
Reusability of Web Components

Klaus Fischer

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2016

© Copyright 2016 Klaus Fischer

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, September 16, 2016

Klaus Fischer

iii

Contents

Declaration iii

Kurzfassung vii

Abstract viii

1 Introduction 1
1.1 Goal of the thesis . 1
1.2 Motivation . 2
1.3 Thesis contents . 2

2 Technical background 3
2.1 Modular programming concepts 4

2.1.1 Composition over inheritance 4
2.1.2 Interfaces . 5
2.1.3 Mediator pattern . 5
2.1.4 Observer pattern . 5

2.2 Web component technologies 6
2.2.1 Custom elements . 6
2.2.2 HTML templates . 7
2.2.3 HTML imports . 8
2.2.4 Shadow DOM . 9

3 State of the Art 13
3.1 Vanilla JavaScript . 13

3.1.1 Custom elements and lifecycle callbacks 14
3.1.2 Shadow DOM . 15
3.1.3 HTML template element 16
3.1.4 HTML imports . 16

3.2 X-Tag . 18
3.3 Bosonic . 20
3.4 Angular 2 . 22
3.5 Polymer . 23

iv

Contents v

4 Technical design 25
4.1 Backend . 25
4.2 Frontend . 26

5 Implementation 29
5.1 Toolchain . 29
5.2 Keep-API: backend . 31
5.3 Keep: frontend . 33

5.3.1 Look and feel . 37
5.3.2 Components . 39

6 Architectural design concepts 47
6.1 A modular mindset . 47
6.2 Managing content in components 48
6.3 Communication between components 50

6.3.1 API design . 51
6.4 Semantics and accessibility 52

6.4.1 Element naming . 52
6.4.2 Accessibility . 52

6.5 Visual design . 53
6.6 Testing . 55
6.7 Updates . 56
6.8 Deployment . 56

7 Benefits, consequences and limitations 58
7.1 Components instead of pages 58
7.2 Architectural decisions . 59
7.3 Choosing a framework . 60
7.4 High quality components . 60
7.5 Updating components . 61

8 Conclusion 63
8.1 Outlook . 63

A CD Contents 65
A.1 Thesis . 65
A.2 Resources . 65
A.3 Listings . 66
A.4 Thesis Project . 66

B Listings 67
B.1 Web components with plain JavaScript 67

B.1.1 my-tooltip.js . 67
B.1.2 index.html . 67

B.2 Shadow DOM . 68

Contents vi

B.2.1 my-tooltip.js . 68
B.2.2 index.html . 69

B.3 HTML template element . 70
B.3.1 index.html . 70

B.4 Complete tooltip example . 71
B.4.1 my-tooltip.html . 71
B.4.2 my-tooltip.js . 71
B.4.3 index.html . 73

B.5 X-Tag example . 73
B.5.1 movie-quoter.html . 73
B.5.2 index.html . 76

B.6 Angular 2 example . 77
B.6.1 app.component.ts . 77
B.6.2 nice-greeter.component.ts 77
B.6.3 movie-quoter.component.ts 78

References 80
Literature . 80
Online sources . 80

Kurzfassung

Im Bereich der Webentwicklung finden sich viele Aufgaben, die sich ständig
wiederholen. Elemente wie Buttons, Formulare oder Navigationen werden
oft für jedes Projekt neu entworfen und implementiert. Dies kostet immer
wieder Zeit, Aufwand und Geld. Webentwickler müssen sich in die verschie-
denen Konzepten und Implementierungen immer wieder einarbeiten, um
Änderungen umzusetzen.

Web Components ermöglichen eine W3C-standardisierte Umsetzung von
eigenen HTML Elementen mit gekapseltem Verhalten. Solche Komponenten
werden einmal gebaut, bieten Anpassungsmöglichkeiten von außen und kön-
nen in verschiedenen Webprojekten importiert werden. Ist die Architektur
der Komponenten richtig ausgelegt, lösen sie Scoping-Konflikte, vermeiden
Redundanz und verbessern die Code-Semantik.

Diese Arbeit untersucht, wie wiederverwendbare Web Components ge-
baut werden können. Architekturkonzepte, wie die Kommunikation zwi-
schen Komponenten (mithilfe eine mehrschichtigen API), das Verschieben
der Denkweise von einzelnen Webseiten zu wiederverwendbaren Komponen-
ten, der Umgang mit Inhalten in Komponenten, der Update- und Deployment-
Prozess ebenso wie das Reduzieren von Programmabhängigkeiten sind die
wichtigsten Forschungsthemen. Vorteile, Konsequenzen und Limitierungen
beim Einsatz von Web Components werden ebenfalls diskutiert.

Die Vorteile von wiederverwendbaren Komponenten sollen die Webcom-
munity ermutigen, mehr Web Components zu verwenden, Best Practices zu
etablieren und weitere Verbesserungen zu entdecken.

vii

Abstract

Many tasks in web development are recurring. Elements, like buttons, forms
or navigations get engineered and built from scratch with each project. This
takes time, effort and money. Concepts and implementation differ, so devel-
opers need more time to get familiar with different projects to implement
changes.

Web components are a W3C-standardized way to build custom HTML
elements with encapsulated behaviour. Such components are built once, al-
low customization and can be reused in different web projects. If built with
the right architecture in mind, web components solve scoping conflicts, avoid
repetition and improve the semantic meaning of the source code.

This thesis explores how to build reusable web components. Architectural
design concepts like the importance of communication between components
(involving a layered API), shifting the mindset from pages to reusable com-
ponents, managing content in components, the updating and deployment
process as well as minimizing dependencies are the most important research
topics. Resulting benefits, consequences and limitations of using web com-
ponents are also highlighted.

The benefits of resuable components should encourage the web commu-
nity to employ web components, establish best practices and explore further
improvements.

viii

Chapter 1

Introduction

The popularity of websites is growing at a fast pace and so does the com-
plexity when building them. Serving web content with a consistent quality
on a wide range of devices challenges everyone who contributes in the pro-
cess of bringing content to the web. One approach of tackling this problem
is to focus on a modular architecture, where small components are built
and assembled to complete sites. Such high quality components may take a
longer to develop initially, but once built they can be imported and reused
easily across different websites.

1.1 Goal of the thesis
Goal of this thesis is to explore the field of web components with a focus on
three research questions:

• What are the important aspects when designing a web component
regarding architecture and reusability?

• What are the consequences and limitations when employing an archi-
tecture based on web components?

• How can a component be validated for reusability?
Building components is not only a task for developers, it starts already in
the concept phase of a project and heavily involves a visual design part to
succeed with a system of components. The following chapters should inspire
the community around web components and everyone who is approaching
componentized architecture in the web landscape. Best practices, benefits
and holes have to be explored as well as shared to improve the field of web
components.

1

1. Introduction 2

1.2 Motivation
Being involved in multiple web projects, I experienced that many tasks in
the web development process are recurring. A common case are buttons.
Nearly every website uses buttons (or styled hyperlinks) in a way and for
every website those buttons have to be designed, implemented and tested. If
we take 10 websites and consider them seperated, in sum 10 sets of buttons
would have to be created. Now, instead of implementing 10 different button
sets, one for each website, what about implementing one set of buttons
which is reusable and customizable on each of them? This wouldn’t just
reduce the time of implementing, but also brain power in the design process
and afterwards in the testing phase.

So the motivation behind this thesis is to find out how it’s possible to
save time and effort when building reusable components which can be used
across different web projects. By using standardized HTML, JS and CSS
features new possibilities for the web are coming up.

Furthermore, the human aspect of learning is motivating. If a developer
knows how to handle components, other projects with the same components
are easier to understand. What gets interesting here is the question what
happens when a component changes? Which concepts can be applied to com-
ponent design to make them reusable? Asking such questions should inspire
developers to design components carefully and explore possible weaknesses
early on.

1.3 Thesis contents
Chapter 2 starts off with modular programming concepts in general and de-
scribes the four essential standards for web components. Continuing with ex-
isting implementations, chapter 3 shows short examples with plain JavaScript
and different frameworks. Furthermore, chapters 4 and 5 discuss the thesis
project, a website built with web components and Polymer.1 Derived from
the practical usage, chapter 6 formalizes implementation-independent con-
cepts around modular architectures with web components. Benefits, conse-
quences and limitations when employing web components are discussed in
chapter 7. Finally the thesis concludes in chapter 8 and provides a future
outlook.

1https://www.polymer-project.org

https://www.polymer-project.org

Chapter 2

Technical background

This chapter introduces the 4 specifications used for web components and
general modular programming concepts which can be applied when using
web components. The term web components itself covers multiple web spec-
ifications, standardized via the W3C Consortium [24]:

• Custom elements [11],
• HTML templates [23],
• Shadow DOM [12],
• HTML imports [13].

Once those specs are completely implemented by the browser vendors, web
components are working natively without any additional library.1 In the
meantime polyfills2 are available online3 to support cross-platform web com-
ponents as of today. The current implementation status can be checked on
Are We Componentized Yet?.4

Bringing component-based development to the World Wide Web is one
goal of web components. Encapsulating markup (HTML), style (CSS) and
behaviour (JavaScript) without affecting other parts of a web application
should be possible. There are mainly two preconditions required to reach
this goal. At first the web component specs have to be implemented by
the browser vendors so the cross-platform support increases. Second, web
developers have to learn about web components and create them. Building
such components involves a lot of decisions in terms of architecture and
functionality (What is possible with the component and what is not?), which
may have consequences on the further evolution of the component.

Modularization, which is discussed in section 2.1, may be a familiar con-
cept in classic software engineering, but it’s hard to execute in the front-end

1https://developer.mozilla.org/en-US/docs/Web/Web_Components
2Chunks of JavaScript, which enable certain functionality in older browsers.
3webcomponents.org
4http://jonrimmer.github.io/are-we-componentized-yet/

3

https://developer.mozilla.org/en-US/docs/Web/Web_Components
webcomponents.org
http://jonrimmer.github.io/are-we-componentized-yet/

2. Technical background 4

web environment. The browser landscape is diverse (don’t neglect all the
mobile browsers) which may lead to unexpected component behaviour in
different environments. In the upcoming section some concepts of modular
programming are examined and leveraged to the web platform.

2.1 Modular programming concepts
In this section more high level concepts of modular programming will be
discussed which help to create reusable web components. When thinking of
simple components these concepts may seem overmuch, but in a ecosystem
of multiple components those concepts unfold their advantages.

2.1.1 Composition over inheritance

The two most common techniques for reusing functionality in object-oriented
systems are class inheritance and object composition [2, p. 30]. When devel-
oping components it’s often the case that one component uses functionality
from multiple other components. For example, if the goal is to create a
<newsletter-registration> component which has an input and a button
to send the input value. One way to solve this would be multiple inher-
itance because the newsletter-registration element has to have the func-
tionality of a HTMLInputElement as well as an HTMLButtonElement. Since
JavaScript is a prototyped-based language, each object has a reference to
a single prototype and multiple inheritance is not supported. Of course the
new element could inherit from HTMLInputElement and add the markup for
a <button> element manually, but that would be confusing because the final
behaviour of the newsletter-registration is pretty different from the inherited
HTMLInputElement. However, it’s possible to concatenate objects (e.g. with
Object.assign() but this would lead to even more confusion if combined
objects have functions with the same name.

Much easier, the newsletter-registration element consists of a <input>
and a <button> element without overriding any of their behaviour or know-
ing of their internal implementation. The functionality of submitting the in-
put value on button click will be implemented in the newsletter-registration
component. Composition enhances the flexibility of components because it
eliminates the limitation of single inheritance.

In ES2015 it is possible to use the class keyword, but this is only syn-
tactical sugar over the existing prototype-based inheritance.5 Composition
can be seen as a main concept in component development, as trees evolve
by combining components.

5https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

2. Technical background 5

2.1.2 Interfaces

Functions inside a component can be publicly accessible or just private for
internal computation. Speaking in design patterns the public methods would
act like a Facade, a higher-level interface which makes the subsystem (the
component) easier to use [2, p. 175]. When designing a components public
API it has to be decided about the level of abstraction. Either the meth-
ods are high-level conceptualized or also low-level functions are available,
which allow more customization. Changing the public API later in produc-
tion leads to a major update and possibly causes unexpected behaviour if
the component is used in multiple places or projects.

Components can be styled by using CSS Custom Properties [21] which
would be the styling interface for a component. If a component declares a
CSS variable, a parent component can assign a values to it and style its
children that way. JavaScript properties of a component can also be public
and changed directly via data-binding. In a small component this may be
sufficient, in larger components setters and getters can be implemented.

2.1.3 Mediator pattern

The Mediator defines an object that encapsulates how a set of objects in-
teract and promotes loose coupling by keeping objects from refering to each
other explicitly and control their interaction independently [2, p. 255]. An
illustrative example for a mediator would be a form with multiple input
fields. To prevent that each input has to know about all other sibling inputs
(e.g. because of validation or dynamic form options) the form can mediate
between the inputs. As a mediator the form handles changes between the
inputs and promotes loose coupling. In situations where multiple compo-
nents are acting together, a wrapper component can manage the data flow
without touching the implementation its child components.

2.1.4 Observer pattern

Although a component should be designed as stateless as possible, in case
of forms or more complex web applications sometimes states are needed and
this is where the Observer pattern listed in the book Design Patterns [2, p.
273] can be used:

Define a one-to-many dependency between objects so that when
one object changes state, all its dependents are notified and up-
dated automatically.

In web applications this pattern can be realized by adding event listeners
or mutation observer6 to certain DOM elements. If a DOM element changes

6https://developer.mozilla.org/en/docs/Web/API/MutationObserver

https://developer.mozilla.org/en/docs/Web/API/MutationObserver

2. Technical background 6

or an event is fired, the listeners or observers are notified. Mapping this
concept to web components, a component can fire an event and subscribed
listeners will execute. In addition to manually fired events with the Custom
Elements specification (section 2.2.1) additional methods will be executed
when a component gets added, removed or changes. Libraries like Polymer or
Angular 2 provide one-way or two-way-databinding of component properties
also with an notify option, so parent components get notified on change.

These concepts should help to find the right level of granularity when de-
signing components, keep the components independent and embrace reusabil-
ity. The next section narrows down to the specifications for bringing web
components to the browser.

2.2 Web component technologies
In this section the four main building blocks of web components will be
introduced. At the time of writing several Google engineers, mainly Dimitri
Glazkov and Hayato Ito are working on the W3C specifications. In the up-
coming sections the term document is used for describing a single webpage
with a DOM.7

2.2.1 Custom elements

The motivation behind custom elements is the notion that developers should
be able to create their own functional DOM elements and existing HTML
elements (like <video>) can be understood easier. When bringing an ele-
ment to life, the most important part in the beginning is the naming. Also
referred to as custom element type the name has to match the NCName pro-
duction8 (generally short lowercase naming) and needs to contain a U+002D
HYPHEN-MINUS (a dash) character. Already occupied names by SVG and
MathML elements must not be used (see [11] under section Concepts).

To enrich an element with functionality a custom element prototype has
to be created. Since JavaScript is a prototype-based language, properties
and functions of the element are attached to the custom element prototype.
When creating a default custom element, one would inherit the prototype
of HTMLElement, but it’s also possible to inherit functionality from other
interfaces like HTMLButtonElement9. This would change the usage of the
element from <fancy-button> to <button is='fancybutton'>.

After choosing a name and a prototype, the element has to be registered
to the document. This has to happen because on document creation and
other events (when adding, removing or manipulating a custom element in

7https://dom.spec.whatwg.org/#introduction-to-the-dom
8https://www.w3.org/TR/xml-names/#NT-NCName
9https://developer.mozilla.org/en-US/docs/Web/API under section H

https://dom.spec.whatwg.org/#introduction-to-the-dom
https://www.w3.org/TR/xml-names/#NT-NCName
https://developer.mozilla.org/en-US/docs/Web/API

2. Technical background 7

the DOM) the document registry will be consulted to determine the elements
behaviour.

After element registration the following lifecycle callbacks are attached
to each custom element [8]:

• The createdCallback is invoked after a custom element instance is
created and its definition is registered.

• The attachedCallback fires when the custom element is inserted into
a document and this document has a browsing context.10

• The detachedCallback fires when a custom element is removed from
the document and this document has a browsing context.

• The attributeChangedCallback fires when a custom elements at-
tribute is added, changed or removed. Additionally, the old value will
be passed too.

If an element gets imported asynchronously, the lifecycle callbacks are of
great use to access DOM outside the element. If a custom element appears
in the DOM, but its createdCallback wasn’t invoked yet (because the
import is asynchronously), the CSS pseudo class :unresolved is attached
to the element, so a flash of unstyled content11 can be prevented.

2.2.2 HTML templates

For creating reusable elements there has to be a way to create reusable
markup and the <template> HTML element solves that matter. The tem-
plate element is used to declare fragments of HTML that can be cloned and
inserted in the document by script [23]. These fragments can be imagined
as reusable pieces of DOM which can be customized and filled with data on
rendering. A template has certain properties [9]:

• The content is effectively inert until activated. The markup is hidden
DOM and does not render.

• Any content within a template won’t have side effects. Scripts won’t
run, images won’t load, audio won’t play until the template is used.

• Content can’t be selected. Using document.getElementById() or
querySelector() won’t return child nodes of a template.

• There are certain places [23] where the <template> may be placed.
So this is good news for performance because content inside a <template>
element won’t require resources until it is used. In listing B.3.1 a template
for a table row that will be cloned multiple times and filled with data.

10https://html.spec.whatwg.org/multipage/browsers.html#browsing-context
11https://www.w3.org/TR/custom-elements/#bib-FOUC

https://html.spec.whatwg.org/multipage/browsers.html#browsing-context
https://www.w3.org/TR/custom-elements/#bib-FOUC

2. Technical background 8

1 <!DOCTYPE html>
2 <html lang="en-US">
3 <head>
4 <title>Human Being</title>
5 <link rel="import" href="/imports/heart.html">
6 </head>
7 <body>
8 <p>What is a body without a heart?</p>
9 </body>

10 </html>

Listing 2.1: Importing a HTML document.

2.2.3 HTML imports

With HTML imports it is possible to reuse existing HTML documents in
other HTML documents. The <link> element is used in the <head> section
of a HTML document to refer an import (listing 2.1).

If the document parser encounters an import, it is blocking scripts, so the
parser will fetch the external file first before continuing to parse the rest of
the document. This can be undesired because a slow network connection the
fetching blocks the page rendering noticeably. Adding an async attribute to
the <link> will unblock rendering, but if code relies on the imported element
it has to be made sure that the element is available (with lifecycle callbacks
or the :unresolved CSS class).

A file will be imported regardless of the media attribute of the <link>
matching the environment. When requesting a document to import it is
restricted to the Content Security Policy12 of the master document (the
import referrer) to prevent cross site scripting attacks and only importing
resources from trusted locations.

The browser requests each import as external resource like stylesheets,
images or scripts. This means additional files have to be transferred and the
site may slow down in case of excessive imports. If a site imports a web
component, all the dependencies of the web component will be requested
too, so the list of requests can grow really fast. When parsing the HTML
imports, the browser will internally create an import map, to know which
web component imports which resources. In case multiple web components
are importing the same resource, the browser will request the file only once
and use the import map for referring. A way of minimizing the payload of
imports is to bundle them on the server side and import just the bundled
document. Currently this is possible with the npm package vulcanize13, but
as noted in the description of vulcanize, it may be obsolete in the future

12https://www.w3.org/TR/CSP3/
13https://github.com/Polymer/vulcanize

https://www.w3.org/TR/CSP3/
https://github.com/Polymer/vulcanize

2. Technical background 9

because of the HTTP/2 Server Push feature where the server can estimate
which other resources have to be sent to the client for rendering a requested
resource. This may save additional request roundtrips. Chapter 7 deals with
more benefits and consequences.

For now simple elements can be created and imported. Scoping is still
a matter, since an HTML Import alone doesn’t avoid any scoping conflict.
The power of shadow DOM makes it possible to create encapsulated web
components.

2.2.4 Shadow DOM

Shadow DOM enhances custom elements with 2 main abilities:
• Hide implementation details: element-related markup will be added to

the Shadow DOM tree.
• Style encapsulation: restricts CSS styles to the context of the custom

element and won’t bleed out [12].
To make use of the shadow DOM a so called shadow tree has to be at-
tached to a document DOM element. In the document DOM any element
can host zero or one shadow tree. If a DOM element hosts a shadow tree
it’s called a shadow host. The root node of a shadow tree itself is named
shadow root. Figure 2.1, taken from the W3C specification, pictures the
encapsulation of the shadow tree and the reference from the shadow host.
The shadow root only serves as logical reference, it is not attached to the
shadow host as a child node. Of course it’s possible that components use
other components. A tree of trees like in figure 2.2 will be built for logical
reference. Afterwards a “flattened” version of this tree (without the shadow
root nodes as noted above) will be composed for rendering and is called a
document composed tree (figure 2.3). Therefore, most of the existing APIs
for accessing nodes are scoped and won’t affect other component trees. For
example, document.getElementById(elementId) never returns an element
in a shadow tree, even when the element has the given elementId because
only the documents DOM would be searched and not the shadow trees [23].

Events

If an event is dispatched in a shadow DOM, it either crosses the shadow
tree boundaries or is terminated at the shadow root. Special events (like
scroll or selectstart) won’t leak into ancestor trees to avoid unexpected
user agent behaviour.14 For example, the selectstart event fires when a
user starts a new (text) selection. If the user selects text inside an <input>
element, only text inside the <input> can be selected. It would be highly
disturbing if text content outside the <input> would be added to a user

14https://www.w3.org/TR/shadow-dom/#events-that-are-not-leaked-into-ancestor-trees

https://www.w3.org/TR/shadow-dom/#events-that-are-not-leaked-into-ancestor-trees

2. Technical background 10

shadow host shadow root

Document Tree

sh
ad

ow
 b

ou
nd

ar
y

Shadow DOM Subtrees

child child

... ...

...

...

...

Figure 2.1: A document tree with a node containing a shadow dom [12].

selection that was started inside an <input>. Nevertheless, for most of the
events an event path will be constructed which ranges across shadow trees.
This happens on purpose to trace events happening in child components.
This is good news for an author of the document DOM. If some node will
get a shadow DOM attached to it, event listeners still would work. As an
author of the shadow DOM (or when building a web component) this also
means, one has to be aware of other events happening in the component
because of nesting other components inside.

Styling

If a <style> tag is appended to a shadow DOM, all CSS rules inside this tag
are applied only to the elements of the shadow DOM and won’t bleed out
to the document. Even if the selector matches elements outside the shadow
DOM. Styles defined on document level won’t be applied to shadow DOM
elements either.

In listing B.2.1 all paragraphs inside the <my-tooltip> element will be
in capital letters. Other paragraphs outside the element are not affected.
Also just the paragraph in the document DOM will be colored and not the
ones inside <my-tooltip>. Sometimes it is desired to style the host element
itself, in this case <my-tooltip>. This can be done at the document level
or from inside the custom element with the :root selector. CSS Custom
Properties make it possible to use variables in CSS and style elements in a
more flexible way [21].

2. Technical background 11

Figure 2.2: In the figure, there are six component trees named A, B, C,
D, E and F. The shadow trees B, C and D are hosted by elements which
participate in the document tree A. The shadow trees E and F are hosted
by elements which participates in the shadow tree D [12].

2. Technical background 12

Figure 2.3: A composed version of the tree in figure 2.2.

Chapter 3

State of the Art

Previous sections have discussed the specifications of web components and
listings were using just vanilla JavaScript (no additional libraries1) and the
web components polyfill. Once the browser vendors have implemented the
W3C specifications, the polyfills will be obsolete. Additional libraries and
frameworks emerged during the evolution of web components to ease their
usage. All of the following libraries utilize the four W3C standards as men-
tioned in section 2.2, so it is basically possible to interchange components
with limited functionality, unless a component uses a framework-specific fea-
ture. Already existing open-source web components for all kinds of libraries
are listed at customelements.io.2

3.1 Vanilla JavaScript
Custom HTML elements can be registered in JavaScript and use lifecycle
callback methods (section 2.2.1) for handling the elements behavior when
it is created, added, removed or its content gets updated. The markup of
a component lives inside a HTML template tag (section 2.2.2), so on every
occurrence of the component this markup will be inserted into the document
DOM. Another important part of a web component is the shadow DOM
(section 2.2.4). Once created, it encapsulates CSS styles and enables the
developer to hide implementation details from the user. At last a component
can be imported to a website via HTML imports (section 2.2.3).

Although a component is encapsulated it needs an interface to be cus-
tomized in terms of behavior and styles. A component can expose properties
which can be altered when the component is in use. CSS custom proper-
ties [21] are covering flexible styling and a combination of common HTML
data attributes with JavaScript variables handle business logic. Focusing

1http://vanilla-js.com/
2https://customelements.io/

13

http://vanilla-js.com/
https://customelements.io/

3. State of the Art 14

1 // 1. Create a prototype inheriting from a basic HTMLElement
2 var MyTooltipProto = Object.create(HTMLElement.prototype);
3
4 // 2. Give my-tooltip a foo() method.
5 MyTooltipProto.foo = function() {
6 alert('foo() called');
7 };
8
9 // 3. Define a property "bar".

10 Object.defineProperty(MyTooltipProto, "bar", {
11 value: 5,
12 writable: true
13 });

Listing 3.1: Create prototype for a custom element.

on reusability, an engineer has to draw the line how customizable the com-
ponent should be. The following sections progressively enhance a tooltip
component with the 4 web component technologies.

3.1.1 Custom elements and lifecycle callbacks

At first a HTML custom element <my-tooltip> with a property and a
function is created. Complete listings for the following examples are available
in appendix B.1. The web components polyfill3 allows the usage of web
component as of today and needs to be included to provide cross-browser
support. Since the polyfill changes from time to time, it will be imported
via Bower4 (more on Bower in section 5.1).

The basis of a web component is a new prototype inheriting from the
HTMLElement prototype. Properties and functions will be added, so all ob-
jects with a reference to this prototype gain access to them (listing 3.1). Now
a new HTML element named <my-tooltip> is registered and associated
with the newly created prototype object containing all functionality (list-
ing 3.2). If the DOM parser now encounters a <my-tooltip> element, it will
check the document registry and use the assigned prototype. To demonstrate
the lifecycle callbacks (see 2.2.1) each time a <my-tooltip> element will be
created in the DOM, a random value will be assigned to the components bar
property (listing 3.3). Loading the JavaScript file via a script tag enables
<my-tooltip> HTML elements in a document. After the DOMContentLoaded
event, the property bar of each tooltip element will be logged to the console
(listing 3.4).

3http://webcomponents.org/polyfills/
4http://bower.io

http://webcomponents.org/polyfills/
http://bower.io

3. State of the Art 15

1 var MyTooltip = document.registerElement('my-tooltip', {prototype:
MyTooltipProto});

Listing 3.2: Register a new custom element.

1 MyTooltipProto.createdCallback = function() {
2 console.log("i was created");
3 // assign a random number as id
4 this.bar = window.crypto.getRandomValues(new Uint32Array(1))[0];
5 }

Listing 3.3: Assign a random number in the createdCallback.

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="UTF-8">
5 <title>01 - Native Web Components</title>
6 <script src="bower_components/webcomponentsjs/webcomponents-lite.js">

</script>
7 <script src="elements/my-tooltip.js"></script>
8 <script>
9 document.addEventListener('DOMContentLoaded', function() {

10
11 var tt = document.querySelectorAll('my-tooltip');
12 tt.forEach(function(tooltip) {
13 console.log(tooltip.bar);
14 });
15 });
16 </script>
17 </head>
18 <body>
19 Hello Tooltip!
20 <my-tooltip>Hey, i am number 1.</my-tooltip>
21 <my-tooltip>Hello there, i am number 2!</my-tooltip>
22
23 </body>
24 </html>

Listing 3.4: Using a custom element.

3.1.2 Shadow DOM

To avoid the pollution of the global scope and its conflicts (see [6, p. 112]),
the previous example will be enhanced with shadow DOM (complete list-
ings in the appendix B.2). The createdCallback function will be used for
adding the shadow DOM (listing 3.5) since it is executed automatically

3. State of the Art 16

1 MyTooltipProto.createdCallback = function() {
2 console.log("i was created");
3 // assign a random number as id
4 this.bar = window.crypto.getRandomValues(new Uint32Array(1))[0];
5 this.addShadowDOM();
6 }
7
8 MyTooltipProto.addShadowDOM = function() {
9 // 6. add shadow root element

10 var shadow = this.createShadowRoot();
11 // style element is scoped inside the shadow dom
12 shadow.innerHTML = "<style>p { text-transform: uppercase; }</style>";
13 shadow.innerHTML += "<p>I'm the Shadow DOM!</p>";
14 }

Listing 3.5: Adding shadow DOM to a custom element.

everytime a new <my-tooltip> element is added to the DOM. Since the
<style> node is added inside the shadow DOM, only the paragraphs in-
side the tooltip component will be uppercase. For further demonstration
of the encapsulation the main HTML document colors all paragraphs, but
the tooltip paragraphs won’t be affected since document styles won’t cross
shadow DOM boundaries (see [6, p. 112]).

3.1.3 HTML template element

To avoid HTML markup in JavaScript, the HTML5 specification includes
a <template> element. In listing B.3 a template for a table row is created,
filled with data, cloned and appended to a table. The insertion points, where
data will be inserted into the template, are coded imperatively in JavaScript.
A proposal for the <slot> HTML element is existing, so a template can
contain multiple slot elements. These slot elements can be named via data
attributes and filled with content in a more declarative way [22].

3.1.4 HTML imports

Utilizing HTML imports is shown in listing B.4. The tooltip component can
be imported as HTML file instead of a JavaScript file and also accepts the
tooltip text as a data attribute (listing 3.6).

On top of the imported my-tooltip.html the whole component be-
haviour is outsourced in a separate file. The CSS selector :host targets the
<my-tooltip> element itself and special states like :hover are added with
brackets. Below the serves as a insertion point
for the tooltip text. If text or other HTML content will be nested inside
a <my-tooltip> tag, the <content> tag of the tooltip template will be re-
placed with that content. At last the component will be registered with a pro-

3. State of the Art 17

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="UTF-8">
5 <title>04 - Complete tooltip</title>
6 <script src="bower_components/webcomponentsjs/webcomponents.js">

</script>
7 <link rel="import" href="elements/my-tooltip.html">
8 <script>
9 document.addEventListener('WebComponentsReady', function() {

10 console.log("Imports loaded & elements registered!");
11 });
12 </script>
13 </head>
14 <body>
15 <h1>Hello Tooltip!</h1>
16 <p>I am sample text and a <my-tooltip data-text="This is super secret

info">keyword</my-tooltip>has a tooltip.</p>
17 <p><my-tooltip data-text="more secret info">Me too!</my-tooltip>

Check it out via hovering the text.</p>
18
19
20 </body>
21 </html>

Listing 3.6: index.html with HTML Import.

totype object defined in my-tooltip.js (listing 3.7). To prevent pollution
of the global namespace, the myTooltip prototype for the <my-tooltip> el-
ement) handles all tooltip behaviour. The insertIntoDocument() method
handles the insertion and updating of a <my-tooltip> element. As a pa-
rameter it gets a reference to the new DOM element and id of the template
where the content should be inserted. Now the <my-tooltip> template can
be filled with data and cloned into the shadow DOM of the main document
(listing 3.8).

Obviously the data-binding and bootstraping has room for optimiza-
tion. Combining the Custom Elements v1 spec5, the Shadow DOM v1 spec6

and ES2015 syntax makes it already easier to create and register custom ele-
ments with shadow DOM. The next section deals with X-Tag which provides
syntactic sugar and makes it easier to create new web components.

5https://html.spec.whatwg.org/multipage/scripting.html#custom-elements
6http://w3c.github.io/webcomponents/spec/shadow/

https://html.spec.whatwg.org/multipage/scripting.html#custom-elements
http://w3c.github.io/webcomponents/spec/shadow/

3. State of the Art 18

1 <!-- all behaviour -->
2 <script src="my-tooltip.js"></script>
3
4 <template id="tt">
5 <style>
6 :host {
7 position: relative;
8 text-decoration: underline solid gray;
9 }

10 .tt {
11 display: none;
12 position: absolute;
13 top: -2.5em;
14 left: 0;
15 padding: 0.4em 0.5em;
16 border-radius: 3px;
17
18 font-family: sans-serif;
19 font-size: 12px;
20 white-space: nowrap;
21 background-color: #444;
22 color: #fff;
23 }
24 :host(:hover) {
25 cursor: pointer;
26 }
27 :host(:hover) .tt {
28 display: inline-block;
29 }
30 </style>
31
32 <content></content>
33 </template>
34
35 <script>
36 document.registerElement('my-tooltip', {prototype: myTooltip});
37 </script>

Listing 3.7: my-tooltip.html: includes the markup, styling and
registration for the component.

3.2 X-Tag

X-Tag7 is a lightweight library created by Daniel Buchner. It is also built on
top of the web component polyfills and enables a more readable way to reg-
ister elements and add events than vanilla JavaScript. A notable feature is
the event delegation for managing custom events inside a component. X-Tag
aims for a lightweight approach. Shadow DOM and HTML templates are

7x-tag.github.io/

x-tag.github.io/

3. State of the Art 19

1 var insertIntoDocument = (function() {
2 "use strict";
3 var importDoc;
4 // reference to the my-tooltip.html
5 importDoc = (document._currentScript || document.currentScript).

ownerDocument;
6 // current my-tooltip DOM element, id of template tag in

my-tooltip.html
7 return function (obj, idTemplate) {
8 var template = importDoc.getElementById(idTemplate),
9 clone = document.importNode(template.content, true);

10
11 // fill template
12 fetchInfo(obj, clone);
13 console.log(clone.querySelector(".tt"));
14 // attach full template to shadow root if text is set
15 if (obj.text) {
16 var sd = obj.shadowRoot;
17 // if the object has a shadowRoot, empty it
18 if(sd) {
19 while(sd.firstChild) {
20 sd.removeChild(sd.firstChild);
21 }
22
23 } else {
24 // if the object has no shadowRoot create one
25 sd = obj.createShadowRoot();
26 }
27 // append filled template to shadowRoot
28 sd.appendChild(clone);
29
30 }
31 };
32 }());

Listing 3.8: my-tooltip.js: Import the template tag from my-
tooltip.html, fill it with content and append it to the shadow DOM
in the main document.

optional compared to Polymer. At the time of writing, the open source ele-
ments on customelements.io8 are roughly a third of the available Polymer
components. Depending on the website requirements it has to be chosen
between an easier way for registering custom elements or a full-featured
library.

In the upcoming example a <movie-quoter> component will be created
that shows famous movie quotes and provides a changeable style as well
as a public method for showing a new quote. To work with X-Tag, the web

8https://customelements.io

https://customelements.io

3. State of the Art 20

bower i --save webcomponentsjs x-tag-core

Listing 3.9: Install X-Tag and the web components polyfills.

components polyfill and X-Tag itself can be installed via Bower (listing 3.9).
Starting out with the movie-quoter.html, the X-Tag library is loaded

and the markup will be styled depending on the data attribute theme. To en-
able HTML imports, the snippet for referencing the importer (index.html)
and importee (movie-quoter.html) is used as in the vanilla JavaScript ex-
amples.

An element can be registered with xtag.register((’element-name’,
component)). The element-name is simply the name of the HTML tag, and
the component object is similar to the prototype of the previous examples.
With the lifecycle and methods properties it’s possible to attach lifecycle
callbacks and other public methods for a component (listing 3.10).

What really differs from previous examples is the accessors property.
It is responsible for defining component properties as well as corresponding
setters and getters. X-Tag handles the syncing of DOM and properties in
JavaScript without having to write additional code. The theme property of
the movie-quoter component can be either minimal or fancy and its current
value is reflected in the HTML data-attribute theme. No matter if the data-
attribute is changed in the DOM or the JavaScript property, there are no
conflicts, as those two are always in sync. Taking a look at events, X-Tag
provides multiple ways to attach event handlers with the events property
on element registration or xtag.addEvents() method. Summing up X-Tag,
it enhances readability of code and may be suited for really small projects
since it’s not a fully featured library.

3.3 Bosonic

The Bosonic Framework9 was created by Raphaël Rougeron and also aims
for the lightweight approach but more in the direction of providing a rich ele-
ment library than a framework for building new web components. Typically,
the components are styled very minimalistic to provide a bare boilerplate
for customization. Rougeron states in the Bosonic FAQ [7]:

I personally believe Web Components are ideal for low-level,
“standard”, reusable UI elements like dialogs, tabs or dropdowns,
and that they should be combined with a more powerful library
or framework like React, Angular or Ember in order to develop
a complete application.

9http://bosonic.github.io/

http://bosonic.github.io/

3. State of the Art 21

1 xtag.register('movie-quoter', {
2 lifecycle: {
3 created: function() {
4 this.bquote = template.querySelector('blockquote');
5 this.quote = template.querySelector('p');
6 this.who = template.querySelector('.who');
7 this.movie = template.querySelector('.movie');
8 // Creates the shadow root
9 this.shadowRoot = this.createShadowRoot();

10 this.setQuote();
11 },
12 attributeChanged: function() {
13 console.log("attribute changed");
14 }
15 },
16 accessors: {
17 theme: {
18 attribute: {},
19 get: function(){
20 return this.getAttribute('theme') || "minimal"
21 },
22 set: function(value){
23 this.xtag.data.theme = value;
24 }
25 }
26 },
27 methods: {
28 setQuote: function() {
29 var quoteNum = getRand(quotes.length);
30 var q = quotes[quoteNum];
31
32 this.quote.textContent = q.quote;
33 this.who.textContent = q.who;
34 this.movie.textContent = q.movie;
35 // Removes shadow root content
36 this.shadowRoot.innerHTML = '';
37 // Adds a template clone into shadow root
38 var clone = importer.importNode(template, true);
39 this.shadowRoot.appendChild(clone);
40 }
41 },
42 events: {
43 'click': function (event) {
44 console.log('a movie-quoter was clicked');
45 }
46 }

Listing 3.10: movie-quoter.html: x-tag.register() part.

3. State of the Art 22

At the time of writing the Bosonic Framework is going through bigger
changes in terms of architecture and workflow, so further details are omit-
ted because it seems like the Bosonic Team needs some time to settle on the
contents for releases.

3.4 Angular 2
Also very focused on component driven development is Googles Angular
Framework.10 The application architecture changed fundamentally in Angu-
lar 2 to a more component-driven strategy. Angular comes as fully-featured
framework and the web component standards are used under the hood sim-
ilar to Polymer. The only specification which is directly used by developers
are custom elements. Per default shadow DOM isn’t activated, e Angular
adds HTML attributes to the elements to preserve scoping, but it is possible
to opt-in shadow DOM with encapsulation: ViewEncapsulation.Native.
Since e Angular is a JavaScript framework, HTML imports aren’t used, but
SystemJS handles module loading. HTML Templates are also not written
when coding e Angular Components, but compiled internally [20]. As Vic-
tor Savkins article tells, the Angular 2 team is embracing web standards
and it is possible to use non-e Angular web components inside of Angular 2
applications.

Since Angular 2 is a complete framework for web applications this section
just covers the creation of a new component and not all the concepts around
Angular 2. This example was started with the Angular 2 Quickstart source,
for prototyping a small component. The <my-app> component serves as an
entry point for the whole application (listing 3.11). Angular 2 code is written
in TypeScript11, a typed superset of JavaScript, so the source files have a .ts
ending and compile to plain JavaScript. Components can be imported on top
via a ES2015 import and added to the directives array, so the parser has
the source available when it encounters a <nice-greeter> element. Once the
parser encounters a <nice-greeter> element, the imported module takes
over (listing 3.12).

Template and styles can also be coded in external files for structuring
purposes. For the developer it’s not necessary to handle template importing
like in the previous examples with vanilla JavaScript or X-Tag. Properties
and behaviours are declared in the Javascript class. Mechanisms for one-way
as well as two-way data-binding for binding whole models (not just simple
values) are available in Angular 2 but won’t be discussed in this thesis.

As a bit more advanced example the <movie-quoter> component from
the X-Tag section was re-created in Angular and is available in appendix
B.6.

10https://angular.io/
11https://www.typescriptlang.org/

https://angular.io/
https://www.typescriptlang.org/

3. State of the Art 23

1 import {Component} from 'angular2/core';
2 import {NiceGreeterComponent} from './nice-greeter.component';
3 import {MovieQuoterComponent} from './movie-quoter.component';
4
5 @Component({
6 selector: 'my-app',
7 template: `<h1>My First Angular 2 App App</h1>
8 <nice-greeter>content</nice-greeter>
9 <h3>Another H3</h3>

10 <movie-quoter></movie-quoter>`,
11 directives: [NiceGreeterComponent, MovieQuoterComponent]
12 })
13 export class AppComponent { }

Listing 3.11: my-app.ts: Entry point of the whole application.

1 import {Component} from 'angular2/core';
2 import {ViewEncapsulation} from 'angular2/core';
3
4 @Component({
5 selector: 'nice-greeter',
6 template: `<h3>Hi {{name}}</h3>
7 <button (click)="logMyName()">Log my name</button>`,
8 styles: [`
9 h3 {

10 color: red;
11 }
12 `],
13 // activate native shadow dom.
14 // inspect the result, comment this line and inspect again
15 encapsulation: ViewEncapsulation.Native
16 })
17 export class NiceGreeterComponent {
18 name: String;
19 constructor() {
20 this.name = 'Max';
21 }
22 logMyName() {
23 console.log(this.name);
24 }
25 }

Listing 3.12: nice-greeter.component.ts: Shows the name property.

3.5 Polymer

The Polymer project12 is a library for web components developed by multi-
ple Google engineers. Notable is the big catalog of elements13, ranging from

12polymer-project.org
13elements.polymer-project.org

polymer-project.org
elements.polymer-project.org

3. State of the Art 24

versatile Core Elements (reduced styling, built for customization) up to the
Paper Elements which conform the Material Design Guidelines.14 The com-
ponents are maintained by the Polymer team and can be used as well as
extended. This library comes in handy when building cross platform apps
which are utilizing material design.

In addition to the four common lifecycle callback methods, Polymer in-
troduces another handler called ready, which is fired when Polymer has
finished creating and initializing the elementss local DOM (markup inside
the element) [14].

There are also concepts available for handling data-binding in a more
readable way. When composing components this reduces the complexity and
makes it easier to understand already written code.

Furthermore, Polymer uses shady DOM per default which is a shadow
DOM compatible API fast than the shadow DOM polyfill. If desired, it
is possible to switch back to the shadow DOM polyfill per default [17].
Currently the library is production ready where developers benefit from out
of the box complete components, but have to watch out for updates, if the
components change in future versions.

Being backed by Google, like Angular 2, the Polymer project plays a
serious role in the field of web components with many available components
and constant updates.

Starting with just JavaScript, going over X-Tag, Bosonic, Angular 2 and
finally ending up with Polymer. There is a whole range of libraries available,
from lightweight to fully-featured. Depending on the project requirements,
each choice comes with consequences which should fit the project. Short
examples for JavaScript-only, X-Tag and Angular 2 are in the appendix
to demonstrate the programming style of each library. The thesis project
implementation uses Polymer and is discussed in chapter 5.

14https://material.google.com/

https://material.google.com/

Chapter 4

Technical design

After exploring various web components implementations, the thesis project
examines the reusability of web components on a medium-sized web project.
Different requirements were set at the beginning and one of them was the
usage of forms. Forms provide an opportunity to inspect data-binding be-
tween the UI and the data-model because a lot of events are happening on
user input which the data-binding mechanism has to handle. It was also part
of the requirements to examine library dependencies when building a web-
site with web components. For example, if routing can be handled with web
components or an additional library is necessary. Since a medium-sized web
project would need more than one component, the composition of multiple
components was examined. Mixing the project requirements together, the
result is a website where media projects (movies, books, articles, and so on)
could be added, edited and managed.

The whole thesis project is divided into two subprojects:
• keep-api (backend): contains the database and API for media projects

(no web components, written in node.js).
• keep (frontend): is a website built with Polymer interacting with the

backend API.

4.1 Backend
As shown in figure 4.1 the backend consists of two main parts. A database
stores the media projects and an API serves as data interface.

MongoDB1 is used on the database layer. To validate the database doc-
uments against a schema, the node module mongoose2 lies on top of the
database layer. Swagger3 is used on the API layer as data interface. With

1https://mongodb.com
2http://mongoosejs.com
3http://swagger.io/

25

https://mongodb.com
http://mongoosejs.com
http://swagger.io/

4. Technical design 26

Database
mongoose
mongodb

Frontend
Polymer

REST-API
swagger
express
nodejs

keepkeep-api

Figure 4.1: Both projects acting together. Keep is the website built with
Polymer, communicating with the Swagger API.

swagger it is possible to create a REST API [1] which handles the commu-
nication between the database and incoming requests from the frontend. By
utilizing the REST API, it is possible to operate on data via HTTP requests.
For example, a GET /projects/5 request returns all necessary information
about the project with the id 5 as a JSON4 object. This way the backend is
completely independent from the frontend.

As the project focus should stay on the frontend, the data model was
kept fairly simple. Speaking in NoSQL terms, the main collection is called
projects, and every project can have multiple tags which are referenced in
an own collection (see figure 4.2).

4.2 Frontend
The website for managing the media projects was built around three main
use cases:

• List projects: Show all available projects in a list which is sortable
(figure 4.3).

• View single project: A form for viewing, editing and saving an existing
project (figure 4.4).

• Create new project: A form for creating a new project.
In the next step wireframes were created. Since reusable web components

are the projects focus, it was important to be aware of recurring elements
in the wireframes. The wireframe for the new project view is missing on

4http://www.json.org/

http://www.json.org/

4. Technical design 27

id
artists
title
synopsis
category
tags
releaseDate
softwareUsed
presentationRequirements
details
urls
stills
status

projects

id
name

tags

Figure 4.2: mongoDB database object model.

purpose because the single view can be reused just by disabling the input
form fields. The result of iterating over sketches was a list of components
which will be further discussed in chapter 5. This was a crucial outcome for
further decisions concerning the implementation. What already came up in
the technical design phase was the importance of communication between
components. Multiple form inputs are needed to represent a whole media
project, so dependencies between form sections had to be managed. There
were no preconditions about server requirements since they depend on the
implementation of the frontend.

In summary, the technical design phase highlighted the clear frontend
backend separation. The use cases and wireframes were essential to extract
(recurring) components.

4. Technical design 28

Title Category Year Artists

Halt And Catch Fire

Projects

Movie 2014 Christopher Cantwell, Christopher C. Rogers

The Harder They Come Book 2014 T.C. Boyle

The Man In The High Castle

...

Movie 2015 Frank Spotnitz

Figure 4.3: Wireframe of the project list view.

Halt and Catch Fire

Released:

04.02.2015

Artists:

Category:

Movie

Synopsis:

The series is set in the Silicon Prairie of Texas, starting in 1983, and depicts a fictionalized insider's view of the personal
computer revolution.

Stills:

Christopher Cantwell Christopher C. Rogers

Tags:

TV Series Science Fiction

Figure 4.4: Wireframe of a single project view that is also used for creating
a new project.

Chapter 5

Implementation

Starting off with the toolchain, the following chapter discusses technologies,
frontend and backend implementation of the media archive.

5.1 Toolchain
This topic deserves an own chapter because repetitive tasks can be auto-
mated like components can be reused. With task runners like Grunt1 or
Gulp2 it’s possible to define tasks which are executed on every build of the
web project. For example, one task may be minification of CSS styles. Tasks
can depend on other tasks. This way they can be chained and one command
executes several tasks in a row or concurrently. Grunt leans toward the con-
figuration over convention and performs file operations directly on the file
system. Gulp became popular shortly after Grunt was released and heads
more in the convention over configuration direction. A Gulp task typically
starts by reading a bunch of files from the file system into a vinyl stream,
a virtual file system. Then plugins (like CSS minification) alter the stream
and at last the files are written to the file system. This needs less I/O oper-
ations than Grunt, where files are written after each task and not streamed.
Choosing a task runner is also a matter of taste. Both have their advantages
and for this project Gulp was chosen. Gulp is available via npm3, a package
manager for JavaScript modules (shipped with every node.js installation)
which also plays a central role in the project structure.

Npm is used in both projects, backend and frontend. In the backend it
loads node modules necessary for running the API, in the frontend project
the node modules are needed just for the build process, not for running the
website. The package.json keeps basic project infos and lists npm packages
on which the project depends. Once a package.json is existing in a project

1https://gruntjs.com
2https://gulpjs.org
3https://npmjs.com

29

https://gruntjs.com
https://gulpjs.org
https://npmjs.com

5. Implementation 30

app
bower_components
bower.json
dist
gulpfile.js
node_modules
package.json
README.md

application source code
downloaded bower dependencies
lists bower dependencies
ready-to-deploy folder
gulp tasks
downloaded node modules
lists basic app info and node dependencies
how-to

 keep

Figure 5.1: Folder structure of Keep, the frontend.

directory, the command npm install scans the listed dependencies, looks
them up in the npm registry online (managed by npm, Inc.) and downloads
them to a node_modules folder. On each npm install the package.json
will be checked, new packages downloaded and existing packages updated
(depending on the package version listed in the package.json file). Once
Gulp is loaded as node module, a gulpfile.js in the project directory lists
available Gulp tasks which can be executed with gulp yourtaskname. In
case of the backend there are two main Gulp tasks.

• gulp: executes the default task which spawns a mongod daemon for
running the database and fires up the Swagger API4 for accessing the
database.

• gulp edit: spawns a mongod daemon and starts Swagger in the edit
mode, which enables customization of the API via a browser interface.

When deciding to work on the API, it would only take gulp edit to launch
everything and dive directly into actual work without having to prepare and
start everything up at first. Taking a look at the gulpfile in the frontend,
there are many more tasks lifting the heavy weight when developing or
deploying. Goal of the project structure is to develop everything in the app
folder, loading dependencies from bower_components and node_modules
and then build a ready-to-deploy version into the dist folder (see figure
5.1). The gulpfile is mostly based on the Polymer Starter Kit5 and defines
two main tasks.

• gulp: builds a ready-to-deploy version into the dist folder.
• gulp serve: starts a local webserver that serves the Polymer app in

the browser and refreshes the site in case source files change.
4http://swagger.io/
5https://github.com/PolymerElements/polymer-starter-kit

http://swagger.io/
https://github.com/PolymerElements/polymer-starter-kit

5. Implementation 31

All build steps are splitted in tasks which are invoked by those main
tasks:

• clean: empties the dist folder to start with a clean slate before build-
ing a production-ready version.

• copy: simply copies certain files into the dist folder.
• styles: compiles Sass6 files, concatenates, vendor-prefix and minifies

CSS.
• jshint: lints JavaScript files and reports errors.
• images: minifies png, jpeg, gif and svg images.
• html, polybuild, vulcanize: Vulcanize7 and Polybuild8 inline and

minify imported HTML docs to reduce the number of needed HTTP
requests from the client. With HTTP 1.1 this brings a performance im-
provement. With HTTP/2 this may be obsolete since multiplexing and
server push abilities of HTTP/2 may serve multiple small files faster
than one big file containing all the imports. This was not evaluated in
the thesis, but would be an interesting topic for future research.

• browserSync: serves the app locally. Starts a webserver and refreshes
the page, if source files change.

Furthermore, some service worker9 tasks are included for offline-capability of
the web app which were not explored in the thesis. Reviewing the toolchain
critically, one big dependency is npm. The project relies heavily on the npm
ecosystem, both backend and frontend. Everyone can publish node modules
on npm resulting in a wide range of packages. However, it’s hard to predict
the lifetime and maintainance of modules.Gulp is also incoporated tightly
in the workflow as dependency. Npm scripts are emerging in the community
to replace Grunt or Gulp as build tools. Starting from ground up, the next
section discusses the backend where the media project data is stored and
served via an API.

5.2 Keep-API: backend
Starting from bottom up, this section discusses the implementation of the
projects backend.

A mongod daemon process makes sure the database is up and running.
To gain access to the database, the whole backend is written in node.js.10

More precisely the lightweight framework express11 is running everything
6http://sass-lang.com
7https://www.npmjs.com/package/vulcanize
8https://github.com/PolymerLabs/polybuild
9https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API

10http://nodejs.org
11http://expressjs.org

http://sass-lang.com
https://www.npmjs.com/package/vulcanize
https://github.com/PolymerLabs/polybuild
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
http://nodejs.org
http://expressjs.org

5. Implementation 32

above the database layer.
For database transactions a node module called mongoose12 is responsi-

ble for validating the schema of database objects. With mongoose a schema
can be created like a new JavaScript object. In this case 2 schemes for
the 2 collections (projects and tags) were created. When fetching from the
database or inserting into the database, mongoose will validate the transac-
tional data against the schema and create JavaScript objects, which are easy
to handle in node.js. With mongoose it’s easier to keep the database “clean”
from unexpected data. With mongoose and express it would be already pos-
sible to write API methods, which can be used from other applications.
For really small applications this would be perfectly fine, but during the
research process the API framework swagger was explored. Swagger is open
source software and generates documentation plus a testing interface for a
REST API. There’s a vast range of integrations for multiple programming
languages.13 In this case the express adapter was used. This is possible be-
cause the whole API is declarated in YAML or JSON and just references
the actual implementation methods, which can be written in any language.
For example, the GET method for a single project is declarated in YAML
(listing 5.1) and implemented in the referenced controller.

Swagger will look for the method getProjectById in the referenced
projects controller. As visible in the responses, schemas are available for
referencing more complex response types. This avoids code repetition since
the schemas are defined just once. A nice-to-have would be referencing moon-
goose models to avoid duplicate declaration of the database object model.
The whole API was declarated in YAML and implemented in node.js. When
starting the API with gulp edit, Swagger provides a web interface for live-
editing the YAML file and generates documentation available for testing and
looking up operations (figure 5.2). The edit task is watching for file changes
on the YAML declaration as well as the referenced controllers and refreshs
the API immediately.

For internationalization the npm module i18n14 is used to translate the
API. By using the __("My message") method, the translated string will
be returned. Depending on the received HTTP Header Accept-Language the
node module i18n will fetch the translation from the corresponding JSON file
named after the language. Additionally, other methods are possible for de-
termining the language to be used.15 With the data stored in the mongoDB
and Swagger running as REST API the backend is complete and ready to
serve project data for the frontend.

12http://mongoosejs.com/
13http://swagger.io/open-source-integrations/
14http://npmjs.com/package/i18n
15https://www.npmjs.com/package/i18n

http://mongoosejs.com/
http://swagger.io/open-source-integrations/
http://npmjs.com/package/i18n
https://www.npmjs.com/package/i18n

5. Implementation 33

1 /projects/{projectId}:
2 x-swagger-router-controller: projects
3
4 get:
5 tags:
6 - "project"
7 summary: Get project by id
8 operationId: getProjectById
9 parameters:

10 - name: projectId
11 in: path
12 description: id of project
13 type: string
14 required: true
15 responses:
16 200:
17 description: Success
18 schema:
19 $ref: "#/definitions/ProjectSchema"
20 400:
21 description: Bad request, please refer to Swagger Docs
22 500:
23 description: Internal server error
24 501:
25 description: Not implemented
26 schema:
27 $ref: "#/definitions/ErrorResponse"

Listing 5.1: Excerpt of Swagger API definition. HTTP GET method
for fetching a single project (http://api.url/projects/13). The
operationId references the function inside the projects.js controller
listed as x-swagger-router-controller.

5.3 Keep: frontend
Since the backend hasn’t used web components at all, the main part of
the implementation was the frontend. It was implemented in HTML, CSS
and JavaScript using the Polymer16 library for web components. The com-
muncation with the Swagger API is handled via Polymers iron-ajax web
component.17

When looking at the wireframes, some recurring elements appear already
(see figure 5.3), but not only these are needed. Also a layout grid, buttons,
form elements and whole lots of other elements are needed for building
the website. So a nice-to-have would be a pool of already available web
components. After studying the available libraries for web components, the
library of choice was Polymer because of several reasons:

16https://www.polymer-project.org/1.0/
17https://elements.polymer-project.org/elements/iron-ajax

https://www.polymer-project.org/1.0/
https://elements.polymer-project.org/elements/iron-ajax

5. Implementation 34

Figure 5.2: Generated Swagger documentation from the API definition in
YAML. All operations are expandable and can be tested here.

• More than syntactic sugar: X-Tag eases the registering compared to
native JavaScript but Polymer goes one step further and provides a
flexible event system.

• Built on standards: Under the hood Polymer utilizes the web compo-
nents standards, which I personally think is very important because
standards are needed for a long term solution.

• Element catalog: By far the most advanced and rich catalog of available
elements18 compared to other smaller frameworks.

• Docs and community: Excellent documentation as well as a large com-
munity online.

• Production ready: At the time of writing this thesis Polymer has
reached version 1.1 which is production ready.

• Customizable toolchain: All steps in the toolchain are located in a
projects gulpfile. Read more about the toolchain in section 5.1.

For sure these reasons are debatable but Polymer fulfilled the requirements
at the time of implementation and suited well for exploring the field of
reusable web component concepts.

18https://elements.polymer-project.org/

https://elements.polymer-project.org/

5. Implementation 35

Halt and Catch Fire

Released:

04.02.2015

Artists:

Category:

Movie

Synopsis:

The series is set in the Silicon Prairie of Texas, starting in 1983, and depicts a fictionalized insider's view of the personal
computer revolution.

Stills:

Christopher Cantwell Christopher C. Rogers

Tags:

TV Series Science Fiction

Figure 5.3: Recurring elements in the wireframe are highlighted with el-
lipses.

As a first boilerplate the Polymer Starter Kit19 was used for an appli-
cation structure. Once set up at the beginning of the project, the workflow
for frontend development is the following:

• Start gulp: gulp serve takes the source files from the app folder and
starts up a local HTTP server for development.

• Develop components: by creating and compositing components in the
folder app/elements, the site structure will be built.

• Deploy: gulp build runs various tasks on the source files (more de-
tail in section 5.1) and creates a ready-to-deploy version in the dist
folder. The production version needs no server side frameworks. It’s
just HTML, CSS and JavaScript.

Figures 5.4 and 5.5 provide a structural overview, where to find which part
19https://github.com/PolymerElements/polymer-starter-kit

https://github.com/PolymerElements/polymer-starter-kit

5. Implementation 36

of the code. Taking the index.html as a starting point, several resources
are loaded:

• The web components polyfill,
• elements.html (via HTML imports), which contains the list of all

used components,
• shared-styles.html and app-theme.html for application-wide styles,
• web components used in the <body> and the
• app.js for bootstrap JavaScript.

Inspecting the elements.html more in detail, at first Polymer web com-
ponents are imported. Those components are imported via Bower to pro-
vide a convenient way of updating components. With a single line (e.g.
bower update iron-ajax@1.2.0) an element can be updated to a dis-
tinct or latest version. Application-specific components are not available
via Bower, but located in the app/elements folder and imported also in
the elements.html. Client-side routing happens in the routing.html with
page.js.20 The Polymer team is working on a more advanced routing compo-
nent called app-route21 which is not yet implemented in Keep. Application-
wide styles inside the shared-styles.html are not available in all compo-
nents per default to avoid cross-scope styling conflicts. A component has
to import the shared-styles.html file, then all the styles are available in-
side. The color scheme and other theme-dependent styles are located in the
app-theme.html.

index.html

app.js elements.html

routing.html app-theme.html Web Component

Web Component

shared-styles.html

Application
components

Bower
components

Web Component

Web Component

Figure 5.4: HTML Import structure of the frontend.

20https://visionmedia.github.io/page.js/
21https://elements.polymer-project.org/elements/app-route

https://visionmedia.github.io/page.js/
https://elements.polymer-project.org/elements/app-route

5. Implementation 37

app application source code
elements
images
scripts
styles
index.html

web components (self built, application specific)
application-wide images
application-wide scripts
application-wide styles (css variables)
starting point

bower_components
bower.json
dist
gulpfile.js
node_modules
package.json
README.md

bower dependencies
list of bower dependencies
ready-to-deploy folder
gulp tasks
node modules (just for development, not in production)
lists basic app info and node dependencies
how-to

 keep

Figure 5.5: Folder structure of the frontend.

5.3.1 Look and feel

Keep uses a wide range of components from the Polymer Element Catalog.22

There are bare-metal elements available with very little styling that allow
high customization (Polymer core elements). A whole category of elements is
dedicated to the Material Design Guidelines23 for a consistent look and feel
across various devices. Those elemens are importing Polymer core elements
and enhance them with styling and behaviour. Studying the Material Design
Guidelines, it’s possible for everyone to create and contribute to a range of
very well matching components. Following an already existing visual guide,
there was no need to reinvent the user experience for the thesis project. This
lead to a great benefit in implementation time and consistency because the
screendesigns went from scribbles (where to put which components) directly
into a functional prototype in the browser. The material design guidelines are
proposing clear solutions for many user interactions in the projects frontend.
Various tools around material design, like the material palette24, allowed
quick customization of Keep and made it possible to combine components in
visual harmony (figures 5.8 and 5.7). Many resources for visually designing
components are available online, but more on this in chapter 6.

22https://elements.polymer-project.org/
23https://material.google.com/
24materialpalette.com

https://elements.polymer-project.org/
https://material.google.com/
materialpalette.com

5. Implementation 38

Figure 5.6: Keep: Homepage, using three keep-tile components for navi-
gation.

Figure 5.7: Keep: Project overview using the paper-datatable component
for listing all projects.

5. Implementation 39

yo polymer:el <component-name>

Listing 5.2: Command for creating a new component. Uses the Yeoman
generator for Polymer projects.

1 :host {
2 --keep-tile-background: #e0e0e0;
3 --keep-tile-icon-color: #424242;
4
5 --keep-tile-label-color: #ffffff;
6 --keep-tile-label-background: #999999;
7
8 --keep-tile-action-btn-color: #ffffff;
9

10 --keep-tile-icon-width: 50%;
11 --keep-tile-icon-height: auto;
12
13 --keep-tile-margin: 2px;
14 }

Listing 5.3: CSS Custom Properties of keep-tile.

5.3.2 Components

Keep is essentially a single-page application where the content is swapped
with page.js. To separate concerns, for each page a component was created.
It also aids offline caching, if the page content is bundled in one component.
The components used throughout the application are mostly material de-
sign components by Google. For convenience, the Google Chrome extension
Polysearch25 was used for searching the Polymer element catalog.

With the help of a Yeoman generator26 the project was initially scaf-
folded and new components can be added with a single command, which
creates a new HTML file for the component and it can be chosen, if the
component should be imported in the projects elements.html at once.

As a best practice for styling, all CSS Custom Properties from a compo-
nent are located on top of the component, are prefixed with the component
name and have default values (listing 5.3). The following sections discuss
the most important created web components.

keep-tile

Purpose of the keep-tile component (figure 5.9) is a clear call-to-action
section that is more prominent than a button. When using a keep-tile

25https://chrome.google.com/webstore/detail/polysearch/gchibjlnlbpgcfjpbebnlecbbjndiidj
26http://yeoman.io

https://chrome.google.com/webstore/detail/polysearch/gchibjlnlbpgcfjpbebnlecbbjndiidj
http://yeoman.io

5. Implementation 40

1 <keep-tile label="Add a new Project" icon="add-circle" class="
tile--add-project" link="/projects/new"></keep-tile>

Listing 5.4: Usage of keep-tile.

1 .tile--add-project {
2 --keep-tile-icon-width: 40%;
3 --keep-tile-background: #DCEDC8;
4 --keep-tile-label-background: #8BC34A;
5 --keep-tile-icon-color: #689F38;
6 --keep-tile-label-color: var(--primary-text-color);
7 --keep-tile-action-btn-color: var(--primary-text-color);
8 }

Listing 5.5: Styling via CSS variables in the app-theme.html. These
values get passed into the keep-tile.html where default values for the
CSS variables will be overwritten.

(listing 5.4), all attributes are optional. If the label is missing, just the
icon will be shown. In case the icon attribute is missing too, a default
icon from the iron-icons27 will be shown. This component appears on the
homepage of the project (figure 5.6) and is reusable in other projects since no
application-dependent data is stored. The styling customization from outer
components that are using keep-tile, is shown in listing 5.5.

keep-label

For components outside Polymers element catalog the keep-label compo-
nent (figure 5.10) mimics the appearance of a material design form label.
The component has no special functionality, it just shows a nested text in
the color of the CSS Custom Property --secondary-text-color.

paper-datatable

As there was no implementation for material design data tables28 in the
Polymer element catalog, the project uses paper-datatable, a web com-
ponent created by David Mulder29 for showing a list of projects (figure
5.11). It is open source and available via Bower. The paper-datatable
was wrapped in another component: expandable-list where a iron-ajax
component fetches the project data from the backend and populates the
paper-datatable, which is highly customizable. Date formatting is done

27https://elements.polymer-project.org/elements/iron-icons?view=demo:demo/index.html
28https://material.google.com/components/data-tables.html#data-tables-structure
29https://github.com/David-Mulder/paper-datatable

https://elements.polymer-project.org/elements/iron-icons?view=demo:demo/index.html
https://material.google.com/components/data-tables.html#data-tables-structure
https://github.com/David-Mulder/paper-datatable

5. Implementation 41

1 <expandable-list data-url="http://localhost:10010/projects">
</expandable-list>

Listing 5.6: Usage of expandable-list which is a wrapper element
for paper-datatable.

1 <keep-chip is-deletable value="{{item.name}}"></keep-chip>

Listing 5.7: Usage of keep-chip with delete icon and a data-bound
value.

1 :host {
2 --keep-chip-background: #e0e0e0;
3 --keep-chip-color: #424242;
4 --keep-chip-delete-icon-color: #e0e0e0;
5 --keep-chip-delete-icon-background: #a6a6a6;
6
7 --keep-chip-hover-background: var(--keep-chip-color);
8 --keep-chip-hover-color: #fff;
9 --keep-chip-hover-delete-icon-color: var(--keep-chip-color);

10 --keep-chip-hover-delete-icon-background: #fff;
11 }

Listing 5.8: CSS Custom Properties for a keep-chip.

with moment.js30 and if the project release date is the current year, a
paper-badge will be added. The expandable-list simply uses the REST
API URL as attribute (listing 5.6). Since the expandable-list contains
application-specific data, its reusability scope is limited to this project.

keep-chip

This is an implementation of basic material design chips31 (figure 5.8), which
is used for artists and tags. If the is-deletable attribute is set, a delete
icon will be added (listing 5.7). A click on the icon fires a delete event with
the value of the chip. The chip itself doesn’t contain any application-specific
data. Managing a list of chips is done in the keep-tags component (section
5.3.2). Various CSS Custom Properties allow styling from the outside (listing
5.8).

30http://momentjs.com/
31http://www.google.com/design/spec/components/chips.html

http://momentjs.com/
http://www.google.com/design/spec/components/chips.html

5. Implementation 42

1 <keep-tags id="piTags" tags="{{project.tags}}"></keep-tags>

Listing 5.9: Usage of keep-tags with a data-bound array of tags.

1 <template is="dom-repeat" items={{project.stills}}>
2 <keep-thumb class="keep-thumb" src="{{item}}"></keep-thumb>
3 </template>

Listing 5.10: Usage of keep-thumb for displaying all project stills.

keep-tags

When designing a component, the decision has to be made whether it knows
about the application-specific API or not. An illustrative example is the
management of tags in the project detail (figure 5.12). The goal was to
create a reusable component for managing a list of tags and avoiding the
fact that every component has to know about the backend API. After several
iterations the communication diagram in figure 5.13 evolved. A chip just
stores the name and shows the delete icon which fires a delete event on
click. The keep-tags component stores a list of keep-chip elements and
has a form input for adding a new one. If a new tag gets added or deleted,
the corresponding event fires and the internal list of tags will be updated
(listing 5.9). Last but not least, the project-info observes the keep-tags
and is the only component which knows about the API for persisting the
tags and fetching an id for a newly added tag. For artists it isn’t possible to
use the exact same keep-tags component because the data structure of an
artist is different to a tag.

keep-thumb

This component shows an image thumbnail with additional controls for
fullscreen and delete events (figure 5.14). As src attribute an image path
is passed. Internally, iron-image component displays the image as thumb-
nail and an overlay with the buttons is added. The buttons just fire events
delete or fullscreen with the image path in the event detail, so listening
parent components can immediately work with the event data. keep-thumb
is used in the project detail view (listing 5.10).

project-info

Being the most comprehensive component of the frontend, the project-info
handles the project detail view (figure 5.8). It is designed to act as media-
tor for its containing components (mostly form elements) and communicates
with the backend API to persist the entered data (listing 5.11). This way the

5. Implementation 43

1 <project-info data-url="http://localhost:10010/projects" tag-url="
http://localhost:10010/tags" id="projectInfo"></project-info>

Listing 5.11: Usage of project-info providing backend URLs for
projects and tags.

child components can be kept application independent because they just fire
events and then the project-info component takes care of application spe-
cific actions. Once loaded, the property project reflects the whole project
as an object. If any form fields change, the hasChanged property will be
set to true and the Save button indicates a non-persistent state to the user.
Depending if the project is existing, a POST or PUT AJAX call will be exe-
cuted when clicking the Save button. When altering tags or stills, a PATCH
operation will ensure persistence in the database. All API operations are
handled via iron-ajax components.

As the project-info component is also used for creating new projects,
it listens to an event paramsset fired by page.js. If the event contains a
project id, an AJAX request will fetch the existing project from the API. If
not, an empty form will be presented and the project will be created at the
first click on the Save button.

Focusing on a single component, it is tempting to forget about the
reusability in other applications. It strongly depends on the component pur-
pose. Some of them will turn out as application-dependent, but the amount
of those should be kept on a minimal level. Further discussion on designing
an independent component with certain benefits, consequences and limita-
tions follows in chapters 6 and 7.

5. Implementation 44

Figure 5.8: Keep: Editable detail view of a project. The project-info com-
ponent serves as a mediator for the form elements to keep them application-
independent.

5. Implementation 45

Figure 5.9: Example of a keep-tile component.

Figure 5.10: Example of a keep-label plus a keep-chip.

Figure 5.11: paper-datatable component with additional paper-badge
elements.

Figure 5.12: keep-tags component: manages a list of multiple keep-chip.

5. Implementation 46

<keep-chip> fires

observes

delete
EVENT

<keep-tags> fires

+ tags: Array<Tag>
- inputVal: String

<project-info>

delete
EVENT

- apiUrl: String
+ project: Object

- patchProject: Project
- getNewTagId(tag): Tag

+ value: String
+ isDeletable: Boolean

fires

added
EVENT

observes

obse
rve

s

Figure 5.13: Event diagram for tag management inside the project detail.

Figure 5.14: keep-thumb component: gets an image as argument and dis-
plays it with additional fullscreen and delete controls.

Chapter 6

Architectural design
concepts

As mentioned in chapter 3, there are many libraries and frameworks around
web components. A framework lifetime is hard to predict and it is often
uncertain if the development still continues in a year or two. The funding
may stop or more performant competitors will overtake the chosen frame-
work. The web landscape is changing fast and this is why it is important
to extract and formalize concepts from practical implementations. Interop-
erability between components should be possible without depending on the
implementation behind the components interface. This chapter deals with
one research question of this thesis: What are the important aspects when
designing a web component regarding architecture and reusability?.

6.1 A modular mindset
One of the first things to consider when getting into modular architecture is
the mindset. Web architects can shift their mindset from creating a prede-
fined, fixed structure to creating smaller modules which are usable in differ-
ent contexts, changed, moved and assembled to establish a complete envi-
ronment. Creating flexible modules can be complex, but flexibility doesn’t
necessarily come with complexity. Small components can be used together in
order to represent more complex functionality, which aligns with the concept
of atomic design [10]. With less code and less functionality a component is
easier to maintain.

The purpose of a component should be clearly defined and limited. If the
component has too many purposes (“How about we use component A for
purpose X?”), it can get complex and bent out of its original shape. Consid-
ering a new component (which can be composed out of other components)
is one possibility of avoiding that dilemma or as Doug McIlroy said in 1978
[4, p. 1902–1903]:

47

6. Architectural design concepts 48

Make each program do one thing well. To do a new job, build
afresh rather than complicate old programs by adding new fea-
tures.

Furthermore, it is important to limit the reusability scope of the compo-
nent. This aspect is closely related to the purpose of the component. During
the implementation process of the thesis project it was helpful to split com-
ponents in two categories:

• application-independent components are general purpose elements used
across websites (e.g. buttons, inputs, icons) and

• application-dependent components handle application-specific data
structures and functionality.

Application-independent components have a larger reusability scope and can
be used across different web projects. For application-specific behaviour the
application-dependent components come into play, which can be composed
out of application-independent ones and simply add the needed functionality
to keep independent components independent. These are still valuable since
application-dependent components can be reused within the application. For
example, a component for showing user info can occur more than once across
the same application. Striving for independent components is favourable,
but sometimes application specific data structures occur and application-
dependent components are necessary.

6.2 Managing content in components
A main purpose of websites is the visualization of content. The content
should be presented in an appropriate, easily understandable way for the
reader. Web components can be used as medium to communicate content
to the recipient. Instead of directly presenting data in rendered HTML, the
raw data can be passed to a component and the component decides about
the presentation. This supports the separation of content and presentation
and helps in terms of accessibility.1 The <template> HTML element can be
used for creating templates inside a component where the passed data will
be inserted. For example, if a <v-card> component prints a business card,
somehow the data has to be passed to the <v-card>. A common technique
are HTML data attributes (listing 6.1). Now the attributes can be fetched
and shown inside the component with a combination of the <template>
element and JavaScript (listing 6.2). But since HTML tags are nestable, it’s
also possible to nest tags (listing 6.3).

Inside the <v-card> component (listing 6.2) a <content> tag would have
to exist as insertion point for nested tags. The <skype-call-button> and

1https://www.w3.org/TR/WCAG20-TECHS/G140.html

https://www.w3.org/TR/WCAG20-TECHS/G140.html

6. Architectural design concepts 49

1 <v-card firstname="Klaus" lastname="Fischer"></v-card>

Listing 6.1: Using HTML data-attributes to pass data to a component.

1 <template id="v-card-template">
2 Name: <slot name="firstname"></slot> <slot name="

lastname"></slot>

3 </template>

Listing 6.2: Template part of the v-card component. The slots define
the render spot of the passed data.

1 <v-card firstname="Klaus" lastname="Fischer">
2 <skype-call-button username="skypeuser"></skype-call-button>
3 </v-card>

Listing 6.3: Nested components. The v-card template has to specify
an insertion point to render nested content, otherwise it won’t be
rendered. In listing 6.2 the <skype-call-button> won’t be rendered
because the template is missing a <content> tag.

other DOM inside the <v-card> tag would be placed at the <content> in-
sertion point. Theoretically, a really large DOM tree could be placed inside
the <v-card>. Pratically, it can happen that the <v-card> isn’t able to
render a large DOM correctly because it is not designed for it. Too much
content could be cut off, if the <v-card> is size-limited with CSS. With doc-
umentation and a clearly defined purpose (see section 6.1) this problem can
be tackled. The <content> element is already deprecated2 and replaced by
the <slot> element. The <slot> element3 succeeds the <content> element
to allow multiple named insertion points instead of one insertion point with
<content>. With slots the user of a component decides which content is
passed into the component and the component itself decides where to place
the received content. In case the author Ben writes the page layout and
passes content into the slots, Lucy, who is developing the component, de-
cides where the slot content will be placed. Benefits and consequences about
that circumstance are discussed in section 7. For practical content inser-
tion patterns in JavaScript refer to chapter 5 or Addy Osmani’s - Learning
JavaScript Design Patterns (chapter: Modern Modular JavaScript Design
Patterns) [5].

2https://developer.mozilla.org/en-US/docs/Web/HTML/Element/content
3https://webkit.org/blog/4096/introducing-shadow-dom-api/

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/content
https://webkit.org/blog/4096/introducing-shadow-dom-api/

6. Architectural design concepts 50

6.3 Communication between components
A communication between components has several similarities to a conversa-
tion between people. To ensure a productive conversation, the participants
have to find a common technique of understanding each other (language,
gestures, drawing). Someone expresses a feeling or desire, which will (hope-
fully) be noticed and other members of the conversation react or respond to
it. The same cultural background of all members and correct understanding
are not guaranteed. Therefore, it is important to settle on a comfortable way
of communicating. The communication issues also map to web components.

The internal implementation of a web component can be written vanilla
JavaScript or use a library like Polymer or similar. Either way, the com-
ponents have to communicate with each other and express their state, so
multiple components can act together. Focusing on the reusability of web
components, one architecture goal is to strive for loose coupling (see [2, p.
36]) between components, so dependencies are minimized and a component
can be reused in another project. The three most obvious ways to commu-
nicate are:

• CSS classes which express styling-related information,
• HTML data attributes to indicate logical functionality or logical state

and
• JavaScript events for emitting changes and objects rather than simple

values.
Sticking to that categorization can avoid confusion when altering the ele-
ment, so the removal of a CSS classes concerns only the visual styling and
won’t break the components functionality. For example, a rendered TODO
list could communicate in multiple ways (listing 6.4). If a <todo> changes
state from undone to done or vice versa, the <todo> component sets its
data-attribute is-done and addtionally emits an event. The event can con-
tain information about the changed <todo> element. There are no naming
conventions for CSS classes or data attributes, namespacing or which addi-
tional data an event should emit. So the developer has the freedom of choice
how to name everything and what data will be emitted when a event fires.
However, it is possible to consider proposals, guides or best practices for
naming.4 Existing components can be analyzed and with an increased usage
of web components possibly more best practices will emerge.

Using the shadow DOM (see 2.2.4) enables encapsulation of scripts and
styles which helps avoiding scope conflicts. JavaScript variables are scoped
to the component and functions act as API of the component. More concepts
about styling are discussed in section 6.5.

4http://getbem.com, https://smacss.com/, https://www.polymer-project.org/1.0/docs/
devguide/events

http://getbem.com
https://smacss.com/
https://www.polymer-project.org/1.0/docs/devguide/events
https://www.polymer-project.org/1.0/docs/devguide/events

6. Architectural design concepts 51

1 <todo-list class="todolist--large" todo-counter>
2 <todo is-done>Read</todo>
3 <todo>Understand</todo>
4 <todo>Write</todo>
5 </todo-list>

Listing 6.4: Todo list with web components. Uses CSS classes for
expressing styling-related states and HTML data attributes for logical
functionality. The todo-counter marks the appearance of a counter for
open tasks and the is-done attribute denotes a task as completed.

6.3.1 API design

When building a component the API makes it possible for fellow components
to access data and observe changes. It should be easy for other components
(and developers) to understand the API and use the component without
extensive study of the documentation. Marijn Haverbeke [3, p. 200] recom-
mends 3 aspects when designing an API for JavaScript modules that can
also be mapped to web components:

• Predictability: if it is possible to predict how the interface works, look-
ing up the documentation isn’t necessary and it’s easier to build a
mental model of the module.

• Composability: functions should do a single, clear thing. Returning
strings, arrays and standard JavaScript data structures make it easier
for other modules to work with the return values.

• Layered Interfaces: depending on the usage of the module, it may be
necessary to expose a simple high level interface (e.g. todo.setDone
()) or a low level interface with additional customization options (e.g.
todo.setStatus(status)). Both can be done efficiently if the high
level functions are utilizing the low level functions.

Using an already built web component, this highlights the importance of
documentation. With a documented component API the developers who
are using the component have to spend less time studying the behaviour but
can refer to the documentation. Tools like JSDoc5 or the Polymer toolchain
are able to generate documentation from commented source code.6 Stay-
ing consistent with naming and providing a documented API improves the
reusability factor of a component and eases communication with other com-
ponents.

5http://usejsdoc.org/
6https://www.polymer-project.org/1.0/docs/tools/documentation

http://usejsdoc.org/
https://www.polymer-project.org/1.0/docs/tools/documentation

6. Architectural design concepts 52

6.4 Semantics and accessibility

With the existing set of standardized HTML elements7 it is possible to write
semantically meaningful code. Elements like <video>, <button>, <audio>
are very distinct and it is obvious which content they represent. Looking
at elements like <header>, <section> or <article> the name alone isn’t
always sufficient enough to tell the exact purpose of the element. This is
intentionally, since these elements aim are used for structuring a HTML
document and structures vary from site to site.

6.4.1 Element naming

With custom elements (see section 2.2.1) the semantic meaning is even
more endangered because the rules of custom element naming8 are loose.
<asdf-elem> is as valid as <data-list> without providing much semantic
meaning. Semantics can get even more fuzzy with inheritance, so develop-
ers are responsible for proper naming and documentation of the elements.
There are not just bad examples, custom elements can also improve the un-
derstanding of content like in listing 6.4. A common practice to avoid naming
conflicts are prefixes in the element name. In case of Polymer all elements
following the material design are prefixed with paper-. With scoped styles
all CSS classes inside a component only affect elements inside the component
and won’t bleed into other components. This results in less naming conflicts
and best practice CSS naming concepts like BEM9 or SMACSS10 may lose
their importance. What will be more important is the naming of CSS cus-
tom properties [21] (often times just called CSS variable. If a component uses
a CSS variable for the font color (e.g. --todo-color), parent components
can assign a new value to the variable and the child component uses this
value. A problem can occur, if a parent component assigns a value to a CSS
variable --background-color and this variable is used differently in 2 child
components. This can lead to unexpected results as unintentionally other
components are affected. Prefixing the CSS variable with the element name
is a possible solution (e.g. --todo-background-color).

6.4.2 Accessibility

In order to meet the WCAG 2.0 guidelines11 several enhancements can be
made at custom elements. As with common HTML elements it is possible
to add tabindex, aria attributes and the role attribute. A tabindex can

7https://developer.mozilla.org/en-US/docs/Web/HTML/Element
8https://www.w3.org/TR/custom-elements/#valid-custom-element-name
9http://getbem.com/

10https://smacss.com/
11https://www.w3.org/TR/WCAG20/

https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://www.w3.org/TR/custom-elements/#valid-custom-element-name
http://getbem.com/
https://smacss.com/
https://www.w3.org/TR/WCAG20/

6. Architectural design concepts 53

make a component focusable, the role and aria attributes enhance its se-
mantics. Adding an event listener for the keydown event enables keyboard
accessibility. For visual accessibility it helps to use relative size units (em or
rem) in CSS because everything will scale according to the font-size prop-
erty. High color contrast is also part of the accessibility guidelines. Various
tools like the Chrome Extension High Contrast12 allow testing for enough
contrast and expose weak spots in black and white mode. Also z-index con-
flicts may arise when nesting components. Encapsulated components don’t
know about z-indices of their child components, so it’s possible that a child
component with a low z-index value may be invisible due to the parent el-
ement with a higher z-index. Jason Strimpel proposes an application-wide
z-index manager [6, p. 33] as one solution.

6.5 Visual design
One amazing power of the web is the ability to visualize content with very
little code. This power comes with great responsibility because changing just
a few characters in the markup or styling may result in a completely different
rendering. From small to complex, there are many great resources13 about
building component-driven design systems. A main goal is the creation of
multiple small components which are working together in a design system
to create a uniform user experience. The result is a pattern library where
components can be explored and combinations can be tested.

Consistency across components is a big challenge, not just in terms of
how a component looks, but also how it feels and the whole user experience of
a component. Components have to be flexible in application and responsive
to their environment. Sooner or later, in the components design process
the styling and visual behaviour of a component has to be defined. The
visual design of a component may restrict the usage across different projects
because it won’t fit visually in another environment. There are several ways
of tackling the challenges of modular design.

First of all, at the beginning of the design process it is important for
the designers to establish a common language to collaborate in a common
domain [16]. During the concept phase of a component, it also makes sense
to limit the scope and functionality, like discussed in section 6.1, to mini-
mize the complexity of components. Afterwards, in the implementation and
iteration process tools like Pattern Lab14 reflect changes in a component to
the whole design system. For designers and developers it is easier to test and

12https://chrome.google.com/webstore/detail/high-contrast/
djcfdncoelnlbldjfhinnjlhdjlikmph?hl=en

13http://airbnb.design/building-a-visual-language/,
http://atomicdesign.bradfrost.com/,
http://styleguides.io/books.html

14http://patternlab.io/

https://chrome.google.com/webstore/detail/high-contrast/djcfdncoelnlbldjfhinnjlhdjlikmph?hl=en
https://chrome.google.com/webstore/detail/high-contrast/djcfdncoelnlbldjfhinnjlhdjlikmph?hl=en
http://airbnb.design/building-a-visual-language/
http://atomicdesign.bradfrost.com/
http://styleguides.io/books.html
http://patternlab.io/

6. Architectural design concepts 54

monitor the impact of a change.
For application-independent components the Polymer team has its own

strategy to develop their elements catalog.15 The Iron Elements, which are
functional core elements, provide very little styling and allow extensive cus-
tomization options. Paper Elements use these Iron Elements and style them
according to the Material Design Guidelines. The idea is to create bare-
metal functional components and separately themed components which are
making use of the unstyled ones. This concept is similar to the layered API
approach discussed in 6.3.1. With this strategy the components are more
sensitive to updates since an update of the core element can result in an
additional necessary update of the styled element.

In the implementation phase the styles of a component are scoped to
the component which means they are available just for that component and
nobody else in the design system. One way to apply the DRY 16 principle
is declaring global styles which can be imported and used by components.
Additional component-specific styles can be added inside the component
without affecting other components (figure 6.1). This comes with benefits
and consequences discussed in section 7.

Global Styles
Fonts, Colors, ...

Component

- uses global styles

- component specific styles

Component

- uses global styles

- component specific styles

importsimports

Figure 6.1: Application wide styles are declarated once, then components
import and use them. In addition component-specific styles can be added
inside the component.

15https://elements.polymer-project.org/
16Do not repeat yourself.

https://elements.polymer-project.org/

6. Architectural design concepts 55

6.6 Testing
Several challenges when writing or using web components are

• testing to ensure compatibility and stability by running tests,
• updating a component to a new version and
• deploying new versions of the component.

For a full-featured testing tool the Polymer Team has created the Web Com-
ponent Tester(WCT).17 It utilizes

• mocha18 as a test framework,
• chai19 for assertions,
• async20 for aiding with asynchronous testing,
• sinon21 for mocking a server to test XHR requests,
• test-fixture22 for testing scoped <template> elements and
• accessibility-developer-tools23 for automated accessibility tests.24

Tests are written in JavaScript and can be executed via the command line or
in the browser. To reset the DOM state between tests, the <test-fixture>
element can be used.25 For remote cross-browser testing WCT supports
SauceLabs26 integration. Also Travis CI 27, which is free for open source
projects, is an option for automated testing. Of course, all parts of the
WCT can be also used for testing non-Polymer web components. With the
approach of test-driven development it would be interesting to validate exist-
ing third-party components by writing tests before employing them. AVA28

runs multiple tests concurrently at once and would be interesting as future
testing framework.

Embracing a test-driven workflow is crucial for the evolution of a web
component. If the implementation of a component changes, failing tests re-
port upcoming issues. In case the changes are applied and the component
will be updated, the failing tests are a source for a migration guide, so users
of the component know in which cases the component will break and which
changes are necessary for using the new component version.

17https://www.polymer-project.org/1.0/docs/tools/tests
18http://mochajs.org/
19http://chaijs.com/
20https://github.com/caolan/async
21http://sinonjs.org/
22https://github.com/PolymerElements/test-fixture
23https://github.com/GoogleChrome/accessibility-developer-tools
24https://github.com/Polymer/web-component-tester
25https://github.com/Polymer/web-component-tester/blob/master/README.md#test-

fixture
26https://saucelabs.com/
27https://travis-ci.org/
28https://github.com/avajs/ava

https://www.polymer-project.org/1.0/docs/tools/tests
http://mochajs.org/
http://chaijs.com/
https://github.com/caolan/async
http://sinonjs.org/
https://github.com/PolymerElements/test-fixture
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/Polymer/web-component-tester
https://github.com/Polymer/web-component-tester/blob/master/README.md#test-fixture
https://github.com/Polymer/web-component-tester/blob/master/README.md#test-fixture
https://saucelabs.com/
https://travis-ci.org/
https://github.com/avajs/ava

6. Architectural design concepts 56

6.7 Updates
To create a versionable web component there is no way around a version con-
trol system. Looking at available web components online29 the most popular
VCS is Git.31 Maintaining the codebase as a Git repository (in short: repo)
eases the versioning and distribution process on many stages. When de-
veloping a web component, the git-flow32 branching model can be used in
combination with semver33 for labeling the releases.

6.8 Deployment
Once the web component exists in a Git repo the next topic is the distri-
bution, so other projects can use it. To encourage open-source development
the repo can be pushed to GitHub34 where people can view, clone or fork
the repo and raise issues for bugs. Publishing only to GitHub would mean
that every user has to update manually by checking if there’s a new ver-
sion available and then pull all changes. To avoid that, it makes sense to
publish the web component repo to a package manager like Bower35 or
npm.36 With the web component published, projects can install the web
component as dependency. When installing a package with bower install
<packagename> or npm install <packagename>, the user has a range of
possiblities to choose which version should be installed.37 Version numbers
in the package.json use prefixes to lock the installed version, allow patches
(non-breaking changes), minor updates, major updates or always the lastest
version.

Now, everytime the build process of a project triggers bower install
<packagename> or npm install <packagename> the package version spec-
ified in the bower.json or package.json will be installed.

Customelements.io is crawling Bower and npm package registries for
specific keywords in the package description to provide a listing of available
web components. The whole publishing ecosystem is illustrated in figure 6.2.

If the web component is closed source, it is possible to use a private
GitHub repository, a private npm package or npm enterprise38 to run npm
infrastructure behind a companys firewall. Installing from a locally cached
npm modules is also possible.

29https://customelements.io/,30

31https://git-scm.com/
32http://nvie.com/posts/a-successful-git-branching-model/
33http://semver.org/
34http://github.com
35http://bower.io
36http://npmjs.com
37https://docs.npmjs.com/getting-started/semantic-versioning
38https://docs.npmjs.com/enterprise/index

https://customelements.io/
https://git-scm.com/
http://nvie.com/posts/a-successful-git-branching-model/
http://semver.org/
http://github.com
http://bower.io
http://npmjs.com
https://docs.npmjs.com/getting-started/semantic-versioning
https://docs.npmjs.com/enterprise/index

6. Architectural design concepts 57

Git Repository
Semver - Semantic Versioning

GitHub

Project

Bower npm customelements.io

lists Bower and npm packages
 with keyword:

web-components
git clone

Project

publish

local

public

publish

bower install

Project

npm install

publish

Figure 6.2: The web component development starts in a local Git repository
which can be published to GitHub, Bower and npm. Projects can clone the
GitHub repo and update manually (not recommended) or install the web
component via a package manager and update automatically. Additionally,
packages with the web-component keyword are listed in customelements.io.

The upcoming chapter discusses the benefits and consequences when
employing web components in a project.

customelements.io

Chapter 7

Benefits, consequences and
limitations

Before discussing benefits, consequences and limitations of web components
it is important to distinguish between 2 fields of usage.

The first one is the usage of a small amount of web components on a site,
like a <google-map> or a <analog-clock> to add a piece of functionality.
To build a whole site by nesting and combining web components is the
second field of usage. This chapter focuses mostly on the latter, because
additional aspects are coming up when using an architecture of components
and it also discusses the second research question of this thesis: What are
the consequences and limitations when employing an architecture based on
web components?

7.1 Components instead of pages
One of the first things when diving into component-driven development is
the shift from designing fully-layouted pages to granular components (sec-
tion 6.1). This shift has to happen in the conceptual, visual design and
implementation phase. Putting the content in first place and developing
the necessary components to communicate the content takes time. Thinking
about the flexibility and reusage of components needs additional effort in
the beginning and should pay off in the implementation phase and flexibil-
ity of the system. People working on a component-driven project have to be
familiar with the concepts, to create a component or pattern library where
web components can be derived.

Once the components are built, it is possible craft a new page just by
assembling existing components and filling in the content without developing
a new page from ground up. So the inital time to develop the design system
can be seen as a downside, which pays off later in production for more agility
and faster changes.

58

7. Benefits, consequences and limitations 59

The flexibility of nesting components comes with the caveat that nested
content may be improperly displayed if it doesn’t fit the parents container.
Here the purpose of a component can help as described in section 6.1.

By organizing files component-based, all files concerning a component
are in one place. All scripts, styles and markup for a component are bun-
dled in one folder. Updating a component requires less cognitive load than
in projects with global scripts and styles since the mind can focus on the
component folder and scoping problems are reduced.

7.2 Architectural decisions
Utilizing components comes with an own application architecture. On the
one hand there’s a pool of components which will be developed and on the
other hand the sites are just assembled with those components and filled
with content. This implies reusable components, flexible enough to be used
with different content in different places. Flexibility comes with a price and
a component can get complex just because it is used in too many variations.
It helps to limit the components purpose to keep the complexity low (see
section 6.1).

More components also mean more dependencies. A <contact-form>
component most likely depends on different input and button components.
To strive for loose coupling, the <contact-form> component imports its de-
pendencies via HTML imports (see 2.2.3), so on top of each component all
dependencies are clearly visible. The browser will request all imports from
the server which will result in additional loading time. Browsers are smart
and build a dependency graph before requesting the dependencies, so every
component will be requested once, no matter how often it occurs. Server-side
merging of imports before delivery is also a strategy that may be obsolete
in the future when using HTTP/2 (end of section 2.2.3). In conclusion, the
amount of dependencies are a disadvantage, but granular architecture eases
the replacement of single components.

Standard HTML elements are a great way to markup content in a mean-
ingful way and can be sufficient already. Web components are extending the
set of available HTML elements to provide new ways for exploring content.
They should make it easier to author HTML pages by hiding implemen-
tation detail inside the component. A component can be used for complex
matters (like a <google-map>) or just as a wrapper to represent content
more verbose (like a <blog-post>). Either way a web component provides
encapsulation via shadow DOM. That avoids many cross-scope conflicts.
CSS styles are only applying to the component and won’t bleed out, the
same goes for scripts.

The more tricky question is how to cross the encapsulation border from
the outside and pass content, scripts and styles into a component. Currently,

7. Benefits, consequences and limitations 60

a component can be styled from the outside by exposing CSS custom prop-
erties. The set of exposed CSS custom properties controls the customization
degree of the component. It is only as customizable as the component author
allows.

If a component stays verbose, it is easier to detect the state and changes
for outside components. The component attributes can be reflected to the
data attributes of the DOM element. Custom events with useful detail data
can be fired in addition to the lifecycle callbacks (see 2.2.1), so outer com-
ponents can use the custom events as hooks for taking further actions. In
the standardization process are techniques how to pass content into a com-
ponent. This is clearly a limitation for now. A simple component can define
one spot (with the deprecated <content> element) where to insert nested
content. No matter which DOM will be nested, it will be inserted at that
spot. This allows only very limited control and a more sophisticated concept
with named slots is in the standardization process (see 6.2).

Using the <template> element inside a component provides a way to cre-
ate reusable markup. There are no templating languages or DOM-building
via JavaScript necessary. A <template> is a chunk of DOM which can be
filled with content and then cloned into the document DOM.

7.3 Choosing a framework
At the time of writing the native browser support of the four web component
technologies increases steadily (see section 2). Luckily, polyfills are existing
to use web components in current browsers as of today.

Going for native JavaScript web components can be tedious, functional-
ity like data-binding, event-handling and dealing with scope needs additional
development time. Various libraries or frameworks (see section 3) implement
those features and offer ready-to-use components that can be customized.
This provides a benefit in development speed, but comes with the downside
of being bound to a library or framework. A big bonus of web components
is the compatibility, so a vanilla JavaScript component can be used in any
framework. Integrating a Polymer component which uses library-specific
functionality can also be integrated in other applications, but additional
payload for Polymer itself adds up. Writing native JavaScript web compo-
nents with ES2015 syntax is in advance and provides easier understanding
of components.

7.4 High quality components
No matter if the choice are vanilla JavaScript components or a library, it
is always necessary to use the right component for the right job. When
implementing a new functionality, one has to choose between:

7. Benefits, consequences and limitations 61

• including a existing component (search online),
• combinding already included components or
• building a new component.

Including a new existing component requires the search for it. The website
customelements.io lists vanilla JavaScript web components as well as com-
ponents from other element libraries. With the freedom of choice sometimes
it is hard to predict which component fits the job. As the search results link
to GitHub the only way to judge a component are the stars, forks, issues
and commit activity which is not really a reliable source. Considering big
players (currently Google with Polymer and Angular 2) is also an option.
More budget and a bigger team can result in more effort per component and
longer support.

“Use the platform” is a credo populated by the Polymer team when com-
bining components or building new components.1 It encourages the usage of
the standardized JavaScript API implemented by browser vendors instead
of building own workarounds and hacks. Relying on standards should ensure
a longer lifetime of components.

Most importantly, testing and updating components with a reasonable
workflow is necessary for a stable and high-quality component.

7.5 Updating components
Updating a single component in a ecosystem of components can have major
consequences. An update may fix the component in one place, but break
the system in another place. In a world of responsive design where com-
ponents should be as flexible as possible, the context of a component can
vary broadly. Therefore, extensive testing is unavoidable. This is also why
each component should have a public interface seperated from the internal
implementation to allow easier testing (see section 6.3.1).

From the consumer side, when using 3rd party components from Bower
or npm, the projects’ build process may update components with bower
install or npm install to the latest version which won’t fit visually any-
more or break because of a changed interface. Also major releases of compo-
nents or component libraries (like Polymer) may result in additional refac-
toring to ensure a working system.

Another challenge is the consistency of the pattern library. Once a pat-
tern library is built (for example with a first major release), updates will
follow and shouldn’t interfer with the consistency.

In conclusion, the benefits start with a modular mindset and the reduced
cognitive load when focusing on a single component at a time. Reusing
components avoids repetition and saves time. Encapsulation minimizes scope

1https://www.polymer-project.org/1.0/docs/browsers

customelements.io
https://www.polymer-project.org/1.0/docs/browsers

7. Benefits, consequences and limitations 62

conflicts in web applications. Building components in vanilla JavaScript,
especially with the ES2015 syntax, will change with the advance of the W3C
specs and eases the development. Choosing a framework instead of vanilla
components comes with the downside of introducing a large dependency, but
enables component catalogs, syntactic sugar and compatibility. Building a
system of multiple small components also requires testing and updating of
every component to keep the application secure and up-to-date. Instead of
testing a monolithic application, it is possible to test its components first.

The last chapter of this thesis focuses on the experiences during the
thesis project and provides an outlook to empower the usage and inspire the
community around web components.

Chapter 8

Conclusion

The web changes fast and it is risky to employ a framework that may be
out-of-date two years later. This is why long-lasting standards exist and
web components are built on standards. At the time of writing, the stan-
dardization process is in progress and it is very likely that the implementa-
tion will change until the browser vendors implement the final standardized
solution. Hence the chapters Architectural Design Concepts and Benefits,
consequences and limitations are extracting formal, long-term concepts in-
dependent from the implementation. Moving the mindset from pages to com-
ponents, intentionally limiting a component and building a communicative
as well as extendable component leads to more reusable web components.

Thinking about those concepts and applying them to web components
improves their quality, no matter if vanilla JavaScript or a framework is used.
To discuss the third research question (How can a component be validated for
reusability?) Andrew Rota proposes a best practice for component design
on the React.js Conf 2015 [19]:

• small,
• extremely capsulated,
• as stateless as possible,
• performant.

In combination with testing these 4 keypoints lead to versatile components
with a high degree of reusability.

8.1 Outlook
There is still much room for improvement when building and using web com-
ponents. The Custom Elements v1 spec1, as explained by Eric Bidelman2,
allows a far more readable code with ES2015 syntax. Once the browser

1https://www.w3.org/TR/custom-elements/
2https://developers.google.com/web/fundamentals/primers/customelements/

63

https://www.w3.org/TR/custom-elements/
https://developers.google.com/web/fundamentals/primers/customelements/

8. Conclusion 64

takes care of registering custom elements another obstacle is removed from
the development process. Also Shadow DOM v1 spec introduces slots to pass
content into a component.3 If a web component is only needed on certain
screensizes, it would be a performance gain to register the web component
conditionally like with a CSS media query. Easing the process of building
framework-independent components would be a main future goal for further
development. Also security holes would be worth investigating. For exam-
ple, if sensitive login data is passed into the Shadow DOM. Jeremy Keith
expresses his concerns about web components in his blog post The extensible
web [15]:

First of all, ask the question “who benefits from this technol-
ogy?” In the case of service workers4, it’s the end users. They
get faster websites that handle network failure better. In the case
of web components, there are no direct end-user benefits. Web
components exist to make developers lives easier. That’s abso-
lutely fine, but any developer convenience gained by the use of
web components can’t come at the expense of the user—that
price is too high.

Keith also highlights the fail-well approach: if a web component does not
render as expected, content should still be visible (in a less rich user expe-
rience) and backwards compatibility is necessary.

As closing words I would like to encourage people around the web com-
munity to really consider componentized systems and use web components
as of today. It is a huge gain in productivity and consistency if existing
code can be reused and browser support is available. Embrace best prac-
tices around the web community, stay informed about new developments in
the field of web components and now go componentize your application!

3https://developers.google.com/web/fundamentals/primers/shadowdom/?hl=en
4Web technology for adding offline support to a web application

https://developers.google.com/web/fundamentals/primers/shadowdom/?hl=en

Appendix A

CD Contents

Format: CD-ROM, Single Layer

A.1 Thesis
Pfad: /

ReusabilityOfWebComponents.pdf Master thesis

Pfad: /latex
. LaTeX source

Pfad: /latex/images
. all images used in the thesis

A.2 Resources
Pfad: /resources

adactio.pdf [15]
addy-road.pdf [18]
ebidel-ce-v0.pdf [8]
ebidel-ce-v1.pdf W3C: Custom Elements spec v1
ebidel-template.pdf . . [9]
frost-atomicdesign-1.pdf [10]
frost-atomicdesign-2.pdf [10]
frost-atomicdesign-3.pdf [10]
frost-atomicdesign-4.pdf [10]
frost-atomicdesign-5.pdf [10]

65

/
ReusabilityOfWebComponents.pdf
/latex
.
/latex/images
.
/resources
adactio.pdf
addy-road.pdf
ebidel-ce-v0.pdf
ebidel-ce-v1.pdf
ebidel-template.pdf
frost-atomicdesign-1.pdf
frost-atomicdesign-2.pdf
frost-atomicdesign-3.pdf
frost-atomicdesign-4.pdf
frost-atomicdesign-5.pdf

A. CD Contents 66

krug-communcation.pdf Michael Krug and Martin Gaedke:
AttributeLinking

la-designlanguage.pdf . [16]
polymer-behaviours.pdf Polymer: Shared Behaviours
polymer-lifecyclecallbacks.pdf Polymer: Lifecycle Callbacks
polymer-shadydom.pdf Polymer: Shady DOM
react-wc.pdf React & Web Components
savkin-angular2-template-syntax.pdf [20]
w3c-css-variables.pdf . [21]
w3c-custom-elements.pdf [11]
w3c-html-imports.pdf . [13]
w3c-htmltemplates.pdf W3C: HTML Templates spec
w3c-shadow-dom-v0.pdf [12]
w3c-shadow-dom-v1.pdf W3C: Shadow DOM spec v1
w3c-slot-proposal.pdf . [22]
w3c-templatelement.pdf [23]
w3c-webcomponents.pdf W3C: Web Components Overview

A.3 Listings
Pfad: /latex/listings

01-nativewebcomponents/ Listing 1
02-shadowdom/ Listing 2
03-templateelement/ . . Listing 3
04-completetooltip/ . . Listing 4
05-xtag/ Listing 5
06-angular2/ Listing 6

A.4 Thesis Project
Pfad: /thesisproject

keep/ Frontend
keep-api/ Backend

krug-communcation.pdf
la-designlanguage.pdf
polymer-behaviours.pdf
polymer-lifecyclecallbacks.pdf
polymer-shadydom.pdf
react-wc.pdf
savkin-angular2-template-syntax.pdf
w3c-css-variables.pdf
w3c-custom-elements.pdf
w3c-html-imports.pdf
w3c-htmltemplates.pdf
w3c-shadow-dom-v0.pdf
w3c-shadow-dom-v1.pdf
w3c-slot-proposal.pdf
w3c-templatelement.pdf
w3c-webcomponents.pdf
/latex/listings
01-nativewebcomponents/
02-shadowdom/
03-templateelement/
04-completetooltip/
05-xtag/
06-angular2/
/thesisproject
keep/
keep-api/

Appendix B

Listings

B.1 Web components with plain JavaScript

B.1.1 my-tooltip.js

1 // 1. Create a prototype inheriting from a basic HTMLElement
2 var MyTooltipProto = Object.create(HTMLElement.prototype);
3
4 // 2. Give my-tooltip a foo() method.
5 MyTooltipProto.foo = function() {
6 alert('foo() called');
7 };
8
9 // 3. Define a property "bar".

10 Object.defineProperty(MyTooltipProto, "bar", {
11 value: 5,
12 writable: true
13 });
14
15 // 4. lifecycle method executed everything when
16 // a <my-tooltip> element will be added in the DOM
17 MyTooltipProto.createdCallback = function() {
18 console.log("i was created");
19 // assign a random number as id
20 this.bar = window.crypto.getRandomValues(new Uint32Array(1))[0];
21 }
22
23 // 5. Register x-foo's definition.
24 var MyTooltip = document.registerElement('my-tooltip', {prototype:

MyTooltipProto});

B.1.2 index.html

1 <!DOCTYPE html>
2 <html lang="en">

67

B. Listings 68

3 <head>
4 <meta charset="UTF-8">
5 <title>01 - Native Web Components</title>
6 <script src="bower_components/webcomponentsjs/webcomponents-lite.js">

</script>
7 <script src="elements/my-tooltip.js"></script>
8 <script>
9 document.addEventListener('DOMContentLoaded', function() {

10
11 var tt = document.querySelectorAll('my-tooltip');
12 tt.forEach(function(tooltip) {
13 console.log(tooltip.bar);
14 });
15 });
16 </script>
17 </head>
18 <body>
19 Hello Tooltip!
20 <my-tooltip>Hey, i am number 1.</my-tooltip>
21 <my-tooltip>Hello there, i am number 2!</my-tooltip>
22
23 </body>
24 </html>

B.2 Shadow DOM

B.2.1 my-tooltip.js

1 // 1. Create a prototype inheriting from a basic HTMLElement
2 var MyTooltipProto = Object.create(HTMLElement.prototype);
3
4 // 2. Give my-tooltip a foo() method.
5 MyTooltipProto.foo = function() {
6 alert('foo() called');
7 };
8
9 // 3. Define a property "bar".

10 Object.defineProperty(MyTooltipProto, "bar", {
11 value: 5,
12 writable: true
13 });
14
15 // 4. lifecycle method executed everything when
16 // a <my-tooltip> element will be added in the DOM
17 MyTooltipProto.createdCallback = function() {
18 console.log("i was created");
19 // assign a random number as id
20 this.bar = window.crypto.getRandomValues(new Uint32Array(1))[0];
21 this.addShadowDOM();
22 }
23

B. Listings 69

24 MyTooltipProto.addShadowDOM = function() {
25 // 6. add shadow root element
26 var shadow = this.createShadowRoot();
27 // style element is scoped inside the shadow dom
28 shadow.innerHTML = "<style>p { text-transform: uppercase; }</style>";
29 shadow.innerHTML += "<p>I'm the Shadow DOM!</p>";
30 }
31
32 // 5. Register my-tooltip's definition.
33 var MyTooltip = document.registerElement('my-tooltip', {prototype:

MyTooltipProto});

B.2.2 index.html

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="UTF-8">
5 <title>02 - Shadow DOM</title>
6 <script src="bower_components/webcomponentsjs/webcomponents-lite.js">

</script>
7 <script src="elements/my-tooltip.js"></script>
8 <script>
9 document.addEventListener('DOMContentLoaded', function() {

10
11 var tt = document.querySelectorAll('my-tooltip');
12 var ttar = Array.prototype.slice.call(tt);
13 ttar.forEach(function(tooltip) {
14 console.log(tooltip.bar);
15 });
16 });
17 </script>
18 <style type="text/css">
19 /* won't affect p elements inside shadow dom */
20 p {
21 color: goldenrod;
22 }
23 </style>
24 </head>
25 <body>
26 <p>Hello Tooltip!</p>
27 <my-tooltip>Hey, i am number 1.</my-tooltip>
28 <my-tooltip>Hello there, i am number 2!</my-tooltip>
29 <p>Another paragraph</p>
30
31 </body>
32 </html>

B. Listings 70

B.3 HTML template element

B.3.1 index.html

1 <!-- Based on the example under: https://www.w3.org/TR/html5/
scripting-1.html#the-template-element -->

2 <!DOCTYPE html>
3 <html>
4 <title>03 - Template element</title>
5 <script>
6 // Data is hard-coded here, but could come from the server
7 var data = [
8 { name: 'Pillar', color: 'Ticked Tabby', sex: 'Female (neutered)',

legs: 3 },
9 { name: 'Hedral', color: 'Tuxedo', sex: 'Male (neutered)', legs: 4 },

10];
11 </script>
12 <body>
13 <table>
14 <thead>
15 <tr>
16 <th>Name</th>
17 <th>Colour</th>
18 <th>Sex</th>
19 <th>Legs</th>
20 </tr>
21 </thead>
22 <tbody>
23 <template id="row">
24 <tr><td><td><td><td>
25 </template>
26 </tbody>
27 </table>
28 <script>
29 var template = document.querySelector('#row');
30 for (var i = 0; i < data.length; i += 1) {
31 var cat = data[i];
32 var clone = template.content.cloneNode(true);
33 var cells = clone.querySelectorAll('td');
34 cells[0].textContent = cat.name;
35 cells[1].textContent = cat.color;
36 cells[2].textContent = cat.sex;
37 cells[3].textContent = cat.legs;
38 template.parentNode.appendChild(clone);
39 }
40 </script>
41 </body>
42 </html>

B. Listings 71

B.4 Complete tooltip example

B.4.1 my-tooltip.html

1 <!-- all behaviour -->
2 <script src="my-tooltip.js"></script>
3
4 <template id="tt">
5 <style>
6 :host {
7 position: relative;
8 text-decoration: underline solid gray;
9 }

10 .tt {
11 display: none;
12 position: absolute;
13 top: -2.5em;
14 left: 0;
15 padding: 0.4em 0.5em;
16 border-radius: 3px;
17
18 font-family: sans-serif;
19 font-size: 12px;
20 white-space: nowrap;
21 background-color: #444;
22 color: #fff;
23 }
24 :host(:hover) {
25 cursor: pointer;
26 }
27 :host(:hover) .tt {
28 display: inline-block;
29 }
30 </style>
31
32 <content></content>
33 </template>
34
35 <script>
36 document.registerElement('my-tooltip', {prototype: myTooltip});
37 </script>

B.4.2 my-tooltip.js

1 // encapsulated functionality of the tooltip
2 var myTooltip = (function() {
3
4 var insertIntoDocument = (function() {
5 "use strict";
6 var importDoc;

B. Listings 72

7 // reference to the my-tooltip.html
8 importDoc = (document._currentScript || document.currentScript).

ownerDocument;
9 // current my-tooltip DOM element, id of template tag in

my-tooltip.html
10 return function (obj, idTemplate) {
11 var template = importDoc.getElementById(idTemplate),
12 clone = document.importNode(template.content, true);
13
14 // fill template
15 fetchInfo(obj, clone);
16 console.log(clone.querySelector(".tt"));
17 // attach full template to shadow root if text is set
18 if (obj.text) {
19 var sd = obj.shadowRoot;
20 // if the object has a shadowRoot, empty it
21 if(sd) {
22 while(sd.firstChild) {
23 sd.removeChild(sd.firstChild);
24 }
25
26 } else {
27 // if the object has no shadowRoot create one
28 sd = obj.createShadowRoot();
29 }
30 // append filled template to shadowRoot
31 sd.appendChild(clone);
32
33 }
34 };
35 }());
36
37 // el = <my-tooltip> DOM element
38 // clone = current instance of template
39 var fetchInfo = function(el, clone) {
40 var dataText = el.getAttribute('data-text');
41
42 if (dataText) {
43 el.text = dataText;
44 clone.querySelector(".tt").textContent = dataText;
45 }
46 };
47
48 var proto = Object.create(HTMLElement.prototype);
49
50 // every element should have a property for tooltip text
51 Object.defineProperty(proto, "text", {
52 value: undefined,
53 writable: true
54 });
55
56 proto.attributeChangedCallback = function(attrname, oldval, newval) {
57 console.log("attr changed", attrname, oldval, newval);
58 insertIntoDocument(this, "tt");

B. Listings 73

59 };
60
61 // insert into document, if a <my-tooltip> element will be created
62 proto.createdCallback = function() {
63 // 'this' accesses the currently created DOM element <my-tooltip>
64 insertIntoDocument(this, "tt");
65 };
66
67 // return prototype for registering the element in my-tooltip.html
68 return proto;
69 })();

B.4.3 index.html

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="UTF-8">
5 <title>04 - Complete tooltip</title>
6 <script src="bower_components/webcomponentsjs/webcomponents.js">

</script>
7 <link rel="import" href="elements/my-tooltip.html">
8 <script>
9 document.addEventListener('WebComponentsReady', function() {

10 console.log("Imports loaded & elements registered!");
11 });
12 </script>
13 </head>
14 <body>
15 <h1>Hello Tooltip!</h1>
16 <p>I am sample text and a <my-tooltip data-text="This is super secret

info">keyword</my-tooltip>has a tooltip.</p>
17 <p><my-tooltip data-text="more secret info">Me too!</my-tooltip>

Check it out via hovering the text.</p>
18
19
20 </body>
21 </html>

B.5 X-Tag example

B.5.1 movie-quoter.html

1 <!-- boilerplate from https://github.com/webcomponents/hello-world-xtag
-->

2 <!-- Imports x-tag -->
3 <script src="../../bower_components/x-tag-core/src/core.js"></script>
4
5 <!-- Defines element markup -->

B. Listings 74

6 <template>
7 <style>
8 :host([theme="fancy"]) p {
9 color: purple;

10 font-family: cursive;
11 }
12 :host([theme="minimal"]) p {
13 color: gray;
14 }
15 </style>
16
17 <blockquote>
18 <p>Awesome quote</p>
19 <footer>
20 <cite>,

 </cite>
21 </footer>
22 </blockquote>
23 </template>
24
25 <script>
26 (function(window, document, undefined) {
27
28 var quotes = [
29 {
30 "quote": "All those moments will be lost in time... like

tears in rain.",
31 "who": "Roy Batty",
32 "movie": "Blade Runner"
33 },
34 {
35 "quote": "Frankly, my dear, I don't give a damn",
36 "who": "Rhett Butler",
37 "movie": "Gone with the Wind (1939)"
38 },
39 {
40 "quote": "I love lamp",
41 "who": "Brick Tamland",
42 "movie": "Anchorman (2004)"
43 },
44 {
45 "quote": "I'm gonna make him an offer he can't refuse.",
46 "who": "Don Corleone",
47 "movie": "The Godfather (1972)"
48 },
49 {
50 "quote": "I'm as mad as hell, and I'm not gonna to take

this anymore!",
51 "who": "Howard Beale",
52 "movie": "The Network (1976)"
53 }
54
55];
56

B. Listings 75

57 /**
58 * @param {number} upper limit
59 * @return {number} random number from 0 to max
60 */
61 function getRand(max) {
62 var rand = (window.crypto.getRandomValues(new Uint32Array(1))

[0]) % max;
63 return rand;
64 }
65
66 // Refers to the "importer", which is index.html
67 var importer = document;
68 // Refers to the "importee", which is src/movie-quoter.html
69 var thisDoc = document._currentScript.ownerDocument;
70 // Gets content from <template>
71 var template = thisDoc.querySelector('template').content;
72
73 xtag.register('movie-quoter', {
74 lifecycle: {
75 created: function() {
76 this.bquote = template.querySelector('blockquote');
77 this.quote = template.querySelector('p');
78 this.who = template.querySelector('.who');
79 this.movie = template.querySelector('.movie');
80 // Creates the shadow root
81 this.shadowRoot = this.createShadowRoot();
82 this.setQuote();
83 },
84 attributeChanged: function() {
85 console.log("attribute changed");
86 }
87 },
88 accessors: {
89 theme: {
90 attribute: {},
91 get: function(){
92 return this.getAttribute('theme') || "minimal"
93 },
94 set: function(value){
95 this.xtag.data.theme = value;
96 }
97 }
98 },
99 methods: {

100 setQuote: function() {
101 var quoteNum = getRand(quotes.length);
102 var q = quotes[quoteNum];
103
104 this.quote.textContent = q.quote;
105 this.who.textContent = q.who;
106 this.movie.textContent = q.movie;
107 // Removes shadow root content
108 this.shadowRoot.innerHTML = '';
109 // Adds a template clone into shadow root

B. Listings 76

110 var clone = importer.importNode(template, true);
111 this.shadowRoot.appendChild(clone);
112 }
113 },
114 events: {
115 'click': function (event) {
116 console.log('a movie-quoter was clicked');
117 }
118 }
119 });
120 })(window, document);
121 </script>

B.5.2 index.html

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="UTF-8">
5 <title>05 - X-Tag</title>
6 <script src="bower_components/webcomponentsjs/webcomponents-lite.js">

</script>
7
8 <link rel="import" href="elements/movie-quoter.html">
9 </head>

10 <body>
11 <h1>Welcome to our simple X-Tag example</h1>
12 <movie-quoter theme="fancy"></movie-quoter>
13 <p>Change the attribute "theme" from the tag above to "minimal"</p>
14 <button id="btnToggleStyle">Toggle Style</button>
15 <button id="btnNewQuote">Random Quote</button>
16
17 <script>
18 document.querySelector('#btnToggleStyle').addEventListener('click',

function(e) {
19 var quoter = document.querySelector('movie-quoter');
20 if (quoter.getAttribute("theme") === "fancy") {
21 quoter.setAttribute("theme", "minimal");
22 } else {
23 quoter.setAttribute("theme", "fancy");
24 }
25 });
26 document.querySelector('#btnNewQuote').addEventListener('click',

function(e) {
27 var quoter = document.querySelector('movie-quoter').setQuote();
28 });
29 </script>
30 </body>
31 </html>

B. Listings 77

B.6 Angular 2 example

B.6.1 app.component.ts

1 import {Component} from 'angular2/core';
2 import {NiceGreeterComponent} from './nice-greeter.component';
3 import {MovieQuoterComponent} from './movie-quoter.component';
4
5 @Component({
6 selector: 'my-app',
7 template: `<h1>My First Angular 2 App App</h1>
8 <nice-greeter>content</nice-greeter>
9 <h3>Another H3</h3>

10 <movie-quoter></movie-quoter>`,
11 directives: [NiceGreeterComponent, MovieQuoterComponent]
12 })
13 export class AppComponent { }

B.6.2 nice-greeter.component.ts

1 import {Component} from 'angular2/core';
2 import {ViewEncapsulation} from 'angular2/core';
3
4 @Component({
5 selector: 'nice-greeter',
6 template: `<h3>Hi {{name}}</h3>
7 <button (click)="logMyName()">Log my name</button>`,
8 styles: [`
9 h3 {

10 color: red;
11 }
12 `],
13 // activate native shadow dom.
14 // inspect the result, comment this line and inspect again
15 encapsulation: ViewEncapsulation.Native
16 })
17 export class NiceGreeterComponent {
18 name: String;
19 constructor() {
20 this.name = 'Max';
21 }
22 logMyName() {
23 console.log(this.name);
24 }
25 }

B. Listings 78

B.6.3 movie-quoter.component.ts

1 import {Component, Input} from 'angular2/core';
2 import {ViewEncapsulation} from 'angular2/core';
3
4 @Component({
5 selector: 'movie-quoter',
6 template: `<blockquote attr.theme="{{theme}}" (click)="changeQuote

()">
7 <p>{{quote}}</p>
8 <footer>
9 <cite>{{who}}, <span

class="movie">{{movie}} </cite>
10 </footer>
11 </blockquote>
12 <button (click)="changeTheme()">Change Theme</button>`,
13 styles: [`
14 blockquote[theme="fancy"] p {
15 color: purple;
16 font-family: cursive;
17 }
18 blockquote[theme="minimal"] p {
19 color: gray;
20 }
21 blockquote(:hover) {
22 cursor: pointer;
23 }
24 `],
25 // activate native shadow dom.
26 // inspect the result, comment this line and inspect again
27 encapsulation: ViewEncapsulation.Native
28 })
29 export class MovieQuoterComponent {
30
31 private quotes = [
32 {
33 "quote": "All those moments will be lost in time... like

tears in rain.",
34 "who": "Roy Batty",
35 "movie": "Blade Runner"
36 },
37 {
38 "quote": "Frankly, my dear, I don't give a damn",
39 "who": "Rhett Butler",
40 "movie": "Gone with the Wind (1939)"
41 },
42 {
43 "quote": "I love lamp",
44 "who": "Brick Tamland",
45 "movie": "Anchorman (2004)"
46 },
47 {
48 "quote": "I'm gonna make him an offer he can't refuse.",

B. Listings 79

49 "who": "Don Corleone",
50 "movie": "The Godfather (1972)"
51 },
52 {
53 "quote": "I'm as mad as hell, and I'm not gonna to take

this anymore!",
54 "who": "Howard Beale",
55 "movie": "The Network (1976)"
56 }
57
58];
59
60 quote: string;
61 who: string;
62 movie: string;
63 theme: string;
64
65 private getRand(max) {
66 var rand = (window.crypto.getRandomValues(new Uint32Array(1))

[0]) % max;
67 return rand;
68 }
69 private assignQuote(num) {
70 this.quote = this.quotes[num].quote;
71 this.who = this.quotes[num].who;
72 this.movie = this.quotes[num].movie;
73 }
74
75 constructor() {
76 this.assignQuote(0);
77 this.theme = "minimal";
78 }
79 changeQuote() {
80 this.assignQuote(this.getRand(this.quotes.length));
81 }
82 changeTheme() {
83 if (this.theme == "minimal") {
84 this.theme = "fancy"
85 } else {
86 this.theme = "minimal";
87 }
88 }
89 }

References

Literature

[1] Roy Thomas Fielding. “Architectural Styles and the Design of
Network-based Software Architectures”. PhD thesis. University of Cal-
ifornia, Irvine, 2000 (cit. on p. 26).

[2] Erich Gamma et al. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional, 1994 (cit. on pp. 4,
5, 50).

[3] Marijn Haverbeke. Eloquent JavaScript: A Modern Introduction to
Programming. No Starch Press, 2012 (cit. on p. 51).

[4] Doug McIlroy, E. N. Pinson, and B. A. Tague. “UNIX Time-Sharing
System”. The Bell System Technical Journal 57.6 (1978), pp. 1899–
1904 (cit. on p. 47).

[5] Addy Osmani. Learning JavaScript Design Patterns. O’Reilly Media,
2012 (cit. on p. 49).

[6] Jarrod Overson and Jason Strimpel. Developing Web Components: UI
from jQuery to Polymer. O’Reilly Media, 2012 (cit. on pp. 15, 16, 53).

Online sources

[7] Bosonic Authors. Bosonic Project. 2015. url: http://bosonic.github.
io/documentation/getting- started/faq .html (visited on 09/08/2016)
(cit. on p. 20).

[8] Eric Bidelman. Custom Elements. Aug. 2013. url: http : / / www .
html5rocks .com/en/tutorials/webcomponents/customelements/ (vis-
ited on 09/08/2016) (cit. on pp. 7, 65).

[9] Eric Bidelman. Custom Elements. Aug. 2013. url: http : / / www .
html5rocks . com/en/ tutorials /webcomponents/ template/ (visited on
09/08/2016) (cit. on pp. 7, 65).

[10] Brad Frost. Atomic Design. 2016. url: atomicdesign . bradfrost . com
(visited on 09/08/2016) (cit. on pp. 47, 65).

80

http://bosonic.github.io/documentation/getting-started/faq.html
http://bosonic.github.io/documentation/getting-started/faq.html
http://www.html5rocks.com/en/tutorials/webcomponents/customelements/
http://www.html5rocks.com/en/tutorials/webcomponents/customelements/
http://www.html5rocks.com/en/tutorials/webcomponents/template/
http://www.html5rocks.com/en/tutorials/webcomponents/template/
atomicdesign.bradfrost.com

References 81

[11] Dimitri Glazkov. Custom Elements. 2015. url: https://w3c.github.io/
webcomponents/spec/custom/ (visited on 09/08/2016) (cit. on pp. 3,
6, 66).

[12] Dimitri Glazkov and Hayato Ito. Shadow DOM. Dec. 2015. url:
http : / / w3c . github . io / webcomponents / spec / shadow/ (visited on
09/08/2016) (cit. on pp. 3, 9–11, 66).

[13] Dimitri Glazkov and Hajime Morrita. HTML Imports. 2016. url:
http : / / w3c . github . io / webcomponents / spec / imports/ (visited on
09/08/2016) (cit. on pp. 3, 66).

[14] Google Inc. Lifecycle callbacks in Polymer. 2016. url: https://www.
polymer- project .org/1.0/docs/devguide/registering- elements .html#
lifecycle-callbacks (visited on 09/08/2016) (cit. on p. 24).

[15] Jeremy Keith. Extensible web components. 2016. url: https://adactio.
com/journal/11052 (visited on 09/08/2016) (cit. on pp. 64, 65).

[16] Alla Kholmatova. The Language of Modular Design. 2015. url: http:
/ / alistapart . com / article / language - of - modular - design (visited on
09/08/2016) (cit. on pp. 53, 66).

[17] Scott Miles. What is shady DOM? May 2015. url: https : / / www.
polymer - project . org / 1 . 0 / articles / shadydom . html (visited on
09/08/2016) (cit. on p. 24).

[18] Addy Osmani. JavaScript Application Architecture On The Road To
2015. Dec. 2014. url: https : / / medium . com / google - developers /
javascript-application-architecture-on-the-road-to-2015-d8125811101b
(visited on 09/08/2016) (cit. on p. 65).

[19] Andrew Rota. The Complementarity of React.js and Web Components.
2015. url: http://andrewrota.github.io/complementarity-of-react-and-
web-components-presentation/#/33 (visited on 09/08/2016) (cit. on
p. 63).

[20] Viktor Savkin. Angular 2 Template Syntax. 2015. url: http : / /
victorsavkin.com/post/119943127151/angular-2-template-syntax (vis-
ited on 09/08/2016) (cit. on pp. 22, 66).

[21] W3C. CSS Custom Properties. 2015. url: https://www.w3.org/TR/
css-variables/ (visited on 09/08/2016) (cit. on pp. 5, 10, 13, 52, 66).

[22] W3C. <slot> HTML element proposal. 2015. url: https : //github .
com/w3c/webcomponents/blob/gh-pages/proposals/Slots-Proposal.md
(visited on 09/08/2016) (cit. on pp. 16, 66).

[23] W3C. The Template Element. 2015. url: http://www.w3.org/TR/
html5/scripting-1.html#the-template-element (visited on 09/08/2016)
(cit. on pp. 3, 7, 9, 66).

https://w3c.github.io/webcomponents/spec/custom/
https://w3c.github.io/webcomponents/spec/custom/
http://w3c.github.io/webcomponents/spec/shadow/
http://w3c.github.io/webcomponents/spec/imports/
https://www.polymer-project.org/1.0/docs/devguide/registering-elements.html#lifecycle-callbacks
https://www.polymer-project.org/1.0/docs/devguide/registering-elements.html#lifecycle-callbacks
https://www.polymer-project.org/1.0/docs/devguide/registering-elements.html#lifecycle-callbacks
https://adactio.com/journal/11052
https://adactio.com/journal/11052
http://alistapart.com/article/language-of-modular-design
http://alistapart.com/article/language-of-modular-design
https://www.polymer-project.org/1.0/articles/shadydom.html
https://www.polymer-project.org/1.0/articles/shadydom.html
https://medium.com/google-developers/javascript-application-architecture-on-the-road-to-2015-d8125811101b
https://medium.com/google-developers/javascript-application-architecture-on-the-road-to-2015-d8125811101b
http://andrewrota.github.io/complementarity-of-react-and-web-components-presentation/#/33
http://andrewrota.github.io/complementarity-of-react-and-web-components-presentation/#/33
http://victorsavkin.com/post/119943127151/angular-2-template-syntax
http://victorsavkin.com/post/119943127151/angular-2-template-syntax
https://www.w3.org/TR/css-variables/
https://www.w3.org/TR/css-variables/
https://github.com/w3c/webcomponents/blob/gh-pages/proposals/Slots-Proposal.md
https://github.com/w3c/webcomponents/blob/gh-pages/proposals/Slots-Proposal.md
http://www.w3.org/TR/html5/scripting-1.html#the-template-element
http://www.w3.org/TR/html5/scripting-1.html#the-template-element

References 82

[24] W3C. Web Components. 2015. url: http://www.w3.org/standards/
techs/components (visited on 09/08/2016) (cit. on p. 3).

http://www.w3.org/standards/techs/components
http://www.w3.org/standards/techs/components

Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

Breite = 100 mm
Höhe = 50 mm

— Diese Seite nach dem Druck entfernen! —

83

	Declaration
	Kurzfassung
	Abstract
	Introduction
	Goal of the thesis
	Motivation
	Thesis contents

	Technical background
	Modular programming concepts
	Composition over inheritance
	Interfaces
	Mediator pattern
	Observer pattern

	Web component technologies
	Custom elements
	HTML templates
	HTML imports
	Shadow DOM

	State of the Art
	Vanilla JavaScript
	Custom elements and lifecycle callbacks
	Shadow DOM
	HTML template element
	HTML imports

	X-Tag
	Bosonic
	Angular 2
	Polymer

	Technical design
	Backend
	Frontend

	Implementation
	Toolchain
	Keep-API: backend
	Keep: frontend
	Look and feel
	Components

	Architectural design concepts
	A modular mindset
	Managing content in components
	Communication between components
	API design

	Semantics and accessibility
	Element naming
	Accessibility

	Visual design
	Testing
	Updates
	Deployment

	Benefits, consequences and limitations
	Components instead of pages
	Architectural decisions
	Choosing a framework
	High quality components
	Updating components

	Conclusion
	Outlook

	CD Contents
	Thesis
	Resources
	Listings
	Thesis Project

	Listings
	Web components with plain JavaScript
	my-tooltip.js
	index.html

	Shadow DOM
	my-tooltip.js
	index.html

	HTML template element
	index.html

	Complete tooltip example
	my-tooltip.html
	my-tooltip.js
	index.html

	X-Tag example
	movie-quoter.html
	index.html

	Angular 2 example
	app.component.ts
	nice-greeter.component.ts
	movie-quoter.component.ts

	References
	Literature
	Online sources

