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Kurzfassung

Diese Arbeit beschäftigt sich mit dem Projekt „Connection Adaptive Net-
worked Physics“, das ursprünglich entwickelt wurde um ein ebenes Spielfeld
für alle Teilnehmer eines Onlinespiels zu schaffen, unabhängig davon, ob sie
über eine ausreichende Internetverbindung verfügen oder nicht. Das funktio-
niert, indem das C.A.N.P.-Framework für jeden Spieler, dessen Verbindung
zu irgendeinem Zeitpunkt während einer Session nicht den Anforderungen
an die benötigte Bandbreite entspricht, ein maßgefertigtes Netzwerkproto-
koll erstellt, das, indem es überflüssige oder weniger wichtige Informatio-
nen stärker komprimiert oder gar weglässt, die benötigte Bandbreite an die
Verbindung des Spielers anpasst. Im Laufe der Projektentwicklung ergab
sich jedoch noch zusätzlich, dass eine Automatisierung bestimmter Teile
des üblichen Netzwerkmoduls eines Onlinespiels nützlich wären, sowohl um
die Effektivität einiger verwendeter Kompressionsmethoden wie Bit Packing
und Delta Encoding zu erhöhen, als auch um die Arbeit, die bei der Imple-
mentierung des Netzwerkteils sonst anfällt, deutlich zu reduzieren. Damit
wurde „Automatisierung“ ein weiterer zentraler Punkt des Projekts. Neben
der Projektvorstellung konzentriert sich die Arbeit vor allem auf Leistungs-
und Stabilitätstests des Frameworks, und gibt zu Beginn außerdem einen
Überblick über die häufigsten Verbindungsprobleme sowie beliebte Kom-
pressionsmethoden für Netzwerke.
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Abstract

This thesis covers the project “Connection Adaptive Networked Physics”,
which was originally developed to create an even playing field for all partic-
ipants of an online game, whether they possess a sufficient internet connec-
tion or not. This is made possible by creating a custom network protocol,
which, by applying stronger compression to or even discarding less impor-
tant or redundant information, matches the needed bandwidth to a player’s
connection if it drops below minimum requirements at any time during a
session. During the project development it appeared that automation of cer-
tain parts of the usual network module of an online game would be useful,
not only to boost the effectiveness of some of the utilized compression tech-
niques like bit packing and delta encoding, but also to significantly reduce
the amount of work needed to implement the network section. With this,
“automation” became another focus of the project. Apart from the project
review, the thesis mainly concentrates on performance and stability tests of
the framework, and gives an overview of the most common connection issues
as well as popular compression techniques for networks in the beginning.
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Chapter 1

Introduction

“Everyone should be able to participate in online games with the same
chances, no matter their connection”. This was the thought that inspired
the project “Connection Adaptive Networked Physics”, a networking frame-
work that is able to adjust the bandwidth taken by stream of data between a
game server and a client to the bandwidth actually being available, prevent-
ing congestion of the connection and all the nasty side effects (like latency
spikes and packet loss) coming with it. Having lived in a dorm where the
connection speed varied extremely throughout the day, from several mb/s
early in the morning down to sometimes a mere 50 kb/s in the evening, the
author experienced it first hand what it means to try to play a bandwidth
demanding online game (like almost any MMORPG) on an insufficient con-
nection. This made the motivation behind developing the project a very
personal one.

Having taken part in the development of several online game prototypes
in the past years, this problem often showed up during their presentations
as well. With public Wi-Fi connections, and even a phone used as a hot spot
one time, the bandwidth available for the presentations often turned out to
be less than needed, resulting in suboptimal performance of the presented
projects. This was especially annoying as implementing the network com-
ponents and setting up communication between server and client already
takes a lot of time, so for such short lived prototypes, optimizing the net-
working was simply too much. This ultimately inspired the second part of
the project: Almost complete automation of the networking process.

Ordinary network communication takes time to implement. Connections
have to be managed, messages between server and client have to be han-
dled, but most importantly, lots of methods for fabricating and decoding
messages have to be implemented. The tedious process of writing encod-
ing and decoding methods, in which fields and parameters are encoded one
by one, is something any game programmer that tried himself at low level
network communication might be familiar with. This is where the C.A.N.P.
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1. Introduction 2

framework aims to take a lot of time off the developers hands: With the help
of encoding tables, all fields of any objects given to the framework are au-
tomatically encoded and converted to messages, with additional networking
specific benefits compared to conventional object serialization.

With this, the project’s goals are clear: More convenience in setting up
the networking component for online games for the developers by automating
a big part of it, and more accessibility for bandwidth demanding online
games for the players by having the game adapt to their connection.



Chapter 2

State of the Art

2.1 Common Connection Issues and their Cause
Before going into greater detail with the project, it is also important to
expand on its circumstances. That means introducing and explaining the
most popular encoding techniques used in networking for online games, of
which some have been implemented in the project, as well as taking a look
at the idea of congestion control and how it already is implemented in the
different versions of TCP. But prior to that, common roots of connection
problems are investigated. Knowing those will give a better insight on how
to deal with the connection issues later in the framework.

2.1.1 The “Last Mile” Problem

Often being the root cause of bandwidth limitations, the “last mile” de-
scribes the link between the end user and the first node(s) in a network
chain. The heavy branching of lines connecting all end users to the first
node means an exponential rise in cost for upgrading the “last mile” to
newer technology, and with the last miles often being in the hand of a single
ISP there is little competitive drive for the ISP to upgrade, which holds true
especially in rural areas (see [8]).

2.1.2 Nodal Delay and Nodal Packet Drop

The total delay a packet experiences on its way through an end-to-end net-
work is the sum of all nodal delays. A single nodal delay consists of the
processing delay, the queueing delay, the transmission delay and the propa-
gation delay (see [6, 7, 4, 11]).

Processing delay is the time it takes the node to read the header, check
for errors and determine its destination (the link it will be pushed on). The
duration of this varies depending on the complexity of the processing, with
simple packet forwarding being almost negligible and more complex opera-
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2. State of the Art 4

tions like network address translation or deep packet inspection pushing it
to up to 1ms, therefore significantly adding the the total delay if multiple
nodes in the network are affected.

Queueing delay is the time a packet has to wait in the node’s buffer
before being pushed on the link that was determined earlier. When the
load factor of this link exceeds 100% (meaning the queue receives data at
a faster rate than the link can take) the queueing delay will first rapidly
increase before the queue buffer finally overflows, causing the packet to be
dropped. This is a primary cause of packet loss. Some packets may even be
dropped shortly before the buffer overflows if the node uses RED (random
early drop). This signals impending congestion to the sender, which creates
a small time window where the sender can throttle its output before total
congestion occurs.

The transmission delay is the time it takes to push all bytes of the
packet onto the link. Naturally, bigger packets take longer, but even at the
mtu (maximum transmission unit) this delay is basically negligible relative
to the total latency.

Lastly, the propagation delay describes the time needed for the packet
to travel through the physical link to the next node. The delay starts when
the first part of the packet (the header) is sent and stops when it arrives. It
is primarily dependent on the length of the link.

2.1.3 Bit Errors

As written earlier, packets are checked for bit errors during the processing
stage of every node (done via cyclic redundancy checks using check sums),
and detected ones are dropped. This is another major cause of packet loss.
Bit errors are mainly caused by the natural noise of physical links and signal
interference, but also by distortion, self synchronization issues and attenua-
tion. Long copper wires and wireless transmission suffer the most from this.
The relation of successfully transmitted bits to corrupted ones is called bit
error rate (BER) and is a popular indicator for connection quality. In prac-
tise, the bit error rate is typically at 1−12 or less for the wired part of a
connection (and the Ethernet specification allows for BERs of up to 1−10),
and while wireless connections can have much worse rates, they are usually
corrected automatically using Forward Error Correction (see [6]).

2.1.4 ISP Traffic Management

A common strategy employed by ISPs is to shape the network passing
through their nodes, mostly to avoid congestion, especially during peak
hours. This means packets may be distributed to different channels depend-
ing on their type, and maximum throughput may be throttled for all or
individual types of traffic and even individual senders depending on their
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behavior (e.g., an ISP may choose to throttle the throughput from a sender
transmitting large amounts of peer-to-peer traffic when the links are almost
at full load to ensure fair service) (see [12]).

2.1.5 Out-of-Order Delivering and Jitter

Both of these issues are side effects of the problem that packets have to
enter a queue on every node. Jitter is caused by these queues being of un-
predictable length every time a packet arrives, while a node that was pre-
viously congested and is now open again may cause a newly sent packet to
be routed through a faster route using this node, overtaking older packets
in the process (see [10]).

2.2 Detection of Congested Connections

2.2.1 Congestion Control in TCP

The sending behavior of TCP can be divided into two parts: The congestion
recovery phase and the congestion avoidance phase. When establishing a
connection, TCP takes the advertised bandwidth of the recipient and sets
it as the upper limit for transmitted data per second. It will also initialize
a variable called the congestion window for the sender, which defines the
actual amount of data per second sent and starts at one (packet), but will
increase every time data has been acknowledged. The rate at which the
window increases is defined by the current phase and the TCP version:

During the recovery phase, the congestion window of TCP version Tahoe
is increased linearly for every ack, and with the additional data increasing
the window as well, it grows at an exponential rate (doubling every round
trip time), until it reaches the advertised bandwidth, or a packet drop is
detected. In the case of a packet drop, Tahoe sets a control threshold at half
of the reached window size and then resets the window back to its start size.
This time, the recovery phase is interrupted at the control threshold and
transitions into the avoidance phase where every new ack only increases the
window logarithmically, resulting in linear growth of the window, e.g. +1
packet per second (see [5], p. 30 et seq.).

The advantage of the avoidance phase is that in case of congestion, the
amount of lost packets is minimal, whereas a congestion during the recovery
phase may cause data loss in the order of half the congestion window or
higher, since the window still increases rapidly due to incoming acks while
the lost packets need to time out before they are detected, or duplicate acks
from the sender need to arrive. Additionally, the avoidance phase means a
significantly higher time until congestion is encountered again, resulting in
less throughput throttles.

To further avoid the risk of big data loss during the recovery phase, TCP
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Vegas alternates between exponential and linear growth every RTT (see [2],
p. 12). Other versions of TCP each use slightly altered versions of congestion
control (e.g., TCP Reno skips the recovery phase in case of duplicate acks,
and restarts right at the control threshold), but the essence stays the same: If
congestion in form of packet loss or delay is detected, the output is throttled
severely, which is a big reason why UDP is usually preferred for networking
in games. Here, transmission needs to stay real-time, simply buffering and
throttling the game state broadcast is no option. The solution is, instead
of sending the information slower, to decrease the bandwidth needed by it
through heavy compression.

2.3 Common Encoding Techniques and
Algorithms

2.3.1 Serialization

Serialization is a popular method to turn any primitive data type or object
into a stream of bytes with the goal of being able to safely store or transmit
the data for later reconstruction. In order for the reconstruction method to
properly decode the stream it is imperative for it to know exactly how it
was encoded, either by having mirrored serialize and deserialize methods,
by exchanging this information beforehand or by abiding a standard. Such
a standard is often provided by the programming language either through
native support like in Java or Python or through libraries. The advantage
of this is the simplicity of the process, objects often require not much more
than to simply being marked as serializable and already the encoding and
decoding works. Creating a custom serialization standard can however also
save a lot of space, e.g., by using bit packing. A primitive data type like
a signed 32 bit integer can store a number higher than two billion, but in
games this magnitude is seldom needed, yet it still always takes 32 bits of
space. If it is known that a certain property never exceeds 24 bits and the
decoding side knows when to expect this, the serialization can free up the 8
bit of unused space (see [3], p. 4 et seq.). It is hard to compress the serialized
binary code any further, but the result of other compression techniques can
still often be serialized. Thus, serialization is usually the last step when
encoding a network message.

2.3.2 Bit Packing

The method used to compress data by cutting unused bits and packing
what is left in a new container is called bit packing (see figure 2.1). It uses
an encoding protocol that specifies both the data types and the bits used
for all values packed together, so the resulting buffer does not contain any
encoding information. Bit packing often uses bit shifting and other bitwise
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00000000000000000000000011001001
00000000000000000000000010110010
00000000000000000000000111010110

01011000001100100100101100100111

Figure 2.1: Example Bit Packing: Three 32-bit integers (in binary repre-
sentation) packed into four bytes, using 10-bit containers.

operations to extract exactly the relevant bits and to place them at the
right position in the target container. Byte arrays are commonly used as
containers, especially when they are needed for networking, but 32 or even
64 bit integers can be used just as well for better performance.

2.3.3 Delta Encoding

Delta encoding serves a similar goal like serialization, reducing the size of
a transmitted number, but achieves it in another way. As the name delta
suggests, instead of always sending the absolute value of, e.g., a transform
of the current state, only the difference relative to an earlier state is sent
(see [1], p. 3 et seq.). Because latency is a big factor in online games, most
state updates are done via the unreliable protocol UDP. This means that
in order for delta encoding to work, the client has to acknowledge a suc-
cessfully synced game state periodically. After receiving this ack, the server
can then encode all further updates relative to it and thus severely reduce
the magnitude of the transmitted values. Combining this with bounding the
values for serialization results in a big reduction in message size. A downside
to this technique is that the server always needs to keep a buffer of recent
game state snapshots he can encode his messages relative to.

2.3.4 Entropy Encoding

Entropy encoding is a loss-less compression technique that is based on the
frequency of single digits or characters in a message. A very popular method
is Huffman Encoding, where a so called Huffman Tree (see figure 2.2) is
created based on entropy and is traversed every time a character is encoded
or decoded. This can save a lot of space when there is a big set of characters,
but only a few of them make out the majority of a typical message, because
these ones will be represented using less bits. As both serialization and
entropy encoding produce a bit stream, these two compression techniques
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Figure 2.2: A simple Huffman Tree. When reading the tree, traversing it to
a character’s leaf determines the bit code representing that character.

are practically not used together.

2.3.5 Bound and Quantization

All compression methods shown so far achieve loss-less compression, bound
and quantization though do not. It is an alternative approach to cutting
down the magnitude of values without relying on acknowledgments, by re-
defining the minimum steps a value can change and then bounding the value
to a minimum and maximum, essentially creating a custom-bit integer data
type, similar to a custom serialization standard. The position of a game
entity is normally defined with floating point accuracy, which is usually
way more precise than it needs to be for a simulation on the client. Under
the assumption that due to latency and package loss a perfect and loss-
less simulation of the server state cannot be achieved anyway, it might be
enough to send the translation of game entities in 20 cm steps (so that, e.g.,
transmitting a length of 12 would equate to 2.4 m) and letting interpolation
do the rest (see [9]). This is especially effective when combined with delta
encoding as it may eliminate the need to update an entity altogether when
its state on the server didn’t change enough to snap into the next step on
the scale.

2.3.6 Selective/Variable Updating

The biggest reduction of a network message’s size can be achieved by simply
not sending it. Carefully dividing the game entities into gameplay relevant
and non gameplay relevant for the player and then only syncing the relevant
ones can increase network performance considerably. The best results are
achieved when this distinction changes dynamically over the game. Enemies
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that are far away from the player in a game with limited interaction distance
are not gameplay relevant as long as they stay at distance. The key is to not
make the player notice the unsynced entities, which may also be the case
when game entities flood the screen, like different players in social hubs.
Here, employing variable update rates reduces network throughput without
impacting player experience too much.



Chapter 3

Implementation of the
C.A.N.P. Framework

The “Connection Adaptive Networked Physics” framework is composed of
three major modules: A monitoring module that keeps track of packets and
measures the connection quality of all individual clients, an encoding mod-
ule that encodes objects into ready-to-send messages using several different
encoding techniques and algorithms, and a control module that uses the in-
formation provided by the monitoring module and tries to find the perfect
encoding tailored to the connection. Apart from these three modules, the
framework also houses general network communication functionality, like es-
tablishing and maintaining a connection and sending or receiving packets on
a reliable or a non-reliable channel.

3.1 General Functionality
For establishing new connections, pushing packets onto the socket and re-
ceiving and decoding unknown messages, the Canet class provides all neces-
sary functionality. Server and client both use the same classes, though one
of them, the server, needs to have a fixed port and IP-address so a con-
nection can be initiated by the client, which is done through transmitting
a fixed protocol. The user needs to register his custom server as a listener
in his Canet-instance, so he can receive events for incoming, accepted and
dropped connections, and, most importantly, incoming packets and their
content. Once client and server have successfully connected, the user re-
ceives a CanetClient object that from here on out regulates all activity on
this connection.

CanetClients fetch all packets that were sent from the address of their
connection directly from the socket. Afterwards, the Canet class will read
the leftovers and scan them for new connection attempts. To differentiate
between user-sent messages and internally exchanged information, all pack-

10
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ets receive a preposed 1-byte flag. All user-sent messages are first collected in
two separate queues, one for reliable and one for unreliable messages. Dur-
ing the update phase of the framework, after fetching all packets from the
socket, all queued messages are packed together into packets with a maxi-
mum size limit (maximum transmission unit) of 1472 bytes, which minimizes
packet count while preventing packet fragmentation. The resulting packets
are then pushed onto the main queues, where they are pushed onto the
socket together with all the internal packets just moments later. Naturally,
user-sent messages are unpacked again and returned one by one at the des-
tination, so the user receives them the exact same way they were sent.

3.2 The Monitoring Module
The monitoring module consists of a single class called PacketTracker that
every CanetClient runs its own instance of. Every packet sent and received
must pass through here so the tracker can assign a number to outgoing and
read the number of incoming packets. Numbers are assigned ascending and
range from 0 to 32,767 (cycling back to 0 when exceeding the max value),
thus using up 15 bits of memory. An additional bit is used to separate
between reliable and non-reliable messages, resulting in a total of 16 bits of
extra space per packet.

The packet numbers are primarily used to identify missing, out-of-order
and duplicate packets. Upon arrival of a packet, the tracker compares its
number with the number of the last received packet. If it is not the next one
in the series, all numbers in-between are marked as missing and the received
packet as out of order (in the case of a higher number). In the case of a
lower number, the list of currently missing packets is checked, removing the
missing-mark if the packet was contained and discarding and marking the
packet as duplicate if not, or if its number equals the last received packet’s
one. Packet numbers that are marked as missing will wait a short amount
of time (in case the packet is simply late) before their missing-status is
considered final. The stats calculated from identifying all abnormal packets
are stored in the corresponding CanetClient, where the control module and
the user, should he be interested, have access to them.

Similar to the list of currently missing incoming packets, all outgoing
packets sent through the reliable channel will temporarily be stored until an
acknowledgment packet is received or the packet timed out, in which case
the process repeats and it is sent again, until the ack is finally received.
Resent packets receive a new packet number, thus eliminating the chance
of the number being no longer contained in the list of missing packets at
the destination client and the packet being falsely detected as duplicate and
discarded.

For measuring the bandwidth used by current packets, packet sizes are
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added up over time the same way the counts for abnormal packets are. The
size of a packet is determined by the contained message, encoding informa-
tion from the encoding module, the previously mentioned 4 bytes of tracking
information and the 52 bytes needed for the datagram headers (24 for the
ethernet frame, 20 for the IPv4 header and 8 for the UDP header).

The round trip time is measured by regularly pinging the destination
client, which also provides information about the connection status. If pings
have not been answered for a certain amount of time, the connection will be
declared dead and dropped. Pings may be delayed a bit should the outgoing
packet queue be too full so an overloaded socket cannot distort the result.

3.3 The Encoding Module
The encoding module is the heart of the framework and houses all the dif-
ferent encoding and compression techniques used to turn objects into ready-
to-send messages of the smallest possible size. It generally differentiates be-
tween loss-less compression, which is applied to all objects as a baseline, and
lossy compression, which is only applied to various degrees when the control
module deems it necessary due to detected connection issues.

The user can access the encoding module via the EncodingManager class,
of which an instance is automatically created within the CanetClient when
establishing a new connection. The EncodingManager does not encode single
parameters like primitive data types, but whole objects. This makes using
it incredibly easy, as during the broadcast of the server game state, one
simply needs to pass the entities to the EncodingManager one by one and
will receive a completely encoded message in form of a byte-array which can
then be sent immediately via the CanetClient. This extra step makes it also
possible to directly transmit byte-arrays that have not been generated by
the EncodingManager but by the user himself, bypassing the “connection-
adaptiveness” and using the framework just for its connection handling and
message transmission.

3.3.1 Encoding Tables

When encoding a passed object, the EncodingManager needs to know which
of its fields the user wants to encode and transmit. For this it uses a class
called EncodingTable (see figure 3.1). Encoding tables can either be created
automatically, which happens when the encoding manager first comes in
contact with the class of an object, either by en- or decoding, or by the user.
While the automatic version is often sufficient, it will always include all fields
of the objects, so in order to be more selective, a user generated encoding
table with manually chosen fields is recommended. Apart from the field
count, a manual encoding table also allows to tweak encoding parameters for
each individual field, which can both improve the quality and compression
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Figure 3.1: A simplified class diagram of the EncodingTable class and its
properties.

of the encoding. It is important that manually created encoding tables are
created on both the server- and the client-application so that objects can be
successfully decoded again.

Often some fields of an object only require initial or irregular transmis-
sion, like the type of a certain entity that only needs to be shared on the
spawn message. For this purpose it is possible to create multiple encoding
tables per class, and the user can choose which one he wants to use when
encoding objects.

Encoding tables also contain dynamically tracked information about the
contents of fields which are used by the serializer and the quantizer. During
the server run time, this information often leads to a change in the optimal
encoding settings for individual fields. When this happens, the modified
encoding table is synced immediately with the client to replace the old one.

3.3.2 Delta Encoder

Objects that were passed to the encoding manager are first processed by the
delta encoder. On server side, the delta encoder is responsible for building
game state snapshots out of all the objects passing through, and after re-
ceiving the first client confirmation, encoding new objects relative to certain
game states. On client side, it tries to reconstruct the by the server defined
game states from incoming messages and decodes them according to the
instructions.

Game state snapshots are created by collecting and storing the values of
passed objects inside a buffer. A snapshot is considered complete, when the
update method of the delta encoder is first called after having previously
collected and encoded objects. Each snapshot is assigned an ascending num-
ber, cycled in the range of 0 to 255, which means the maximum number of
snapshots that can be stored at once is 256. Every object passing through
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the delta encoder, whether it is actually encoded or only used to build the
game state snapshot, receives the number of the snapshot it is currently
building, so that the client will be able to allocate it. The client now faces
the task to ascertain whether a snapshot is complete, meaning all objects of
it have arrived. Since the client has no way of knowing which and how many
entities were actually sent by the server, determining this needs to be done
by looking at the packets in which the objects arrived. For this purpose, the
lowest and highest numbered packet is tracked for each snapshot. During
the verification phase, the packet tracker is asked if all adjacent and inter-
mediary packets have arrived, guaranteeing a complete snapshot on success.
Even with one or two missing packets the snapshot may possibly still be
complete, since those packets may have contained only internal information,
but since the client has no knowledge of the missing packets’ contents, it is
safer to assume that the snapshot is incomplete.

Snapshots are verified multiple times per second, but not on every up-
date. During the verification phase, all not yet examined snapshots are
checked. The most recent complete one is immediately reported to the server,
who now knows that the client will be able to decode all entities encoded rel-
ative to this snapshot. The encoding of an entity is simply done by searching
the client-confirmed snapshots for an earlier version of the entity and sub-
tracting the older values from the current one, returning only the difference
(the delta). Next to the current snapshot’s number, delta encoded objects
also receive the number of the snapshot they were encoded to, so the client
knows how to decoded it again.

Once every entity was featured in at least one completely received game
state snapshot and only the difference of their field values are transmitted,
floating point accuracy issues and (later on) quantized values can lead to the
client game state drifting significantly apart from the server game state. To
avoid this problem, the server regularly sends a whole snapshot completely
uncompressed by delta encoding, which the client detects and then priori-
tizes to verify and report to the server. Doing so lets the client state snap
back into the server state and prevents the amassing of errors before they
become notable.

3.3.3 Serializer

Turning the final property values of objects into a byte array is the job of
the Serializer class. The class has two layers, and while both work similarly
(storing the data types in the byte array using their binary representation),
the first layer works uncompressed and writes into the buffer in byte steps
using the same amount of bytes the data type takes up in memory, the second
layer advances bit by bit and can encode data types compressed using any
number of bits specified. This second layer is implemented using a nested
class BitSerializer and is the standard procedure for all properties marked
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Program 3.1: The serialization method for unsigned integers of up to 64
bits. Bits are read one by one starting from the least important bit until the
specified amount is reached.

1 public void serializeUInt(ulong value, int bits)
2 {
3 if (bits < 0)
4 return;
5 for (int i = 0; i < bits; i++)
6 {
7 buffer[(pos + i) / 8] = (byte)(buffer[(pos + i) / 8] << 1 |
8 (((byte)(value >> (bits - 1 - i)) & 1)));
9 }

10 pos += bits;
11 }

as compressed in their object’s encoding table.
The bit serializer employs the earlier discussed bit packing technique

(see section 2.3.2) to read and write values bit by bit using bit shifting and
bit masking with the total amounts of bits defined by the encoding table
(see program 3.1). Since both server and client possess the same encoding
table containing the information about order of encoding, kind of data type
and amount of bits used, the serializer adds no additional flags to the byte
array, jut the pure, compressed values of the encoded object’s fields. The
(bit) serializer is able to encode and decode the following data types:

• Booleans: Easiest to encode and decode, by simply reading or writing
a single bit into or from the array (using the bit serializer). Compared
to regular serialization using 8 bits per boolean, this means a guaran-
teed net saving of 87.5% used space.

• Signed and unsigned integers: As their binary representation can
be read as-is, these are relatively easy to encode and decode using bit
shifting and bit masking as shown in the highlighted method above
(program 3.1). As the process is the same for integers of any length
from byte to long, the same en- and decode methods apply to them.
In case of signed integers, an additional bit containing the sign bit is
used.

• Floating point values: Their binary representation is harder to fetch
and also divided into mantissa, exponent and sign bit. As the biggest
part, the mantissa, uses all its available bits most of the time, simply
cutting bits like with integers is no viable strategy. Thus, for loss-less
encoding, float and double are serialized normally using four or eight
bytes written into the byte array. They can however be significantly
compressed if quantization is in use (see section 3.3.4), in which case
their value is already stored as an integer and they are serialized as
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such.
• Strings: These are first converted into byte chunks using an utf-8 en-

coder which are written into the byte array byte by byte using integer
serialization after the amount of encoded bytes was written into it for
decoding purposes. String is the only data type that breaks from “no
additional serialized information”, necessarily so, as it is also the only
one not bound by a fixed container size.

• Enumerations: Enums work by using an underlying data type, which
is normally byte, but can also be specified to be any other integer data
type. This underlying type is detected when the encoding table is first
created and used to encode and decode an enum as an integer.

Especially when quantization is used, the most commonly serialized data
type is an integer, which, when using the bit serializer, requires information
about the amount of bits used in the encoding from the encoding table. The
table in turn can receive this information through two ways: By the user
explicitly specifying it when adding the respective field to the table, or by
making use of automatic bound tracking.

Every parameter of the encoding table automatically tracks the biggest
and smallest value ever encoded and can thus quantify how many bits are
needed to encode it. These bounds are of course based on past information
and could be exceeded in a future update, which is why every parameter is
padded using a safety buffer of a few bits, the amount depending on how
long values have been tracked. The longer they have, the less the chance
of the actual bound not having been discovered, and so the buffer slowly
shrinks from padding to the full data type container size down to only one
bit. This way, eventually the perfect serialization settings are found even
without this information given by the user.

As delta-encoded values are typically much smaller and need less bits
to encode, they are tracked separately. The bound also depends a lot on
packet loss, since higher loss results in higher delay until a complete game
state snapshot was successfully reported by the client to the server, so it is
tracked separately for every client as well. In order to not needing to start
the tracking from zero, the biggest known bounds from active connections
are shared when a new connection is established.

3.3.4 Quantizing

Quantizing is available for floating point values and integers and happens
in the EncodingManager directly before serialization. As mentioned earlier,
because of the nature of the binary representation of floats, serializing them
using bit packing does not free up unused space in the way it works for
integers. However, quantizing them into integer containers works really well.
This works by predefining a fixed minimum increment for all floats that
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should be quantized in the encoding table and, before serializing, multiplying
the floating point value by one divided by the minimum increment and then
casting it to an integer, flooring all precision smaller than the minimum step
in the process. After deserializing on client side, the float is multiplied by
the minimum step again to return to its old value, but with lost precision.
The total amount of bits needed to encode floating point values this way is
the sum of the bound obtained via maxima and minima tracking as well as
the bits needed to express the minimum increment. The most efficient way
to define this minimum increment is as

𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 = 1
2𝑛 ,

where n is the amount of bits needed to express the increment. Because of
this, the minimum increment is initialized and stored as the amount of bits
that should be used on it, not as an actual value.

Integers are quantized fairly straightforward, by cutting one or several
bits, starting at the least important bit and going up from there. Cutting off
just one bit means that the minimum increment for integers changes from
one to two, cutting off two bits changes the increment to four, three bits
to eight, and so on. This operation has different effects on the precision of
compressed integers though – the bigger the value on average, the less it
is notable, and in reverse, cutting off four bits of an integer that does not
exceed eight will probably make the compressed value unusable. Because
of this, the bounds determined by the minima and maxima tracking of the
encoding table are used to define the severity of the quantization applied to
each entity field. Just as the bounds, this will often change at run time and
is therefore included in the encoding table syncing.

Aside from a field’s global quantization strength stored in the encoding
table, it also varies on a case by case basis when looking at the object that is
currently being encoded. This local quantization can depend on the object’s
priority and distance to player (if applicable) and its strength decided by
the selection module. It is segmented into four strengths: No quantization,
normal quantization, double quantization and quad strength quantization.
Since this varies from object to object and the rules for its application need to
change and adapt fast when the connection quality is dropping, the quan-
tization strength used is stored as a two-bit flag in front of the object’s
encoded values.

3.3.5 Selection Module

The class SelectionModule gets its name from its task to select the proper
encoding for every outgoing object. As mentioned earlier, this includes the
four different degrees of quantization, but the module may also elect to not
encode and send an object at all during this update (see section 3.4). In this
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case the encoding manager will return null instead of the processed byte
array, but the user does not have to check for this as empty arrays or null
will not be transmitted regardless. This also means that entities the user
attempted to send to a client may possibly not arrive there so knowledge of
this behavior is important.

When creating an encoding table, the user has the choice to assign a
priority from zero to three to it, and therefore the object the table is used
to encode. He also can feed the target client’s position in the game world to
the CanetClient, which forwards this information to the selection module.
The module uses this position to attempt to calculate an object’s distance
to the player, which also requires the user to mark the respective properties
in the encoding table so the module knows where to look. It needs either the
distance or the priority to work, if none are given, it is skipped. Otherwise,
it will consult the encoding plan created by the control module to determine
the object’s fate, which normally means increasing compression the lower its
priority and the bigger its distance to the player. The only objects exempt
from this are the ones with priority zero. This highest priority means that the
object will never be quantized other than the first layer of float quantization
(if the user chooses to) and it will always be transmitted. The selection
module and therefore the possibility to adapt compression to a connection
quality drop is therewith bypassed, so it should be reserved for only the
most important entities.

3.4 The Control Module
The control module, implemented in the class CompressionControl, is the
third major part of the complete framework. It is responsible for detecting
a bad connection quality and reacting appropriately by assembling a com-
pression plan that the selection module can use to look up how to compress
specific objects.

As seen earlier (section 2.1), bandwidth is the number one limiting fac-
tor for bad connections. High packet round trip time and packet loss are
mostly side effects of packet congestion, caused by trying to send more data
than the bandwidth allows. Because of this, saving bandwidth is the goal of
the C.A.N.P. framework, and packet loss the perfect indicator for dropping
quality. The basis for this approach is taken from the various congestion
control algorithms employed by the different versions of TCP, where packet
loss is also the trigger for throughput throttles (see section 2.2.1).

The module makes its move every time new information about packet
loss is received from the client. The update rate is variable but currently set
at ten updates per second, so that the packet loss information reaches the
server fast, even if some reports are lost during connection issues. On its
arrival, if the packet loss percentage is above a tolerated level, the module
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attempts to create a compression plan containing compression actions for
each category of entity. For this, it uses the information about all in the last
update to the client broadcasted entities gathered by the selection module.
These units can be grouped into 16 categories resulting from each of the four
categories for distance to player and priority, and as player movement and
time since the last update and the next is very little, it can be assumed that
the amount of entities in each category will remain mostly the same, and so
each category can be compressed accordingly to reach the total compression
quota needed to offset the packet loss percentage.

A compression plan is created by balancing the cost of a possible com-
pression action against its benefit. The cost represents the effect the com-
pression action will have on the player’s gaming experience, e.g., compressing
high priority units near the player will have a huge impact on the playability
of the game, while the compression of low priority, far away units may barely
be notable. Same goes for the compression action itself, as not sending a unit
at all is obviously worse for the experience than lightly quantizing it.

Benefits are calculated in the form of bandwidth savings in relation to
the total bandwidth. Reducing the update rate also reduces the bandwidth
per second taken by all affected unity by the same amount, and quick tests
have shown that every level of quantization reduces the bandwidth taken by
an entity broadcast by roughly 5%. With this information, the plan is now
created by gradually adding compression actions to it until the packet loss
quota is reached, starting from the lowest cost action. After the plan has been
completed, all entity categories that have been elected for reduced update
rate are split amongst update ticks. Update ticks are counted in cycles of
four ticks, of which half-updates are skipped on two non-consecutive ones,
and quarter updates on three consecutive ones. By dividing all categories
using these update rates amongst those four ticks, the module attempts to
keep the data sent on every tick of roughly equal size.

After the compression plan has been finalized, the control module will
wait until new packet loss information, that results entirely from entities
affected by the plan, arrives, which is at least double the round trip time.
If packet loss is still reported, the module will slowly continue adding and
changing compression actions until the packet loss is finally below tolerated
levels, if the packet loss has been resolved, it will begin to slowly remove
compression actions until either packet loss is reported again or the plan
was completely decomposed without encountering new packet loss, meaning
the connection issues were resolved. In the case where the connection issues
could not be resolved by reducing needed bandwidth, meaning the packet
loss is of abnormal origin (like a cable failure) or the congestion occurs
somewhere out of reach (like on a node outside the local ISP), compression
is reduced as well, as there’s no point to worsening the player’s gaming
experience further when it is not helping to increase playability.



Chapter 4

Evaluation

4.1 Isolated Look at the Compression Methods
While the compression methods seem to work as they should, their indi-
vidual effectiveness differs a lot, so they are tested independently from each
other to reveal the differences. Apart from the average achieved compression
rate, performance is also an important part. The framework uses reflection
to access fields of encoded objects automatically instead of requiring the user
to create encode and decode methods for all messages he wants to send. This
automation makes the networking much more comfortable and easier, but
it should come at the price of decreased performance – reflection is, after
all, several times slower than accessing the fields directly. With the mas-
sive amounts of objects an online game server has to process every second,
the algorithm’s run time is not insignificant, and thus, the impact of using
reflection in it is tested as well.

4.1.1 Compression Rate

Probably the most important factor for evaluating the compression mod-
ules is the compression rate they can achieve. This holds true especially
for the adaptive serializer and delta compression, as they attempt loss-less
compression and are therefore bound to limitations, whereas with the help
of the lossy compression applied through quantization and reduced update
rates the size of an entity can be reduced a lot further. For testing all the
modules’ specific compression, entities of different sizes with a variety of
different fields are encoded and the result compared to their raw size. These
tests are also repeated at different levels of packet loss to check for potential
influence and the modules’ stability when exposed to a bad connection – a
core requirement, given that the framework aims to be effective at exactly
these types of connections.

20
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Table 4.1: Details of the objects used for compression tests.

Entity Total Fields Floats Ints Bools Enums Initial Bits
Small 8 6 1 0 1 232
Medium 14 6 5 1 2 376
Big 21 9 8 2 2 576

Serializer

The initial effectiveness of the serializer mostly depends on how the encoding
tables were set up. A properly, manually created table can already reduce
the size of an encoded entity quite a bit, since it gives the user great control
over the precision of the encoding of floating point decimals. Additionally,
it allows integers to be marked for lossy compression via quantization, a
feature that is disabled by default since they are often used for IDs and
indices, meaning quantization would make the information transmitted by
them completely worthless. More on this though later in the lossy compres-
sion evaluation.

The compression rate achieved by the serializer also differs a lot depend-
ing on how many fields encoded objects possess and how big their range of
values is. Because of this, all tests will be done three times, using a differ-
ent type of entity each time, ranging from a small one just carrying basic
transform information as well as an ID and a type, to a big one with many ad-
ditional information such as equipped weapon, ammunition, health, shield,
energy, current target, active effects and their duration and some more, with
values ranging from 10 to 10,000 depending on the field. The exact entities
used can be viewed in table 4.1.

As explained in the project description chapter, the serializer slowly
learns the bounds of all fields of encoded objects and therefore the bits
needed to encode them. If the bits used have changed, the corresponding
encoding table is synced to the client and can be used as soon as the client’s
confirmation is received. For this test, the bits needed to encode one of the
three entities are checked every time a table has been acknowledged. Once
no more changes occur, the serializer has reached its maximum compression
rate, which can be calculated by comparing the current bits per entity to
the initial amount.

The serializer reaches its full potential after the sixth iteration of the
encoding tables, which is mostly because of the set rate at which it adapts
to measured min and max values. The achieved compression rate ranges from
60.3% to 72.7%, almost a quarter of the original size, which is a very good
result (see table 4.2). A higher amount of fields seems to result in a better
compression rate, though it is also important how big the ranges of values
stored in those fields are, and both the medium and big entity added several
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Table 4.2: Test Results Compression Rate (Serializer): Total bits needed to
encode a specific entity type at every iteration of its corresponding encoding
table.

Entity 0. 1. 2. 3. 4. 5. 6. 7. 8. CR
Small 232 173 137 116 104 96 92 92 92 60.3%
Medium 376 260 194 156 132 116 108 108 108 71.3%
Big 576 393 291 232 193 168 157 157 157 72.7%

fields with rather small value ranges, and especially integers which do not
need additional bits for their decimals, thus achieving a better result. For
the final bandwidth consumed by the sent packets, bigger entities also have
the added benefit of having a bigger ratio of compressible information (its
field values) to non-compressible one (the prefixed networking and encoding
information), so using them will see a bigger relative reduction in total
bandwidth used.

When exposed to packet loss, the serializer remains stable. Even if the
synchronization of an encoding table iteration fails initially, being sent on
a reliable channel means that it will be repeated until successful. The en-
coding manager can buffer up to 16 pending iterations, so the serializer
can continue to improve the encoding tables even during the delayed ac-
knowledgment. Even at a disastrous 50% packet loss, the only difference
to a flawless connection is varying delay of new iterations being confirmed
for use. With this, the adaptive serializer can be seen as a great success in
regards to compression rate and reliability.

Delta Encoding

The delta encoder’s compression rate depends on a lot more things than
the serializer’s. It aims to reduce the size of the transmitted values by only
encoding the difference to a recent game state that both the server and
the client have complete information about. The final compression rate thus
depends on just how much it can shrink the values, which in turn depends
on how old the game state they are encoded relative to is.

In the perfect scenario, the client successfully reconstructs every single
game state, can confirm this to the server immediately and the connection
has no round trip time, meaning the server receives the confirmation before
it encodes the next state. With this, all states would always be encoded
relative to the last one and the delta encoder would achieve its maximum
compression rate. However, apart from localhost testing, this scenario will
not happen very often. Instead, due to round trip time, the last by the
client confirmed state that the server knows of will often lag one or several
states behind, the client will not always be able to confirm the last state due
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Table 4.3: Test Results Compression Rate (Delta Encoding): Total bits
needed to encode a specific entity type at every iteration of its corresponding
encoding table, starting from the highest possible CR without delta encoding.

Entity 0. 1. 2. 3. 4. 5. 6. CR
Small 92 86 80 77 74 71 71 22.8%
Medium 108 102 98 95 92 89 89 17.6%
Big 157 145 133 127 121 115 115 26.5%

to packet loss, confirming every state generates traffic that, albeit small,
might be the tipping point when dealing with bad connections, and finally,
confirmations can get lost before reaching the server, again due to packet
loss. Confirmations are not sent on a reliable channel, as detecting the lost
packet and resending it would take way too long so by the time the ack
finally reaches the server the confirmed state would already be too old to
use.

In summary, delta encoding reacts badly to packet loss and high round
trip times. Since the C.A.N.P. framework aims to supply a networking frame-
work that remains stable and adapts to even the worst connection conditions,
it is very much necessary to expose the delta encoder to these weaknesses to
determine his ultimate usefulness. For the first test however, its theoretical
potential is explored by fabricating the “perfect scenario”, similar to how
the adaptive serializer was tested. The test begins after the serializer has
completed its learning process and reached the minimum non-delta encoded
bit size per entity, then delta encoding will be activated so the serializer
can adapt to the new, smaller delta values. The compression rate is then
calculated by comparing the final bit size to the old non-delta bit size (see
table 4.3).

With a range of 17.6% to 26.5% CR, delta encoding is not nearly as
effective as the adaptive bit packing employed by the serializer, and that
is just with optimal conditions. It is most effective on the big entity, which
adds several high-range-value fields that only change slowly between states,
so ideal conditions for delta encoding, while the more low-range-value fields
of the medium sized entity can already be encoded using very few bits before
delta encoding, meaning the algorithm cannot reduce it much further.

The more interesting test is however how these compression rates hold
up under not-so-ideal situations. As soon as the delta values increase due to
the problems explained above, the serializer is forced to use more bits per
field to still guarantee a successful transmission of all entities, otherwise lag
spikes will result in the most important bits to be cut off, making the values
relatively useless. There is already some protection in place for this in the
form of a few bits buffer per field, but as soon as the serializer needs to make
use of this breathing room the bits used to encode the affected field is raised
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Table 4.4: Test Results Compression Rate (Delta Encoding) under bad
conditions: Total bits needed to encode a specific entity type at different
levels of latency and packet loss.

Packet Loss 0ms 50ms 100ms 200ms 300ms 500ms
0% 71 73 75 75 77 79
5% 75 75 77 77 77 79
10% 75 77 77 77 79 79
20% 77 79 79 79 79 79
30% 79 79 79 79 79 79

Table 4.5: Test Results Compression Rate (Delta Encoding) under bad
conditions: Additional compression rate relative to pre-delta encoding.

Packet Loss 0ms 50ms 100ms 200ms 300ms 500ms
0% 22.8% 20.7% 18.5% 18.5% 16.3% 14.1%
5% 18.5% 18.5% 16.3% 16.3% 16.3% 14.1%
10% 18.5% 16.3% 16.3% 16.3% 14.1% 14.1%
20% 16.3% 14.1% 14.1% 14.1% 14.1% 14.1%
30% 14.1% 14.1% 14.1% 14.1% 14.1% 14.1%

for all entities of this type as precaution. In this test, both packet loss and
latency are now gradually increased using the small entity (see table 4.4).

These results translate to a compression rate relative to pre-delta encod-
ing as seen in table 4.5.

As can be seen, already the slightest disturbance reduces the effect of
delta encoding, and some of the values chosen for testing are not even un-
common – a 5% packet loss on a 50–100 ms latency is not a rare sight
for Wi-Fi users, and that already reduces the additional compression rate
gained by 28.5%. It is also striking that even under horrible conditions, the
additional compression does not get reduced below 38.1%. This is due to
the fact that only three of the entity’s eight fields have constantly chang-
ing values (x-position, z-position and y-rotation), while the other five do
not change, so the increased delta values do not affect their delta compres-
sion. With three of eight fields affected, so 37.5%, a 38.1% loss of additional
compression rate makes perfect sense – these fields have apparently reverted
completely back to pre-delta encoding sizes. This is a pretty bad result, since
it means that if all of the transmitted fields had constantly changing values,
delta encoding had actually zero effect when exposed to bad connection con-
ditions. Since enduring those is a requirement for the framework, it can be
concluded that delta encoding was a bad choice to include for an encoding
method and should probably be excluded, since an increasing bandwidth is
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Table 4.6: Test Results Compression Rate (Quantizing): Total bits needed
to encode the test entities for all three levels of quantization.

Entity none level 1 level 2 level 3
Small 92 85 76 58
Medium 108 101 92 70
Big 157 147 132 101

Table 4.7: Test Results Compression Rate (Quantizing): Compression rates
for all three levels of quantization.

Entity none level 1 level 2 level 3
Small 0% 7.6% 17.4% 37%
Medium 0% 6.5% 14.8% 35.2%
Big 0% 6.4% 15.9% 35.7%

very counterproductive when the connection quality suddenly drops.

Quantization

Quantization, together with variable update rates, marks the last resort of
the compression package and is only used when the current connection qual-
ity is deemed too low for reliable transmission. While the “compression rate”
of the variable update rates can be easily calculated since it is constant (half
updates = 50% CR, quarter updates = 75% CR etc.), the effect of quanti-
zation as implemented in the framework is not that straightforward, since
it depends on the amount, type and value ranges of an object’s fields. On
fields that contain big values on average, a larger amount of least important
bits is cut than on fields with little average values. To get an idea of how
much savings this nets in practice, the three levels of compression available
to the control module are applied to the three entity types after the adaptive
serializer has locked the field sizes (see table 4.6).

As the results show, objects with fewer but higher average value fields
(like the small entity) achieve the highest compression rate (see table 4.7).
With over a third of the bits cut from every field on average using level
three quantization, the precision loss is bound to be clearly visible. The
goal though is to take this loss in exchange for maintaining real-time game
state transmission by avoiding congestion thanks to the reduced throughput.
Whether this quality loss is worth it remains to be seen when testing the
adaptiveness to bad connection conditions.
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Table 4.8: Test Results Bit Shifting (Encoding): Run time in milliseconds
per 100,000,000 ints processed.

Test Nr BitConverter Byte Wise Bit Wise
1 1035 3144 38921
2 1054 3001 39057
3 1022 3122 40462
4 1087 3094 39434
5 1160 3143 41224

4.1.2 Performance Tests

For performance tests, the algorithms in question will process an object a
certain amount of time, with the object containing 14 fields – six floats for
position and rotation, six ints for unit stats, id and priority, and two enums
for unity type and equipped weapon. The test results presented are done on
an Intel machine (Core i7-4700MQ 2.4GHz, 8.00 GB RAM) with no other
programs running.

Serializer

The serializer has two potential performance problems: It uses the earlier
mentioned reflection to get and set an object’s fields, and on top of that, it
makes use of excessive bit shifting in its bit packer component. Compared to
byte wise serialization, where all eight bits of a byte are shifted at once, the
bit packer shifts them one after another, and additionally, it also needs to
shift the target byte, inevitably decreasing performance. This performance
difference is measured by encoding a 32 bit integer 100,000,000 times using
both the bit- and the byte-wise variant, as well as the provided BitConverter
class that can be used to convert any primitive data type to a byte-array
and back. As the processing of a single integer is still quite fast, an excessive
amount of repetitions like this is necessary to get normalized results. The
test is repeated five times.

As can be seen in table 4.8, even at 100,000,000 repetitions, the run
time still varies a lot. Still, the performance difference between the different
approaches is easily visible. With an average of 1,071.6 ms, using the bit
converter proved to be the fastest method by far. Switching to the byte-wise
approach, the average run time of 3,100.8 ms means a run time increase of
+189%, however, this method gains the benefit of being able to cut one or
more bytes during the encoding to save bandwidth. With being able to cut
single bits as well, the bit-wise approach can save even more bandwidth,
at the cost of a +1,184% run time increase compared to byte-wise, and
+3,616% compared to using the bit converter. As anticipated, with an av-
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Table 4.9: Test Results Bit Shifting (Decoding): Run time in milliseconds
per 100,000,000 ints processed.

Test Nr BitConverter Byte Wise Bit Wise
1 692 3295 32859
2 774 3382 31994
3 750 3567 35973
4 747 3383 31348
5 762 3438 36883

Table 4.10: Test Results Reflection (Encoding): Run time in milliseconds
per 10,000,000 objects processed.

Test Nr Manual Encoding Reflection
1 9322 40296
2 9523 40129
3 9810 40965
4 10096 44135
5 10028 42591

erage duration of 39,819.6 ms, the performance of the bit packer has proven
to be significantly worse than the other two methods. It should be noted
however, that there is still room for optimization: Changing the method
from copying the data bit by bit to copying bit-chunks the size of free bits
available in the target byte should improve the run time significantly.

For the decoding methods, the results look pretty similar (see table 4.9).
Compared to encoding, the bit converter as well as the bit-wise approach are
both faster, while the byte-wise approach slows down slightly - the reason
for that is most likely a sub-optimally optimized algorithm.

The next potential weak point of the serializer, reflection, is tested by
creating hard coded encoding and decoding methods and comparing them
to the automated approach that gets a list of all fields and uses that list to
access them via reflection.

As expected, processing objects via reflection results in a significantly
higher run time (see table 4.10 and 4.11). With 41,623.2 ms for encoding
and 46,661 ms for decoding (average per 10,000,000 objects processed) it is
327% resp. 362% slower than the 9,755.8 ms resp. 10,104.4 ms of the manual
approach. Unsurprisingly, decoding takes slightly longer for both approaches
than encoding, since decoding requires values to be written into the objects’
fields while encoding only reads them, and is more apparent in the approach
using reflection. Here, decoding takes 12% longer than encoding. That be-
ing said, the gained benefit from not having to write hard-coded encoding
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Table 4.11: Test Results Reflection (Decoding): Run time in milliseconds
per 10,000,000 objects processed

Test Nr Manual Decoding Reflection
1 9977 46199
2 9979 46674
3 9888 47333
4 10324 47900
5 10354 45199

Table 4.12: Test Results Delta Encoding: Run time in milliseconds per
10,000,000 objects processed.

Test Nr Building Gamestate Delta Encoding Total Processing
1 21058 41259 62317
2 21147 43304 64451
3 21583 42408 63991
4 20896 43884 64780
5 21179 41606 62785

and decoding methods for every type of entity or message brings a lot of
convenience, and also eliminates the need of having to maintain them in a
mirrored fashion.

Delta Encoding

Delta encoding uses reflection even more than the serializer. Whenever an
object is encoded or decoded, it is used to read its fields and store their
values to build the game state. When delta encoding is applied to an object,
its current field values are read and the delta values then written back, again
via reflection. It is already known how much more expensive using reflection
compared to manual encoding is, but it is still interesting to know the impact
delta encoding has on the total run time of a complete object encoding.

As can be seen in table 4.12, with an average duration of 21,172.6 ms per
10,000,000 objects processed, just building the game state with the processed
objects increases the total run time of the encoding or decoding by 45–51%
of the serializer’s run time, so even if no delta encoding is actually used,
just having the option of enabling it at any time is costly, performance
wise. Actually activating it increases its total run time to 136–15% of the
serializer’s, based on the 63,664,6 ms average.

As opposed to the serializer, both encoding and decoding result in the
same run time, since the exact same operations are performed: The object’s
values are added to the game state, and if delta encoding is enabled, its
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Table 4.13: Test Results Selection Module: Run time in milliseconds per
10,000,000 objects processed.

Test Nr Selection Process
1 6915
2 7055
3 7087
4 7029
5 7207

values are read and processed, then written back one by one. The only thing
different is the order in which they are applied – on encoding, the object
is added to the game state before delta encoding, while on decoding, the
object needs to be restored to its absolute state (via delta decoding) first.
Because of this, the measured run times for encoding represent the ones for
decoding as well.

Selection Module

Even though the selection module has a very short task – looking up how
to compress an object in the encoding plan – one of the criteria used in the
evaluation is its priority, the other the distance to the player, which requires
checking an object’s position, and both are retrieved via reflection. Even
though the amount of calls is substantially lower than for serialization or
delta encoding (three to four, depending on whether the game world is 2D
or 3D), it still has an impact on performance that is now quickly measured
(see table 4.13).

Compared to the other encoding modules, the average run time of the Se-
lection Module turns out relatively small, with just 7,058.6 ms per 10,000,000
objects processed. Compared to Serialization and especially Delta Encoding,
it is a rather small increase in the total run time of the encoding and de-
coding process, but significant enough to be considered. It should however
be noted, that the run time ratios can differ wildly depending on how many
fields the encoded objects possess. As the amount of reflection calls in the
selection module remains a static three to four, the less fields an object has,
the greater the Selection Module’s run time’s part of the total run time
becomes.

Quantization

Quantization does not have any significant impact on performance as it is
just a simple bit shift per field to cut off (or restore) one or several bits before
serialization, which, for the 14 field object, took just a little over 300 ms per
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10,000,000 objects processed on average. Naturally, this makes it a highly
efficient way of reducing used bandwidth, albeit with the known limitation
of being lossy.

Total Run Time

In total, the time it takes to process the specified 14 field object averages at
112,646.4 ms for encoding and 117,684.2 ms for decoding per 10,000,000 runs
if all encoding methods are in use. Most of this time is split between delta
encoding and serialization, with delta encoding taking up 54.1%–56.5%, se-
rialization 39.6%–37%, the selection module 6%–6.3% and the quantization
barely noticeable 0.3% of the total run time. Because of the disappointing
test results of both run time and compression rate for delta encoding, its
use for the main tests of the adaptive framework is deemed too little and it
will thus be excluded.

In a more realistic scenario, where maybe 50 of these entities have to
be broadcasted to 10 different players 20 times per second, the total of
10,000 encoding would result in a total of 112.6 ms required processing time
just for the encoding, if the machine these tests were run on was used as
a server. This is actually a quite significant amount, considering the server
also needs to run the game logic. It can be concluded that performance wise,
the framework needs more optimization, should it be intended to be used
on mid-end computers.

4.2 Testing the Framework

4.2.1 Test Arrangement

To evaluate the overall success of the project, a few tests are necessary. The
general procedure of the tests will be to run a deterministic scenario multiple
times, first using the framework without and then with adaptiveness enabled,
recording the results and then comparing the data. Most of the tests will
be of synthetic nature, with simulating the connection issues on a virtual
network in a controlled manner.

The Scenario

For the deterministic scenario, a simple server/client setup is created using
Unity3D (see figure 4.1).

On the server, several game objects roam a plane in a very simple man-
ner, they run in big circles at fixed speeds. These entities are split into four
types, each being assigned one of the four priority levels, using different col-
ors and simple models to distinguish them easily. A total of 98 units is used,
eight of the highest priority (level zero) representing other players and 30
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Figure 4.1: Test setup using Unity 3D. Two separate instances run server
and client.

each for the other three priorities. Initially, entities are placed around the
center of the plane randomly but will keep this starting position throughout
all tests. The transform of these entities (position and rotation) is transmit-
ted to all clients at a rate of 30 updates per second on an unreliable channel
using the automated object encoding of the encoding manager. When a new
connection is coming in, the server will first send the game state on a reliable
channel as a spawn command before starting with the updates.

The client is set up to be initially empty and must initiate the connec-
tion to the server. Once the connection is established, it spawns and places
the entities as instructed on the plane and will then start to update their
transform using the incoming game state updates.

Both server and client receive a HUD with information on the cur-
rent network stats (latency, incoming/outgoing bandwidth, packets sent/
received/ lost etc.).

Test Data Capturing

Game states are written to log files on both server and client for later data
extraction. The server writes the complete game state containing position
and rotation of all active entities every time it is transmitted to the client,
while the client writes all received entity information immediately to its log
file on arrival. To keep the log files synchronized, every state receives a time
stamp. The time for log files is tracked separately from the game time and
starts with the spawn command, for the server when it is sent and for the
client when it is received, so normal latency is compensated for.

For easier visual comparison and also to find points of interest in the log
files easier, a replay system is created that can reproduce the test results in
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Figure 4.2: With the replay system, server and client state can be overlayed
for better visual comparison.

visual form. The replay system is able to play log files in real time, pause
anywhere, jump to specific time stamps in the test or fast forward/rewind.
Additionally, the system is able to play the two log files at the same time,
overlaying the replays. The entities of one of them are shown with a transpar-
ent material. With this it should be very easy to spot discrepancies between
server and client states and gather data (see figure 4.2).

Evaluation Criteria

While visual comparison has its place, it is important to have statistical
evidence as to which approach is superior. The most important criterion
will be how much the client’s game state differs from the server one (at
synchronized times), which can be compared by pairing corresponding enti-
ties from server and client state and taking the absolute differences between
their transforms. This comparison can be further restricted to entities that
are of higher interest to the player, like the ones closer to him, the ones with
higher priority, and especially the ones representing other players.

4.2.2 Synthetic Tests

The synthetic tests are executed in a virtual network using a loopback-
adapter. Since no bandwidth limiter working with packets sent over localhost
could be found, the UdpClient class is extended with a custom one. The
limiter tracks incoming or outgoing bandwidth at 30 samples per second
and blocks any traffic that would exceed a certain limit by first putting the
packets into a short queue to simulate the queues at any network node, and
discarding incoming packets completely once the queue is full. Whether this
simulation is accurate to real networks will be shown later in the organic
tests.
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Figure 4.3: First Test: Average position differences between server and
client, comparison between the adaptive (red) and the non-adaptive (green)
approach.

Preparation

To set up appropriate bandwidth limits, the simulation is run once to quan-
tify the base bandwidth needed to sustain it. It initially starts at 219 kb/s,
and, after the adaptive serializer has fixed the field sizes, shrinks down to
74 kb/s on average.

To make the test runs perfectly deterministic, the simulation of the con-
nection issue is automatized. The bandwidth limiter will be applied at ex-
actly 10s of test begin, and removed again after it has been in place for 10s.
Entities will first start moving when then connection is established.

First Run

For the first test, the bandwidth is limited to 40 kb/s, so a little over half of
what is needed for a lossless transmission. For the comparison, the average
position difference between server and client state for every entity is com-
pared over a time span of 25 seconds, starting 5 seconds before and ending
10 seconds after the bandwidth limitation (see figure 4.3).

As can be seen in the line chart, the adaptive approach works: Within
three seconds, lossy compression is engaged, causing the congestion to re-
solve. After five seconds, packet loss has completely disappeared, the slightly
elevated difference of 0.5 world units on average remains due to the quanti-
zation and reduced update rates. For the rest of the five seconds connection
issues, the game would be completely playable, whereas the non-adaptive ap-
proach continues in a highly inaccurate state with on average 2–3 world units
difference, so 400–600% worse than the adaptive approach. Its only advan-
tage is that as soon as the congestion resolves at the 20 second mark, all dif-
ferences vanish immediately and the simulation resumes normally, whereas
the adaptive approach does not lower its compression until five seconds later,
and needs another three seconds to completely return to loss-less compres-
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Figure 4.4: Average position differences between server and client with en-
tities split up according to their priority.

sion.
The accuracy measured above is the average for all entities, but since

the adaptive system compresses less important and further away entities
first, a closer look at how the lossy compression is distributed over different
entity categories is taken. Ideally, highest priority entities (representing other
players) should be still nearly identical to the server game state even during
enabled lossy compression.

Looking at the test result data, it seems this goal has been reached (see
figure 4.4). After the initial five seconds needed to resolve the congestion,
both priority zero and priority one units show much less difference between
server and client state than the other two priorities. As they are not affected
by lossy compression, the priority zero units also recover completely as soon
as the connection issues resolve at 20 seconds, with priority one taking five
seconds longer, priority two three additional seconds and the remaining en-
tities the full 30 second test.

An interesting outlier can be seen during the three seconds of unhan-
dled congestion: Priority zero units, the players, suffer distinctly less from
the connection issues than the other entities. This can be explained with
these entities being transmitted first, while the rest is sent afterwards in no
preferred order, so the first arriving packets containing priority zero entities
have a higher chance to make it into the packet queue, which might have
processed some packets since the last update and thus has new room for a
few extra ones.

Splitting the entities by their distance to the player gives a less distinct
result, with very close units even being less accurate on average than more
far away entities at one point during the recovery phase (see fig 4.5). It seems
that an entity’s priority is more influential than its distance to the player.
But while less distinct, the influence of distance is still clearly visible. Closer
entities are more likely to deliver more accurate results, and also return to
their loss-less transmission faster.
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Figure 4.5: Average position differences between server and client with en-
tities split up according to their distance to the player.

Value Tweaking and Improvements

After evaluating the first test, the adaptive system looks promising. There
are however two areas that could see improvement: The slow recovery phase,
which leaves the player with inaccurate, lossy transmission for a long while
even after the connection issues have resolved, and the slow attack phase,
which lets the player feel all the repercussions of a congested connection for
several seconds before the adaptive system engages. An attempt to fix or at
least contain these issues will now follow.

The recovery phase can be sped up by either increasing the amount that
the lossy compression is reduced by every recovery attempt, and by reducing
the compression more often. The current system keeps track on how many
recovery steps were successful in a row (meaning no packet loss occurred
despite lowered compression) and gradually increases the compression re-
duction steps the longer the series gets.

While increasing these values may lead to a faster recovery phase after
connection issues have resolved, doing so should be handled with care. If
connection issues remain for a longer period of timer, the game experience
may suffer, as every time the recovery fails and the temporary bandwidth
threshold is surpassed, congestion will occur for a moment before the adap-
tive system realizes its error and increases compression again. Whether this
will be problematic will be shown by speeding up the recovery phase in the
next test.

Shortening the attack phase is a little less straight forward. In its current
iteration, the control module attempts to adjust the outgoing bandwidth to
the client’s available one by setting the compression rate equal to the de-
tected packet loss, then waiting a bit on new packet loss data, increasing the
compression even more if packet loss is still reported. This waiting period is
the reason why finding the right compression amount takes several seconds.
When the congestion begins, the very first packet loss reported will be much
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Figure 4.6: Second Test: Average position differences between server and
client, comparison between the previous (green) and the new (red) adaptive
approach.

lower than the final value, reason being that all network stats are always
reported as the average in the last second of traffic. It takes roughly one
second plus the current round trip time for the final packet loss value to
reach the server, and even if the congestion has resolved, it takes the same
time until no packet loss is reported anymore. This makes one second wait-
ing periods essential, since that’s the earliest time at which the packet loss
is guaranteed to be the sole result of an underestimating compression rate.
Reducing the waiting time between attacks is thus not enough, it would
result in overshooting the compression rate almost guaranteed. Instead, the
following modifications are tried:

• Packet loss is reported for only half the last second instead of the
whole.

• The control module will wait a full half second for the final packet loss
data before its first attack.

• The attack delay is reduced to half a second plus current rtt, matching
the new packet loss measurement.

After this and the changes to the recovery phase, the test is repeated.

Second Run

Looking at the result, the extent of just how problematic hitting the tempo-
rary bandwidth threshold with a failed recovery really is, becomes apparent:
Another congestion occurs and the position differences revert back almost to
the worst case scenario (see figure 4.6). With this, the recovery speed used
for this test has proven to be way too fast, either it needs to be reduced
again to old values or another solution must be implemented.

On the other hand, the sped up attack phase seems to work. Good results
start coming in slightly earlier, and side effects seem to stay away as well.
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Given though how much the delivery of new stats and the attack phase were
sped up, the results look slightly disappointing. At any rate, the new settings
for the attack phase can be kept.

Additional Improvements

The last problem that remains to get solved therefore is the recovery phase.
Slowing it down seems acceptable, since even though this means the lossy
compression will remain active for longer after the connection issues have
already resolved, as the tests have shown, even with lossy compression the
client state does not sheer off nearly as much as during congestion. However,
even with slowed down recovery phase, hitting the bandwidth threshold
would hurt, as while the congestion is building up, compression is still being
reduced. With the delay in getting the packet loss information to the server,
the recovery phase stays active way too long, resulting in a congestion much
worse than necessary.

To solve this issue, the recovery phase is redesigned to work more care-
fully. Now, whenever the compression is reduced, the reduction is only ap-
plied for a short moment and then reverted back. The control module then
waits a bit for the following network stats to check whether the short term
reduction caused any packet loss, before finalizing the reduction and trying
an even lower level. This should stop congestions from going out of control
and works around the latency issue. To guarantee the recovery to fail at
least once so the consequences can be measured, the bandwidth limitation
phase is increased to 20 seconds this time.

Third Run

The test results are rather disappointing. Even though the previous peak of
inaccuracy caused by congestions is not reached this time, the system fails
to recognize when a compression reduction first causes an exceedance of
the bandwidth limit, visible at the disregard of the first, small rise in client
inaccuracy at roughly 20 seconds (see figure 4.7). It is assumed that the
fault for this lies within the packet queue built into the bandwidth limiter:
Because packets exceeding the limit are first queued, as the compression
reduction is reverted quickly after its introduction, the exceeding packets
will not cause the queue to overflow, meaning no packets are actually lost.
The inaccuracy is then caused by the increasing latency. This also may be
the way to solve this problem successfully: For the fourth and final test,
latency is checked whenever a compression reduction is reverted. Should a
considerable rise be detected, it can be assumed that nodal queue delay was
at fault and a congestion is imminent, which means that the recovery has
failed.
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Figure 4.7: Third Test: Average position differences between server and
client, attempt to contain a congestion during the recovery phase.

Figure 4.8: Fourth Test: Average position differences between server and
client, attempt to contain a congestion during the recovery phase, this time
considering latency.

Fourth Run

With considering the latency for rating the success of a recovery attempt,
the results look a lot better (see figure 4.8). Failed attempts seem to be
recognized immediately, and the disturbance in the client state, while still
considerable, is at nowhere the level it was before. With these improvements,
the framework will finally be tested on a physical network.

4.2.3 Organic Test

The test is prepared by starting server and client on two separate PCs with
internet connection and around 100 km distance between them. The server
is connected to the internet via LAN cable, while the client uses a Wi-Fi
connection with acceptable signal strength. The server has access to 100
mb/s of upload and download so the connection issues are caused purely
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Figure 4.9: Organic Test: Average position differences between server and
client, comparison between the adaptive (red) and the non-adaptive (green)
approach. Begin and end of connection issues is not completely synchronized
in this test.

clientside. After a few difficulties, the connection can be established and
the simulation is executed. Since it now runs over a real internet connec-
tion, the connection quality can be worsened clientside by clogging it with
other applications that leave over less bandwidth than needed for a loss-
less transmission. The connection is being clogged for roughly 10 seconds,
after that the full bandwidth is immediately restored. This is repeated two
times, once with disabled adaptiveness, and once with enabled one, using
the modifications and improvements gained from the synthetic tests.

The results are less impressive than the ones of the synthetic tests. The
congestion caused by clogging the client’s connection has a less severe impact
on the precision loss of the game state transmission than before, while the
average distance of the adaptive approach has not really improved, it still
sits a little over 0.5 world units. The benefit of using the adaptive approach
over the non-adaptive one is thus greatly reduced. The one thing it still
delivers though is consistency, the average distance stays more or less the
same during the test while for the non-adaptive approach it varies greatly.
The reason for this can be seen when looking at the connection stats during
the test: Compared to the synthetic tests, latency fluctuates a lot more
during a congestion, causing entities to stop moving for a split second when
a batch of packets has been lost and then snapping back to their actual
position when another batch makes it through.

Another downgrade becomes apparent when looking at how long the
recovery phase needs to completely restore loss-less compression after the
connection issue has resolved. Additional issues that were absent in the syn-
thetic test, like jitter, latency spikes and background packet loss, make it a
lot harder for the control module to decide whether the new connection stats
point towards a congestion or not. Not a single increase in inaccuracy during
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Figure 4.10: Organic test: Average position differences between server and
client with entities split up according to their distance to the player.

Figure 4.11: Organic test: Average position differences between server and
client with entities split up according to their priority.

the lossy phase can be seen, which points towards all recovery attempts be-
ing classed as failures despite not actually causing congestion, meaning the
compression rate used was higher than needed, and the adaptive approach
remained below its potential.

A quick look is also taken at the effect of entity distance to player (see
figure 4.10) and priority (see figure 4.11). As can be seen, the entity priority
still has a major impact on the accuracy of the transmission. Both priority
zero and priority one entities achieve much better results than two and
three, just like with the synthetic test before. But while the synthetic test
achieved almost full precision for higher priority units (see figure 4.4), for the
organic test, the system fails to do so due to the additional connection issues
introduced. The decline in precision is also clearly visible when splitting the
entities up by distance to the player. While, similarly to the synthetic test
(see figure 4.5), the difference in precision is much less distinct than it is
for priority, entities closer to the player still fare better on average. Again
though, the benefit of being very close to the player is a lot less than it was
for the synthetic test, the almost loss-less transmission that was achieved
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there has worsened significantly.
With the more detailed view on entity precision the problems of the

framework have become even more apparent. Especially the control mod-
ule’s failure to reduce compression when the connection could clearly take
it but was falsely interpreted becomes very apparent when looking at the
precision chart split up by priority (see figure 4.11): The precision of pri-
ority two entities periodically improves severely, indicating an essentially
successful (the client showing only improvements means the bandwidth is
still sufficient) compression reduction attempt, but snaps back to old values
without applying the changes, suggesting the failure of the attempt.



Chapter 5

Conclusion

Rating the success of the project is a difficult task, especially when so many
components factor in. When looking at it as a learning experience, then
yes, it was definitely successful. The gained information on how efficient
the popular network compression techniques are and how they are holding
up when exposed to suboptimal connection conditions, together with the
general knowledge about networking in online games acquired through im-
plementing and testing the project will be immensely helpful when working
on online games in the future. When looking at the different components
of the framework, the results are mixed, with some working reliably and
delivering good results, while others have shown questionable performance.
And finally, looking at the functionality of the framework as a whole, while,
after some improvements to the project during the test, it definitely showed
potential, the final organic test revealed that a lot more work has to be done
before it could be used effectively in a real online game.

The part that ultimately had the most success was the automation of
entity encoding. Using reflection proved to be expensive, yet still fast enough
to warrant the gained convenience. The dynamic encoding tables that allow
for the huge compression benefit of bit packing without the developer having
to figure out and keeping track of the value ranges for all the fields of his
entities was working exceptionally and remained completely stable during
connection issues. The bit packing itself turned out to be a little taxing on
performance due to excessive bit shifting, but the additional compression
rate enabled through it made it worth it.

Using lossy compression in the form of quantization and reduced update
rates to match a target bandwidth under the assumption that a controlled
loss of precision is preferred to uncontrolled congestion was mostly successful
as well, especially when it was used selectively. Compressing less important
objects first and stronger than more important ones successfully allowed
them to retain almost their full precision during the times of limited band-
width.

42
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The least successful part, especially during the organic test, turned out
to be the detection of connection issues. Interpreting the connection stats
correctly worked, after some improvements, more or less reliably during the
synthetic tests, but when additional, random connection issues like jitter, la-
tency spikes and background packet loss were introduced with a real internet
connection, the framework’s control module had obvious difficulties making
the correct decisions. For the whole adaptive functionality to be ready to use
in a real online game, a more sophisticated congestion detection algorithm
has to be developed first.

Also very disappointing was the the performance of delta encoding.
While delivering a decent amount of additional, loss-less compression under
good connection conditions, most of this was lost during bad ones. Cou-
pled with the highest run time by far out of all the encoding methods, it
ultimately was classed as unsuited for use in the framework.

If nothing else, the project has shown that automating big parts of the
networking process in online games can work. Even if it ultimately failed to
accomplish all the planned parts of the automation perfectly, the potential of
the framework could be seen during the synthetic tests, and with more work
being put into connection surveillance and congestion detection, it might
find use in a real online game some day.
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