
Automatic Word-Sense Disambiguation
Using Inherited Hypernyms

Julia Fellner

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2015

© Copyright 2015 Julia Fellner

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, September 18, 2015

Julia Fellner

iii

Contents

Declaration iii

Kurzfassung vii

Abstract viii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Goal . 2
1.3 Structure . 2

2 Technical Background 3
2.1 Natural Language Processing 3
2.2 Information Retrieval . 4
2.3 Word-Sense Disambiguation 5
2.4 Artificial Intelligence . 5
2.5 Vector Space Model . 6
2.6 Machine Learning . 6

3 State of the Art 7
3.1 Semantic Web . 7

3.1.1 Vocabularies for structured data 8
3.2 Word-Sense Disambiguation 11

3.2.1 Categories . 12
3.2.2 Automatic Approaches to Word-Sense Disambiguation 13

3.3 Schema.org . 15
3.3.1 Terminology . 15
3.3.2 Statistics . 18

3.4 Information Retrieval APIs 19
3.4.1 Alchemy API . 20
3.4.2 AYLIEN API . 20

4 New Approach 23
4.1 Concept and Architecture . 23

iv

Contents v

4.1.1 Goal . 23
4.1.2 System Design . 24

4.2 Information Retrieval . 24
4.2.1 Dictionaries and Inherited Hypernyms 25
4.2.2 Wikis . 26
4.2.3 Search Engine Information Retrieval 27
4.2.4 Entity Type Sub Pages 27

4.3 Single Entity Detection . 28
4.3.1 Differentiation by Properties 29
4.3.2 Differentiation by Context 29
4.3.3 Term Frequency and Inverse Document Frequency . . 30
4.3.4 Single Entity Identifiers 31

4.4 Data Comparison and Confidence Scoring 32
4.4.1 Group Entity Identifiers 33
4.4.2 Inheritance Similarity 34

5 Implementation 36
5.1 Framework . 36

5.1.1 NodeJS . 37
5.1.2 Node Modules . 37

5.2 Database . 38
5.2.1 MongoDB . 38

5.3 Application Structure . 39
5.3.1 Models and Data . 40
5.3.2 Updates . 40
5.3.3 Preprocessing . 42

5.4 Text Analysis . 47
5.4.1 Filtering . 47
5.4.2 Single and Group Identifiers 48
5.4.3 Synonyms and Stemming 49

6 Evaluation 50
6.1 Test data collection . 50

6.1.1 Test Example Model 51
6.1.2 Expected Test Result 52

6.2 Testing environment . 53
6.2.1 AYLIEN’s Text Analysis API 53
6.2.2 Test Query Representation 54

6.3 Testing Categories . 54
6.3.1 Stemmed Group Test 54
6.3.2 Lexical Knowledge Base Test 55
6.3.3 Single Entity Test . 56

6.4 Results . 56
6.4.1 Lexical Knowledge Base Test Result 57

Contents vi

6.4.2 Stemmed Group Test Result 59
6.4.3 Single Entity Test Result 60

6.5 Overall Evaluation . 61
6.5.1 Specific Vocabulary and Entity Observations 61

7 Conclusion 63
7.1 Outlook . 64

A Contents of the DVD-ROM 65
A.1 PDF files . 65
A.2 Source Code . 65
A.3 Other . 66

References 67
Literature . 67
Online sources . 69

Kurzfassung

Nutzer aus aller Welt stellen in der heutigen Zeit eine Flut an Daten ins Netz
und machen es dadurch reicher, was aber zur Folge hat, dass im Web in einem
rasenden Tempo immer mehr unstrukturierte Informationen unterwegs sind.
Die Suchmaschinen sind stark gefordert, vor allem wenn es darum geht,
schnell und effizient zu arbeiten, sprich das Richtige zu finden.

Überwachte semantische Systeme nutzen Wortsammlungen mit deren
Synonymen und diversen Ausdrucksweisen, um das Problem der Mehrdeu-
tigkeit eines Wortes beim automatischen Einfügen von Informationen eines
Bedeutungsfelds zu umgehen. Verwandte Begriffe werden dazu mit ihren
Wort-Beziehungen in großen Daten-Kollektionen gespeichert. Nicht bzw.
wenig überwachte Systeme haben allerdings noch Schwierigkeiten seman-
tische Entitäten einem Wortsinn entsprechend zuzuordnen, da diese auf das
Sammeln und Speichern dieser Relationen zwischen Wörtern verzichten, um
flexibler und schneller zu handeln. In dieser Arbeit wird die Idee zur Nutzung
strukturierter Vererbung und verwandter Oberbegriffe dargelegt, um das
übergreifende Konzept eines Suchbegriffs automatisch zu bestimmen. Se-
mantische Vokabulare werden mit diversen Wissensdatenbanken und Wör-
terbüchern verknüpft, um die Basis des selbständigen Systems zu bilden.
Dieser Schritt ermöglicht die Reduzierung und etwaige Eliminierung einer
zusätzlichen Datenbank zur Beschreibung von Vokabular-Entitäten. In Folge
dessen werden Webseiten semantisch aufbereitet und bereichert, während
das unstrukturierte World Wide Web zum Web der Daten transformiert
wird.

vii

Abstract

Through the vast amount of user-generated content from people around the
world the web has become a rich database, filled with unstructured data
thanks to social networking websites and collaborative knowledge bases.
It is challenging for machines, such as search engines, to rapidly find and
understand such content correctly.

Supervised semantic approaches in this area use database collections to
eliminate the problem of identifying a word’s correct meaning when trying
to automatically include semantics into unstructured content. These sys-
tems use large data-collections to save related terms and synonyms for this
process. Unsupervised and semi-supervised systems on the other hand still
struggle with the challenge of word-sense disambiguation when wanting to
include semantic entities into plain text. Via the introduction of inherited
hypernyms, representing structural inheritance of semantic entities within
vocabularies, and hierarchical information, the identification of a word’s true
meaning, by determining their overall topic and concept, is described in this
thesis. Semantic vocabularies are combined with various knowledge bases to
build the base of the automatic system and find the best suitable entity for a
specific term in a semi-supervised manner. This allows the system to reduce
the size of an optional word-relations data collection, enrich a website’s con-
tent semantically and support the transformation of the World Wide Web
into a Web of Data.

viii

Chapter 1

Introduction

In many natural languages a word or term can represent multiple mean-
ings and senses. Word-sense disambiguation (WSD) is one of the fundamen-
tal tasks in natural language processing (NLP). A given ambiguous word,
such as “Avatar”, is to be determined in its sense of word to being either
a known movie or an image representation of a profile. WSD is a known
problem in Computational Linguistics, influencing various applications for
machine translation, information extraction and information retrieval. The
most commonly used technique to solve such a problem is to use the sur-
rounding context of an ambiguous term in a probabilistic calculation.

The World Wide Web as we know it today is a supersaturated content
network, full of data without structure. Texts, images and videos are created
online on a daily basis, increasing this amount of unstructured information
rapidly. The difficulties to understand and interpret such unstructured text
to identify valuable terms and their correct meaning is challenging. Seman-
tic vocabularies, including markup structures, represent tools to incorporate
machine-readable information into web pages. In combination with semi-
and unsupervised systems, they provide the solution to transform the un-
structured web and its fast growing content into a Web of Data. But the so
far published approaches in automatic text analysis need to overcome the
well-known problem of WSD.

1.1 Problem Statement
Any kind of data without semantic markup in form of attributes or descrip-
tive properties is considered to be unstructured content. For a machine to
understand such plain text, valuable terms need to be extracted and their
semantically correct entity types are to be identified. Various approaches
for automatic semi- and unsupervised WSD using lexical and collaborative
knowledge bases have been presented with a maximum precision value of
69% (SemEval 2007 [17]) correctly identified terms. That result leaves room

1

1. Introduction 2

for improvement and the development of a system to automatically deter-
mine a word’s true meaning using revised methods and heuristics. While
the issue of word-sense disambiguation has been dealt with by using collab-
orative and lexical knowledge bases with their definitions and descriptions
of terms [9, 21], there are no techniques available that compare inherited
hypernyms of semantic vocabularies and knowledge bases.

1.2 Goal
Its intelligent and independent behaviour is the overall goal of the system’s
design. In order to overcome the problem of WSD and eliminating it at
an earlier stage of text analysis, a new approach is presented including in-
herited hypernyms in combination with lexical and hierarchical structure
information. The goal is set to investigate the possibilities and restrictions
of automatic systems in the field of semantic analysis, as well as to approach
and potentially surpass the achieved precision value in SemEval 2007 [17]
for identifying a word’s true meaning. After the inclusion of already defined
entities from an existing semantic vocabulary, the system has to operate
intelligently based on the decision structure which is implemented to de-
termine the correct entity types of various terms. No data-set and word
database has to be created, to comply with the predefined independence of
an automatic system.

1.3 Structure
This document is divided into four main chapters to state, analyse and
evaluate a developed system for automatic word-sense disambiguation using
inherited hypernyms. Chapter 2 provides short definitions of various techni-
cal terms in the fields of natural language processing and machine learning,
which represent a necessity for the understanding of this thesis. In Chapter
3 the basic terminologies for the fields of Semantic Web and WSD are de-
scribed, as well as some fundamental technical background information of
the research field. Chapter 4 presents the proposed automatic system with
its design. The main approach with its new combination of heuristics and
lexical information to eliminate the problem of word-sense disambiguation
in an early stage is described in detail. How the system design and main
idea is realised in development, is described in Chapter 5. Here, the used
framework, database and application structure with all their necessary tech-
nologies to realise the new approach are presented. Finally, in Chapter 6 the
environment for testing the implemented system is described and the results
are evaluated. Chapter 7 concludes the document describing the outcomes
of this work.

Chapter 2

Technical Background

The fields of Natural Language Processing, Information Retrieval and Ma-
chine Learning contain various technical terms and acronyms, which are
necessary to be known for the understanding of this work. In this chapter
the most important ones are shortly explained. Regarding the basic terms of
web development used in this paper, the reader is expected to have a certain
background knowledge in that area.

2.1 Natural Language Processing
Natural Language Processing (NLP) represents a Computer Science field,
which is connected to Artificial Intelligence and Computational Linguistics.
It focuses on interactions between computers and human language and a
machine’s ability to understand, or mimic the understanding of human lan-
guage (e.g. Siri or Google Now).

In the field of Natural Language Processing various terms are used to
describe specific technical approaches which are shortly described in the
following sub-paragraphs.
Information Extraction

In the process of Information Extraction (IE) structured information
is to be automatically identified and extracted out of semi- and/or
unstructured sources (e.g. text documents or web pages). IE represents
an important part in the computation of unstructured data and to
allow logical reasoning based on its results.

Named Entity Recognition
Named Entity Recognition (NER) is based on predefined categories,
such as the names of people, organizations, monetary values, percent-
ages and places. Semantic vocabularies represent a hierarchical struc-
ture and the interconnection of and between such categories (or enti-
ties). NER describes the categorization and location of plain text into
these defined classes.

3

2. Technical Background 4

Corpus or Corpora
A corpus is usually a large collection of documents, which can be used
to infer and validate linguistic rules.

Bag of Words
Bag of Words (BOW) represents a commonly used model in methods
of Text Classification. A piece of text, which can be a document or a
sentence, is represented as a bag or multi-set of words. The word order
and grammar have no importance in this process, as the frequency and
number of occurrences of each word are primarily used as a feature for
training a classifier.

Stop Words
In computing so called stop words represent words which are filtered
out before or after the processing of natural language data. These
words are used quite often in most languages. But despite of their
high usage they do not carry a lot of meaning. Basically any group
of words can be added to a stop word list for a given purpose. For
some search engines, these are some of the most common structure- or
function-words that exist, such as the, it, which, on, as and at in the
English language.

2.2 Information Retrieval
Information retrieval (IR) is the activity of obtaining information resources
relevant to an information need from a collection of information resources,
such as text documents and websites. To reduce information overload and
determine the most important terms within a plain text various calculations
and formulas are used.
Term Frequency

The easiest choice and most basic calculation for the Term Frequency
(TF) of a word is to use the raw frequency of a term in a specific
document. For example the number of times term 𝑡 occurs in document
𝑑. A document that mentions a query term more often is thought to
have more in common with that query and therefore should receive
a higher score. The query is seen as a simple set of words in most
search algorithms. To calculate a weight for each term, its occurrences
are summed up and the exact order of words is ignored (bag of words
model).
Since every document is different in length, it is expected that a term
appears more often in long documents than in shorter ones. As a way
of normalization the TF is then usually divided by the length of a
specific document, which is represented by the total number of terms
in that document.

2. Technical Background 5

Inverse Document Frequency
The basic search term weighting formula was proposed by Jones on
heuristic grounds in 1972 [19] and is denoted

𝑓id(𝑡, 𝐷) = log |𝐷|
1 + card{𝑑 | 𝑑 ∈ 𝐷, 𝑡 ∈ 𝑑}

. (2.1)

Inverse Document Frequency (IDF) is described as the logarithmically
scaled fraction of the documents that contain the term 𝑡. The doc-
ument corpus 𝐷 represents a collection of single documents 𝑑 that
each include various terms 𝑡. To calculate how often a single term of
a specific document appears within the document the total number
of documents |𝐷| needs to be divided by the number of documents
containing the term. The adjustment of adding the value 1 in the de-
nominator is necessary to avoid a division-by-zero (in case the term
does not appear in the corpus). At the end, the logarithm of the result
value is taken.

Term Frequency – Inverse Document Frequency
Through the multiplication of Term Frequency and Inverse Document
Frequency the TF-IDF value, which indicates the importance of a word
within a specific document corpus 𝐷, is calculated using the following
formula:

𝑓tfid(𝑡, 𝑑, 𝐷) = 𝑓tf(𝑡, 𝑑) · 𝑓id(𝑡, 𝐷). (2.2)
The resulting value of TF-IDF is high when 𝑡 occurs often within a
small number of documents (thus lending high discriminating power
to those documents). The number is low when the term occurs only
a few times within a document or occurs in many documents (thus
offering a less pronounced relevance signal). If the number is zero or
just very low, then the term occurs in (almost) every document.

2.3 Word-Sense Disambiguation
The term Word-Sense Disambiguation (WSD) explains the ability to identify
the true meaning of a word in a given context in a computational manner.
In many use cases to approach the problem of correct WSD, a third party
corpus or knowledge base, such as WordNet or Wikipedia, is used for cross-
referencing entities. A simple example being, to determine the reference of
the term apple within a text to the fruit or the company. In Section 3.2 the
term is explained in more detail.

2.4 Artificial Intelligence
Artificial Intelligence (AI) describes the capability of intelligent behaviour
by computer software. In the concept of natural language, systems are devel-

2. Technical Background 6

oped to understand natural human languages and perform useful tasks with
the natural languages humans use. AI is deeply connected with processes
within machine learning and natural language processing to solve problems
in their fields.

2.5 Vector Space Model
Vector space models are often fundamental to a host of Information Re-
trieval operations ranging from scoring documents on a query, to document
classification and document clustering.

2.6 Machine Learning
As a sub-field of Artificial Intelligence and computer science, Machine Learn-
ing (ML) describes the design of a system, which is able to make decisions
and predictions based on data, and learn from them depending on the out-
come. Instead of being explicitly programmed to carry out a certain task,
computers act and make data-driven decisions themselves. These programs
are designed to learn and improve over time when being exposed to new data
(e.g. self-driving cars and speech recognition systems). Supervised and un-
supervised machine learning represent two important concepts in the area of
ML. A brief description of their purpose and use is included in the following
paragraphs next to a short explanation of a tool called Decision Trees.
Supervised Learning

In Supervised Learning a system is trained to make accurate decisions
with the use of a pre-defined dataset collection, when given new data.
A well-known example is the training of a sentiment analysis classifier.
It builds up a dataset of tagged positive, negative and neutral tweets
to determine the sentiment of new incoming tweets based on that
collection.

Unsupervised Learning
Unsupervised Learning automatically analyses a given dataset to iden-
tify patterns and relationships within the collection. The analysis of
emails and their automatic grouping by topic without any prior knowl-
edge or training is one usage example of unsupervised learning (also
known as clustering).

Decision Trees
Decision Trees represent a support tool for systems to make decisions
based on a tree-like graph or model of decisions, knowing their possible
consequences (e.g. display an algorithm).

Chapter 3

State of the Art

What the Gutenberg press did for the creation and distribu-
tion of knowledge, the Semantic Web will do for the creation
and reutilization of data. To put it short: Semantic Web is the
printing press for data.

— Tassilo Pellegrini, Semantic Web Company

To have structured websites by including semantics to their content de-
scribes a concept following the objective to enable users to find, share and
combine information more-easily on the web. Semantic vocabularies, such as
schema.org, are used to include this machine-readable data into web pages.
Search engines crawl through web content looking for data to interpret
rapidly. The vast amount of valuable information is mostly unstructured,
making it less profitable for machines. The Semantic Web allows machines
to interpret the provided information on web pages via semantic analysis
and respond to complex human requests. The process of including seman-
tics automatically into plain texts is still facing the problem of word-sense
disambiguation to identify a word’s true meaning and insert the correct
machine-readable term, which is described in more detail in Section 3.2.

3.1 Semantic Web
The term Semantic Web describes a collaborative movement (led by the
World Wide Web Consortium1) that encourages the inclusion of seman-
tic content in web pages. Such content describes microformat information
within websites which is readable by machines. The main goal is to convert
the existing web, which is mostly filled with unstructured or semi-structured
documents, into a web of data. As a result the information is given well-
defined meaning, and therefore better enabling computers and people to

1http://www.w3.org/

7

http://www.w3.org/

3. State of the Art 8

work in cooperation. Structured data markup benefits a website’s content
not only by getting discovered in search results but also across search engine
properties. But the complexity and amount of time that gets consumed by
including such data is one of the biggest reasons why the number of websites
with structured data is still rather low [36]. Web Data Commons states that
only 620 million HTML pages out of 2.01 billion parsed pages contain some
sort of structured information.

3.1.1 Vocabularies for structured data

To optimize a web page one can choose between various vocabularies and
syntax options for structured data markup to include semantic information
into their web content. The most general and common ones are:

• schema.org,
• data-vocabulary.org,
• microformats,
• RDF, RDFa, RDFa Lite,
• microdata and
• JSON-LD.

The launch of schema.org in June 2011 was for many search marketers not
only an initiative itself, but also a massive opening to the world of struc-
tured data. The project is generally associated with and also derived from
a number of technologies that are described in the upcoming paragraphs.

Schema.org

Schema.org provides a collection of shared vocabularies webmas-
ters can use to mark up their pages in ways that can be under-
stood by the major search engines: Google, Microsoft, Yandex
and Yahoo.

The described vocabulary isn’t comparable with an intellectual one for hu-
mans. In semantics, vocabularies are defined as concepts and relationships
(also known as terms) used to represent and describe an area of concern.
They are then used to define possible constraints, characterize potential re-
lationships and classify the terms that are used in a particular application.
The complexity differs from thousands (also described as ontologies) to just
a couple of terms, which are defined within the collection [23]. Schema.org
has currently over 600 terms in its vocabulary and the term schema itself
represents a set of rules and definitions, or more formally: it is a way to
define the structure, content, and to some extent, the semantics of XML
documents [1, p. 166]. Schema.org shouldn’t be confused with descriptions

3. State of the Art 9

such as microformat, microdata or markup: it is a markup vocabulary.2
Schema.org’s Aaron Bradley states in a Posting on the social media plat-
form Google+ a more precise explanation of it and the difference between
XML and RDF-based schemas [29]:

Sometimes we talk like schema.org is one big schema; sometimes
as if it were several. This is because it has an associative, network
structure. You can see similar ambiguity about how other net-
works are discussed. The word vocabulary emphasises description
and communication. The word schema emphasises data struc-
tures, databases. Unlike XML schemas, RDF-based schemas are
closer to dictionaries than to grammar rules. They document the
meaning and inter-relationship of descriptive terms rather than
police strongly how you must use them.

Data-vocabulary.org

Data-vocabulary.org represents the predecessor to schema.org and it was the
primary vocabulary used for marking up HTML documents with microdata
before the publication of schema.org. Data-vocabulary.org is still widely de-
ployed and many tool- and information-based web pages on rich snippets,
such as the Google Webmaster Tool, still include it in their examples. But
the developer community around it is not likely to grow with the existence
of schema.org.

Microformats

A microformat represents a vocabulary as well as a markup syntax. It is
also described as a method of adding semantic information to an HTML
document. For that, microformats use a prescribed markup structure that
relies on already existing HTML attributes. The following definition of mi-
croformats is to be found on the official website:3

Microformats are simple ways to add information to a web page
using mostly the class attribute (although sometimes the id, title,
rel or rev attributes do too). The class names are semantically
rich and describe the data they encapsulate.

The concept of Microformats differentiates itself from other semantic vocab-
ularies in various important ways. It lacks for example schema.org’s hierar-
chical structure, which enables inheritance for properties from parent types
and allows the interconnection between entity types. Microformats are in-
dividuals and therefore standalone schemas. One of the biggest differences

2A more detailed description on schema.org is found in Section 3.3
3http://microformats.org/

http://microformats.org/

3. State of the Art 10

between microformat schema and schema.org is the way of how they are in-
cluded in HTML content. While microformats do depend on class attributes
to be added, schema.org allows itself to be included into web documents in
multiple ways, namely microdata, RDFa and JSON-LD. Therefore, it can
be concluded that microformats can’t be compared to similar vocabularies,
but to other structured data syntaxes. Microformats are also more limited
in scope than broader vocabularies and less extensible than for instance
schema.org.4

RDF, RDFa and RDFa Lite

The Resource Description Framework (RDF) is a standard model for data
interchange on the Web and serves as a language for representing informa-
tion about resources in the World Wide Web. To do so, simple statements,
consisting of triples [30] (subject, predicate and object), are used.

RDFa is a RDF markup syntax for structured data. It represents a way
of adding semantic information to HTML documents concretely based on
RDF. RDFa is very similar in use to schema.org. The main difference in
their concepts is that RDFa can be thought of as a RDF syntax, whereas
microdata is not, but can be used to extract RDF [29].

RDFa Lite represents, as the name already suggests, a minimal subset
of RDFa.5 The W3C RDFa Lite 1.1 W3C Recommendation describes it as
follows [31]:

The full RDFa syntax . . . provides a number of basic and ad-
vanced features that enable authors to express fairly complex
structured data, such as relationships among people, places, and
events in an HTML or XML document. Some of these advanced
features may make it difficult for authors, who may not be ex-
perts in structured data, to use RDFa. This lighter version of
RDFa is a gentler introduction to the world of structured data,
intended for authors that want to express fairly simple data in
their web pages. The goal is to provide a minimal subset that is
easy to learn and will work for 80% of authors doing simple data
markup.

Microdata

Microdata6 is one way to communicate more about a website’s content with
metadata and supports the markup of structured data in HTML documents.
It describes a specific type of information and follows the purpose of helping

4http://schema.org/docs/extension.html
5http://www.w3.org/TR/rdfa-lite/
6http://www.w3.org/TR/microdata/

http://schema.org/docs/extension.html
http://www.w3.org/TR/rdfa-lite/
http://www.w3.org/TR/microdata/

3. State of the Art 11

automated programs to better understand the content of web pages. The
concept itself was based on RDFa 1.0, but is now simplified for mainstream
web publisher use. The proposed improvements have been adopted in W3C’s
RDFa 1.1 as RDFa Lite and allow now publishers to use schema.org more-
easily alongside other RDF vocabularies. Microdata allows nested groups
of name-value pairs to be added to (HTML) documents, in parallel with
the existing content. In a section titled “Why microdata? Why not RDFa or
microformats?” schema.org states:7 “RDFa is extensible and very expressive,
but the substantial complexity of the language has contributed to slower
adoption”.

JSON-LD

JSON-LD is defined as a JSON-based format to serialize Linked Data.8 The
recommendation from schema.org to use JSON-LD as a format is relatively
new. In summer 2013 the support was announced and examples were added
to the schema.org web page for reference in spring 2014. In comparison to
the described methods above, which are attribute-based markup, JSON-LD
is separated from the existing tags in HTML documents. Kingsley Idehen
called JSON-LD: structured data islands in HTML documents [29]. The dif-
ficulty that occurs for search engines like Google and Bing with this concept
of semantic data inclusion is the issue of trust. If they were to accept JSON-
LD provided data, it would be possible for spammers to provide malicious
structured data in HTML documents hidden behind presentation layers. A
solution for this might be digital certificates to enable the trust in data. The
interesting thing about JSON as a representational format is the simplicity
it provides and the derivation from JavaScript.

3.2 Word-Sense Disambiguation
Homographs are words that represent multiple meanings or senses in many
natural languages. Word-sense disambiguation (WSD) describes the process
of determining the various meanings a homograph might have in a given
context. In some cases it is even difficult for humans to agree on the ap-
propriate sense of a given word within a specific context. Many different
classification algorithms have already been used to approach the problem of
WSD, such as naive-Bayes, memory-based learners, decision lists and deci-
sion trees. Some of the known algorithms are better suited for confronting
the WSD problem than others [13, p. 5] and sometimes they are combined
to create better results in accuracy.

7http://schema.org/docs/faq.html#14
8http://www.w3.org/TR/json-ld/

http://schema.org/docs/faq.html#14
http://www.w3.org/TR/json-ld/

3. State of the Art 12

3.2.1 Categories

Approaches in sense disambiguation of words are divided into two main
groups: deep and shallow approaches. Whilst deep approaches try to under-
stand the text and are much more difficult to use, shallow ones just consider
the surrounding words for information. They are usually implemented with
a defined window of n content words. By creating a rule-set and a learning
corpus, a computer is trained to automatically derive the sense of a word
by analysing and comparing it to its tagged word senses. Deep approaches
are in theory more powerful and should have better results for WSD. But
with the lack of world knowledge for computers, shallow approaches reach
better results in practice. The known techniques for WSD are divided into
four main categories: dictionary- and knowledge-based methods, supervised
machine learning methods, semi-supervised methods and completely unsu-
pervised methods.

Dictionary- and knowledge-based methods

Dictionary- and knowledge-based methods rely mainly on dictionaries, lex-
ical knowledge bases and thesauri, without using any corpus evidence. The
Lesk Algorithm [6] had a big influence in dictionary-based methods. It states
that two (or more) words are defined as disambiguated if their description in
dictionaries have the greatest word overlap count (Section 3.2.2). A different
approach to word overlaps is to consider general word-sense relatedness and
to compute semantic similarity of each pair of word senses. This technique
is based on a given lexical knowledge base such as WordNet. Graph-based
methods are another way of applying WSD and dive into the Artificial In-
telligence world of determining word-sense (Section 3.2.2). Knowledge-based
methods seek to avoid the need for large amounts of training material, as
they try to use pre-existing structured lexical knowledge resources.

Supervised machine learning methods

The focus for supervised machine learning methods is set on the context
surrounding the target word. These methods believe that the context can
provide enough evidence on its own to disambiguate words. In the included
training phase a sense-annotated training corpus is required. Syntactic and
semantic features are extracted from the corpus to create a classifier, by us-
ing for example a Support Vector Machine [17]. Currently supervised meth-
ods perform the best in comparison to other WSD methods with a result of
about 80% precision and recall for coarse-grained WSD [14, p. 5]. Although
they are able to cope with the high dimensionality of the feature space and
wind up with the best results for WSD, they still rely a lot on manual sense-
tagging of the corpora for training. This is expensive and cumbersome.

3. State of the Art 13

Semi-supervised methods

To overcome the lack of training data, which represents the main problem
of supervised methods, semi-supervised or minimally supervised methods
make use of a small annotated corpus as seed data [22, p. 3]. That corpus
consists of either a small number of sure-fire decision rules or manually
tagged training examples. Using any supervised method, the seeds are then
used to train an initial classifier. After that each classifier is trained on a
much larger training corpus until a given maximum number of iterations is
reached or the whole corpus is consumed. Another servant for seed data can
be represented by a word-aligned bilingual corpus [16, p. 3].

Completely unsupervised methods

Fully unsupervised methods work from unannotated raw text. They cluster
occurrences of words and induce word senses as a result using similarity
measures [7]. These sorts of methods are also known as word sense discrim-
ination. A fully unsupervised WSD method using dependency knowledge
was presented by Chen et al. in 2009 [3]. Automatically acquired informa-
tion is often inaccurate and noisy. The results of SemEval 2007 (focusing
on unsupervised WSD [17]) show an achievement of about 70% precision
and 50% recall. Word-sense disambiguation was included again in SemEval
2013, but with a changed focus on Cross-Lingual Word-Sense Disambigua-
tion (CLWSD).

3.2.2 Automatic Approaches to Word-Sense Disambiguation

Word-sense disambiguation is a long-time existing problem in Computational
Linguistics. Various real-world applications, including machine translation,
information extraction and information retrieval, stand under the impact
of WSD. Methods commonly deploy the context of a word for its sense
disambiguation and the context information may come from annotated text,
unannotated text or other knowledge resources. Some examples for such
alternative resources would be Extended WordNet [12], Open Mind Word
Expert [4], Parallel Texts [16] or Wikipedia for automatic WSD [10]. Over
the years many approaches to automatic WSD have been published. In the
following subsections the most important ones, in the sense of relatedness
to this paper, are presented in more detail.

Automatic Sense Disambiguation using Machine Readable Dictio-
naries

Michael Lesk published one of the first approaches of automatically detecting
sense disambiguation using machine readable dictionaries in 1986 [6]. The
so called Lesk Algorithm uses machine readable dictionary definitions of

3. State of the Art 14

ambiguous words and compares them to the context in which the word
occurs. With this procedure Lesk tries to process any text by solely using the
immediate context around the target word and the available dictionaries. A
synset9 will then be returned with the highest number of overlapping words
between the context sentence and different definitions from each synset.
The Simplified Lesk Algorithm (SLA) is frequently used for its simplicity
and speed, but has relatively low accuracy. Usually, the context (context
window) is local, like the N words or the current sentence around the target
word. Auxiliary words, so called stop words [25], are ignored, as they have
no lexical meaning. When the algorithm does not find any overlap or several
senses have the same overlap score, then the algorithm fails and cannot
provide an answer. This causes low recall and defines the main drawback of
the SLA [20, pp. 217-227].

In his paper Lesk states that he attempts to create a cheap solution
to the problem of sense discrimination by guessing the correct word sense
and counting the overlaps between dictionary definitions of various senses.
He tried to use an importance value for multiple occurrences and weighting
values for the length of dictionary entries. But none of them appeared to
have a bigger influence on the results when testing them in practice.

Finding Predominant Word Senses in Untagged Text

A more recent approach for automatic WSD was made public by McCarthy
et al. in 2004 [8]. The proposed method performs disambiguation by identify-
ing the most frequent sense of a word in a specific domain using distributional
methods. The relatedness of the possible senses of a target word (using Word-
net::Similarity10) are measured to a set of words associated with a specific
domain. The resulting scores between them are scaled by the distributional
similarity score. Raw corpus data is used by this method to automatically
find a predominant sense for nouns. The researchers believe that in order to
associate the word neighbours in a thesauri with senses they should make
use of another notion of similarity, namely semantic similarity. So far meth-
ods used the dictionary word neighbours as words themselves and not as
senses. The results of their new developed method were evaluated against
the hand-tagged resources SemCor and the SENSEVAL-2 English all-words
task. The project achieved a precision value of 64% on an all-nouns task,
which is 5% lower than the results using first-sense in the manually labelled
SemCor. Because of the limited size of hand-tagged resources the researchers
believe that an automatic means of finding a predominant sense would be
useful for WSD systems. But the idea needs more research and development
to achieve improved results compared to hand-tagged resources.

9Synset: a set of one or more synonyms [24].
10http://wn-similarity.sourceforge.net/

http://wn-similarity.sourceforge.net/

3. State of the Art 15

An Experimental Study of Graph Connectivity for Unsupervised
Word-Sense Disambiguation

Methods that are based on translational equivalence depend on the differ-
ence of word senses in various translations from a source to a target language.
Navigli et al. published a paper in 2012 on Multilingual Joint WSD [15] and
explain the combination of BabelNet (a large multilingual knowledge base)
and a graph-based WSD approach across different languages. The comple-
tion of wide-coverage multilingual lexical knowledge resulted in reaching but
not beating the state of the art word-sense disambiguation settings. The pro-
posed graph-based WSD algorithm doesn’t require sense-annotated data for
training but performs significantly better with more incident edges for every
node, retrieved for example from WordNet. Navigli et al. focused their exper-
iments primarily on graph connectivity measures and how suitable they are
for WordNet-like sense inventories. Therefore, they produced a very generic
algorithm for word-sense disambiguation that can be further improved. The
team states that they could consider word sequences which are larger than
sentences, take syntactic relations into account or score edges in the graph
according to semantic importance.

3.3 Schema.org
Google11, Yahoo!12 and Bing13, three of the biggest search engines in the
world, came together in 2011 to create a common set of schemas for struc-
tured data markup on websites called schema.org14. Yandex15, the most
popular search engine in Russia, joined the team later on. The project has
two main components: an ontology and the expression of this information
in machine readable formats. Those formats can be microdata, RDFa Lite
and JSON-LD. The ontology describes the vocabulary for naming the types
and characteristics of resources of how they are related to each other. Fur-
thermore, it defines the constraints on how to use and describe the given
characteristics or relationships.

3.3.1 Terminology

Information that needs to be described follows the terminology of schema.org
by being defined as a so-called item. In the first step to describe such an
item it is to be classified as a specific type of resource. The vocabulary
of schema.org is built up as a hierarchy that describes various entities in

11https://www.google.com/
12https://yahoo.com/
13http://www.bing.com/
14http://schema.org/
15https://www.yandex.ru/

https://www.google.com/
https://yahoo.com/
http://www.bing.com/
http://schema.org/
https://www.yandex.ru/

3. State of the Art 16

Figure 3.1: Small sample of the schema.org type-hierarchy [38].

different levels of detail. All entities evolve from the main type named Thing
(Figure 3.1). It represents the most generic entity type. Subtypes of Thing
include entities such as Person, CreativeWork, Intangible, Organization or
Product. The sister parent DataType provides descriptive entities such as
date, URL or text, that are used to characterize properties of entities. Thing
acts as the parent node from which all main properties are passed to the
child nodes. Every entity type contains the following four attributes to define
and identify each single type (given in parenthesis are the expected entity
types of the provided property data):

• name (Text): the item’s name,
• image (URL): URL of an image of the item,
• url (URL): the item’s URL and
• description (Text): a short description of the item.

Almost all entities have children themselves. They inherit their parent’s
properties, which don’t have to but can be included in the mark-up. For

3. State of the Art 17

Figure 3.2: Some of the relationships around a Creative Work that may be
described using schema.org [38].

example: the entity type CreativeWork inherits the given properties of Thing
and provides around 40 more, including the following:

• about (Thing): the content’s subject matter,
• dateCreated (Date): the date on which the CreativeWork was created,
• author (Person or Organization): the content’s author and
• publisher (Organization): the creative work’s publisher.

Standing out as an entity type in this bullet point list does the property
date with being a DataType entity. It differentiates itself from all other
Thing properties by being described by an ISO 8601 date format instead of
via another entity. The property author is, as shown in Figure 3.2, defined
through another entity type, which has descriptive properties on its own
(linked data connection). Schema.org offers hundreds of terms, but obviously
doesn’t yet cover many areas in much detail. The community behind W3C
Web Schemas already discusses ongoing additions and a possible notion
of an external enumeration. This should make it clear to how schema.org
can be combined with larger vocabularies and datasets from elsewhere (e.g.
Freebase, Wikipedia/Wikidata, SKOS).

With an underlying graph-based model of types, various sets of proper-
ties and relationships, the schema.org vocabulary represents a very flexible
data model which isn’t tied to specific file formats. This allows it to be easily
communicated, although entity-relationship graphs aren’t always the most
appropriate data representation. It is clear that no single data format or

3. State of the Art 18

Table 3.1: Average website ranking position.

2013 2014
Average ranking position - without Schema 25 25
Average ranking position - with Schema 22 21
Rankings position difference 3 4

abstract data model fully addresses universal needs. But with being so ab-
stract to fit a wide market, it appears to be critical to enter schemas to such
a big community. Nevertheless, to use a common vocabulary for semantic
markup inclusion, such as schema.org, can have a positive effect on search
engine results. The machines will be able to provide richer search results
in order for users to find relevant information on the web. Being supported
by four of the most popular search engines makes Microdata as a form of
semantic data structure more attractive for usage [2, p. 27].

3.3.2 Statistics

SearchMetrics published a study on how schema.org mark-up is used on
websites in April 2014 [32]. Over 50 million domains were analysed and
99,70% of them did not have Schema markup on their web page, although
the project has been around since 2011. Consequently schema.org mark-
up was found in only 0.3% of the remaining domains in the sample. This
represents an increase of 0.03% in use of semantic vocabularies compared
to the published numbers in 2012 and 2013 [11, p. 3]. That raise is rather
minimal but shows still an existing interest of including structured data
in web documents. A motivational factor of introducing structured data
to websites might also be the improved results in search result rankings.
Websites using Schema rank on average four places higher than the ones not
including it (Table 3.1).

Bing’s web crawler provided a large sample of web data (3,230,928,609),
that has been used to present structured data statistics for analysis purposes
[11, p. 3]. Around 69% of all URLs did not include any form of semantic
information. All other pages incorporated either RDFa (25.08%), microdata
(7.16%) and/or microformat (8.6%).

Web data commons published a website crawl and trend analysis on their
own. Out of 2.01 billion pages, 620 million HTML pages contained struc-
tured data in 2014. The results, as displayed in Figure 3.3, show a significant
increase for the inclusion of microdata in websites. The illustration presents
the total number of Pay-Level Domains (PLD) [35] making use of either mi-
crodata, microformat hCard and RDFa, which represent three of the most
widely spread markup formats. Web data commons found an increase in de-
ployment of microdata and especially schema.org since the crawl in 2012.

3. State of the Art 19

Figure 3.3: Web data commons. Structured data trend 2012–2014 [37].

Schema.org’s vocabulary is relatively large, compared to typical RDF vo-
cabularies, as it is designed for mainstream, mass-market adoption. But
the project is based on W3C’s RDF model for structured data. Schema.org
wants to set an end to dozens of independent vocabularies whose intercon-
nections are undocumented and therefore not useful for publishers. It brings
together several independently defined vocabularies, such as LRMI, rNews
and Good Relations. The team behind schema.org states that the project can
be considered as an approach to Linked Data.16 Primarily, the vocabulary
is used to annotate existing Web content. This requires the created vocabu-
lary to often be flatter and less normalized than a purely database-oriented
approach might be.

3.4 Information Retrieval APIs
People, locations and organizations represent a big part of important in-
formation that is placed on the web. Therefore semantic data should be
included in order for search engines to find them more-easily and improve
search results. Information Retrieval APIs crawl through content to find out
which topics are mentioned in pieces of texts and return that relevant data.
Entity Extraction or Named-entity Recognition are more specific terms for
the described process and represent a subtask of Information Retrieval. Var-
ious APIs offer tools to extract distinct information and classify texts into
pre-defined categories.

16http://linkeddata.org/

http://linkeddata.org/

3. State of the Art 20

3.4.1 Alchemy API

The API Alchemy17 follows the purpose of extracting semantic units from
texts by making use of different algorithms and training data. It provides
an output of different analysis tools such as Keyword Extraction, Sentiment
Analysis, Concept Tagging and many more. Their entity extraction identifies
cities, geographic features, companies and other typed entities from HTML
documents or web-based content. It is mostly used in natural language pro-
cessing (NLP) techniques to enrich a website’s content semantically. The
API claims to be unique in it’s way of identifying the entities based on the
combination of multilingual support, linked data, context-sensitive entity
disambiguation, comprehensive type support and quotations extraction.

Alchemy API offers free use of their services for non-profit purposes
and research. An API key is available after registration and allows a default
amount of 1.000 extraction operations per day. The returned values from the
entity extraction tool find around 293 different entity types. These represent
only 45% of the existing schema.org entities and don’t comply with their
terminologies and definitions.

3.4.2 AYLIEN API

AYLIEN Intelligence18 launched their first API in February 2014. They have
a small number of nearly 200 users spread all over the world and the num-
ber is growing steadily. Their Text Analysis API consists of eight distinct
Information Retrieval (IR), Machine Learning (ML) and Natural Language
Processing (NLP) APIs that can be adapted to their user’s needs. The Text
Analysis API helps the developer to extract meaning and gain insight from
content within documents. AYLIEN provides tools for the analysis of con-
tent in different areas such as Classification, Sentiment Analysis, Entity
Extraction, Concept Extraction and many more. Developers can get started
with the API and call it up to 1.000 times per day for free. The company
plans to release new SDKs for other languages, besides Node.js, Python,
Ruby and PHP, in 2015. Their Node.js API was published at the turn of the
year from 2014 to 2015.

Following a knowledge-based approach for their Concept Extraction,
AYLIEN has an amount of 128.935 entities available, which do contain a
schema.org type representation. According to internal calculations the total
number of entities that AYLIEN detects is much higher (around two mil-
lion) but only a subset of them have been mapped to schema.org types. So
concept extraction might return up to two million distinct entities, but only
about 130.000 of them will have distinct schema.org types. Some are de-

17http://www.alchemyapi.com/
18http://aylien.com/

http://www.alchemyapi.com/
http://aylien.com/

3. State of the Art 21

Figure 3.4: Leading Schema technologies share on the web [26].

scribed via DBpedia types (in the dbpedia.org/ontology namespace19) and
for all other entities one would need to rely on what is available on Wikipedia
(e.g. categories). AYLIEN has 42 distinct schema.org types as of now:

Person, Creative Work, Organization, Music Group, Music Recording,
Place, Airport, Landmarks Or Historical Buildings, Body Of Water, River
Body Of Water, Administrative Area, Music Album, Event, College Or Uni-
versity, Educational Organization, School, Product, Language, Mountain,
Hospital, Lake Body Of Water, Sports Team, Web Page, Television Sta-
tion, City, TV Episode, Movie, Restaurant, Book, Park, Festival, Radio
Station, Stadium Or Arena, Sports Event, Museum, Government Organi-
zation, Shopping Center, Country, Library, Ski Resort, Hotel, Canal.

The team behind AYLIEN does not primarily focus on mapping specif-
ically schema.org’s vocabulary to their data-set collection. Therefore, the
remaining entities are not included in their system, as of now. The cur-
rent version of AYLIEN’s Concept Extraction returns any entity that has a
Wikipedia page. These may or may not have been mapped to schema.org’s
semantic vocabulary. But still, the shown types are assigned by AYLIEN
via conservative mappings between DBpedia, Freebase types and schema.org
types, which result in very precise but low recall values.

Figure 3.4 displays the top used Schema entities in the entire web. Com-
paring those types with the ones that AYLIEN covers, Schemas such as

19http://dbpedia.org/ontology

http://dbpedia.org/ontology

3. State of the Art 22

Figure 3.5: AYLIEN Concept Extraction API. Example [27].

BlogPosting, SearchAction and Offer, which place top positions in the rank-
ing, are missing in this list and therefore not covered by the system. Al-
though AYLIEN appears to have a very narrow system, they are still far
from perfect. Looking at an example of a concept extraction from AYLIEN
in Figure 3.5 we know as humans that the example sentence: “Avatar is an
American television series that aired for three seasons on Nickelodeon from
2005 to 2008.“ talks about a television series, but the result in the concept
extraction shows Movie and CreativeWork as main types. Word-sense dis-
ambiguation is a long-time existing problem which still causes systems to
incorrectly identify a word’s true meaning.

Chapter 4

New Approach

Various systems for supervised semantic analysis cover already a wide range
of topics and offer tools for a fast and easy analysis work-flow, but their pre-
dictions are based on a manually pre-trained dataset and classifiers. These
systems are expected to predict any given document’s category from then
on, which makes them less adaptable for contemporary, modern and ad-
vanced vocabularies. Furthermore, the biggest factor affecting the quality of
the implemented predictions-tool and classifiers, is the quality of the train-
ing data set. This dependence is the motivation to create an automatic and
resilient system for semantic text analysis. To avoid the known problem and
challenge of WSD in fully automatic systems a hierarchical comparison of
inherited hypernyms and entity relationships is planned to be included.

4.1 Concept and Architecture
In this chapter the own approach to create a fully automatic analysis tool for
hierarchical vocabulary structures battling the known problem of word-sense
disambiguation is described, as well as the design and theoretical background
of the created system. The design is kept very simple and straightforward, as
the true complexity lies in the preprocessing and analysis of the data itself.

4.1.1 Goal

Its artificial intelligence and independent behaviour is the overall goal of the
system’s architecture. All entities from the used vocabulary are detected
and semantically included in a fully automatic manner. The main idea here
is to have any sort of input text to take as a base for the entity analysis.
Via Information Retrieval the most important data and valuable terms are
detected and with the use of appropriate algorithms the best suited entity
is identified for the specific target word or term. The form of inclusion via
Microdata, JSON-LD or RDFa is left to be chosen by the user, while the

23

4. New Approach 24

Figure 4.1: Basic system design.

main focus within the development process is set on improving the precision
value of 69% (result of SemEval 2007 as shown in Section 3.2.1) in full
automatic word-sense disambiguation systems to detect the true meaning of
a term in focus.

4.1.2 System Design

Evolving around the given vocabulary, the system-design contains all entity
types, as well as their hierarchical structure (Figure 4.1). Each entity should
have information about its unique identifiers and be connected to external
data. That data is retrieved from dictionaries (online and offline), wikis and
search engine APIs (Section 4.3). Additionally, data for testing is created
and paired up with each entity to evaluate the results of the completed
preprocessing and use of chosen algorithms. Entity descriptions consist of
general information, which are already given by the vocabulary itself, while
the external data represents an extension of that data. In the following
paragraphs the theoretical structure of the system and data collection is
explained in more detail for better understanding.

4.2 Information Retrieval
To load the content and extract the main and most valuable information
out of it, is the first step in the process of creating an intelligent system
for semantic analysis. This step is done for the uploaded content which is
to be analysed, as well as for the collection of entity identifiers. First up is
the source document. If it includes HTML syntax, which will be the case
in most uses for this project, all tags and syntactical data is removed to be
left with plain text. With this raw data the words themselves are analysed
in more detail without distracting the algorithms with special characters
and code snippets or non-lingual expressions. Depending on the language
a text might consist of multiple nouns, verbs and adverbs, numbers, dates
or other numerical information and names of people and places. Alongside

4. New Approach 25

these more or less meaningful words, also data without any special meaning
to it, can be found within a text. As a first step “stop words” are removed to
reduce the total amount of words to the most important and valuable ones.

For both data sets, which are the source document’s valuable terms and
all entity types of the semantic vocabulary, identifiers (descriptive informa-
tion) need to be extracted from external sources. These are described in the
following sub sections.

4.2.1 Dictionaries and Inherited Hypernyms

Semantically rich dictionaries, such as WolframAlpha1 and WordNet2, offer
API’s to retrieve information on specific queries for words and terms, as well
as additional hierarchical information to their queried results. Each entity
has a specific name that explains it in the most generic way, but still holds
in some sort of keywords, which can be used to query more information out
of them. The most important information that these dictionaries are offer-
ing is the option to extract inherited hypernyms. Those superordinate terms
represent overall parent concepts in more abstract levels. The term “sea” in
WordNet as an example returns the lexical definition of it as well as the
inherited hypernyms, namely: “body of water”, “water” and “thing”. This
concept is very similar to the hierarchical structure of described entities in se-
mantic vocabularies. The correctly identified entity type “SeaBodyOfWater”
in schema.org inherits properties from its parents “BodyOfWater”, “Land-
form”, “Place” and “Thing”. This similarity of inherited hypernyms in both
structures is used as main reference for similarity scoring and identifying the
correct entity for a target term.

To ensure the best results for semantically correct types the data col-
lection for the group of entity types needs to be analysed more carefully.
Schema.org’s entity “LakeBodyOfWater” includes two terms, namely “Lake”
and “Body of Water”, and inherits from “Thing > Place > Landform >
BodyOfWater”. Querying the term “lake body of water” does not resolve
in any dictionary results. Therefore, the most unique data out of an entity
name (in the given vocabulary of schema.org) needs to be determined. An
obvious choice in the given example is to gather information on the term
“Lake” instead of the entire entity name “LakeBodyOfWater”. The hier-
archical structure of schema.org’s given semantic vocabulary offers a big
advantage within this process. So, the descriptive name of each entity needs
to be compared to its parents to extract the best suited identifiers. This step
is also used to avoid having redundant information on sister entities, that
might include the same data as their parents already have. To avoid query-
ing the descriptive entity names word by word and therefore also analysing
stop words, such as “of” in “Body of Water”, an extra keyword and named

1http://www.wolframalpha.com/
2https://wordnet.princeton.edu/

http://www.wolframalpha.com/
https://wordnet.princeton.edu/

4. New Approach 26

entity recognition is used at this point. This offers the possibility to keep
meaningful terms together and does not separate them as they might have a
completely different meaning afterwards. Although the data and information
collection in online dictionaries are already big, they are not perfected for
terms containing multiple words. Retrieving information for the entity query
“Music Video Object” does not offer any results. As there exist separate en-
tity types for “Video Object” and “Audio Object” it is necessary to keep
the strings together in order not to loose their meaning. One way to achieve
this is to compare the divided entity names with the other ones of the vo-
cabulary to check for synonymous duplicates. This might solve the problem
of retrieving the same data and information for different entity types but
not the problem of empty query results without any retrieved data.

Natural Language Processing tasks require often external sources of lex-
ical semantic knowledge such as WolframAlpha or WordNet [5, p. 8]. In a
time consuming and expensive manner these resources have been built up
manually by experts. Collaboratively created data sources emerged with the
Web 2.0 technologies and enabled user communities to build up these new
kinds of resources. Traditionally, they are defined as Wikis.

4.2.2 Wikis

Online wikis, such as Wikipedia and Wiktionary3, are an alternative to
expert-based dictionaries with their by humans collaboratively created con-
tent. Therefore they often contain information and descriptions of data
which are not found in general word by word data collections. This cre-
ates an additional source of descriptive data to be used to collect identifiers
for target terms and entity types. They also offer more information in their
query results which can be useful or fatal, as the results most certainly
contain the correct meaning of a word. Wikis represent emerging lexical
semantic resources, which can be used as substitutes for expert-made re-
sources in AI applications. Their constantly evolving intricacy of interlinked
articles represents a giant multilingual database of semantic relations and
concepts, as well as a resource for NLP areas. The most useful and compact
information is held within the abstract paragraph of the result pages. The
abstract represents a compressed source of information that is held within
the whole lexical knowledge page. Using this first paragraph of a Wikipedia
article, as opposed to the whole article and overwhelming data on the page,
is very likely to result in better precision values. Similar to search engines,
they present multiple search results for multiple word meanings. This creates
the risk factor of retrieving unnecessary information without any relations
to the term in focus. To avoid the collection of multiple definitions, only
queries resulting in single result pages are used for further analysis.

3https://en.wiktionary.org/wiki/

4. New Approach 27

4.2.3 Search Engine Information Retrieval

But sometimes also wikis don’t offer the needed information for specific
terms, especially longer word combinations. To query the extracted data
from the document in focus that might not find reasonable descriptions
and definitions in online dictionaries or wikis, these terms do need to be
compared to a larger document corpus. Search engines are nowadays close
to perfect when it comes to smart and straight-to-the-point search results.
The top five to top ten of all search results are usually the most suited
and informative ones. As web pages, such as Wikipedia and news platforms,
often already use up the first couple of result-slots, it is decided to skip the
first two search results and still be able to get the most valuable information
out of a query.

Information Retrieval via search engines is mostly designed for humans
and possibly restricted by the developers to query multiple terms within a
couple of seconds. A fully automatic system that uses IR via search engines
requires to do multiple requests within a short amount of time. Google’s
Search Engine API restricted their API calls to a number of only 100 queries
per day, which makes it, despite of its popularity and results, not useful for
this approach. Fortunately other online search engines offer APIs to call
for around 5000 times a month, such as Bing. The information within the
title and short description of the top five Bing search results are collected for
further analysis. As the system already included Wikipedia abstracts for the
same query, the search results including Wiki information as well as news
articles are excluded.

4.2.4 Entity Type Sub Pages

On the sub-page of a schema.org entity the inheritance of that type can be
found as well as a short commentary description, which is initially made
for humans to understand, what the entity type is all about. Further down
a list of properties or attributes is given. These attributes can represent
things and information that are related with this entity and placed in the
context around the target word. The expected types of these properties are
sometimes basic data types, such as Strings, Numbers or Dates, or other
entity types, such as Media Objects, People or Organizations. Each given
property has an own description, in form of a couple of sentences, again for
humans to get a better understanding for how to use them. Therefore, the
semantic vocabulary itself offers also a variety of information (descriptions,
properties and hierarchical data, including inherited hypernyms), which is
collected for identifier data-sets to identify the best suited single entity for
a given target word or term.

4. New Approach 28

Figure 4.2: Information Retrieval for entity type identifiers.

Figure 4.3: Information Retrieval for target terms.

4.3 Single Entity Detection
After filtering out the most valuable and meaningful terms in a document,
the best suited entity types within a given vocabulary need to be calculated
for them. To achieve the distinction between the various entity types each
one needs a collection of identification objects (Figure 4.2). These can be
terms or any unique identifier and are retrieved in a fully automatic manner,
to follow the main goal of an independent system.

Most queries contain only a couple of words and most likely consist of
proper nouns. That is why they are going to need more descriptive data as
well. The analysis and Information Retrieval for these specific terms follow
the same path as the entity type resource process from Section 4.3: collecting
data for a query from dictionaries, wikis and search engine results. But the
process of repeated API calls, ranking and filtering for each target word
or term takes its toll on speed and performance of the automatic system.
Knowing that the target terms consist allegedly of proper nouns and multiple
words, the choice for resource options diminishes to wikis and search results
(Figure 4.3). Online dictionaries retrieve supposedly not a lot of data for
proper names of people, locations and organizations. Therefore they are not
used as a form of Information Retrieval for this specific task. Wikis and
search engine results on the other hand have a high probability of returning
results with a high value. These results represent a base for the detection
of identifiers and their synonyms before they are stemmed and compared to
each entity type vector.

In the previous sections the data retrieval from dictionaries, wikis, search
engines and vocabulary sub pages were described. The results are now to

4. New Approach 29

Figure 4.4: Entity-Property representation.

be analysed. An obvious choice, and the first approach to identify and dif-
ferentiate entities at this point, is to locate properties within the context
around the target words. These would simplify the process of finding the
most appropriate entity with eliminating word-sense disambiguation. But in
fact it is not as simple as it sounds.

4.3.1 Differentiation by Properties

Not offering specific attributes for each entity causes some problems. In Fig-
ure 4.4 it is shown that only around 35% of all entities within the schema.org
vocabulary have property representations, from which approximately two
thirds serve as properties themselves. Therefore 65% do not have any prop-
erties that describe them more precisely. And one tenth of all entities are
included as attributes for other entity types without having any attributes.
Another factor, that works against this approach of differentiation, is that
some entity types represent properties within their own attributes. This
would create an endless loop of trying to identify an entity, for a number of
15 entities within the schema.org vocabulary. Furthermore, the missing at-
tributes and small descriptions do not represent enough data to differentiate
each entity from another. The fact that not all entity types have their own
properties to identify them properly makes the extraction of unique iden-
tifiers more difficult. But also if all entities would have unique descriptive
properties, they might not be found within the context around the target
word.

4.3.2 Differentiation by Context

A word usually gains its meaning through the context and words that sur-
round it. Unfortunately that does not apply to all cases. Some queries or
strings might include target words without actually referring to them, for
example with list items. These end up with no meaningful word relations
to extract. A news article could talk about a theft in a known supermar-
ket of some small town. But the whole article might refer to the town and
the burglar himself. Therefore, the supermarket’s well known name could
be mentioned just once, and no entity properties would be found around

4. New Approach 30

that target word to describe and identify it properly. But the terms and
nouns representing examples are often proper words that do not need the
content around them to identify their meaning. The name is probably al-
ready quite unique and substantial itself, such as companies (Google) or
celebrities (Barack Obama). They probably will not be found in dictionar-
ies, but in collaboratively constructed knowledge sources, such as wikis, or
on informative and educational websites.

The analysis of different word types and their results leads to the division
of queries into four main word groups: “proper nouns”, “nouns”, “verbs” and
“alternative values”. Depending on their queried results from dictionaries,
wikis and search engine requests the type is identified. Proper nouns are
much likely not to retrieve any results from dictionaries, but from wikis and
search engine results. The inverse scenario is found for verbs. Alternative
values are much likely to have only search engine results and nouns get their
most valuable results from dictionaries.

If a term then still does not retrieve a lot of valuable identifying data,
nouns located close to the target term (window nouns) are analysed. This
eliminates the risk of not retrieving any data for the upcoming identifier se-
lection for the document in focus and all entity types of the used vocabulary.

4.3.3 Term Frequency and Inverse Document Frequency

After collecting enough data from various resources the best suited identifiers
need to be selected. By retrieving information with rather specific queries
per entity type a big step towards good differentiation for word-sense dis-
ambiguation is already taken. To collect and determine unique identifiers for
each entity is for a fully automatic system the most challenging part. The
data retrieval and selection stays an unsupervised process to follow the goal
of full automatism.

In Information Retrieval the most obvious choice for best practice IR is to
include the statistics for Term Frequency and Inverse Document Frequency
(short TF-IDF) to determine the terms with the most valuable information
in a document compared to a corpus. The goal in this process is to iden-
tify the mutual information between a text (the collected identifiers) and
computed keywords that represent a specific content without loosing any
important information. TF-IDF is therefore used as a channel to maximize
the value of mutual information between the described elements.

Term Frequency and weighting

Different variation schemes for weighting the result of the TF calculation can
be chosen to determine its exact value. In this project the logarithmically
scaled frequency is used to avoid favouritism or uneven results between long
and short documents.

4. New Approach 31

Inverse Document Frequency

As not all words are equally important a factor has to be included that
reduces the TF weight for a term, depending on its collection frequency.
Therefore, the Inverse Document Frequency (IDF) of a rare term is high and
the one from a frequent term is likely to be low. By combining the definitions
of TF and IDF a composite weight for each term in every document is
produced with the TF-IDF weighting scheme.

TF-IDF

Using the formula for Term Frequency and Inverse Document Frequency
from the Equation 2.2 the calculated values for TF and IDF are multiplied
to determine the most valuable terms within the identifier collections. At this
point it is possible to see each document as a vector with one component
corresponding to each term in the dictionary, and a calculated weight for
its importance or relevance. For terms that do not occur in an identifier
collection the weight is set to zero. The resulting vector form will prove to
be important for scoring and ranking at a later point.

One occurring problem with the calculation of TF-IDF is the term-
handling as bag of words. Not only documents and single terms need to
be taken into account to define the appropriate event spaces for the re-
quired probability distributions, but also queries and terms [18, p. 7]. Many
researchers are eager to replace the heuristic in the IDF component with
some reasonably-constituted theoretical argument, in order to somehow ex-
plain why it is that the probabilistic function in IDF works so well. But
other than being a small mystery, the TF-IDF formula is still used in most
search engines as well as in this project as a ranking method.

4.3.4 Single Entity Identifiers

With the calculated TF-IDF the retrieved data within each entity descrip-
tion is compared to each other. The more specific terms and words for each
entity type are selected as the most suitable identifiers. Then they are used
for data comparison in vector space models (VSM4 further information in
Section 4.4).

Synonyms and Stemmers

Each term takes part in a vector representation of an entity. At this point it
is crucial to the forthcoming data comparison that the match for the correct
entity type achieves the highest confidence score for mutual information.
As terms have different forms of appearance (grammatical alterations and
word variations), it is decided to include not only synonyms of words but also

4More information on TF-IDF and VSM: http://nlp.stanford.edu/IR-book

http://nlp.stanford.edu/IR-book

4. New Approach 32

to use a so called stemmer.5 Stemmers reduce words to their most generic
stem. A rule system removes parts of words to a compressed version of a
word group with as little syllables as possible. The new Snowball stemmer
[33] is a derived version of the original Porter stemmer [34] from 1979 and
recommended for usage due to its improvements. This step is necessary to
collect as much information with having the smallest amount of words as
possible. The same stemming-procedure is repeated at a later point when
the resources of search queries are analysed and compared to the identifiers
of single entity types. After assembling and filtering out all data resources for
each entity the results are saved in a database following descriptive models
for the upcoming data comparison with target words and terms. A detailed
description of the database saving process can be found in Chapter 5.

4.4 Data Comparison and Confidence Scoring
The Vector Space Model (VSM) finds much use in scoring and confidence
measuring for the comparison of the document term data-sets and the entity
identifier collections. These documents and lists are represented as vectors
in a common vector space. A small document could have a vector represen-
tation as follows: [𝑡ℎ𝑒, 𝑔𝑟𝑎𝑠𝑠, 𝑖𝑠, 𝑔𝑟𝑒𝑒𝑛]. The vector of all terms occurring in
the corpus 𝐷 is denoted

𝑇 = sort(𝑑0 ∪ 𝑑1 ∪ . . . 𝑡𝑗∪), (4.1)

for 𝑗 = 0, . . . , |𝐷|−1. This vector represents a term-collection from all docu-
ments within the corpus. A vector of terms contained in a specific document
𝑑 is denoted by 𝑣𝑑, with

𝑣𝑑(𝑖) =
{︃

1 if 𝑡𝑖 ∈ 𝑑,
0 otherwise,

(4.2)

for 𝑖 = 0, . . . , 𝑁 − 1. Thus 𝑣𝑑 ∈ {0, 1}𝑁 and ‖𝑣𝑑‖ > 0. Then the set of
documents in a collection is viewed as a set of vectors in a vector space.
Each search term represents one axis. A search query will have the highest
similarity score with the entity term axis that includes the highest num-
ber in equal identifier terms. The similarity between two documents and
therefore two vectors is defined by how similar their pointing in direction is
(Figure 4.5). This is done by computing the cosine similarity of the vector
representations as follows:

sim(𝑎, 𝑏) = 𝑣(𝑎) · 𝑣(𝑏)
‖𝑣(𝑎)‖ · ‖𝑣(𝑏)‖ . (4.3)

5Stemmer: the form of a word that remains after removal of all inflectional affixes [28].

4. New Approach 33

Figure 4.5: VSM example for cosine similarity.

That calculation avoids the bias caused by different document lengths. To
measure the similarity of two data-set collections (e.g. a specific entity and a
target term), their inner product (sum of the pairwise multiplied elements) is
divided by the product of their vector lengths. The division has the effect of
normalizing the vectors to unit length and only the angle, or more precisely
the cosine of that angle between the vectors, accounts for their affinity.
As documents always contain at least one term, a division-by-zero is not
possible. Documents that do not have a single word match get assigned a
similarity value of 0. This results out of the orthogonality of their vectors.
Therefore documents with a similar vocabulary get higher values, up to 1
if the documents are identical. Finally, the resulting score between a query
and the various documents within a corpus are used to rank the results.

4.4.1 Group Entity Identifiers

At this point the collected entity detection data from Section 4.3 is to be
compared to the target word or term in focus. The comparison of the results
from the data resource collection with the single entity identifiers puts high
pressure on the correctness of having selected the correct terms for each
entity type. Word-sense disambiguation is still a risk, as a word’s meaning
might change in different context settings. To avoid the determination of
wrong entity types the text around a target word needs to be included
into the analysis as well. But the context does not always include enough
information on the specific entity to differentiate it from its sister types.
However, a text is often written with a concept and these overall concepts

4. New Approach 34

can reflect the hierarchical structure of a semantic vocabulary. Every entity
starts with the abstract concept of being a Thing and branches down into
more specific groups and types. Therefore, it is desirable to narrow down
the possibilities of the correct entity type for a target word once you know
the general notion behind a text. So, instead of comparing the target words
resource data to single entity identifiers, it is chosen to be more reasonable
to compare it first to their highest parent types and then work down the
path to more specific branches in the hierarchy tree. This eliminates not
only the chance for word-sense disambiguation but also reduces processing
time to not having to compare each and every entity data in every loop for
target word comparison.

Each group needs a small set of identifiers which determines the overall
concepts as a result for different target words. Therefore, the already as-
sembled information on a parent entity as well as all of its children is put
together. The created data set is now ready to be analysed to reduce its
size of terms and words to the most specific and descriptive ones for the
overall concept in focus. Terms that appear repeatedly within the set are
placed next to proper names on top of the list of important identifiers. All
remaining words are compared to each other and to the sibling sets of the
same-level concept-groups. This process is imitated in each hierarchy depth
to collect the most significant terms for every concept with proportionate
detail. The resulting data sets are then used as a comparison base for a
specific target word.

4.4.2 Inheritance Similarity

The same procedure is done for a target word’s collected hierarchical struc-
ture of WordNet’s inherited hypernyms. Similarities between a target term’s
dictionary hierarchy and an entity’s inheritance structure is weighted with a
higher value than the simple identifier list between the data-set collections.
The same word roots are seen as important selectors to eliminate word-sense
disambiguation. Therefore, a high resemblance is assumed between similar
inheritance structures of two terms.

The determination of the most suitable entity type does not start with
comparing the data to a single entity type, but to the overall parent group.
This identification will resolve in the elimination of word-sense disambigua-
tion and fasten up the test routine itself. The already collected information
on the first depth in hierarchy is used at this point to compare the most
valuable identifiers of all entities within one parent group with the recently
calculated ones from the search query. In the vector space of all parent
groups the target word representation vector is now compared to the other
vectors in the space. After selecting the closest one with the best similar-
ity value the parent will open up a new vector space with only the entity
types that are inherited from it (Figure 4.6). To narrow down the number of

4. New Approach 35

Figure 4.6: Group identifier loop.

possible entities for a specific search term the process is repeated until the
lowest level of parent groups possible. The schema.org vocabulary hierarchy
has a maximum depth of four levels, which keeps the number of loops per
test on a lower value. Once the lowest parent group is determined the vector
space will change from parent group vectors to single entity vectors. At this
point the error factor is held quite low as the correct category is already
determined. This of course depends on the quality of chosen and calculated
identifiers for each single entity, group and target word representation.

At the end of one target word loop the system is left with an entity type
that represents the highest confidence and vector space score. This one is
returned to be then included into the original document. With the incorpo-
ration of all found entity types the document is semantically enhanced and
represents a data collection that is readable and ready for interpretation by
machines.

Chapter 5

Implementation

After defining schema.org as the main vocabulary setting the main goal
to have an unsupervised program and researching through the theoretical
background of creating such a fully automatic system some modifications are
necessary. To have a vocabulary with pre-defined entities for classification
does not fall into the category of an unsupervised system. However, the
remaining parts of the program stay without supervision. Therefore the
adapted goal, following correct terminology is now set to semi-supervision.
The subsequent goals of the developed system are its independence and
intelligent behaviour. The included components were chosen with the focus
of having it act with as little human input as possible to ascertain the
possibilities and restrictions of a fully automatic semantic analysis program.
The JavaScript based code counts different important components to its core
which are described in the following sections.

5.1 Framework
Traditional scripting languages, such as PHP, are widely used for web appli-
cations and are based on requests. But the server-side JavaScript technology
in NodeJS1 gained more popularity and interest in the web developer com-
munity. The requirements to the framework for the developed system aren’t
strict or demand high complexity. Various semantic libraries, tool sets and
support programs are provided by a majority of frameworks. Wolfram Alpha,
WordNet and Aylien are the main APIs and tools that represent a neces-
sity for inclusion. NodeJS fulfils the decisive requirements and is therefore
respectfully chosen to be the framework in use.

1https://nodejs.org/en/

36

5. Implementation 37

5.1.1 NodeJS

NodeJS is an open source and cross-platform runtime environment for server-
side and networking applications. The provided event-driven architecture
and the non-blocking I/O API optimizes an application’s throughput and
scalability. The JavaScript environment is often used in real-time web ap-
plications and represents therefore a good base for the development of the
client-side system handling. Express2 is a NodeJS web application framework
with a quick and minimalist background. The flexible framework provides a
robust set of features for different kinds of web applications and is a good
choice to create the user-interface for the system. Express is internally based
on Connect and extends it with numerous missing aspects. These include
REST web services for routing and also various configuration features. For
development purposes command line interaction with the system is provided
to update, pre-process and test the data and code. It represents the main
interface at this point, to ensure the focus on advancement in code devel-
opment. Therefore the express environment is taken out of the system but
will be included again at a later point in time.

5.1.2 Node Modules

NPM 3 (Node Package Manager) is the pre-installed package manager for
the NodeJS server platform. With it modules and programs from the NPM
registry are installed and used. By organizing the management of third-party
NodeJS programs and organizing the installation process, it represents a
help for developers to build up their code in a fast and easy way. The used
packages in the developed system can be divided into four categories:

• database,
• text analysis,
• data collection and
• helper packages.

All node modules can of course be seen as general helper packages as they
facilitate processes, such as reading files and retrieving data via jQuery or
fasten up the implementation development by including already optimized
algorithms and code snippets. Some of the explained data retrieval, analysis
and filtering is done with the installed text analysis and data collection
modules. The exact use of all included packages will be explained in the
following sections while describing the system itself.

2http://expressjs.com/
3http://www.npmjs.com/

http://expressjs.com/

5. Implementation 38

5.2 Database
To build the data foundation of the system the vocabulary’s structural and
hierarchical information is collected. Due to its popularity and maintenance
by the biggest search engines in the world, schema.org is chosen as the vo-
cabulary for the semantic analysis of web pages. Schema.org’s homepage
includes all necessary information to describe the type structure and its hi-
erarchy so that all entities can be identified and saved in a fully automatic
manner. In the early stages of development all information was stored in sim-
ple JSON-files, as the complexity of the data-structure is small and straight
forward. After refactoring and considering changes to clean up and simplify
the system’s design the data was transferred into a database. Options for
complex relations and table connections are not vital for the saved data.
Therefore, a simple and fast connecting database platform is sufficient.

5.2.1 MongoDB

All entity types and further semantic information are saved in tables within a
MongoDB4 database. With its cross-platform and document-oriented struc-
ture it is classified as a NoSQL database. JSON-like documents, so called
BSON 5, and dynamic schemas enable a fast and easy integration of all
high-value data. The table structure is held very simple, having only small
relations via IDs between them. For further facilitation Mongoose6 is added
to the database component. It provides a straight-forward schema-based
solution to model the application data and include built-in type casting,
validation, query building, business logic hooks and more. Both, MongoDB
and Mongoose, are installed respectively via their provided node packages.
Mongoose offers a model system in which the structure for each table is
saved as BSON.

1 var mongoose = require('mongoose');
2 var db = require('../dbConnection');
3
4 var Vocabulary = mongoose.model('Vocabulary', {
5 type: String,
6 depth: String,
7 comment: String,
8 properties: [String]
9 });

10
11 module.exports = Vocabulary;

After requiring the necessary packages and connecting to the database (L1
and L2) the collection structure is set. Each model provides the tables with

4https://www.mongodb.org/
5http://bsonspec.org/
6http://mongoosejs.com/

https://www.mongodb.org/
http://bsonspec.org/
http://mongoosejs.com/

5. Implementation 39

Figure 5.1: Application structure.

an automatic ID for each element and the possibility of storing different
valued columns, such as Strings, Arrays and sub-JSON structures (L5 - L8).
As the system requirements contain a fast fetch of tokenized data within
arrays the option of saving and retrieving arrays as a data-type proved itself
to be very useful. The collected and listed information for each entity type
is stored in a quick and easy manner. Simply an array is needed without
having to stringify it or break it up into its individual components.

5.3 Application Structure
Within the automatically created NodeJS application a folder structure con-
taining all basic components is built. Node packages and modules are saved
in a separate folder next to the general information file. This dataset saves
all dependencies as well as the node engine and version numbers. Alongside
of these parts that assure a robust app foundation the different components
for data retrieval and analysis are placed inside the app folder. These com-
ponents are divided into four categories: models, data, preprocessing and
updates. The already described database models serve as the first part to set
up the system in its structure. In Figure 5.1 the overall application structure
is depicted. Via Information Retrieval data is fetched from dictionaries and
other sources in an one-time effort. This base represents the database foun-
dation from which the optimized data is created from. The actual run-time
part of the system takes the newly optimized data as a base. Subsequently,
the developed JavaScript-based Semantic Analysis (JSSA) tool is used to
identify entity types for specific target words within the application.

5. Implementation 40

5.3.1 Models and Data

An own model is created for each table and saved within a folder called mod-
els. This explicit denotation is used because the database fetches the table
structure from this by the module specified location. The distinct models
are explained further in the sections for Updates (Section 5.3.2) and Prepro-
cessing (Section 5.3.3). Next to the models folder a collection of static data
is placed. That specific data does not represent any necessity to be saved
within the database. It contains specific information of the chosen vocabu-
lary and is therefore not important for a general system of semantic analysis.
The vocabulary of schema.org offers almost 700 entity types up to now. Dur-
ing the process of development over 20 new entities have been included into
the hierarchy but none of them were part of the category Data Types. In the
schema.org vocabulary the Data Types represent string, number, boolean
and date values that can be included as properties or attributes of entity
types. But they do not contain any big information value for the entity dif-
ferentiation process (Section 4.3). As these entities need special treatment
during the analysis and preprocessing phase, the list of these data types is
saved separately.

Furthermore, a list of already optimized entity types is saved for the
inclusion of the AYLIEN Text Analysis API. Its Concept Extraction tool
enables the system to start with a well developed base for single entity de-
tection (Section 4.3). Out of all Schema entities, which are in count over
600, the extraction tool is able to resolve 42 of them correctly with a high
precision value. This builds the foundation of the entity recognition and clas-
sification. AYLIEN established a huge database of words and their meaning
by collecting terms in texts all over the web. Each of the 42 mapped enti-
ties for schema.org7 has over one thousand usage examples for determining
their semantic meaning and excluding word-sense disambiguation. This high
database maintenance forced them to provide resources for only a small num-
ber of schema.org entities. But the results for that little share in terms of
precision makes it an obvious choice of use as a base for the semantic system.
As the number and types of the covered entities aren’t officially published
in an open list, the collection has to be saved in a separate file to focus on
the detection of the remaining entities and classify them automatically while
eliminating the sense disambiguation problem in a fully automatic manner.

5.3.2 Updates

To keep the vocabulary and hierarchical structure data up to date, scripts
for updates are implemented and made available to call at any point. The

7This number was given to the author after contacting the company AYLIEN via their
offered user chat on their website and e-mail. The distinct supported entities are not
available online. Therefore, no reference is made.

5. Implementation 41

first data collection and update script represents the vocabulary and its hi-
erarchy. Each entity is retrieved automatically from the overview sub-page
of the schema.org website. The clean construction of the site allows the sys-
tem to retrieve data for each entity type in form of a short commentary
description and properties in a fast and easy way. In order to make the sys-
tem work for automatic updates on different vocabularies their structural
representation will need to be analysed separately. Another solution is the
development of an automatic vocabulary-representation scan and a subse-
quent analysis to extract the “structure”, “hierarchy” and “relationships”
between the various entities. While fetching the website’s data the hierarchy
and relations between the different entity types are saved. This is done to
enable the later comparison and group entity detection to identify the best
suited entity for a specific target word. But the update-commands for the
vocabulary and hierarchy need to be used with discretion. Some entities do
not have a unique name in the sense of appearing multiple times within the
hierarchy of the vocabulary.

In Figure 5.2 the occurrences of the entity type Medical Audience are
shown as an example. Being four times present with the same type-name in
one vocabulary makes the distinction by name quite difficult and eliminates
it as an option to do so. Therefore, the IDs that are created automati-
cally by updating the hierarchy and storing them into the database are very
important for referencing the exact type of entity with their parents. All
sub-information for the vocabulary’s entities are based on and differentiated
by this given ID to not create unnecessary problems for disambiguation.
This of course creates a big dependency between the hierarchy and all other
collections. When a new entity type is created by schema.org the vocabulary
and it’s hierarchy need to be updated. This creates changes in the automat-
ically created IDs and is therefore avoided by just adding the new entities to
the end of the vocabulary list. Before the data was stored within a database
the vocabulary got stored in JSON files. The hierarchical storage of the
items from top to bottom made the grouping of all entities by main entity
types easy and fast. With the change from JSON files to database tables the
grouping by chronological order was no longer a possibility. At this point the
IDs emerged to a higher importance and were then used as the main piece
to connect the relations between all entities and their hierarchical structure
for the arrangements in groups.

But all other information resources have also updates in their data col-
lection to describe certain words and terms. An overall update, including
all data sources for information analysis and definition, is therefore recom-
mended. A system update refreshes all data to stay up-to-date and provides
the best results possible for the semantic analysis. The sub pages for each
entity type on schema.org and getschema.org contain in several cases next to
their descriptions and definition also examples for usage. These are fetched
and saved to facilitate the testing of the system by retrieving test examples

5. Implementation 42

Figure 5.2: Schema.org Example: Medical Audience.

with correct results for most entity types. A detailed explanation on how to
obtain the valuable data for testing purposes is described in Section 6.1.

5.3.3 Preprocessing

After updating the general structure of and within the vocabulary it is time
to group and analyse the retrieved data for each entity type. As described
earlier the way to gain more information, especially unique identifiers, for
the various entities is to make use of quick access dictionaries, wikis and
search engine results. Retrieving the data beforehand makes the process of
comparison afterwards a lot easier and faster. WolframAlpha and WordNet
offer online and offline APIs respectively with a generous restriction of calls

5. Implementation 43

per month. The combined ability of both systems to retrieve a words defini-
tion and word relations via API requests is used to collect more information
on the vocabulary’s items. The general approach is to make use of the hi-
erarchy behind the vocabulary of both systems. Similar to schema.org, the
dictionary APIs are built on a hierarchical structure from which the inher-
itance and relations between words are extracted. The word “dog” as an
example is part of the word group “animal”, which is part of a word group
itself: “living organism”. This internal connection between terms is taken
as an advantage to identify word groups and eliminate WSD in an early
stage of semantic analysis. Of course, this does not apply to proper nouns
for which search APIs are used. Proper names and terms, such as found
in celebrity names or termed lakes, do not profit from these deep internal
word connections. These labels occasionally have relations to general con-
cepts such as Person or Landform, but almost no information on them exists
in general public dictionaries. For rather basic terms, which appear in such
word collections, enough data is retrieved for the semantic analysis of them.
Therefore, the combined knowledge sources of classical wordnets (wisdom of
linguistics) and collaboratively constructed knowledge sources (wisdowm of
crowds), such as Wikipedia, is taken as a foundation for data requests. This
allows a combined approach to evaluate semantic relatedness with a broader
spectrum and choice of definitions, word relations and sense disambiguation.

Wolfram Alpha API

Through an existing node package the Wolfram Alpha API8 is easily inte-
grated and called with a simple request.

1 var result;
2 wolfram.query(entity, function (err, result) {
3 if (err) throw err;
4 if(result !== null) {
5 if(typeof result[0] !== "undefined") {
6 for(var i = 0; i < result.length; i++) {
7 if (result[i].title == "Definitions" ||
8 result[i].title == "Inflected forms" ||
9 result[i].title == "Synonyms" ||

10 result[i].title == "Narrower terms" ||
11 result[i].title == "Broader terms") {
12 result = result.concat(removeStopWordsTokenizer((

result[i].subpods[0].text).replace(/(\||verb|noun)/g, "")));
13 }
14 }
15 } else {
16 console.log('Empty result.');
17 }
18 } ...
19 });

8http://products.wolframalpha.com/api/

5. Implementation 44

Next to the basic definitions of a word, other linguistic information can be
queried. To widen the range of comparable data “inflected forms”, “syn-
onyms”, “narrower terms” and “broader terms” are collected as well. These
offer a broader analysis of words and relationships between word group
branches. A simple and straightforward term comparison is often restricted
through its lack in word-variety. The meaning of a term is put against stored
classifying objects. These should project an entity’s identifiers to find sim-
ilarities and equalities between them and the term in focus. To widen the
spectrum for this resemblance analysis a bigger variety through synonyms
and inflected forms is used. Not to overload the data collection and slow
down the process of analysis it is necessary to select the most specific and
eloquent terms. The TF-IDF algorithm is here again a good choice, although
it needs to be slightly modified. A substantial variety throughout the data
collection is needed, while still maintaining a compact set of terms. There-
fore, the additionally collected data is analysed separately and subsequently
brought together. The overall collected information is saved first in a model
collection before being analysed. This allows an overall analysis for further
grouped entity collections and supplementary term comparisons. The then
analysed and in their size reduced entity data sets are saved in a separate
collection for obtaining the needed information quickly. The same process
for semantic analysis and filtering is done with the WordNet and search
engine results data retrieval.

WordNet API

WordNet9 is another classical linguistic data collection, which represents re-
latedness of words next to their definitions and disambiguations. NPM offers
multiple models to call WordNet’s API. It is used with a downloaded vocab-
ulary, to make it accessible for requests offline as well as online. Therefore,
fast querying for various terms is made possible via the availability of the
offline dictionary. Similar to WolframAlpha, WordNet is fetching definitions
and domain types to retrieve a wide range of information on the query terms
in focus.

1 var walk = new wn.Word(entity, "n");
2 walk.getSynsets(function (err, data) {
3 var definitions = [];
4 var domainTypes = [];
5 for (var i = 0; i < data.length; i++) {
6 var curr = data[i];
7 definitions[definitions.length] = curr.definition;
8 domainTypes[domainTypes.length] = curr.domain_type;
9 }

10 ...
11 });

9https://wordnet.princeton.edu/

5. Implementation 45

Domain types represent the word group a term inherits from. This serves
as a comparison base for word-relatedness between hierarchical groups of
terms in semantic vocabularies. The expert-made resources in WordNet con-
tain concepts that are connected by lexical semantic relations. It offers to
show synsets and semantic relations as well as lexical relations for words
and options for sense disambiguation, if a word has multiple meanings. The
differences in word relation choices between the two described dictionar-
ies permits a broader spectrum for word analysis and the selection of ideal
identifiers for entity recognition. The documents of the Semantic Web are
usually created by human beings, such as in Blogs, News Papers or So-
cial Media Platforms. Therefore, they represent actually much more natural
language documents than theory would make one believe. Collaboratively
constructed resources, such as Wikipedia and Wiktionary, emerged them-
selves to be valuable semantic knowledge bases. They have a high potential
in diverse Natural Language Processing tasks but differ in their access mech-
anisms to the knowledge stored in these semantic knowledge bases, as well
as in the possibility to identify word relations.

Wikipedia

A representation of a valuable lexical semantic knowledge base, created col-
laboratively by non-professional volunteers on the web, is Wikipedia10. Due
to its vast increasing size and significant coverage of past and current devel-
opments it is used as a semantic resource. Collaborative Knowledge Bases
(CKB) are oppositely to Linguistic Knowledge Bases (LKB) less strict in
their approach of construction. While LKBs are usually very costly to main-
tain and construct (except WordNet), CKBs are released under a license
that grants free usage. They keep their content up-to-date, while the release
cycles of LKBs do not reflect recent or more current events. The possible
high benefit of using CKBs queried result for NLP comes nonetheless with a
big challenge. Retrieving unstructured or semi-structured data with a high
probability of noisy information creates a new challenge for itself. Further-
more, CKBs content relies on social control for the assurance of accuracy
and comprehensiveness. The most valuable information for semantic analy-
sis on a Wikipedia page is mostly found in the first paragraph. Representing
the abstract of an article, it is basically a small summary of the page content
and is easily fetched (L1 - L2).

1 var opt = {query: query, format: "json", summaryOnly: true};
2 wikiParser.searchArticle(opt, function(err, htmlWikiText){ ... }

The resulting reliability of its referential correctness to the target word
in focus is a risk that needs to be taken. To search articles by keyword is
an optimized structure that Wikipedia proposes to its users. The created

10https://www.wikipedia.org/

5. Implementation 46

system iterates through all found articles and retrieves valuable information
through the analysis of links, categories and redirects.

Search Engine API

Next to collaborative and linguistic knowledge bases also smaller web pages
do present informative descriptions and definitions of various terms. Via user
ratings and clicks on their pages to represent their popularity and usefulness
they reach higher positions on search result pages. Longer phrases or rather
contemporary word combinations have presumably a longer time-span to
be added to public dictionaries or wikis. Blogs and user-driven platforms
that are no CKBs include such new terms possibly faster and represent an
additional source for IR.

Google is by far the most popular search engine in the world and has,
according to statistica.com11 a market share of 88.44% in April 2015. But
through its popularity and power in the field the tools with and around it
are often restricted for usage. Their search API calls are restrained to only
100 per month, while Bings API has a limit of 5000 transactions per month.
That big difference made the choice to use Bing’s search result module12

very easy.
1 BingAPI.composite(options.hierarchy[options.c].humanizedType, {
2 top: 6,
3 skip: 2,
4 sources: "web"
5 }, function(error, res, body){
6 var searchRes = "";
7 for(var j = 0; j < body.d.results[0].Web.length; j++) {
8 searchRes = searchRes + " " +
9 body.d.results[0].Web[j].Title + " " +

10 body.d.results[0].Web[j].Description;
11 }
12 ...
13 }
14);

The most valuable information is retrieved from the first couple of search
results (L2), which contain the most valuable information in reference to
the search query and target term. As the top result slots are often taken by
either Wikipedia, news platforms or the web page in focus itself it is wise
to exclude them from the analysis (L3). The request allows the option to
ignore news articles right away as they presumably include the target term
but not primarily valuable information on it (L4). The extracted title and
description of each rich snippet is then used for analysis and therefore the
extraction of relevant data.

11http://www.statista.com/statistics/216573/worldwide-market-share-of-search-engines/
12https://www.npmjs.com/package/node-bing-api

http://www.statista.com/statistics/216573/worldwide-market-share-of-search-engines/
https://www.npmjs.com/package/node-bing-api

5. Implementation 47

Figure 5.3: Entity and target word analysis.

5.4 Text Analysis
Information Retrieval via search engines, collaborative and linguistic knowl-
edge bases leads to a substantial amount of data. The data-set is taken
as a base for the upcoming semantic analysis to identify entity types for
specific target words. All collected entity and target term identifiers go
through a similar analysis process. Both data-sets collected their data from
Wikipedia, WolframAlpha, WordNet, Bing and the vocabulary in use, which
is schema.org. The final comparison is based on the highest similarity score
and calculated via a term vector space model (Figure 5.3).

5.4.1 Filtering

Each target term collection is run through a stop-word removing tokenizer.
The list of stop words is based on the standard version for the English
language and modified by the addition of several terms. This is especially
important as the Information Retrieval includes words and terms that rep-
resent the dictionary, vocabulary or information resource that the data is
from. To fetch information from Wikipedia for example includes the word

5. Implementation 48

Wikipedia itself and various brace-number combinations that are linked to
resources within the article page. Numbers do also present a certain insignif-
icance to the data set for entity types and their entity detection. Dates or
numeration within content is seen by the TF-IDF algorithm as meaningful.
Its rare usage over documents ranks it high up on the word-importance level.
The identification for entities on the other hand is based on term weighting
and comparison. Numbers and dates do contain a lot of meaning for various
terms in their definition and description. But they do not serve as a valuable
identifier for the systematic match up of an entity description.

The collected data for every entity is saved in a database collection be-
forehand. This is done for reference to group and compare as well as to
calculate the similarity score. During run-time the data-set for each target
term is retrieved and analysed to be then compared to the single or group
entity data collection.

5.4.2 Single and Group Identifiers

After the removal of all insignificant words from the data set, the terms
are listed by their term frequency. Although more frequent words do not
automatically imply higher importance they do represent an indicator of
relevance. With their repeated appearance in definitions and descriptions
for a target word or term they develop a meaningful position and spot in
the ranking for identifiers. Additionally, the inverse term frequency (IDF) is
calculated to determine which words are the most meaningful to a specific
topic, such as an entity type. This suggests that also rare terms do represent
significance. All words in the entity-data collection are compared to each
other to determine the most valuable ones. Similar to this, the IDF is used
on the target term data-set. In difference to the entity data collection the
comparison-set is based only on one document (the collected data).

The now rather big word collection for all entity types is now analysed
repeatedly through a loop. To start the identification process the vocabulary
hierarchy is broken down into its main branches. These represent all overall
categories from which the target term should find its most fitting parent type
and concept. Having a book as an example for a target word should result
in a high similarity score for the overall category of “Creative Work”. Every
branch assembles their child-entity data sets to create a new temporary
collection. These go through a loop to calculate a similarity score for the best
fitting entity type. In each repetition the group data-set gets more specific,
depending on the parent concept with the highest similarity score in the
round before. At the beginning of each loop the top terms of every category
are selected and marked as most valuable. Subsequently all duplicates are
removed to reduce the data-set of each group in its size. The same process is
repeated for the target word data collection to prepare it for the upcoming
comparison.

5. Implementation 49

5.4.3 Synonyms and Stemming

Each data-set consists now of the most valuable terms to represent every
category. A wider spectrum and better result in word comparison is achieved
by the inclusion of synonyms and similar terms for each data-set component.
This allows the possibility of a bigger variety in words with the same meaning
and distinct representations of it. But at this point the collections are still
likely not to result in high similarity scores. Identical words, such as tree and
trees, are still seen as different although their word stem is the same. The
implemented Porter Stemmer reduces the data collection of each category
rather significantly and increases the score numbers for similarity.

Single and group entity identifiers are now converted into the same struc-
ture and with the same base as the target term data collection. The term
vectors for each entity group and target word are now compared within a
space model to identify the most similar data-sets. After the determination
of the data collection with the highest resemblance of words the resulting
group is set as the base for the next loop round. This continues until the
repetitions within the hierarchy reach the lowest entity level or the similarity
score gets lower. At that point the final entity with the highest resemblance
is returned and a new target word is selected.

Chapter 6

Evaluation

To test the implemented analysis tool a collection of testing material is cre-
ated. Schema.org’s website includes next to descriptions, properties and a
hierarchical overview of all entities also examples of how to use the various
semantic types. A sister web-page, which represents a small wiki on seman-
tic schema.org information, called getschema.org contains also some usage
examples of the different entities. It is therefore additionally used for the
collection of testing data. In the following sections the creation of the test
data collection is described next to the the tests themselves, followed by an
overall evaluation.

6.1 Test data collection
As the vocabulary is quite big in its size of countable entities their examples
are retrieved automatically from the entity sub pages of schema.org and
getschema.org. The continuous structure within the two websites made the
retrieval quick and easy. All sub pages are requested automatically to filter,
extract and analyse their content. On the detailed sub pages of schema.org
the examples are divided into parts of four:

• without markup,
• Microdata,
• RDFa and
• JSON-LD.

“Without Markup” represents a plain text example in HTML syntax, while
“Microdata, RDFa” and “JSON-LD” use the same content with added se-
mantics in their specific implementation. Of course JSON-LD differentiates
itself from the other two implementation methods by its terminology. It is
included via a JSON object within a JavaScript tag, usually at the top of a
HTML document (Section 3.1.1). An example of a schema.org sub page for
a trilogy of books is presented in the following code snipped.

50

6. Evaluation 51

1 <div>
2 <p itemscope itemtype="http://schema.org/Book" itemid="#trilogy">
3 <link itemprop="about" href="http://id.worldcat.org/fast/1020337">
4 The <strong itemprop="name">Lord of the Rings is an
5 English-language
6 ...
7 </p>
8 </div>

To retrieve the most value out of this data the information from “without
Markup” and “Microdata” is extracted. At this point “RDFa” would have
been a possible alternative for information extraction. The decision is mainly
based on the factor that Microdata is up to now schema.org’s first choice
of implementation. In L2 the “itemscope” and “itemtype” attributes are
included into the HTML syntax to indicate the insertion found to indicate
the presence of an entity type.

The terminology of schema.org’s vocabulary enables a fast and easy
search through all entities, as well as the extraction of the testing data.
schema.org’s list of entity examples for inclusion is still incomplete. There-
fore, the wiki page getschema.org, which is also partially equipped with
examples, is used additionally to extract more data for the test collection.
In total about a third of the vocabulary got covered through this automatic
Information Retrieval. As the test data collection has a high value and im-
portance to the evaluation of the developed system the automatically re-
trieved information needs to be checked manually. Some HTML examples
do not follow the overall structure within the various semantic examples on
the pages of schema.org and getschema.org. Span-tags are put in div-tags
for example without any reasonable explanation. This causes the automatic
extraction to fetch more data than necessary or the “itemprop name” to re-
trieve wrong information. The error rate within the collected test data is in
total very low and just a few search queries were incorrectly extracted. This
manual process does however not interfere with the goal of a fully automatic
system as it is just used for the supervision of testing purposes.

6.1.1 Test Example Model

Schema.org’s retrieved test data is saved in a Mongoose collection model
(Section 5.2.1) with the following components:

• type and typeId,
• query,
• example,
• htmlexample,
• parentType and parentId.

Next to the identifying components (type, typeId) and the hierarchical infor-
mation (parentType, parentId) the valuable data containing the test exam-

6. Evaluation 52

ple is stored. Each entity type is included with the “itemscope” and “item-
type” attributes to indicate the inclusion of semantic information. “Query”
represents the target word which is in most cases the name attribute of the
entity type. Within the “example” the complete test data with all by the
web page provided semantic information is saved. The syntax version of it
is stored as plain text in “htmlexample” to achieve a fast and easy context
comparison afterwards. All data from getschema.org is saved separately in
a collection for reference.

Similar to the retrieval of all descriptions and definitions for terms and
entities the test data collection provides the option for an update. The con-
stant changes and ongoing development on and behind schema.org require
a certain flexibility on behalf of the system. Therefore, the possibility to
update and refresh the testing data is given.

6.1.2 Expected Test Result

After a single test run the result entity types are compared to their ex-
pected single and group entity. The result with the highest confidence score
is saved in a result database collection to then review, analyse and evaluate
all results. Given the example input of:

1 {
2 "_id" : ObjectId("55ef101b7ac188e4279458c3"),
3 "type" : "MovieTheater",
4 "typeId" : "558484694fd8c4181cc748db",
5 "query" : "Rave Cinema",
6 "example" : "HUBER HEIGHTS. The parent company of the Rave Cinema
7 in Huber Heights will renovate the 16\-screen cinema
8 and will add beer, wine and frozen cocktails to the
9 concession stand menu, Cinemark officials announced

10 Thursday. Cinemark Holdings, owner of the Rave
11 Cinemas Huber Heights 16 at 7737 Waynetowne Blvd.,
12 said the multiplex will offer Luxury Lounger recliners
13 in all auditoriums, an updated lobby and new
14 concession stand and bar area ...",
15 "parentType" : "Place",
16 "__v" : 0
17 }

the system will analyse the query (with the expected type found in attribute
“type”) and it’s surrounding content (given in the “example” attribute).
Their most valuable identifiers are calculated, existing inherited hypernyms
are tried to be detected and the results are compared to all entity identifiers
and their hierarchical structure to identify the entity type with the highest
similarity value.

A successful and therefore passed test is expected to have matching val-
ues between its single type entity ID and result type ID as well as in its
group type and result group type.

6. Evaluation 53

1 {
2 "typeId" : "558484694fd8c4181cc748db",
3 "resultTypeId" : "558484694fd8c4181cc74968",
4 "singleType" : "MovieTheater",
5 "resultType" : "MovieTheater",
6 "groupType" : "Place",
7 "confidence" : 89,
8 "query" : "Rave Cinema",
9 "_id" : ObjectId("55f0987d6f38ae08107aee2f")

10 }

In the given example the identical ids are displayed with a calculated confi-
dence value of 89, which indicates a high similarity between the calculated
identifiers for the term “Rave Cinema” and the entity type “MovieTheater”.

6.2 Testing environment
Most implementations of testing environments are focused on clean code
and an evaluation if a test returns the expected results. The tests for this
particular system are used to check how many of all entities are identified
correctly by their parent group and as a single type. As this is more specific
and focused on the terms of usage a small testing environment is created.
After the request of all collected information for identifiers and tests the
system runs through each test query before saving the results.

6.2.1 AYLIEN’s Text Analysis API

As mentioned before, AYLIEN’s Text Analysis API (Section 3.4.2) offers
already a detailed and well elaborated tool to identify a low but steady
number of entities within a plain piece of content. Their API is therefore
chosen as a base for the developed system and testing tool so that the
unsupervised system does not have to focus on these already worked on
entity types.

As already described in Chapter 3, AYLIEN includes the analysis and
detection of 42 entity types with a supervised approach. These do not match
up one hundred percent with the mostly used schema.org types (Figure 3.4).
Due to the high precision in their results for the detection of these distinct
entities the API is used to identify them. For all others the developed system
jumps in and classifies them according to the preprocessed entity data sets.

The API is easily included via the provided NodeJS SDK and requires
only an application ID and key for initialisation which are received after reg-
istering the application. Various methods for calling different API endpoints
are available and Concept Extraction is in use for this particular system. Af-
ter calling the API on a target word a list of concept types is sent back.
These might contain semantic types of DBpedia schema.org and/or Wiki-
data. Subsequently, the developed system starts its own analysis and testing,

6. Evaluation 54

but only if the extraction tool does not detect any schema.org entity type
that would fit the target word.

6.2.2 Test Query Representation

The actual testing starts as soon as the Concept Extraction tool does not
find any entity match-up for the target word. A test begins with the retrieval
of more specific data concerning the test query. The system already knows
some information through the context around the target word but that envi-
ronment does not always say a lot about it. Supervised AI systems use their
created data-collection on word- and term-usage within different types of
context to identify the type and sense of a query. Unsupervised techniques
require external data-sets to come to conclusions. Therefore more data needs
to be collected and run through comparisons during run-time. The inclusion
of dictionaries such as Wolfram Alpha and WordNet are used in the first
approach of testing, as well as Bing Search and Wikipedia for target query
Information Retrieval.

At this point the Information Retrieval via Bing Search is done carefully
as the first results are mostly Wikipedia and possibly the schema.org or
getschema.org websites with the examples that were extracted. The API for
Bing Search offers the possibility to skip the first couple of results so that
redundant information is avoided. This is done to have a perfect match for
the result if the example sub page is found in the search request. In the
same procedure as for the entity identifier selection the collected data is
analysed to extract their most important terms and words. These are used
additionally to the already known content around the search query and the
target word itself and create the test query representation for the upcoming
comparison. To follow the same procedure as for the entity identifiers, the
collected data needs to be stemmed before the comparison in the next step.

6.3 Testing Categories
During development multiple tests are used to identify the best techniques
to collect and determine the best suitable identifiers for all single and group
entities. Subsequently to various changes in methods and heuristics a first
evaluation is taken. To identify the strengths and weaknesses of the devel-
oped system three testing categories are identified to compare the respective
results.

6.3.1 Stemmed Group Test

To achieve the best results not only one but multiple vector space models are
used to calculate the highest confidence level possible within the stemmed

6. Evaluation 55

group test (SG). In this particular round of testing the following data sources
are chosen to determine the best suited group identifiers:

• query (term and context),
• data-sets (group and single entities),
• WordNet (definitions and synonyms),
• WolframAlpha (definitions and synonyms) and
• Bing (rich snippet in search result).

A heuristic on the top terms from the listed dictionaries and search engines
is set via TF-IDF. Another one is used to increase the confidence level on
higher similarities between the test query and data-set of the entity group
in focus as well as between the search engine results of both components.

The main comparisons and calculations are divided into four main parts:
Group data-set, Bing, WordNet and WolframAlpha. Also a changed weigh-
ing scheme of nouns in a closer window to the query in focus is used to
increase their importance for sense-disambiguation. This is essential for the
detection of specific single entities in the lowest hierarchy branch. These
entities differentiate themselves in small details (e.g. childcare vs. kinder-
garten), which are difficult to detect from a wide range of identifiers. That’s
why the context is important in various cases to detect the correct entity
type.

6.3.2 Lexical Knowledge Base Test

Lexical knowledge-bases are used as a base for this approach. The heuristics
are set via the Lesk Algorithm which states that terms are defined as disam-
biguated if their description in dictionaries have the greatest word overlap
count. Therefore, the inherited hypernym structure between the query and
each single entity is compared via the use of vector space models. Further-
more, similarities or even equalities between the dictionary and vocabulary
hierarchies is used as a weighting factor to determine word senses. More com-
plex and deeply structured dictionaries, such as WolframAlpha and Word-
Net, offer connections and inheritance information for each entered term.
This feature is used to identify the overall entity group of search queries
to then determine more precisely the ideal single entity type. The data col-
lected for each entity type is widened by the addition to all entity names on
top of the list of identifiers.

Furthermore, the entity names are compared to each other so that the
children entities won’t include the identical identifiers as their parents, in
the sense of having BodyOfWater as a parent and LakeBodyOfWater as a
child removes BodyOfWater from the child to make the specification in lower
branches more unique. All entity names use specific word combinations to
differentiate them from each other (e.g. SportsOrganization). These simple
words have a high probability to collect useful results in dictionary search.

6. Evaluation 56

Table 6.1: Test Results

SE LKB SG
Consumed time per entity (in sec) 2,14 7,28 5,14
Passed Single 29,62% 30,07% 35,77%
WSD 29,62% 75,12% 67,31%

In addition, the inheritance information between all results is compared to
identify the best suitable definition. This avoids the wrong disambiguation
of words through the multiple options of definitions in the queried result.

6.3.3 Single Entity Test

While the tests from Stemmed Group and Lexical Knowledge Base are fo-
cused on pre-processed data per grouped parent entity, the single entity test
(SE) is based on the collected data per entity type. This approach differenti-
ates a term’s word-senses by dividing the queries per word-type. To achieve
the best results possible all queries are divided into four categories which
are to be identified by the intelligence of the system:

• proper nouns (CKBs),
• nouns (LKBs),
• verbs (LKBs) and
• alternative values (SER).

Most queries and semantically described terms have a high probability to
represent proper nouns. Further information and precise data for this cate-
gory is found in collaborative knowledge bases (CKBs) and via search engine
results (SER). All action entities, specifically for the schema.org vocabulary,
are grouped within the verb category. Nouns represent a rather small group
in comparison to proper nouns but are still used regularly for semantic rep-
resentations of websites. Valuable data for regular nouns is extracted from
lexical knowledge bases (LKBs).

The most challenging group to identify as single entities but the easiest to
detect as group entities are the remaining alternative values. These include
numbers, media objects, code snippets or website components, such as menus
and site classifications. They differentiate themselves from all other entities
by not retrieving any valuable information from all described sources.

6.4 Results
The described testing approaches (single entity test, lexical knowledge-base
test, stemmed group test) are evaluated in three categories: performance,
passed single tests and word-sense disambiguation, displayed in Table 6.1.

6. Evaluation 57

Table 6.2: Failed Detection Distribution

Groups Failed tests in %
per individual group test

Action –
BroadcastService 0,00 %
CreativeWork 36,36 %
Event 9,09 %
Intangible 84,09 %
MedicalEntity 16,00 %
Organization 12,00 %
Person 0,00 %
Place 6,98 %
Product 0,00 %

The performance category shows the biggest differences in its result values.
SE testing is by far the fastest approach with a time of 2,14 seconds to
calculate the highest confidence level. LKB and SG achieve with over one
hour of testing time for around 300 queries and 700 poor performance values.

6.4.1 Lexical Knowledge Base Test Result

The inclusion of lexical knowledge bases leads overall to impressive identifica-
tion results. With a precision value of 75,12% in word-sense disambiguation
the introduced comparison of inheritance and hierarchical structures lead
to better results than the best unsupervised system in SemEval2007 (69%).
A closer look into the failed test results, and the missing 25% to reach one
hundred indicates that the result values are possibly still lower than they
could be. Certain entities within the different hierarchical structures in the
used LKBs do not always reflect the same inheritance as the vocabulary of
schema.org.

In Table 6.3 the inherited hypernyms of the terms “sea” and “church”
in the vocabularies of schema.org and WordNet are presented. The example
for term “sea” shows a small difference in the parental types as schema.org
offers a higher complexity in its differentiation between children-types. But
the main focus is set on the matching parent type for “BodyOfWater”. This
inheritance similarity is used for the grouping process of this approach. On
the right side of the table the example for the term “church” is displayed.
Here, the differences between the two vocabularies are critical. The entities’
parent types belong to two completely different branches and cause therefore
a failed test for the “church” entity.

Table 6.2 displays a more precise and detailed listing of the tests that
failed the grouping on the first level. All tests from the categories “Broad-

6. Evaluation 58

Table 6.3: Inheritance Type Comparison (from single to parent entity)

Sea Church
schema.org WordNet schema.org WordNet
SeaBodyOfWater Sea Church Church
BodyOfWater BodyOfWater PlaceOfWarship Religion
Landform Thing CivicStructure Institution
Place Place Organisation

castService”, “Person” and “Product” are classified correctly in their word-
senses. The group of “Person” passed without any surprise, as AYLIEN
claims to have perfected their detection for this specific entity type. “Broad-
castService” is a very small group as it consists of only one entity. Therefore
the most success is read out of all passed tests for “Product”. With only
around 7% to 16% failed tests the results for “Event”, “MedicalEntity”,
“Organization” and “Place” are seen as a great accomplishment as well. The
failure of 36,36% on behalf of “CreativeWork” is on the other hand a big
disenchantment. Thinking of creatively created documents they should be
easily identified as they differentiate themselves a lot from all other entities.
“Intangible” represents everything that does not fit in any other category
which makes the high percentage of failed tests not as disappointing.

Performance

The loop to identify the best suitable parent group and single entity takes
on a lot of time through the API calls of the dictionaries WordNet and
WolframAlpha. As a result each test loop is done within a couple of seconds
which adds up to a total testing time of over thirty minutes per dictionary.
Although the test results are satisfactory the entity determination should
not take as much time as it does at this point. Depending on the user and
project of the system the identification of all entities could take up a couple
of hours.

Because of the fact that this part of the system is not user friendly, the
calls to WolframAlpha and WordNet are cut out of the search query Infor-
mation Retrieval in SG testing and replaced by the challenge of improving
preprocessing. The already retrieved data for single and group entities needs
to be more precise and include better identifiers and heuristics to enhance
the now dropped results for passed single tests of 23,79% and 45,35% correct
identifications in WSD.

6. Evaluation 59

Table 6.4: Failed Detection Distribution

Groups Failed tests in %
per individual group test LKB results

Action – –
BroadcastService 0,00 % 0,00 %
CreativeWork 49,06 % 36,36 %
Event 75,00 % 9,09 %
Intangible 51,35 % 84,09 %
MedicalEntity 28,00 % 16,00 %
Organization 53,57 % 12,00 %
Person 0,00 % 0,00 %
Place 3,16 % 6,98 %
Product 83,33 % 0,00 %

6.4.2 Stemmed Group Test Result

After the removal of WordNet and WolframAlpha from the run-time analysis
the result values for passed tests decreased reasonably. Identical or related
words and terms deliver usually similar results in their knowledge base re-
quests. These are now missing with the consequence of an increase in failed
tests. This calls out for improvement in pre-processing and the inclusion of
alternative techniques to determine identifiers for group and single entities.
To improve the data created in preprocessing a closer look at all test results
is taken. Some of these examples actually achieved high similarity values but
did not score as well as they could. One of the reasons being that the terms
did not result in a high affinity score with the selected identifiers. Words in
plural are already reduced to their singular form to achieve a higher similar-
ity rate but other grammatical changes are not prioritised. This problem is
taken care of with a more precise inclusion of stemming. Another observation
is made on the queries themselves. They are mostly proper nouns describing
the art work in focus. This makes the use of search engine results, CKBs
and the analysis of the surrounding context more attractive than dictionar-
ies. Therefore, a shift in heuristics through the inclusion of higher weighting
schemes is included.

In Table 6.4 the new results per grouped entity are displayed as well as
the values from the LKB testing for comparison. The biggest difference for
all main types is the change in passed semantic identification for “Product”.
Almost all queries in this group were categorized as “Place” entities. The
highest weight which lead to a wrong categorization is the location infor-
mation within the context and window-nouns around the term in focus. A
change in heuristics to weigh the context for proper nouns differently re-
sulted in worse results for all other groups. Therefore, the used heuristics

6. Evaluation 60

were not changed. A closer look into the failed group tests of “CreativeWork”
in SG testing makes more challenges concerning the hierarchical structure
of all entities visible that still cause problems in determining the correct
entities. The type “MedicalScholarlyArticle” failed its test as it appears as
a child-entity in the group “MedicalEntity” as well as in “CreativeWork”.
Due to a higher similarity score with the medical entity group the query is
categorized in the wrong but also semantically correct group. These failed
tests lead back to the missing LKB calls and their inheritance information.

6.4.3 Single Entity Test Result

Single entities present themselves in various ways, meaning to have proper
nouns as well as verbs, regular nouns and alternative values. Especially these
alternative values are difficult to detect because the collection of identifying
terms in an unsupervised manner is made challenging. One of them being a
train reservation number, such as #AB3XY2. These types of queries are too
specific in their value that neither dictionaries nor collaborative knowledge
bases are able to collect identifying data for them. The only possibility to
gather additional information for these types of values are search engine
requests. A good amount of the engine results for the set query consist of
ticket information for either flights, events, trains or other types of tickets.
Through this information and the analysis of the surrounding content of the
query in focus helps to identify the type of ticket but does not result in all
cases with the correct entity type.

In Table 6.5 passed tests for various types of tickets are displayed. Com-
paring the queries of these tests makes their uniqueness and the similarity be-
tween them obvious. The content around the example of the FlightReserva-
tion type is as follows: “Reservation #RXJ34P Passenger: Eva Green Flight:
United Airlines Flight 110 Operated By: Continental Airlines Departing: San
Francisco Airport (SFO) Arriving: John F. Kennedy International Airport
(JFK).”

Hereby the context does say a lot about the query. Therefore it requires
more weight for the calculation of the confidence level to determine the
correct entity type. Table 6.6 displays failed single tests for alternative val-
ues. These have most likely not been identified with the correct entity type
because of their highly weighted surrounding content. In the example “Orig-
inal: Reservation #E123456789 under name: John Smith Foo Fighters Con-
cert AT&T Park 24 Willie Mays Plaza San Francisco, CA 94107 Ticket
#849646815 Section: 101 Row: A Seat: 12” it is visible that the context is
mostly talking about an event, while the query in focus is concerned about
the ticket which is taking up only a small part of the whole text.

6. Evaluation 61

Table 6.5: Alternative Value Evaluation - Passed Single Tests

Query Type Confidence
#OT12345 FoodEstablishmentReservation 18
#E123456789 EventReservation 6
#RXJ34P FlightReservation 8
#546323 TaxiReservation 8
#AB3XY2 TrainReservation 11

Table 6.6: Alternative Value Evaluation - Failed Single Tests

Query Type Result Type Confidence
#849646815 Ticket EventReservation 6
#184D93KL LodgingReservation Car 5
#36279808A RentalCarReservation Car 5

6.5 Overall Evaluation
The overall results showed improvement in their precision values using the
following adjustments:

• Including inherited hypernyms out of WordNet and comparing it to
the hierarchical inheritance structure of schema.org.

• Increasing the weighting on higher similarity scores between the vector
space models of window nouns and entity identifiers.

• Excluding news articles as well Wikipedia pages in search results, while
only collecting data from the top three rich snippets.

• Determining the most valuable identifiers via the calculation of TF-
IDF and subsequently using a stemmer on these terms.

• Using only the first paragraph of a Wikipedia article as opposed to
the whole article leads to better precision but decreases recall.

6.5.1 Specific Vocabulary and Entity Observations

When analysing the vocabulary of schema.org in more detail to study the
structure of a semantic hierarchy, some characteristics are standing out to
be the main focus for the first part of testing. “Action” represents a very spe-
cific group type of entities. These entities describe movement and physical
actions of humans, such as cook, win, agree or subscribe.“John communi-
cated with Steve” represents a usage example for one of these actions called
“communicate” shown on schema.org’s website. The detection of these types
of entities differentiates itself in multiple aspects. One of them being that the
target word or query refers always to a verb, while all other entities refer to

6. Evaluation 62

nouns and proper names. The various actions are conclusively saved in their
most basic stemmed form within the database to then be easily detected by
the system. Another discrepancy to all other entities lies in their form of
use. Schema.org does not deliver a way of including these types of entities
other than with JSON. This leads to the conclusion that “Action” entities
are still to be worked on and might be included differently to all other entity
siblings.

From an Artificial Intelligence point of view this explicit group does
create a challenge as well. The vocabulary is meant to be variable and re-
placeable. To create a global system that works for all semantic vocabularies
appears to be a not reachable but at the same time still obtainable goal. De-
pending on the objective one has set and the sacrifices that are willing to
be taken. The out-comings after testing are still most likely to change in
relation to the vocabulary because of the inconsistency and high number of
variables that can’t be all covered. The system could analyse each entity
first and define their type of word before identifying other terms as their
type. In the first approach of designing the system this step was taken but
ending up with poor results. The single descriptive sites for every entity do
not contain enough information to distinguish one type from another. The
already depicted problem of having missing properties and attributes make
the automatic and unsupervised collection of correct data to describe en-
tities unattainable. After pre-analysing the vocabulary for word types and
unsatisfying results the entity group “Action” is excluded in the first couple
of tests.

Chapter 7

Conclusion

Via word-sense disambiguation the true meaning of terms in context is iden-
tified in a computational manner. The Semantic Web represents combined
with various vocabularies a tool for machines to understand and interpret
words and terms correctly. But the vast amount of unstructured data within
websites does still create a barrier for systems to fully understand user-
generated content and identify a word’s true meaning. The areas of Artificial
Intelligence and Semantic Text Analysis enable in combination with seman-
tic vocabularies different methods and approaches to transform unstructured
data into structured content. This thesis displays the possibilities and re-
strictions of a semi-supervised system to evaluate a context’s meaning and
determine entities to include as well as to enrich it semantically.

The comparison and evaluation of all testing approaches ranged from a
stemmed grouping method (SG), over an all single entity detection (SE), to
a lexical knowledge based and inheritance approach (LKB). LKB testing,
which introduces the use of inherited hypernyms in dictionaries, achieved the
best results for word-sense disambiguation with a 75,12% precision value and
outperformed the best unsupervised system in SemEval2007 (69%). The cre-
ated system represents a solid base for further development in the areas of
Natural Language Processing, Artificial Intelligence, Semantic Text Anal-
ysis and unsupervised Word-Sense Disambiguation to identify important
information within unstructured content and include semantic information
for machines to interpret and understand. Through the avoidance and ex-
clusion of huge data collections to describe each entity, external knowledge
bases are used to collect valuable data and differentiate entities from each
other. In combination with hierarchical information on parent and child en-
tities the sense of words is identified in an early stage of entity detection.
This reduces the chance of wrongly defining a word’s meaning to correct
identification in three out of four words.

63

7. Conclusion 64

7.1 Outlook
After the analysis of semantic vocabularies and the test results of the de-
veloped system it is to be concluded that there are still areas left that need
improvement. The described vocabulary of schema.org is yet to be com-
pleted in its hierarchy and entity definitions. The sub-branch for medical
information is already represented with close detail but other areas need
more specific entities to describe proper nouns correctly. A solution to this
lack of data representation is the inclusion of separately created vocabular-
ies following the guidelines of schema.org. This enables the incorporation
of a wider range of entity types that are defined through attributes and
properties created by professionals in the various fields. An AI system with
semi-supervision for semantic analysis is to be developed which is divided
into several sub-parts for more specific fields to automatically detect detailed
entities and identify them within plain and unstructured content.

Appendix A

Contents of the DVD-ROM

Format: CD-ROM, Single Layer, ISO9660-Format

A.1 PDF files
Pfad: /

_Thesis.pdf Master thesis

Pfad: /online-literature
AaronBradley.pdf [29]
RDFModel.pdf [30]
RDFaLite.pdf [31]
MikrodatenWortschatz.pdf [32]
SnowballStemmer.pdf . [33]
PortalStemmer.pdf . . . [34]
PayLevelDomain.pdf . . [35]
WebDataCommonsDataSets.pdf [37]
WebDataCommonsDataSetsDataCrawl.pdf [36]
WhatIsSchema.pdf . . . [38]

A.2 Source Code
Pfad: /code

/app/run-tests.js Testing environment to connect to developed
system.

65

/
_Thesis.pdf
/online-literature
AaronBradley.pdf
RDFModel.pdf
RDFaLite.pdf
MikrodatenWortschatz.pdf
SnowballStemmer.pdf
PortalStemmer.pdf
PayLevelDomain.pdf
WebDataCommonsDataSets.pdf
WebDataCommonsDataSetsDataCrawl.pdf
WhatIsSchema.pdf
/code
/app/run-tests.js

A. Contents of the DVD-ROM 66

A.3 Other
Pfad: /images

*.jpg, *.png Original Images
*.ai Original Adobe Illustrator Files

/images
*.jpg, *.png
*.ai

References

Literature
[1] John Allsopp. Microformats: Empowering Your Markup for Web 2.0.

New York City, USA: Friends of ED, Mar. 2007 (cit. on p. 8).
[2] José Luis Ambite et al. Automatically constructing Semantic Web Ser-

vices from online sources. Tech. rep. Marina del Rey, CA: University
of Southern California Information Sciences Institute, 2009 (cit. on
p. 18).

[3] Ping Chen et al. A Fully Unsupervised Word Sense Disambiguation
Method Using Dependency Knowledge. Tech. rep. Boulder, Colorado:
Association for Computational Linguistics, 2009 (cit. on p. 13).

[4] Timothy Chklovski and Rada Mihalcea. Building a Sense Tagged Cor-
pus with Open Mind Word Expert. Tech. rep. Cambridge, MA and
Richardson, TX: MIT Computer Science Artificial Intelligence Labo-
ratory, and UT Dallas Department of Computer Science, 2002 (cit. on
p. 13).

[5] Christiane Fellbaum. WordNet: An Electronic Lexical Database. Lan-
guage, speech, and communication. MIT Press, 1998 (cit. on p. 26).

[6] Michael Lesk. Automatic Sense Disambiguation Using Machine Read-
able Dictionaries: How to Tell a Pine Cone from an Ice Cream Cone.
Tech. rep. Morristown, NJ: Bell Communications Research, 1986 (cit.
on pp. 12, 13).

[7] Dekang Lin. Sense Ambiguity. Tech. rep. Manitoba, Canada: Depart-
ment of Computer Science University of Manitoba, 1990 (cit. on p. 13).

[8] Diana McCarthy et al. Finding predominant word senses in untagged
text. Tech. rep. Brighton, UK: Department of Informatics, University
of Sussex, 2004 (cit. on p. 14).

[9] Rada Mihalcea. Using Wikipedia for Automatic Word Sense Disam-
biguation. Tech. rep. Rochester, NY: North American Chapter of the
Association for Computational Linguistics – Human Language Tech-
nologies, 2007 (cit. on p. 2).

67

References 68

[10] Rada Mihalcea. Using Wikipedia for Automatic Word Sense Disam-
biguation. Tech. rep. Rochester, NY: Association for Computational
Linguistics, 2007 (cit. on p. 13).

[11] Peter Mika and Tim Potter. “Metadata Statistics for a Large Web
Corpus”. In: Linked Data on the Web. Ed. by Christian Bizer et al.
Lyon, Apr. 2012 (cit. on p. 18).

[12] Dan Moldovan and Vasile Rus. Explaining Answers with Extended
WordNet. Tech. rep. Dallas, TX: Department of Computer Science
and Engineering Southern Methodist University, 2001 (cit. on p. 13).

[13] Raymond J. Mooney. Comparative Experiments on Disambiguating
Word Senses: An Illustration of the Role of Bias in Machine Learning.
Tech. rep. Austin, TX: Department of Computer Sciences University
of Texas, 1996 (cit. on p. 11).

[14] Roberto Navigli and Mirella Lapata. Graph connectivity measures for
unsupervised word sense disambiguation. Tech. rep. Hyderabad, India:
IJCAI International Joint Conference on Artificial Intelligence, 2007
(cit. on p. 12).

[15] Roberto Navigli and Simone Paolo Ponzetto. Joining Forces Pays Off:
Multilingual Joint Word Sense Disambiguation. Tech. rep. Jeju, Korea:
Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language
Learning, 2012 (cit. on p. 15).

[16] H.T. Ng, B. Wang, and Y.S. Chan. Exploiting parallel texts for word
sense disambiguation: An empirical study. Tech. rep. Sapporo, Japan:
Association for Computational Linguistics, 2003 (cit. on p. 13).

[17] Adrian Novischi, Muirathnam Srikanth, and Andrew Bennett. “LCC-
WSD: System Description for English Coarse Grained All Words
Task”. In: Proceedings of the 4th International Workshop on Semantic
Evaluations. Ed. by Eneko Agirre, Lluis Marquez, and Richard Wicen-
towski. Prague: Association for Computational Linguistics, June 2007
(cit. on pp. 1, 2, 12, 13).

[18] Stephen Robertson. “Understanding inverse document frequency: on
theoretical arguments for IDF”. In: Journal of Documentation 60.5
(2004) (cit. on p. 31).

[19] Karen Spaerck Jones. “IDF term weighting and IR research lessons”.
In: Journal of Documentation 60 (2004) (cit. on p. 5).

[20] Francisco Viveros-Jiménez, Alexander Gelbukh, and Grigori Sidorov.
Simple Window Selection Strategies for the Simplified Lesk Algorithm
for Word Sense Disambiguation. Heidelberg: Springer-Verlag, 2013
(cit. on p. 14).

References 69

[21] Ellen M. Voorhees. Using WordNet to Disambiguate Word Senses for
Text Classification. Tech. rep. Rochester, NY: Special Interest Group
on Information Retrieval, 2007 (cit. on p. 2).

[22] David Yarowsky. “Unsupervised Word Sense Disambiguation Rival-
ing Supervised Methods”. In: Proceedings of the 33rd annual meeting
on Association for Computational Linguistics. Ed. by Hans Uszkor-
eit. Saarbrücken, Germany: Association for Computational Linguis-
tics, June 1995 (cit. on p. 13).

Online sources
[23] url: https://schema.org/ (visited on 04/02/2015) (cit. on p. 8).
[24] url: http://www.thefreedictionary.com/synset (visited on 04/02/2015)

(cit. on p. 14).
[25] url: http://www.searchengineshowdown.com/defs/stop.html (visited

on 04/02/2015) (cit. on p. 14).
[26] url: https : / / www . similartech . com / categories / schema (visited on

08/22/2015) (cit. on p. 21).
[27] url: http://docs.aylien.com/docs/concepts (visited on 04/04/2015)

(cit. on p. 22).
[28] url: http://www.collinsdictionary.com/dictionary/english/stemming

(visited on 05/04/2015) (cit. on p. 32).
[29] Basic definitions related to schema.org by Aaron Bradley. url: https://

plus.google.com/106943062990152739506/posts/8X4CfZGiUhB (visited
on 07/20/2015) (cit. on pp. 9–11, 65).

[30] Making Statements About Resources - The RDF Model. url: http :
//www.w3.org/TR/WD-rdf-syntax-971002/ (visited on 07/14/2015)
(cit. on pp. 10, 65).

[31] RDFa Lite 1.1 - Second Edition. url: http ://www.w3 .org/2010/
02/rdfa/sources/rdfa- lite/Overview-src.html (visited on 03/29/2015)
(cit. on pp. 10, 65).

[32] schema.org in den Suchergebnissen: ein wertvoller Mikrodaten-
Wortschatz. url: http : / / www . searchmetrics . com / de / news - und -
events/schema- org- in- den- suchergebnissen/ (visited on 04/14/2015)
(cit. on pp. 18, 65).

[33] Snowball: A language for stemming algorithms. url: http://snowball.
tartarus.org/texts/introduction.html (visited on 05/04/2015) (cit. on
pp. 32, 65).

[34] The Porter Stemming Algorithm. url: http://tartarus.org/∼martin/
PorterStemmer/index.html (visited on 05/04/2015) (cit. on pp. 32, 65).

https://schema.org/
http://www.thefreedictionary.com/synset
http://www.searchengineshowdown.com/defs/stop.html
https://www.similartech.com/categories/schema
http://docs.aylien.com/docs/concepts
http://www.collinsdictionary.com/dictionary/english/stemming
https://plus.google.com/106943062990152739506/posts/8X4CfZGiUhB
https://plus.google.com/106943062990152739506/posts/8X4CfZGiUhB
http://www.w3.org/TR/WD-rdf-syntax-971002/
http://www.w3.org/TR/WD-rdf-syntax-971002/
http://www.w3.org/2010/02/rdfa/sources/rdfa-lite/Overview-src.html
http://www.w3.org/2010/02/rdfa/sources/rdfa-lite/Overview-src.html
http://www.searchmetrics.com/de/news-und-events/schema-org-in-den-suchergebnissen/
http://www.searchmetrics.com/de/news-und-events/schema-org-in-den-suchergebnissen/
http://snowball.tartarus.org/texts/introduction.html
http://snowball.tartarus.org/texts/introduction.html
http://tartarus.org/~martin/PorterStemmer/index.html
http://tartarus.org/~martin/PorterStemmer/index.html

References 70

[35] Vocabulary Usage by Pay-Level Domain. url: http : / /
webdatacommons . org / structureddata / vocabulary - usage - analysis/
(visited on 04/16/2015) (cit. on pp. 18, 65).

[36] Web Data Commons. Extraction Results. Common Crawl Corpus
- Trends 2012 to 2014. url: http : / / webdatacommons . org /
structureddata/index.html#trend-2012-2014 (visited on 07/18/2015)
(cit. on pp. 8, 65).

[37] Web Data Commons - RDFa, Microdata, and Microformat Data
Sets. url: http ://webdatacommons .org/structureddata/ (visited on
04/16/2015) (cit. on pp. 19, 65).

[38] What is Schema.org? By Phil Barker and Lorna M. Campbell. url:
http ://publications . cetis . org .uk/2014/960 (visited on 04/14/2015)
(cit. on pp. 16, 17, 65).

http://webdatacommons.org/structureddata/vocabulary-usage-analysis/
http://webdatacommons.org/structureddata/vocabulary-usage-analysis/
http://webdatacommons.org/structureddata/index.html#trend-2012-2014
http://webdatacommons.org/structureddata/index.html#trend-2012-2014
http://webdatacommons.org/structureddata/
http://publications.cetis.org.uk/2014/960

Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

Breite = 100 mm
Höhe = 50 mm

— Diese Seite nach dem Druck entfernen! —

71

	Declaration
	Kurzfassung
	Abstract
	Introduction
	Problem Statement
	Goal
	Structure

	Technical Background
	Natural Language Processing
	Information Retrieval
	Word-Sense Disambiguation
	Artificial Intelligence
	Vector Space Model
	Machine Learning

	State of the Art
	Semantic Web
	Vocabularies for structured data

	Word-Sense Disambiguation
	Categories
	Automatic Approaches to Word-Sense Disambiguation

	Schema.org
	Terminology
	Statistics

	Information Retrieval APIs
	Alchemy API
	AYLIEN API

	New Approach
	Concept and Architecture
	Goal
	System Design

	Information Retrieval
	Dictionaries and Inherited Hypernyms
	Wikis
	Search Engine Information Retrieval
	Entity Type Sub Pages

	Single Entity Detection
	Differentiation by Properties
	Differentiation by Context
	Term Frequency and Inverse Document Frequency
	Single Entity Identifiers

	Data Comparison and Confidence Scoring
	Group Entity Identifiers
	Inheritance Similarity

	Implementation
	Framework
	NodeJS
	Node Modules

	Database
	MongoDB

	Application Structure
	Models and Data
	Updates
	Preprocessing

	Text Analysis
	Filtering
	Single and Group Identifiers
	Synonyms and Stemming

	Evaluation
	Test data collection
	Test Example Model
	Expected Test Result

	Testing environment
	AYLIEN's Text Analysis API
	Test Query Representation

	Testing Categories
	Stemmed Group Test
	Lexical Knowledge Base Test
	Single Entity Test

	Results
	Lexical Knowledge Base Test Result
	Stemmed Group Test Result
	Single Entity Test Result

	Overall Evaluation
	Specific Vocabulary and Entity Observations

	Conclusion
	Outlook

	Contents of the DVD-ROM
	PDF files
	Source Code
	Other

	References
	Literature
	Online sources

