
Developing Accessible Web Components

Anu A. Gregory

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2019

© Copyright 2019 Anu A. Gregory

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, September 24, 2019

Anu A. Gregory

iii

Contents

Declaration iii

Abstract vi

Kurzfassung vii

1 Introduction 1
1.1 Structure . 2

2 Background 3
2.1 Definition and Categorization of Disabilities 3
2.2 Motivation for Web Accessibility . 4
2.3 The Accessible Rich Internet Applications Specification 5

2.3.1 Web Content Accessibility Guidelines (WCAG) 2.1 11
2.3.2 Web Content Accessibility Layers of Guidance 11
2.3.3 Accessibility Guidelines Future 12

3 State of the Art 13
3.1 Web Accessibility Evaluation Tools . 14

3.1.1 Standards and Guidelines . 14
3.1.2 Functioning of Accessibility Tools 15
3.1.3 Scope of Evaluation Tools . 15
3.1.4 Evaluation and Reports . 16

3.2 Different Evaluation Tools . 16
3.2.1 A11Y Color Contrast Accessibility Validator 17
3.2.2 Accessible Brand Colors . 17
3.2.3 Accessibility Insights for Web . 18
3.2.4 TAW . 21

3.3 Accessibility Evaluation Tools Comparison 22

4 Own Approach 24
4.1 Basic Idea . 24

4.1.1 Challenges in current approach 24
4.1.2 Structure of the project . 25
4.1.3 Formal Requirements . 26
4.1.4 Implementation and Integration 26

iv

Contents v

4.2 Browser Extension . 27
4.2.1 Requirements . 27
4.2.2 Abstract Solution . 27

4.3 JavaScript Library . 28
4.3.1 Requirements . 28
4.3.2 Abstract Solution . 28

5 Implementation 32
5.1 Considerations towards implementation 32

5.1.1 Browser Add-on . 33
5.1.2 Library . 33

5.2 Foundation . 36
5.2.1 React JS . 36
5.2.2 Bitbucket . 38
5.2.3 Node Package Manager . 39

5.3 Browser Add-on Implementation . 39
5.4 Library Implementation . 42

5.4.1 Basic setup . 42
5.4.2 Component implementation . 43

5.5 Deployment . 45
5.5.1 Bitbucket Pipelines . 46
5.5.2 Node Package Manager . 48
5.5.3 Extensibility . 48

6 Evaluation 50
6.1 Browser Extension . 50

6.1.1 Results . 50
6.2 JavaScript Library . 50

6.2.1 Minimum Requirements . 52
6.2.2 Results . 52

7 Conclusion 57

A Contents of the DVD 59
A.1 PDF-Files . 59
A.2 Source Code . 60
A.3 Graphics . 60

References 61
Literature . 61
Online sources . 62

Abstract

The world wide web as of today provides many opportunities for everyone, but there is
still a lot of content available in the web which is not accessible to different groups of
users. The web is quickly becoming a part of day to day life of people with disabilities.
There are many types of assistive technologies available to help these people to under-
stand and receive information from the web. Accessibility is also a legal requirement for
many government websites around the world. Even though this is the case, there is still
a large percentage of websites which do not follow accessibility guidelines. This can be
due to different reasons, but it is the duty of the developer to implement the website in
a way that it is accessible for all people. Nowadays the web pages are often built with
custom web components which can be reused again in other projects. This master’s
thesis therefore tries to find a simple solution to create accessible web components.

vi

Kurzfassung

Modernes Web bietet viele Möglichkeiten für alle, aber es gibt immer noch viele Inhal-
te im Web, die nicht für verschiedene Benutzergruppen verfügbar sind. Das Internet
wird für Menschen mit Behinderungen immer mehr zum Alltag. Es gibt viele Arten von
Hilfstechnologien, mit denen diese Personen Informationen aus dem Web verstehen und
empfangen können. Zugänglichkeit ist auch eine Voraussetzung für viele Regierungs-
websites auf der ganzen Welt. Auch wenn dies der Fall ist, gibt es immer noch einen
großen Prozentsatz von Websites, die nicht den Richtlinien für Barrierefreiheit entspre-
chen. Dies kann verschiedene Gründe haben, aber es ist die Pflicht des Entwicklers, die
Websites so zu implementieren, dass sie für alle Menschen zugänglich sind. Heutzutage
werden Webseiten mit selbsterstellten, wiederverwendbaren Komponenten entwickelt,
welche auch in zukünftigen Projekten eingesetzt werden können. In dieser Masterarbeit
wird daher versucht, eine einfache Lösung zu finden, um die Webkomponenten barrie-
refrei in eine Webseite zu integrieren.

vii

Chapter 1

Introduction

Web Accessibility is an important topic in modern day web development. The story
of web accessibility is one of hard work, shared empathy and often a struggle to keep
up. The success of web accessibility is mainly due to the dedication of law makers
around the world. The web offers many opportunities to all kinds of people. It is the
job of the developer to ensure that the required accessibility criteria is met and the end
user can access the website without any barriers. There are guidelines available for the
developers to follow and implement the accessibility features successfully. But most of
the developers don’t spend much time on web accessibility during implementation phase.
The organization called World Wide Web Consortium (W3C)1 develops international
standards for web technologies and within the W3C there is another organization called
Web Accessibility Initiative (WAI)2, which develops the web accessibility standards.
The guidelines provided by Web Accessibility Initiative (WAI) are called Web Content
Accessibility Guidelines (WCAG)3, an attempt that has guided accessibility efforts for
the last 20 years.

In 2008, the World Wide Web Consortium (W3C) made an important update to their
guidelines to make the internet more accessible for people with disabilities. But still,
according to a report from 2018, less than 10% of sites are still accessible to everyone.
Encouraging developers to follow the Web Content Accessibility Guidelines is a good
place to start to improve the accessibility. This guarantees that the documents can be
interpreted by different assistive technologies. These guidelines are well researched and
provides the best way to improve the accessibility to provide the same information to
all possible users. There are also example codes, that are available for developers, which
show how to write the code to meet the requirements. These Web Content Accessibility
Guidelines are updated from time to time when there are new technologies available.
Putting these available guidelines to work and getting them to the end user is the job of
the developer. But because of various reasons, most of the time this is not happening in
this way. By looking into this and asking why this is so, is a good way to start tackling
this problem.

The need for more accessible web pages is of utmost importance in the modern
1https://www.w3.org/
2https://www.w3.org/WAI/
3https://www.w3.org/WAI/standards-guidelines/#wcag

1

https://www.w3.org/
https://www.w3.org/WAI/
https://www.w3.org/WAI/standards-guidelines/#wcag

1. Introduction 2

day web. There is a significant number of people with different types of disabilities.
The web should be a place where there are no barriers to access information. All the
people should be able to get the same information from the web. Even though there
are standards and guidelines available, due to different reasons many developers don’t
bother implementing them in the development. Some talk about the workload, some
about the time needed to implement and test the pages because of the deadline. So
in this scenario the question was, what if there was a way so that the developer could
implement the accessibility guidelines more efficiently and without much work.

The main goal was to find an easier way of approach to implement web accessibility
on a web component. This is for the developers to implement the web accessibility in
the base coding phase and test the component as early as possible. Once the component
is tested to be accessible, then it can be reused as often as the developer wants without
the hassle of checking for accessibility again. So this approach should be easy enough so
that the developer can spend less time on the accessibility guidelines and still achieve
better accessibility results. The research question is therefore the following:

How to provide support for Web Accessibility in development using Web
Components?

The implemented solution covers the necessary steps to make a component more acces-
sible. By introducing this early into a project, the developer should notice significant
reduction in time to implement accessibility guidelines. Furthermore, it should take a
considerable amount of workload out of developers hands.

1.1 Structure
To express the considerations which led to the final solution, the following pages are
structured into several chapters. The second chapter shows the background on which the
research is built upon, the motivation, web content accessibility guidelines and future
of accessibility guidelines. The third chapter introduces the state of the art evaluation
tools for accessibility and comparison of different tools available. Chapter four gives an
understanding about the approach behind the practical part of this thesis and describes
the goals and requirements for a accessibility testing tool and a supporting programming
library. Chapter five describes the full extent of the implementation of the project, the
basic foundation and the main project setup. Chapter six informs about the evaluation
of different components in the project, using online tools and the corresponding results
are also provided. Chapter seven shows the conclusion of this thesis and gives a summery
of the work done.

Chapter 2

Background

Practicing web accessibility helps to ensure that there are no barriers between people
with disabilities and the world wide web. Websites can provide equal access to infor-
mation and functionality if they are designed and developed correctly. The web is for
everyone, not concerning their location, language, software, hardware or ability. Under-
standing the scope and impact of accessibility can improve the web development. At
the end of the day, we can establish that people with disabilities can interact and con-
tribute to the web. Web accessibility also helps people with temporary or conditional
disabilities, which in some cases maybe aging, a broken arm, slow internet connection,
etc. Currently many sites are developed with accessibility barriers that make them dif-
ficult for people to use. To understand this better, we need to understand the types of
disabilities.

2.1 Definition and Categorization of Disabilities

According to Center for Disease Control and Prevention (CDC), “a disability is any
condition of the body or mind (impairment) that makes it more difficult for the per-
son with the condition to do certain activities (activity limitation) and interact with
the world around them (participation restrictions)”. Although the term “people with
disabilities” sometimes refers to a single population, this is actually a diverse group of
people with a wide range of needs. Same type of disability can be affect two people in
very different ways. Some disabilities may be hidden or not easy to see [31]. There are
three modes of disability [34]. The first one is the permanent disability, which is when
a person has a disability for all their life. Example: blind, deaf or the like. The second
type is the temporary disability, which is a mental or physical disability that interferes
with the completion of ones duties for a short period of time. Example: broken limbs,
hand injuries or the like. The third type of disability is the conditional or situational
disability, which is simply when a person is not able to do things due to a current
situation or condition. Example: slow internet connection.

3

2. Background 4

2.2 Motivation for Web Accessibility
The internet is one of the best things that happened to people with disabilities. Be-
fore the internet came into existence the people with visual disabilities could not read
newspapers themselves. Audiotapes or Braille printouts were expensive. At best, they
could ask a friend or family member to read the newspaper to them. But this makes
the blind people dependent upon others. Nowadays, most newspapers have their con-
tent online in a format that can be read by screen readers used by the blind people.
These screen readers read online text out loud, so that blind people can understand the
content of the page without any external help or they don’t have to wait for expensive
audio tapes and bulky Braille printouts. They can simply open a browser and listen as
the screen reader reads the newspaper to them. They can do this independently and as
soon as the content is published online. Similarly, people with motor disabilities who
cannot pick up a newspaper or turn pages can now access online newspapers through
their computer using assistive technologies. Sometimes these adaptations can be done
easily, something like having the person place a stick in the mouth and use it to type
keyboard commands. In other cases, the adaptations can be more sophisticated, such as
in the case of using special keyboards or eye-tracking softwares that allow people to use
a computer with nothing more than eye movements [51]. The Internet is an increasingly
important aspect of daily life, including education, employment, government, commerce,
health care, recreation, and many more sectors. So it is of utmost importance that the
web is made accessible to everyone in order to provide equal opportunities to people
with disabilities. By making the web more accessible, people with disabilities will be
able to participate more actively in society. In the development of static and dynamic
web pages, it is important to consider the intellectual disabilities throughout the entire
design and implementation. The aim of the accessible web must be to give users the pos-
sibility to participate in the technological process [4]. There are several ways of adapting
websites to users characteristics. Most of these are focused on a single user group. E.g.
blind people, people with limited mobility or elderly people [9]. The web offers unprece-
dented access to information and interaction for many people. That is, the accessibility
barriers to print, audio, and visual media can be overcome much more easily through
web technologies [17]. Accessibility has a strong business case to it. In the beginning,
the web was just a text medium. Then it started to be used as a business space, where
its visual appearance, design and accessibility became important [2]. Accessibility and
other best practices such as mobile web design, device independence, multi-modal inter-
action, usability, design for older users, and search engine optimization (SEO) overlap
with each other. Accessible websites can have better search results, increased audience
reach and they demonstrate corporate social responsibility (CSR) [34]. Governmental
agencies have to care about accessibility because of legal aspects. Commercial businesses
may be motivated by innovation and market expansion opportunities. Educational and
nonprofit organisations may be especially drawn to brand enhancement. A common ar-
gument against accessibility is that the direct return on investment (ROI) is difficult
to measure. Even though ROI is important, it is not by any means the only way to
measure how an accessibility commitment profits organizations. It is most likely that
the business will respond to a mix of driving factors as they consider implementing an
integrated accessibility program. Businesses that integrate accessibility into their work-

2. Background 5

ing modal are likely to be inventive, inclusive companies that meets emerging global
legal requirements [26].

2.3 The Accessible Rich Internet Applications Specification
As the web started to get more diverse and complex, completely new sets of accessibility
features and problems arose. Like the introduction of HTML51 brought a number of new
semantic elements to define common page features (<nav>, <footer>, etc). Before these
were available, programmers would simply use div elements with id or class attributes,
e.g. <div class="nav">, but this was problematic, as there was no standard way to
find a specific feature in a page like the main navigation. The initial solution was to
add one or more hidden links at the top of the page to link to the navigation [37],
for example: consider the code snippet Skip
to navigation . This code is still not completely precise, and can only be used
when the screen reader starts reading from the top of a given page. When the apps
started to feature more complex controls like date pickers for choosing dates, sliders for
choosing values, HTML provided special input types to render such controls, like <input
type="date"> and <input type="range">. These elements are not that flexible on
behalf of styling, making them not very useful for integrating with other website designs.
As a result, developers quite often include JavaScript libraries that generate the required
controls as a series of nested div elements or table elements with classnames, which are
controlled using JavaScript and styled using CSS. Even though they work visually,
screen readers cannot make any sense of what they are at all. The users will get told of
this mixture of elements with no semantics, rather than with a description of what they
actually mean. Here comes World Wide Web Consortium (W3C)’s Web Accessibility
Initiative – Accessible Rich Internet Applications (WAI-ARIA)2 into play. WAI-ARIA
is an accessibility specification provided by the World Wide Web Consortium, defining
a set of additional HTML attributes that can be added to HTML elements to provide
additional semantics and improve accessibility wherever it is lacking so far.
There are three main features defined in the specifications [40]:

• Roles: These are the attributes added to HTML elements, which define what an
element is or does. The main roles are called landmark roles, because they largely
copy the semantic values of HTML5 elements. Example: navigation role used with
<nav> HTML tag or the complementary role used with <aside> HTML tag. But
there are also other roles in ARIA, that describes different page structures, such as
the commonly used ones. Example of these are banner role, search role, tabgroup
role, tab role etc.

• Properties: These define properties of HTML elements, which in turn can be used
to give extra meaning or semantics to the elements. An example is aria-required
attribute, which specifies that a form input field needs to be filled in order to
be valid. Whereas the aria-labelledby attribute allows to give a specific ID to an
element, then reference this as the label for anything else on the same page. This
ID can be also used for multiple elements, which is not possible using the normal

1https://html.spec.whatwg.org/
2https://www.w3.org/TR/wai-aria/

https://html.spec.whatwg.org/
https://www.w3.org/TR/wai-aria/

2. Background 6

Figure 2.1: Current global browser support for different WAI - ARIA Accessibility fea-
tures [39].

<label for="input">. As an example, aria-labelledby attribute can be used to
specify that a key description contained in a <div> is the label for multiple table
cells, or it can also be used as an alternative to image alt text, specifying existing
information on the page as an image’s alt text, rather than repeating it again in
the image’s alt attribute.

• States: These are special properties that define the current conditions of an ele-
ment, like aria-disabled="true", which specifies that the form input is currently
disabled. States are different properties in a way that properties don’t change
throughout the lifecycle of a web application, whereas states can change through-
out the lifecycle, mainly via JavaScript.

ARIA attributes don’t affect anything other than the data exposed by the browser’s
accessibility APIs (where screen readers get their data from). It does not affect the
structure of the web page, the DOM, etc., although the attributes can be used for
selecting elements by CSS. It is difficult to find a decisive source that states which
features of WAI-ARIA are supported and where, because there are a lot of features
in the WAI-ARIA specifications and there are too many combinations of operating
systems, browsers, and screen readers to examine. For example, to use a screen reader
in the first place, the operating system needs to run browsers that have the required
accessibility APIs to retrieve the information that screen readers need to work on. Most
popular operating systems have one or two browsers that screen readers can work with.
The next step is to check whether the browsers in use support ARIA features and expose
them via their APIs and also if the screen readers recognise this information and present
it to their users in an appropriate way. The global browser support for WAI-ARIA is
around 94% (see Fig. 2.1). But Screen reader support for WAI-ARIA isn’t quite at this
level (see Fig. 2.2), but the most popular screen readers are improving the support for
ARIA. There is also an increase in reliability of ARIA in different assistive technologies
(see Fig. 2.3) over time. There are four main areas where WAI-ARIA is used:

2. Background 7

Figure 2.2: ARIA role and attribute support in different screen reader / browser com-
binations. The solid area shows the percentage of tests that pass in all tested interaction
modes. The cross hatched area shows partial passes that only work in some interaction
modes. An example of a partial pass is when form labels are read when tabbing [41].

Figure 2.3: Reliability improvement over time for ARIA in NVDA, JAWS, WindowEyes
and Voiceover [41].

Signposts or Landmarks: ARIA’s role attribute values can be used as landmarks that
either duplicate the semantics of HTML5 elements (e.g. <nav>), or go beyond that and
provide signposts to different functional areas, e.g. search role, tabgroup role, tab role,
listbox role, etc. The working of roles is fairly simple, WAI-ARIA adds the role attribute
to the browser, which in turn helps to add extra semantic value to elements wherever
they are needed. The major area where this is used is for providing information to screen
readers, so that users can find common page elements.

2. Background 8

1 <header>
2 <h1>...</h1>
3 <nav>
4 ...
5 <form>
6 <!−− search form −−>
7 </form>
8 </nav>
9 </header>

10
11 <main>
12 <article>...</article>
13 <aside>...</aside>
14 </main>
15 <footer>...</footer>

Program 2.1: A basic website structure [42].

Figure 2.4: An example VoiceOver landmark menu [42].

When the HTML page listed in Prog. 2.1 is tested with a screen reader in a browser,
the following information can be acquired:

• <header> element contains a heading and the <nav>,
• The <nav> element contains a list and a form,
• The <main> element contains an article and an aside,
• The <aside> element contains a heading and a list,
• The search form input, Search query, at beginning of text,
• The <footer> element has a footer item.
In the VoiceOver’s landmarks menu (see Fig. 2.4), most of the landmark elements

are listed so they can be accessed quickly. However, this can be improved. The search
form is a really important landmark that people will want information about, but it is
not listed in the landmarks menu or treated like an important landmark, other than the
actual input being called as a search input (<input type="search">). Also, some older

2. Background 9

1 <header>
2 <h1>...</h1>
3 <nav role="navigation">
4 ...
5 <form role="search">
6 <input type="search" name="q" placeholder="Search query"
7 aria-label="Search through site content">
8 </form>
9 </nav>

10 </header>
11
12 <main>
13 <article role="article">...</article>
14 <aside role="complementary">...</aside>
15 </main>
16
17 <footer>...</footer>

Program 2.2: Addition of ARIA roles to elements in Prog. 2.1 [42].

browsers don’t recognise the semantics of HTML5 elements. This can be improved by
adding role attributes to the HTML structure.

In the VoiceOver menu, there will be some improvements. The search form will
be recognized as a separate item, when browsing through the page and also in the
landmarks menu. The label in the aria-label attribute is read out when the form input
is focused. Now, the website is more likely to be accessible on older browsers. And if
the website is built using just <div> tags for some reason, including the ARIA roles will
provide much needed semantics. The improved semantics of the search form shows the
possibilities when ARIA goes beyond the semantics available in HTML5.

Dynamic content changes: Screen readers tend to have difficulties with constantly
changing content, but with ARIA, the aria-live attribute can be used to inform screen
reader users that the content is updated. e.g. via XMLHttpRequest or DOM APIs.
Screen readers can easily access a content loaded into the DOM, from textual content
to alternative text or images. This makes it easier for the traditional static websites
with mostly text content to make them accessible for people with visual impairments.
But modern web apps are often not just static text, they have a lot of dynamically
updating content, i.e. content that updates without a page reload using a mechanism
like XMLHttpRequest, Fetch or DOM APIs.

Consider Prog. 2.3, JavaScript loads a JSON file via XMLHttpRequest, which con-
tains a series of random quotes, then a setInterval() loop is introduced, which loads
a new random quote into the quote box every 10 seconds. The JavaScript function used
to set interval is window.setInterval(showQuote, 10000) [38].

This will work without any problem, but this is not good for accessibility, the content
update will not be detected by screen readers. This is a simple example, but if there is
a much more complex UI with lots of constantly updating content, e.g. a chat room, it
would be impossible to use the web app in any effective way without alerting the user

2. Background 10

1 <section>
2 <h1>Random quote</h1>
3 <blockquote>
4 <p></p>
5 </blockquote>
6 </section>

Program 2.3: simple random quote box.

about the updates. WAI-ARIA fortunately provides means to give these alerts using
the aria-live property. Applying this property to an element makes the screen readers
to read out the updated content. The attribute value determines how fast the content
is read out [42]. For example, using <section aria-live = "assertive"> will cause
a screen reader to announce the updated content immediately after it is updated. The
available attribute values are:

• off: default value, updates will not be read out,
• polite: updates should be read out, only when the user is idle,
• assertive: updates should be read out as soon as possible.

Keyboard Accessibility Enhancement: There are built-in HTML elements which have
native keyboard accessibility. When other elements are used with JavaScript to simu-
late identical interactions, the performance of keyboard accessibility and screen reader
reporting may drop. Where this is unavoidable, WAI-ARIA helps to allow other ele-
ments to receive focus (using tabindex attribute). This is one of the key strengths of
HTML5 with respect to accessibility. Tab key can be used to move between controls and
the Enter key to select or activate controls. Sometimes there may be a need to write a
code that uses non-semantic elements as buttons or focusable controls, in order to fix
a bad code or to build a complex widget or to make a non-focusable code focusable,
WAI-ARIA extends the tabindex attribute with new values for these purposes.

• tabindex="0": Using this value helps elements that are normally not tabbable to
become tabbable. This is the most important value of tabindex,

• tabindex="-1": Using this, the elements which are not normally tabbable can
receive focus via JavaScript.

Accessibility for non-semantic controls: When a series of nested <div> tags are used
along with CSS or JavaScript for creating a complex UI-feature or a native control is
largely changed using JavaScript, accessibility may drop because of this. Screen reader
users may find it hard to understand what the feature does, if there are no semantics
or other details. In these types of situations, WAI-ARIA can be used to provide the
missing piece with a combination of roles like button role, listbox role, or tabgroup role,
together with properties like aria-required or aria-posinset to provide further details of
functionality.

Ideally, it is recommended to use native HTML features to provide the semantics
required by screen readers to tell their users what is going on. But sometimes this isn’t

2. Background 11

possible, either due to limited control over the code or because of the complex nature of
the code, which does not have an easy HTML element to implement it. In these types
of cases, WAI-ARIA can be used to enhance accessibility [38].

Web accessibility is required by law in many circumstances [17]. Web Accessibility
Policy Resources link to available resources within organizations for addressing legal
factors including relevant laws and policies from all around the world [34].

2.3.1 Web Content Accessibility Guidelines (WCAG) 2.1
Web Content Accessibility Guidelines (WCAG) 2.1 explain how to make web content
more accessible to people with disabilities [48]. Accessibility covers a wide range of
disabilities, including visual, auditory, physical, speech and neurological disabilities. Al-
though using these guidelines, a wide range of issues can be covered, but these guidelines
are not able to address every need of people with all types of disabilities. These guide-
lines are also there to make the web content more usable for older individuals with
changing abilities and often improve usability for more users in general. WCAG 2.1 is
the latest version of guidelines, which was developed through the W3C process in coop-
eration with individuals and organizations around the world, with a goal of providing
shared standard for web accessibility around all platforms. WCAG 2.1 is designed to
apply to all types of web technologies now and in the future and to be tested with a com-
bination of automated and human evaluations. There were many challenges in defining
additional criteria to address language, cognitive and learning disabilities. Web acces-
sibility depends on accessible content, accessible web browsers and other user agents.
Authoring tools play an important role in web accessibility.

2.3.2 Web Content Accessibility Layers of Guidance
The type of individuals and organizations that use WCAG vary widely and are consisting
of web developers, policy makers, educational organizations and web designers. To meet
these vastly different needs of the targeted audience, several different layers of guidance
are provided, which include the overall principles, guidelines, testable success criteria
and sufficient techniques, documentation, resources, codes etc. [49].

• Principles: The four principles that are the foundation of web accessibility are
perceivable, operable, understandable, and robust.

• Guidelines: Under the principles there are 13 guidelines. These 13 guidelines set
the basic goals that the developers should achieve in order to produce web pages
that are more accessible to users with disabilities. These guidelines are not testable,
but the web developers are provided with the framework and objectives to help
to understand the success criteria and better techniques for implementation.

• Success Criteria: Each guideline is provided with testable success criteria to allow
WCAG to be used where requirements and conformance testing are necessary.
Three levels of conformance are defined to meet the needs of different groups and
situations. They are: A (lowest), AA (Medium), and AAA (highest).

• Sufficient and Advisory Techniques: For each guideline and success criteria in the
WCAG document, there is also a wide variety of techniques documented. The
techniques fall into two categories: those are sufficient to meet the success criteria

2. Background 12

and those which are advisory to meet the success criteria. The advisory techniques
go beyond the requirement of the individual success criteria and allow developers
to address the guidelines better. Some advisory techniques check for accessibility
barriers that are not even covered by testable success criteria.

Together these layers (principles, guidelines, success criteria, and sufficient and ad-
visory techniques) give guidance about how to make the web more accessible to users
with disabilities. Web developers are encouraged to implement all the layers they are
able to, including the advisory techniques in order to provide solutions to a wide range
of users rather than a specific targeted audience. There is a set of requirements that is
set for WCAG 2.1, which inherits requirements from WCAG 2.0. The overall framework
of guidelines and backwards compatibility depends upon these requirements. The set of
acceptance criteria used was less formal to ensure success criteria are similar in quality
and style as in WCAG 2.0 [50].

2.3.3 Accessibility Guidelines Future
The Accessibility Guidelines Group is working towards another version of accessibil-
ity guidelines. The expected result is a more substantial restructuring of accessibility
guidelines. There is much work focused on research and user centered design methods
to produce a more effective and flexible solution including user agent support and au-
thoring tool support. This will be in the long run, that is the reason that WCAG 2.1
was needed as an interim solution to provide the much needed update for the web acces-
sibility guidance to keep up with the development in the web since WCAG 2.0. There
are also possibilities for additional interim guideline versions, continuing with WCAG
2.2, while the major version is being completed [43].

Chapter 3

State of the Art

As the need for better web accessibility is increasing, there are many new pieces of
research happening in this area. There are many new technologies which can help to
increase the quality of life of elderly people and people with disabilities. Despite the
availability of all these new technologies there are still accessibility barriers people ex-
perience when using different Information and Telecommunications Technology (ICT)
solutions [3]. The use of Information and Telecommunications Technology in public
sector is not an exception. eGovernment is an example of the transforming power of
Information and Telecommunications Technology. eGovernment is a governmental ser-
vice, which is aimed at providing information and services to citizens, employees and
other government entities [1]. The government websites have better accessibility than
many commercial websites. For example, Govt of India has a specific set of guidelines for
websites belonging to any constitution of the Govt. These guidelines, which are called
Guidelines for Indian Government Websites (GIGW), was introduced to ensure that
the websites user friendly, accessible, secure and easy to maintain [6]. HTML has been
designed to make websites more accessible, also for people with disabilities. However,
website developers most of the time do not use these functionalities available to them.
Web developers should make the websites accessible to all people regardless of physical
barriers. Studies have shown that many websites are still not accessible to people with
disabilities. Usually developers use different methods to check for accessibility, manual
or automatic evaluations are performed. When manual evaluation is done, there is a
chance that the developer may have some potential bias. In automatic evaluation, the
web page is checked for compliance with the guidelines provided using a software. The
use of software for testing minimizes the need for human intervention. Also, automatic
testing is scalable and objective. But automatic evaluation has some limitations, as it
cannot go to the same depth as manual evaluation nor can it be as complete. So in most
of the cases both evaluations are used to get better results. Many researches in the field
of web accessibility are also about how a better result can be given to the developer,
which helps making the web page better.

As a response to the increasing demand for inclusive web, several web accessibil-
ity guidelines were developed. E.g. American Section 508 [20], the German BITV [24]
and the Web Accessibility Initiative (WAI) [47]. The WAI was developed by the Word
Wide Web Consortium (W3C). WAI also develops guidelines for accessibility in mobile
devices. Mobile accessibility helps to check the accessibility of websites when they are

13

3. State of the Art 14

used in a mobile phone. The objective of WAI is to develop strategies, guidelines and
resources, which help to make the web more accessible to everyone. WAI published sev-
eral guidelines known as the Web Content Accessibility Guidelines (WCAG) and the
latest version is WCAG 2.1, which was published on June 2018 [45].

3.1 Web Accessibility Evaluation Tools
The web accessibility evaluation is simplified by the use of software programs and online
services that helps to have a better understanding about if the web content meets the ac-
cessibility criteria. Accessibility evaluation helps to identify potential accessibility issues
quickly and are used in all phases of the web development process. The accessibility tools
available can do fully automated checks and then the developer can do the review. Even
though this is the case, all aspects of accessibility criteria cannot be checked automat-
ically. User reviews are also required. There is also the possibility of evaluation tools
producing false or misleading results. Accessibility evaluation tools cannot determine
accessibility themselves, they just assist the developer in doing that. These evaluation
tools target different type of users, including designers, developers, testers and also end
users. Different web accessibility tools in the market provides different functionality and
features, which targets different type of end users and this helps the users to compare
the tools available and make a decision on which one is needed for a specific task [44].

3.1.1 Standards and Guidelines
To understand accessibility tools, is to understand the standards in which the tool was
developed. Before selecting a specific accessibility evaluation tool, it is important to take
into account the standards and guidelines used by these different accessibility evaluation
tools. The most commonly used two standards are, WCAG 2.0 and Section 508 of the
united states Rehabilitation Act [33]. Another very important aspect to the accessibility
evaluation tool is the budget. For many budget conscious web designers or developers
this is very important. There are many good free accessibility evaluation tools available
in the market, but after checking the requirements and weighing in the specific needs
of the developer, it may be the best to choose a commercially available tool. These
decisions can be based on these following criteria [30]:

• Who will be using the tool: This is considered the main aspect before choosing
an evaluation tool, that the developer has the necessary knowledge to use it. Free
evaluation tools available usually assume the user has a greater understanding and
spends less time in giving tutorials to users.

• The size of the site being examined: If the content to be checked is very large,
it is important that the tool being used will look through the entire site so the
developer doesn’t have to check the site one page at a time. Most of the time only
the commercially available evaluation tools have this feature. Free tools usually
check one page at a time.

• The information that must be collected: Commercially available evaluation tools
often give more detailed and specific reports.

3. State of the Art 15

3.1.2 Functioning of Accessibility Tools
Another important classification of accessibility evaluation tools involves details about
where these tools are meant to function. Some tools are available in websites, where it
is possible to evaluate the content of a page quickly and easily without downloading
or installing a software. Some evaluation tools can be integrated to the browser as an
extension and finally there are tools which are required to be installed like a normal
software [10, 32].

• Online services: There are many free accessibility evaluation tools that are avail-
able online. They work when the user inputs the URL of a web page which needs
to be checked, and then selecting from the evaluation guidelines available to check
the page with, and then finally choosing the method provided to initialize the
program, to start the checking process.

• In a browser : There are many accessibility evaluation tools that has been created
as extensions of Internet browsers. After installation in the browser, they provide
an additional menu in the browser. This menu can be accessed to know the different
accessibility checking functions available in the extension. Then the user can use
these functions to do the different tasks to evaluate the page that is currently
active in the browser window. These extensions are usually single page evaluation
tools.

• Using an authoring tool: Some evaluation tools can be used as a part of web
authoring tools like Adobe Dreamweaver. These plugins and extensions will help
developers to check the page content in the same environment where the content
is created.

• Software installed on the hard drive: Many of the high-end evaluation tools need to
be installed on the host machine like normal softwares. These type of accessibility
evaluation tools are useful when the developer needs to check large and complex
websites.

3.1.3 Scope of Evaluation Tools
Mainly there are two major categories where the accessibility evaluations tools are
classified into based on what they examine and the scope of the evaluation tool. Some
evaluation tools, mainly the online tools have limited scope, as most of them can only
be used to evaluate just a few things and also only one page at a time. There are other
tools available, which focuses on only one element of a website for evaluation. Then
there are more detail oriented evaluation tools which examines large websites and check
for a wide variety of issues [36].

• Single page at a time: Accessibility evaluation tools that evaluate only one page
at a time, these are the ones which usually found online and used as part of
browsers. The functionality of these tools are limited. They are used to evaluate a
page which is found on a single URL. Even though this is the case, normally they
are helpful in providing many details about the accessibility of the page.

• Accessibility of specific items: There are many accessibility evaluation tools that
focus on just a single page element on a web site. Some of these tools may have op-
tions to show the content from the perspective of someone with visual disabilities.

3. State of the Art 16

These limited scoped evaluation tools are commonly found online or as browser
extensions.

• Accessibility of the whole website: Accessibility evaluation tools that can be in-
stalled as a software are often helpful to inspect a large website for a wide range
of errors. These tools are mainly used by large organizations, who has more spe-
cific requirements and a large number of developers. This feature is available in
paid evaluation tools.

3.1.4 Evaluation and Reports
Another classification of evaluation tools are based on the availability of repair func-
tionality in these tools. Many tools in the market can only do the evaluation, but there
are some tools which after checking for accessibility, offers the functionality to guide
the repairing process. These functionality is mostly seen on commercial evaluation tools
and these tools gives feedback to the users and help them understand what is needed to
be done to improve the accessibility [12]. Accessibility tools generate different type of
reports based on the analyses performed on the web page. Good evaluation tools checks
for obvious errors (errors due to not following guidelines) and alerts (these errors the
developer need to check manually). Beyond this general functionality of the evaluation
tools, the report styles may vary based on the target audience and chosen accessibility
standards. Web developers should know which type of reports are expected from the
accessibility tools before an evaluation tool is selected [13].

• Text Based Report: Most common type of accessibility evaluation reports are text
based reports, which consists the guidelines used to scan the web page and the
instances where accessibility errors occurred.

• Graphic Reports: These type of reports use graphics like icons to specify the ac-
cessibility errors on the page. In this type of report, there will be specific icons for
specific errors in the page and in the report these icons will appear next to the
item with accessibility errors.

• Evaluation and Reporting Language (EARL) Report: EARL reports are result
of an attempt from W3C to standardize accessibility evaluation reports. These
are machine readable reports of the accessibility guidelines the page validates to.
These reports highlights the accessibility issues, the date of validation and the
manual checks to be performed. EARL reports is helpful to users to compare the
effectiveness of different accessibility tools.

3.2 Different Evaluation Tools
There are many different types of evaluation tools available in the market with different
options to choose from. The developer can choose any of these tools based on require-
ments for a specific project and the different criteria mentioned before. Developers from
different countries may also choose an accessibility tool based on the requirements of the
governmental law in that country. Four different types of evaluation tools are discussed
here, to completely understand how varied these tools can be.

3. State of the Art 17

Figure 3.1: Color Contrast Accessibility Validator [29].

3.2.1 A11Y Color Contrast Accessibility Validator
The contrast between text and its background color is an important concern for visually
impaired users. Color Contrast Accessibility Validator1 is a compliance tool, which helps
the developer to check for color contrast issues on a web page. It validates the web page
according to the Web Content Accessibility Guidelines 2.1 [46]. Color contrast, indicate
how the bright or dark colors on a web page appear against each other on screen in
regard to relative gray-scale luminosity. The result of this test will show the color com-
binations that failed the contrast checkpoints. A contrast ratio of 4.5:1 is the minimum
requirement for texts and images embedded as text, against the background color of the
text. If the text is of size 18 point+ or 14pt+ bold, then it requires a minimum contrast
ratio of 3:1 with the text background color. As this is an automatic check tool, it cannot
analyze text embedded in images. So there is a chance for misdiagnose or ignore critical
issues [29]. Color Contrast Accessibility Validator is an online checking tool and checks
a single web page at a time. The URL to the page that need to be checked is entered in
the text field. When the Check Contrast button is pressed it will check for the contrast
issues in the page and then provides the developer with analysis report of the page and
also provides a guide to overcome the errors, if there is any errors present.

The Color Contrast Accessibility Validator has a simple user interface (see Fig. 3.1).
The user can give the address of the page that needs to be checked and press the check
contrast button to get a feedback. The report (see Fig. 3.2) includes the text colour
used, the background color of the text, text font, content of the text and the reason for
failure in compliance with WCAG 2.1 guidelines, if there is any failures.

3.2.2 Accessible Brand Colors

Accessible Brand Colors2 is a tool which provides information about how compliant
the colors are in relation to each other. It was made to check the compliance of the

1https://color.a11y.com/?wc3
2https://abc.useallfive.com/

https://color.a11y.com/?wc3
https://abc.useallfive.com/

3. State of the Art 18

Figure 3.2: Example Color Contrast Accessibility Validator Report.

colors with American Disability Act (ADA). The tool is quite simple to use and the
result will show the compliance level (see Fig. 3.3) and gives marks for different levels
of compliance level [18].

There is also option to add a third color to this and check for compliance with the
first selected two colors. The result page shows the compliance level grades using 4
different levels of compliance. Fig. 3.4 shows these 4 different levels and using that the
verification can be done to see if the selected colours have passed the test. Here it is not
the case, as the the result shows DNP, which means it did not pass the test.

3.2.3 Accessibility Insights for Web

Accessibility Insights for web3 is a chrome browser extension menu(see Fig. 3.5) that
helps to find and fix accessibility issues in web apps and websites. This tools offers
support mainly in two scenarios, first is to help developers identify common high impact
accessibility issues. This is done as a two step process called FastPass (see Fig. 3.6).
The first process is automated checks on the page, where the tool checks for compliance
with accessibility requirements. The second step is called Tab stops. In this step the tool
provide measures to deal with keyboard accessibility. Instructions and a visual helper is
provided, making it easier to identify critical accessibility issues. E.g. keyboard traps,
tab stops, incorrect tab order [14]. The next scenario is Assessment. In this case the
tool helps anyone with basic HTML skills to verify if the web app or website is 100%
compliant. Automated and Manuel checks are available to do the check. In automated
checks, the tool takes care of everything for the developer. In manual check the tool
provides instructions, so the developer can identify and evaluate specific instances [22].

3https://accessibilityinsights.io/docs/en/web/overview

https://accessibilityinsights.io/docs/en/web/overview

3. State of the Art 19

Figure 3.3: Color test results. Here the first color selected is Bush(#123422) and the
second color selected is Creole(#190303) [19].

Figure 3.4: Different accessibility compliance levels [19].

3. State of the Art 20

Figure 3.5: Accessibility Insights for Web, Browser Extension[15].

Figure 3.6: Automated Checks - FastPass [16].

3. State of the Art 21

Figure 3.7: TAW Accessibility Analysis Tool.

Accessibility Insights generates reports of evaluation results and provides step-by-
step evaluation guidance. As it is a browser plugin, it is used to check a single web page
rather than an in-depth evaluation of the complete website. The failed instances will
be highlighted in the page itself. In addition, a secondary page will open with details
about the failed rules and instances where the failure occurred (see Fig. 3.6). When the
assessment is finished, it is possible to review the failures in the target page itself by
selecting a failure icon or the review can be done in a secondary page which opens up
with the failed instances. These failure details include a statement of the violated rule,
the name and link to the details about the rule, path to the element that failed the test
and also the instructions for fixing the failure. When the failure details is reviewed in
the target page, the element’s code can be seen using the inspect HTML button option
available in the developer tools. In the secondary page the failed element’s code snippet
is already provided. There is also option available to copy the failure details into other
document or bug report for future references.

3.2.4 TAW

TAW4 is an accessibility tool developed by the Spanish Foundation Center for the
Development of Information and Communication Technologies in Asturias (CTIC)5. It

4https://www.tawdis.net/index
5https://www.fundacionctic.org/

https://www.tawdis.net/index
https://www.fundacionctic.org/

3. State of the Art 22

has adaptations in English, Spanish and Portuguese [3]. TAW tests for accessibility using
web content accessibility guidelines 2.0. The user interface of TAW is simple (see Fig.
3.7). There is option to input the url to check and then there is additional options which
can be selected. These additional options include options to select the analysis level and
supported technologies. After the required options are selected, press the analyse button
to start the analysis of the page. The result of the analysis is shown in next page and
this page includes the summary of the test. Summary of the analysis include problems
and warnings found on the page. There is also detailed information available about the
contents on the page which was not perceivable, operable, understandable and robust
[5]. TAW also has the option to send the detailed analysis report to an user.

3.3 Accessibility Evaluation Tools Comparison
Developers prefer to use automated testing tools to check accessibility. However, some
of these tools may have serious limitations and it is important to have a better un-
derstanding about what a tool can achieve before selecting a tool. Many accessibility
testing tools of poor quality get more attention sometimes, than the good ones. The
Automated WCAG Monitoring community group13 is a W3C community which stands
to improve the rules for web content accessibility guidelines testing. The purpose of this
is to help web developers with better accuracy and completeness of their tools [8].

From Table 3.1, it is evident that there are many accessibility testing tools available
in the market as a free software or commercial or even as a browser plugin, which follows
different accessibility guidelines. It is the task of the developer to choose one tool which
follows a specific guideline which is required for the task in hand. Most of the free
softwares check a single web page at a time. The paid commercial accessibility testing
tools like Access Alchemy can be used to check a number of pages and also websites at a
time and these kind of paid softwares also help the developer by immediately deploying
automated fixes for the most obvious accessibility violations. 508checker is an online
accessibility checking tool which specifically check if, the web page is in compliance
with American Rehabilitation Act section 508. This is a free tool, but can be only used
to check single web pages.

As mentioned before, Accessibility Insights for web can be installed as an add-on
on Google Chrome or Microsoft Edge web browser to check the accessibility. There
is even an option for assessment of all the rules one by one in this browser plugin.
A11Y Color Contrast Validator and Accessible Brand Colors are two free tools in the
list, which are mainly used to check for color accessibility criteria on web pages. These
tools help developers to focus the accessibility checking mainly on the background and
foreground color combinations. Both of these tools can be used to check web pages which

6http://www.508checker.com
7https://accessibilityinsights.io/docs/en/web/overview
8https://color.a11y.com/?wc3
9https://www.levelaccess.com/solutions/software/access-alchemy/

10https://www.tawdis.net/index
11https://abc.useallfive.com/
12https://www.equalweb.com/
13https://www.w3.org/community/auto-wcag/

http://www.508checker.com
https://accessibilityinsights.io/docs/en/web/overview
https://color.a11y.com/?wc3
https://www.levelaccess.com/solutions/software/access-alchemy/
https://www.tawdis.net/index
https://abc.useallfive.com/
https://www.equalweb.com/
https://www.w3.org/community/auto-wcag/

3. State of the Art 23

Tool Name Guidelines follow-
ing

Supported for-
mats

License

508checker6 Section 508, US
federal procure-
ment standard

CSS, HTML,
XHTML

Free Software

Accessibility
Insights for Web7

W3C Web Con-
tent Accessibility
Guidelines 2.1

HTML Open Source

a11y Color Con-
trast Accessibility
Validator8

WCAG 2.0 —
W3C Web Con-
tent Accessibility

HTML Open Source

Access Alchemy9 WCAG 2.1 —
W3C Web Con-
tent Accessibility

CSS, HTML,
XHTML

Commercial, En-
terprise

Taw10 WCAG 2.1 —
W3C Web Con-
tent Accessibility
Guidelines 2.1

CSS, HTML, JS Open Source

Accessible Brand
Colors11

WCAG 2.1 —
W3C Web Con-
tent Accessibility
Guidelines 2.1

CSS Open Source

EqualWeb12 German govern-
ment standard,
Irish National
IT Accessibility
Guidelines, JIS,
Japanese indus-
try standard,
Israeli web acces-
sibility guidelines,
Stanca Act, Ital-
ian accessibility
legislation

WAI-ARIA, CSS,
HTML, XHTML,
SVG, PDF doc-
uments, Images,
Microsoft Office
documents

Trial or Demo,
Commercial, En-
terprise

Table 3.1: Comparison of different accessibility checking tools available.

target people with partial visual disabilities. The tools which big corporations use are
the likes of Access Alchemy and EqualWeb. These tools have the option to check for
accessibility of whole web pages in one step. EqualWeb supports many different file
types and guidelines. EqualWeb has guideline options for many countries. There is also
different type of license available. Individual developers can also try the software using
demo version rather than paying for the full version. This makes it one of the sought
after tools on the market.

Chapter 4

Own Approach

The idea was to implement the project in two phases. First phase consist of a browser
extension to test existing websites for the lack of aria integration and the second phase
consist of a library, to ease the addition of aria roles when creating custom web compo-
nents.

4.1 Basic Idea
Integration of the ARIA attributes into a HTML element gives that specific element
more semantics. In return, this helps the screen reader to understand the role of that
element in that web page and convey it to the end user. The screen readers use different
types of accessibility APIs available to them for this purpose.

Websites nowadays are mostly made of different JavaScript frameworks. There are
so many different JavaScript based frameworks and libraries available on the market
now and out of these frameworks, many significant and more frequently used ones are
using a component based structure for development. For example, from the start of
the development of a website, using one of these frameworks, the developer can make
a decision on the different parts of the project that should be componentized. The
developer can choose to split the whole website into different components, like a header
component, footer component, slider component etc.

By following this kind of componentized architecture helps the main web developer
to split a single page into components and give the task of implementing individual com-
ponents to different developers. Another idea behind having componentized architecture
is that this way of coding helps with better code reusability. If a slider component is
created for one page, the same component can be used in another page of the same
project or also in another project without having to make so many changes to the basic
code. This approach makes room for more questions about how this approach can be
used to the advantage of the developer in order to implement accessibility. Each of these
questions need to be answered to successfully finish this research.

4.1.1 Challenges in current approach
Starting with individual components and how these components can be made accessible.
Using ARIA attributes is a good solution to extend the elements and make a component

24

4. Own Approach 25

accessible. But how to integrate different ARIA roles into different HTML elements is
another challenge. Like any other challenge, there were different ways of looking at the
problem. The first option to do this was to create a JavaScript library which can be
added to a web page or component. When running the web page, the DOM elements
will be created and when the elements are loaded, the library will automatically assign
the ARIA features into the HTML elements. This method mainly targets the custom
created elements which are more generic, the basic HTML tags already have these
features inbuilt in them. In this approach, the elements in the page can be identified
using the HTML DOM tagName property (see Prog. 5.3). By doing this the screen
reader will be able to get more details about the elements in the page. This was one
way of looking for a solution to the challenge. But by following this solution, it may be
possible that other issues may arise on future testing. One main problem may arise from
this approach is the accessibility of custom elements in the web page, which is explained
in the following section.

4.1.2 Structure of the project
Custom elements are also HTML elements that are user defined. There is a provision
to define elements, which can be new or extended from the native HTML elements.
Nowadays, many web developers use this option of creating custom elements to have
HTML elements with more features that they want. When creating the elements, the
developer can define the name for the element. This means, that there are possibilities of
different element names in the web page rather than having only native HTML elements.
This is the reason behind the idea to implement a browser add-on to verify if there are
any custom elements in the page and if there is any elements then, if the aria roles
are correctly implemented in these custom elements. This is concerned with the first
phase of the project, where the developer should be able to check and verify the aria
integration into custom elements on the page. Using custom elements can be an issue
if the first approach mentioned above is used to integrate ARIA into a page, because
the library is using tagName property to identify the HTML elements, assign roles and
other attributes. By having a custom named element on the same page, the accessibility
of the page cannot be guaranteed. This accessibility concern regarding custom elements
makes it important to look into the problem of accessibility and ARIA integration from
a different point of view. Now there is a new criteria to be satisfied in order to provide
accessible web pages. This criteria can only be satisfied if a different approach is taken
than the first one mentioned. Web developers use different type of selectors to select
different HTML elements on the web page. In this way, different operations can be done
on a single element. If the same approach is taken into consideration for the ARIA
integration into a web page, this opens up a new possibility for the accessibility of
custom elements in a page also.

When using selectors in an HTML page, individual elements including the custom
elements in the same page can be selected. The developer can define a selector like an id
or class attributes for this purpose. It is a normal process for a web developer to define
a selector for styling purposes or related. This same idea is used in the new approach,
where a HTML selector attribute is used to get a specific HTML element. By doing
so, the custom components can also be queried and it is possible to make changes to

4. Own Approach 26

the element, like adding ARIA attributes. Using this idea, the implementation of this
project is carried out in two parts. First the planning and implementation of the browser
add-on and the second being the planning and implementation of the JavaScript library.

4.1.3 Formal Requirements
The development phase of a project can always be a challenging part. The first and the
most important challenge is to fully understand the things to be implemented in the
project and come up with a good build pipeline to code the solution to the problem.
Being a web project, choosing the correct web technology to construct the project is of
utmost importance. There are many frameworks and libraries available to the developer
on the current market, so choosing one of them and understanding the working and
the future possibilities of the technology is very important. Modern JavaScript projects
need more than just a framework to test, build and run the project. When creating
a project, it is another task of the developer to choose other technologies which is
needed for the testing, building and running of the project without any issues. Once
the developer figures out the needed technologies for the building the project, the next
part of the task will be to look into the future of the project. As this is a library for
web projects, it is important that the library gets regular updates whenever there is
an update in ARIA specifications or if there is a need to make a change in an already
implemented component of the project. These new updates should be integrated into
the library in a timely manner. There must be also emphasis into how the project should
be maintained and how it can be made available to other developers who are working
with other projects and would like to use the library in their projects. There should
be also a possibility for other web developers to make contributions to the library if
that is possible. For this purpose, the developer must find a good online solution. Like
a package manager and repository, using these technologies, the developer can have a
local installation of the library in the web project they are working on. Also, every
developer will be able to access the source code of the library and make changes to it,
maybe for extending functionality or cleaning a bug if needed. The online version of
the library can be used to keep track of the issues in implementation or bug fixing and
provide further support to other developers who also use this library.

4.1.4 Implementation and Integration
The implementation and integration are two parts of the project, which gives a better
understanding about the current situation and future working of the project. The imple-
mentation part of the project gives an emphasis on how the library can be implemented
with the available web technologies and what can be achieved if the implementation is
carried out in a certain way. From starting the project from scratch to building it up into
a complete library is a challenging task itself. In the implementation part, the developer
looks more into own code and the integration of dependencies need for development,
into one big project.

When it comes to the integration part of the project, the main objective here is the
seamless binding of the library into the web component and how this can be maintained.
The future use of the library in a web project should be smooth. If a web developer
creating a web application or a website wants to include ARIA accessibility features into

4. Own Approach 27

the web components in the development state, then the web developer should be able
to access the library online and install a copy of the library in the current developing
project. After the installation of the library, the integration of the ARIA features to the
web components come into play.

4.2 Browser Extension
The first part of the thesis project was to find a way to help the developer to understand
the current scenario related to custom elements in a web page and the accessibility
concerns regarding this. For this purpose a browser add-on is a good option, as the web
pages which the developer want to check can be easily verified if a browser add-on is
used. Also it can focus directly on the web page interface.

4.2.1 Requirements
As the method to focus on the first part of the project is checked, the requirements for
this is also defined. The main requirements were, that the programmer should be able
to see the custom elements in the page. It should be possible to identify and understand
what are the accessibility concerns with a specific custom element in the page, if there
is any. The issues related to an element can be of various types, ranging from absence
of a role attribute to missing of update attributes and other aria attributes and states
which are needed for accessibility. But the main attribute is the role attribute, which
describes the element to the screen reader. So if that attribute is missing the developer
should know it first hand. The options to do all these must be available easily to the
programmer and also the browser add-on should have good support and should reach
many users as possible. These were the main requirements regarding the browser add-on,
the first phase.

4.2.2 Abstract Solution
The first and the important task the phase one, is to choose the API and Architecture
for the implementation of the browser extension. A browser extension’s architecture will
depend on its functionality, but most extensions has multiple components. The main
components being manifest1, background script, content script [28]. The manifest file
contains all the information about the extension, for example name, version, description
to name a few details on the manifest file. The next component is the background script,
this is the extension’s event handler component. The listeners for the browser events
are contained in the background script. It stays silent until a specific event is fired and
then it performs the instructed logic. It is only loaded when it is needed. The next
component is the content script, which is used by the extension to read or write to web
pages. This contains JavaScript codes which executes in the page that has been loade
into the browser. Content scripts can read and modify the DOM of web pages inside the
browser. Fig. 4.1 shows the basic architecture behind the working and implementation
of the browser extension.

1https://developer.chrome.com/extensions/manifest

https://developer.chrome.com/extensions/manifest

4. Own Approach 28

Figure 4.1: Browser Extension Architecture.

4.3 JavaScript Library
The second phase of the project consist of implementation of the JavaScript library. This
part of the implementation looks more into the development of the library, integration
of the library and also the testing of the components which is made using the library.

4.3.1 Requirements
In the second part of the project also the requirements are set at first. The main re-
quirements included, the accessibility of individual components, individual component
accessibility checking possibility, simplifying the integration of the library, testing the
library with different tools. The main challenge in the integration part of the project
is about how this is realized in projects from different developers. It is also important
that the web developer who is using the library has an understanding about the work-
ing of the library. Only by knowing how the library can be used in another project, it
is possible to use it in a real world environment without any issues. The components,
which are made using the library should produce the intended results when used with
a screen reader.

4.3.2 Abstract Solution
The primary task would be the focusing on the implementation of very important and
basic ARIA attributes on the library, so when using the library, this data can be added
to the main project and accessibility can be achieved.

Development of the Library

When it comes to the development phase of the project, there are many new technologies
available on the market, which can be used for this purpose. But choosing the right
technology is very important for the timely and structured development process. The
challenge is to do the development of the library in a framework that is suitable for
the implementation and integration of the library into future web projects. The library

4. Own Approach 29

Role Attribute Element Usuage
Button div, a

• Identifies the element as
a button widget,

• Accessible name for the
button is defined by the
text content of the ele-
ment.

tabindex="0" div, a
• Includes the element in

the tab sequence,
• Needed on the a element

because it does not have
a href attribute.

aria-pressed=
"false"

a
• Identifies the button as

a toggle button,
• Indicates the toggle but-

ton is not pressed.

aria-pressed=
"true"

a
• Identifies the button as

a toggle button,
• Indicates the toggle but-

ton is pressed.

Table 4.1: ARIA button element authoring practices [21].

must be easily accessible to other web components. It should also be possible to give
the accessibility features to the HTML elements in the component without much coding
from the end developer (see Prog. 4.1). The basic ARIA features should be available and
mainly the roles should be specified. The aria authoring practices is used as a reference
to check which attributes are needed for a specific element to be accessible (see Table
4.1). It is also important to note that the library should be online in the future and
easily accessible to developers all around the world. Upon finalising on a framework
that will give solutions to the previously mentioned challenges, the next step in the
process is to have a clear understanding about the development dependencies needed
for the production of the library. There are different development dependencies needed
for a web project to work. In the library project, apart from choosing the framework
for development, it is also necessary to finalize on a test for testing purposes, compiler
for compiling the code and a build library to build the project to run. These additional
libraries are used in the project as development dependencies, because the end user who

4. Own Approach 30

1 class CustomButton extends window.HTMLElement {
2
3 static propTypes = {
4 text: 'aria-toggle-button'
5 }
6
7 connectedCallback() {
8 this.root = this.attachShadow({mode: 'open'})
9 ReactDOM.render(<MyReactComponent class='aria-toggle-button' />, this.root)

10 }
11
12 disconnectedCallback() {
13 ReactDOM.unmountComponentAtNode(this.root)
14 }
15 }
16
17 window.customElements.define('my-button', CustomButton)
18
19 export default class MyReactComponent extends React.Component {
20 render() {
21 return (
22 <div>
23 <button style={styles.button} className='aria-toggle-button'>
24 my Button
25 </button>
26 </div>
27)
28 }
29 }
30
31 const styles = {
32 button: {
33 backgroundColor: 'aquamarine'
34 }
35 }

Program 4.1: Custom button element implemented with integrated aria toggle button
attributes.

uses the final product, which is the ARIA library does not need to know the working of
the dependencies used in creating the library.

Implementation and Integration

The implementation of the project is done in such a manner, that even the developer
who is using the library components can easily check and verify the working of the
components of the library. It is very important to follow a component based architecture.
There can be different functions provided for different ARIA attributes, states and
properties, because ARIA does not only consist of role attributes, but also with state
and properties attributes. Even within the roles there are different sub divisions, named
widget roles, composite roles, document structure roles and landmark roles. It is made

4. Own Approach 31

possible for the developer to use the library to add all these criteria into an HTML
element in a single code or split these attributes and add the ones to the HTML element,
that the developer wants.

The integration of the library is done using a component within the library. So the
developer can add the component to any page and access the accessibility functions
in that component and give these functions to the target HTML element in order to
make it accessible. All this is done using different types of selectors. It is very important
that there is a document available, explaining how to integrate the components from
the library into the working project and test the components of the working project. A
detailed description about the implementation of the project will be given later.

Chapter 5

Implementation

After shaping a basic theoretical approach and making different considerations, the
next part was to define the required tools and set up the project. It is also important to
verify that the final version of the project is dependent on additional libraries as little
as possible. The structure of the project is very important from the beginning, having
a folder structure at the start of the development makes it easier for the project to be
maintained in the long term through asynchronous collaboration workflow. Also this
will help in focusing on certain parts of the development process.

5.1 Considerations towards implementation
After looking at the challenges and possible solutions, the following topics can be iden-
tified as the essential ones:

• Browser Add-On: Best way to identify basic accessibility problems in a web page,
• Framework: Best solution for the implementation of the project,
• Compiler : Compile the code and produce output,
• Build System: To build the library,
• Versioning: Keep track of the development and possible revert, if needed,
• Branching: Helps to collaborate with different accessibility developers in future.
Git1 qualifies as a core component in any web project, especially when there are

multiple versions and the developers maintaining the project wants to keep track of the
build process. Being aware of Bitbucket2 and the benefits of its API, it serves as the
foundation for the solution. Since the library should be accessible to all the developers, it
makes sense to use the build pipeline and deploy the package to a package manager like
Node package manager3. Use of a package manager will ensure that the library package
is accessible to developers all over the world. Integrating the bitbucket development
pipeline for the node package manager, will ensure timely deployment of the package
when there is a new version available and the package passes test constraints.

1https://git-scm.com/
2https://bitbucket.org/product/
3https://www.npmjs.com/

32

https://git-scm.com/
https://bitbucket.org/product/
https://www.npmjs.com/

5. Implementation 33

5.1.1 Browser Add-on
The main factors to consider in the implementation process of the browser add-on is the
API to use, the framework to work with the options to add to the add-on and finally
the programming language.

Choosing a Framework

There are many frameworks available in the market now. The best practice in choosing a
framework will be to choose a modern framework, which is easier to code. The framework
should have good component based architecture capability implementation. It should
also support good integration of development dependencies. React library was the best
option available including all the criteria and ease of development.

Choosing an API for Browser Add-on

Nowadays there are different types of browsers available in the market. Before starting
programming with a specific API, it is important to check if the browser add-on is
available to most users. After some research it was found out that Chrome4 browser has
the best market share, standing at 63.69% [25]. The best way to reach more users was
to choose Chrome API for the implementation of the browser add-on.

Choosing the language

For the browser add-on, due to the particularities of the task in hand, TypeScript5 was
chosen as the language for the implementation. This is a superset of JavaScript and it
compiles to plain JavaScript on runtime. This was also an opportunity to work with
TypeScript and understand its working and the difference with ECMA Script, which is
the standardized JavaScript.

5.1.2 Library
The main factors to consider in the implementation of the library is the framework,
Build system, Compiler and the versioning and branching system.

Choosing a Framework

To start building the project, the basic necessity is the framework on which it must be
build upon. As it was stated before, there are many JavaScript frameworks available
in the market now. Choosing the right framework for the job is important. First and
foremost, the installation process of the chosen framework should be as easy as possible.
There must be an option to use command line tools to start the project. The framework
should provide component based architecture for implementation. It should support a
good testing functionality and good integration of development dependencies. Using a
framework with many packages already available online can seriously reduce the time
needed for implementation.

4https://www.google.com/chrome/
5https://www.typescriptlang.org/

https://www.google.com/chrome/
https://www.typescriptlang.org/

5. Implementation 34

Figure 5.1: Visualization of the planned development and deployment phases.

ECMA Script programming language is being used for development. ECMA Script
is the standardized name for JavaScript and ES6 refers to the version 6 of ECMA script.
So the framework must have ES6 compiler support to compile the pages and also build
support to build the project. The framework should also have a good community and
development support.

All in all, the best solution currently seems to be React JavaScript framework6, as
it combines the user interface and the behaviour of the components. It has a component
based architecture as required for the project. Also good support for different ES6
compilers and it is also easier to build and deploy online. Instead of using regular
JavaScript for templating, React uses JSX. JSX is a simplified JavaScript, which allows
HTML tag syntax to render subcomponents. This HTML tag syntax is then processed
into JavaScript calls of react framework.

Compilation and Build process

In development phase, the project needs to be compiled and build before running and
seeing the results. The compiler that is most commonly used with React projects is
Babel7. One of the main reasons for the use of React and Babel together is because
Babel can convert JSX syntax and it also tries to stay true to the ECMAScript as
much as possible. JavaScript proved its universality due to its usage on both client and
server side. The integration of React and Babel can be done seamlessly because of the
extended support Babel gives to React projects.

Looking for a module bundler to build the project, Rollup8 is well suited for this
task, as it only consist of a very basic setup and can easily be setup (see Prog. 5.1).
Rollup bundles small pieces of code into something larger and more complex. It uses
a standardized format for code modules included in the JavaScript ES6 revision. The

6https://reactjs.org/
7https://babeljs.io/
8https://rollupjs.org/guide/en/

https://reactjs.org/
https://babeljs.io/
https://rollupjs.org/guide/en/

5. Implementation 35

1 // rollup . config . js
2 import resolve from 'rollup-plugin-node-resolve';
3 import babel from 'rollup-plugin-babel';
4
5 export default {
6 input: 'src/main.js',
7 output: {
8 file: 'bundle.js',
9 format: 'cjs'

10 },
11 plugins: [
12 resolve(),
13 babel({
14 exclude: 'node_modules/∗∗' // only transpile the source code
15 })
16]
17 };

Program 5.1: An example for a Basic Rollup.js and Babel setup [23].

main purpose of such a bundler in the application is to make the task of the developer
easier by collecting all the pieces needed for the running of the library and then making
a complex program out of these small pieces which can be later run in a server.

Fig. 5.1 shows an overall visualization of the planned development and deployment
process. The web framework is used together with other development dependencies
to create a project and then Bitbucket is used to manage and maintain the project
online. Based on the respective configuration given, a build pipeline process may be
automatically triggered whenever there is a new commit into a specific branch of the
repository. After a successful build, the package is then deployed to the Node package
manager.

Branching and Versioning

As mentioned before, maintaining the library on the long run is as important as the de-
velopment of the library. Using Git, Bitbucket and Node package manager together will
provide a good build pipeline and deployment solution for the library project. The set-
ting up of these technologies can be a bit hard if the developer has no previous experience
with these technologies. But once the developer gets in touch with these technologies,
then it becomes rather easy for future development processes. Git is the most commonly
used version control system on the market. Bitbucket provides a platform to store and
share Git repositories.

Using a version control with the project is important in order to keep track of
the the different versions of the project and it is also easier to collaborate with other
developers for the project. Version control gives a better idea about the history of the
implementation of the project. As the Git repository is stored in the Bitbucket as a
public repository, then any individual looking into the repository can see the history
of the project and also the currently working branches. Bitbucket makes it easier to
collaborate with other people for the project. Another main part here is the build

5. Implementation 36

Figure 5.2: An example Bitbucket build pipeline.

pipelines available in the Bitbucket for npm integration (see Fig. 5.2). The developer
can deploy the library into the repository and bitbucket takes care of the testing and
build process and then deploy the library into npm (see Fig. 5.1). This makes future
deployments easier.

5.2 Foundation
Since the basic considerations towards the implementation have been made. React JS
is the JavaScript library which is selected to use for the main development purpose.
There are also additional dependencies needed for the project to work. As the project
is a JavaScript library which entirely works with the client side, there are no additional
database requirements or need to implement a REST API. A version control system is
used to keep track of the development history. The project is kept online in a repository,
so it is accessible for other individuals. So now a basic development flow is finalized (see
Fig. 5.1). Next part is to start with the implementation.

5.2.1 React JS
Starting with React JS, it is a JavaScript library for building user interfaces. React
is easier to use and helps to make simple views for every state in an application. It
will render and update the components automatically when the data changes (see Prog.
5.2). Declarative views makes the code easier to debug. React is highly component based
[7]. Because the library project should be component based, it is easier to develop the
library in a component based architecture. Using react, components can be made which
are encapsulated and manage their own state. Then use these components in another
view to make complex user interfaces. Because the component logic is in JavaScript, the
rich data can be passed through the app and in the same time the state can be kept
out of the DOM.

5. Implementation 37

1 class Timer extends React.Component {
2 constructor(props) {
3 super(props);
4 this.state = { seconds: 0 };
5 }
6
7 tick() {
8 this.setState(state => ({
9 seconds: state.seconds + 1

10 }));
11 }
12
13 componentDidMount() {
14 this.interval = setInterval(() => this.tick(), 1000);
15 }
16
17 componentWillUnmount() {
18 clearInterval(this.interval);
19 }
20
21 render() {
22 return (
23 <div>
24 Seconds: {this.state.seconds}
25 </div>
26);
27 }
28 }
29
30 ReactDOM.render(
31 <Timer />,
32 document.getElementById('timer-example')
33);

Program 5.2: An example React Timer application, where props are given to Timer
class and then it is rendered using the render method [35].

Components allow the programmer to split the user interface of an application into
independent, reusable parts, and work on each part in isolation. components work like
normal JavaScript functions. They take inputs called “props” and return elements de-
scribing what should appear on the screen. There are also different lifecycle methods
available in React, to manage state and run codes in specific time of execution. There are
two lifecycles methods used in Prog. 5.2. The componentDidMount() is executed after
the component output has been rendered to the DOM. The componentWillUnmount()
is invoked immediately before a component is unmounted and destroyed. This method
is mostly used to perform any necessary cleanup.

There are so many different react packages available in the package manager, which
will help the developer to easily setup the basic structure. The create-react-library9

contains a package for creating reusable, React libraries using Rollup and create-react-
9https://www.npmjs.com/package/create-react-library

https://www.npmjs.com/package/create-react-library

5. Implementation 38

Figure 5.3: Tree structure of an example react library directory.

app10. Using this CLI to install and setup the basic project structure will be an enormous
help to the developer. By using npm install -g create-react-library command,
this package is installed globally on the system. After installing the package in the
system, using the create-react-library aria-roles command, a new project can
be setup. There is also provision to choose from different options when the project is
setup, like description, author, repository, package manager etc.

The completion of the project setup will give a clean directory structure (see Fig.
5.3). The directory is included of a source folder, for the source files including the test
class. A package.json file, which contains the information about the project and also
the dependencies used for development. Next is the rollup.config.js file, this file
contains the configuration to build the project and produce output (see Prog. 5.1).

5.2.2 Bitbucket
Since the project will require version control to manage current and future codes, it is
suitable to host the library on a git repository hosting website like Bitbucket11. Bitbucket
provides a platform to store git repositories online. In the current development phase, it

10https://github.com/facebook/create-react-app
11https://bitbucket.org/product/

https://github.com/facebook/create-react-app
https://bitbucket.org/product/

5. Implementation 39

is important that the developer keeps track of the changes which is made on the library
on every stage of the development. Also there can be different versions of the library,
when the ARIA specifications are updated. These new specification changes must be
updated on the library also and another version of the library is produced in a timely
manner. In the future development of the library, if there is a need for collaboration
with another developer, the branching system from the Bitbucket API can be used to
split the work load and share it among other developers. Another important advantage
in using Bitbucket as an online solution is the availability of build pipelines. Once the
coding is finished, it is uploaded to Bitbucket and the build pipelines in the Bitbucket
will take care of the deployment of the library into the Node package manager. Thus
making it easier for the developer to manage the code, test and deploy the application.

5.2.3 Node Package Manager
Once the project build is successful in the Bitbucket, automatic deployment to the node
package manager can be set. This helps the developer to do two tasks in a single step.
Node Package Manager (npm) is a package manager for the JavaScript programming
language. In just six years since its establishment, npm has become one of the largest
software ecosystems, hosting more than 230,000 packages, with millions of package
installations every week [11]. It is the world’s largest software registry and also the
default package manager of the of Node.js, a JavaScript runtime environment. It also
consist of a command line client, an online database for public and a paid-for private
one for private packages. This database is called npm registry and this can accessed to
search and download for available JavaScript packages. Developers use npm to share
and borrow packages. When the JavaScript library is being developed, it was necessary
that some packages from the npm registry is borrowed for the development process and
also the library should be made available for the other developers to use in their own
projects. The best way to do this is by using the npm registry.

5.3 Browser Add-on Implementation
The basic and most important step on the implementation process of the browser add-
on is to understand the program flow of the Chrome extension API [27], which is used
for the implementation process. There are different operations which can be carried out
using extension API, like exchanging messages between an extension and its content
script or between different extensions. The main parts of an extension is background
script, content script and manifest.json file. Using these three files as backbone an
extension interacts with the browser and the user. There is another part on the project
which is called the popup section, which is used to show a popup window (see Fig. 5.5)
to the user when the user clicks on the add-on icon. This popup will have the options
inside, within these option user can select the option for the operation the user wants to
perform on the page. The background script works on the background coordinating the
working of the add-on. Prog. 5.4 shows an example manifest file and in this file different
options are given regarding the working of the add-on and the dependent files.

The other two types of file associated with a browser add-on are the background
script and the content script. As the name suggests background script works on the

5. Implementation 40

1 for (let i = 0; i < elements.length; i++) {
2 if (elements[i].tagName.indexOf("-") !== -1) {
3 elements[i].style.backgroundColor = "#CCCCCC";
4 elements[i].classList.add("tooltip");
5 const elementsRole = elements[i].getAttribute("role");
6 const elementsDescription = elements[i].getAttribute("aria-describedby");
7 let feedbackMessage;
8 if (elementsRole == null && elementsDescription != null) {
9 feedbackMessage = "Aria Description Found " + elementsDescription;

10 } else if (elementsDescription == null && elementsRole == null) {
11 feedbackMessage = "Aria Description and Role not Found";
12 } else if (elementsDescription != null && elementsRole == null) {
13 feedbackMessage = "Aria Role Found " + elementsRole;
14 } else {
15 feedbackMessage = "Aria Description Found " + elementsDescription + "\n" + "

Aria Role Found " + elementsRole;
16 }
17 elements[i].title = feedbackMessage;
18 elements[i].setAttribute("data-toggle", "tooltip");
19 }
20 }

Program 5.3: Loop to find the custom elements in a web page.

1 {
2 "manifest_version" : 2,
3 "name": "UC Grabber",
4 "version": "0.1",
5
6 "permissions": [
7 "activeTab"
8],
9 "browser_action": {

10 "default_icon": "images/icon.png",
11 "default_popup": "html/popup.html",
12 "default_title": "uChicago Canvas!"
13 },
14
15 "content_scripts": [
16 {
17 "matches": [
18 "*://canvas.uchicago.edu/∗"
19],
20 "js": ["scripts/content_canvas.js"]
21 }
22 }

Program 5.4: manifest.json file example.

5. Implementation 41

Figure 5.4: Working of a browser extension.

Figure 5.5: Browser Add-on Pop up.

background of the browser and the it helps to check the browser action and pass the
message to the content script (see Fig. 5.4). Then the content script is used to make the
changes to the content of a web page. Using this method, it is possible to manipulate
all the custom HTML tags in the current active page and make changes to these tags,
if there is no ARIA roles available to them (see Prog. 5.3). When there are no roles or
description found on the element, then the element is highlighted and then a tooltip
option is provided for the developer to see which is the element in the page and what
are the attributes missing in the element.

If there are no roles and description available in the custom HTML tag, then it
is pointed and highlighted. By implementing the browser add-on this way helps the
programmer to see what is missing and which ones are the custom elements in the
active page.

5. Implementation 42

5.4 Library Implementation
One of the most important step prior to starting the development process is finalising
on a structure for the library. It is important that the developer have a clear idea about
how the implementation process should go and what are the additional dependencies
needed for the project to work on a real world environment. As discussed before, the
developer of the project should look into the questions need to be answered and come
up with different solutions to a challenge.

Using React JS to develop the library means that, the contents of the library can be
created as components. In a project, these components can be imported and bounded
to an user interface. This type of approach will give more control to the developer over
the elements in that user interface. The developer should be now able to access the
HTML elements on that page using different queries or methods. This in turn gives the
developer a possible solution to getting a specific element in the page. This is the basic
working principle of the library.

5.4.1 Basic setup
The foundation for the development starts with creating a basic project using the
create-react-library command. Using this command to download a package from
the node package manager and running this package will help the developer with creat-
ing the library project with ease. The directory structure implemented while using the
command to create the project is clean (see Fig. 5.3). It is important to keep a clean
directory structure from the very beginning of the project implementation. Having a
good directory structure at the start of the development makes it easier for the project
maintainers to maintain the project in the long term through asynchronous collabora-
tion.

The source folder (src) is where the main body of the project is developed. The
source folder consist of mainly three files, index.js, styles.css, test.js. The main
JavaScript file in the project is the index.js. The styles.css is the cascade style sheet
file, which can be used to provide styling. And finally the test.js file, which is used
to write tests to check the working of the project. The code needed for the working of
the library is codded in the index.js file. There is also an example project available
with this package, this project can be used to test the library. If the developer wants
to test the library in another test project, there is also provision to do that. There are
commands which can be used to link the library package to another project for testing
purposes. The most common command used for package linking is npm-link12. The
package linking process is a two step process, using this command in the project folder
will create a global symbolic link. This link can be used to connect the library to another
project as a module. In the root folder of the project, which the library is to be linked
to, use command npm-link package-name to connect the library to the project. It is
important to notice that, the package-name specified in the command is the name of
the package on the package.json file, this is not the folder name of the library project.

The basic setup of the project also consist of different development dependencies,
which helps in the development of the library and also there are dependencies of the

12https://docs.npmjs.com/cli/link.html

https://docs.npmjs.com/cli/link.html

5. Implementation 43

project, which the project will need to work on other systems. The details about the
dependencies of the project is available in the package.json file in the root directory of
the project.

5.4.2 Component implementation
To use the library in another project, it is important to create the library as a component.
So the basic stage of the development process is the implementation of this component,
which is used to import the whole library in another project. As a basic step, the
AriaComponent is created in the library project. Inside the component, functions can
be created that will implement necessary ARIA features into the target page. The next
part is the crucial step in the library implementation, this is the about how and what
should be the changes made to an element to make it accessible according to ARIA
standards. Like, addition of which attributes will make a specific component accessible.
For this purpose, WAI-ARIA Authoring Practices13 is used as a reference. Using these
authoring practices, it will be more clear to understand how to create accessible rich
internet applications using WAI-ARIA. This document also gives important information
about approaches to make widgets, navigation etc. This is the go to guide for web
application developers to understand the implementation requirements of ARIA for a
specific HTML element.

In the AriaComponent, different functions and listeners are created for different
HTML elements in target project page. When the library is bound to a page or a
component in a project, it will check for the className attribute of the HTML elements
in the web page. There are already specific classnames described in the library to access
specific elements in the target page. So, when the developer of the target project wants
to add ARIA features using the library, it is possible to use these specific className
attributes to get the individual elements attached to specific functions in the library,
then the library functions can make necessary changes to these elements to make them
accessible.

Sometimes the developer may only want to add some attributes to an HTML el-
ement, e.g. aria-pressed. Using the library also provides the option to do only a
specific task also, if that is what the developer needs. As the requirement of the devel-
oper changes for different elements, there is options available to integrate these changes
to the elements. For these type of attributes, which needs to be updated, there are dif-
ferent type of listeners available in the library. The library uses these listeners to catch
an event happening in the target HTML element. When a click or press event occurs
on a button, and this button is attached to the library using that specific classname,
then the library will get these updates and make necessary changes and convey it to the
end-user.

Table 4.1 from the authoring practices, show the necessary role and attributes
needed to make an element a button or a toggle button. This practices are instructions
which are followed throughout the development of the library. In the library project, an
ariaButton() function is created to check the accessibility needs of a button and an
ariaToggleButton() function is used to check the accessibility of a toggle button in the
target HTML page. The developer writing code for the target HTML page can intro-

13https://www.w3.org/TR/wai-aria-practices-1.1/

https://www.w3.org/TR/wai-aria-practices-1.1/

5. Implementation 44

1 import * as React from 'react';
2 import '../index.css';
3 import AriaComponent from 'aria-roles';

Program 5.5: Importing React and Aria library into a component.

duce the library to the web page using a specific import statement (see Prog. 5.5) and
by adding an extra className attribute className = ’aria-button’ to an HTML
element that requires the ARIA accessibility specifications for a button (see Prog. 5.7),
the accessibility requirements can be attached to that button element. In the library
project, there are functions like ariaButton(), which is loaded when the target page
is mounted. So, the function will check if there is a className = ’aria-button’ at-
tribute set on an element in the page. If there is an element with this attribute, then
the function is called to make necessary changes on the element. This function works in
accordance with the ARIA authoring recommendations for a button.

In Prog. 5.7 the ariaButton variable takes the elements with the className =
’aria-button’ and the function checks if there is already a role attribute present in
the element, also what if there is a role attribute then what is the current value of the
attribute. If the attribute value is null or something other than button, it this is not
correct implementation of an ARIA button, according to the authoring document. So
the function will take necessary steps to make these changes on the target element.
There is also a option to set the tab sequence of the element, using the tabindex=’0’
attribute. This attribute includes the button element in the tab sequence.

In Prog. 5.8 the ariaToggleButton variable takes the element with className
= ’aria-toggle-button’ attribute set in the target HTML page and here also the
first and the basic step is to check if there is already a role attribute in the element
with the aria-toggle-button className attribute. If there are elements with this
attributes set, then same as a button element the role attributes is set as button. But
the main change that differentiates a button and a toggle button is the aria-pressed
attribute. When the button role and aria-pressed attribute are used together then
the assistive technology will know that this a toggle button. The assistive technology
uses aria-pressed attribute to convey the current state of the toggle button to the end
user. When there is a change in the state, this information can be updated to the user
including the current state of the toggle button (see Prog. 5.8). As mentioned before,
event listeners are used for this specific task. When an element in the target page have
the aria-pressed attribute, then these event listeners will also check on that element,
when the element is active (see Prog. 5.6). Any changes to an active element with
aria-pressed attribute will reflect on the library and the library functions will make
these changes to the aria-pressed attribute and update the target element. In Prog.
5.9, the aria-button is used in a span HTMl tag to give semantics of a button to this
tag. When the UI is rendered then the span is rendered including the changes which
are needed to give semantics of a button to the span element (see Fig. 5.6). It is clearly
visible that the attributes that are needed according to the authoring practices, for the
element to work as an ARIA button is implemented and recognised in the span element.

The ARIA authoring practices are used throughout the implementation phase as a

5. Implementation 45

1 ariapressedEvent() {
2 let activeState = document.activeElement.getAttribute('aria-pressed')
3 if (activeState === 'false') {
4 document.activeElement.setAttribute('aria-pressed', 'true')
5 return
6 }
7 if (activeState === 'true') {
8 document.activeElement.setAttribute('aria-pressed', 'false')
9 }

10 }

Program 5.6: Using ariapressedEvent() function to convert a button into a toggle
button and changing the aria-pressed state according to the button state.

Figure 5.6: change after adding the aria-button className to the span element.

1 ariaButton() {
2 let ariaButton = document.getElementsByClassName('aria-button')
3 for (let i = 0; i < ariaButton.length; i++) {
4 if (!ariaButton[i].getAttribute('role')) {
5 ariaButton[i].setAttribute('role', 'button')
6 }
7 if (!ariaButton[i].getAttribute('tabindex')) {
8 ariaButton[i].setAttribute('tabindex', '0')
9 }

10 }
11 }

Program 5.7: Changes made to a HTML tag with aria-button as className.

reference, in order to understand what are the different combinations of attributes to
be mixed together to attain accessibility for a specific element. For different elements
different combinations of the attributes are used for accessibility, wrong combinations
of attribute may seriously affect the accessibility of the whole page. So it is important
to review individual elements and their attribute combinations on every stage of the
implementation process.

5.5 Deployment
Once the basic development is finished, the next part of the implementation process is to
upload the library to an online git repository for managing current and future versions

5. Implementation 46

1 ariaToggleButton() {
2 let ariaToggleButton = document.getElementsByClassName('aria-toggle-button')
3 for (let i = 0; i < ariaToggleButton.length; i++) {
4 if (!ariaToggleButton[i].getAttribute('role')) {
5 ariaToggleButton[i].setAttribute('role', 'button')
6 }
7 if (!ariaToggleButton[i].getAttribute('tabindex')) {
8 ariaToggleButton[i].setAttribute('tabindex', '0')
9 }

10 if (!ariaToggleButton[i].getAttribute('aria-pressed')) {
11 if (ariaToggleButton[i].checked) {
12 ariaToggleButton[i].setAttribute('aria-pressed', 'true')
13 } else {
14 ariaToggleButton[i].setAttribute('aria-pressed', 'false')
15 }
16 }
17 }
18 }

Program 5.8: Using ariaToggleButton() to make changes to the HTML tag with
aria-toggle-button as className.

1 <div className="row">
2 <div className="col">
3
4 Read More <FontAwesomeIcon icon={faAngleDoubleRight} />
5
6 </div>
7 </div>

Program 5.9: Adding aria-button to a span HTML tag.

of the library. The chosen git repository for the project is Bitbucket. Bitbucket provides
pipelines to build, test and publish the library package to the node package manager.
Using Bitbucket pipelines takes a large amount of workload from the developers hand.
In normal scenario, developer use the git repository for version control and publish the
package to the package registry separately. But with Bitbucket there is inbuilt options
available to publish the package to different online sources, thus making the job of the
developer more simpler.

5.5.1 Bitbucket Pipelines
Using Bitbucket pipelines for deploying the package is a fairly simple process. There
are inbuilt options available in Bitbucket, where the developer can give in details about
the user account in the npm registry and also token generated from npm registry, to
connect the repository to npm. To start with the pipelines, first the developer will have to
select the branch in the repository which should be deployed (mostly common deployed
branch is the master branch) and add a new file called bitbucket-pipelines.yml to

5. Implementation 47

Figure 5.7: bitbucket-pipelines.yml file.

Figure 5.8: Running Bitbucket build pipelines.

this branch (see Fig. 5.7). This file holds the initial deployment steps which informs the
Bitbucket API that, this is the branch to be deployed and also the necessary steps to
deploy the package is also listed in this file.

In bitbucket-pipelines.yml file, developer can specify the scripts to run on the

5. Implementation 48

Figure 5.9: Bitbucket pipeline dashboard showing status.

package to verify it before publishing it to the package manager. The two scripts which
runs in pipeline file are npm install, to install the node modules and npm test to run
test classes to see if there is any issues before starting deployment step (see Fig. 5.7).
The token variable is got from npm, this in turn helps to connect the package to the
npm registry.

Once the necessary information needed for build is set using the bitbucket-pipelines
configuration file, in the branch developer wants to deploy to npm, then it becomes
simple to do future build, test and deployment processes. For future development of
the project, it is mainly done in other branches than the master branch itself. Once
the development process is finished and the next version of the package is finalized,
then these changes in other branches can be merged into the master branch using pull
requests. Whenever there is a new commit in the master branch with a new version the
build pipeline is automatically triggered (see Fig. 5.8).

Even though the pipeline is automatically triggered when there is a new commit
in the master branch, the developer have the option to stop the pipeline before it is
published successfully. If this is the case then the build status is set as ’stopped’. If
there is an error in the build process, the status will be set as ’failed’ and if the build
is successful and the package is deployed to npm successfully, then successful’ status is
set (see Fig. 5.9). The developer can keep track of the status of different commits in the
pipeline dashboard of Bitbucket repository.

5.5.2 Node Package Manager
As mentioned before, npm is one of the largest software ecosystems, there are thousands
of packages available with millions of package installations every week. Deploying the
package to an online package registry like npm means, this package can be accessed by
developers all over the world easily, they can integrate the package to their own projects
or download a local copy and make changes of their own to the source code. To install
a local copy of the package in a remote system, the developer just need to run npm i
-s react-aria-roles command. In this way, the package can be distributed among
developers from all over the world using the node package manager.

5.5.3 Extensibility
One of the major factors considered in the modern web development is the extensibility
of the component that is created. In the library project, there is a possibility to extend
the project to include many more available aria roles. Currently the library supports
elements like, Button, Toggle Button, Checkbox, Combobox, Link, Slider etc. Many

5. Implementation 49

new roles can be added to the library using the same method and also when there are
changes in the ARIA specifications, the library can adapt to these changes without
much effort. Version control plays a big part in future development of the library.

Chapter 6

Evaluation

After the implementation of the project, the two phases are tested and evaluated on
different scenario’s to verify the usability of the project in the real world environment.
The two parts are tested separately and the results are noted to see if they fulfill the
requirements.

6.1 Browser Extension
To prove the usability of the project, the extension is tested in a web page with custom
elements and also in a web page where the custom elements are absent. It is checked
to see if the before mentioned requirements are fulfilled and the project is suitable
for real world use. The main requirements for the browser extension were, when it is
used to check for elements in a web page, the extension should retrieve the custom
elements in the web page, then the aria specific attributes of these custom elements
should be evaluated and finally the extension should be able to communicate with the
user regarding the current state of the aria attributes in the checked custom element.

6.1.1 Results
When the browser extension is tested on a web page with not custom elements, it did
show the alert saying “no custom element found” (see Fig. 6.1). This was the intended
result and this is being realised without any error. The next part of the evaluation
process was to test the extension on web page with custom elements (see Fig. 6.2). The
result from this test was also successful, as the custom elements in page was highlighted
and on mouse over, there was a tooltip present with the details about the attribute
missing on that element.

6.2 JavaScript Library
To prove the project’s usability, it has been tested with different accessibility checking
tools available. The tools used are browser add-on accessibility checking tools, which
also have a single page testing mechanism. Using web components in the development
means that when testing, it is possible to test the single component rather than the whole

50

6. Evaluation 51

Figure 6.1: Result when there are no custom elements on the page.

Figure 6.2: Result when custom elements are present on a page.

page. So basically when the components are checked individually, it makes it easier for
the developer to quickly find the solution to the problem in hand and also change how
the component behaves without affecting other codes in the same project. When the
testing is done and the component passes the tests, then this component can be used any
number of times in a project without need of another test unless there is some changes

6. Evaluation 52

1 <div className='row'>
2 <div className='col'>
3
4 Test Button
5
6 </div>
7 </div>

Program 6.1: Button element.

made to the component. Even though individual component testing is a good way to
test the web components. It is also important to check the whole page once to verify that
other codes are not interfering with the accessibility of the individual components in a
page. The testing programs will be used for checking the accessibility of the individual
components are WAVE Accessibility Extension by WebAIM1 and Accessibility Insights
for Web2.

6.2.1 Minimum Requirements
When the implementation started the minimum requirements were set as that, the
library should be able to add roles to the HTML tags in a page automatically, so the
active page is checked to get the HTML elements and then it is verified if the roles are
already implemented for the elements present in the active page. If not, then add the
aria role attribute to the elements. On the third iteration of the project the requirements
were updated and now it was important to check for the aria supporting attributes also,
which in turn helps an assistive technology to understand the updates on the page and
give the updated information to the end user. To do this, the library should not only
check for the aria roles attributes but also the corresponding supporting attributes of
that specific role. Then the library should be tested for the correct aria implementation
when it is integrated with web components and it should pass the tests with different
web accessibility testing tools. Also check with a screen reader to verify the usability of
the components.

6.2.2 Results
Here two components are tested with two different accessibility tools and then the results
are noted to check if this approach is good for the future development of the accessible
components. The two components selected for testing purposes are, a Button component
(see Prog. 6.1) and a Toggle Button component (see Prog. 6.2). These components are
tested individually and together in a web page to see if it makes a difference to check
the components individually or together with other components.

From Fig. 6.3 it is clear that the Accessible rich internet application attributes
(ARIA) are correctly implemented for the button component. The WAVE accessibility
checking tool will give details about how many ARIA attributes have been detected for

1https://wave.webaim.org/
2https://accessibilityinsights.io/docs/en/web/overview

https://wave.webaim.org/
https://accessibilityinsights.io/docs/en/web/overview

6. Evaluation 53

Figure 6.3: Button component test results using WAVE accessibility testing tool.

1 <div className='row'>
2 <div className='col'>
3
4 Toggle Button Test
5
6 </div>
7 </div>

Program 6.2: Toggle Button element.

the checked component and in the component interface, it will show more details about
the implementation. Here as the result is shown, there is also visible changes to the
tested component showing the features like tabbable and that the button component is
inside a header H1 and the header is inside a main aria component. Wave also shows the
role of the tested component. It is also possible to click on one of these details and get
more information about what is currently behind the component. Here the result shows
that the role attribute is correctly recognised and also the tab option is also recognised
without any problems. The same button component is then tested with Accessibility
Insights for web tool and with this also the component has passed the test without any
errors (see Fig. 6.4). The test is done using the Fast Pass option from the Accessibility
Insights for web tool, so it gives a more generic evaluation of the component.

The toggle button component is tested using WAVE accessibility tool and the results
are shown in Fig. 6.5. More attributes than that of a basic button is available for the
toggle button. The main difference of the toggle button and that of a basic button is that
the toggle button have aria-pressed attribute, so the user know the current state of the
toggle. This button is also tabbable. The toggle button is tested using the Accessibility
Insights for web tool and in this case also the toggle button component passed the test

6. Evaluation 54

Figure 6.4: Button test results using Accessibility Insights.

Figure 6.5: Toggle Button test results using WAVE.

without showing any failures (see Fig. 6.6). In the final stage of the testing, the two
components are tested together in a single page to see if it shows any failures. WAVE
accessibility tool is used in this case to get more feedback. Fig. 6.7 shows the result of
testing the two components together and the result of this test was also positive. All the
ARIA features are also shown in this result making it sure that these two components is
accessible individually and also together in a single web page. Fig. 6.8 shows the result
of testing a complete webpage containing different individual components including
components using the aria library. The ARIA features are correctly implemented and
recognised. In this way these components can be used to build websites. In addition to
this, the individual components then where tested with different screen reader software’s
to verify this results. These tests passed without failures.

6. Evaluation 55

Figure 6.6: Toggle Button test results using Accessibility Insights for web.

Figure 6.7: Button and Toggle Button test results using Wave.

6. Evaluation 56

Figure 6.8: Complete webpage test using WAVE, when the library is used.

Chapter 7

Conclusion

The interest in web accessible components evolved when I was working with a personal
website project for a social service society in India. On this work, I was looking more into
the Accessible Rich Internet Applications (ARIA) attributes to ensure that the HTML
page is accessible. This made me realise about the need for web accessibility in modern
day web and the need for an easier way to implement the accessibility features on my
future projects and be more productive with the time in hand. On my research I found
out that, only around 10 - 15% websites are accessible to all the people. Developers
don’t go much into accessibility programming for various reasons. So what can be a
good way to make it happen with less work. Because most of the frameworks I use for
web development works with components, I thought that will be a good place to start
my research.

The first idea was to implement a library which will automatically assign aria role
attributes to the HTML tags in the page, but with more research I found out that
native HTML elements have default accessibility attributes from HTML 5, but it is still
not possible with custom elements. After that, I wanted to make a change in the way
how this library should work and wanted to find a way to provide more support to
the developer by also integrating JavaScript functions for updating the aria attributes
in the library. This was the next step in the development process. Then after the first
aria function is made, which was the button aria role and also the button pressed aria
attribute. Then I tested the button component from the main web page, integrating this
library function. I used className attribute as a selector to point the library that this
specific button function should be called on that specific HTML element. When the tests
were passed without any aria issues, I moved onto the next component to implement,
which was the toggle button. One by one different components are implemented and
verified that the overall accessibility is good. This was the way of working I choose for
this project.

When the development of the basic roles and attributes in the library was finished,
it was time to check how the library works in a live environment. For testing the library
I choose different components and went with testing individual components rather than
the whole page. I tested the same component with different testing tools available and
made sure that the library is doing what it was indented to do. After the individual
component testing, the components were added to a single web page and tested again to
check if this makes a difference in the accessibility of the components. I found out that

57

7. Conclusion 58

it may happen that as a whole the page may have some accessibility concerns regarding
parent or child HTML tag but the components did not show any aria accessibility errors.

The need for more accessible web content is more than ever now. As the opportunities
in the web is increasing day by day, more people want to access all these information
on the web. It is the duty of the developer to provide better accessible content to
the end user. New laws are being passed by different governmental bodies to ensure
accessibility of the web pages. There was also a increase in the number accessibility
related law-suits over the years. According to UsableNet1 research team, in 2017 the
number of accessibility related law-suits in United States were 814. But in 2018 this
number jumped to 2285, an increase of 181% in just a year. In future this number will
keep increasing unless we ensure that the contents on web is accessible for everyone.

As a conclusion, I can now say, the most interesting part about my research was
learning more about web accessibility, the importance of it in modern day web devel-
opment, finding a way to implement the library and successfully integrate it into a live
project. In future, this should support developers focusing on their core jobs by taking
much of the accessibility responsibilities off their hands. To sum everything up, the out-
come is quite the initially expected extent; a proof of concept, that the aria attributes
and update functions used this way helps with the faster development of more accessible
web pages.

1 https://blog.usablenet.com/2018-ada-web-accessibility-lawsuit-recap-report

https://blog.usablenet.com/2018-ada-web-accessibility-lawsuit-recap-report

Appendix A

Contents of the DVD

Format: DVD-ROM, Single Layer, UDF-Format

A.1 PDF-Files
Path: /

S1710629003_Anitha_Gregory_Thesis.pdf Master’s Thesis with instructions
(entire document)

Path: /online
Accessibility evaluation tools.pdf
Accessibility Insights overview.pdf
Accessibility Insights for web Fastpass.pdf
Accessibility introduction.pdf
Accessible Brand Colors.pdf
Accessible Brand Colors Check.pdf
American Disability Act section 508.pdf
Assessment in Accessibility Insights for Web.pdf
rollup_js babel guide.pdf
Barrier-Free Information Technology.pdf
browser market share.pdf
Business Case for Digital Accessibility
Chrome extension API.pdf
Chrome extensions overview.pdf
Color Contrast Accessibility Validator.pdf
Disability and Health Overview CDC.pdf
Disability And Types.pdf
react_js.pdf
WAI-ARIA basics.pdf .

59

A. Contents of the DVD 60

WAI-ARIA Browser Support.pdf
WAI-ARIA Screen reader compatibility.pdf
WCAG 2.1 Future.pdf .
Evaluation tools selection.pdf
Web Content Accessibility Guidelines 2.1.pdf
Web Accessibility Evaluation Tools List.pdf
Web Accessibility Initiative.pdf
webaim web accessibility introduction.pdf

A.2 Source Code
Path: /source

v1.0.0.zip Source code of the project

A.3 Graphics
Path: /images

*.png Rendered images and Screenshots

References

Literature

[1] T. Acosta, P. Acosta-Vargas, and S. Lujan-Mora. “Accessibility of eGovernment
Services in Latin America”. In: Proceedings of the 2018 Fifth International Confer-
ence on eDemocracy & eGovernment (ICEDEG). Los Alamitos, CA, USA: IEEE
Computer Society, Apr. 2018, pp. 67–74 (cit. on p. 13).

[2] P. Acosta-Vargas, T. Acosta, and S. Lujan-Mora. “Framework for Accessibility
Evaluation of Hospital Websites”. In: Proceedings of the 2018 Fifth International
Conference on eDemocracy & eGovernment (ICEDEG). Los Alamitos, CA, USA:
IEEE Computer Society, Apr. 2018, pp. 9–15 (cit. on p. 4).

[3] S. U. Dongaonkar, R. S. Vadali, and C. Dhutadmal. “Accessibility Analyzer: Tool
for New Adaptations in Government Web Applications to Improve Accessibility”.
In: Proceedings of the 2017 International Conference on Computing, Communi-
cation, Control and Automation (ICCUBEA). Aug. 2017, pp. 1–5 (cit. on pp. 13,
22).

[4] T. Halbach. “Towards Cognitively Accessible Web Pages”. In: Proceedings of the
2010 Third International Conference on Advances in Computer-Human Interac-
tions. Feb. 2010, pp. 19–24 (cit. on p. 4).

[5] W. A. R. W. M. Isa et al. “Accessibility evaluation using Web Content Accessibility
Guidelines (WCAG) 2.0”. In: Proceedings of the 2016 4th International Conference
on User Science and Engineering (i-USEr). Aug. 2016, pp. 1–4 (cit. on p. 22).

[6] A. Ismail and K. S. Kuppusamy. “Accessibility analysis of North Eastern India
Region websites for persons with disabilities”. In: Proceedings of the 2016 Interna-
tional Conference on Accessibility to Digital World (ICADW). Dec. 2016, pp. 145–
148 (cit. on p. 13).

[7] V. Okanovic. “Web application development with component frameworks”. In:
Proceedings of the 2014 37th International Convention on Information and Com-
munication Technology, Electronics and Microelectronics (MIPRO). May 2014,
pp. 889–892 (cit. on p. 36).

[8] M. Tollefsen and T. Ausland. “A practitioner’s approach to using WCAG evalua-
tion tools”. In: Proceedings of the 2017 6th International Conference on Informa-
tion and Communication Technology and Accessibility (ICTA). Dec. 2017, pp. 1–
5 (cit. on p. 22).

61

References 62

[9] Xabier Valencia et al. “User individuality management in websites based on WAI-
ARIA annotations and ontologies”. In: Proceedings of the W4A 2013 - Interna-
tional Cross-Disciplinary Conference on Web Accessibility. May 2013, 29:1–29:10
(cit. on p. 4).

[10] K. Wille, R. R. Dumke, and C. Wille. “Measuring the Accessability Based on Web
Content Accessibility Guidelines”. In: Proceedings of the 2016 Joint Conference
of the International Workshop on Software Measurement and the International
Conference on Software Process and Product Measurement (IWSM-MENSURA).
Oct. 2016, pp. 164–169 (cit. on p. 15).

[11] E. Wittern, P. Suter, and S. Rajagopalan. “A Look at the Dynamics of the
JavaScript Package Ecosystem”. In: Proceedings of the 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories (MSR). May 2016, pp. 351–
361 (cit. on p. 39).

Online sources

[12] Accessibility Evaluation Tools - Evaluation. url: https://webaim.org/articles/tool
s/#eval_repair (cit. on p. 16).

[13] Accessibility Evaluation Tools - Reports. url: https://webaim.org/articles/tools
/#report (cit. on p. 16).

[14] Accessibility Insights for Web. url: https://accessibilityinsights.io/docs/en/web/o
verview (cit. on p. 18).

[15] Accessibility Insights for Web extension. url: https://accessibilityinsights.io/docs
/en/web/getstarted/fastpass (cit. on p. 20).

[16] Accessibility Insights for Web extension Automated Checks. url: https://accessibi
lityinsights.io/docs/en/web/getstarted/fastpass#run-the-automated-checks (cit. on
p. 20).

[17] Accessibility Intro. url: https://www.w3.org/WAI/fundamentals/accessibility-intr
o/ (cit. on pp. 4, 11).

[18] Accessible Brand Colors. url: https://abc.useallfive.com/ (cit. on p. 18).
[19] Accessible Brand Colors Check. url: https://abc.useallfive.com/?colors[]=112233

,190303 (cit. on p. 19).
[20] American Disability Act section 508. url: https://www.justice.gov/crt/pl-105-22

0-1998-hr-1385-pl-105-220-enacted-august-7-1998-112-stat-936-codified-section-5
04 (cit. on p. 13).

[21] Aria Button Authoring Practices. url: https://www.w3.org/TR/wai-aria-practice
s-1.1/examples/button/button.html (cit. on p. 29).

[22] Assessment in Accessibility Insights for Web. url: https://accessibilityinsights.io
/docs/en/web/getstarted/assessment (cit. on p. 18).

[23] Babel. url: https://rollupjs.org/guide/en/%5C#babel (cit. on p. 35).
[24] BITV. url: https://www.einfach-fuer-alle.de/artikel/bitv_english/ (cit. on p. 13).

https://webaim.org/articles/tools/#eval_repair
https://webaim.org/articles/tools/#eval_repair
https://webaim.org/articles/tools/#report
https://webaim.org/articles/tools/#report
https://accessibilityinsights.io/docs/en/web/overview
https://accessibilityinsights.io/docs/en/web/overview
https://accessibilityinsights.io/docs/en/web/getstarted/fastpass
https://accessibilityinsights.io/docs/en/web/getstarted/fastpass
https://accessibilityinsights.io/docs/en/web/getstarted/fastpass#run-the-automated-checks
https://accessibilityinsights.io/docs/en/web/getstarted/fastpass#run-the-automated-checks
https://www.w3.org/WAI/fundamentals/accessibility-intro/
https://www.w3.org/WAI/fundamentals/accessibility-intro/
https://abc.useallfive.com/
https://abc.useallfive.com/?colors[]=112233,190303
https://abc.useallfive.com/?colors[]=112233,190303
https://www.justice.gov/crt/pl-105-220-1998-hr-1385-pl-105-220-enacted-august-7-1998-112-stat-936-codified-section-504
https://www.justice.gov/crt/pl-105-220-1998-hr-1385-pl-105-220-enacted-august-7-1998-112-stat-936-codified-section-504
https://www.justice.gov/crt/pl-105-220-1998-hr-1385-pl-105-220-enacted-august-7-1998-112-stat-936-codified-section-504
https://www.w3.org/TR/wai-aria-practices-1.1/examples/button/button.html
https://www.w3.org/TR/wai-aria-practices-1.1/examples/button/button.html
https://accessibilityinsights.io/docs/en/web/getstarted/assessment
https://accessibilityinsights.io/docs/en/web/getstarted/assessment
https://rollupjs.org/guide/en/%5C#babel
https://www.einfach-fuer-alle.de/artikel/bitv_english/

References 63

[25] Browser Market Share. url: http ://gs . statcounter . com/browser - market - share
(cit. on p. 33).

[26] Business Case. url: https://www.w3.org/WAI/business-case/#groups (cit. on
p. 5).

[27] Chrome Extension Introduction. url: https://developer.chrome.com/extensions/e
xtension (cit. on p. 39).

[28] Chrome Extension Overview. url: https://developer.chrome.com/extensions/over
view (cit. on p. 27).

[29] Color Contrast Accessibility Validator Tool. url: https://color.a11y.com/ (cit. on
p. 17).

[30] Commercial Evaluation Tools. url: https://webaim.org/articles/tools/#free (cit.
on p. 14).

[31] Disability and Health Overview. url: https://www.cdc.gov/ncbddd/disabilityandh
ealth/disability.html (cit. on p. 3).

[32] Evaluation Tools. url: https://webaim.org/articles/tools/#platform (cit. on p. 15).
[33] Evaluation Tools classification. url: https://webaim.org/articles/tools/#stand_g

uide (cit. on p. 14).
[34] Modes of Disability. url: https://medium.com/fbdevclagos/why-web-accessibility

-is-important-and-how-you-can-accomplish-it-4f59fda7859c (cit. on pp. 3, 4, 11).
[35] React - A JavaScript Library for Building User Interfaces. url: https://reactjs.or

g/ (cit. on p. 37).
[36] Scope of Accessibility Evaluation Tools. url: https://webaim.org/articles/tools/#s

cope (cit. on p. 15).
[37] WAI-ARIA Basic Tackling Problems. url: https://developer.mozilla.org/en-US

/docs/Learn/Accessibility/WAI-ARIA_basics#A_whole_new_set_of_problems
(cit. on p. 5).

[38] WAI-ARIA Basics. url: https://developer.mozilla.org/en-US/docs/Learn/Accessi
bility/WAI-ARIA_basics (cit. on pp. 9, 11).

[39] WAI-ARIA Browser Support. url: https://caniuse.com/#feat=wai-aria (cit. on
p. 6).

[40] WAI-ARIA Main Features. url: https://developer.mozilla.org/en-US/docs/Learn
/Accessibility/WAI-ARIA_basics#Enter_WAI-ARIA (cit. on p. 5).

[41] WAI-ARIA Screen reader compatibility. url: https://www.powermapper.com/tes
ts/screen-readers/aria/ (cit. on p. 7).

[42] WAI-ARIA Usability. url: https://developer.mozilla.org/en-US/docs/Learn/Acces
sibility/WAI-ARIA_basics#When_should_you_use_WAI-ARIA (cit. on pp. 8–10).

[43] WCAG 2.1 Future. url: https://www.w3.org/TR/WCAG21/#later-versions-of-ac
cessibility-guidelines (cit. on p. 12).

[44] WCAG Tools Selection. url: https://www.w3.org/WAI/test-evaluate/tools/selecti
ng/ (cit. on p. 14).

http://gs.statcounter.com/browser-market-share
https://www.w3.org/WAI/business-case/#groups
https://developer.chrome.com/extensions/extension
https://developer.chrome.com/extensions/extension
https://developer.chrome.com/extensions/overview
https://developer.chrome.com/extensions/overview
https://color.a11y.com/
https://webaim.org/articles/tools/#free
https://www.cdc.gov/ncbddd/disabilityandhealth/disability.html
https://www.cdc.gov/ncbddd/disabilityandhealth/disability.html
https://webaim.org/articles/tools/#platform
https://webaim.org/articles/tools/#stand_guide
https://webaim.org/articles/tools/#stand_guide
https://medium.com/fbdevclagos/why-web-accessibility-is-important-and-how-you-can-accomplish-it-4f59fda7859c
https://medium.com/fbdevclagos/why-web-accessibility-is-important-and-how-you-can-accomplish-it-4f59fda7859c
https://reactjs.org/
https://reactjs.org/
https://webaim.org/articles/tools/#scope
https://webaim.org/articles/tools/#scope
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/WAI-ARIA_basics#A_whole_new_set_of_problems
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/WAI-ARIA_basics#A_whole_new_set_of_problems
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/WAI-ARIA_basics
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/WAI-ARIA_basics
https://caniuse.com/#feat=wai-aria
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/WAI-ARIA_basics#Enter_WAI-ARIA
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/WAI-ARIA_basics#Enter_WAI-ARIA
https://www.powermapper.com/tests/screen-readers/aria/
https://www.powermapper.com/tests/screen-readers/aria/
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/WAI-ARIA_basics#When_should_you_use_WAI-ARIA
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/WAI-ARIA_basics#When_should_you_use_WAI-ARIA
https://www.w3.org/TR/WCAG21/#later-versions-of-accessibility-guidelines
https://www.w3.org/TR/WCAG21/#later-versions-of-accessibility-guidelines
https://www.w3.org/WAI/test-evaluate/tools/selecting/
https://www.w3.org/WAI/test-evaluate/tools/selecting/

References 64

[45] WCAG2.1. url: https://www.w3.org/TR/WCAG21/ (cit. on p. 14).
[46] WCAG2.1 Color Contrast Accessibility Validator. url: https://www.w3.org/WAI

/ER/tools/?q=wcag-21-w3c-web-content-accessibility-guidelines-21#a11y-color-co
ntrast-accessibility-validator (cit. on p. 17).

[47] Web Accessibility Initiative. url: https://www.w3.org/WAI/ (cit. on p. 13).
[48] Web Content Accessibility Guidelines Background. url: https://www.w3.org/TR

/WCAG21/#background-on-wcag-2 (cit. on p. 11).
[49] Web Content Accessibility Guidelines Layers. url: https://www.w3.org/TR/WC

AG21/#wcag-2-layers-of-guidance (cit. on p. 11).
[50] Web Content Accessibility Guidelines Requirements. url: https://www.w3.org/T

R/WCAG21/#requirements-for-wcag-2-1 (cit. on p. 12).
[51] Webaim Intro. url: https://webaim.org/intro/ (cit. on p. 4).

https://www.w3.org/TR/WCAG21/
https://www.w3.org/WAI/ER/tools/?q=wcag-21-w3c-web-content-accessibility-guidelines-21#a11y-color-contrast-accessibility-validator
https://www.w3.org/WAI/ER/tools/?q=wcag-21-w3c-web-content-accessibility-guidelines-21#a11y-color-contrast-accessibility-validator
https://www.w3.org/WAI/ER/tools/?q=wcag-21-w3c-web-content-accessibility-guidelines-21#a11y-color-contrast-accessibility-validator
https://www.w3.org/WAI/
https://www.w3.org/TR/WCAG21/#background-on-wcag-2
https://www.w3.org/TR/WCAG21/#background-on-wcag-2
https://www.w3.org/TR/WCAG21/#wcag-2-layers-of-guidance
https://www.w3.org/TR/WCAG21/#wcag-2-layers-of-guidance
https://www.w3.org/TR/WCAG21/#requirements-for-wcag-2-1
https://www.w3.org/TR/WCAG21/#requirements-for-wcag-2-1
https://webaim.org/intro/

Check Final Print Size

— Check final print size! —

width = 100mm
height = 50mm

— Remove this page after printing! —

65

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Structure

	Background
	Definition and Categorization of Disabilities
	Motivation for Web Accessibility
	The Accessible Rich Internet Applications Specification
	Web Content Accessibility Guidelines (WCAG) 2.1
	Web Content Accessibility Layers of Guidance
	Accessibility Guidelines Future

	State of the Art
	Web Accessibility Evaluation Tools
	Standards and Guidelines
	Functioning of Accessibility Tools
	Scope of Evaluation Tools
	Evaluation and Reports

	Different Evaluation Tools
	A11Y Color Contrast Accessibility Validator
	Accessible Brand Colors
	Accessibility Insights for Web
	TAW

	Accessibility Evaluation Tools Comparison

	Own Approach
	Basic Idea
	Challenges in current approach
	Structure of the project
	Formal Requirements
	Implementation and Integration

	Browser Extension
	Requirements
	Abstract Solution

	JavaScript Library
	Requirements
	Abstract Solution

	Implementation
	Considerations towards implementation
	Browser Add-on
	Library

	Foundation
	React JS
	Bitbucket
	Node Package Manager

	Browser Add-on Implementation
	Library Implementation
	Basic setup
	Component implementation

	Deployment
	Bitbucket Pipelines
	Node Package Manager
	Extensibility

	Evaluation
	Browser Extension
	Results

	JavaScript Library
	Minimum Requirements
	Results

	Conclusion
	Contents of the DVD
	PDF-Files
	Source Code
	Graphics

	References
	Literature
	Online sources

