results in the lower part of the image
where the dashed lane markers are still large enough. However, in the upper
part of the image the markers get smaller and smaller resulting in an almost
quadratic region. For this regions the orientation becomes more and more
unstable, meaning the merged line can drift off, see Figure 4.8. This is due
to the small image resolution of 352× 288, which is simply not suitable for
a robust detection in this region.

4. Road marker detection 34

(a) (b)

(a) (b)

Figure 4.8: Dashed lane marker merge. The original image (a) is thresholded
with an adaptive algorithm (b). Only the regions which satisfy the orientation
and size constraint remain (c). The results (d) show how the algorithm can
drift off the correct path due to other regions, which are very near to each
other. Due to the small image resolution of 352× 288 the orientations of the
regions in this area become more and more undefinable.

4.5 Challenges
As already seen in Figure 4.8 (d) problems occur very quickly. The main
difficulties are

• the small resolution and therefore the small binary region size,
• the elimination of unwanted regions and
• the merging of regions in the upper part of the image.

Getting these problems under control is not that easy, see Figure 4.9. Un-
wanted regions, caused by reflections on wet streets or by dirty roads, can
not be eliminated automatically, see Figure 4.10. Cars on the street produce
unwanted regions as well, see Figure 4.11 (b), but the algorithm can still be
successful in this case.

4. Road marker detection 35

(a) (b)

Figure 4.9: Marker merge problems 1. The normal image with the orange
rectangle (a), which represents the enlarged area (b). In this part of the
image the regions are very small and can merge together, which is a problem
for the merging algorithm.

(a) (b)

(c) (d)

Figure 4.10: Marker merge problems 2. The original image (a) is thresh-
olded with an adaptive algorithm (b). The enlarged area (c) shows the falsely
detected regions, which are very similar to a normal dashed lane marker. The
result of the marker merge algorithm (d).

4. Road marker detection 36

(a) (b)

(c) (d)

Figure 4.11: Dashed lane marker merge result with cars. The original image
with moving cars (a). Unwanted regions are produced by the car in the
bottom left corner (b). The result of two individual merging steps is shown
in (c) and (d). Starting with the right region the algorithm can still produce
good results in this case.

Chapter 5

Incremental image warping
principle

This concept is based on the idea, that the algorithm should straighten
and rectify an image of a curved road without any prior knowledge about
the content itself. In this rectified image the problem of detecting the road,
which can be curved in any way, with its individual lanes is reduced to
a simple problem of finding vertical lines. The incremental image warping
is done by a stepwise transformation of every single horizontal image line
in order to match the previous one as close as possible, see Figure 5.1. A
general warping example on an actual input image is shown in Figure 5.2.
The transformation is done by scaling and shifting all the individual image

𝐿𝑖−1

𝐿𝑖

(a) (b)

Figure 5.1: Incremental image warping. Every image line 𝐿𝑖 of original
image (a) is transformed to match the previous line 𝐿𝑖−1 as good as possible.
The optimal result (b) is a rectified and straightened image where all curved
lane markings become vertical ones.

37

5. Incremental image warping principle 38

(a) (b)

Figure 5.2: General warping example. The original image (a) is transformed
into a rectified one (b). In this transformed space all curved lane markings
become straight ones. In (b) straight lines correspond to the curved road
in (a).

lines individually in order to match the previous line as good as possible, see
Section 5.2. This step rectifies the image using the lane markings and other
image structures, but does not analyze the image itself. So the algorithm
knows nothing of an overall road or lane model, but creates one in the end.

Resulting road model: Input is a grayscale image I of size 𝑤 × ℎ with
its width 𝑤 and height ℎ. This image is divided into individual image lines,
resulting in 𝐿1, 𝐿2, . . . , 𝐿ℎ lines. Every image line 𝐿𝑖 has the same width 𝑤.
Now every line 𝐿𝑖 is transformed with a specific scale 𝑠𝑖 and shift 𝑡𝑖 in order
to match the previous line 𝐿𝑖−1 as good as possible. So every image line
starting from 𝐿2 has two parameters resulting in a road model, which has
𝑛 = (ℎ− 1) · 2 parameters.

5.1 One image line as a discrete 1D-signal
One image line 𝐿𝑖 can be seen as a discrete 1D-Signal with a specific fre-
quency. This frequency corresponds to the given sample rate. The camera
already sampled the real world scene, so there is one sample point for every
pixel position, see Figure 5.3.

Linear interpolation: Linear interpolation is used as an interpolation
method to get intensity values on floating point positions and to gain a
continuous signal, see Figure 5.3 (b). This method is sufficient for this case,
however, more advanced methods like cubic interpolation or other variations
can also be used. Target To Source mapping should be used in order to ensure
that no holes exist in the transformed image, see Section 5.2.

Line scaling: Scaling one image line can be seen as scaling a 1D-Signal
with a certain frequency. This frequency increases during downscaling and

5. Incremental image warping principle 39

𝐿1
𝐿2

...

𝐿ℎ−1
𝐿ℎ

𝐿𝑖(𝑥)

𝑥

(a) (b)

Figure 5.3: Image line as a 1D-signal. The grayscale image I of size 𝑤× ℎ,
with its width 𝑤 and height ℎ, is divided into individual image lines, resulting
in 𝐿1, 𝐿2, . . . , 𝐿ℎ lines (a). For every image line 𝐿𝑖, which has the same width
𝑤, linear interpolation is used in order to gain a continuous signal (b).

decreases during upscaling. Errors occur if the signal is scaled down, but the
sample rate maintains the same. This would violate the Nyquist–Shannon
sampling theorem1. However, this is not the case if the incremental image
warping algorithm starts from the bottom of the image. Then every line
is upscaled due to the road, which is converging to a vanishing point, see
Figure 5.5.

Line shifting: Shifting the image line does affect the position of the orig-
inal sample points with their intensity values. Linear interpolation needs to
be applied again, if the displacement is in the decimal area and the intensity
values on the original sample positions need to be known. Thats the case if
two signals need to be compared, see Chapter 6.

Original signal: Repeated shifting and scaling, as it occurs in the incre-
mental image warping algorithm, should not affect the original signal. The
sample rate, the transformation values and the comparison area are defined
in the comparison step, see Chapter 6. Now the original signal is transformed
and sampled using linear interpolation at the defined sample rate over the
comparison area.

1Wikipedia site (http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_
theorem).

5. Incremental image warping principle 40

5.2 Transformation of a single image line
To transform one image line 𝐿𝑖 by a scale factor 𝑠 and a displacement factor
𝑡, every line position 𝑥 needs to be transformed by a transformation matrix
𝑇𝑠,𝑡, which is specified as

𝑇𝑠,𝑡 =
(︂

𝑠 𝑡
0 1

)︂
. (5.1)

This specifies the transformation(︂
𝑥′

1

)︂
=

(︂
𝑠 𝑡
0 1

)︂
·
(︂

𝑥
1

)︂
(5.2)

of one image line 𝐿𝑖(𝑥) from normal space to transformed space. The value of
the transformed line 𝐿′

𝑖(𝑥) at position 𝑥 can be calculated from the original
one by

𝐿′
𝑖(𝑥) = 𝐿𝑖(𝑥 · 𝑠 + 𝑡). (5.3)

The inverse transformation 𝑇 ′
𝑠,𝑡 is specified as

𝑇 ′
𝑠,𝑡 =

(︂1
𝑠 − 𝑡

𝑠
0 1

)︂
. (5.4)

This specifies the transformation(︂
𝑥
1

)︂
=

(︂1
𝑠 − 𝑡

𝑠
0 1

)︂
·
(︂

𝑥′

1

)︂
(5.5)

of one image line 𝐿′
𝑖(𝑥) from transformed space to normal space. The value

of the original line 𝐿𝑖 at position 𝑥 can be calculated from the transformed
one by

𝐿𝑖(𝑥) = 𝐿′
𝑖

(︂
𝑥′ − 𝑡

𝑠

)︂
. (5.6)

Now with Eqn. 5.3 and Eqn. 5.6 the complete transformation in both direc-
tions is specified.

5.3 Algorithms
In Alg. 5.1 the basic steps are shown in order to transform the given image I
into the rectified one I′. Especially the step of finding the best transformation
values (Alg. 5.1 line 3) can be done in different ways. Chapter 6 describes
what is needed to define the optimization problem and Chapter 7 describes
what is needed to solve this problem.

5. Incremental image warping principle 41

Algorithm 5.1: Basic line matching algorithm. This algorithm describes
the basic abstract steps in order to transform the given image I into the
rectified one I′.

1: LineMatching(I)
The given image I is transformed into I′.
The current image line number is defined as 𝑖 and the
absolute transformation values as 𝑠𝑖 and 𝑡𝑖, see Section 5.4.
The algorithm returns the transformed image I′.

2: for all 𝐿𝑖 ∈ I do ◁ for every image line 𝐿𝑖 ∈ I
3: 𝑠𝑖, 𝑡𝑖 ← FindBestValues(𝐿𝑖, 𝐿𝑖−1)
4: 𝑠𝑖 ←

∏︀𝑖
𝑘=1 𝑠𝑘 ◁ absolute scale value

5: 𝑡𝑖 ← 𝑡𝑖−1 · 𝑠𝑖 + 𝑡𝑖 ◁ absolute shift value
6: I′ ← TransformAndAdd(𝐿𝑖, 𝑠𝑖, 𝑡𝑖) ◁ draw in the image I′

7: end for
8: return I′

9: end

10: FindBestValues(𝐿𝑖, 𝐿𝑖−1)
The two image lines 𝐿1 and 𝐿𝑖−1 are given.
Chapter 6 describes how to compare them and Chapter 7 how to
define the abstract optimization problem 𝑂𝑃 .
The algorithm returns the best scale 𝑠 and shift 𝑡 values,
this is described in Section 7.4.

11: 𝑂𝑃 ← ⟨𝐿𝑖, 𝐿𝑖−1⟩ ◁ The abstract 𝑂𝑃 is defined
12: return 𝑠, 𝑡← SolveTheOtimizationProblem(𝑂𝑃)
13: end

5.3.1 Incremental image warping

Input and Output: Given is the grayscale input image I of size 𝑤 × ℎ
with its width 𝑤 and height ℎ. The procedure returns the straightened and
rectified image I′.

1. The input image I is divided into individual image lines 𝐿1, 𝐿2, . . . , 𝐿ℎ.
Every image line 𝐿𝑖 has the same width 𝑤.

2. Every line 𝐿𝑖 is transformed with a specific scale 𝑠𝑖 and shift 𝑡𝑖 in order
to match the previous line 𝐿𝑖−1 as good as possible. This is described
in Chapter 6 and Chapter 7.

3. Every transformed line 𝐿′
𝑖 is calculated using linear interpolation and

is drawn into the transformed image I′. The width of I′ can be greater
than the original one.

Now that the rectified image I′ and all the parameters for every image line
𝐿𝑖 are found, the actual road model is defined.

5. Incremental image warping principle 42

𝑃1∙ 𝑃2∙ 𝑃3∙

𝑃 ′
𝐴∙ 𝑃 ′

𝐵∙ 𝑃 ′
𝐶∙

𝑃1∙ 𝑃2∙ 𝑃3∙

𝑃𝐴∙ 𝑃𝐵∙ 𝑃𝐶∙

(a) (b)

Figure 5.4: Road detection example. The original image (a) is transformed
into a rectified one (b). In this transformed space all curved lane markings
become straight ones. The starting points 𝑃1, 𝑃2 and 𝑃3 are the same in (a)
and in (b). Straight lines in (b) correspond to the curved road in (a). The
points 𝑃𝐴, 𝑃𝐵 and 𝑃𝐶 in (b) still have the same 𝑥-value as 𝑃1, 𝑃2 and 𝑃3
and correspond to the transformed points 𝑃 ′

𝐴, 𝑃 ′
𝐵 and 𝑃 ′

𝐶 in (a).

5.3.2 Road detection

Given a street image I′, which is completely rectified and straightened, the
road detection only needs the 𝑥-values of the start position, see Figure 5.4.
These can either be obtained automatically or they are given by the user.

Input and Output: Given is the rectified image I′ of size 𝑤′× ℎ with its
width 𝑤′, which may be different than the original one, and its height ℎ and
all the transformation values2 for every image line 𝐿𝑖, resulting in a road
model, which has 𝑛 = (ℎ− 1) · 2 parameters.

1. The 𝑥-values of the start position of the different lanes are defined
either automatically or by the user.

2. For every image line 𝐿𝑖 the transformation parameters are used in
order to transform the 𝑥-values from the transformed space into the
original one. So the road model, which has 𝑛 = (ℎ− 1) · 2 parameters,
defines the shape of the whole road on every image position.

To summarize, given a correct and complete rectified image only the start
position of the different lanes needs to be known in order to obtain a correct
road detection.

5.4 Relative and absolute transformation
In the matching algorithm the scale 𝑠𝑖 and the displacement factor 𝑡𝑖 are
evaluated for every line 𝐿𝑖 individually. These two values specify the relative
transformation from one image line 𝐿𝑖 to its previous one 𝐿𝑖−1. In order
to get the absolute transformation, these values must be summed up in

2All the scale 𝑠1, 𝑠2, . . . , 𝑠ℎ and shift values 𝑡1, 𝑡2, . . . , 𝑡ℎ.

5. Incremental image warping principle 43

a specific way. The first image line 𝐿0 has no predecessor and therefore
no transformation values. The position 𝑥 for the next image line 𝐿1(𝑥) is
transformed by 𝑠1 and 𝑡1, so 𝐿′

1(𝑥) is defined as

𝐿′
1(𝑥) = 𝐿1(𝑥 · 𝑠1 + 𝑡1). (5.7)

The next image line 𝐿2(𝑥) is transformed again by 𝑠2 and 𝑡2, so 𝐿′
2(𝑥) is

defined as
𝐿′

2(𝑥) = 𝐿2(𝑥 · 𝑠2 + 𝑡2). (5.8)

The image line 𝐿1 was already transformed. In order to perform this trans-
formation to 𝐿2 it can be written as

𝐿′′
2(𝑥) = 𝐿2((𝑥 · 𝑠1 + 𝑡1) · 𝑠2 + 𝑡2) (5.9)

= 𝐿2(𝑥 · 𝑠1 · 𝑠2 + 𝑡1 · 𝑠2 + 𝑡2). (5.10)

So 𝐿′
𝑖 represents the transformed image line based on the predecessor and

𝐿′′
𝑖 represents the absolute transformed line. Now the absolute values for the

scale 𝑠𝑛 and the shift factor 𝑡𝑛 can be defined as

𝑠𝑛 =
𝑛∏︁

𝑘=1
𝑠𝑘 and 𝑡𝑛 = 𝑡𝑛−1 · 𝑠𝑛 + 𝑡𝑛, (5.11)

resulting in
𝐿′′

2(𝑥) = 𝐿2(𝑥 · 𝑠2 + 𝑡2). (5.12)

So every line pair has relative and absolute transformation values, this is
illustrated in Figure 5.5.

5.5 Correlation between normal and transformed
space

The correlation between the normal image I of size 𝑤 × ℎ with its width 𝑤
and height ℎ and the transformed one I′ of size 𝑤′ × ℎ with its width 𝑤′,
which may be different than the original one, and height ℎ, is given by the
resulting transformation model, which has 𝑛 = (ℎ− 1) · 2 parameters. This
model describes the transformation for every image position. An example is
shown in Figure 5.6.

5.6 Results
The algorithm was tested with different images, see also Chapter 8. It worked
quite well for images with a good lane marker quality, see Figure 5.2 and
for images where no clipping occurs, see Figure 5.7. Images where clipping
occurs in the lower part of the image and only dashed road markings are

5. Incremental image warping principle 44

𝑠𝑖 𝑡𝑖 𝑠𝑖 𝑡𝑖

(a) (b)

𝐿0

𝐿1

𝐿2

𝐿3

𝐿4

𝐿5

𝐿0

𝐿1

𝐿2

𝐿3

𝐿4

𝐿5

(c) (d)

Figure 5.5: Relative and absolute values. The original image (a) is trans-
formed into a rectified one (b). Every single image line 𝐿𝑖 is transformed by
its relative values 𝑠𝑖 and 𝑡𝑖 to match the previous line 𝐿𝑖−1 as good as possi-
ble (c). Based on the previous transformations 𝑠𝑖−1, . . . , 𝑠1 and 𝑡𝑖−1, . . . , 𝑡1,
the absolute values 𝑠𝑖 and 𝑡𝑖 can be calculated by Eqn. 5.11 for every image
line (d).

present propose a problem, see Figure 5.8. Some of them can be handled
by a good designed score function, see Chapter 6 and a good optimization
problem solving method, see Chapter 7.

5. Incremental image warping principle 45

𝑃𝐶 = 𝑃𝐴

𝑃𝐵 𝑃 ′
𝐵

𝑃 ′
𝐶

(a) (b)

Figure 5.6: Correlation between normal and transformed space. The image I
in normal space (a) is transformed into the rectified one I′ (b) by the proposed
incremental image warping algorithm. Given the starting point of the middle
line 𝑃𝐵 the corresponding starting point 𝑃𝐴, which is the direct extension
of the middle line, can be calculated very easily. At first 𝑃𝐵 = (𝑥, 𝑦) is
transformed into 𝑃 ′

𝐵(𝑥′, 𝑦) given the transformation on the corresponding
image line 𝑦. Note that this transformation does not change the 𝑦-value.
Then in order to get the desired point 𝑃 ′

𝐶 the 𝑦-value is set to 0, resulting
in 𝑃 ′

𝐶 = (𝑥′, 0). Finally 𝑃 ′
𝐶 must be transformed into 𝑃𝐶 , which is located

in normal space. This is especially easy for image line 𝑦 = 0, because no
transformation must be performed, resulting in 𝑃 ′

𝐶 = 𝑃𝐶 = 𝑃𝐴. A complex
line in (a) becomes one point in (b).

5. Incremental image warping principle 46

(a) (b)

(c) (d)

Figure 5.7: Incremental image warping example. The original image (a)
with the result (b). The reference line image, see Chapter 6, which has now
three lines (c), with the transformed image (d). Note that (c) and (d) are
wider. If the position of the middle lane is known in advance, it can improve
the matching algorithm. It is possible to detect the middle in the transformed
image as well.

5. Incremental image warping principle 47

(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Incremental image warping challenges. The original image (a)
with the result (b). At this state the algorithm can’t work quite well due to
the lack of good visible road markings. The original image with painted road
markings (c) with the result (d). Now the result is better, because the dashed
lane markings are merged together. Note that the right boundary marking
is still missing. The reference line image (e) with the transformed image (f).

Chapter 6

Comparing two image lines

The incremental image warping algorithm is based on the transformation of
individual image lines in order to match another line as good as possible. In
order to evaluate this, a score function 𝐹 needs to be defined that

• can compare two lines, 𝐿1 and 𝐿2, with each other,
• should provide a local minimum if these two lines are similar,
• should be able to restrict the comparison to a specific area and
• should be able to adjust the sample rate.

This can be done by a simple L2 norm between two image lines over a
specified range [0, . . . , 𝑤] and with a defined sample rate. A smoothing filter
is applied as a pre-processing step in order to remove image noise and other
image errors, see Figure 6.1. However, smoothing the whole image with the

𝐿𝑖 𝐿𝑖

(a) (b)

Figure 6.1: Smoothing the image. Taking a close look at one of the input
images reveals that the images are very noisy and the cameras already apply
a sharpening filter as a pre-processing step (a). One part of the image line
𝐿𝑖 is shown in both images. Since the score function 𝐹 only compares two
image lines with each other, a smoothing filter is applied in order to enhance
the matching algorithm (b).

48

6. Comparing two image lines 49

𝑓𝑜(𝑥)

𝑥
−2 −1 0 1 2 3 4

𝑓1(𝑥)

𝑥
−2 −1 0 1 2 3 4

𝑓𝑜(𝑥)

𝑥
−2 −1 0 1 2 3 4

𝑓2(𝑥)

𝑥
−2 −1 0 1 2 3 4

(a) (b)

Figure 6.2: Sampling step width. The original discrete signal 𝑓𝑜(𝑥) is trans-
formed by 𝑇𝑠,𝑡 = (1,−0.4), which means that the original scale remains the
same, but the signal is shifted by 𝑡 = −0.4. In (a) the original sample step
width of 𝑤 = 1 remains the same, resulting in a function 𝑓1(𝑥) with a huge
divergence from the original one. In (b) the amount of samples was doubled
and therefore the step width reduced to 𝑤 = 0.5. The resulting function 𝑓2(𝑥)
is very similar to 𝑓𝑜(𝑥). So an oversampling of the transformed function is
needed in order to find the optimal transformation 𝑇𝑜𝑝𝑡.

same strength destroys useful image information in the upper part of the
image. The strength of the filter should be diminished based on the image
position, see Section 8.1.3 and Figure 8.9. Increasing the sample rate provides
a more accurate score value for transformations with sub-pixel accuracy, see
Figure 6.2.

6.1 L2 norm score
The score function 𝐹 can be defined as

𝐹 =
𝑤∑︁

𝑥=0
[𝐿1(𝑥)− 𝐿2(𝑥)]2 , (6.1)

by using a simple L2 norm of two image lines over a specified range [0, . . . , 𝑤].
To use this norm in the incremental image warping algorithm, the score
function 𝐹 becomes dependent on the scale 𝑠 and the shift 𝑡, resulting in

𝐹 (𝑠, 𝑡) =
𝑤∑︁

𝑥=0

[︀
𝐿1(𝑥)− 𝐿′

2(𝑥)
]︀2 ↦→ min . (6.2)

The image line 𝐿2 will be transformed by 𝑠 and 𝑡, resulting in 𝐿′
2, using

Eqn. 5.3. Now this score function calculates one score value for one transfor-
mation 𝑇 (𝑠, 𝑡). Using the brute-force matcher (Section 7.4.1), a visualization

6. Comparing two image lines 50

-‐10	

-‐9,1	

-‐8,2	
-‐7,3	
-‐6,4	
-‐5,5	
-‐4,6	
-‐3,7	
-‐2,8	
-‐1,9	
-‐1	
-‐0,1	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

0,
99
	

0,
99
5	 1	

1,
00
5	

1,
01
	

1,
01
5	

1,
02
	

1,
02
5	

1,
03
	

1,
03
5	

1,
04
	

1,
04
5	

1,
05
	

1,
05
5	

1,
06
	

1,
06
5	

1,
07
	

1,
07
5	

1,
08
	

1,
08
5	

1,
09
	

1,
09
5	

1,
1	

14000-‐16000	

12000-‐14000	

10000-‐12000	

8000-‐10000	

6000-‐8000	

4000-‐6000	

2000-‐4000	

0-‐2000	

𝑠

𝑡

𝑃min∙

Figure 6.3: Score function visualization. The line score function 𝐹 (𝑠, 𝑡),
see Eqn. 6.2, is shown in a specific range around the local minimum 𝑃min.
The scale value 𝑠 is in the range of 𝑠 = [0.99, 1.1] and the shift value 𝑡 is in
𝑡 = [−0.1,−10].

of 𝐹 (𝑠, 𝑡) in a specific area around the local minimum 𝑃min can be created,
see Figure 6.3.

6.2 L2 norm score with a weighting line
This score function is based on a simple L2 norm between two image lines,
multiplied with the weighting line at every position. So 𝐹 (𝑠, 𝑡) is specified
as

𝐹 (𝑠, 𝑡) =
𝑤∑︁

𝑥=0

[︀
𝐿1(𝑥)− 𝐿′

2(𝑥)
]︀2 · 𝐿𝑤(𝑥) ↦→ min . (6.3)

The weighting line 𝐿𝑤 must have the same width as 𝐿1 and 𝐿′
2, see Fig-

ure 6.4.

6.2.1 Weighting line on positions

This weighting line 𝐿𝑤 is used as a location based weighting function for
the calculation of the matching score. The Gaussian function 𝑔(𝑥) with its
variance 𝜎 and its shift value 𝜇 is defined as

𝑔(𝑥) = 1
𝜎
√

2𝜋
· 𝑒− 1

2 (𝑥−𝜇
𝜎)2

. (6.4)

6. Comparing two image lines 51

𝐿𝑖(𝑥)

𝑥

𝐿1

𝐿2

1
𝐿𝑤

L2

·𝐿𝑤

𝑆

(a) (b)

Figure 6.4: Score calculation with a weight function. Two image lines, 𝐿1
and 𝐿2, are retrieved from the original image (a). The score of these two lines
can be calculated using a L2 norm combined with a weighting function 𝐿𝑤,
see Eqn. 6.3. 𝐿𝑤 simply weights the result 𝑆 from the L2 norm on specific
positions (b).

Eqn. 6.4 represents the normalized Gaussian, which has∫︁ ∞

−∞
𝑔(𝑥) = 1 (6.5)

as its property. A factor 𝑠 was added to scale the Gaussian

𝑔′(𝑥) = 𝑔(𝑥) · 𝑠 (6.6)

and is therefore increasing or decreasing the impact of the weighting func-
tion. The weighting line 𝐿𝑤(𝑥), which is initialized on every position with
1 and has a given width of 𝑤, is now defined as the accumulated sum of all
scaled Gaussians 𝑔′

𝑥(𝑥)

𝐿𝑤(𝑥) =
𝑤∑︁

𝑥=0

[︀
1 + 𝑔′

1(𝑥) + 𝑔′
2(𝑥) + . . . + 𝑔′

𝑛(𝑥)
]︀

(6.7)

for every line position 𝑥, see Figure 6.5. A successful rectification is shown in
Figure 6.6. Nevertheless problems can occur, if the continuous road markings
are being clipped in the upper part of the image, see Figure 6.7.

6.2.2 Weighting line from the image

The weighting line 𝐿𝑤 can also be retrieved directly from the image content.
The idea is that lane markings appear in the image as bright lines, see
Figure 6.8. So for a fixed amount of image lines 𝑛, the image content in

6. Comparing two image lines 52

𝑃1 𝑃2 𝑃3

Figure 6.5: Weighting line zoom. This image is a zoomed image of the
weighting line 𝐿𝑤(𝑥), which represents a location based weighting function
for the calculation of the comparison score, see Eqn. 6.3. Normally the line
would have a height of 1 pixel, which is shown by the green line. For a better
visualization several lines are drawn above each other. The red dots mark the
positions 𝑃1, 𝑃2 and 𝑃3, where the centers of the three individual Gaussian
functions 𝑔′

1(𝑥), 𝑔′
2(𝑥) and 𝑔′

3(𝑥) are. The line is created using Eqn. 6.7. Black
represents a function value of 1.

(a) (b)

(c) (d)

Figure 6.6: Weighting line example. The original image (a) with the re-
sult (b). The weighting line image (c) with the transformed image (d). Note
that (c) and (d) are wider. The detection of the middle lane in (d) can be
done afterwards.

the transformed space, see Figure 6.8 (c), is summed up and normalized.
This results in different weighting lines 𝐿𝑤,𝑖(𝑥) for every image line 𝑖, see
Figure 6.8 (b). These values are then used for the general score calculation,
see Eqn. 6.3.

However, this method is very error-prone and is not usable if other bright
structures are in the image. Nevertheless quite good results can also be
produced, see Figure 6.9.

6. Comparing two image lines 53

(a) (b)

(c) (d)

Figure 6.7: Weighting line problem. The original image (a) with the re-
sult (b). The weighting line image, which has now four lines (c) with the
transformed image (d). The algorithm worked quite well up to the point
where the left continuous road line disappears (white arrow). The devia-
tion before that is caused by the lanes, which become physically narrower.
This proposes a problem for the algorithm, which uses a fixed width for the
different lanes.

6. Comparing two image lines 54

(a)

(b)

(c)

Figure 6.8: Weighting line from the image example 1. The original image
with additional width and the result on top (a). The visualization of every
individual weighting line 𝐿𝑤,𝑖(𝑥) for every image line 𝑖 (b). The transformed
result (c).

6. Comparing two image lines 55

(a) (b)

(c) (d)

Figure 6.9: Weighting line from the image example 2. The original im-
age (a) with the detection result (b). A fixed amount of image lines 𝑛 in the
transformed space (d) is summed up and normalized resulting in an image
of different weighting lines 𝐿𝑤,𝑖(𝑥) (c). The summation stops after a fixed
amount of image lines, so that the resulting weighting line does not change
anymore, leading to a more robust incremental image warping. This behavior
also causes the disappearance of the dashed lane markers in (c).

Chapter 7

Image line matching as an
optimization problem

To complete the incremental image warping algorithm an optimization prob-
lem needs to be defined that uses the score function 𝐹 (𝑠, 𝑡) in order to find
the best transformation values that match two adjacent lines as good as
possible, see Figure 7.1. Now a solver needs to be created that uses the score
function and the image lines and combines it with other useful information.

𝐿1

𝐿2

𝐿1

𝐿2

(a) (b)

Figure 7.1: Image line matching as an optimization problem. The original
image (a) and the result of the incremental image warping algorithm (b).
The score function 𝐹 (𝑠, 𝑡) defines the score value given 𝐿1, 𝐿2, the scale 𝑠
and the shift 𝑡, see Chapter 6. Now the best transformation values need to
be found in order to transform the image lines from (a) to (b).

56

7. Image line matching as an optimization problem 57

𝑓

𝑓(𝑥)

𝑥

𝑓min

𝑓max

𝑥min 𝑥max

𝑃1

𝑃2

(a) (b)

Figure 7.2: Minimization examples. In the 1D-case 𝑃1 marks the minimum
of the plotted function 𝑓(𝑃1) = 𝑓min (a). In the 2D-case the red dot marks
the position of the minimum (b).

7.1 General definition
The general definition of the optimization problem can be defined by find-
ing the minimum of an unknown function 𝑓(𝑥1, 𝑥2 . . . 𝑥𝑛) with parameters
𝑥1, 𝑥2 . . . 𝑥𝑛

𝑓(𝑥1, 𝑥2 . . . 𝑥𝑛) ↦→ min . (7.1)

So the parameters are sought in order to minimize this function. In Figure 7.2
two examples are shown.

Now a specific optimization problem can be created, which uses the
line score function 𝐹 (𝑠, 𝑡), see Eqn. 6.3, in combination with other desired
properties, see Figure 7.3. It can be defined to enhance or to restrict the line
matching algorithm. Enhancement can be done by predicting a better initial
guess and restriction by penalizing offset values for 𝑠 and 𝑡. However, it is
possible to define the optimization process in many other ways to enforce
the desired behavior of the overall result.

7.2 Local problem definition
In order to transform the original image into a rectified version, as already
seen in Chapter 5, the line matching algorithm performs a stepwise trans-
formation of every single horizontal image line, see Figure 5.1. Therefore a
new optimization problem must be defined for every image line pair 𝐿1 and
𝐿2 individually.

The actual matching is done in the transformed image space. This means
that the previous line is the already transformed line 𝐿′

2 and the next line 𝐿1

7. Image line matching as an optimization problem 58

𝐺 = (𝑠, 𝑡)

𝐿1

𝐿2 Solver

Method𝑂𝑃

𝑅 = (𝑠𝑟, 𝑡𝑟)

Figure 7.3: Flowchart of the optimization process. The input for the Solver
on the left side is the initial guess 𝐺 = (𝑠, 𝑡) with the start values for the
scale 𝑠 and the shift 𝑡 and the two image lines 𝐿1 and 𝐿2. The Solver can be
implemented as a more or less intelligent brute-force algorithm or by using a
state of the art optimizer. The result 𝑅 = (𝑠𝑟, 𝑡𝑟) returns the best scale and
shift values in order to match the two image lines together. This behavior
must be specified in the Method, which can be seen as another input for the
Solver.

is still in normal space. Therefore the initial guess 𝐺 =
(︀
𝑠, 𝑡

)︀
is the summed

version of all the scale and shift values, see Section 5.4 and Figure 7.4. So
the optimization problem

𝑂𝑃 ̂︀= ⟨︀
𝐺, 𝐿1, 𝐿′

2
⟩︀

(7.2)

has the initial guess 𝐺 and both image lines 𝐿1 and 𝐿′
2 as input.

7.2.1 Prediction enhancement

The prediction enhancement is calculated from the previous transformation
values 𝑠𝑝 and 𝑡𝑝 and the current ones 𝑠 and 𝑡. The difference between those
values

𝑑𝑠 = 𝑠− 𝑠𝑝 and 𝑑𝑡 = 𝑡− 𝑡𝑝 (7.3)

can then be used to update the initial guess 𝐺. A better way to do this, is
to calculate a running average with the previous differences 𝑑𝑠,𝑝 and 𝑑𝑡,𝑝. So
with

𝑑𝑠 = 𝑑𝑠 + 𝑑𝑠,𝑝

2 and 𝑑𝑡 = 𝑑𝑡 + 𝑑𝑡,𝑝

2 , (7.4)

the initial guess 𝐺 =
(︀
𝑠 + 𝑑𝑠, 𝑡 + 𝑑𝑡

)︀
can be updated. The optimization

problem

𝑂𝑃 ̂︀= ⟨︀
𝐺, 𝐿1, 𝐿′

2
⟩︀

(7.5)

has the updated initial guess 𝐺 and both image lines 𝐿1 and 𝐿′
2 as input.

7. Image line matching as an optimization problem 59

(a) (b)

(c) (d)

Figure 7.4: Line matching example. The original image (a) with the partial
result (b). The reference line (c) with the partial transformed image (d). Note
that (c) and (d) are wider. The algorithm stopped intentionally at a given
position to see the huge difference between the next normal image line and
the previously transformed one.

7.2.2 Line offset restriction

The line offset restriction can be created by penalizing the differences be-
tween the current and the previous optimization values. So the optimization
problem

𝑂𝑃 ̂︀= ⟨︀
𝐺, 𝐿1, 𝐿′

2, 𝑠𝑝, 𝑡𝑝

⟩︀
(7.6)

has the initial value 𝐺, both image lines 𝐿1 and 𝐿′
2 and the previous values

𝑠𝑝 and 𝑡𝑝 as input. The score function for the optimizer is updated to use
the line score function 𝐹 , the difference between the scale 𝑑𝑠 and between
the shift value 𝑑𝑡. So the final score value

𝑉 = 𝛼 · 𝐹 + 𝛽 · 𝑑𝑠 + 𝛾 · 𝑑𝑡 (7.7)

is the summation of all the individual scores 𝐹, 𝑑𝑠 and 𝑑𝑡 weighted by 𝛼, 𝛽
and 𝛾. To sum these values up and weight them in a convenient way 𝐹, 𝑑𝑠

and 𝑑𝑡 should be normalized, see Figure 7.5.

7. Image line matching as an optimization problem 60

(a) (b)

(c) (d)

Figure 7.5: Offset restriction example. The offset restriction should pre-
vent huge differences in the transformation values from one line pair to the
other, resulting in a visible jump. If the restriction has too much influence,
it becomes too rigid and a correct rectification is not possible anymore (b).
The result is shown in (a). The same score function is used, but the offset
restriction has less influence (d). In this case the result is quite accurate (c).

7.3 Global problem definition
Incremental image warping can also be done in a global way, which has many
advantages and some disadvantages. The same problem solver can be used,
only the data and the initial guess change. Given is an image I with a specific
height ℎ and width 𝑤. The initial guess 𝐺 = (𝑠1, 𝑡1, 𝑠2, 𝑡2, . . . , 𝑠ℎ−1, 𝑡ℎ−1) has
a scale 𝑠𝑖 and a shift value 𝑡𝑖 for every single image line pair, resulting in a
length of (ℎ− 1) · 2 values. The optimization problem

𝑂𝑃 ̂︀= ⟨𝐺, I⟩ (7.8)

has now the initial guess 𝐺 and the complete image I as input. Now the
optimizer needs to find a local minimum in this huge space.

The drawback of this approach is this huge search space, which has a
dimension of 𝐷 = (ℎ−1)·2. Therefore the runtime can be quite long, greatly
depending on the size of the image. Nevertheless this approach has many
advantages, because

• the whole image information both in transformed and original space
and

• the relationship between all transformation values are available.

7. Image line matching as an optimization problem 61

𝑠1

𝑠2

𝑡1 𝑡2

𝑠

𝑡

𝑑𝑡

𝑑𝑠

𝑠′
1

𝑠′
2

𝑡′
1 𝑡′

2

𝑠

𝑡

𝑑′
𝑡

𝑑′
𝑠

(a) (b)

Figure 7.6: Brute-force algorithm. The first pass of the brute-force algo-
rithm covers an area from 𝑠1 to 𝑠2 and from 𝑡1 to 𝑡2 (a). The taken samples
and the resulting shift 𝑑𝑠 and scale 𝑑𝑡 step width are indicated by the black
dots. The range values can be updated in order to cover a smaller area more
precisely (b). Now 𝑠′

1, 𝑠′
2, 𝑡′

1, 𝑡′
2, 𝑑′

𝑠 and 𝑑′
𝑡 represent the updated values.

Now a score function can be defined, which can deal with the individual
transformation values of every image pair and the global rectification cri-
terium.

7.4 Solving the optimization problem
Now that the optimization problem with its object function is defined, it
can be solved in different ways.

7.4.1 Brute-force method

The first approach that did come in mind was to solve the optimization
problem with a more or less intelligent brute-force algorithm. The idea of
this algorithm is simply to try out every combination of scale and shift values
in a defined range, see Figure 7.6 (a).

Runtime: An important factor is the individual step width of each value.
This has a huge impact on the runtime of the algorithm. In order to achieve
a more precise result, a second pass of the brute-force algorithm can be
carried out. The range values can be updated and the step width can be
decreased in order to achieve a more accurate result at a better runtime, see
Figure 7.6 (b).

7. Image line matching as an optimization problem 62

7.4.2 Derivative-free methods

These methods only require the objective function values, but no derivative
information. This fits very well for the defined optimization problem with
its object function. This is because the derivatives can only be estimated
and not calculated for the defined function. A review of derivative-free opti-
mization algorithms and a comparison of the software implementations are
provided in [23].

The corresponding thesis project uses the Apache Commons Math [32]
implementation of

• the Powell optimizer [20],
• the BOBYQA optimizer [21] and
• the CMA-ES optimizer [35]

in order to solve the optimization problem. All of them deliver almost iden-
tical results and are easy to use, see Chapter 9.

Used methods: The Powell optimization is an efficient method for find-
ing the minimum of a function 𝐹 (x) of several variables x, without having to
calculate derivatives of this function. A subsequent method of this optimiza-
tion technique, which was published in 1964, was the BOBYQA optimization
published in 2009. This method finds the minimum of a function 𝐹 (x) with
bounds a ≤ x ≤ b on the variables. This was very useful in order to restrict
the transformation 𝑇𝑠,𝑡 of the individual image lines.

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a
stochastic derivative-free method for numerical optimization of non-linear
or non-convex continuous optimization problems, see Figure 7.7. The imple-
mentation of this method was also tested and functioned as well.

7. Image line matching as an optimization problem 63

Generation 1 Generation 2 Generation 3

Generation 4 Generation 5 Generation 6

Figure 7.7: CMA-ES optimization example. Given is a simple two-
dimensional problem with one global optimum. The amount of samples is
the same in every generation. The function is evaluated for every sample po-
sition (black dots) of the population. The dotted line shows the distribution
of the samples. The population is propagated to the next generation and
concentrates over the global optimum within a few generations. Image taken
from [35].

Chapter 8

Results and challenges

This chapter summarizes the results and challenges of the incremental image
warping algorithm, see Figure 8.1-8.6. Two charts display the transforma-
tion values for all image lines for one input image, see Figure 8.2 (e) and
Figure 8.3 (e). Analyzing these charts can give additional information about
the quality of the warping result. Sharp jumps in the slope of the shift or
the scale curve should not occur, because then the warping result will be
incorrect.

A step by step incremental image warping example, using only one and
two starting points, is shown in Figure 8.5 and the same example, using five
starting points, is shown in Figure 8.6. Finally the different challenges and
solutions are described in Section 8.1.

8.1 Challenges and solutions
This section summarizes some of the challenges and problems that occurred
during the development of the incremental image warping algorithm.

8.1.1 Other image structures

The environment around the street that should be detected can change in
numerous ways. A uniform surrounding proposes no problem for the al-
gorithm, but other image structures with sharp edges pointing in another
direction than the street do. In Figure 8.7 some examples are shown. This
can be handled by weighting the line score function greatly in comparison
to the surrounding and therefore setting the evaluation window exactly on
the street, see Section 6.2.

8.1.2 Image errors and black lines

Image errors can appear on every input image and are caused by the used
cameras. They often occur as black lines or individual pixel errors produced

64

8. Results and challenges 65

(a) (b)

(c) (d)

Figure 8.1: Incremental image warping result 1. The original image (a) with
the result (b). The reference line image, which has now three lines (c), with
the transformed image (d). Note that (c) and (d) are wider. If the position of
the middle lane is known in advance, it can improve the matching algorithm.
It would be possible to detect the middle in the transformed image as well.

by dirty lenses. These errors must be considered in different ways. At first
the black lines in the bottom of the image must be detected and skipped for
the line warping algorithm, see Figure 8.8 (a). This simple task can be done
in several ways. The individual pixel errors, see Figure 8.8 (b), can be dealt
with by blurring the input image, see Section 8.1.3.

8.1.3 Camera image and smoothing

The quality of the input image itself varies greatly due to the different cam-
era models that are being used. The algorithm itself works with image lines
with a height of 1 pixel and is therefore very sensitive to noise and image
errors. Some cameras already apply some pre-processing steps like sharpen-
ing to the output video stream, which can be problematic for fitting dashed
lane markers. One solution to this problem is to blur the image. However,
applying the same blur strength to the whole image is counterproductive,
because this will destroy image information like road markers in the upper
part of the input image, which are already very small in size, see Figure 8.9.

8. Results and challenges 66

(a) (b)

(c) (d)

-2500!

-2000!

-1500!

-1000!

-500!

0!

0!

1!

2!

3!

4!

5!

6!

7!

8!

9!

10!

11!

0! 50! 100! 150! 200! 250! 300!

Sh
ift

 V
al

ue
!

Sc
al

e
V

al
ue
!

Image Line!

Scale! Shift!

(e)

Figure 8.2: Incremental image warping result 2. The original image (a) with
the result (b). The weighting line image (c) with the transformed image (d).
Note that (c) and (d) are wider. The detection of the middle lane in (d) can
be done afterwards. The resulting transformation values are shown in (e).
The scale values, starting with 𝑠 = 1, are printed on the primary vertical
axis. The shift values, starting with 𝑡 = 0, are printed on the secondary
vertical axis. The 𝑥-axis shows the image line number. At approximately 252
the street is lost and can not be matched anymore, resulting in the value
jump.

8. Results and challenges 67

(a) (b)

(c) (d)

-700!

-600!

-500!

-400!

-300!

-200!

-100!

0!

0!

5!

10!

15!

20!

25!

30!

35!

0! 50! 100! 150! 200! 250! 300!

Sh
ift

 V
al

ue
!

Sc
al

e
V

al
ue
!

Image Line!

Scale! Shift!

(e)

Figure 8.3: Incremental image warping result 3. The original image (a) with
the result (b). The weighting line image (c) with the transformed image (d).
The resulting transformation values are shown in (e). The scale values, start-
ing with 𝑠 = 1, are printed on the primary vertical axis. The shift values,
starting with 𝑡 = 0, are printed on the secondary vertical axis. The 𝑥-axis
shows the image line number. At approximately 240 the street is lost and
can not be matched anymore, resulting in the value jump.

8. Results and challenges 68

(a)

(b)

(c)

Figure 8.4: Weighting line from image. The original image with additional
width and the result on top (a). The visualization of every individual weight-
ing line 𝐿𝑤,𝑖(𝑢) for every image line 𝑖 (b). The transformed result (c).

8. Results and challenges 69

𝑃1 𝑃1

(a) (b)

𝑃1

𝑃2

𝑃1

𝑃2

(c) (d)

Figure 8.5: Step by step incremental image warping example 1. In (a) only
the left street line, with the starting point 𝑃1, was selected and successfully
detected. The result shows a rectification of only this line, the other ones were
not considered (b). In (c) the right street line, with the starting point 𝑃2,
was added to the selection. The street is correctly rectified after the image
line of point 𝑃2 (d). In Figure 8.6 the complete rectification is shown.

8. Results and challenges 70

𝑃1

𝑃2

𝑃3

𝑃4
𝑃5

(a)

𝑃1

𝑃2

𝑃3

𝑃4
𝑃5

(b)

𝑃1

𝑃2

𝑃3

𝑃4
𝑃5

(c)

Figure 8.6: Incremental image warping example 2. In (a) the five street lines
were selected and successfully detected. The red dots indicate the starting
points 𝑃1, 𝑃2, 𝑃3, 𝑃4 and 𝑃5 of the weighting line. The result shows the fully
rectified street (b). The associated weighting lines (c). A partly rectification
of the same image is shown in Figure 8.5.

8. Results and challenges 71

(a) (b)

(c) (d)

Figure 8.7: Other image structures. Dents in tunnel walls (a), emergency
escape doors (b), ceiling lights (c) and structures not belonging to the road
propose a problem for the image warping algorithm.

(a) (b)

Figure 8.8: Image errors. Black lines often appear on the bottom of the
image (a). Individual pixel errors can occur throughout the image (b). These
errors must be dealt with in order for the line warping algorithm to work.

8. Results and challenges 72

𝑆

(a) (b)

𝐿𝑖 𝐿𝑖

(c) (d)

(e) (f)

Figure 8.9: Camera image errors. The errors are not clearly noticeable in
the original camera image (a). The black square 𝑆 in (a) indicates the image
section in (c) and (d). In the enlarged image (c) the noise and sharpening
effects are clearly visible. The sharp steps at the end of one lane marker
propose a problem for the algorithm. A Gaussian blur with a radius of 𝜎 = 0.7
reduces this problem greatly (d). In (c) and (d) the black rectangle represents
a part of one image line 𝐿𝑖. However, applying the same blurring filter with
the same strength over the whole image, destroys image information in the
upper part. Therefore the strength of the filter must be diminished, based
on the position. This can be done in a very simple way from top to bottom,
indicated by the gradient in (e). To improve this non optimal solution, the
vanishing point algorithm (Section 3.5) can be used to find the approximate
position of the vanishing point (b) and use this to update the angle of the
gradient (f).

Chapter 9

Implementation

The project was divided into two parts. At first the development, prototyping
and testing was done in Java with ImageJ1. The entire thesis project was
done with this setup, because the environment is known and prototyping
is easy. As usual in ImageJ all the initial algorithms need to be put in the
default package. In Figure 9.1 the class diagram is illustrated, including
all the created and used java packages and some classes.

The second part was at the end of the thesis project. The most use-
ful algorithms were converted into a C++, in combination with OpenCV2

version. This was then implemented into the existing program structure of
the industrial partner. Due to the confidentiality agreement this part is not
explained in this thesis.

Implemented algorithms The content of the default package is broken
down into Table 9.1, which describes the implemented incremental image
warping algorithms and into Table 9.2, which describes the other imple-
mented algorithms.

9.1 Bresenham drawing and ellipse voting
Different versions of the Bresenham algorithm [4] were implemented. It is
possible to draw

• lines from one point to another,
• ellipses, full or divided into sections and
• circles, full or divided into sections.

Additionally these helper classes can return a list of the individual pixels.
This is needed in the Marker Merge and the Ellipse Crawl algorithm.

1ImageJ homepage (http://imagej.nih.gov/ij/).
2OpenCV homepage (http://opencv.org/).

73

9. Implementation 74

default!
(package)!

matching!
(package)!

optimization-
Problem!
(package)!

GlobalOP!
(class)!

LineOP!
(class)!

score!
(package)!

ScoreFunction!
(class)!

L2Norm!
(class)!

ImageLine!
(class)!

WeightingLine!
(class)!

...!

test!
(package)!

ScoreTest!
(class)!

DistanceTest!
(class)!

...!

bresenham!
(package)!

BresenhamLine!
(class)!

imagingbook!
(package)!

RegionLabeling!
(class)!

BinaryRegion!
(class)!

LineMatching!
(class)!

MarkerMerge!
(class)!

...!

Figure 9.1: Class diagram of the java implementation. The structure is
divided into the default package, the matching package, which is divided
into sub-packages, see Section 9.3, the test package, see Section 9.5, the
bresenham package and the external imagingbook package [29], see Sec-
tion 9.2.

9. Implementation 75

Table 9.1: Overview of the implemented incremental image warping al-
gorithms. All of the following ImageJ Plugins perform incremental image
warping on a given image, using different approaches.

Java Class Description
LineMatching This plugin uses the brute-force algorithm,

which only uses the L2 norm as a score func-
tion.

LineMatching-
_Ref

This plugin uses the brute-force algorithm,
which uses the reference line approach.

LineMatching-
_Weight

This plugin uses the brute-force algorithm,
which uses the weighting line approach.

LineMatching-
_Powell

This plugin solves the optimization problem us-
ing a Powell Optimizer, which only uses the L2
norm as a score function.

LineMatching-
_Powell_Ref

This plugin solves the optimization problem us-
ing a Powell Optimizer, which uses the reference
line approach.

LineMatching-
_Powell_Weight

This plugin solves the optimization problem us-
ing a Powell Optimizer, which uses the weighting
line approach.

Ellipse crawling algorithm

This algorithm uses one quarter of an ellipse with a specific length to width
ratio and tries to find the part, which fits best on a continuous lane marker.
The following steps are performed:

Input: Given is the grayscale input image I.
1. On the original picture I a thresholding step is performed, see Fig-

ure 9.2 (b).
2. Based on the given starting point 𝑃𝑆 multiple quarters of ellipses

𝐸1, 𝐸2, . . . , 𝐸𝑛 are calculated with different length to width ratios, see
Figure 9.2 (c).

3. This ellipse bundle B = ⟨𝐸1, 𝐸2, . . . , 𝐸𝑛⟩ is then rotated in order to
cover all the lane marker orientations, resulting in B1, B2, . . . , B𝑚.

4. Every point on every ellipse 𝐸𝑖 in every ellipse bundle B𝑖 is checked if
a lane marker is hit or not, resulting in one vote score for every ellipse.

5. The ellipse part with the most score is then chosen in order to prop-
agate the starting point 𝑃𝑆 , the procedure is repeated starting from
2.

9. Implementation 76

Table 9.2: Overview of the other implemented algorithms.

Java Class Description
Draw_Regions This plugin draws all the found binary regions

into another image.
Marker_Merge This plugin performs the marker merge algo-

rithm, see Section 4.4, starting with a user de-
fined marker.

Automatic-
_Marker_Merge

This plugin performs the marker merge algo-
rithm, see Section 4.4, starting with an auto-
matically detected start region.

VP_Detection This plugin performs vanishing point detec-
tion based on the described algorithm, see Sec-
tion 3.5.

Log_ImageLine This plugin takes two image lines out of a given
picture and logs the results of the score function.

Ellipse_Vote This plugin votes on different rotated Bresen-
ham ellipses, in order to follow a continuous lane
marking, see Section 9.1.

Test_Cases In addition to the JUnit tests, see Section 9.5,
different test cases, like image line and weighting
line test, are implemented as ImageJ plugins.

9.2 Binary regions implementation
The base of the binary region implementation, which includes region label-
ing, was taken from the Computer Vision lecture, which was based on [6].
The calculation of the central moments, the eccentricity and the orientation
was added. Additionally a depth first labeling, which has an 8 neighborhood
connectivity, was implemented.

9.3 Matching (Java package)
This package includes all the needed classes in order to perform incremental
image warping on a given image. It includes the BruteForceMatcher, the
ImageLine class, the WeightingLine class, the ReferenceLine class and the
MatchingHelper class. Additionally two other packages, the optimization-
Problem and the score package, are used in order to bundle the remaining
classes.

9. Implementation 77

(a) (b)

B1

B2 B3

𝑃𝑆 𝑃𝑆

(c) (d)

Figure 9.2: Ellipse crawling algorithm. The original image (a) with the
result of the thresholding step (b). One quarter of an ellipse is drawn multiple
times with different length to width ratios. This ellipse bundle B1 is then
rotated. In (c) this is visualized at two stages B2 and B3. Given a starting
point 𝑃𝑆 the best ellipse part is chosen, which has the most votes on a line
marker (d).

ImageLine (Java class)

A class was needed that is independent from the original image. Now scal-
ing and shifting can be done without any boundaries. This class stores the
following data:

• The original line,
• the current scale value and
• the current shift value.

The line itself can be scaled and shifted multiple times. No calculation is
done at this point, only the scale and shift values are updated and stored.
Now the whole transformed line, which can be longer or shorter, or only the
visible part can be fetched. The latter method additionally saves calculation
time, because only the required part is calculated.

9. Implementation 78

The interpolation method is currently only a simple linear interpolation.
This is done via a target to source mapping, which calculates for every
position 𝑥 of the transformed line 𝐿′(𝑥) a interpolated value at position 𝑥′

of the original line 𝐿(𝑥′), see Eqn. 5.3.

WeightingLine (Java class)

This class can generate a weighting line, see Section 6.2.1, with various
amounts of points. At any point a Gaussian is calculated and accumulated
into the weighting line, see Figure 6.5. Additionally the width of the line
and the properties of the Gauss function can be set.

ReferenceLine (Java class)

This class calculates a weighting line directly from a reference image, see
Section 6.2.2. Different summation variants are implemented as well as a
function to normalize the resulting line.

MatchingHelper (Java class)

This helper class has different methods, which are useable in order to test
different parts of the algorithm individually. There are methods for scaling,
shifting and multiplying one image line and for getting an interpolated value
on any position.

BruteForceMatcher (Java class)

The first idea that comes in mind in order to solve the local problem def-
inition, see Section 7.2, is trying out every combination of scale and shift
values in a defined range. The result was the brute-force matcher, which has

• the scale range,
• the shift range,
• the scale step width and
• the shift step width

as properties, see Section 7.4.1. For the two transformation values two nested
loops are needed, which use these range and step width values.

TransformationPair (Java class)

The transformation pair simply holds the shift and scale values in a Java
object.

9. Implementation 79

Optimization-
Problem!
(interface)!

LineOP!
(class)!

LineOffsetOP!
(class)!

GlobalOP!
(class)!

Figure 9.3: Hierarchy of the optimization problem classes.

9.3.1 Optimization Problem (Java package)

The hierarchy of the optimization problem classes is shown in Figure 9.3. All
of these classes use the score function package (Section 9.3.2) to calculate the
actual score value between two image lines. This architecture was created
in order to gain flexibility, because now the actual score functions can be
exchanged and are decoupled from the optimization problem.

OptimizationProblem (Java interface)

The interface of the optimization problem itself is very simple, because only
one function is needed.

public interface OptimizationProblem {
public ObjectiveFunction getObjectFunction();

}

The method declaration and the type ObjectiveFunction come from the
Apache Commons Math [32] implementation of the Powell Optimizer [20].
Up to this point the library was not needed. The BruteForceMatcher im-
ports this interface and therefore the Apache Commons Math library, in
order to achieve a consistent call structure, but it could work without it.

This ObjectiveFunction can be implemented as an anonymous class,
which has again only one method that needs to be defined.

public ObjectiveFunction getObjectFunction() {
return new ObjectiveFunction(new MultivariateFunction() {

public double value(double[] point) {
//Score calculation

return 0;
}

});
}

This value(...) function is needed for the specific score calculation.

9. Implementation 80

LineOptimizaionProblem (Java class)

This class is designed to return a score value for the given scale and shift val-
ues. The following steps are needed in order to define a specific optimization
problem.

1. The class needs to implement the OptimizationProblem interface.
public class LineOptimizationProblem implements

OptimizationProblem {
//...

}

2. A constructor can be defined, which holds all the needed information.
public LineOptimizationProblem(ImageLine line1, ImageLine line2,

ScoreFunction scoreFunction) {
//Constructor

}

In this case the two image lines and the used score function are passed.
3. As already seen, the ObjectiveFunction can be implemented as an

anonymous class.
public ObjectiveFunction getObjectFunction() {

return new ObjectiveFunction(new MultivariateFunction() {
public double value(double[] point) {

//Score calculation
return 0;

}
});

}

4. The input for the double value(double[] point) function repre-
sents in this specific case the scale and shift values. So a score can be
calculated based on this values.

public double value(double[] point) {
line1.setScaleValue(point[0]);
line1.setShiftValue(point[1]);
return scoreFunction.getScore(line1, line2);;

}

The use of the scoreFunction adds additional flexibility, because it
can be exchanged. However, the score value could be calculated directly
in this method.

LineOffsetOP (Java class)

The line offset optimization problem is very similar to the normal line op-
timization problem. In this case the deviation from other scale and shift
values is used for the score calculation, see Section 7.2.2.

9. Implementation 81

ScoreFunction!
(interface)!

L2Norm!
(class)!

Other Score!
(class)!

Figure 9.4: Hierarchy of the score function classes.

public double value(double[] point) {
//Score calculation

return WEIGHT_LINE * scoreValLine +
WEIGHT_SCALE_OFFSET * scoreValScaleOffset +
WEIGHT_SHIFT_OFFSET * scoreValShiftOffset;

}

So the weighted normal score with the weighted offset of the scale and shift
value is returned.

GlobalOptimizationProblem (Java class)

The global optimization problem implements the same object function with
the same

public double value(double[] point) {
//Score calculation

return 0;
}

value(...) method. However, given the whole image with a specific height
ℎ, the double[] point array has now a length of 𝑙 = (ℎ − 1) · 2, see Sec-
tion 7.3. This of course changes the score calculation inside this method.

9.3.2 Score (Java package)

The hierarchy of the score function classes is shown in Figure 9.4. The im-
plemented classes are used for calculating the actual score value between
two image lines.

ScoreFunction (Java interface)

The following methods are needed in order to create a specific score function
class.

public interface ScoreFunction {

9. Implementation 82

public void setRefLine(double[] refLine);
public void setWindow(double[] window);
public void setNormalize(boolean normalize);
public double getScore(ImageLine line1, ImageLine line2);

}

The only important one, which needs to be implemented, is the
public double getScore(ImageLine line1, ImageLine line2);

method, which returns the score value given both image lines. Setting the
weighting line or the window range can be ignored, if they are not needed
as well as the normalize boolean.

L2Norm (Java class)

This class is designed to calculate a L2 norm score given two image lines. In
the constructor

public L2Norm(double stepWidth) {
//initialization

}

the step width 𝑠𝑤 can be set. By using 𝑠𝑤 < 1 oversampling is achieved
during the comparison step, see Figure 6.2. Additionally the methods

public void setWindow(double[] window) {
//initialization

}

and
public void setRefLine(double[] refLine) {

//initialization
}

are implemented in order to set the window range and a weighting line, see
Figure 6.4. Now the

public double getScore(ImageLine line1, ImageLine line2) {
double scoreVal = 0;

//calculation
return scoreVal;

}

method calculates the score value 𝑣 by

𝑣 =
𝑏∑︁

𝑥=𝑎

[𝐿1(𝑥)− 𝐿2(𝑥)]2 · 𝐿𝑤(𝑥) (9.1)

given the two image lines 𝐿1 and 𝐿2, the defined window range [𝑎, 𝑏] and
the weighting line 𝐿𝑤, see Section 6.2.

9. Implementation 83

9.4 Application examples
If a new ImageJ Plugin is created, it only needs classes from the matching
package (Section 9.3) and the external apache commons math library [32].
The desired optimization problem and score function can be imported from
the corresponding sub packages.

9.4.1 Image warping using the local method

This example shows how all the different classes work together in an abstract
way in order to perform incremental image warping, using a local problem
definition.

1. All the objects that do not change during the process are defined at
the beginning.

WeightingLine weightingLine = new ...;
ScoreFunction scoreFunction = new ...;
MultivariateOptimizer optimizer = new PowellOptimizer(...);

This includes the MultivariateOptimizer, which can be a Powell
optimizer or another derivative-free optimization method, see Sec-
tion 7.4.2.

2. Every single image line is matched with the previous one, resulting in
the best transformation values.

for (...) {
OptimizationProblem optimizationProblem = new LocalOP(...);
pointValuePair = optimizer.optimize(

new MaxEval(10000),
optimizationProblem.getObjectFunction(),
GoalType.MINIMIZE,
initialGuess);

}

So for every image line pair a new local optimization problem needs
to be created, which is then solved by the used optimizer. The point-
ValuePair holds the best scale and shift values, which are the result
of the optimization step. The optimizer can be initialized with differ-
ent parameters like the maximum evaluation steps, the current object
function, the goal type and the initial guess, see [32].

3. The current image line is transformed and drawn into the new trans-
formed image.

9.4.2 Image warping using the global method

Creating an ImageJ Plugin, which performs incremental image warping us-
ing the global method, the same basic steps as the local method are needed.
Since the input for this method is the whole image, the surrounding loop is
not needed anymore.

9. Implementation 84

ScoreFunction scoreFunction = new ...;
MultivariateOptimizer optimizer = new PowellOptimizer(...);
OptimizationProblem optimizationProblem = new GlobalOP(...);
pointValuePair = optimizer.optimize(...);

The new global optimization problem has now the whole image and the
initial guess for every single image line pair as input, see Section 7.3. The
optimization step

pointValuePair = optimizer.optimize(
new MaxEval(10000),
optimizationProblem.getObjectFunction(),
GoalType.MINIMIZE,
initialGuess);

does not change at all. Only the initial guess and the resulting point value
pair have much more parameters. Given an image with a specific height ℎ
and width 𝑤 and a scale 𝑠𝑖 and shift 𝑡𝑖 value for every single image line pair,
the initialGuess and the pointValuePair have (ℎ− 1) · 2 parameters, see
Section 7.3.

9.5 Testing
Testing the algorithm is an important factor in the development process.
The complexity is very high and many different parts of the algorithm need
to work together. Finding an error afterwards, which occurred somewhere
in a sub-module is hard. It must be ensured that all the different parts of
the program work correctly on their own.

Tests as ImageJ Plugins: Some tests need to be done visually or by
an own application with user input and realtime interaction. This can be
achieved easily by creating ImageJ Plugins for the individual tests. The
possibility of realtime interaction using sliders or buttons is provided by the
framework. Some tests and helper classes were created in order to calculate
different image parameters or to visually test the scaling and shifting of
image lines. One example is the weighting line, which was tested visually,
see Figure 9.5 and by a JUnit test case.

Tests with JUnit: When using a testing framework, in this case JUnit3,
many advantages arise. JUnit is designed to write repeatable tests, which
should not fail throughout the development process. A high coverage of the
code using multiple test cases is very beneficial. By extending and running
all of the test cases on a regular basis, errors are found at an early implemen-
tation stage. Some of the implemented test cases are shown in Figure 9.6.

3JUnit homepage (http://junit.org).

9. Implementation 85

𝑃1 𝑃2 𝑃3

Figure 9.5: Weighting line test. This image was created using a specific
weighting line test. Normally the line would have a height of 1 pixel, which is
shown by the green line, see Section 6.2.1. For a better visualization several
lines are drawn above each other. The red dots mark the position 𝑃1, 𝑃2 and
𝑃3, where the centers of the three individual Gaussian functions 𝑔′

1(𝑥), 𝑔′
2(𝑥)

and 𝑔′
3(𝑥) are. The line is created using Eqn. 6.7. Black represents a function

value of 1.

Figure 9.6: Screenshot of a JUnit test case run. The expanded JUnit test
case test.OpitimzerTest shows some of the tested optimizers with their
runtime. In this small scale scenario the brute-force method took 0.6, the
CMAES optimizer 0.49, the Powell optimizer 0.032 and the BOBYQA opti-
mizer 0.023 seconds. This of course only applies to this specific test with the
used optimization parameters.

Chapter 10

Conclusion and future work

Many challenges come with the problem addressed in this thesis due to the
changing setup and input data. Different approaches were tested (Chapter 3)
in order to achieve a good segmentation. Some of them can not be used,
but others can produce additional image information, which can be used
otherwise.

The vanishing point detection algorithm in image space (Section 3.5) is
a simple approach, but it is also limited when it comes to a robust detection.
For example, given a curved road image it can only provide an indication of
the position of the vanishing point. So this approach can work in some cases,
but is to sensitive on small image edges due to the nature of the algorithm.

The road marker detection and merging algorithm (Chapter 4) can pro-
duce quite good results, but are also very sensitive on image errors and other
image content that mimic the shape of a road marker. Nevertheless it can
improve other segmentation methods like the watershed algorithm.

The incremental image warping algorithm (Chapter 5-7) can straighten
and rectify an image of a curved road without any prior knowledge about
the content itself. The results provide a good segmentation with minimal
user input. The runtime of the algorithm is great as well due to the used
optimizer. This makes this approach operational for the industrial partner
of the thesis project. Nevertheless there is room for future work.

Finding the starting point automatically: The starting points could
be found automatically, making this approach completely autonomous. This
could be done by pre-processing the image and calculating a score, based on
the points with their corresponding weighting lane.

Defining a better score function: The L2 norm score provides good
results, but it is possible that a more sophisticated score can enhance the
line matching, making it more robust.

86

10. Conclusion and future work 87

Analyzing the chart data: A lot of information could be gained from the
transformation chart data in Figure 8.2 (e) and Figure 8.3 (e). The warping
result could be analyzed and errors could be fixed.

Global method improvement: The global problem definition could be
changed to reduce computation time. Not every single image line must be
calculated. The whole image is given as an input for the optimization step,
therefore image lines in a certain step width could be matched. This would
shorten the runtime. In between a suitable interpolation method can be used
in order to gain all the transformation values.

Based on the performed research and analysis of the different approaches,
the incremental image warping algorithm seems like a good candidate for
road and lane detection for this given task. It currently produces good results
and there is the possibility of improvements in the future to make it more
robust and reliable.

References

Literature
[1] Aharon Bar Hillel et al. “Recent progress in road and lane detection:

a survey”. In: Machine Vision and Applications (Feb. 2012) (cit. on
pp. 6–8).

[2] S. Beucher and M. Bilodeau. “Road segmentation and obstacle de-
tection by a fast watershed transformation”. In: Proceedings of the
Intelligent Vehicles ’94 Symposium. Paris, France, Oct. 1994, pp. 296–
301 (cit. on p. 17).

[3] S. Beucher and F. Meyer. “The morphological approach to segmenta-
tion: the watershed transformation. Mathematical morphology in im-
age processing.” In: Optical Engineering 34 (1993), pp. 433–481 (cit.
on p. 15).

[4] J. E. Bresenham. “Algorithm for Computer Control of a Digital Plot-
ter”. In: IBM Systems Journal 4.1 (Mar. 1965), pp. 25–30 (cit. on
p. 73).

[5] Wilhelm Burger and Mark J. Burge. Principles of Digital Image Pro-
cessing – Advanced Methods (Vol. 3). Undergraduate Topics in Com-
puter Science. London: Springer Publishing Company, Incorporated,
2013. url: www.imagingbook.com (cit. on pp. 28, 29).

[6] Wilhelm Burger and Mark J. Burge. Principles of Digital Image Pro-
cessing – Core Algorithms (Vol. 2). Undergraduate Topics in Com-
puter Science. London: Springer Publishing Company, Incorporated,
2009. url: www.imagingbook.com (cit. on p. 76).

[7] Wilhelm Burger and Mark J. Burge. Principles of Digital Image Pro-
cessing – Fundamental Techniques (Vol. 1). Undergraduate Topics in
Computer Science. London: Springer Publishing Company, Incorpo-
rated, 2009. url: www.imagingbook.com (cit. on p. 23).

[8] John Canny. “A Computational Approach to Edge Detection”. In:
Pattern Analysis and Machine Intelligence, IEEE Transactions on
PAMI-8.6 (Nov. 1986), pp. 679–698 (cit. on p. 17).

88

References 89

[9] Virginio Cantoni et al. “Vanishing point detection: representation
analysis and new approaches”. In: 11th International Conference on
Image Analysis and Processing, 2001. Palermo, Italy, Sept. 2001,
pp. 90–94 (cit. on pp. 21, 24).

[10] Hsu-Yung Cheng et al. “Lane Detection With Moving Vehicles in the
Traffic Scenes”. In: IEEE Transactions on Intelligent Transportation
Systems 7.4 (Dec. 2006), pp. 571–582 (cit. on p. 6).

[11] Kuo-Yu Chiu and Sheng-Fuu Lin. “Lane detection using color-based
segmentation”. In: Intelligent Transportation Systems, 2005. Proceed-
ings. 2005 IEEE. Vienna, Austria, Sept. 2005, pp. 706–711 (cit. on
p. 14).

[12] Radu Danescu and Sergiu Nedevschi. “Probabilistic Lane Tracking in
Difficult Road Scenarios Using Stereovision”. In: IEEE Transactions
on Intelligent Transportation Systems 10.2 (June 2009), pp. 272–282
(cit. on p. 8).

[13] Richard O. Duda and Peter E. Hart. “Use of the Hough Transforma-
tion to Detect Lines and Curves in Pictures”. In: Communications of
the ACM 15.1 (Jan. 1972), pp. 11–15 (cit. on p. 17).

[14] Martin A. Fischler and Robert C. Bolles. “Random Sample Consensus:
A Paradigm for Model Fitting with Applications to Image Analysis
and Automated Cartography”. In: Communications of the ACM 24.6
(June 1981), pp. 381–395 (cit. on p. 9).

[15] Hui Kong, Jean-Yves Audibert, and Jean Ponce. “General Road Detec-
tion From a Single Image”. In: IEEE Transactions on Image Processing
19.8 (Aug. 2010), pp. 2211–20 (cit. on p. 7).

[16] Guoliang Liu, Florentin Worgotter, and Irene Markelic. “Combining
Statistical Hough Transform and Particle Filter for robust Lane De-
tection and Tracking”. In: Intelligent Vehicles Symposium (IV), 2010
IEEE. San Diego, CA, USA, June 2010, pp. 993–997 (cit. on pp. 10,
11).

[17] A. Lopez et al. “Detection of lane markings based on ridgeness and
RANSAC”. In: Intelligent Transportation Systems, 2005. Proceedings.
2005 IEEE. Vienna, Austria, Sept. 2005, pp. 433–738 (cit. on pp. 8,
9).

[18] J.C. McCall and M.M. Trivedi. “Video-Based Lane Estimation and
Tracking for Driver Assistance: Survey, System, and Evaluation”. In:
IEEE Transactions on Intelligent Transportation Systems 7.1 (Mar.
2006), pp. 20–37 (cit. on pp. 6, 8).

[19] Wayne Niblack. An Introduction to Digital Image Processing.
Birkeroed, Denmark: Strandberg Publishing Company, 1985 (cit. on
pp. 9, 28).

References 90

[20] M.J.D. Powell. “An efficient method for finding the minimum of a
function of several variables without calculating derivatives”. In: The
Computer Journal 7 (1964), pp. 155–162 (cit. on pp. 62, 79).

[21] M.J.D. Powell. “The BOBYQA algorithm for bound constrained opti-
mization without derivatives”. In: University of Cambridge NA Report
DAMTP 2009/NA06 (Aug. 2009) (cit. on p. 62).

[22] Christopher Rasmussen. “Grouping dominant orientations for ill-
structured road following”. In: Proceedings of the 2004 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recogni-
tion, 2004. CVPR 2004. Vol. 1. Washington, DC, USA, June 2004,
pp. 470–477 (cit. on p. 15).

[23] Luis Miguel Rios and Nikolaos V. Sahinidis. “Derivative-free optimiza-
tion: a review of algorithms and comparison of software implementa-
tions”. In: Journal of Global Optimization 56.3 (July 2012), pp. 1247–
1293 (cit. on p. 62).

[24] Christopher Urmson et al. “Autonomous driving in urban environ-
ments: Boss and the urban challenge”. In: Journal of Field Robotics
Special Issue on the 2007 DARPA Urban Challenge, Part I 25.8
(2008), pp. 425–466 (cit. on p. 7).

[25] Huan Wang and SL Shao. “Lane Markers Detection based on Consec-
utive Threshold Segmentation”. In: Journal of Information and Com-
puting Science 6.3 (2011), pp. 207–212 (cit. on p. 8).

[26] Yue Wang, Eam Khwang Teoh, and Dinggang Shen. “Lane detection
and tracking using B-Snake”. In: Image and Vision Computing 22.4
(Apr. 2004), pp. 269–280 (cit. on pp. 9, 20).

[27] Jinyou Zhang and Hans-Hellmut Nagel. “Texture-based segmentation
of road images”. In: Proceedings of the Intelligent Vehicles ’94 Sym-
posium. Paris, France, Oct. 1994, pp. 260–265 (cit. on p. 15).

[28] Shengyan Zhou et al. “A novel lane detection based on geometrical
model and Gabor filter”. In: Intelligent Vehicles Symposium (IV),
2010 IEEE. San Diego, CA, USA, June 2010, pp. 59–64 (cit. on p. 9).

Online sources
[29] Wilhelm Burger. 2014. url: http://imagingbook.com/ (cit. on pp. 28,

74).
[30] DARPA. 2014. url: http://archive.darpa.mil/grandchallenge05/index.

html (cit. on p. 7).
[31] DARPA. 2014. url: http://archive.darpa.mil/grandchallenge/index.

html (cit. on p. 7).

References 91

[32] Commons Math Developers. Apache Commons Math, Release 3.2. The
Apache Software Foundation. 2014. url: http://commons.apache.org/
proper/commons-math/ (cit. on pp. 62, 79, 83).

[33] wallsave. 2014. url: http://www.wallsave.com/wallpaper/4200x2800/
roads-pictures-road-4781613.html (cit. on p. 20).

[34] Wikipedia. 2014. url: http://en.wikipedia.org/wiki/Mathematical_
morphology (cit. on pp. 29, 30).

[35] Wikipedia. 2014. url: http://en.wikipedia.org/wiki/CMA-ES (cit. on
pp. 62, 63).

	Declaration
	Kurzfassung
	Abstract
	Introduction
	Problem definition
	Expected end result

	Related work
	Automotive features
	Generic system
	Image pre-processing
	Feature extraction
	Model fitting
	Time integration
	Image to world correspondence

	Alternative approaches
	Color segmentation
	Texture-based segmentation
	Watershed segmentation
	Hough transform
	Vanishing point detection
	General detection
	Detection in image space
	Problems and conclusion

	Road marker detection
	Thresholding
	Region labeling
	Detection algorithm
	Merging algorithm
	Challenges

	Incremental image warping principle
	One image line as a discrete 1D-signal
	Transformation of a single image line
	Algorithms
	Incremental image warping
	Road detection

	Relative and absolute transformation
	Correlation between normal and transformed space
	Results

	Comparing two image lines
	L2 norm score
	L2 norm score with a weighting line
	Weighting line on positions
	Weighting line from the image

	Image line matching as an optimization problem
	General definition
	Local problem definition
	Prediction enhancement
	Line offset restriction

	Global problem definition
	Solving the optimization problem
	Brute-force method
	Derivative-free methods

	Results and challenges
	Challenges and solutions
	Other image structures
	Image errors and black lines
	Camera image and smoothing

	Implementation
	Bresenham drawing and ellipse voting
	Binary regions implementation
	Matching (Java package)
	Optimization Problem (Java package)
	Score (Java package)

	Application examples
	Image warping using the local method
	Image warping using the global method

	Testing

	Conclusion and future work
	References
	Literature
	Online sources

