
Responsive Application Design –
Websites to Cross Platform

Applications

Gerald Hauser

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2014

© Copyright 2014 Gerald Hauser

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, September 19, 2014

Gerald Hauser

iii

Contents

Declaration iii

Abstract vi

1 Introduction 1
1.1 Subject . 1
1.2 Problem Statement . 2
1.3 Hypothesis . 2
1.4 Structure . 2

2 Theoretical Foundation 4
2.1 Growth of the Mobile Sector 4

2.1.1 Definitions and Delimitations 4
2.1.2 From Mobile Phones to Smartphones 5
2.1.3 Apple Inc. 6
2.1.4 Android Inc. 7
2.1.5 Device Shipments 2008 – 2015 9
2.1.6 Screen Form-Factors 10

2.2 Different Approaches to handle Screen Form-Factors 11
2.2.1 Desktop First . 11
2.2.2 Mobile First . 12

2.3 Responsive Web Design (RWD) 12
2.3.1 Definition and Delimitation 13
2.3.2 Main Goals . 16
2.3.3 Techniques . 17
2.3.4 Designing Responsive 20
2.3.5 Frameworks and Platforms 20

2.4 Cross Platform Development 22
2.4.1 Definitions and Delimitation 22
2.4.2 Development Issues 23
2.4.3 Cross Platform Programming 23
2.4.4 Frameworks . 24

2.5 Conclusion . 26

iv

Contents v

3 Practical Approach 28
3.1 Purpose of the Sample Application 28

3.1.1 Problem Statement . 28
3.1.2 Specification and Delimitation 29

3.2 Cooperation with APEX gaming technology GmbH 29
3.2.1 About the Company 29
3.2.2 Going Responsive at APEX 30

3.3 Selection of the Cross Platform Framework 31
3.4 Actual Application . 32

3.4.1 Mathematical Notations 32
3.4.2 Architecture . 33
3.4.3 Implementation . 35

3.5 Conclusion . 46

4 Conclusions 48
4.1 Result . 49
4.2 Implications and Future Research 49

A Terms 50

B Content of the CD-ROM 51
B.1 PDF-Files . 51
B.2 LaTeX-Files . 51
B.3 Style/Class-Files . 51
B.4 Miscellaneous . 52

References 54
Literature . 54
Online sources . 54

Abstract

The mobile sector has been increasing enormously within the last few years.
New techniques rises that enable developers to deal with the problems that
appear with the large amount of different devices, screen form-factors and
platforms the devices are running on. Responsive and adaptive designs have
prevailed in development of web applications and websites, giving the devel-
oper the opportunity to design web applications that adjust to the screen
form-factor of the device it is running on. Depending on the requirements
of the application, a web application is not always the best solution. Some-
times native applications are a better choice. A convenient characteristic
of well designed web applications is that they are running independent of
the operating system inside the browser, either mobile or at the desktop.
To achieve this in native application development, cross platform frame-
works can be used. With the possibility of cross platform frameworks source
code is written only once and compiled to the platforms the application
should run on. Within this thesis the concept of Responsive Web Design is
established as well as the possibilities of cross platform development. The
practical approach of the thesis deals with the implementation of the most
useful techniques from Responsive Web Design within a specific cross plat-
form framework, LibGDX. In the conclusion the proposal is made to use a
more generic expression than Responsive Web Design: Responsive Applica-
tion Design.

vi

Chapter 1

Introduction

Throughout the last years the mobile sector has been increasing very fast.
Different mobile devices with diverse platforms and screen form-factors over-
flow the global market. For a developer of native mobile applications it is
difficult to cover all the different types of mobile devices from smartphones
to tablets, that run on different operating systems. Responsive Web Design,
a technique of web design, that has been rising over the past view years,
gives the developer the possibility to deal with different screen form-factors
when designing a web-application or website. The platform independence
of websites and web-applications running in the browser, either mobile or
at the desktop, is a convenient feature. But such web-applications are not
always the best way in practice, depending on the requirements of the appli-
cation e.g. access to any hardware features of a mobile device, or time critical
operations that can not be done using a low bandwidth. In this cases native
applications can be a better choice. The use of a cross platform framework,
for native application development, is a possibility, to develop applications
that are running on more than one platform natively. So if a native appli-
cation is required that has to run on several platforms, why not combining
the approach of Responsive Web Design with the use of a cross platform
framework? The combination of these two approaches gives the possibility
to deal with the problematic of various screen form-factors as well as the
problematic of different platforms. Within section 1.1 the subject of the the-
sis is explained. The problem statement is pointed out in section 1.2. To put
it in a nutshell, the hypothesis is given in section 1.3. The structure of the
thesis is given in section 1.4.

1.1 Subject
The reason for this thesis is to examine if it is possible to adopt and adapt
principles of Responsive Web Design, to use them in combination with a spe-
cific cross platform framework in order to develop natively running mobile

1

1. Introduction 2

applications. Furthermore, if the possibility of using principles of Responsive
Web Design in application development is given, it can be investigated if the
terminology of Responsive Application Design is fitting better than Respon-
sive Web Design, because it covers a larger field in the area of application
development.

1.2 Problem Statement
There are several problems when thinking of mobile application develop-
ment. One specific problem is is to deal with an enormous number of screen
form-factors. Manufacturers of mobile devices, especially of Android devices,
produce their products in many different sizes, with different displays, res-
olutions, and aspect ratios. Application-users expect any application to be
presented in a proper way, and not to be stretched or cropped on displays
with other screen form-factors than they were designed for. It is in the in-
terest of the developer to represent his application to the user accordingly.
Another problem is the diversity of platforms that are available. Beside a
variety of desktop platforms, e.g. Mac OS X, Windows, and Linux, there
are also several mobile platforms, e.g. Android, iOS, and Windows Phone,
available at the market nowadays. When there is the need to develop a na-
tive application, the implementation can be done for each single platform
individually, or using the possibility of cross platform frameworks to write
code once and compile it for each platform the application should run on.

1.3 Hypothesis
Adopting techniques from Responsive Web Design to use them in
cross platform development overcomes the problematic of mul-
tiple screen form-factors, and provides the possibility to develop
native applications for various platforms.

1.4 Structure
This thesis is subdivided in three main chapters. Chapter 2 forms the the-
oretical foundation of the thesis to give an overview of the state of the art.
It consists of the growth of the mobile sector in section 2.1, the different
approaches to handle screen form-factors in section 2.2 , introduces Respon-
sive Web Design (RWD) in section 2.3, and cross platform development in
section 2.4. Finally section 2.5 draws a conclusion of chapter 2.

The practical approach shown in chapter 3 demonstrates the possibility
to develop a cross platform application with responsive characteristics. Sec-
tion 3.1 gives the purpose of the sample application. The cooperation with

1. Introduction 3

APEX gaming technology GmbH is explained in section 3.2. How the selec-
tion of the cross platform framework took place is described in section 3.3.
Section 3.4 includes actual application, with the description of the mathe-
matical notations, the architecture and the implementation. The conclusion
in section 3.5 forms the end of the chapter.

Chapter 4, finally shows the conclusions of the thesis. The findings of the
thesis are summarized. The chapter also proposes areas of further research.

Chapter 2

Theoretical Foundation

This chapter brings closer insight on the topic Responsive Web Design (RWD)
and Cross Platform Development (CPD). It particularly deals with the sub-
jects of growth of the mobile sector, different approaches to handle screen
form-factors, Responsive Web Design (RWD) and cross platform develop-
ment. Section 2.5 contains the conclusion of this chapter, that summarizes
the main points again.

2.1 Growth of the Mobile Sector
Within this section definitions and delimitations of the term smartphone
are explained. Further the evolution from mobile phones to smartphones is
stated and the the latest trends in device shipments 2008 – 2015 are shown
as well as a summary of different screen form-factors.

2.1.1 Definitions and Delimitations

The term smartphone is defined as a mobile device that provides advanced
capabilities beyond a typical mobile phone [58]. Early smartphones typically
combined the features of a mobile phone with those of another popular con-
sumer device, such as a PDA1, a media player, a digital camera, or a GPS2

navigation unit. Modern smartphones include all of those features. The list
of features a modern smartphone has includes mostly a touchscreen and an
accelerometer, web browsing, Wi-Fi, and third-party applications and ac-
cessories [58]. Nowadays the term feature phone defines any mobile phone
that is not a smartphone [57]. Feature phones differ from smartphones in
their proprietary operating system firmware, and their rare support of third-
party software, e.g. via closed platform and operating system [57], whereas
smartphones run accessible operating system software that provides a stan-

1PDA: Personal Digital Assistant
2GPS: Global Positioning System

4

2. Theoretical Foundation 5

dardized application programming interface (API) for developers [58]. A
tablet computer or tablets are general-purpose computer contained in a sin-
gle panel. Just like modern smartphones, tablets also run complete operating
system software with standardized interface and platform for application de-
velopers. All in all modern tablets often have the same features as modern
smartphones (sensors, cameras, microphone, accelerometer, touchscreen, ac-
cessories). Tablets nowadays are mostly operated by fingers, and a stylus in
an option, whereas earlier tablets required a stylus for input [56].

2.1.2 From Mobile Phones to Smartphones

Taking a look back in history there were already device concepts that com-
bines telephony and computing in 1973, some of them already offered for
sale as early as in 1993. A first prototype of a device that incorporated
PDA features was developed by IBM3 in 1992 and demonstrated at the
COMDEX computer industry trade show that year. With the name Simon
Personal Communicator a refined version of the product was designed by
IBM. BellSouth Cellular Corp. retailed The Simon from August 1994 to
February 1995 for $899 per device and sold approximately 50000 units. The
Simon was the first device that can properly be called a smartphone, even
though that term itself was not coined yet [60]. The first device that was
called a smartphone appeared in 1997, when Ericsson described its GS 88
Penelope concept as a Smart Phone [32]. The first smartphone for mass
adoption was released 1999 by the Japanese mobile phone operator NTT
Docomo Inc. With the mobile Internet service i-mode these smartphones
have access to various services such as e-mail, sports results, weather fore-
cast, games, financial services and ticket booking. I-mode used cHTML4, a
subset of HTML5, in favor of increasing data speed for the devices. NTT
Docomo owes it to the i-mode that they have accumulate an estimated 40
million subscribers by the end of 2001. This makes NTT Docomo ranked
first in market capitalization in Japan and second globally. With the rise of
3G and new smartphones with advanced network capabilities the supremacy
of Docomo wane [10]. Smartphones outside of Japan were still rare. Starting
in 2003, devices based on Microsoft’s Windows Mobile started to gain high
popularity for business use in the U.S. while the same year Research In Mo-
tion (RIM), nowadays known as BlackBerry [19], had its breakthrough with
their first GSM6 smartphones BlackBerry series 62xx and also the Black-
Berry 72xx serie which already had a color screen [35]. Although BlackBerry
and Windows Mobile systems had a large lead in the North American mar-
ket from 2006 to 2007, BlackBerry was known to a more widely distributed

3IBM: International Business Machines Corporation
4cHTML: Compact HyperText Markup Language
5HTML: HyperText Markup Language
6GSM: Global System for Mobile Communications, originally Groupe Spéciale Mobile

2. Theoretical Foundation 6

public of business people and young people. At this time Windows Mobile
still had its major proportion in the business sector. At the same time the
most popular mobile operating system in Europe was Symbian, largely led
by Nokia. Just as BlackBerry and Windows Mobile Nokia was situated in
the business sector at the beginning. This changed in 2006, where Nokia
changed its courses and started to make smartphones that focuses on enter-
tainment, popularized by the N-series smartphones. With the N95, that had
revolutionary multimedia features for its time, Nokia got popular among
younger people [54]. In 2007, when Apple released its first iPhone [16] and
2008, when HTC released the first Android smartphone HTC Dream, two
new players entered the mobile marked [53]. Over the years, Apple and An-
droid became key-players of the mobile market. Their different approach to
reach this is discussed in more detail in the following sections 2.1.3 and 2.1.4.

2.1.3 Apple Inc.

The multinational corporation with the headquarter in Cupertino, California
was founded by Steve Jobs, Steve Wozniak, and Ronald Wayne on April 1,
1976 to develop and sell personal computers [17]. With the introduction
of the iPhone in 2007, as one of the first smartphones that used a large
multi-touch-screen for direct finger input instead of a hardware keyboard or
stylus, which was state of the art at that time, Apple entered the mobile
market. When the first iPhone was launched it did not support to run third-
party applications on it. The launch of the App Store in 2008 that enables
the possibility of developing third-party applications and sell them through
the store, is a important key event that changed application development
dramatically [14].

App Store

Since the introduction of the App Store and iPhone OS 2.0 (iOS) in 2008 it
is possible to develop third party applications for the iPhone [14]. The App
Store became a central platform to commercialize third party applications
for iOS devices. Although ambitious software developers had managed to
jailbreak7 the iPhone before the release of Apple’s official App Store to run
self-developed applications on it, distributed through package managers such
as Installer.app and Cydia. The App Store allows the users to download and
purchase new applications for their device. Developers who distribute their
application on the App Store have to obey a large number of restrictions; all
applications get reviewed by Apple staff when submitted and get rejected
when they do not pass the Apple’s technological and design guidelines [13].

7Jailbreak: the remove of limitations on Apple’s devices running iOS to permit root ac-
cess to the iOS file system and manager, allowing the download of additional applications,
that are unavailable on Apple’s official App Store.

2. Theoretical Foundation 7

Apple benefits from the App Store. As of the time the thesis has been
written, Apple takes a 30% fee on revenues for paid applications sold through
the store [17], [13].

Financials

The App Store has been a major financial success for Apple. According to
current statistics Apple has reached over 40 billion application downloads
up to 2013, with more than over 800 000 available applications [15]. Apple’s
revenue in 2013 of totalled $170 billion makes it the world’s second-largest
information technology company after Samsung Electronics [51].

Devices

Beside the iPhone, Apple expanded its product range in the mobile sector
with the iPod touch in 2008 and the iPad in 2010 [17], all of them having
access to the App Store. This is important because all devices that have
access to the App Store also have access to the applications on that store.
A developer therefore has to deal with different screen form-factors. In 2012
Apple the iPad was first available with two different specifications – the
iPad 4 with more or less the same aspect ratio than its predecessors and
the iPad mini which is a large smaller and therefore more handy. Today
the iPad is at its fifth generation with the iPad Air and the iPad mini is
at its second generation [17]. From the first to the fourth generation of the
iPhone its screens aspect ratio stays the same which made it more easy to
develop applications for only one aspect ratio. Just with the iPhone 5 the
aspect ratio changes. In 2013 the iPhone has reached the more or less the
fifth generation with some facelifts. With the fifth generation the iPhone is
first available in two completely different versions – the iPhone 5C and the
iPhone 5S – using different materials, concepts, hardware and prices to reach
a more widespread user base [17]. At the time the thesis was written Apple
released the iPhone 6 and iPhone 6 Plus. The two devices differ evidently
in their display specifications, with the iPhone 6 that has a 4.7" Retina HD
Display with 1334 × 750px resolution at 326ppi8, whereas the iPhone 6 Plus
has a 5.5" Retina HD Display with 1920 × 1080px resolution at 401ppi.

2.1.4 Android Inc.

Android Inc. was founded in Palo Alto, California, in October 2003, by Andy
Rubin, Rich Miner, Nick Sears and Chris White to design smarter mobile
devices that are more aware of its owner’s location and preferences [9]. When
Google acquired Android Inc. in August 2005 there was not much known

8ppi: Pixels per inch

2. Theoretical Foundation 8

about that company at the time, but many assumed that Google was plan-
ning to enter the mobile phone market with this move [31]. At Google, a
team led by Rubin started to develop a mobile device platform. The unveil-
ing of the iPhone, a touchscreen-based phone by Apple, on January 9, 2007
had a disruptive effect on the development of Android. At the time, a pro-
totype device codenamed Sooner had a closer resemblance to a BlackBerry
phone, with no touchscreen, and a physical, QWERTY keyboard. Work im-
mediately began on re-engineering the OS and its prototypes to combine
traits of their own designs with an overall experience designed to compete
with the iPhone [43]. September the same year, InformationWeek covered
an Evalueserve9 study reporting that Google had submitted several patents
in the mobile-phone technologies’ area [23]. November 5, 2007, the Open
Handset Alliance10 announced the goal to develop open standards for mo-
bile devices [42]. The same day, Android was unveiled as its first product
built on the Linux kernel version 2.6 [42].

Devices and Manufacturers

October 22, 2008, the HTC Dream was released as the first commercially
available smartphone running Android [53]. Beside several third party mod-
ifications of the user interface (UI) of the original Android operating system
Google also launched its Nexus series, to act as their flagship devices with
the latest software and hardware, running Stock-Android on it11. The devices
are built by manufacturing partners such as HTC, LG and Asus. 2010 the
Nexus One12 was the first smartphone that runs pure Android. The latest
representative of the series are the Nexus 5 phone13 the Nexus 7 tablet14 and
the Nexus 10 tablet15. Devices running Stock-Android are in most cases the
first one getting software updates, since third party companies, that deliver
a modified UI for Android – e.g. HTC Sense [38], Samsung TouchWiz [64], or
Sony UI [18] – have to change new released Android versions to implement
their specific UIs [47].

Operating System Release-Philosophy

Android had several updates since 2008, which have incrementally improved
the operating system. Major releases are named in alphabetical order after

9Evalueserve – a global consulting and research firm
10Open Handset Alliance – a consortium of technology companies (Google; device manu-

facturers: HTC, Sony and Samsung; wireless carriers: Sprint Nextel and T-Mobile; chipset
makers: Qualcomm and Texas Instruments)

11Stock-Android – a pure version of Android released and updated by Google directly
12by HTC
13by LG
14by Asus
15by Samsung

2. Theoretical Foundation 9

a dessert or sugary treat; for example, version 1.5 Cupcake was followed by
1.6 Donut. The latest version of Android 4.4.4, named KitKat, was released
on June 19, 2014 [59].

2.1.5 Device Shipments 2008 – 2015

According to the statistic in figure 2.1 from Booz & Company Inc., a global
management consulting firm, the mobile sector (smartphones and tablets)
is growing fast. In 2008, global smartphone sales, with 252 million units
sold, were overtaken by PC and notebook sales, with 150 million PCs sold
and 140 million notebooks sold, added together 290 million units. While the
sales of PCs remained at about 150 million units from 2009 to 2012, with
a significant drop to 138 million units sold in 2009, the sales of Laptop and
smartphone units increased constantly. In 2010, when the first tablets were
introduced, 18 million units were sold. In 2011, smartphones sales in addition
with tablet sales formed a sale of 427 million units, whereas PC and Laptop
sales together remained at 396 million units. Total PC and notebook sales
were overtaken by total smartphone and tablet sales the first time. According
to the forecasts to 2015 the trend is still unbroken. Sales of smartphone
(776 million sold units in 2015) and tablets (445 million sold units in 2015)
will increase dramatically whereas the increase of notebook sales, with 464
million units sold in 2015, is rather slow. PC sales are forecasted to increase
slightly to about 157 million units [67].

Figure 2.1: Global device sales 2008 – 2012, with forecasts to 2015. Adopted
from Booz & Company Inc. [67].

There are two reasons why the mobile sector is growing. The First reason
is that smartphones are getting better in use and functionality and also

2. Theoretical Foundation 10

the hardware specifications improve e.g. better camera, accelerometer or
GPS. Another reason is that there is a smartphone for almost every budget,
already starting at about 40$ [52] for a contract-free smartphone. The web
can be accessed with affordable mobile devices and relatively cheap mobile
data plans, a laptop or desktop is sometimes not needed any longer to access
the Internet [36]. But this is not the only thing helping mobile Internet to
grow. Broader coverage of faster networks has also been an improvement
factor.

2.1.6 Screen Form-Factors

The term screen form-factor describes the aspect ratio of the device’s ren-
dering surface width over its height. As the mobile sector grew the issue of
representing a content, either web or native content, on mobile devices with
a various number of different screen form-factors arose. When thinking of
cross platform development, and therefore not only on mobile platforms, the
fact that nearly every screen form-factor16 can appear. So the shown screen
resolutions in figure 2.2 have only a representational character to clarify
the importance of the possibility of a responsive designed application, that
adapts to the screen or window it is running on [37]. More on the topic of
responsive design can be found in section 2.3.

16screen form-factor, or in the case of a desktop application, window form-factor.

2. Theoretical Foundation 11

140012801024800768540480320

1280

1024

960

864

768

700

600

500

Screen Width

Sc
re
en
 H
ei
gh
t

Figure 2.2: Overview of different possible screen form-factors and resolu-
tions that can be found in mobile devices, as well as on desktop screens, in
form of applications that run in window-mode with different form-factors.

2.2 Different Approaches to handle Screen Form-
Factors

Within this section two different approaches are discussed; Desktop First
and Mobile First As the name indicates the Desktop First approach is used
to design the layout of a website for the desktop first and then adjust for a
mobile version, whereas the Mobile First approach does it vice versa.

2.2.1 Desktop First

Before the appearance of smartphones and tablets most websites have been
designed for desktops and laptops for years. The, now so called, Desktop
First philosophy were used. Before the first iPhone and Android devices
entered the market not a lot of people used the web on mobile devices,
therefore the need for creating mobile websites or web applications was not
given [36]. When taking the growth of the mobile sector, as mentioned in
section 2.1, into consideration, starting with the design of a web product
optimized for the desktop and then refactoring it for mobile devices may be
an increasingly backward way of thinking [36]. For users of mobile devices it

2. Theoretical Foundation 12

is laborious to browse a desktop site in a mobile browser as is demonstrated
on the right side of figure 2.3. Text can only be read when zooming in, which
is uncomfortable and not user friendly. Some websites do not even work in a
mobile browser because of the use of technologies a unsupported in mobile
browsers [36].

2.2.2 Mobile First

Mobile First differs from Desktop First at the point that it takes care of the
mobile of a website or web application first. Only techniques that work on all
major mobile browsers can be used [36]. After the design of a mobile layout,
a layout for desktops is created. When designing the mobile website first and
then thinking about the desktop it can be ensured that the site provides a
great user experience on both screen form-factors. The left side of figure 2.3
makes it more clear why responsive web applications are better to use on
smartphones, than websites that are designed for desktop screens. The focus
is on optimizing the reading experience and simplifying the navigation on
devices with small screen form-factors [36]. In fact, some of the worlds biggest
companies are suggesting the Mobile First philosophy. Google Chairman Eric
Schmidt speaking at the DLD conference in Munich advises [62]:

“The simple guideline is whatever you are doing – do mobile
first.”

Or Kevin Lynch Adobe’s CTO [50]:

“We really need to shift now to start thinking about building
mobile first. This is an even bigger shift than the PC revolution.”

With the revolution of capable mobile devices as shown in section 2.1.5
and the introduction of faster networks, mobile Internet usage has increased.
Building a mobile version of the website or web application first not only
takes advantage of this growth. Furthermore it gives the chance to provide
an improved user experience for visitors and to reach more people [36], more
often everyday because a user takes his smartphone with him most of the
time [5].

2.3 Responsive Web Design (RWD)
To define the term and concept of RWD, this section deals with the definition
and delimitation of the term responsive itself, as well as the origin of the
name RWD, its main goals and the most common techniques: fluid grids,
flexible images and Media Queries. It also shows ways to designing responsive
are stated, followed by a short intro into common RWD frameworks and
platforms.

2. Theoretical Foundation 13

Figure 2.3: Design of a website: Desktop version on a smartphone using
only fluid grids to adapt to the screen-width (left); Responsive design using
fluid grids and Media Queries to fit the smartphone (right) [66].

2.3.1 Definition and Delimitation

When defining RWD, the term responsive has to be clear. Therefore the
definition of the word responsive itself is given after the definition of web
design. The history of RWD and the delimitation to Responsive- versus
Adaptive Web Design is stated to complement this section.

Responsive

According to the Oxford Dictionaries there are two definitions of the adjec-
tive responsive in English. The first definition – reacting quickly and posi-
tively e.g. a flexible service that is responsive to changing social patterns –
can also be defined as – responding readily and with interest e.g. our most
enthusiastic and responsive students. Examples for synonyms for responsive
are quick to react, reactive and receptive [28].

A second definition of responsive is in response; answering e.g. That
was not a responsive answer to the question. Of a section of liturgy using re-
sponses – e.g. After that we will have some readings, and then the responsive
liturgy which is in your newsletter inserts [28].

When thinking of RWD the first definition of responsive stated in section
2.3.1 is suitable – reacting quickly and positively – as well as – responding
readily and with interest.

2. Theoretical Foundation 14

Figure 2.4: The subdivisions of content, form and functionality supplied to
the three most relevant standards – HTML, CSS and JavaScript – in modern
web design [3].

Web Design

When talking about web design in the context of RWD the first thing to
consider is the distinction in development of websites in general between
content, form and functionality. The content – text, images and other media
contents – are described using HTML. The form – layout and graphical de-
sign – is specified in separate stylesheets such as CSS. To provide extended
functionality and interactivity additional scripting languages are used. There
is made a distinction between server-side scripting languages – e.g. PHP,
Python, Perl, ASPNet, Cold Fusion or JSP – and widely client-side exten-
sions – e.g. Flash, Silverlight, Java and JavaScript. Often the combination
of HTML 5, CSS 3 and JavaScript is used in web design nowadays. Figure
2.4 clarifies the interaction of these three standards graphically. There are
of course more than these three standards available when thinking of web
design but in the context of RWD these are the most important ones [3].

HTML

A new standard of HTML (HTML 5 – status Candidate Recommendation
in December 2012 [40]) was released as a cooperation between W3C17 and
WHATWG18 [39]. HTML 5 was designed to replace HTML 4, XHTML19

and the HTML DOM20 Level 2. The intention was to deliver rich content
without the need for additional plugins. Because HTML 5 is designed to run
on a PC, tablets, smartphones or on a smart TV, it is also cross-platform.
Some of the most interesting new features in HTML 5 are [41]:

• The <canvas> element for 2D drawing
17W3C: World Wide Web Consortium
18WHATWG: Web Hypertext Application Technology Working Group
19XHTML: Extensible HyperText Markup Language
20Document Object Model

2. Theoretical Foundation 15

• The <video> and <audio> elements for media playback
• Support for local storage
• New content-specific elements, like <article>, <footer>, <header>,

<nav>, <section>
• New form controls, like calendar, date, time, email, url, search

Cascading Style Sheets (CSS) 3

The CSS 3 specification is still under development by W3C [27]. It has been
split into modules. The old CSS specification are still included, but split
into smaller pieces. Additionally new modules are added. Some of the most
important CSS 3 modules are [26]:

• Selectors
• Box Model
• Backgrounds and Borders
• Image Values and Replaced Content
• Text Effects
• 2D/3D Transformations
• Animations
• Multiple Column Layout
• UI

JavaScript

To add functionality to websites, JavaScript is a common scripting-language
nowadays. JavaScript can manipulate the HTML DOM to change HTML
elements, attributes and styles (CSS), as well as validate data to validate
user input [25]. JavaScript can e.g. be used to [45]:

• Change HTML elements
• Delete HTML elements
• Create new HTML elements
• Copy and clone HTML elements

History

The term RWD was coined by Ethan Marcotte in a May 2010 article in A
List Apart [2]. He described the theory and practice of RWD in his 2011 pub-
lished book titled Responsive Web Design. With the possibilities of RWD,
he presents a way to escape static websites that deal with canvas with fixed
boundaries or fixed-width layouts. He denounces that web design has to
be independent from designing print media which he states that web de-
sign is derived from, to preserve the flexibility of different displays, screens

2. Theoretical Foundation 16

and browser windows. All the technologies Marcotte used to define RWD ex-
isted already: fluid grids, flexible images and Media Queries. Ethan Marcotte
united these techniques under a single banner. With the following sentence
Jeremy Keith summarize it quiet good [2].

“Uniting these techniques he changed the way thinking about
web design [...].”

The response of the media proved him right. In 2012 RWD was listed as
#2 in Top Web Design Trends for 2012 by the creative bloq magazine [6].
Pete Cashmore stated the year 2013 The Year of Responsive Web Design
[22]. And the trend, creating websites that respond on different screen form-
factors, is still ongoing.

Responsive- versus Adaptive Web Design

RWD is not the only way to represent a website on mobile devices. There are
techniques out there which are somehow similar to RWD, such as Adaptive
Web Design (AWD). The term Adaptive Web Design was coined by Aaron
Gustafson in his 2011 book with the same title [1]. The biggest similarity
between the two methods is that they both allow web content to be viewed
in mobile browsers and various screen form-factors. Both of them have the
goal to provide visitors with a better mobile user experience. The way they
differ is in their delivery of the structures. To summarize the differences
with one simple sentence Ryan Boudreaux writes in his article What is the
difference between responsive vs. adaptive web design? on Web Designer in
April 11, 2013 [21]:

“The distilled definition of a responsive web design is that it will
fluidly change and respond to fit any screen or device size [...]”
whereas “[...] adaptive design [...] will change to fit a predeter-
mined set of screen and device sizes.”

2.3.2 Main Goals

The objectives of RWD can be summarized with the following listings that
Matt Doyle published in an 2011 article Responsive Web Design Demystified
at Elated [29]:

• Adapting the layout (flexible) to suit different screen sizes
• Resizing images to fit the screen resolution
• Serving up lower-bandwidth images to mobile devices
• Simplifying page elements for mobile use
• Hiding non-essential elements on smaller screens

2. Theoretical Foundation 17

• Providing larger, finger-friendly links and buttons for mobile users,
and

• Detecting and responding to mobile features such as geo-location and
device orientation

2.3.3 Techniques

Within the next sections the three core techniques of RWD, defined by Ethan
Marcotte, are explained:

• fluid grids,
• flexible images and
• Media Queries - a module from the CSS 3 specification.

With the combination of these techniques and rethinking about web design,
it is possible to design more flexible, responsive websites.

Fluid Grids

As already stated in section 2.2, most websites were implemented with a fixed
width style layout and centred content before fluid grids became popular.
Nearly every computer display had the same screen form factor. Nowadays
more and more different screen resolutions, aspect ratios and pixel densities
are in use. Therefore a fixed width design is not a good solution, because
it is not adaptable to different screen form-factors. Therefore liquid layouts
became popular [66].

The main idea of fluid grids is to create a layout where all elements are
based on relative width to other elements instead of a fixed pixel width. This
leads to the effect that all elements in the layout are resizeable in relation
to one another. To use this in practice it is necessary to stop thinking in
pixel units and start thinking in proportions. For correct calculation of an
element’s proportion equation 2.1 is used,

𝑟 = 𝑡

𝑐
(2.1)

where r is the result, relative on the target t divided by the context c
the target is placed on. Moving the decimal over two places by multiplying
the given value with 100, as shown in equation 2.2 gives a percentage value

20.83 = 200 · 100
960 (2.2)

that can be passed to the target element [66]. Giving the size of an
element in percentage value a web designer can perfectly design the website
for one resolution, and on changing resolutions the size of the elements within
the website also changes. It is important to not only convert the sizes of

2. Theoretical Foundation 18

elements to a proportional value, but also the sizes of margins and paddings.
Last but not least every pixel unit has to be replaced by percentage values.

One value that is indispensable to achieve a fluid grid design is the width
of the browser window. When thinking of a fixed layout the term canvas is
often used to delimit the width of the website. The width of the browser
window serves the canvas with and is needed for further calculations of sizes
of different elements. Access to the width of the browser window is needed
during runtime to respond on windows that are resized e.g. on a desktop or
mac [2].

Also Dirk Jesse in his article Flexible Layouts: Challenge For The Future
at Smashing Magazine points out that the layout width has to be set in
any percentage value or automatically using widht:auto to ensure the layout
to use the whole browsers window width [46]. Accordingly to that he also
suggests to set a minimal width in pixel value – to make sure that the content
is accessible when displayed on a minimal screen resolution – and a maximal
width in proportional value – thus the text flow does not grow in width in
an uncontrollable fashion, but remains constant for various screen resolution
[46].

Flexible Images

Using fluid grids also images have to be flexible. To set an image flexible
its container has to be calculated with the formula for fluid grid elements,
that is mentioned in section 2.3.3. When only calculating the containers
size it might be that the image data bleed out of its containing element.
Ethan Marcotte presents two possible solutions to make the images fluid
dynamically scaling and cropping.

To scale the image dynamically to the size of its container the maximum
width of the image is set to 100%. Setting the maximum width to 100% is
a way to constraint the images to a manageable size. Alternately there is
the possibility to simply clip off all that excess, overflowing data setting [2].
In section 3.4.3 of the implementation part of the thesis it is shown how an
image looks like when it either gets scaled (figure 3.10) or cropped (figure
3.11).

Media Queries

Using Media Queries, a module of CSS 3, it is possible to adapt the content
to conditions. A list of the features that can be tested in Media Queries is
shown in table 2.1.

With that possibility websites can be designed to respond to different
devices. The appearance of websites can be tailored to a specific range of
output devices without changing the content itself, but only the style. For
example the usage of multiple versions of one and the same image is possible

2. Theoretical Foundation 19

Table 2.1: Device features that can be tested in Media Queries [2] .

Feature
Name

Definition min/max
prefixes

width The width of the display area. yes
height The height of the display area. yes
device-width The width of the device’s rendering surface. yes
device-
height

The height of the device’s rendering surface. yes

orientation Accepts portrait or landscape values. no
aspect ratio Ratio of the display area’s width over its

height. E.g. on a desktop, you’d be able to
query if the browser window is at a 16:9 as-
pect ratio.

yes

device as-
pect ratio

Ratio of the device’s rendering surface width
over its height. E.g. on a desktop, you’d be
able to query if the screen is at a 16:9 aspect
ratio.

yes

color The number of bits per color component of
the device. E.g., an 8-bit color device would
successfully pass a query of (color: 8). Non-
color devices should return a value of 0.

yes

color-index The number of entries in the color lookup ta-
ble of the output device. For example, media
screen and (min-color-index: 256).

yes

monochrome Similar to color, the monochrome feature
lets us test the number of bits per pixel in a
monochrome device.

yes

resolution Tests the density of the pixels in the de-
vice, such as screen and (resolution:72ppi)
or screen and (max-resolution:300ppi).

yes

scan For tv-based browsing, measures whether
the scanning process is either progressive or
scan.

no

grid Tests whether the device is a grid-based dis-
play, like feature phones with one .xed-width
font. Can be expressed simply as (grid).

no

2. Theoretical Foundation 20

– knowing e.g. the width of an element and the resolution of the screen the
designer specifies the image to display. With Media Queries also rearranging,
scaling and grouping of the content is possible to make the website look more
related to the device it is displayed on [2].

2.3.4 Designing Responsive

When starting to develop a website with a responsive characteristic one can
e.g. write the HTML, CSS and JavaScript code, or use a framework. Typical
components of RWD frameworks are

• grid system with multiple columns based on CSS,
• defined Typography for all HTML elements,
• browser compatibility and fallback-solutions for older browsers and

various rendering engines (e.g. Mozilla, IE),
• standard CSS classes to built advanced classes,
• and JavaScript libraries e.g. jQuery for the animation of elements [34].
With the use of a framework the foundation for development and design

of a website is built so that a developer does not have to start from the
beginning every time. In general, using a framework results in advantages
as well as disadvantages [34]. Advantages using a web design framework are

• the regular updates,
• the experiences and help in forums and communities,
• the best practices are often implemented,
• the reusability of source code for further websites,
• a flatter learning curve,
• and a faster mock-up processes [34].

Disadvantages using a web design framework are
• the dependency on the framework,
• the flatter learning curve,
• mixing of content and code – mostly [34].
A flatter learning curve is an advantage, since not everything has to

be learned from the beginning itself, but also a disadvantage because the
principles behind a framework are probably not understood by the developer.

Within frameworks and platforms, the Twitter Bootstrap, Designmodo’s
Startup Design Framework and Foundation 5 by ZURB are presented to give
an overview of the key features of RWD frameworks.

2.3.5 Frameworks and Platforms

The following sections Twitter – Bootstrap, ZURB – Foundation, and De-
signmodo – Startup Design Framework deal with three specific frameworks

2. Theoretical Foundation 21

and platforms that can be used when developing a website with the RWD
approach.

Twitter – Bootstrap

One of the most popular web design frameworks nowadays is the Bootstrap
framework. The framework itself is free. It contains HTML and CSS-based
design templates, as well as JavaScript extensions. Bootstrap was originaly
developed by Mark Otto and Jacob Thornton at Twitter21 for internal con-
sistency across a wide range of tools before the framework was used for
developing public usable interfaces. It got released on GitHub as an open
source project in August 2011. In February 2012 it was one of the most
starred GitHub development projects. In June 2014 it was the No.1 project
on GitHub with 69,000+ stars and 25,000+ forks [20], [34].

ZURB – Foundation

Foundation emerged as a ZURB22 project for faster and better development
of front-end code. It is licensed under the MIT23 License24 as open-source
and is available on Github25. Foundation contains HTML and CSS-based de-
sign templates, as well as optional JavaScript extensions. It is a free toolset
for creating websites and web applications. Although Foundation has rela-
tively incomplete support for HTML 5 and CSS 3 it is compatible with all
major browsers. The actual release is Foundation 5.0 [33], [34].

Designmodo – Startup Design Framework

Designmodo provides a design framework and ready-made UI packages that
can be used to develop a website quickly. It is especially for startup compa-
nies that need presence in the web. After purchasing the framework different
UI packages can additionally be ordered. These packs are either free or also
for sale. The company also provides a lot of informative material that can
help designers and web developers according to topics such as Web Design
and Web Development, Tips and Tutorials and WordPress [63], [34].

21Twitter Inc. is an online social networking and microblogging service that enables
users to send so-called tweets – short 140-character text messages.

22ZURB is a privately held strategy and interaction design consulting firm. Major
projects: designed sites including eBay, Facebook, Photobucket

23MIT: Massachusetts Institute of Technology
24MIT License is a free software license originated at the Massachusetts Institute of

Technology [4].
25GitHub: a Git repository web-based hosting service.

2. Theoretical Foundation 22

2.4 Cross Platform Development
To immerse the field of developing cross platform applications, this section
gives the definitions and delimitation. Within section 2.4.2 the development
issues are given, followed by section 2.4.3 that describes the benefits and
disadvantages when deciding to use a cross platform framework for develop-
ment. To finish this section three selected frameworks with their key features
are described.

2.4.1 Definitions and Delimitation

This section starts with a definition of the term platform. Furthermore a def-
inition for cross platform is given. The declaration of platform independence
is stated to delimit the term cross platform.

Platform

The term platform can refer to two general subgroups – hardware platforms
and software platforms – or to combination thereof [49]. Hardware platforms
themselves can either be a type of processor26 or a hardware system27. Soft-
ware platforms can refer to an operating system28 or a programming lan-
guage, such as Java. Java e.g. uses an operating system independent VM
for its compiled code, the Java Virtual Machine (JVM)29. Java attempts
to be cross platform by heaving a program’s source code compiled into an
intermediate bytecode language and then have it executed by the JVM that
is written for the underlying hardware platform [44].

Cross Platform

Cross platform refers to the ability of software to operate on more than
one platform with identical or nearly identical functionality. It differs from
the term platform independence, which has a somehow similar meaning but
implies that software will operate on any platform, whereas the implication
of cross platform is that software will operate on at least two platforms [49].

Platform Independence

To give an example of platform independence, TCP/IP, the dominant net-
working protocol, can be mentioned. Therefore the Internet and web can

26Processortypes – e.g. ARM, x86, x86-64, PowerPC
27Heardware system – e.g. mainframe, workstation, desktop, handheld or embedded
28Operating system (OS) – e.g. Microsoft Windows, Mac OS X, Linux, Android
29Java executables do not run natively on the operating system, however the JVM is

fully capable of providing os-related services (e.g. I/O, disk and network access.). If the
appropriate privileges are granted. The protection level can be set by the user depending
on an ACL.

2. Theoretical Foundation 23

also be considered as platform independent. This platform independence
has been a major factor in the rapid growth of web-based applications,
which are expected to provide increasing competition to operating system-
based applications in the coming years [49]. Well designed web applications
are platform independent because they can be executed from most modern
browsers.

2.4.2 Development Issues

The main reason to develop cross platform is to provide the application
to widespread user base, no matter which platform they run on. Designing
software for more than one platform can be a time-consuming task because
different operating systems have different APIs or run on different archi-
tectures. Nevertheless, there are two primary possibilities to develop cross
platform. The first possibility is to compile to machine language. Therefore
an executable program is compiled into the machine language and operating
system of each target computer. This can be done using hardware-related
languages e.g. C++ and creating separate sets of source code for each plat-
form. The second possibility is to use an interpreter e.g. JVM [55]. To develop
cross platform applications there are a number of frameworks, tool-kits and
environments that can be used. Most dependent criteria to choose for one
environment are the platforms that are supported and the language that is
used for programming. Some developers prefer Java, others C++ and others
again some scripting languages e.g. JavaScript or Lua. Within section 2.4.4,
Adobe’s PhoneGap, Corona Labs’ Corona, and LibGDX by Mario Zechner
are characterized in more detail.

2.4.3 Cross Platform Programming

Before starting to develop an application the developer has the choice to
decide weather for cross platform programming or native application pro-
gramming. When deciding for cross platform programming often cross plat-
form frameworks are used instead of writing a framework for cross compiling
from the very beginning. As with any approach, the use of cross platform
frameworks results in advantages as well as disadvantages. Major advantages
using a cross platform framework are

• the reusability of source code,
• the access to different plugins,
• and the reduction of development costs [65].

Disadvantages using a cross platform framework are
• the dependency on the framework,
• problems accessing features of a platform and
• a limited access to features of a platform [65].

2. Theoretical Foundation 24

The major advantage over native application development is that the
code is reusable, and therefore reduces the costs in development, depending
on the framework [65].

2.4.4 Frameworks

First the three Frameworks – Adobe PhoneGap, Corona SDK and LibGDX
by Mario Zechner are introduced. Then these sections get expanded by a
listing of the most relevant features, and a listing of the supported platforms.

Adobe – PhoneGap

The initial PhoneGap framework for mobile development was developed by
Nitobi before being purchased by Adobe Systems in 2011 [7]. It enables
developers to build applications for mobile Platforms using HTML 5, CSS 3
and JavaScript. Depending on the platform HTML, CSS and JavaScript code
gets wrapped. Therefore the features of HTML and JavaScript are extended
to work with the device. The resulting applications are hybrid, meaning that
they are neither truly mobile native30 nor purely web-based31, but so called
hybrid applications. Since version 1.9 it is possible to even mix native and
hybrid code snippets. PhoneGap builds on Apache Cordova [11], an open
source software [30].

Corona Labs Inc. – Corona SDK

Corona SDK has been created by Walter Luh, the founder of Corona Labs
Inc.. Developers have the possibility to build mobile business applications
and games for iOS and Android based devices. The company announced
that the SDK will also support Windows Phone sooner or later. Integrated
Lua is used as scripting language, layered on top of C++/OpenGL. With
the switch to the newer graphic engine – Graphics 2.0, based on OpenGL 2.0
and shaders – cinematic effects – such as filters, generators and composites
– can be applied to. There is a free version of the Corona SDK available for
download. A basic developer licence can be purchased for 16€ per month,
an extended pro version at the time of writing costs 49€ per month [24].

Mario Zechner – LibGDX Framework

LibGDX is a cross platform framework that is especially designed to create
games. For programming, any JVM-compatible language can be chosen e.g.

30not native: layout rendering is done via web views instead of the platform’s native UI
framework

31not purely web-based: not just web applications, but are packaged as applications for
distribution and have access to native device APIs

2. Theoretical Foundation 25

Table 2.2: Most relevant features of the three introduces frameworks [30],
[24], [48].

PhoneGap Corona SDK LibGDX

Accelerometer x x x
Camera x x x

Compass x x x
Contacts x x

File x x x
Location x x

Media x x x
Network x x x

Notification x x
Storage x x x

Java, Scala or Kotlin. The JVM bytecode then gets translated to the corre-
sponding language that is needed – e.g. to JavaScript for a web application
or to native ARM or x86 CPU32 instructions to run on iOS using RoboVM
for translation. It provides a unified API that works across all the platforms
listed in table 2.3. Applications can be run and debugged on the desktop,
natively, instead of deploying to any of the platforms it should run on after
each change in code. When integrating third party libraries, leaderboards
or multiplayer modes can be supported. The framework also comes with a
variety of tools – e.g. the Gdx Setup UI, to keep the project setup simple.
Section 3.3 describes why the LibGDX framework is chosen to develop the
prototype application [48].

Features Overview

To summarize the features that can be accessed, using different cross plat-
form frameworks, table 2.2 gives an overview. Because LibGDX has been cre-
ated as a game development framework it has weaknesses regarding certain
platform specific functions e.g. accessing the devices contacts, and location,
and sending notifications, at the time the thesis was written.

Supported Platforms Overview

Table 2.3 gives an overview of the platforms that are supported by the
specific cross platform frameworks. In contrast to the Corona SDK, which

32CPU: Central Processing Unit

2. Theoretical Foundation 26

Table 2.3: Supported Platforms of the three introduces frameworks [30],
[24], [48].

PhoneGap Corona SDK LibGDX

Android x x x
Bada x

BlackBerry x x
Chrome x
Firefox x

Firefox OS x
iOS x x x

IE x
Java Applet x

Linux x
Mac OS X x

Opera x
Safari x

Symbian x
Tizen x

Ubuntu Touch x
webOS x

Windows x
Windows Phone x announced

only supports the most common mobile platforms, PhoneGap also supports
rather unconventional platforms. The LibGDX framework is the only one
that has support for browsers and also desktop platforms.

2.5 Conclusion
In section 2.1.1 it has been demonstrated, that there were separate devices
needed, before the functionality of mobile phones were combined with several
other functionality, e.g. camera, GPS and mobile Internet. The revolution in
the mobile sector happened very fast. Section 2.1.2 explains that key players
of early mobile operating systems have been largely replaced by Google with
Android and Apple with iOS starting in 2007, with the release of the first
iPhone. Beside Android and iOS there are e.g. Microsoft’s Windows Phone

2. Theoretical Foundation 27

and the BlackBerry 10 operating system and still several other rather exotic
OS e.g. Firefox OS. The shipment of mobile devices increased dramatically
for the period 2008 to 2012, as stated in section 2.1.5, predicting that the
trend continues to 2015. The portfolio of the various devices with differ-
ent operating systems or different screen form-factors, read in section 2.1.6,
that are out there nowadays will probably be expanded in the future. Due
to the increase of mobile device sales and the extension of the mobile web,
usage of mobile web applications increases. This leads to need of mobile
websites. With the rethinking in modern web design, the Mobile First ap-
proach obsoletes the Desktop First approach. Different techniques are used
to present the content of websites in a proper way. One technique is RWD.
RWD refers to the use of already existing technologies, united under the
term Responsive Web Design by Ethan Marcotte in 2010, to create a fluid
layout, that responds on the screen form-factor it is displayed on. Core tech-
nologies are fluid grids, flexible images, and Media Queries, more accurate
explained in section 2.3.3. RWD is currently used in web design. Sometimes
native applications are preferred over web applications. In native applica-
tion development cross platform frameworks enable the possibility to reach
more than one platform. The terms platform, cross platform, and platform
independence are described in section 2.4.1. It depends on the developer to
either develop the application native for every platform the application has
to run on, or selecting a cross platform framework, to write the code only
once and let the framework compile it accordingly the needed platforms.
The possibility of adopting principles of RWD, and making use of them in
cross platform development forms the transition to the next chapter.

Chapter 3

Practical Approach

First part of this chapter explains the purpose of the sample application, that
is explained in section 3.1. Due to the fact that the prototype application
is implemented in cooperation with APEX gaming technology GmbH, that
cooperation is described in section 3.2. Section 3.3 validates the selection of
the cross platform framework, followed by section 3.4 that deals with the
implementation of the most challenging parts of the prototype application.
Section 3.5 finally summarizes the whole chapter.

3.1 Purpose of the Sample Application
The purpose of the prototype application is to prove whether it is possible
to develop an application that shows a responsive behaviour within the envi-
ronment of a specific cross platform framework and programming language,
or not. Therefore the problem statement is stated in section 3.1.1. Section
3.1.2 is responsible for specification and delimitation of the actual prototype
application.

3.1.1 Problem Statement

It is assumed that the application should run on the most common mobile
and desktop platforms and be implemented using a cross platform frame-
work. There are many facts to be considered:

• For what screen sizes should the layout be done?
• Should the application respond to different screens?
• Is more than one layout needed for different screen form factors?
• What are the minimum/maximum screen sizes the application runs?
• Are UI elements accessible easily and intuitive?
• Is readable content legible on different screen form factors?

28

3. Practical Approach 29

How can it be guaranteed that the legibility, usability and accessibility is
given on devices with different screen properties? The satisfaction of these
constraints can only be measured with massive user studies which is not
part of this thesis. Only the redemption of the hardware constraints – spec-
ifications of the needed device features and device delimitations – described
in section 3.1.2 can be confirmed. These constraints are needed to delimit
the amount of devices to an acceptable number that can also be tested.

3.1.2 Specification and Delimitation

Confirming weather it is possible to develop a cross platform application
that represent itself in a responsive way or not a prototype application is
written. The application has to deal with different screen form factors. For
the purpose of this thesis the devices are delimited with the iPhone 3GS –
3.5" display, an aspect ratio of 3:2, a resolution of 480 × 320px, and the ori-
entation in landscape mode – at the minimum, with the following hardware
specifications – , and a desktop screen – 24" display, an aspect ratio of 16:9,
a resolution of 1920 × 1200px, and the orientation in landscape mode – at
the maximum. To confirm the cross platform approach, the application has
to run on at least two platforms, where at least one is a mobile platform.
The techniques described in section 2.3.3 have to be applied to the applica-
tion. Table 3.1 is a set of device features that has to be tested within the
application. Most of the features are taken from table 2.1 of section 2.3.3,
only the last feature is added to provide a more platform specific style to
the layout management.

3.2 Cooperation with APEX gaming technology
GmbH

As the main parts of the prototype application for this thesis were developed
in a cooperation with APEX gaming technology GmbH this section gives a
short overview of APEX gaming technology GmbH. Therefore it is split up
into section 3.2.1 that gives an insight into the company itself, and section
3.2.2 that describes the reason why it has been decided to go responsive at
APEX.

3.2.1 About the Company

APEX gaming technology GmbH is an international manufacturer and op-
erator in the gaming industry, from producing slot-machines and roulette
wheels to mobile gaming platforms. It is a privately-owned company, founded
and managed by Mr. Johannes Weissengruber. The global headquarters of
APEX gaming are based in Hagenberg im Mühlkreis, Austria. Back in 2003

3. Practical Approach 30

Table 3.1: Device features that has to be tested within the application to
provide a responsive characteristic.

Feature
Name

Definition min/max
prefixes

width The width of the display area. yes
height The height of the display area. yes
orientation Accepts portrait or landscape values. no
aspect-ratio Ratio of the display area’s width over its

height. E.g. on a desktop, you’d be able to
query if the browser window is at a 16:9 as-
pect ratio.

yes

resolution Tests the density of the pixels in the de-
vice, such as screen and (resolution:72ppi)
or screen and (max-resolution:300ppi).

yes

style guide-
line

Adapt the style of the application according
to platform specific guidelines (e.g. min-max
sizes of buttons/paddings).

no

Mr. Weissengruber chose the company name to reflect his strategy. The Ox-
ford English Dictionary explains the meaning of the word apex as peak, top
or highest part – which in this case suits for the highest quality possible
in every aspect. The company logo of the pyramid with the golden shaft
on top – the apex – underlines this strategy. It was back in 1994 that Mr.
Weissengruber first entered into the gaming industry. When the opportunity
arose to take a 100% stake in this operating company called Play and Win
a year later, he did not waiver. It is his true fascination of how the industry
works and – more importantly – how players accept and play on slots games
– that are the roots of APEX success. Alongside the headquarters in Aus-
tria and the manufacturing base in the Czech Republic, APEX gaming runs
wholly-owned subsidiaries in Albania, Austria, Czech Republic, Germany,
Macedonia, Mexico, Serbia and Spain. In addition to this, APEX gaming is
present in many more countries, working together with local partners [12].

3.2.2 Going Responsive at APEX

The current APEX Slot Challenge application is implemented in Corona
SDK using Lua as programming language. Due to several problems using the
Corona SDK, also described in section 3.3, the decision was made to develop
a prototype application in LibGDX using Java as programming language.
The reason that one of the non-mobile slot machines of APEX bases on Java,

3. Practical Approach 31

facilitated the decision which cross platform framework to chose. More about
the selection of the LibGDX framework can be read in section 3.3. When
starting from scratch several decisions were made and weighted according
to their importance. One decision that is made and rated a high importance
is the responsive characteristic that the prototype application has to show
to adapt to the different screen form-factors of nowadays mobile devices,
described in section 2.1.6.

3.3 Selection of the Cross Platform Framework
For the implementation of a prototype application the LibGDX framework
has been chosen from the list of the three cross platform frameworks, char-
acterized in section 2.4.4. The decision was made on the following aspects
in order of their importance

• native application,
• programming/scripting language(s),
• and possible platforms.
To use the best practices of RWD accurately, Adobe’s Phone Gap frame-

work might have been the right choice. Due to the fact that the source is a
website – written in HTML in combination with CSS and JavaScript – that
is ported to mobile platforms as a hybrid application it would have been
easy to establish an application with a responsive characteristic. The fact
that the application is hybrid is the problem. When thinking of a business
application that is heavily based on text and some photos that gets updated
from time to time, Phone Gap would have been the right choice. When
thinking of APEX Slot Challenge, a heavily customized gaming application
that changes content in a very fast way – for example spinning of reels –
and also has some time-critical parts that has to be obeyed – Phone Gap
was eliminated as a possible framework.

Corona SDK as the next framework on the list is already in use at the mo-
bile development department of APEX. Due to the disadvantages regarding
debugging, handling of graphical content and textual representations, that
the Corona SDK – when the choice for a framework was made – the Corona
SDK was eliminated as possible framework.

The reason why the choice fell on the LibGDX framework was that it
is possible to write applications in Java with all the benefits of the Java-
Compiler1 e.g. better refactoring, static type checking, powerful IDEs2. Ad-
ditionally the application can be cross-compiled natively for more platforms
than the other two frameworks, visible in table 2.3.

1Java-Compiler: part of the development tool that translates the source-code in the
so-called Java-Bytecode, that is directly executable by the JVM

2IDE: Integrated Development Environment – e.g. Eclipse

3. Practical Approach 32

Figure 3.1: Metric’s according to the android design guidelines [8].

3.4 Actual Application
That section leads to the implementation of the most interesting parts of
the actual application. To get to that the most necessary mathematical
notations are stated, followed by the application’s architecture. Finally the
section finishes with the implementation in section 3.4.3. The focus of the
implementation is on the realization of the responsive characteristic of the
application, and therefore only the most interesting parts of this field are
stated and described in detail.

3.4.1 Mathematical Notations

When looking at the table 3.1 there are features that are needed to prepare
for fluid grids. The width and height of the displays area is the delimitation
for the application. When working with LibGDX these features are repre-
sented in pixel units. The mathematical equation 2.1 to realize fluid grids.
A target can be any UI element – actor in LibGDX – e.g. a simple button.
When going through some platform specific UI guidelines a minimal button
size is proposed. According to the Android design guideline the minimum
button size is 48 dp – shown in figure 3.1 [8].

Device independent pixels (dp)3 is used to ensure the same physical size
of elements no matter on what device they are displayed on. It is Androids
advice to describe an elements size information (for UI elements as well as
padding/margin) in dp [8]. But there is also diversity to what dp is. On an
Android device one dp is equivalent to one physical pixel (px) on a screen
with 160ppi. Whereas the Windows Presentation Foundation specifies one
dp as equivalent to 1/96th of an inch [61]. For the purpose of this thesis,
Android’s approach of dp is taken. To explain Android’s way of calculating
dp, the equation 3.1 is given. The result of the equation a is the amount of
dp that is needed to express an object of a specified size b in px on a screen
with a given resolution of cppi.

3device independent pixel also: density-independent pixel.

3. Practical Approach 33

𝑎 = 𝑏 · 160
𝑐

(3.1)

With the reverse statement shown in equation 3.2 the result b in px
expresses the amount of px that is needed for a given size a in dp on a
specific screen with a given resolution of cppi.

𝑏 = 𝑎 · 𝑐

160 (3.2)

In contrast to websites most applications are restricted to the size of the
screen they are shown on, which is another point that has to be considered.
Equation 3.3

𝑑𝑐 =
𝑛∑︁

𝑖=1
𝑑𝑖 +

𝑛+1∑︁
𝑖=1

𝑝𝑖 +
𝑛+1∑︁
𝑖=1

𝑚𝑖 (3.3)

gives the dimension 𝑑𝑐
4 of the context that is needed to place a specified

number of 𝑛 targets on it, with given dimensions 𝑑𝑖
4, padding 𝑝𝑖 and margin

𝑚𝑖 of the ith target. That equation is used twice to calculate if all the targets
fit horizontal and vertical. If the outcome of that equation is bigger than the
given screen dimension, either vertical or horizontal, the targets do not fit
the given context. One possibility to solve this problem is the use of Media
Queries, described in section 2.3.3.

3.4.2 Architecture

Within this section the 2D scene graph basics of LibGDX are scribed to
give a short insight into its scope of functions. Furthermore the application
design of the prototype application is presented, in section 3.4.2, and also
the system architecture of the prototype application, in section 3.4.2.

2D Scene Graph Basics of LibGDX

The class Stage of the scene2d package of the LibGDX framework is respon-
sible to handle the viewport and distribute input events. A Stage contains
hierarchies of the class Actor. An Actor is a 2D scene graph node and has
a position, rectangular size, origin, scale, rotation, Z index, and color. The
functionality of an Actor is applied by Actions. Group and Widget directly
extend from Actor. Further relationships can be taken from figure 3.2. Any
Group may contain other instances of Actor. Widget and WidgetGroup pro-
vide a minimum, preferred, and maximum size that is almost always over-
ridden by a subclass [48].

4The dimension can either be width or height.

3. Practical Approach 34

Figure 3.2: Part of the 2D scene graph to reveal the relationship between
Image, Table and Button with the Actor class.

Figure 3.3: With the use of LibGDX Actor, there is no subdivision in
Content, Form, and Functionality as in RWD.

Application Design

Figure 3.3 reveals the possibility that is chosen to design an application
with a responsive characteristic in the LibGDX framework. The differences
to figure 2.4 from section 2.3.1 get clear very fast. With the use of Java and
LibGDX the separation of Content, Form and Functionality is united by the
use of Actors.

3. Practical Approach 35

Figure 3.4: System architecture of the prototype application.

System Architecture

The class diagram in figure 3.4 shows the structure of the most relevant
classes within the application that has been developed and how they are
related to each other. Application – the core class of the prototype – shows
an instance of the interface AppScreen according to the current state of the
application. Every AppScreen has one or more instances of the interface Ui –
e.g. an instance that represents a main menu of the AppScreen and another
one for a drop-down menu. The Ui consists of a collection of ActorConstructs
– that holds the Actor and other informations like an additional id and
type – and an instance of the interface ResponsiveLayout – that is applied
accordingly to the platform the application runs on.

3.4.3 Implementation

In the following section the implementation of the most relevant princi-
ples adopted from RWD are declared; fluid grids, flexible images, and Me-
dia Queries. The example implementations rely mostly on each other. The
source code used in this sections provides a proof of concept and does not

3. Practical Approach 36

by any means reflect best practices in software engineering. Premise for the
implementation is a new Stage object stage to display and interact with
the actors. The reference design for the desktop platform from figure 3.5 is
made for a screen with a resolution of 960 × 720px which is a screen aspect
ratio of 4:3. To show what happens when the application runs on a desktop
screen in window-mode, with a different aspect ratio of 3:2, it is displayed
on a resolution of 600 × 400px. Android is taken as the reference for the
mobile platform. The reference design for Android, which can be seen in
figure 3.6, is designed for a device with a comparatively low resolution of
480 × 320px, which is an aspect ratio of 3:2, and corresponds to the screen
of the iPhone 3GS. The implementation of three key techniques of RWD,
using the LibGDX framework with Java as programming language, can be
found on the attached DVD.

HEADER

Button01 Button02 Button03

CONTENT

Figure 3.5: Initial design for the prototype application on a desktop screen.
Window resolution: 960 × 720px.

3. Practical Approach 37

HEADER

CONTENT

Button01 Button02 Button03

Figure 3.6: Initial design for the prototype application on a desktop screen.
Display resolution: 480 × 320px.

Fluid Grids

Within this section of the implementation the principle of fluid grids is
proven. To start with the implementation of fluid grids some actors are
needed. First of all a new TextButton button is created and added to the
stage, shown in listing 3.1. The positioning of the button is in the center of
the stage. A peculiarity of LibGDX is that setting the origin of an object
does only affect rotation and scaling, but not the translation. To set the
button’s position center of the stage, half of the button’s width and height
have to be subtracted. Because there are no other parameters specified the
button stays at it’s minimum size to represent the text in it’s nested label.

Listing 3.1: Creation of a standard TextButton in LibGDX.
1 ...
2 TextButton button = new TextButton("Standard TextButton",

getTextButtonStyle());
3
4 button.setOrigin(b_width / 2, b_height / 2);
5 button.setPosition(currentWidth / 2 - b_width / 2, currentHeight / 2 -

b_height / 2);
6
7 stage.addActor(button);
8 ...

According to the design for the desktop application shown in figure 3.5
the element in the top left corner has a squared size of 200 × 200px. With
the equation from section 3.4.1 the relative size of actors and margins are

3. Practical Approach 38

125x111px
on a

600x400px
screen

Figure 3.7: TextButton that is designed to be squared – 200 × 200px on a
960 × 720px screen – not quadratic anymore due to change of aspect ratio of
the displayed screen.

expressed mathematically. The implementation is shown in listing 3.2.

Listing 3.2: Make the TextButton relatively to the width of the screen.
1 ...
2 TextButton button = new TextButton("...", getTextButtonStyle());
3
4 float b_width = 200.0f / designedWidth * currentWidth;
5 float b_height = 200.0f / designedHeight * currentHeight;
6 float m_width = 20.0f / designedWidth * currentWidth;
7 float m_height = 20.0f / designedHeight * currentWidth;
8
9 button.setSize(b_width, b_height);

10 button.setText("...");
11 button.setOrigin(..., ...);
12 button.setPosition(m_width, currentHeight - b_height - m_height);
13
14 stage.addActor(button);
15 ...

The label of the button in figure 3.7, that is fed with its current size,
shows exactly the expected result, but not what is wanted. According to
the design the button has to be squared. Unlike in most web applications
a native application often does not have endless scroll, but usually displays

3. Practical Approach 39

all the needed UI elements on the screen. Therefore the UI elements depend
not only on the width, but also on the height of the screen. In figure 3.7 the
button is not squared anymore due to a change of the aspect ratio from 4:3
to 3:2 of the screen the application is displayed on. An easy way to keep the
button within its required aspect ratio is to use the smaller value for width
and height and multiply it with the needed aspect ratio. In this example the
button is quadratic so the multiplication is not needed. The implementation
in listing 3.3 applies the minimum size to the actor and the padding.

Listing 3.3: Make the TextButton relatively not only to the width of the
screen, but also to the screens height.

1 ...
2 TextButton button = new TextButton("...", getTextButtonStyle());
3
4 float b_width = 200.0f / designedWidth * currentWidth;
5 float b_height = 200.0f / designedHeight * currentHeight;
6 float m_width = 20.0f / designedWidth * currentWidth;
7 float m_height = 20.0f / designedHeight * currentWidth;
8 float b_size = Math.min(b_width, b_height);
9 float m_size = Math.min(m_width, m_height);

10
11 button.setSize(b_size, b_size);
12 button.setText("...");
13 button.setOrigin(..., ...);
14 button.setPosition(m_size, currentHeight - b_size - m_size);
15
16 stage.addActor(button);
17 ...

Now that can be a problem for big displays. With this approach the
margin is relatively larger on big displays than on small ones. This might be
wanted in some cases, but in this case the use of a margin in dp units – intro-
duced in section 3.4.1 – is appropriate. With the use of dp it can be ensured
that the margin always stays the same on every screen and is not dependent
on the screens size, resolution and pixel-density. In the following listing 3.4
the margin is set to 8dp and a Lable lable is added to the left side of the
button. The label uses the remaining width of the window, taking the mar-
gins into account. The result of this implementation can be seen in figure 3.8.

Listing 3.4: Use dp instead of relative sizes for margins/paddings to ensure
a consistent distance between the individual UI elements.

1 ...
2 TextButton button = new TextButton("...", getTextButtonStyle());
3 Label label = new Label("...", getLabelStyle());
4
5 float b_width = 200.0f / designedWidth * currentWidth;
6 float b_height = 200.0f / designedHeight * currentHeight;
7 float b_size = Math.min(b_width, b_height);

3. Practical Approach 40

111x111px
on a

600x400px
screen

474x44px on a 600x400px screen

Figure 3.8: TextButton that is designed to be squared – 200 × 200px on a
960×720px screen. Would have been 125×125px on a screen with a resolution
of 600 × 450px but the screen it is displayed on has only 600 × 400px. To
stay squared the button takes its minimum value for width and height –
111 × 111px. The Label uses the remaining width of the window. Expressed
margin in dp to stay the same independent of any screen parameters.

8 // Using 8dp
9 float m_size = dpInPx(8);

10
11 // |margin|button|margin|label|margin|
12 float l_width = currentWidth - b_size - 3 * m_size;
13 float l_height = 80.0f / designedHeight * currentHeight;
14
15 button.setSize(b_size, b_size);
16 button.setText("...");
17 button.setOrigin(..., ...);
18 button.setPosition(m_size, currentHeight - b_size - m_size);
19
20 label.setSize(l_width, l_height);
21 label.setText("...");
22 label.setOrigin(..., ...);
23 label.setAlignment(Align.center);
24 label.setPosition(2 * m_size + b_size, currentHeight - l_height - m_size

);
25
26 ...

3. Practical Approach 41

The technique stays the same for every actor that is added to the stage.
First the values for the actor are set, it get initialized according to its de-
pendencies on other actors or the screen. Afterwards it is setup and add to
the stage. The listing below again shows exactly the steps when setting up
an actor using the fluid grid approach. In figure 3.9 that approach of fluid
grids is used to complete the design from figure 3.5 with all the needed UI
elements.

1. Set values for actors.
2. Initialize actors according to their dependencies on each other.
3. Setup actors.
4. Add actors to stage.

111x111px
on a

600x400px
screen

474x53px on a 600x400px screen

154x53px 154x53px 154x53px

590x274px on a 600x400px screen

Figure 3.9: Implementation of the reference design for desktop.

Flexible Images

As mentioned before in the flexible images part of section 2.3.3 there are
two possibilities for flexible images; Dynamic scaling and cropping. Within
the code section beyond the TextButton from the top left is replaced by an
Image user that represents the avatar of the user for the actual application.
In LibGDX an Image can have a Texture. By setting the Texture and plac-
ing adding the image of the avatar to the screen, the texture gets scaled
dynamically by default. An improvement would be to use different stages
of resolutions for the image and let the program chose which one fits best.

3. Practical Approach 42

474x53px on a 600x400px screen

154x53px 154x53px 154x53px

590x274px on a 600x400px screen

Figure 3.10: Dynamically scaled Image instead of TextButton on the top
left corner to represent the avatar of a user.

That part is skipped for the implementation of the prototype application
developed as proof of concept for this thesis. The outcome of this implemen-
tation in listing 3.5 can be seen in figure 3.10.

Listing 3.5: Initializing an image by using a Texture object for dynamical
scaling.

1 ...
2 Image user;
3 ...
4 // Values for actors
5 ...
6 // Initialize actors according to their dependencies on each other
7 ...
8 Texture userTexture = new Texture(..."defaultImage.png");
9 user = new Image(userTexture);

10 user.setName("UserImage");
11 ...
12 // Setup actors
13 ...
14 user.setSize(b_userSize, b_userSize);
15 ...
16 // Add actors to stage
17 ...

3. Practical Approach 43

LibGDX provides also a possibility for cropping, another possibility to
make an image flexible. To crop an image a TextureRegion can be used.
By referring to only a region of a specified texture, the given element gets
cropped automatically. When having a look at the source code in listing
3.6 the size of the image is set directly when initializing the TextureRegion.
Furthermore a position can be set when initializing the TextureRegion to
get another part of the texture. In figure 3.11 the image representing the
users avatar is cropped.

Listing 3.6: Using a TextureRegion for cropping of the image at a specified
size.

1 ...
2 Image user;
3 ...
4 // Values for actors
5 ...
6 // Initialize actors according to their dependencies on each other
7 ...
8 Texture userTexture = new Texture(..."defaultImage.png");
9 TextureRegion userTextureRegion = new TextureRegion(userTexture, (int)

b_userSize, (int) b_userSize);
10 user = new Image(userTextureRegion);
11 user.setName("UserImage");
12 ...
13 // Setup actors
14 ...
15 // Add actors to stage
16 ...

Media Queries

With the access to the device features specified in section 3.1.2 the principle
of Media Queries from RWD can be adopted. An example for the use of
Media Queries is that the design exceeds the screen limitations, e.g. there
are too many UI elements placed on the stage. The calculation therefore can
be found in section 3.4.1. With the use of Media Queries such problem can
be eliminated. To check if all the actors fit the screen a helper method is
written. In listing 3.7 a helper method is shown that displays a WARNING
on the screen. It compares the initial size, that is set in LibGDX for an ac-
tor, with the size that is calculated for that actor. If the initial size is bigger
than the calculated size the warning is printed on the application screen,
visible in figure 3.12. Now the developer has the opportunity to redesign the
current screen to e.g. fit smaller displays, or to exclude devices that are too
small to display that application. When deciding for the first option there
are several possibilities for the developer to continue. One is to group actors
that are similar or have similarities into widgets e.g. a drop-down menu in-
stead of displaying all actors on the screen. Another option, especially used

3. Practical Approach 44

474x53px on a 600x400px screen

154x53px 154x53px 154x53px

590x274px on a 600x400px screen

Figure 3.11: Cropped Image to show another possibility of a flexible use of
images.

to display large text on screen, is a ScrollPane, to enable scrolling.

Listing 3.7: Displaying a WARNING message when the display gets too
small for the UI elements that gets displayed.

1 ...
2 // Values for actors
3 ...
4 // Initialize actors according to their dependencies on each other
5 ...
6 // Check fitsStage of actors
7 boolean b_fitsStage = actorStageCheck(button, b_size, b_initialSize, "

size");
8 if (b_fitsStage) {
9 button.setSize(b_size, b_size);

10 }
11 ...
12 // Setup actors
13 ...
14 // Add actors to stage
15 ...
16
17 private boolean actorStageCheck(actor, size, initialSize, ...) {
18 if (initialSize > size) {
19 float diff_size = size - initialSize;
20 String errorMsg = "...";

3. Practical Approach 45

62x62px
on a

300x400px
screen

223x44px on a 300x400px screen

WARNING: The stage gets too small for
size of SquaredTextButton (-27.5px)!
WARNING: The stage gets too small for
width of FloatingLabel (-5.89px)!

Figure 3.12: Error message shown on display when stage gets too small to
display the actors on it without cropping them.

21 Gdx.app.debug("WARNING", errorMsg);
22 ...
23 return false;
24 }
25 return true;
26 }
27
28 ...

Another part that can be checked is the platform the application is run-
ning on to use values corresponding to platform specific design guidelines if
available. A simple way to do this is the switch statement shown in listing
3.8. It switches according to the platform the application is displayed on.
Assuming that mobile device screens are in most cases smaller than desktop
screens a different design is applied to better exploit the space on mobile
devices.

Listing 3.8: Applying different designs to the prototype application, ac-
cording to the platform the application is running on, using a simple switch
statement.

1 ...
2 // Values for actors
3 ...
4 // Initialize actors according to their dependencies on each other, check fitsStage

3. Practical Approach 46

ANDROID

USErNAME 10000 credits COLLECT 1000cr

Figure 3.13: The prototype running on Android with the resolution of the
iPhone 3GS (480 × 320px).

5 // and setup actors according to the platform the application runs on
6 ...
7 switch (PLATFORM) {
8 case Android:
9 ...

10 break;
11 case Desktop:
12 ...
13 break
14 ...
15 }
16 ...
17 // Add actors to stage
18 ...

The figure 3.13 represents the application on the minimum screen reso-
lution corresponding the screen of the iPhone 3GS, realizing the design from
figure 3.6. Figure 3.14 represent the application on a desktop screen with
a resolution of 1920 × 1200px. This figure shows the implementation of the
different look for the desktop application specified in the design of figure 3.5.
With figures 3.13 and 3.14 it is proved that the prototype application is run-
ning on the minimum and maximum screen form-factors defined in section
3.1.2 and also on at least two different platforms, Android and Desktop.

3.5 Conclusion
The given hypothesis from section 1.3 lays the foundation of this thesis.
The purpose of the sample application is to prove whether the hypothesis is

3. Practical Approach 47

DESKTOP

USErNAME 10000 credits COLLECT 1000cr

Figure 3.14: Application running on a desktop with a resolution 1920 ×
1200px.

wrong or right. Due to the problem statement, the specification and delimi-
tation, and the cooperation with APEX gaming technology GmbH, that set
the scope for the implementation, the LibGDX framework was selected, as
the cross platform framework to implement the prototype application, from
the list frameworks presented in section 2.4.4.

With the mathematical notations, the basis for the application devel-
opment is formed. Further architecture descriptions give an insight in the
2D scene graph basics of LibGDX, the application design, and the system
architecture of the actual implementation, that forms the main part of this
chapter. The three most relevant principles adopted from RWD are imple-
mented within this section; fluid grids, flexible images, and Media Queries.
Due to the fluid grid approach a flexible layout, that responds according
to the given screen form-factor, can be achieved. Images can be scaled dy-
namically or cropped, so the flexibility of images is guaranteed. With the
possibility to query the most relevant device features, shown in 2.4.4, that
LibGDX provides, the implementation of Media Queries is also possible. It
may be decided, how the application behaves when the screen gets too small
or too big. A developer can also respond to the platform the application is
running on.

Chapter 4

Conclusions

As established in section 2.1 sales of mobile devices, whether they are smart-
phones or tablets, increased dramatically between 2008 and 2014 with a
forecast to 2015 that predicts that the trend is unbroken. The number of
different platforms, and the large number of different screen form-factors
available, makes it difficult for developers to cover all devices. Developers
have to deal with that diversity of platforms, screen form-factors and tech-
nologies the devices support. Over the years, a change in thinking has taken
place in web development. The principle of the desktop first approach is
overtaken by the mobile first approach stated in section 2.2. Responsive Web
Design, explained in section 2.3, has become popular within recent years.
Using the principles of Responsive Web Design a larger amount of devices
with different screen form-factors can be reached. In fact, the same prob-
lem of different screen form-factors appear when developing native or cross
platform applications. Adopting and adapting the principles of Responsive
Web Design in cross platform development – as explained in section 2.4 –
native applications, that fit a large number of screen form-factors, for more
than one platform, can be developed. That is exactly what is proposed in
the hypothesis in section 1.3.

The allegation the hypothesis establishes says, that it is possible to adopt
techniques from Responsive Web Design, for use within the environment of
a cross platform framework, to develop applications that run natively on
specific devices.

The purpose of the sample application – further readings in section 3.1
– is to verify this hypothesis. With the implementation of the actual pro-
totype application in section 3.4, the hypothesis can be confirmed, because
it is possible to adopt the three main techniques of Responsive Web Design
– Fluid Grids, Flexible Images, and Media Queries – within the LibGDX
framework using Java as programming language.

48

4. Conclusions 49

4.1 Result
It has been shown that the principles of RWD can be used in other frame-
works than LibGDX, with the use of another programming language than
Java. A precondition is, that at least the three main principles of Respon-
sive Web Design – Fluid Grids, Flexible Images, and Media Queries – can
be implemented.

4.2 Implications and Future Research
The use of the terminology Responsive Web Design, as a principle for the
creation of a website or web application that responds on the screen it is
displayed on, has already become popular. In application development no
such terminology exists. Assuming the principles of RWD can be adopted,
or at least adapted, in every programming language, a new terminology is
proposed. Responsive Application Design is therefore a more suitable term.
Replacing the web, of Responsive Web Design, with application makes the ex-
pression Responsive Application Design more generic. The terminology fits
when developing web applications as well as native applications. Thinking
of Adaptive Web Design, another principle of modern web design stated in
section 2.3.1, raises the question why Responsive Application Design should
not be called Adaptive Application Design. As already mentioned in section
2.3.1, Adaptive Web Design gets the features of the device it is displayed
on, and then the content is sent according to these features. In the name of
Adaptive Application Design this means that an official application store,
where the application can be downloaded, receives the features of the de-
vice it is installed on. This is desirable, but not yet state of the art. Every
device that downloads the application over an official application store re-
ceives the same application. Although it can be distinguished between a
tablet and a smartphone application, but the dimensions of both mobile
devices continues to move along. Therefore the terminology of Responsive
Application Design is fitting better. The same application gets downloaded
on each device, with low and high resolution content, and the application
decides, which one is chosen for representation. The designation described
in this section is merely a suggestion and therefore needs further research,
that would, however, exceed the scope of this thesis.

Appendix A

Terms

ACL AccessControl List
API Application Programming Interface
App Application

CMS Content Management System
CSS Cascading Style Sheet

DOM Document Object Model
dp Device/Density Independent Pixel

GPS Global Positioning System
GSM Global System for Mobile Communications orig. Croupe Special Mo-

bile
HTML HyperText Markup Language

IDE Integrated Development Environment
JVM Java Virtual Machine

OS Operating System
PDA Personal Digital Assistant

ppi Pixels per inch
px Pixel

QWERTY Most common modern-day keyboard layout for latin script
RIM Research In Motion

RWD Responsive Web Design
SDK Software Development Kit

Simon Simon Personal Communicator
UI User Interface

VM Virtual Machine
WHATWG Web Hypertext Application Technology Working Group

W3C World Wide Web Consortium

50

Appendix B

Content of the CD-ROM

Format: CD-ROM, Single Layer

B.1 PDF-Files
Path: /

_MasterThesis.pdf . . . Thesis with instructions (document)

B.2 LaTeX-Files
Path: /

_MasterThesis.tex . . . Masterthesis (main document)
abstract.tex Abstract
introduction.tex Chapter 1
theoretical.tex Chapter 2
practical.tex Chapter 3
conclusion.tex Chapter 4
anhang_a.tex Anhang A (Terms)
anhang_b.tex Anhang B (Content of the CD-ROM)
messbox.tex Messbox zur Druckkontrolle
literatur.bib Literature database (BibTeX-File)

B.3 Style/Class-Files
Path: /

hgbthesis.cls LaTeX Class-File for the Masterthesis
hgb.sty LaTeX Style-File for all Hagenberg

documents

51

/
_MasterThesis.pdf
/
_MasterThesis.tex
abstract.tex
introduction.tex
theoretical.tex
practical.tex
conclusion.tex
anhang_a.tex
anhang_b.tex
messbox.tex
literatur.bib
/
hgbthesis.cls
hgb.sty

B. Content of the CD-ROM 52

hgbbib.sty LaTeX Style-File for bibliography
hgbheadings.sty LaTeX Style-File for headings

B.4 Miscellaneous
Path: /res/images

000Android.pdf Vector graphic (Android design).
000Desktop.pdf Vector graphic (desktop design).
001.pdf Vector graphic application (first part).
002.pdf Vector graphic application (second part).
003.pdf Vector graphic application (third part).
004.pdf Vector graphic application (fourth part).
005.pdf Vector graphic application (fifth part).
006.pdf Vector graphic application (sixth part).
007.pdf Vector graphic application (seventh part).
008.pdf Vector graphic application (eight part).
androidMetrics.pdf . . . Vector graphic (metrics Android design

guidelines).
applicationDesign.pdf . Vector graphic (design of the sample

application).
classDiagram.pdf Vector graphic (class diagram).
sales20082015.pdf . . . Vector graphic (global device sales 2008 –

2015).
screenFormFactors.pdf . Vector graphic (possible screen form-factors).
libgdxActor.pdf Vector graphic (class diagram – LibGDX

Actor).
webDesign.pdf Vector graphic (web design).
webdesign.png Pixel graphic (web designs on smartphones).

Path: /res/literature
*.pdf Literature, named according to the

bibtexkeys of the literature file.
web.zip Resources of all the downloaded websites.

Path: /res/raw
androidMetrics.psd . . . Original Adobe Photoshop file (Android

metrics).
avatar.psd Original Adobe Photoshop file (avatar and

icon graphics).

hgbbib.sty
hgbheadings.sty
/res/images
000Android.pdf
000Desktop.pdf
001.pdf
002.pdf
003.pdf
004.pdf
005.pdf
006.pdf
007.pdf
008.pdf
androidMetrics.pdf
applicationDesign.pdf
classDiagram.pdf
sales20082015.pdf
screenFormFactors.pdf
libgdxActor.pdf
webDesign.pdf
webdesign.png
/res/literature
*.pdf
web.zip
/res/raw
androidMetrics.psd
avatar.psd

B. Content of the CD-ROM 53

prototypeApplication.psd Original Adobe Photoshop file (all parts of
the application).

screenFormFactors.psd . Original Adobe Photoshop file (possible
screen form-factors).

appDesign.graphml . . . Original yED file (design of the sample
application).

classDiagram.graphml . Original yED (class diagram).
libgdxActor.graphml . . Original yED (class diagram – LibGDX

Actor).
webDesign.graphml . . Original yED file (web design).

Path: /printVersion
_MasterThesis.pdf . . . Thesis with instructions, optimized for

printing (document).

Path: /sampleApplication
rad_SampleApplication.zip Source code demo.

prototypeApplication.psd
screenFormFactors.psd
appDesign.graphml
classDiagram.graphml
libgdxActor.graphml
webDesign.graphml
/printVersion
_MasterThesis.pdf
/sampleApplication
rad_SampleApplication.zip

References

Literature
[1] Aaron Gustafson. Adaptive Web Design – Crafting Rich Experiences

with Progressive Enhancement. Easy Readers, LLC, 2011 (cit. on
p. 16).

[2] Ethan Marcotte. Responsive Web Design. A Book Apart, 2011 (cit. on
pp. 15, 16, 18–20).

[3] Jennifer Niederst Robbins. Learning Web Design – A Beginner’s Guide
to HTML, CSS, JavaScript and Web Graphicx. Ed. by 4. [Online;
Stand 19. September 2014]. O’Reilly Media Inc., 2012 (cit. on p. 14).

[4] Lawrence Rosen. Open Source Licensing. Prentice Hall PTR, 2004,
p. 85 (cit. on p. 21).

[5] Luke Wroblewski. Mobile First. Ingram, 2011 (cit. on p. 12).

Online sources
[6] 15 top web design and development trends for 2012. netmag. Jan. 2012.

url: http://www.creativebloq.com/industry-trends/15-top-web-design-
and-development-trends-2012-1123018 (cit. on p. 16).

[7] Adobe Announces Agreement to Acquire Nitobi, Creator of Phone-
Gap. Adobe. Oct. 2011. url: http://www.adobe.com/aboutadobe/
pressroom / pressreleases / 201110 / AdobeAcquiresNitobi . html (cit. on
p. 24).

[8] Android. Android Design. Android. url: https://developer.android.
com/design/index.html (cit. on p. 32).

[9] Android. Android, the world’s most popular mobile platform. Android.
url: https://developer.android.com/about/index.html (cit. on p. 7).

[10] Syed Tariq Anwar. NTT DoCoMo and M-Commerce – A Case Study
in Market Expansion and Global Strategy. NTT DoCoMo. 2001. url:
http://www.itu.dk/∼rold/1_sem/B1/Cases/DoCoMo.pdf (cit. on p. 5).

54

http://www.creativebloq.com/industry-trends/15-top-web-design-and-development-trends-2012-1123018
http://www.creativebloq.com/industry-trends/15-top-web-design-and-development-trends-2012-1123018
http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquiresNitobi.html
http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquiresNitobi.html
https://developer.android.com/design/index.html
https://developer.android.com/design/index.html
https://developer.android.com/about/index.html
http://www.itu.dk/~rold/1_sem/B1/Cases/DoCoMo.pdf

References 55

[11] Apache Cordova gets a new look. h-online. Feb. 2012. url: http ://
www.h-online.com/open/news/item/Apache-Cordova-gets-a-new-look-
1440114.html (cit. on p. 24).

[12] APEX. APEX by name APEX by nature. APEX gaming technology
GmbH. url: http://apex-gaming.com/about-apex/ (cit. on p. 30).

[13] Apple. App Review. Apple Inc. url: https://developer.apple.com/app-
store/review/ (cit. on pp. 6, 7).

[14] Apple. App Store Downloads Top 100 Million Worldwide. Apple Inc.
Sept. 2008. url: http://www.apple.com/pr/library/2008/09/09App-
Store-Downloads-Top-100-Million-Worldwide.html (cit. on p. 6).

[15] Apple. App Store Tops 40 Billion Downloads with Almoast Half in
2012. Apple Inc. Jan. 2013. url: http://www.apple.com/pr/library/
2013/01/07App-Store-Tops-40-Billion-Downloads-with-Almost-Half-in-
2012.html (cit. on p. 7).

[16] Apple. Apple Reinvents the Phone with iPhone. Apple Inc. Sept. 2007.
url: http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-
the-Phone-with-iPhone.html (cit. on p. 6).

[17] Apple Info. Apple Inc. url: https://www.apple.com/about (cit. on
pp. 6, 7).

[18] Betriebssystem: Sony UI. German. Androidhandys. url: http : / /
androidhandys.de/sony-ui.html (cit. on p. 8).

[19] BlackBerry. BlackBerry Charts new Course by Officially Adopting
its Iconic Brand Name. BlackBerry. July 2013. url: http : / / press .
blackberry.com/press/2013/blackberry-brand-name.html (cit. on p. 5).

[20] Bootstrap is the most popular HTML, CSS, and JS framework for
developing responsive, mobile first projects on the web. Twitter. url:
http://getbootstrap.com/ (cit. on p. 21).

[21] Ryan Boudreaux. What is the difference between responsive vs. adap-
tive web design? TechRepublic. Apr. 2013. url: http : / / www .
techrepublic.com/blog/web-designer/what- is- the-difference-between-
responsive-vs-adaptive-web-design/ (cit. on p. 16).

[22] Pete Cashmore. Why 2013 is the Year of Responsive Web Design.
Mashable. Dec. 2012. url: http : / / mashable . com / 2012 / 12 / 11 /
responsive-web-design/ (cit. on p. 16).

[23] Thomas Claburn. Google’s Secret Patent Portfolio Predicts gPhone.
InformationWeek. Sept. 2007. url: http://www.informationweek.com/
googles-secret-patent-portfolio-predicts-gphone/d/d-id/1059389?cid=
nl_iwk_daily (cit. on p. 8).

[24] Corona SDK — The ultimate 2D development platform. Corona Labs
Inc. url: http://coronalabs.com/ (cit. on pp. 24–26).

http://www.h-online.com/open/news/item/Apache-Cordova-gets-a-new-look-1440114.html
http://www.h-online.com/open/news/item/Apache-Cordova-gets-a-new-look-1440114.html
http://www.h-online.com/open/news/item/Apache-Cordova-gets-a-new-look-1440114.html
http://apex-gaming.com/about-apex/
https://developer.apple.com/app-store/review/
https://developer.apple.com/app-store/review/
http://www.apple.com/pr/library/2008/09/09App-Store-Downloads-Top-100-Million-Worldwide.html
http://www.apple.com/pr/library/2008/09/09App-Store-Downloads-Top-100-Million-Worldwide.html
http://www.apple.com/pr/library/2013/01/07App-Store-Tops-40-Billion-Downloads-with-Almost-Half-in-2012.html
http://www.apple.com/pr/library/2013/01/07App-Store-Tops-40-Billion-Downloads-with-Almost-Half-in-2012.html
http://www.apple.com/pr/library/2013/01/07App-Store-Tops-40-Billion-Downloads-with-Almost-Half-in-2012.html
http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-the-Phone-with-iPhone.html
http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-the-Phone-with-iPhone.html
https://www.apple.com/about
http://androidhandys.de/sony-ui.html
http://androidhandys.de/sony-ui.html
http://press.blackberry.com/press/2013/blackberry-brand-name.html
http://press.blackberry.com/press/2013/blackberry-brand-name.html
http://getbootstrap.com/
http://www.techrepublic.com/blog/web-designer/what-is-the-difference-between-responsive-vs-adaptive-web-design/
http://www.techrepublic.com/blog/web-designer/what-is-the-difference-between-responsive-vs-adaptive-web-design/
http://www.techrepublic.com/blog/web-designer/what-is-the-difference-between-responsive-vs-adaptive-web-design/
http://mashable.com/2012/12/11/responsive-web-design/
http://mashable.com/2012/12/11/responsive-web-design/
http://www.informationweek.com/googles-secret-patent-portfolio-predicts-gphone/d/d-id/1059389?cid=nl_iwk_daily
http://www.informationweek.com/googles-secret-patent-portfolio-predicts-gphone/d/d-id/1059389?cid=nl_iwk_daily
http://www.informationweek.com/googles-secret-patent-portfolio-predicts-gphone/d/d-id/1059389?cid=nl_iwk_daily
http://coronalabs.com/

References 56

[25] CSS APIs Current Status. W3C. url: http://www.w3.org/standards/
techs/js#w3c_all (cit. on p. 15).

[26] CSS current work and how to participate. W3C. url: http://www.w3.
org/Style/CSS/current-work (cit. on p. 15).

[27] CSS3 Introduction. W3School. url: http://www.w3schools.com/css/
css3_intro.asp (cit. on p. 15).

[28] Definition of responsive in English. Oxford Dictionaries. url: http :
//www.oxforddictionaries . com/definition/english/ responsive (cit. on
p. 13).

[29] Matt Doyle. Responsive Web Design Demystified. Elated. Sept. 2011.
url: http : / / www . elated . com / articles / responsive - web - design -
demystified/ (cit. on p. 16).

[30] Easily create apps using the web technologies you know and love:
HTML, CSS, and JavaScript. Adobe. url: http://phonegap.com (cit.
on pp. 24–26).

[31] Ben Elgin. Google Buys Android for Its Mobile Arsenal. Businessweek.
Aug. 2005. url: http : / / www . businessweek . com / stories / 2005 - 08 -
16/google-buys-android-for-its-mobile-arsenal (cit. on p. 8).

[32] Ericsson. Ericsson GS88 Preview. url: http://pws.prserv.net/Eri_no_
moto/GS88_Preview.htm (cit. on p. 5).

[33] Foundation — The most advanced responsive front-end framework in
the world. Zurb. url: http://foundation.zurb.com/ (cit. on p. 21).

[34] Tobias Gebauer. Die 10 besten responsive Frameworks. German. The-
Webdesign. Apr. 2013. url: http://www.the-webdesign.net/die-besten-
10-responsive-frameworks/ (cit. on pp. 20, 21).

[35] Ronen Halevy. The History of RIM and the BlackBerry Smartphone,
Part 3: The Evolution Of Color. berry review. Mar. 2009. url: http:
//www.berryreview.com/2009/03/16/the-history-of-rim-the-blackberry-
smartphone-part-3-the-evolution-of-color/ (cit. on p. 5).

[36] Eva Harb et al. Responsive Web Design. TU Graz. 2011. url: http:
//courses.iicm.tugraz.at/iaweb/surveys/ws2011/g3-survey- resp-web-
design.pdf (cit. on pp. 10–12).

[37] Greg Hickman. What Small Businesses Need To Know About Mobile
Marketing. url: http://mobilemixed.com/what-small-businesses-need-
to-know-about-mobile-marketing/ (cit. on p. 10).

[38] HTC Sense. German. Androidhandys. url: http://androidhandys.de/
htc-sense.html (cit. on p. 8).

[39] HTML — Living Standard. WHATWG. Sept. 2014. url: http://www.
whatwg.org/specs/web-apps/current-work/multipage/ (cit. on p. 14).

http://www.w3.org/standards/techs/js#w3c_all
http://www.w3.org/standards/techs/js#w3c_all
http://www.w3.org/Style/CSS/current-work
http://www.w3.org/Style/CSS/current-work
http://www.w3schools.com/css/css3_intro.asp
http://www.w3schools.com/css/css3_intro.asp
http://www.oxforddictionaries.com/definition/english/responsive
http://www.oxforddictionaries.com/definition/english/responsive
http://www.elated.com/articles/responsive-web-design-demystified/
http://www.elated.com/articles/responsive-web-design-demystified/
http://phonegap.com
http://www.businessweek.com/stories/2005-08-16/google-buys-android-for-its-mobile-arsenal
http://www.businessweek.com/stories/2005-08-16/google-buys-android-for-its-mobile-arsenal
http://pws.prserv.net/Eri_no_moto/GS88_Preview.htm
http://pws.prserv.net/Eri_no_moto/GS88_Preview.htm
http://foundation.zurb.com/
http://www.the-webdesign.net/die-besten-10-responsive-frameworks/
http://www.the-webdesign.net/die-besten-10-responsive-frameworks/
http://www.berryreview.com/2009/03/16/the-history-of-rim-the-blackberry-smartphone-part-3-the-evolution-of-color/
http://www.berryreview.com/2009/03/16/the-history-of-rim-the-blackberry-smartphone-part-3-the-evolution-of-color/
http://www.berryreview.com/2009/03/16/the-history-of-rim-the-blackberry-smartphone-part-3-the-evolution-of-color/
http://courses.iicm.tugraz.at/iaweb/surveys/ws2011/g3-survey-resp-web-design.pdf
http://courses.iicm.tugraz.at/iaweb/surveys/ws2011/g3-survey-resp-web-design.pdf
http://courses.iicm.tugraz.at/iaweb/surveys/ws2011/g3-survey-resp-web-design.pdf
http://mobilemixed.com/what-small-businesses-need-to-know-about-mobile-marketing/
http://mobilemixed.com/what-small-businesses-need-to-know-about-mobile-marketing/
http://androidhandys.de/htc-sense.html
http://androidhandys.de/htc-sense.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://www.whatwg.org/specs/web-apps/current-work/multipage/

References 57

[40] HTML5 — A vocabulary and associated APIs for HTML and XHTML
– W3C Candidate Recommendation. W3C. Dec. 2012. url: http://
www.w3.org/TR/2012/CR-html5-20121217/ (cit. on p. 14).

[41] HTML5 Introduction. W3School. url: http://www.w3schools.com/
html/html5_intro.asp (cit. on p. 14).

[42] Industry Leaders Announce Open Platform for Mobile Devices. Open
Handset Alliance. Nov. 2007. url: http://www.openhandsetalliance.
com/press_110507.html (cit. on p. 8).

[43] Daniel IoPCmag. Original Android Prototype Revealed During Google,
Oracle Trial. PCWorld. Apr. 2012. url: http://www.pcworld.com/
article/254539/original_android_prototype_revealed_during_google_
oracle_trial.html (cit. on p. 8).

[44] Java Language and Virtual Machine Specifications. Oracle. url: http:
//docs.oracle.com/javase/specs/ (cit. on p. 22).

[45] JavaScript Tutorial. W3School. url: http://www.w3schools.com/js/
default.asp (cit. on p. 15).

[46] Dirk Jesse. Flexible Layouts: Challenge For The Future. Smashing-
Magazine. June 2008. url: http://www.smashingmagazine.com/2008/
06/26/flexible-layouts-challenge-for-the-future (cit. on p. 18).

[47] Athanassios Kaliudis. TouchWiz, Sense und co.: Android-UIs im Ver-
gleich. German. Connect. Jan. 2014. url: http://www.connect.de/
ratgeber/touchwiz-sense-android-uis-im-vergleich-1489525.html (cit. on
p. 8).

[48] LibGDX. Badlogicgames. url: http://libgdx.badlogicgames.com/ (cit.
on pp. 25, 26, 33).

[49] Linfo. Cross-Platform Definition. The Linux Information Project. Dec.
2005. url: http://www.linfo.org/cross-platform.html (cit. on pp. 22,
23).

[50] Kevin Lynch. The Multiscreen Revolution. Adobe Inc. Feb. 2011. url:
http : / / blogs . adobe . com / conversations / 2011 / 02 / the - multiscreen -
revolution.html (cit. on p. 12).

[51] MarketWatch. Annual Financials for Apple Inc. The Wall Street Jour-
nal. Sept. 2014. url: http://www.marketwatch.com/investing/stock/
aapl/financials (cit. on p. 7).

[52] Mobiltelefone; Handys ohne Vertrag. url: https://geizhals.at/?cat=
umtsover&xf=149_Touchscreen#xf_top (cit. on p. 10).

[53] Chris Moor. T-Mobile G1 Event Round-up. Talkingandroid.com. Sept.
2008. url: http://www.talkandroid.com/260-t-mobile-g1-details/ (cit.
on pp. 6, 8).

http://www.w3.org/TR/2012/CR-html5-20121217/
http://www.w3.org/TR/2012/CR-html5-20121217/
http://www.w3schools.com/html/html5_intro.asp
http://www.w3schools.com/html/html5_intro.asp
http://www.openhandsetalliance.com/press_110507.html
http://www.openhandsetalliance.com/press_110507.html
http://www.pcworld.com/article/254539/original_android_prototype_revealed_during_google_oracle_trial.html
http://www.pcworld.com/article/254539/original_android_prototype_revealed_during_google_oracle_trial.html
http://www.pcworld.com/article/254539/original_android_prototype_revealed_during_google_oracle_trial.html
http://docs.oracle.com/javase/specs/
http://docs.oracle.com/javase/specs/
http://www.w3schools.com/js/default.asp
http://www.w3schools.com/js/default.asp
http://www.smashingmagazine.com/2008/06/26/flexible-layouts-challenge-for-the-future
http://www.smashingmagazine.com/2008/06/26/flexible-layouts-challenge-for-the-future
http://www.connect.de/ratgeber/touchwiz-sense-android-uis-im-vergleich-1489525.html
http://www.connect.de/ratgeber/touchwiz-sense-android-uis-im-vergleich-1489525.html
http://libgdx.badlogicgames.com/
http://www.linfo.org/cross-platform.html
http://blogs.adobe.com/conversations/2011/02/the-multiscreen-revolution.html
http://blogs.adobe.com/conversations/2011/02/the-multiscreen-revolution.html
http://www.marketwatch.com/investing/stock/aapl/financials
http://www.marketwatch.com/investing/stock/aapl/financials
https://geizhals.at/?cat=umtsover&xf=149_Touchscreen#xf_top
https://geizhals.at/?cat=umtsover&xf=149_Touchscreen#xf_top
http://www.talkandroid.com/260-t-mobile-g1-details/

References 58

[54] Nokia. Nokia in 2007. Nokia. 2007. url: http://company.nokia.com/
sites/default/files/download/05-nokia-in-2007-pdf.pdf (cit. on p. 6).

[55] PCmag. Definition of: cross platform. PCmag. url: http : / / www .
pcmag . com / encyclopedia / term / 40495 / cross - platform # fbid =
aHfb3ldkqPq (cit. on p. 23).

[56] PCmag. Definition of: tablet computer. PCmag. url: http ://www.
pcmag.com/encyclopedia/term/52520/tablet-computer (cit. on p. 5).

[57] PhoneScoop. Feature Phone (Definition). phone scoop. url: http://
www.phonescoop.com/glossary/term.php?gid=310 (cit. on p. 4).

[58] PhoneScoop. Smartphone (Definition). phone scoop. url: http://www.
phonescoop.com/glossary/term.php?gid=131 (cit. on pp. 4, 5).

[59] Michael Rougeau. Google details Android 4.4 KitKat, its latest mobile
upgrade. Rechradar. Oct. 2013. url: http://www.techradar.com/news/
software/operating-systems/google-details-android-4-4-kitkat-its-latest-
mobile-upgrade-1195177 (cit. on p. 9).

[60] Ira Sager. Before iPhone and Android Came Simon, the First Smart-
phone. Businessweek. June 2012. url: http://www.businessweek.com/
articles/2012-06-29/before- iphone-and-android-came-simon-the-first-
smartphone (cit. on p. 5).

[61] Samer and Chipalo. WPF Text Measurement Units. MSDN. 2009.
url: http : / / blogs . msdn . com / b / text / archive / 2009 / 12 / 11 / wpf -
text-measurement-units.aspx (cit. on p. 32).

[62] Eric Schmidt. Eric Schmidt at DLD. englis. Jan. 2011. url: http :
//www.youtube.com/watch?v=-IGfBGHDHRc#t=587 (cit. on p. 12).

[63] Startup Design Framework — Suit Up Your Startup. Designmodo.
url: http://designmodo.com/startup/ (cit. on p. 21).

[64] TouchWiz von Samsung. German. Androidhandys. url: http : / /
androidhandys.de/touchwiz.html (cit. on p. 8).

[65] Christina Warren. The Pros and Cons of Cross-Platform App Design.
Mashable. Feb. 2012. url: http://mashable.com/2012/02/16/cross-
platform-app-design-pros-cons/ (cit. on pp. 23, 24).

[66] WebDesignShock. Responsive Web Design, Most Complete Guide.
Sept. 2013. url: http://www.webdesignshock.com/responsive- web-
design/ (cit. on pp. 13, 17).

[67] Peter Weichsel et al. At Home in the Cloud – The Emerging Opportu-
nity for Telecom Operators. Booz and Company Inc. 2012. url: http:
//www.strategyand.pwc.com/media/file/Strategyand_At-home-in-the-
cloud.pdf (cit. on p. 9).

http://company.nokia.com/sites/default/files/download/05-nokia-in-2007-pdf.pdf
http://company.nokia.com/sites/default/files/download/05-nokia-in-2007-pdf.pdf
http://www.pcmag.com/encyclopedia/term/40495/cross-platform#fbid=aHfb3ldkqPq
http://www.pcmag.com/encyclopedia/term/40495/cross-platform#fbid=aHfb3ldkqPq
http://www.pcmag.com/encyclopedia/term/40495/cross-platform#fbid=aHfb3ldkqPq
http://www.pcmag.com/encyclopedia/term/52520/tablet-computer
http://www.pcmag.com/encyclopedia/term/52520/tablet-computer
http://www.phonescoop.com/glossary/term.php?gid=310
http://www.phonescoop.com/glossary/term.php?gid=310
http://www.phonescoop.com/glossary/term.php?gid=131
http://www.phonescoop.com/glossary/term.php?gid=131
http://www.techradar.com/news/software/operating-systems/google-details-android-4-4-kitkat-its-latest-mobile-upgrade-1195177
http://www.techradar.com/news/software/operating-systems/google-details-android-4-4-kitkat-its-latest-mobile-upgrade-1195177
http://www.techradar.com/news/software/operating-systems/google-details-android-4-4-kitkat-its-latest-mobile-upgrade-1195177
http://www.businessweek.com/articles/2012-06-29/before-iphone-and-android-came-simon-the-first-smartphone
http://www.businessweek.com/articles/2012-06-29/before-iphone-and-android-came-simon-the-first-smartphone
http://www.businessweek.com/articles/2012-06-29/before-iphone-and-android-came-simon-the-first-smartphone
http://blogs.msdn.com/b/text/archive/2009/12/11/wpf-text-measurement-units.aspx
http://blogs.msdn.com/b/text/archive/2009/12/11/wpf-text-measurement-units.aspx
http://www.youtube.com/watch?v=-IGfBGHDHRc#t=587
http://www.youtube.com/watch?v=-IGfBGHDHRc#t=587
http://designmodo.com/startup/
http://androidhandys.de/touchwiz.html
http://androidhandys.de/touchwiz.html
http://mashable.com/2012/02/16/cross-platform-app-design-pros-cons/
http://mashable.com/2012/02/16/cross-platform-app-design-pros-cons/
http://www.webdesignshock.com/responsive-web-design/
http://www.webdesignshock.com/responsive-web-design/
http://www.strategyand.pwc.com/media/file/Strategyand_At-home-in-the-cloud.pdf
http://www.strategyand.pwc.com/media/file/Strategyand_At-home-in-the-cloud.pdf
http://www.strategyand.pwc.com/media/file/Strategyand_At-home-in-the-cloud.pdf

	Declaration
	Abstract
	Introduction
	Subject
	Problem Statement
	Hypothesis
	Structure

	Theoretical Foundation
	Growth of the Mobile Sector
	Definitions and Delimitations
	From Mobile Phones to Smartphones
	Apple Inc.
	Android Inc.
	Device Shipments 2008 – 2015
	Screen Form-Factors

	Different Approaches to handle Screen Form-Factors
	Desktop First
	Mobile First

	Responsive Web Design (RWD)
	Definition and Delimitation
	Main Goals
	Techniques
	Designing Responsive
	Frameworks and Platforms

	Cross Platform Development
	Definitions and Delimitation
	Development Issues
	Cross Platform Programming
	Frameworks

	Conclusion

	Practical Approach
	Purpose of the Sample Application
	Problem Statement
	Specification and Delimitation

	Cooperation with APEX gaming technology GmbH
	About the Company
	Going Responsive at APEX

	Selection of the Cross Platform Framework
	Actual Application
	Mathematical Notations
	Architecture
	Implementation

	Conclusion

	Conclusions
	Result
	Implications and Future Research

	Terms
	Content of the CD-ROM
	PDF-Files
	LaTeX-Files
	Style/Class-Files
	Miscellaneous

	References
	Literature
	Online sources

