
Utilizing User-Drawn Input for Web
Prototyping

Elisabeth Grömer

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Juni 2017

© Copyright 2017 Elisabeth Grömer

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, June 16, 2017

Elisabeth Grömer

iii

Contents

Declaration iii

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Goal . 1
1.2 Structure . 2

2 Terminology 3
2.1 Web Application . 3
2.2 Recognition . 3
2.3 Gestures . 3
2.4 Web Components . 4
2.5 Prototype, Mockup, Wireframe 4
2.6 Context Menu . 4

3 Recognition 6
3.1 Classification of Algorithms 6

3.1.1 Motion-based Recognition 7
3.1.2 Appearance-based Algorithms 7
3.1.3 Geometric-based Recognizers 7

3.2 Common Recognition Approaches 8
3.2.1 Feature-based Classifiers 8
3.2.2 Hidden Markov Model 8
3.2.3 Neural Networks . 9
3.2.4 Dynamic Programming 10
3.2.5 Ad-hoc Heuristic Recognizers 11

4 State of the Art 12
4.1 Tools . 12
4.2 Web Components . 13
4.3 Recognition . 16

iv

Contents v

4.3.1 The Dollar Family . 16
4.3.2 Penny Pincher . 20

5 Implementation 21
5.1 Preconditions . 21
5.2 Selection of Elements . 22
5.3 Categorization . 23
5.4 Chosen Gestures . 24
5.5 Recognition Algorithm . 26

5.5.1 Recognition Categories 26
5.5.2 Recognizing Element Parameters 28

5.6 Component Development . 29
5.6.1 The Dom-Module . 29
5.6.2 The Template . 30
5.6.3 The Script . 31

5.7 Application Functionality . 32
5.7.1 Basic Application Structure 33
5.7.2 Drawing Helpers . 34
5.7.3 Basic Component Functions 34
5.7.4 Context Menu . 36

5.8 Export HTML . 37

6 Evaluation 40
6.1 Accuracy of Gestures . 40

6.1.1 Table . 40
6.1.2 Embedded . 41
6.1.3 Content . 42
6.1.4 P Category . 43
6.1.5 Form . 43

6.2 Usability for Prototyping . 44
6.2.1 Design Template . 44
6.2.2 Time and Feature Evaluation 44

6.3 Results . 48

7 Conclusion 49

A Contents of the CD-ROM/DVD 51
A.1 Thesis . 51
A.2 Online Sources . 51
A.3 Images . 51
A.4 Source Code . 51
A.5 Miscellaneous . 51

References 53

Contents vi

Literature . 53
Online sources . 54

Abstract

Web developers and designers often face the challenge to communicate their
ideas to others, such as colleagues or customers. Frequently, they use rough
pen and paper drawings to present their concepts. These drawings are after-
wards the initial point for developing prototypes which are again shown to
each involved party. A combination of both steps would probably expedite
the design and development process.

This thesis take a look at a possible solution for this problem, including
several methods to recognize drawn input and converting it into code. The
Web Components technology is considered because of its ability to preserve
the component based character of web development, even if this peculiarity
is not familiar to the user. Furthermore, the tool developed in the course of
this thesis is evaluated to verify whether this approach is feasible or not.

vii

Kurzfassung

Webentwickler und -designer stehen oft vor der Herausforderung, ihre Ide-
en für andere verständlich darzulegen, wie zum Beispiel für Kollegen oder
Kunden. Häufig verwenden sie grobe Zeichen auf Papier um ihre Konzep-
te zu präsentieren. Diese Zeichnungen sind später der Ausgangspunkt um
Prototypen dieser zu entwickeln, welche anschließend wiederum präsentiert
werden. Eine Kombination dieser beiden Schritte könnte die Entwicklungs-
geschwindigkeit einer Website erhöht werden.

Diese Arbeit befasst sich mit einer möglichen Lösung dieses Problems,
einschließlich verschiedener Methoden um gezeichnete Eingaben in funk-
tionierenden Code umzuwandeln. Die Web Components-Technologie wird
wegen ihrer Fähigkeit zur Erhaltung des komponentenbasierten Charakters
der Webentwicklung näher betrachtet. Außerdem wird das Tool, welches im
Zusammenhang mit der Arbeit entwickelt wurde, evaluiert um die Umsetz-
barkeit der Herangehensweise darzulegen.

viii

Chapter 1

Introduction

These days, creating prototypes while developing something on the Web
is common. These prototyping process can be used in almost each step of
development, for single items as well as a full website in its entirety. Fre-
quently, visualizations, rough designs or sketches are produced during meet-
ings, which can reveal how something should look. Additionally, these first
drafts get afterwards converted into code, to demonstrate their functional-
ity. This prototypes are then presented to a team, a customer or someone
else, who can now envision how the resulting product would appear. How-
ever, this two-step process is often time-consuming, especially when multiple
stakeholders are involved.

This process of preparing a design and creating a functional prototype
afterwards can be time consuming, especially if there is a range of function-
alities. A fast, project independent and easy to use prototyping tool should
combine the steps of creating a first graphical draft with the integration of
its functionality.

Over the last few years many different prototyping tools for web proto-
typing have been developed. Mostly, they focus on the design aspect of web
projects, requiring the use of any type of graphical design software before-
hand to create first drafts of a possible layout. These drafts are then used
to create first prototypes of a website, using one complete image for every
function the developer intends to implement.

1.1 Goal
To find a possible remedy for the disadvantages of current prototyping pro-
cesses this thesis is concerned with the following question:

How is the usage of user-drawn gestures feasible for web proto-
typing and can it enhance the speed of prototyping?

The goal is to identify a way of how user-drawn input is feasible for web

1

1. Introduction 2

prototyping, to circumvent multiple steps of creating a design and adding
functionality. Therefore it should be possible to combine the tasks of design
and applying function. Additionally, the speed of creating a prototype shall
be measured to evaluate the usability and effectiveness of using drawn input.
Furthermore the accuracy of the chosen gestures for each element should be
evaluated, to identify potential issues.

1.2 Structure
This thesis is structured in six chapters, including theoretical and applied
sections. Reading the thesis from the start to the end is recommended, how-
ever it is also possible to focus on single chapters. Chapter 2 clarifies the
terminology used in the thesis, to ensure that all used terms are comprehen-
sible to every reader and no misunderstandings are originated. In Chapter 3
the theoretical classification of recognition algorithms is presented, including
the basic classifications and multiple common technologies. Chapter 4 em-
phasizes the theoretical background of the thesis. Technologies for achieving
the aim of this thesis are discussed and compared. Chapter 5 is concerned
with the practical implementation of the thesis project. It describes all made
technical decisions needed for development and furthermore provides in-
sights into implementation details. Chapter 6 contains the evaluation of the
thesis project. It exposes the performance of all developed gestures and an
analysis of the tool itself. Additionally it emphasizes the results correspond-
ing with the thesis’ goal. Concluding, Chapter 7 gives a summary concerning
the project, its outcome and an outlook to future work.

Chapter 2

Terminology

Multiple terms used in this thesis could be misleading due to their different
usage in distinct fields. Therefore, the most important or varying terms are
explained to avoid misunderstandings. Additionally, each reader should be
able to understand the terms in the way they are used in this thesis, even
if they are not familiar with the topic. Furthermore, some terms have a
distinct meaning in association with the field of gesture recognition and web
prototyping.

2.1 Web Application
A web application is present in a web browser. It consists of HTML and CSS
for markup and styling in combination with JavaScript to provide functional-
ity and behavior. Additionally, all JavaScript based libraries and frameworks
can be included for additional features. The Web Components technology
as well as the recognition algorithm uses JavaScript to enable the gestures
and the implementation of custom elements.

2.2 Recognition
The recognition is conducted after a user has finished drawing a gesture and
started the process to convert it into an element. During the recognition
process, the points of a drawn gesture are interpreted and used to identify
the corresponding element.

2.3 Gestures
The term gesture has multiple definitions, depending on their field of appli-
cation. In this context, the term is defined as shapes which are drawn by
using a mouse, pen or a finger. It is used as an abbreviation for user-drawn

3

2. Terminology 4

input. To enable the recognition, the user has to draw a figure, shape or
symbol, which is named a gesture.

2.4 Web Components
Web Components are a combination of different technologies which are fre-
quently used together. Therefore mostly the term Web Components is used
to refer to all of them. Once exclusively individual parts of the technology
are mentioned, the term is not used, to differentiate between all and only sin-
gle components. In Chapter 4 all parts of the Web Components technology
are described in detail.

2.5 Prototype, Mockup, Wireframe
The three terms prototype, mockup and wireframe are frequently used syn-
onymously on the Web. However, all three terms sound considerable similar
by their definition, but they differ substantial in their purpose and usage.

Prototype

A prototype simulates user interaction with the resulting product. It al-
lows the user to experience the content and interactions with everything
implemented in the prototype. Additionally, these main interactions should
already interact similar to the final product.

Mockup

A mockup is a middle to high fidelity, static design representation [27]. Fre-
quently, mockups are design drafts or the final design itself. It is used to
display the structure of information and visualizes the content. The main
purpose of mockups is to demonstrate the visual element of the project, not
the functional aspects.

Wireframe

A wireframe is a low fidelity representation of a design [27]. They display the
conceptual layout of the website and how a user can interact with anything
located on this website.

2.6 Context Menu
The context menu is a technology implemented in most programs and thereby
also in web browsers. It is usually opened by right-clicking on any area in
the browser window. Furthermore the point where the click is performed

2. Terminology 5

specifies the content of the context menu. In web development, the default
menu can also be substituted by a particular, customized menu.

Chapter 3

Recognition

The area of application for recognition algorithms ranges from handling
abstract gestures, over complete sketches to complex handwritten texts.
Various approaches are available to serve these tasks, differing in their ad-
vantages, disadvantages and most important their particular purposes. All
of these approaches have underlying mathematical calculations, which de-
termine the complexity as well as the time and space requirements of the
algorithms. Furthermore, they specify their possible usage, due to hardware
restrictions which may occur concerning the mentioned costs.

Classification of algorithms is an intricate problem, concerning the cir-
cumstance that most available technologies are not mutually exclusive. There-
fore, multiple approaches are frequently combined to enhance the resulting
algorithm. Moreover, a single technology may not be sufficient to fulfill all
required tasks of one problem statement. For that reason, it is sometimes
difficult to classify an algorithm in one distinct category. Instead, the iden-
tification of a set of technologies is possible, which consists of multiple ap-
proaches to fulfill one purpose jointly.

Nevertheless, the classification of algorithms is still suitable to distin-
guish between the main approaches underlying each algorithm, especially to
identify the most appropriate for one specific area of application.

3.1 Classification of Algorithms
Various approaches are available to recognize shapes. Most of them can be
assigned to at least one category of recognizers, some to more than one, es-
pecially when they combine different technologies to improve the recognition
results or need to fulfill highly specific tasks which could not be achieved by a
single approach. The available algorithms can be divided in three categories,
which are mentioned by Hammond and Paulson [4] as follows.

6

3. Recognition 7

3.1.1 Motion-based Recognition

Motion-based recognition concerns itself primarily with the path of the
stroke [4]. More precisely, the characteristics of a drawn shape are more
important than the actual appearance of this shape. Among others, these
characteristics include properties such as the stroke order, the stroke di-
rection, an possible arc angle. Therefore, to enable the recognition process,
these gestures often need to be drawn in a specific way, influencing the
natural drawing style of the user. However, some algorithms revoke these
constraints, to enable the drawing of these shapes without a long training
period.

Furthermore, some algorithms need a particular training, to be able to
recognize different gestures. The training sets required to perform this train-
ing can be significant, depending on the specific algorithm. However, these
algorithms are known for achieving good results, frequently corresponding
with the amount of training data.

3.1.2 Appearance-based Algorithms

These algorithms are described by Hammond and Paulson as follows [4]:

Appearance-based algorithms focus primarily on what a sketched
shape looks like; the timing and ordering of points are usually
ignored, with the strokes translated into their bitmap counterparts
before performing recognition.

To identify shapes, template matching approaches are used frequently. Tem-
plate matching is also used by motion-based algorithms. However they uti-
lize a more basic technology to calculate the matching template for a shape,
considering each single stroke. The appearance-based algorithms use a more
advanced manifestation to identify the shape by its whole appearance, not
by the single strokes. The main disadvantage of these appearance-based al-
gorithms is that they cannot identify shapes which are drawn differently
than their template. Shapes which can be drawn in variations, for exam-
ple rotated by a value significantly deviating from the template requires a
additional template for each possible rotation. Therefore, template sets can
grow fast, which increases the storage and time costs for all gestures and
their recognition.

3.1.3 Geometric-based Recognizers

Geometric-based recognizers attempt to use geometric formulas to describe
primitives [4]. This approach is only usable on some basic primitives, which
can unambiguously be described by geometric formulas, such as lines, curves,
ellipses or combinations of these basic shapes. The available shapes are de-

3. Recognition 8

pending on the chosen algorithm, since each of them support a different set
of primitives.

3.2 Common Recognition Approaches
Within the three main classifications, various algorithms were developed in
the last years. Many of them can be related to one or more of the above
mentioned categories. Furthermore, multiple algorithms can be divided in
some subcategories based upon their basic functionality and their underlying
technology. The most common approaches used in gesture recognition are
in [11] categorized as follows.

3.2.1 Feature-based Classifiers

Feature-based algorithms define each gesture by a specific set of features.
These features are mathematical expressions of a shapes peculiarities. To
recognize an input gesture, all features of the complete feature-set are cal-
culated for the gesture and the results are compared to the features of a
template gesture. One of the main representatives of these algorithms is the
Rubine recognizer GRANDMA [8], which defines 13 features including:

• the length and the angle of the bounding box diagonal,
• the distance between the first and the last point,
• the total gesture length,
• the duration of the gesture.

These features are defined for each recognition algorithm separately, however
following Rubine [8], they should fulfill the criteria that:

A small change in the input should result in a correspondingly
small change in each feature.

Another recognizer using a feature-based approach developed by Cho [3]
focuses on the recognition and segmentation of handwritten Korean scripts.
It uses nine features to describe each gesture and has to deal with segmenta-
tion difficulties in case of distinguishing between single symbols. Frequently,
the segmentation of single letters is done by measuring the empty space be-
tween them. However, some Korean symbols include spaces as part of their
appearance, therefore this method could not be used alone. Hence, the algo-
rithm was adapted to distinguish between symbols using the time the user
needs after finishing one symbol until the start of the next one.

3.2.2 Hidden Markov Model

Using a Hidden Markov Model, each gesture is described through states.
These states are not visible, rather they emit features for each state. Thereby

3. Recognition 9

(a) (b)

Figure 3.1: Improvement of gesture before recognition. (a) shows the raw
gesture, (b) visualizes the revised gesture. Published in [1].

gestures can be recognized, such as by the algorithm of Anderson, Bailey and
Skubic [1] which defines four steps to include a HMM in a gesture recognizer:

1. preprocessing,
2. features,
3. HMM parameters,
4. optional post-processing for removing false alarm or additional recog-

nition steps.
The recognition algorithm by Anderson, Bailey and Skubic [1] includes in
the preprocessing some basic steps which are used by numerous algorithms,
such as removing jitter and errors. Additionally, the gestures are improved
by removing points which are nearly identical and resampling the points to
a fixed distance (see Figure 3.1). The features and HMM parameters are de-
fined corresponding to the used set of gestures, similar to the feature-based
approach. Post-processing steps are optional and again frequently imple-
mented corresponding to the gesture set, because they highly depend on the
gestures and their selected features.

3.2.3 Neural Networks

Neural networks are commonly used for gesture recognition purposes. A
neural network is described by Shiffman [26] as a network of individual,
simple nodes, which read an input, process it, and generate an output. The
network process the information collectively in parallel through the nodes.
As predicated by Pittman [7]:

Neural networks are not programmed, they are trained on real
examples.

A neural network is not a static system, but rather it is able to learn
while it is active. By adjusting internal weights for operations, this learning

3. Recognition 10

process is achieved. Therefore, outcomes are evaluated and depending on
this evaluation, the network adjusts its weights until the optimal outcome
is obtained. The learning of a neural network can be achieved by several
strategies, described by [26]:
Supervised Learning involves another party, which can evaluate the out-

come of the system and provide feedback to the network whether this
outcome is correct or incorrect, as well as the proper solution to initiate
the learning process.

Unsupervised Learning is used if the correct answers are not known.
Therefore, the network needs to identify the relationships between
multiple inputs, rather than obtaining a response concerning the cor-
rectness by another party.

Reinforcement Learning uses observations to learn. The network makes
a decision, obtains a specific outcome and observes what happens next.
If this observation yields an unfavourable outcome, the network will
adjust the weights of the decision it made at the beginning. This ad-
justment of weights can finally result in a different decision.

Neural networks need a large set of data and multiple training iterations
to obtain proper weights to make decisions. This circumstance may be a dis-
advantage due to the effort necessary to construct such a network, however
their results are commonly very accurate, correlating with the amount of
training data.

In the domain of recognition and more specific recognizing handwritten
text, Pittman [7] uses the neural network approach. Streams of coordinates
which may contain interesting areas are fed to the network, which uses these
data to identify the input gesture.

3.2.4 Dynamic Programming

Dynamic programming is accomplished by dividing the larger problem state-
ment into smaller portions, to start solving the small parts and work up until
the whole problem is solved. According to Borgohain [14] it is divided into
four steps:

1. Split the problem into overlapping sub-problems.
2. Solve each sub-problem recursively.
3. Combine the solutions to sub-problems into a solution for the given

problem.
4. Do not compute the answer to the same problem more than once,

rather store it in a memory, to recall it if required.
Dynamic programming is used by Myers and Rabiner [6] to:

. . . find the best concatenation of reference patterns to match a
given test pattern by first determining the optimal reference pat-

3. Recognition 11

tern to match any portion of the test pattern and then attempting
to find the optimal way in which to concatenate these pieces.

3.2.5 Ad-hoc Heuristic Recognizers

Ad-hoc heuristics are explained by Wobbrock, Wilson and Li as follows [11]:

By “ad-hoc” we mean recognizers that use heuristics specifically
tuned to a predefined set of gestures.

A possible implementation is the recognizer for handwritten Korean scripts
[3]. This recognizer requires specific heuristic methods to cover all peculiari-
ties. These heuristics are specifically designed for this purpose and are likely
not usable for other tasks without modifications.

Chapter 4

State of the Art

To fulfill the goal of this thesis and the corresponding project, various dif-
ferent technologies needed to be considered, to select the most appropriate.
Various prototyping, mockup and wireframing tools are currently available,
therefore it was essential to gain an overview over already existing tools, to
identify their approaches and features.

The Web Components technology was considered for the implementa-
tion, to ensure that the tool remains expandable. Utilizing it for this purpose
is possible via its native implementation or current frameworks and libraries.
To identify the most appropriate solution, multiple frameworks and libraries
are compared to the native implementation, to identify advantages and dis-
advantages.

Additionally, the recognition of drawn-input is a core element of the
thesis. Therefore it is essential to identify a suitable technology to fulfill this
purpose. Different recognition approaches and algorithms are compared to
identify the most adequate.

4.1 Tools
Many different prototyping, mockup and wireframing tools are available on
the Web. These three terms are often used synonymical and therefore also
the non functional types can contain multiple capabilities to include func-
tionality. Although the main focus of this thesis is on Web Prototyping, also
mockup an wireframing tools are considered, because they frequently focus
not only on these purposes, but provide additional prototyping services.

They currently available tools use various approaches concerning their
functionality. Several tools focus either on the design or the functional aspect
differentiated by their purpose of wireframing, mockup or prototyping. The
pure design tools contain mostly no functional prototyping aspects, while
the most functional tools have no or only limited possibilities of altering or
creating a design. Four currently available tools which combine both aspects

12

4. State of the Art 13

at least partially are studied in more detail.

Balsamiq

Balsamiq1 is a wireframing tool available since 2008, focusing on usability.
Some features are drag and drop creation of mockups, click-through proto-
types, exporting to png or pdf and the usage of keyboard shortcuts. It is
based on Adobe Flash Player2. Exporting to HTML code is possible using
third party plugins.

InVision

InVision3 is a web-based system focusing on design and includes basic pro-
totyping options. First drafts have to be created in another program and
uploaded to the website. Afterwards, some fundamental functions can be
added, for example linking to other pages. In this scenario, the user has to
create a draft for every link and target page, indicating every possibility.

JUSTINMIND

With this tool, creating and adding functionality is combined. It uses a
drag and drop approach inside a graphical editor. It is necessary to install
a program locally to work with this tool4.

Marvel

Marvel5 provides the functionality to upload drafts or to create them di-
rectly. Afterwards, it is possible to link between different designs, specify
gestures to invoke these linking and define transitions.

4.2 Web Components
Web Components are a combination of various technologies. They are a part
of the browser, therefore no external library or framework is needed. They
can achieve everything that is possible with HTML, CSS and JavaScript.
Existing Web Components can be used without writing their code again,
simply by adding an import statement to an HTML page [24]. However,
the implementation status of the various technologies is different for each
browsers.

1https://balsamiq.com/
2http://get.adobe.com/de/flashplayer/about/
3https://www.invisionapp.com/
4https://www.justinmind.com/
5https://marvelapp.com/

4. State of the Art 14

Natively, Web Components consist of four technologies, as described by
the W3C and the Mozilla Developers Network:
HTML Templates: A mechanism for holding client-side content that is

not to be rendered when a page is loaded but may be subsequently
be instantiated during runtime using JavaScript [23]. It is utilized to
enhance the usage of client-side templates, a functionality commonly
achieved by using CSS or JavaScript workarounds. These workarounds
have some disadvantages, such as immediate fetching of resources or
the availability of exploitable vulnerabilities.

Shadow DOM: Describes a method of establishing and maintaining func-
tional boundaries between DOM subtrees and how these subtrees in-
teract with each other within a document tree [18]. All markup and
CSS inside a shadow DOM is scoped to its host element, therefore all
styles applied to elements inside cannot affect elements on the outside.

Custom Elements: Define and implement new types of DOM elements in
a document [16]. The custom elements technology allows the user to
define completely new HTML elements or to extend basic elements.
Additionally, a custom element is frequently used to combine all func-
tionality of a new element into one tag.

HTML Imports: A way to include and reuse HTML documents in other
HTML documents [17]. An imported document can itself contain nu-
merous import statements. To avoid multiple imports of the same
file, resources already fetched are not loaded again. Imported files are
loaded automatically. However the HTML markup of an imported file
is not rendered automatically. JavaScript is necessary to start the ren-
dering process of the imported code.

Web Components can be created using plain HTML, CSS and JavaScript
or with different already existing technologies, such as two of the most pop-
ular and largest systems Polymer and X-Tag or some other libraries. Ad-
ditionally to the main functionality, they offer a set of polyfills to work in
browsers, not supporting Web Components natively.

Polymer

Polymer6 is a library for creating and using Web Components developed by
Google. It also contains a large set of predefined components which can be
used by simply importing them. Additionally, it has polyfills for browsers
which do not natively support any Web Component technology yet. Each
Polymer element contains its own DOM, called the local DOM. Within
this area, all components, styling or functionality of a component can be
encapsulated. The implementation of the local DOM in different browsers

6https://www.polymer-project.org/

4. State of the Art 15

is described by the Polymer Team as follows [12]:

Polymer supports multiple local DOM implementations. On browsers
that support shadow DOM, shadow DOM may be used to create
local DOM. On other browsers, Polymer provides local DOM via
a custom implementation called shady DOM which is inspired by
shadow DOM.

For that reason, Polymer can be used over multiple browsers, even if they
are not supporting the shadow DOM feature of the Web Components tech-
nology. Additionally, other polyfills from webcomponents.org7 are used to
fulfill the tasks of the not natively supported technologies.

X-Tag

X-Tag8 is an open source library for component development. To operate,
it needs at least the custom component technology. For browsers not sup-
porting this technology, it uses the same polyfills as Polymer to work.

In contrast to Polymer, X-Tag only depends on the Custom Elements
technology and gives the developer the right to opt in for Shadow DOM [25].
The two remaining technologies are not covered by X-Tag.

Bosonic

Bosonic9 is a set of tools to facilitate the development of Web Components.
As described by the Bosonic developers [15]:

Built on top of the web components polyfill library10, Bosonic
provides a very thin layer of syntactic sugar that eases the burden
of working with Web Components primitives.

It includes a set of predefined Web Components, to ensure an easy starting
point for developing own custom elements. Furthermore, it offers support for
older browser version, which do not natively support the Web Components
technologies as consequence of the polyfill library which it is build upon.

SkateJS

SkateJS11 is a library built on top of the W3C web component specs12 that
enables you to write functional and performant web components with a very

7http://webcomponents.org
8https://x-tag.github.io/
9https://bosonic.github.io/

10https://www.webcomponents.org/polyfills/
11https://github.com/skatejs/skatejs
12https://github.com/w3c/webcomponents

4. State of the Art 16

small footprint. To operate correctly, it requires the functionality of Custom
Elements and Shadow DOM v1. It does not need any other libraries to be
used However, if the before mentioned technologies are not supported, a
library which provides polyfills is recommended.

Slim.js

Slim.js13 is a lightweight, opensource Web Component library. It is build
upon ES2015 classes, which enables providing new capabilities such as data
binding. It uses all Web Components technologies and needs an inclusion of
a polyfill library to operate in browsers which do not support Web Compo-
nents natively.

4.3 Recognition
Utilizing drawn input for web prototyping is a field of ongoing research. The
various concepts range from recognizing only basic geometrical symbols up
to complete sketches. Most of them are suitable for several cases, while some
are exceedingly specialized for one task.

To retain the recognition process as fast and easy as possible, the algo-
rithm needs to fulfill some preconditions:

• usable without long training period,
• recognition without huge delay between drawing and detection start,
• fast recognition of drawn gesture,
• easy expandable to add new gestures,
• few restraints regarding possible gestures,
• usable with mouse, pen and finger.

Among all available algorithms, not every type is usable in the web proto-
typing context. Concerning the circumstance that most HTML elements are
represented by rectangles, a complete sketch would mostly consist of rectan-
gles. Algorithms frequently depend on rather different shapes to distinguish
between them, therefore it would be intricate if all shapes are rectangles.
For that reason, an approach where only single gestures are recognized is
chosen.

4.3.1 The Dollar Family

The Dollar Family algorithms focus on interface prototyping. However, their
approaches are usable in other areas as well, because their underlying idea
is just to recognize one or multiple strokes. All of them follow a template

13http://slimjs.com/

4. State of the Art 17

Figure 4.1: A drawn gesture resampled to 32, 64 and 128 points [11].

matching approach, whereby the extension of gestures can be realized. Ad-
ditionally, they do not need a large set of training samples or a long time
for familiarization. The family consists of different algorithms, which would
all be suitable for web prototyping, however, they differ in their possible
gestures and recognition speed. Additionally, they support any possible in-
put method, as far as the whole drawn path can be obtained through this
method. This is an advantage, because as stated by Huawei, Xiangshi and
Shumin [5]:

The complexity of a stroke gesture may have an impact on the
difference between finger and pen gestures.

For that reasons, the members of the Dollar Family are considered in detail,
to select the most suitable for recognizing drawn HTML elements.

$1 Recognizer

The $1 Recognizer is the first of the family, developed for recognizing unistroke
gestures. To identify the drawn gesture, a drawn candidate gesture is com-
pared to all available template gestures to find the best match. The basic
algorithm contains as described in [11] four steps:

1. Resample the Point Path The points received through any input method
are resampled to 64 points per path, as visualized in Figure 4.1.

2. Rotate The resampled gesture is rotated once, based on the Indicative
Angle. This angle is formed between the centroid and the first point of
the gesture. Thereby, the gesture is rotated until this angle is 0° (see
Figure 4.2).

3. Scale and Translate The gesture is scaled non-uniformly to a reference
square.

4. Find the Optimal Angle for the Best Score The gesture is again rotated
and compared to the template gestures to find the best score.

4. State of the Art 18

Figure 4.2: A gesture rotate until its Indicative Angle is 0° [11].

The limitations of the $1 Recognizer are that it cannot distinguish between
gestures which are only different in their orientation, location or size.

$N Recognizer

The $N Multistroke Recognizer is another member of the Dollar Family and
an extension to $1. In [2] it is described as:

. . . a lightweight, concise multistroke recognizer that uses only
simple geometry and trigonometry.

The algorithm extends on the $1 Recognizer by enabling the usage of mul-
tistroke templates. These patterns can be drawn by the user either by any
number on strokes or by their unistroke representation. Nevertheless, in-
ternally, all multistroke templates are considered as unistroke gestures by
connecting the single lines. One main difference of $N is that it generates all
possible stroke orders and directions from one multistroke gesture. There-
fore, the computing effort for one gesture rises with the number of strokes.
As can be seen in Figure 4.3 a X already has eight different permutations.
Regarding these generation of permutations, the main limitation of the rec-
ognizer is space and time. More gestures increase the processing load, as
well as do the number of strokes. The algorithm reaches its computational
limit at gestures with more than six possible strokes.

$P Recognizer

$P is the latest member of the Dollar Family. It is again a multistroke
recognizer, but enhances the $N Recognizer concerning recognition speed
and required memory. As presented by [10]:

Gestures are seen as unordered sets, or what we call clouds,
grouping points together.

4. State of the Art 19

Figure 4.3: The eight different possibilities how the gesture can be drawn
[2].

Figure 4.4: The eight different possibilities how the gesture can be drawn
[10].

Therefore, the stroke order, direction or number of strokes become irrelevant,
because all gestures are defined by multiple points which do not need to be in
any order (see Figure 4.4). For that reason, the $P Recognizer outperforms
the $N Recognizer concerning its execution and memory costs, because it
does not need to compute every possible stroke order and direction for one
gesture.

The recognition method of one gesture operates similar to the other two
algorithms, by comparing one candidate gesture to all stored template ges-
tures. The result is calculated using the Nearest-Neighbor approach. This
technology compares all points of the resampled and processed candidate
point cloud to all points of a template gesture. The template with the small-
est distance of the points is delivered as the result [2].

4. State of the Art 20

4.3.2 Penny Pincher

Penny Pincher is built upon the Dollar Family algorithms. The algorithm is
described as follows [9]:

Designed to do the absolute minimum amount of work possible
to match candidate gestures with templates so that more tem-
plates can be evaluated within the same amount of time as other
recognizers.

Penny Pincher is mostly used in games, where gestures are significantly
inconsistent and inaccurate. Additionally, in games, only limited computa-
tional resources are available to the recognizer. As $N, the algorithm con-
catenate gesture strokes together to one unistroke gesture.

The algorithm uses a different approach for detecting gestures. In con-
trast to the Dollar algorithms, Penny Pincher avoids rotating, scaling and
translating the gesture [9]. To compensate this, more templates for one ges-
ture need to be defined beforehand and loaded while the recognition algo-
rithm is active.

Penny Pincher performs great if gestures are direction sensitive. However,
the main limitation is that it needs multiple gestures for one template to
match different possible rotations and stroke orders of a gesture.

Chapter 5

Implementation

This thesis is about the possibility of utilizing user-drawn input for web
prototyping. To emphasize the possibility and to demonstrate one opportu-
nity of how this could be achieved, a web prototyping tool was developed
(Figure 5.1), which uses drawn input for creating HTML code. Some de-
velopmental decision needed to be made beforehand, such as choosing an
appropriate recognition algorithm and a suitable web technology for this
purpose. Additionally, the given set of HTML elements needed to be modi-
fied to perform proper as a set of prototyping elements. To develop this tool,
four main steps needed to be accomplished:

1. categorization and selection of elements,
2. combining chosen elements with fitting gestures,
3. implementation of recognition technology and components,
4. implementation of user-friendly interaction methods.

5.1 Preconditions
The prototyping tool requires a few preconditions to operate on a system.
Node.js1 needs to be installed on the system first, including the pack-

age manager npm2. Node.js and npm are responsible for download-
ing and managing the additionally needed packages, frameworks and
libraries. Furthermore, a web server implementation is needed for ex-
porting HTML files. This server is build with Node.js, which utilizes
the modules express3, body-parser4 and fs5 for realizing the server and
exporting purposes.

2https://www.npmjs.com/
3http://expressjs.com/
4https://github.com/expressjs/body-parser
5https://nodejs.org/api/fs.html

21

5. Implementation 22

Figure 5.1: The interface of the prototyping tool as developed during the
thesis project.

Polymer6 is utilized as Web Component framework. To install Polymer
itself and all its component dependencies, npm and bower7 are used.

5.2 Selection of Elements
The early phases of creating a new web project are commonly characterized
by obtaining first impressions regarding the basic look and functionality of
single parts of the future project. To outline these aspects, prototypes are
frequently used as soon as possible. These prototypes are often rough, to
emphasize only the first important characteristics concerning the look and
functionality. Concerning this, not every HTML element is needed to create
this kind of prototypes.

Hence, only 23 HTML elements were used for recognition and as options
the user can choose from. These elements were selected due to their effect in
a web project. These effects can be semantic or non-semantic, which means
that an element can either tell the browser and developer about its content
or not. It is not possible to distinguish between semantic and non-semantic
elements only by their output in the browser, because some appearances
can be achieved by using either a semantic or a non-semantic element. For

7https://bower.io/

5. Implementation 23

example, the element which renders the text in bold and also
indicates that the text is important, compared to the element, which
again renders the text in bold but has no special semantic meaning. This
classification in semantic and non-semantic elements is a general declaration
which is used in this thesis for comprehension, while other, more specific
subdivisions may exist.

semantic elements

Semantic elements are used to add meaning to HTML code, which can be
recognized by the developer, the browser or some other tools, such as screen
readers. These elements can have a visual representation to emphasize their
special meaning or not. An example for a semantic element without a visual
representation would be the <header> element. It defines a head-area for
the document or a section, to structure the parts of a website.

non-semantic elements

Non-semantic elements add no special meaning to their content. They are
frequently used for developing purposes such as grouping and styling of el-
ements. Non-semantic elements can also have a visual representation. One
example of a non-semantic element would be the which renders the con-
tained text in bold but adds, unlike , no special meaning. Another
example is the <div> element, which is commonly used for structuring but
has no visual representation or any meaning.

To use HTML elements for web prototyping, not all elements were used
as explained before. Visual representations which can be achieved using ei-
ther semantic or non-semantic elements were implemented only once for
recognition. Mostly, their non-semantic element is used, because in the first
design and prototyping phases the semantic aspect is often not the main
concern.

5.3 Categorization

To receive a relevant set of HTML elements the lists on w3schools [28],
Mozilla Developer Network (MDN) [22] and W3C Web Education Commu-
nity Group [20] were compared and combined. Mostly, these three sources
contain the same elements, but they differ in their categorization, concerning
their names and divisions. The categories used for recognition are primarily
taken from the W3C division of elements while some elements are sorted in
a different way. The resulting categories and their elements are:
table: The first category is similar to the W3C, MDN and w3schools cate-

gory but contains only the <td> element which can be drawn to add

5. Implementation 24

new columns to a table. Some other elements of a table are added
automatically, such as <tbody> or <th>.

embedded: This name is taken from the W3C categorization. It contains
for example , <iframe> and <video> which are mostly the same
elements as in the original W3C category.

content: This category is again taken from W3C. Four of the contained
elements are the same as in the original category, two are added to it
for simplification.

p: This element is the only one with its own category. Inside, no other
recognition of elements is possible, however text can be formatted using
the context menu. Four options are available: <a>, <i>, <u> and .
These elements have no gesture representation because they refer to a
marked text and can not drawn before any text is entered.

form: The form is used by all three categorizations. Six HTML elements
such as <input> and <textarea> are available for the gesture recog-
nition and some options for these elements via the context menu.

This categorization of HTML elements was used to keep the recognition
process as fast as possible and mainly to achieve a small set of possible
gestures for the users. Due to this, at most six different possible gestures for
one category are possible, which can be easily recognized and drawn by the
user.

5.4 Chosen Gestures
Each HTML element used is represented by one gesture. These gestures
are drawn by the user to add new elements. Therefore it is important that
the user can draw them easily and fast. Gestures with multiple strokes are
more time consuming than gestures which can be drawn with one stroke,
so one-stroke-gestures are preferred. Furthermore, it is necessary that the
recognizer can also identify the right element if it was drawn fast and maybe
quite inaccurate. To achieve this, the gestures need to differ from each other
as much as possible, without adding too many complex details. Additionally,
each gesture needs to be meaningful to the user, to ensure that they are
recognizable and usable without long training times.

Considering all these needs, the gestures were defined to either simulate
the resulting element, be a letter of the elements name or consist of already
known shapes or symbols which can be connected to the element via an
intuitive relation. Through the categorization of elements some gestures can
be used multiple times. Especially for gestures which look similar to their
corresponding element this fact is an advantage. Without this categorization
each element would need a completely different gesture, which would impair
their simplicity. Many elements need to define some specific values, such as

5. Implementation 25

(a) (b)

Figure 5.2: Two HTML elements represented by drawing a rectangle. <div>
(a) and (b).

their size, through the drawn shape, which are saved during the recognition
process and used to create the element. Without utilizing the gesture to
define the size already while drawing, some additional complexity would be
necessary to obtain this information. For example the <div> and the
element are both represented by drawing a rectangle (see Figure 5.2).

The size of the drawn shape is used for determining the size of the HTML
element. If the categorization is absent, at least one of these elements would
need another gesture. For instance the could be a rectangle containing
another shape. This would also be understandable for many developers but
it would add complexity to the simple, one-stroke drawable, shape which
should be avoided as much as possible.

For some gestures, such additional complexity cannot be circumvented,
because categories may contain similar looking elements. Therefore, it was
necessary to take shapes or symbols for extending the basic shape which are
already familiar to many developers, to facilitate the usage. One of these
elements is the HTML5 <video>, whose rendered shape is a rectangle too,
so the preferred gesture would be a rectangle, such as for the element
in the same category. This element needs again a defined size, so a completely
different gesture would be not ideal. Hence the basic-shape of this gesture
is a rectangle, to obtain the size, containing another shape to distinguish
between <video> and . The play-button is chosen as contained shape,
because it is already well-known by developers through its prevalent usage.

Many elements in web development are represented by rectangles. How-
ever, not all of them need to be actually drawn as rectangle, because regu-
larly, their content determine their final appearance, for example by defining
the size through the amount of contained text. For these elements it is usu-
ally not necessary to define a exact size beforehand, only their position is
vital. They can easily be represented by more abstract gestures for example
the <p> element whose gesture is a shape with three lines among themselves
to constitute written text, comparable to the text box symbol of text editing

5. Implementation 26

programs.

5.5 Recognition Algorithm
The possibility of utilizing user-drawn input for web prototyping depends
reasonably on the chosen recognition algorithm. Two main techniques are
common for this purpose: recognizing complete sketches at once and recog-
nizing single gestures. The recognition of complete sketches is able to com-
pute larger drawings with multiple elements while single gesture recognition
focuses on direct identification of one specific gesture. The complete sketch
recognition approach would feel more like creating a design prototype with
current design tools. However it can hardly be used for web prototyping be-
cause most HTML elements are represented by the same geometrical shape,
the rectangle. Additionally the component based characteristic of web de-
velopment would be neglected as everything is interpreted at the same time.
On the other hand the single gesture recognition has the drawback that
the recognition needs to be triggered after every component. This preserves
the HTML component character and ensures that it can be distinguished
between different similar-looking elements, but it requires a short training
period at the beginning. Nevertheless, single gesture recognition is a pos-
sible technique for web prototyping. Thereby elements can be represented
by different, well-known symbols or shapes to simplify the usage without
conflicts for similar elements.

Deeming these considerations, the $P Recognizer was implemented for
utilizing drawn-input for web prototyping. The $P Recognizer avoids storage
complexity of $N by representing gestures as clouds of Points [10] which are
independent in stroke order and direction. Therefore the storage of large
gesture-sets is managed superiorly. The $P Recognizer was chosen because
it performs similar to the $1 Recognizer on unistrokes and is superior to the
$N Recognizer on multistrokes [10].

5.5.1 Recognition Categories

The recognition algorithm can be used without modifications for recognizing
drawn HTML elements. However, since the algorithm matches the candidate
point cloud to the point cloud of each template [10] to find the best fitting
result, the original algorithm would be slowed down by the amount of dif-
ferent templates. To ensure that the recognition process is not decelerated
by the number of different templates, the category system is applied. By
dividing all available gestures in different categories, the algorithm has to
check at most eight templates for one category.

Furthermore without any categorization, all templates would need to be
unique, which would add more complexity to the gestures as intended. As
described in detail later, the elements should be as easy to remember and

5. Implementation 27

draw as possible and should fulfill some requirements due to familiarity for
the user. Therefore it would be more appropriate if different HTML elements
could be represented by the same gesture. With the original, unmodified
recognizer this is not possible, because one gesture can only be linked with
one resulting element. To achieve the connection of one gesture with multiple
elements, the category system of HTML elements was utilized once more.

The first implementation step was to divide all templates into different
category point clouds, by creating one point cloud for every category, similar
to the three categories shown here:

1 var NumPointClouds = 6;
2 var NumPointCloudsEmbedded = 8;
3 var NumPointCloudsForm = 7;
4
5 this.PointClouds = new Array(NumPointClouds);
6 this.PointClouds = new Array(NumPointCloudsEmbedded);
7 this.PointClouds = new Array(NumPointCloudsForm);

Due to this, it was possible that the same pattern is linked to multiple
elements in different categories. For example, the and <div> tag use
the same template:

1 this.PointCloudsEmbedded[0] = new PointCloud("img", new Array(
2 new Point(50,50,1), new Point(150,50,1),
3 new Point(150,51,2), new Point(150,100,2),
4 new Point(149,100,3), new Point(50,100,3),
5 new Point(50,99,4), new Point(50,51,4)
6));
7 this.PointCloudsContent[0] = new PointCloud("div", new Array(
8 new Point(50,50,1), new Point(150,50,1),
9 new Point(150,51,2), new Point(150,100,2),

10 new Point(149,100,3), new Point(50,100,3),
11 new Point(50,99,4), new Point(50,51,4)
12));

Each point of the cloud is created by the already implemented constructor:
1 function Point(x, y, id){
2 this.X = x;
3 this.Y = y;
4 this.ID = id;
5 }

The id of every point references the stroke to whom the point belongs to.
This id can be the same for each point, which would ensure that the ges-
ture is explicitly defined by a unistroke template. This could accelerate the
recognition process if it is the only unistroke template in one category and if
all other templates are considerably different. However, if this conditions are
not met, using multistroke templates results in better recognition success.

To work correctly with multiple category point clouds, the main recog-
nition function needed to be altered as well. At first, the function needs
to distinguish between recognizing a category or an element in a specific

5. Implementation 28

category. If the current function call is evoked to identify the category, the
recognition can immediately be started by iterating over all possibilities in
the category point cloud. If the category is already set, the new function to
recognize the element in a category is accessed. This function chooses the
correct point cloud depending on the current category and starts again the
iteration through the templates. This modified function is, despite its main
purpose to recognize the element, also responsible for acquiring additional
gesture parameters.

5.5.2 Recognizing Element Parameters

As suggested by Vatavu, Anthony and Woobrock, due to the representation
of gestures as unordered set of points, the $P Recognizer cannot tell the
direction, starting and endpoint of a drawn gesture [10]. Therefore it is not
possible to obtain the drawn position or size with the initial recognizer.

The result found through the recognition should also contain the size
and position of the drawn element, represented through their coordinates:
minX, maxX, minY, maxY. For this purpose the size is complemented to the
original constructor:

1 function Result(name, score, minX, maxX, minY, maxY){
2 this.Name = name;
3 this.Score = score;
4 this.Size = {
5 "minX":minX,
6 "maxX":maxX,
7 "minY":minY,
8 "maxY":maxY
9 };

10 }

To obtain these coordinates, all points of a drawn shape are saved and
afterwards used to find the minimum and maximum values. Therefore the
current ECMAScript 2015 ... Spread-Operator [21] is used to keep the code
as short and clean as possible.

1 Math.min(...xCoords);
2 Math.max(...yCoords);

The coordinates are tracked during the drawing process, using the cur-
rent mouse, pen, or finger position of the user. The coordinates received
during the drawing process need to be transformed for displaying on the
canvas because of their different positions to the viewport. Mouse, pen or
touch coordinates are perceived as an absolute value in the viewport, orig-
inating at the top left corner of the browser window. The values which are
displayed on the canvas are relative to the canvas position, which means
the origin is at the top left corner of the canvas. Due to these different ori-
gins, the drawn points need to be transformed for displaying on the canvas.

5. Implementation 29

Through subtracting the absolute canvas position from the input coordi-
nates, the position on the canvas is received. These resulting coordinates
are afterwards used for displaying the recently drawn point.

1 function getMousePos(canvas, evt) {
2 var rect = canvas.getBoundingClientRect();
3 return {
4 x: evt.x - rect.left,
5 y: evt.y - rect.top
6 };
7 }

5.6 Component Development
Every used HTML element is represented by one specific Web Component.
These components have some basic functionality in common, however many
components needed to be designed differently in order to fit the needs of the
corresponding HTML element.

For developing Web Components, the Polymer Framework is used. Its
basic structure is the same for every component created, including:

• <dom-module>,
• <template>,
• <script>.

5.6.1 The Dom-Module

To specify the DOM for a component, the <dom-module> is used. The id
attribute must match the is property of the element. The name of this
attributes is the filename too, to identify the component.

1 <dom-module id="my-div">
2
3 Polymer({
4 is: 'my-div',
5
6 });
7
8 </dom-module>

The components obtained with the basic Polymer installation, are already
following the convention of the W3C Working Draft for custom elements,
which require the following for the validity of a name [19]:

• They start with a lowercase ASCII letter, ensuring that the HTML
parser will treat them as tags instead of as text.

• They do not contain any uppercase ASCII letters, ensuring that the
user agent can always treat HTML elements ASCII-case-insensitively.

5. Implementation 30

• They contain a hyphen, used for namespacing and to ensure forward
compatibility (since no elements will be added to HTML, SVG, or
MathML with hyphen-containing local names in the future).

Polymer suggests to prefix custom components with "my-. . . " to clearly
differentiate between self-implemented and already available elements. This
standard name is maintained for the custom components, combined with the
name of the native HTML element. Through this denotation, the component
is accessible in the same way as all already existing elements.

1 <my-div></my-div>

5.6.2 The Template

The <template> block contains basic HTML elements, which are present in
the local DOM of the component.

Every functional item in the body of a HTML page can also be integrated
in a Polymer Web Component, such as HTML, CSS and JavaScript. Addi-
tionally, it is possible to import other files to use, for example JavaScript
libraries, specific CSS files or even other Web Components in this template.
A component can be build as detailed as necessary. The main advantage of
Web Components is that the component can be used multiple times, with-
out rewriting the same code fragment repeatedly. Therefore, the DOM of
a website stays clearer and simpler, because the main part of each com-
ponent is hidden in the Shady DOM, and needs to be written only once.
Furthermore, one component is usually usable in multiple projects without
extensive adjustments since elements, styling and behavior can be combined
in a single file. For that reasons it is for example possible to write all code for
an image-gallery inside one component and include it on different positions
on a website. The following code presents a template for a <div> element:

1 <template>
2 <style include="shared-styles"> ... </style>
3 <div class="container" on-click="select" on-contextmenu="showCtx"></

div>
4 <div class="editingArea"></div>
5 <nav class="context-menu">
6 <ul class="context-menu__items">
7 </nav>
8 </template>

For extending the native HTML elements to be suitable for the prototyp-
ing purpose, the template area includes at least the basic HTML element
which corresponds to the Web Component. This basic element is later used
for exporting valid code which could be used for further development. The
listeners for on-click and on-contextmenu are used by every component
to access the basic functionality for selection and the custom context menu.
Additionally, for many components the two-way databinding of Polymer is

5. Implementation 31

utilized, especially for elements where the value can directly be edited via
the contenteditable attribute. The appendix ::input is needed to declare
the element as input accessor for the referenced property.

1 <a text-content="{{link::input}}" contenteditable>

Specific styles which are only used in one type of Web Components can
be defined directly in the template, to keep all parts of a single component
separated from each other.

1 <style include="shared-styles">
2 :host {
3 display: block;
4 border: 1px solid #bfbebe;
5 }
6 div{
7 width: 100%;
8 height: 100%;
9 }

10 </style>

All styles in this area are applied to every instance of this specific element.
General styles of HTML elements which would need to be written multiple
times in every component they are used, can be defined in general CSS files,
such as shared-styles.css. These files can afterwards be included in each
component where they are needed. The root element of a component can be
accessed for styling with :host.

5.6.3 The Script

The script contains the specific properties and functions of each component.
It is responsible for handling all events which are component specific or need
to access hidden component parts, which are inaccessible from the outside.
For example, every modification on the Shady DOM needs to be handled
through these functions.

1 properties: {
2 options: {
3 type: Array,
4 value: [{ oName: 'editSize', oText: 'Edit' }, { oName: 'editDiv',

oText: 'Edit content' }]
5 },
6 divName: String
7 },
8 attached: function(){
9 storeElement(this);

10 },
11 select: function(){}

The properties of a component can be defined at different times in the
lifecycle. First, setting a property for one instance of a component type can
be done at the creation of the element with:

5. Implementation 32

1 <my-div divName="div1"></my-div>

Second, it is possible to set a default value for properties directly in the code.
These settings are present at all instances of the element. This circumstance
is used for standardizing the creation of the context menu. The property
options contains all elements which should be rendered in the menu.

1 properties: {
2 options: {
3 type: Array,
4 value: [{ oName: 'editSize', oText: 'Edit' }, { oName: 'editDiv',

oText: 'Edit content' }]
5 }
6 }

Each Polymer element has a fixed lifecycle defined as follows [13]:
created: Called when the element has been created, but before

property values are set and local DOM is initialized.
ready: Called after property values are set and local DOM is

initialized.
attached: Called after the element is attached to the document.
detached: Called after the element is detached from the docu-

ment.
attributeChanged: Called when one of the element’s attributes

is changed.
The function attached is used to create basic options and functions after the
components basic structure is created and attached to the DOM.

1 attached: function(){
2 storeElement(this);
3 }

The basic functions for displaying the context menu, handling resizing,
moving and deleting, as well as grouping are not implemented in the compo-
nent itself, because they are used by every component and would therefore
be repeated multiple times. Beside these basic functions, many components
need to handle specific tasks defined by their underlying HTML element, for
example an tag which must be able to specify an image file to show.
Another more advanced example is the <p> element, which can hold differ-
ent other elements, such as italic or bold text. The corresponding <my-p>
Web Component needs to fulfill these requirements, too.

5.7 Application Functionality
To utilize the user-drawn input, the recognition functionality combined with
the developed components are wrapped in one application. This application
is responsible for managing and generating the elements, handling user input
and providing accessibility and helper methods.

5. Implementation 33

Figure 5.3: The main menu, containing functionality to enhance the usabil-
ity.

5.7.1 Basic Application Structure

The main application is a Web Component in itself and consists of multiple
areas, which fulfill different purposes.
Canvas: The canvas is the most important part of the application, since it

is responsible for recognizing the drawn input. The Web Components
generated from this input are afterwards stored for further usage.

Main menu: The main menu contains the functionality to switch between
drawing and editing mode, extend the canvas height, align elements
or export the code.

Component menu: Various components require the usage of a distinct
component menu.

Helper menu: The helper menu indicates all possible components which
can be recognized.

Drawing vs. Editing

To ensure that the system is able to distinguish between a users drawing
purpose from a single click on an object, some considerations were necessary.
To simplify this process, the drawing and editing modes were established,
together with the functionality to switch between them. Changing between
drawing and editing mode is possible via the buttons located in the main
menu of the application or by pressing the keys D and E on the keyboard.

While the system is in drawing mode, each interaction with the canvas
is classified as a drawing attempt, therefore the canvas will visualize them.
Editing an element is not possible currently, because the canvas is located
above all elements, to ensure that the drawing process is not blocked by
single elements, which are already recognized and inserted. Switching to the
editing mode disables all recognition possibilities. Drawing on the canvas is
no longer possible, while the functionality to select elements is activated.
Additionally, using the right mouse button will no longer start the recogni-
tion process, otherwise it will open the context menu. On the canvas this
action will open the browser specific context menu, while right clicking on
an element will open its custom context menu.

5. Implementation 34

Alignment

Moving elements can be achieved in two ways, either by using the moving
functionality of each component or by the alignment menu. This menu can
be utilized if elements should be aligned relative to the canvas. It is a func-
tionality to enhance the usage comfort of the application and to facilitate
the alignment of single elements. By using the menu buttons, each element
can be aligned in six ways: left, right, centered horizontally, top, bottom
and centered vertically. All alignment options react on resizing of the can-
vas, therefore the alignment position will stay the same, independent of the
canvas size.

Key Bindings

Key bindings are used to fulfill various purposes to raise the usability of
the tool. Multiple functionalities are accessible via the applications interface
and in addition via Key Bindings. The available bindings are:

• Esc to leave a category or an element,
• E to switch to editing mode,
• D for switching to drawing mode,
• Ctrl+C for copying one or multiple elements,
• Ctrl+V to paste the copied elements,
• Backspace to delete all selected elements.

These key bindings are also available using a virtual keyboard, if no physical
keyboard is available.

5.7.2 Drawing Helpers

All HTML elements are divided into five categories. These categories are not
familiar to every user, therefore it is necessary to support them by providing
an overview over the possible gestures in each category. This helper menu is
once more a container, holding multiple Web Components, one component
for each helper. When drawing an element, the user has to select the cate-
gory first. Therefore, the helper contains all possible category gestures (see
Figure 5.4 (a)). After drawing and recognizing one of the available opportu-
nities, the included components in the helper menu are altered, to coincide
the currently active element category, as visualized in Figure 5.4 (b).

5.7.3 Basic Component Functions

Several functions are used by all, or at least by most components. To avoid
repetitive code for these types of functionality, they are not embedded in
each component but rather relocated in a separate file. These functions

5. Implementation 35

(a) (b)

Figure 5.4: Two helper menus, containing all possible gestures for recogni-
tion. Helper with categories (a) and helper with form elements (b).

(a) (b) (c)

Figure 5.5: The functions for moving(a), scaling(b) and grouping(c) ele-
ments.

fulfill certain basic behavior, such as moving, scaling and grouping which is
available for each HTML element (see Figure 5.5).

5. Implementation 36

Moving

After drawing and recognizing an element, it may be displaced due to an
inaccuracy occurred while drawing. To correct this, the user has the possi-
bility to move the object. The moving function can be accessed through the
context menu (see Figure 5.6).

The component can be moved either by the buttons, the arrow keys or
dragging. Using the arrow keys or the buttons moves the element by one
pixel. By pressing the Ctrl key simultaneously, the element is moved by ten
pixels per step.

Scaling

The size of an element can be defined by either using a new absolute value or
by altering the current one. To trigger an immediate response, the alteration
of the latest size is selected for this function. Depending on the object, width,
height or both can be modified by addition and subtraction of pixel values.

Deleting

Deleting an element is an essential functionality for every prototyping tool.
In the prototyping context the deletion need to be treated carefully. To
remove an element, it must be deleted from any possible group and ad-
ditionally the parent container needs to be notified to remove the object.
Afterwards the component can be destroyed.

Grouping

Grouping elements is valuable for binding elements together, in order to alter
them simultaneously. Grouping elements is possible as soon as two or more
components are selected. After grouping, the same methods as for single
elements are available for the whole group, preserving the functionality to
alter single elements in the group.

5.7.4 Context Menu

The context menu is available by right clicking a component, granting access
to the basic functions such as moving and deleting, and various component
specific faunctions. The basic menu visualized in Figure 5.6 is present for
each component.

Furthermore, various elements need special functions to fulfill their spe-
cific requirements. The <p> element, for example, needs a possibility to mod-
ify the contained text, in order to format it bold, italic or underlined, which
can be seen in Figure 5.7.

5. Implementation 37

Figure 5.6: The context menu of a element, where options for moving,
scaling and deleting are present.

Figure 5.7: The context menu of a <p> element, containing the specific
menu options.

5.8 Export HTML
For finalizing the prototyping workflow by saving, the tool has to meet sev-
eral preconditions, including Node.js, Bower and Polymer in particular.
However, the prototype developed with this tool is considered a starting
point for further development and improvements, even if the tools require-
ments cannot be used or installed on every environment. To ensure that the
results of the first prototyping phase can be used where they are required,
an export function was mandatory.

This function allows the user to export and save the drawn prototype

5. Implementation 38

into plain HTML and CSS. By iterating over all existing elements, they are
transformed into their corresponding native HTML element. Within this
iteration, the information stored in a component needs to be extracted and
rewritten to work with the native element.

1 var removeThis = [];
2 $.each(ht, function(i, e){
3 if(e.abc){
4 $.each(ht, function(j, p){
5 if(e.abc == p){
6 p.childElem.push(e);
7 removeThis.push(e);
8 }
9 });

10 }
11 });

The parent-child structure of all elements is rebuild within this function to
simplify the following HTML generation. Inside the array, each child node
is attached to its parent and afterwards removed from the array as distinct
component, in order to be referenced only through the parent.

The element specific properties such as the source for the image are
combined with the new code, for preserving the functionality. Furthermore,
each element receives a unique class name, to ensure the conjunction of the
HTML element and the corresponding CSS styles.

1 function buildImg(elem){
2 var elemCode =
3 "";
4 var elemCss =
5 ".img-"+bodyCount.img+"{"+cssDefault(elem)+"}";
6 bodyCount.img++;
7 return {html: elemCode, css: elemCss}
8 }

Additionally, the specific styling for each Web Component is saved in a
separate CSS file and imported into the HTML, to retain the two code types
separated.

1 function cssDefault(elem, mLeft, mTop){
2 return "margin-left:"+elem.style.marginLeft+"; margin-top:"+elem.style

.marginTop+"; position: absolute; width:"+elem.style.width+"; height
:"+elem.style.height;

3 }

The basic CSS contains the position and size of the component. These values
are set as absolute in the window because objects may overlap. Elements
without a distinct width or height are treated separately to avoid redundant
code.

After finalizing the HTML generation, the complete HTML code is send
to a Node.js server for processing the received data and exporting it to valid

5. Implementation 39

files. Involving a server is mandatory, because file saving is not feasible using
exclusively JavaScript for safety reasons.

1 $.ajax({
2 type: 'POST',
3 data: JSON.stringify(data),
4 contentType: 'application/json',
5 url: 'http://localhost:3000/endpoint',
6 success: function(data) {
7 window.open(data.redirect, '_blank');
8 },
9 async: false

10 });

Immediately after the files are completed, a new tab showing the result is
opened to ensure that the generation was successful. The received files are
usable on any system, capable of processing HTML5 and CSS.

Chapter 6

Evaluation

The developed tool needed to be evaluated, to verify whether the defined
goal was achieved. Web developers were asked to examine the tool to obtain
feedback from users with different previous knowledge and programming
style. They had to replicate a given design and to validate the accuracy of
each gesture. Additionally, the testers were asked to mention each difference,
advantage and disadvantage of both tools. The results of both parts were
later used to address the research question.

6.1 Accuracy of Gestures
To ensure that the chosen gestures can be distinguished by the recognition
algorithm, the test users hat to draw each gesture 20 times to evaluate
the error rate. Additionally, advantages and disadvantages of single gestures
were identified by the users to improve those with less distinct results or
difficulties while drawing.

Calculating the average of all recognitions during the evaluation, the
average recognition rate for all elements is 89.13% while the average value
for all categories is 89% and for elements located inside categories 89.17%.
An category results overview is given in Table 6.1.

6.1.1 Table

The table category including the category gesture and all elements inside,
has a recognition rate of 95.5% which is the highest success rate over all
categories. However, the category gesture itself achieved only 91%, placing
itself on rank three over all these gestures. Inside this category, all recog-
nitions were successfully, regarding the circumstance that only one gesture
is present. Therefore, incorrect recognitions were not possible, except if the
input was insufficient.

40

6. Evaluation 41

Table 6.1: Average recognition results per category.

category avg. category avg. elements in category

table 91% 100%
embedded 93% 89.4%

content 84% 83%
p 85% -

form 92% 93.3%

Figure 6.1: The <svg> gesture miscrecognized as <video> gesture, due to
the rotation.

6.1.2 Embedded

Better results were accomplished by the embedded category gesture. It was
successfully recognized in 93% of all test attempts. Concerning the elements
included in this category, distinct results were achieved. The had a
recognition rate of 100%. However, some gestures included led to a faulty
recognition. 96% of the attempts for <audio> were successful, which results
in an error rate of 4%. The recognitions of <video> and <iframe> performed
slightly worse with 95% and 89%.

The <svg> element achieved the least reliable results with a recognition
rate of 67% and therefore an error rate of 33%. As a consequence, this gesture
may need some adaptations to be easier distinguishable from other elements.
This gesture was recognized successfully when it was drawn similar to the
template gesture. Drawing it rotated or even upside down resulted in a failed
recognition attempt (see Figure 6.1).

6. Evaluation 42

Figure 6.2: A content gesture incorrectly recognized as embedded gesture
through its shape.

Figure 6.3: <blockquote> gestures, recognized as <hr>.

6.1.3 Content

The content category yielded the majority of wrong recognitions concerning
the category gesture itself. Provided the drawn gesture looked similar to Fig-
ure 6.2, it was recognized as embedded, instead of content. This results from
the circumstance that the start and end point of the gesture are consider-
able close to each other, which is interpreted by the recognition algorithm as
one point respectively as tip of the embedded gesture. The elements in the
content category had considerable different results, regarding their recogni-
tion rate. The first element in this category is the <blockquote>, obtaining
insufficient results with an error rate of 43%. It was frequently recognized as
<hr>, especially when drawn lines were short or highly curved (Figure 6.3).
The <div> had superior results, similar to the element in the em-
bedded category. These two elements share the same gesture, therefore this
conformable result was expected. Furthermore, a success rate of 100% was

6. Evaluation 43

Figure 6.4: The gesture to create a <textarea>, incorrect recognized as
<button>.

achieved by the <hr> element.
The error rate for <H> elements is above average with 25%. In contrast,

the <a> has an error rate of 4% which is beneath the average in this category
and the total average.

The <list> achieved distinct outcomes correlating to the test users. The
recognition rate ranges from 60% up to 85%, which results in an average of
70%. The recognition failed frequently if both strokes of the gesture were
drawn the same length.

6.1.4 P Category

The category p achieved a recognition rate of 85% which is slightly more suc-
cessful than the content category. However the categories table, embedded
and form performed superior.

6.1.5 Form

A result of 92% correct recognitions was achieved by the form category.
Furthermore, within all categories containing more than one additional ele-
ments, this category achieved the best recognition result for its containing el-
ement, with an average success rate of 93.3%. The <input> element achieved
a rate of successful recognitions of 100%. The gesture associated with this
element is equal to the <hr>. Therefore similar values were expected.

The aspect ratio of a drawn rectangle led to different recognition re-
sults for the <textarea> element. A vertical or nearly quadratic rectangle
was successfully recognized as <textarea> by the tool, while a horizontally
drawn rectangle implies a <button> to the algorithm (Figure 6.4). Therefore
elongated gestures were frequently not recognized as a <textarea>.

The <button> gesture is equivalent to the <textarea>. <button> ele-
ments were wrongly recognized as <textarea> and vice versa. Nevertheless
the <button> had an error rate of 14% which is much higher as for the
<textarea>.

6. Evaluation 44

<checkbox> and <label> achieved a success rate of 90% and 89%, which
is higher than the <button> element. However, all remaining elements of the
form category obtained a higher recognition rate. The <select> was the
second most successful gesture in this category with 98% successful recog-
nitions.

6.2 Usability for Prototyping
To demonstrate that the usage of user-drawn gestures is feasible for web
prototyping, the time creating a prototype was compared between the de-
veloped gesture recognition tool and another well-known software, which
uses a drag and drop approach. Therefore each user had to replicate a given
design while the time was measured using a stopwatch. The reproduction
was made using the developed tool first and afterwards with the mockup
software Balsamiq.

One main difference between both is that the recognition tool focuses on
basic HTML elements, while Balsamiq uses basic elements such as images
combined with more complex components such as breadcrumbs. Therefore
Balsamiq does not support every HTML element which is available in the
developed tool but instead offer more advanced elements. However, the suit-
ability for web prototyping was evaluated with basic HTML elements and
components, so this difference between both tools was no significant. Addi-
tionally, using Balsamiq it is only possible to implement some basic func-
tionality, such as linking between pages and implementing images. HTML
functionality which is usable with the own approach, such as selecting check-
boxes or displaying the dropdown function of select boxes is not possible.

6.2.1 Design Template

To compare the required time for creating a small prototype, a basic design
template was essential (Figure 6.5). This design, which was later replicated
by the test users, contains different HTML elements, especially those avail-
able in both editors.

6.2.2 Time and Feature Evaluation

All test users were asked to replicate the given design as fast and accu-
rate as possible. The time of this process was measured using a stopwatch.
Furthermore, each occurring difficulty and all considerable advantages and
disadvantages should be mentioned.

6. Evaluation 45

Figure 6.5: The basic design template, containing different plain HTML
elements.

Drawn Input

The drawing approach of the gesture recognition tool required a trial period
at the beginning for the test users. This time was not recorded to keep
the resulting time comparable to the other tool, which uses a more familiar
technique for creating elements.

The average time to replicate the given design was 06:50 minutes. The
specific results for single users ranges between 04:27 minutes and 07:58.
Therefore, some users required almost twice as much time than others to
create the design using the drawing tool. One prototype resulting of this
test can be seen in Figure 6.6.

To many users, the difference of how elements are represented and cre-
ated to traditional editors was difficult. The tool uses one gesture for one
HTML element, which results in one drawing for each desired element, with
only a few exceptions. For some elements, for example the <h1>, this results
in users trying to insert text with the <p> element and format this text to
become a heading. In various text editors this is a valid practice, however
when thinking in HTML elements, these two are different tags, which should
not be included in each other. In contrast, <i>, and <u> are usable in
<p> elements, therefore they are not represented by a separate gesture, but
rather accessible via editing the <p> element.

The category system chosen for the elements was assessed as unfamil-
iar by most users. This categorization required a few attempts until the
users were able to remember the elements located in each category. The
categorization itself was mentioned as useful, because only a few gestures
where possible in each category and therefore mistakes while drawing were
minimized.

One feature of the tool has turned out to be time-consuming for some

6. Evaluation 46

Figure 6.6: Given design replicated using the drawing input approach.

users. Switching between drawing and editing mode lead to some difficulties
for several test users. For them, it was unfamiliar to use the buttons or the
key bindings to switch between the two modes. Therefore, some time was
lost for trying to select an element while the drawing mode was still active.
However, for other users this system was comprehensible after the first few
tries. For them, it was perspicuous that drawing and editing could not be
achieved in one step, because already recognized element could impede the
drawing of new gestures.

The main advantage for most users is, that elements appear in the same
size as they were drawn before, and not in a default element size which is
given by the system. Thereby, creating rough prototypes is speed up, however
drawing accurate elements need some practice. Additionally they mentioned
that the drawing process feels nearly as natural as creating first sketches
with pen and paper. Furthermore the exporting function was appreciated
by the test users, because it offers a possibility for using the prototype later,
without rebuilding it completely.

Drag and Drop

For comparing the drawing to the drag and drop approach, Balsamiq was
used, a mockup software with the main focus on usability prototyping. In
contrast to gesture recognition, drag and drop for creating components is
more familiar. Nevertheless all test user had no experience using Balsamiq, to
ensure that the measured time is not biased by previously gained experience.

6. Evaluation 47

Figure 6.7: The replicated mockup, created with Balsamiq.

While replicating the given design, all elements could be found in the
Balsamiq UI, except the <div>, regarding the circumstance that the soft-
ware does not use HTML elements for developing prototypes. Therefore,
the Rectangle/Canvas/Panel element was used as substitution. One result-
ing outcome can be seen in Figure 6.7. The time was measured too, starting
once the blank mockup area was loaded. The average amount of time to
replicate the design was 06:39 minutes.

The main advantage mentioned by the test users is that the categories of
elements are easier to understand, because they divide all elements by their
topic. For example, the category Media, includes the Image or the Button
included in Forms. However, various elements belong to multiple categories
so they are included in all these categories. This circumstance can simplify
the location of elements but increase also the number of elements in one
category. Additionally, the drag and drop approach was more familiar to
the test users, therefore no time was needed to familiarize with the input
method before starting the replication.

The most significant disadvantage users revealed is the absence of a na-
tive HTML export functionality. An additional third party plugin is needed
to enable this. Furthermore, the number of available elements in each cate-
gory and their order was criticized. Additionally, the elements options box
was seen as too large and placed too near to the elements, which can disturb
the user.

6. Evaluation 48

6.3 Results
After evaluating all elements, 17 of 23 elements achieved a recognition rate
of more than 85%, while 3 were between 85% and 75% and only 3 gestures
were below 75%. This result reveals that the majority of gestures is feasible
for web prototyping. However, at least the gestures below 85% need some
revision, to be easier drawable for the user and recognizable for the system.
Additionally, all gestures which had difficulties regarding different aspect ra-
tios need either an additional template, a reworked gesture or maybe an al-
teration of the recognition algorithm. Various gestures, such as the <video>
element had a higher recognition rate, however they were criticized by the
users due to their drawing complexity. These gestures should be simplified
if possible. Simple gestures worked out really well, therefore they could be
reused as often as possible, to ensure that the drawing process is as fast
and easy as possible, without loosing information during the drawing pro-
cess. Furthermore, the distinctions between the drawing style of multiple
users lead to some false recognitions. This differences should be utilized to
improve the templates stored for each gesture, to fit the needs of multiple
users. The category system was unfamiliar to most test users, although these
categories are even used officially (see Chapter 4). However they are rarely
used deliberately in web development, therefore they are not considered by
most users. Nevertheless, the system should be maintained, because these
categories simplify the creation of unique gestures, speed up the recognition
process and ensure that the user is not overwhelmed by too many gestures
at once.

The evaluation of the time needed to replicate a given template revealed
that the drag and drop approach was slightly faster. It took an average
of 06:39 minutes to replicate the design using Balsamiq which utilizes the
drag and drop technique and 06:50 minutes to replicate it using the drawing
input. That means that the average time needed was 11 seconds lower using
Balsamiq. However, the single results between various users were different
for each method. For some users the drawing approach accelerated their
prototyping speed, while for some user the speed was slowed down. Users
which had already some experience with drawing on a device obtained better
results than users which had little or no experience with this technology.
Most users were more familiar with drag and drop as input method, therefore
this test users achieved a valid result faster.

Comparing the results of both approaches revealed that using drawn
input is feasible for web prototyping, although current, familiar technologies
are marginally faster. The concept of using drawn gestures as input method
may not be familiar to many users yet, but while creating elements with
the tool most users got used to it and became faster. However, the drawing
approach may not be appropriate for every user. It depends on personal
preferences whether it can be time saving or would increase the time needed.

Chapter 7

Conclusion

While developing a website, many developers and designers need to show
their ideas to other team members or a customer. Often, these first ideas
should be shown graphically, to ensure that each party has the same under-
standing of the result. These ideas are often created during meetings with
the relevant stakeholders, where sketching these ideas must be done fast.
Therefore, mostly pen and paper are used to create them. Afterwards, these
ideas are used to create a first prototype, where the functionality of these
sketches can be demonstrated to all involved parties.

A combination of these steps would facilitate the everyday life of devel-
opers and designers. Therefore the utilization of user-drawn input for gen-
erating functional, valid code was a possible consideration. As stated in the
thesis, user-drawn input is feasible for prototyping. The gesture approach
which is used for the thesis project is appropriate for recognizing different
HTML elements, due to their similar, rectangular design. Also, to achieve
the ability to add new components which are needed in specific areas, the
Web Component technology was utilized.

Drawing on a mobile device to create a prototype may be a unfamiliar
technique for many people. However, after getting familiar with it, it may
become a fun and fast way of developing. It can speed up the prototyping
process and also lower the number of revision steps, because functional-
ity can easily be demonstrated after the first design or composition draft.
Therefore the involved people do not need to wait until this design is rewrit-
ten into code and then be seen that the functionality is not as desired and
something else should be tried.

It was proven that user-drawn input is feasible for web prototyping and
that it can enhance the speed of prototyping. However, at least the time
enhancement can only be demonstrated for selected users, a general time
saving over all users can not be stated. This could be attributed to differences
in the familiarity with different input methods and the disposition to get
familiar with new technologies.

49

7. Conclusion 50

Following the evaluation of the tool developed for this thesis, it was
revealed that there is still some space for improvements. For example, a
possibility to define custom gestures for elements should be included, to fit
the drawing style of different users as much as possible. Additionally, the
creation of custom categories could be a potential extension because this
could speed up the prototyping process significantly.

Appendix A

Contents of the
CD-ROM/DVD

Format: CD-ROM, Single Layer, ISO9660-Format

A.1 Thesis
Pfad: /

Groemer_Elisabeth_2017.pdf Master thesis (entire document)

A.2 Online Sources
Pfad: /online

*.pdf Copies of the downloaded online sources

A.3 Images
Pfad: /images

*.png Rendered Images

A.4 Source Code
Pfad: /project

editor.zip Source code of the developed tool

A.5 Miscellaneous
Pfad: /misc

51

/
Groemer_Elisabeth_2017.pdf
/online
*.pdf
/images
*.png
/project
editor.zip
/misc

A. Contents of the CD-ROM/DVD 52

evaluation.xlsx Evaluation numbers and calculations

evaluation.xlsx

References

Literature

[1] Derek Anderson, Craig Bailey, and Marjorie Skubic. “Hidden Markov
Model Symbol Recognition for Sketch-Based Interfaces”. In: Proceed-
ings of the AAAI 2004 Fall Symposium, Workshop on Making Pen-
Based Interaction Intelligent and Natural. (Menlo Park, CA). AAAI
Press, 2004, pp. 15–21 (cit. on p. 9).

[2] Lisa Anthony and Jacob O. Wobbrock. “A lightweight multistroke
recognizer for user interface prototypes”. In: Proceedings of Graphics
Interface (GI 1́0). Toronto, Ontario: Canadian Information Processing
Society, May 2010, pp. 245–252 (cit. on pp. 18, 19).

[3] Mi Gyung Cho. “A new gesture recognition algorithm and segmenta-
tion method of Korean scripts for gesture-allowed ink editor”. Infor-
mation Sciences: An International Journal Archive 176 (9 May 2006),
pp. 1290–1303 (cit. on pp. 8, 11).

[4] Tracy Hammond and Brandon Paulson. “Recognizing sketched multi-
stroke primitives”. ACM Transactions on Interactive Intelligent Sys-
tems 1 (1 Oct. 2011), 4:1–4:34 (cit. on pp. 6, 7).

[5] Tu Huawei, Ren Xiangshi, and Zhai Shumin. “Differences and Sim-
ilarities between Finger and Pen Stroke Gestureson Stationary and
Mobile devices”. ACM Transactions on Computer-Human Interaction
22 (August 2015), 22:1–22:39 (cit. on p. 17).

[6] C. S. Myers and L. R. Rabiner. “A comparative study of several dy-
namic time-warping algorithms for connected word recognition.” In:
The Bell System Technical Journal. Vol. 60. Alcatel-Lucent, Sept.
1981, pp. 1389–1409 (cit. on p. 10).

[7] James A. Pittman. “Recognizing handwritten text”. In: Proceedings
of the CHI ’91 SIGCHI Conference on Human Factors in Computing
Systems. (New Orleans, Louisiana, USA). 1991, pp. 271–275 (cit. on
pp. 9, 10).

53

References 54

[8] Dean Rubine. “Specifying gestures by example” (4 July 1991), pp. 329–
337 (cit. on p. 8).

[9] Eugene M. Taranta, Andrés N. Vargas, and Joseph J. LaViola.
“Streamlined and accurate gesture recognition with Penny Pincher”.
Computers and Graphics 55 (2016), pp. 130–142 (cit. on p. 20).

[10] Radu-Daniel Vatavu, Lisa Anthony, and Jacob O. Wobbrock. “Ges-
tures as point clouds: A $P recognizer for user interface prototypes”.
In: Proceedings of the ACM International Conference on Multimodal
Interfaces (ICMI 1́2). (Santa Monica, California). New York: ACM
Press, Oct. 2012, pp. 273–280 (cit. on pp. 18, 19, 26, 28).

[11] Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. “Gestures with-
out libraries, toolkits or training: A $1 recognizer for user interface
prototypes”. In: Proceedings of the ACM Symposium on User Inter-
face Software and Technology (UIST 0́7). (Newport, Rhode Island).
New York: ACM Press, Oct. 2007, pp. 159–168 (cit. on pp. 8, 11, 17,
18).

Online sources

[12] The Polymer Project Authors. Local DOM Basics and API. 2016. url:
https://www.polymer-project.org/1.0/docs/devguide/local-dom (cit. on
p. 15).

[13] The Polymer Project Authors. Polymer Element Lifecycle. 2016. url:
https : / / www. polymer - project . org/ 1 . 0 / docs / devguide / registering -
elements (cit. on p. 32).

[14] Nilutpal Borgohain. Dynamic programming for beginners. Part 1. url:
https://www.hackerearth.com/practice/notes/dynamic-programming-
for-beginners-part-1/ (visited on 07/05/2017) (cit. on p. 10).

[15] Bosonic - A practical collection of everyday Web Components. url:
https://bosonic.github.io/index.html (visited on 04/14/2017) (cit. on
p. 15).

[16] W3C Editor’s Draft. Custom Elements. Feb. 2017. url: http://w3c.
github.io/webcomponents/spec/custom/ (cit. on p. 14).

[17] W3C Editor’s Draft. HTML Imports. Feb. 2017. url: http ://w3c .
github.io/webcomponents/spec/imports/ (cit. on p. 14).

[18] W3C Editor’s Draft. Shadow DOM. Feb. 2017. url: http://w3c.github.
io/webcomponents/spec/shadow/ (cit. on p. 14).

[19] W3C Working Draft. Custom Elements. Oct. 2016. url: https://www.
w3.org/TR/custom- elements/#valid- custom- element- name (cit. on
p. 29).

https://www.polymer-project.org/1.0/docs/devguide/local-dom
https://www.polymer-project.org/1.0/docs/devguide/registering-elements
https://www.polymer-project.org/1.0/docs/devguide/registering-elements
https://www.hackerearth.com/practice/notes/dynamic-programming-for-beginners-part-1/
https://www.hackerearth.com/practice/notes/dynamic-programming-for-beginners-part-1/
https://bosonic.github.io/index.html
http://w3c.github.io/webcomponents/spec/custom/
http://w3c.github.io/webcomponents/spec/custom/
http://w3c.github.io/webcomponents/spec/imports/
http://w3c.github.io/webcomponents/spec/imports/
http://w3c.github.io/webcomponents/spec/shadow/
http://w3c.github.io/webcomponents/spec/shadow/
https://www.w3.org/TR/custom-elements/#valid-custom-element-name
https://www.w3.org/TR/custom-elements/#valid-custom-element-name

References 55

[20] W3C Web Education Community Group. HTML/Elements. Nov.
2011. url: https : / / www . w3 . org / community / webed / wiki / HTML /
Elements (cit. on p. 23).

[21] Mozilla Developer Network. ECMAScript 2015 Spread Operator. May
2017. url: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Operators/Spread_operator (cit. on p. 28).

[22] Mozilla Developer Network. HTML element reference. Jan. 2017. url:
https://developer.mozilla.org/en-US/docs/Web/HTML/Element (cit.
on p. 23).

[23] Mozilla Developer Network. HTML Template. May 2017. url: https:
//developer.mozilla.org/en-US/docs/Web/HTML/Element/template
(cit. on p. 14).

[24] Mozilla Developer Network. Web Components. Jan. 2017. url: https:
//developer.mozilla.org/en-US/docs/Web/Web_Components (cit. on
p. 13).

[25] Polymer vs. X-Tag. July 2014. url: https://pascalprecht.github.io/
2014/07/21/polymer - vs - x - tag - here - is - the - difference/ (visited on
05/28/2017) (cit. on p. 15).

[26] Daniel Shiffman. The Nature of Code: Simulating Natural Systems
with Processing. url: http : / / natureofcode . com / book / chapter - 10 -
neural-networks/ (visited on 06/14/2017) (cit. on pp. 9, 10).

[27] Marcin Treder. Wireframing, Prototyping, Mockuping – What’s the
Difference? Sept. 2016. url: https ://designmodo.com/wireframing-
prototyping-mockuping/ (visited on 05/15/2017) (cit. on p. 4).

[28] w3schools.com. HTML Element Reference. June 2017. url: https://
www.w3schools.com/TAgs/ref_byfunc.asp (cit. on p. 23).

https://www.w3.org/community/webed/wiki/HTML/Elements
https://www.w3.org/community/webed/wiki/HTML/Elements
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/template
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/template
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://pascalprecht.github.io/2014/07/21/polymer-vs-x-tag-here-is-the-difference/
https://pascalprecht.github.io/2014/07/21/polymer-vs-x-tag-here-is-the-difference/
http://natureofcode.com/book/chapter-10-neural-networks/
http://natureofcode.com/book/chapter-10-neural-networks/
https://designmodo.com/wireframing-prototyping-mockuping/
https://designmodo.com/wireframing-prototyping-mockuping/
https://www.w3schools.com/TAgs/ref_byfunc.asp
https://www.w3schools.com/TAgs/ref_byfunc.asp

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Goal
	Structure

	Terminology
	Web Application
	Recognition
	Gestures
	Web Components
	Prototype, Mockup, Wireframe
	Context Menu

	Recognition
	Classification of Algorithms
	Motion-based Recognition
	Appearance-based Algorithms
	Geometric-based Recognizers

	Common Recognition Approaches
	Feature-based Classifiers
	Hidden Markov Model
	Neural Networks
	Dynamic Programming
	Ad-hoc Heuristic Recognizers

	State of the Art
	Tools
	Web Components
	Recognition
	The Dollar Family
	Penny Pincher

	Implementation
	Preconditions
	Selection of Elements
	Categorization
	Chosen Gestures
	Recognition Algorithm
	Recognition Categories
	Recognizing Element Parameters

	Component Development
	The Dom-Module
	The Template
	The Script

	Application Functionality
	Basic Application Structure
	Drawing Helpers
	Basic Component Functions
	Context Menu

	Export HTML

	Evaluation
	Accuracy of Gestures
	Table
	Embedded
	Content
	P Category
	Form

	Usability for Prototyping
	Design Template
	Time and Feature Evaluation

	Results

	Conclusion
	Contents of the CD-ROM/DVD
	Thesis
	Online Sources
	Images
	Source Code
	Miscellaneous

	References
	Literature
	Online sources

