
Using Event- and Actor-Driven
Paradigms to Increase Web Application

Performance

Felix Hessenberger

M AS T ER A RB E IT

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2014

© Copyright 2014 Felix Hessenberger

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own
original work. Where other sources of information have been used, they have
been indicated as such and properly acknowledged. I further declare that
this or similar work has not been submitted for credit elsewhere.

Hagenberg, September 26, 2014

Felix Hessenberger

iii

Contents

Declaration iii

Abstract vi

Kurzfassung vii

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Structure . 2

2 Technical Background 4
2.1 Terms and Definitions . 4

2.1.1 Network Communication 4
2.1.2 Dynamic Content . 5
2.1.3 Asynchronous Requests 5
2.1.4 Request Frequency and Response Time 5
2.1.5 Scalability . 6
2.1.6 Development . 7

2.2 Concurrency Models . 7
2.2.1 Purely Thread-based Model 8
2.2.2 Event-based Model . 10
2.2.3 Staged Event-driven Architecture 17
2.2.4 Actor Model . 18

3 State of the Art 22
3.1 Event-based technologies . 23

3.1.1 Node.js . 23
3.1.2 Eventmachine . 27
3.1.3 Others . 31

3.2 Actor-based technologies . 32
3.2.1 Play! . 32
3.2.2 Lattice . 36
3.2.3 Others . 38

iv

Contents v

4 Implementation 39
4.1 Prerequisites . 39

4.1.1 Requirements . 39
4.1.2 Language and Framework 40
4.1.3 Drivers and Libraries 40

4.2 Development . 42
4.2.1 Requests and Actions 42
4.2.2 Basic Asynchronous Operations 42
4.2.3 Actor-based Operations 45
4.2.4 Advanced Actor Usage 46

4.3 Deployment and Scaling . 48

5 Evaluation 50
5.1 Prerequisites . 50
5.2 Testing . 51
5.3 Results . 53
5.4 Interpretation . 56

6 Conclusion and Future Development 59

A Contents of the CD-ROM 61
A.1 Master Thesis . 61
A.2 Online Sources . 61
A.3 Test Applications . 61

References 62
Literature . 62
Online Sources . 64

Abstract

Due to the ever-increasing popularity of websites and mobile applications,
demands on Web servers continue to grow. Well-developed software can help
to limit hardware cost while boosting performance. Event- and actor-driven
development paradigms aim to depart from traditional modalities in order
to better suit modern Web server applications. Various technologies already
implement different approaches to these patterns. This thesis aims to elabo-
rate upon how, how much and under which circumstances these technologies
can increase Web server performance.

vi

Kurzfassung

Die immer weiter steigende Popularität von Websites und mobilen App-
likationen führt zu stetig wachsenden Anforderungen an Webserver. Gut
durchdachte Software kann Hardwarekosten eindämmen und gleichzeitig die
Leistung steigern. Event- und Actor-basierte Entwicklung weicht von beste-
henden Lösungen ab, um bessere Ergebnisse für moderne Webserveranwen-
dungen zu erzielen. Verschiedene Technologien implementieren bereits jetzt
unterschiedliche Ansätze dieser Entwicklungsweisen. Diese Arbeit versucht
herauszufinden, wie, in welchem Ausmaß und unter welchen Bedingungen
diese Technologien die Leistung von Webservern steigern können.

vii

Chapter 1

Introduction

No other recent technology has changed the way people interact as much as
the World Wide Web. The World Wide Web—or Web, for short—offers a
wide range of functionality, from simply displaying static content to instant
messaging to extensive social networks. The popularity of the Web has spread
from appealing solely to first-world businesses and younger people to almost
all demographic sections and geographic areas. Instead of merely “browsing”
the Web on an individual basis, today’s Web is characterised by communica-
tion and collaborative consumption and creation of different forms of digital
content. Devices for Web access are no longer limited to personal computers,
but include a variety of categories such as smartphones and wearable com-
puting and even more ubiquitous forms of computing like the “Internet of
Things”1. Frequently, completely new uses for the Web are discovered, often
redefining existing beliefs and setting new trends. Amidst all these varying
factors, one central factor remains constant—every Web-connected device is
bound to communicate with a Web server.

1.1 Motivation

Web servers started out as simple machines delivering static files to a lim-
ited number of clients. In just two decades, requirements for Web servers
have changed drastically. With the Web becoming ever more volatile and
dynamic, fast and reliable server systems are a necessity. For instance, the
popular social network Twitter2 handles more than 100000 requests per sec-
ond on a regular basis—this includes not only static files, but also complex
computations and database operations. When designing high-performance
server environments, it is favourable to use solutions that utilise the avail-
able hardware as efficiently as possible.

However, many proven patterns of software development do not apply to
1A network of ubiquitous Web-connected devices, e.g. colour-changing lightbulbs
2http://twitter.com

1

http://twitter.com

1. Introduction 2

application setups in which a high number of independent operations—like
Web requests—has to be handled simultaneously. Such highly concurrent
operations often require alternative execution concepts and paradigms to be
handled more efficiently, or—if the request load exceeds a certain limit—to
be processed at all.

1.2 Objective

Currently, two similar alternatives to traditional programming paradigms are
used by the industry to increase Web application performance and efficiency:
event- and actor-driven paradigms. This thesis aims to give an overview of
these technologies by pointing out their characteristic differences and com-
paring their approaches. Furthermore, current technologies that already im-
plement these paradigms are listed and reviewed in terms of usability and
performance in order to analyse the current state of the art. The main goal,
however, is to give a clear and educated statement about how and how much
event- and actor-based paradigms can increase Web server performance and
efficiency and how and to which extent the according technologies can be
applied from the view of a developer.

This thesis does not try to define one universal paradigm that fits all gen-
eral programming needs. It rather tries to find and isolate specific use-cases
for certain paradigms with a strong focus on Web server development; focus
lies mainly on comprehensible and well-documented technologies that can
currently be used by developers without prior experience with the subject.

1.3 Structure

This thesis is divided in two distinct parts: chapters 2 and 3 consist mainly
of definitions and research based on existing work, while chapters 4 and 5
almost exclusively contain original research and evaluations.

At the beginning, chapter 2 defines terms, definitions and criteria that
are used without further explanation during the remainder of the thesis.
Additionally, this chapter provides in-depth explanations of how essential
concurrency models are structured and how they utilise system resources.
Chapter 3 features a selection of existing event- or actor-based technologies
for use with a Web server. For both event- and actor-based paradigms, one
solution is reviewed more thoroughly while another solution is portrayed as
an alternative and other options are listed briefly. Chapter 4 documents a
live project realised by using alternative technologies and elaborates how
different technologies were used in order to test and review the applicability
of alternative paradigms. Chapter 5 contains a performance evaluation of a
traditional application and an actor-driven application in order to define and
attest use-cases in which the respective technologies provide better solutions.

1. Introduction 3

Lastly, chapter 6 presents conclusions about the feasibility and applicability
of event- and actor-driven paradigms that were elaborated during the course
of this thesis. Furthermore, it gives an outlook on the future of event- and
actor-driven paradigms and technologies currently in development.

Chapter 2

Technical Background

This chapter aims to give an introduction to common subjects in the area
of Web application development and performance analysis. The contents
elaborated during this chapter represent a knowledge base that is built upon
during the further course of this thesis.

2.1 Terms and Definitions

A Web server can be utilised to handle rather different tasks, from merely
delivering static assets like images to serving entire Web pages to representing
a service endpoint communicating with a range of different devices. This
section aims to give an overview of the basic requirements a modern Web
server needs to fulfil. Moreover, important performance factors are elaborated
with regard on high-demand and high-performance setups.

2.1.1 Network Communication

The eponymous task of a Web server is to serve Web-connected clients over
the medium of the Internet. This involves receiving and sending messages
using different implementations of network protocols. The most widely used
protocol of the Web, HTTP1; for every request message a client sends to a
server, a response message is returned [30]. To minimise networking latency,
it is preferable for a Web server to have a high-speed connection to the
Internet, fast system I/O2 and capable routing hardware. However, these
parameters are not directly related to software and are thus neglected during
the further course of this thesis.

1Hypertext Transfer Protocol
2Input and Output, esp. hardware

4

2. Technical Background 5

2.1.2 Dynamic Content

Originally, the Web was intended to be a network of interconnected text files,
which later were augmented with images and custom styles; Web servers
were basically required to understand incoming requests and respond by
sending static content back to the client [30]. With the upcoming of CGI 3

during the early 1990s, webpages that are prepared by the server based on
dynamic data—like database content or user input were made possible. With
the release of PHP4, ASP5 and Java6 in 1995, 1996 and 1997, respectively,
dynamic webpages became widespread [31]. From that point on, Web servers
needed more processing capabilities for script execution and database access;
however, the number of requests per client remained roughly the same [31].

2.1.3 Asynchronous Requests

The advent of AJAX 7 and Web 2.0 8 in the late 2000’s changed requirements
drastically. Rather than requiring to refresh the whole view for every piece of
information sent and received, data could now be transferred programmat-
ically in the background. By asynchronously communicating with an API9

endpoint, operations like deleting an item from a list could be performed
ubiquitously without reloading the page context. Especially applications that
aim to provide desktop-like behaviour and capabilities—commonly called
Rich Internet Applications—make heavy use of asynchronous requests [24,
p. 4]. Users’ expectations for websites changed from anticipating a certain
amount of load time to implicating real-time behaviour; to achieve this while
maintaining client-server information consistency, latency time must be kept
to a minimum. Thus, the server’s performance had to meet the combined
request frequency of all clients and respond as fast as possible [32].

2.1.4 Request Frequency and Response Time

Since in many cases the responsiveness of the user interface—and with it
the user experience—depends on the duration of the server communication
roundtrip, maintaining acceptable response times is often crucial [21, p. 1].
Request frequency and response time correlate in the sense that request
frequency represents the demand on a server endpoint while response time—

3Common Gateway Interface, an interface used to connect the Web server and the
actual generated content.

4Recursive acronym: PHP Hypertext Preprocessor, http://php.net/
5Active Server Pages, http://msdn.microsoft.com/en-us/library/aa286483.aspx
6https://www.java.com/
7Asynchronous JavaScript and XML (Extensible Markup Language)
8A term used to describe the upcoming of dynamic, application-like webpages, often

combined with the ability of the users to create and share content.
9Application Programming Interface, an interface for connecting different applications

at code-level.

http://php.net/
http://msdn.microsoft.com/en-us/library/aa286483.aspx
https://www.java.com/

2. Technical Background 6

Seconds Requests per minute

Response
time/users

Requests
per minute/users

Figure 2.1: Correlation between request frequency and response time in a
typical Web server setup. After the server has reached its limit of linearly
serving clients (indicated by the dotted line), response times become inversely
proportional to the request frequency. Image source: [33].

given equally demanding operations per request—can be interpreted as the
potential of the server to meet the demand. When the processing limit of
the server is met, response times generally become inversely proportional to
the request frequency (see figure 2.1). At this point, the server may neglect
the request (ideally indicated by returning an error response to the client),
not respond at all or even stop serving clients altogether (i.e. “crash”) [30].

2.1.5 Scalability

Demands on Web servers typically are lower during the initial phase of a
business and grow with the popularity of the service. Since business growth
and server load can not be exactly predicted, it is necessary to be able to
adjust (i.e. scale) the entire server architecture according to current needs
in a timely manner. The Slashdot Effect describes a sudden rise or spike in
service popularity and can—due to the open nature of the Web—lead to a
tremendous increase in activity over a relatively short time span [5, p. 1].

Today’s hardware is well suited to meet high demands and can be con-
figured flexibly: if a larger number of physical server units as well as the
necessary infrastructure is available, requests can be distributed across dif-
ferent systems and the load a single unit has to handle decreases; this is
described as scaling out. If single units are outfitted with more memory and
faster processors, i.e. scaled up, the number of request operations one unit
can process increases. Since acquiring and maintaining server units and other
infrastructure components is expensive, well-designed software can make a
significant difference in system efficiency, which in turn can greatly benefit
any business—especially with the pay-what-you-use model modern service

2. Technical Background 7

providers offer10 [17, p. 11]. Software that is well-suited to be expanded ac-
cording to its usage is considered elastic [34].

Ideally, the server software should be hardware agnostic, i.e. should be-
have consistently independent of the hardware it runs on. For instance, if
the software depends heavily on sharing application state via RAM11, scal-
ing out on more than one machine will be unsuccessful [28]. Scalability can be
measured by the relationship between hardware resources and the increase
of performance. If this relationship is nearly linear, the system is considered
to scale well.

2.1.6 Development

Not a part of the production system itself, but nonetheless an essential part
of all Web applications is their development. A structured, idiomatic way of
writing application logic doubtlessly contributes to every software product.
Modularisation of components facilitate the use of third-party software like
libraries and frameworks. In return, using existing software products can
greatly reduce development time and effort, while simultaneously providing
robust, tested solutions. Web server applications particularly benefit from
frameworks since they often handle standard, repetitive tasks like network
I/O2, database access and caching [23, p. 1]. Integrating and maintaining
these frameworks is a major part in implementing a Web server application;
thus, not only the performance, but also the ease of use of Web frameworks
and their language environments are important criteria.

2.2 Concurrency Models

Since a Web application in a production setting is usually publicly acces-
sible, serving multiple clients simultaneously is the rule, rather than the
exception. Depending on the popularity of the service, the number of con-
current requests can range anywhere from dozens to several thousands, e.g.
for social media sites [5, p. 1]. A server process with a single flow of control
would only be able to serve one client at once, with all requests received
while the server is busy being neglected. Therefore, Web applications always
have to be implemented using multiple program flows that can be executed
concurrently. This section lists various paradigms associated with designing
an application capable of maintaining multiple flows of control.

10So-called Cloud service providers often offer flexible plans on processing power, that
can be dynamically adjusted without significant server down-time.

11Random Access Memory

2. Technical Background 8

2.2.1 Purely Thread-based Model

A thread is a sequence of instructions within a program. Allocating process-
ing time to threads is handled by an operating system scheduler. To have
a program execute multiple logic structures concurrently, they have to be
explicitly abstracted in the form of threads. Physical concurrency occurs,
when threads are executed simultaneously—i.e. at the exactly same time—
on different processor cores; in contrast, logical concurrency describes that
multiple threads are executed sequentially in rapid succession at roughly the
same time, thus giving the impression of simultaneous execution. Physical
concurrency is inherently more efficient [35].

Flow of Control

A great advantage of threads in the context of Web server applications lies
in the natural abstraction level regarding multiple parallel requests: client
communication is commonly treated as a set of mutually independent connec-
tions; this approach of abstraction facilitates a clear program flow structure
[28]. According to this model, every request can be treated as an isolated flow
of control (see figure 2.2). However, since threads are not isolated from each
other and share state via a common memory address space, this only holds
true as long as resources like queues or caches are accessed sequentially [2,
p. 2]. Thus, developers have to pay close attention to avoid race-conditions,
deadlocks and access violations—complications that generally result from
improper thread coordination or application design [8, p. 1]. Therefore, the
implementation of large-scale systems heavily relying on threads always in-
troduces additional complexity [19, p. 1].

Scalability

Traditionally, Web server applications process each request on a dedicated
thread throughout its whole lifespan, from accepting it to responding to
it [14, p. 162]. This behaviour can be observed for instance in implemen-
tations of the popular LAMP12 server stack configuration [14, p. 48]. A
less experienced programmer might find this ideal, since concurrency stays
mostly hidden and the application logic is based solely on the flow of a sin-
gle request—smaller projects might not expose any drawbacks of this setup
at all. However, it is obvious, that to scale up a thread-based system, the
number of threads has to be increased. The number of threads engaging in
simultaneous processing, i.e. physical concurrency, is limited by the number
of processing cores. This means that on a computer equipped with a quad-
core processor, four threads can be executed—and thus, four requests can

12Linux, Apache, MySQL, PHP

2. Technical Background 9

Figure 2.2: On a purely thread-based Web server, each request is handled by
a dedicated thread. Incoming network requests are queued and sequentially
accepted by a dispatcher, that distributes them among available threads—
either by using idle threads from a thread pool or by creating new threads.
Image source: [29].

be served—in parallel13.

Drawbacks

Problems arise when a thread has to wait for an external requirement to be
fulfilled. The process of meeting a requirement that renders the executing
thread unable to proceed is called a blocking operation. Such actions include
for instance reading or writing a file on disk, handling network traffic or file
uploads, querying a database, accessing another Web service or processing
intensive computations [14, p. 196]. When a thread encounters a blocking
operation, it cannot advance further in the program flow until the operation
completes (see figure 2.3). The resulting delay can account to anywhere from
a few milliseconds to several seconds, for instance when accessing a slow or
unresponsive Web service. The only way to counteract the temporary occupa-
tion of threads and to continue processing incoming requests is the creation of
new threads [17, p. 36]. However, every newly created thread counts towards
certain limitations in scalability. On the one hand, every thread receives a
predefined share of process address space memory—also known as stack—
upon creation to temporarily store data [36]; since memory is reserved in
advance without knowing the exact requirements of the thread, a certain
amount of memory overhead is likely. On the other hand, the entirety of all

13Certain implementations of simultaneous multithreading allow for increasing this num-
ber at the cost of reduced performance per thread, for instance Intel’s Hyper-Threading
Technology (http://www.intel.com/).

http://www.intel.com/)

2. Technical Background 10

Request 1Request 1Request 1 waiting... waiting...Response 1Worker Thread

DB Access

Request 1Request 1Request 2 Response 2waiting...

Figure 2.3: A typical blocking situation in Web server scenario. When re-
quest one (shown in dark grey) arrives, a database operation is necessary.
During the course of this operation, the executing thread blocks while wait-
ing for results (waiting times shown in light grey). The response can only
be sent when data is returned and the next request (shown in medium grey)
can only be served after the first one completes.

threads has to be orchestrated by an operating system module called sched-
uler, which requires processing time relative to the number of threads [36].
Moreover, a computationally expensive procedure called context switching
must also be followed upon changing the actively processed thread [37]. This
process includes complications called buffer and cache misses as well as lock
contentions [29, p. 2]. When a certain number of active threads is reached,
this can lead to serious performance degradation, as illustrated in figure 2.4.
Especially when the application is executed inside a virtual machine14—
which is common practice due to better replicability—the over-provisioning
of memory leads to scarce resources [11, p. 1].

Some of the problems of threads can be addressed by using a thread pool :
instead of spawning new threads upon each request, a fixed number of threads
is spawned in advanced and workload is distributed among them. However,
this procedure is not without problems and introduces the delicate step of
setting the thread pool size [38]. It can be concluded that a lower thread
overhead can benefit the overall performance of a process. Furthermore, when
scaling an application, the maximum number of simultaneously processed
threads can at best increase linearly in relation to the number of processing
cores in a system [39].

2.2.2 Event-based Model

While threads on their own present a convenient abstraction for handling
Web requests, recent years have seen an incline towards event-driven archi-
tectures [26]. Events can be seen as changes in application state; an example
of an event may be an arriving HTTP request. An event is often modelled
as an object that is passed along with the flow of control and may consist
of a header describing its nature (e.g. the fact that it represents an HTTP
request) and a body containing additional information (e.g. request param-
eters and client identification). A different part of the application may sub-
sequently react to this event by executing further operations like querying

14A software-based emulation of a computer, that executes programs like a physical
machine.

2. Technical Background 11

Figure 2.4: This graph shows the performance degradation resulting from
rising request frequency for a purely thread-based Web server. Because of the
performance overhead introduced by a large number of concurrent threads,
the processing throughput decreases. If the number of threads grows above
a certain point, the response time escalates due to the shortage of resources.
The data is taken from an experiment by M. Welch et al. [29]. Image source:
[29].

the database.
Using events is a significant departure from the traditional command-

and-control style used for instance in purely thread-based architectures (see
section 2.2.1). However, seen from a different perspective, using events on
a Web server is at least as idiomatic as using threads; the Web server has
no control over the arriving requests, yet it has to respond by executing
application logic. Instead of forcefully maintaining control over the execution
context, the Web server may also relinquish control and let itself be controlled
by events. This strategy follows the principle of inversion of control [16].

Event-driven programming does not preclude the existence of threads;
neither is it the opposite or an evolutionary step. All major operating systems
use threads as a means of managing process execution; thus, even a purely
event-driven program runs at least on one thread.

Flow of Control

While event-driven programming does not imply a certain concurrency model,
the employed concepts have a strong influence on how concurrency is handled

2. Technical Background 12

Event Queue
Handlers / Workers

Network I/O
DB Access
Cache
....

Event Loop

Figure 2.5: Basic flow of control in an event-driven application. Operations
that would normally block the event loop are executed separately and create
further events upon completion.

by the application.
At its simplest, an event-driven application consists of two major com-

ponents: on the one hand an event loop and on the other hand an event
listener. The event loop is a lightweight structure passing incoming events
from a queue to event listeners that have subscribed to a certain kind of
event, e.g. an incoming network request. The targeted event listener then
passes the event on to a handler function, which executes application logic
and may create another event upon completion. Larger applications typically
have one event loop per process and a number of listeners and handlers (see
figure 2.5) [17, p. 33].

The use of events leads to an inherently flat application structure in the
sense that there is no hierarchical ordering of event sources and destinations.
There are two ways of advancing in the flow of control at the end of a
particular operation: the first option is to create a new event that is received
by the event loop and propagated to the next event handler. The second
way is to employ a callback function. Calling a callback function can be
regarded as transferring the flow of control to another event handler [6, p. 92].
Callback functions are often used to handle results of a blocking operation—
like making a request to a remote Web service—directly upon its completion
and thus maintaining control over the execution order of further actions.
Implementation is typically done via either a named or anonymous function,
as demonstrated in program 2.1.

Callback functions are usually not found in traditional—i.e. sequential—
programming. In nearly all application environments, the default way of
executing routines in succession is to use functions, which return values that
are used during the further course of the program. This proven concept
determines three major aspects of program flow [16, p. 3]:
Coordination The ordered execution of sequential operations, which pre-

vents problems associated with concurrency
Continuation The program flow continues immediately after the function

2. Technical Background 13

Program 2.1: Calling a callback function via a named function (above)
and via an anonymous function (below) in JavaScript. The request to a Web
service may take some time and is thus executed asynchronously. When the
response from the service arrives, the callback is executed. For this example,
the response is printed to the console, which is a rather fast action and
therefore can be executed in a blocking fashion.

1 function callbackFunction (data) {
2 console.log(data);
3 }
4
5 WebService.get("http://example.com/").then(callbackFunction);
6

1 WebService.get("http://example.com/").then(function(data) {
2 console.log(data);
3 });
4

Figure 2.6: Illustration of a simple call stack structure. As time progresses
(horizontal axis, left to right), the call stack grows with each function call. As
the functions return gradually, the stack size decreases again. Active parts of
functions are shown in grey, passive (i.e. “waiting”) parts are shown in black.
Image source: [16].

call, thus eliminating the need to explicitly define a continuation point
Context The proper handling of the local variable scope; if a function re-

turns, the previous context is restored and the callee function can use
the same variable scope as before the calling operation

To store the references and contexts of all functions during such a suc-

2. Technical Background 14

cession of calls, a dedicated part of memory named the call stack is used (see
figure 2.6). Despite its advantages, heavy use of the stack in the context of
modern Web applications poses two substantial problems: on the one hand,
the concept of the stack origins from a time where concurrent computing
was not frequently used—especially in the manner seen in highly concurrent
applications. The behaviour of the stack pursues a strongly linear manner
of execution. Because at any point in time, only one call can be pushed
onto the stack at once, only one action can happen at a time. Likewise, if
an operation were to take an extended or unspecified period of time—like
accessing a remote Web service—a single call stack provides no way of ex-
ecuting another operation during this time. The second problem of the call
stack is that it can not be distributed across physically or logically sepa-
rated systems. Pushing a call onto the stack implies that a return memory
address—i.e. a continuation point—is known and clearly specified, which is
not the case for distributed systems [16].

The departure from the stack implies a concept called loose coupling.
This means, that the components of interaction within a program do not
need to know the exact specifications of the target. One example would
be a new user registering for the service: a tightly coupled system would
need to call the exact function that creates the user in the database. In
an event-based system an event called userCreated (or similar) would be
created and the database component would receive this event. This leads to
a more flexible and resilient application structure, because changes to the
exact implementation of one component do not require changes on the other
side. The act of developing an application without a call stack is known as
stack ripping [5].

Scalability

In contrast to the purely thread-based concept presented in section 2.2.1,
event-based architectures tend to scale better. One major reason for this is
the blocking behaviour of the worker thread; while in purely thread-based
systems the thread accepting an incoming request is no longer available
for processing until all blocking operations have finished, the I/O thread in
event-based systems only processes short-lived operations. Thus, in the lat-
ter, scalability is not directly proportional to the number of threads used by
the system (see figure 2.8) [4, p. 2]. Furthermore, because the execution con-
text of event-based program flow is event-specific, global context switching
can be minimised. This leads to an increased actual concurrency of executed
program code compared to purely thread-based systems [19].

To scale a single event loop on one machine, one event loop process can be
created for every processing core—on a machine with a quad-core processor,
four event loops can process incoming requests in parallel13. Since context
and variables are generally transmitted via immutable events, situations in

2. Technical Background 15

Request 1Request 1Request 1 Response 1Worker Thread

DB Access

Request 1Request 1Request 2 Response 2

Figure 2.7: A non-blocking scenario in a Web application. When request
one (shown in dark grey) arrives, a database operation is necessary. This is a
blocking operation, but since the worker thread does not have to wait for it to
complete, the next request (shown in medium grey) can already be accepted
and another database operation can be initiated. When the first database
operation completes, the worker thread can send the response to the first
client. Using more threads, this procedure can be heavily parallelised. The
figure assumes that all operations take the same amount of time; however,
non-blocking operations can of course take an arbitrary amount of time.

which multiple parts of the program depend and wait on each other (i.e.
locking situations) tend to be less common. An example for this is when
the same queue is accessed by multiple threads - only one thread can access
the queue simultaneously, the other ones have to wait. Furthermore, loose
coupling (see above) benefits scalability since parts of the program can easily
be replaced and remote procedures can be called more generically.

Generally, it can be concluded, that for the specific scenario of a network-
ing application like a Web server, event-based systems can provide more
efficient performance and can thus be scaled more extensively with lower
hardware requirements. Comparing figure 2.3 and figure 2.7, it can be seen
that given a blocking scenario like a database operation, event-based concur-
rency benefits the number of parallel requests and thus can lead to significant
response time improvements.

Drawbacks

Beside the implications of relinquishing the call stack pattern—like flat pro-
gram structure, more or less obfuscated flow of control and reduced state
management capabilities—there are other factors that have to be taken into
account when using event-driven architectures:

Due to the nature of an event-based system, race conditions can occur.
Race conditions typically happen, when the programmer expects a certain
order of command execution, which are not guaranteed to be maintained
under varying circumstances. For instance, if two Web requests are executed
concurrently and the second response is expected to be always received after
the first—because it is supposed to trigger application logic that depends on
the first response’s data—the application would fail if the responses would
arrive out of order.

2. Technical Background 16

(a)

(b)

Figure 2.8: Typical scaling behaviours of a purely thread-based application
and an event-based application. This example is taken from an experiment
by D. Carrera et al. [4]. The graphs show the effect of an increasing num-
ber of clients (x-axis) on the request throughput (y-axis) using a standard
Apache httdp 2.0 Web server—shown in (a)—and using Java’s event-based
NIO interface—shown in (b). Image source: [4].

Additionally, event-based programs lack certain compiler optimisations15

(given that the programming language used is compiled, rather than inter-
preted) like advanced memory management, inline functions16 and compile-

15Compiling is the process of transforming a human-readable programming language
into code that is better suited for execution by computers, e.g. binary code.

16Function content is directly inserted into the code instead of calling the function
reference multiple times. This leads to reduced execution time and memory overhead.

2. Technical Background 17

Figure 2.9: Illustration of a single SEDA stage (left) and the communication
with other stages (right). Each stage has its own event queue, event handler,
thread pool and resource controller. Image source: [29].

time warnings about race conditions [2, p. 5].

2.2.3 Staged Event-driven Architecture

Staged event-driven architectures (short SEDA) describe a special pattern of
event-driven program flow that is rather different from the standard imple-
mentation (see section 2.2.2) in certain aspects and can be to some amount
considered the middle ground between purely thread-based and event-based
architectures. The eponymous extension to traditional event-driven architec-
ture is the presence of stages, i.e. self-contained application components, each
including an event queue and a comparably small, dynamically-sized thread
pool (see figure 2.9). Additionally, each stage has monitoring and controlling
agents that enable introspection of the application. This way, parameters
like the number of threads in the thread pool and the batch size—i.e. the
number of events processed simultaneously in the stage—can be dynamically
adjusted by the application [29].

Flow of Control

This variation of application flow moderately reduces the effects of inversion
of control introduced by event-driven architecture; an inherent advantage of
this design is the introduction of modularity and structured flow of control.
Another advantage of SEDA is the adaptability to low-level operating system
conditions like thread scheduling due to the aforementioned resource control
elements; for instance, if less threads are available to a certain stage, the

2. Technical Background 18

batch size can be reduced and thus the throughput can be maintained. Sim-
ilar mechanisms can provide a certain level of explicit overload protection.
An application that balances its own resources and changes its behaviour
based on parameters like demand and response time is called a conditioned
application [29].

Drawbacks

The coupling of stages by means of event queues is not necessarily supporting
a clear application structure. M. Welsh, one of the developers mainly involved
in the invention of SEDA in 1999, states this coupling as a main problem of
SEDA [40]:

If I were to design SEDA today, I would decouple stages (i.e.,
code modules) from queues and thread pools (i.e., concurrency
boundaries). Stages are still useful as a structuring primitive,
but it is probably best to group multiple stages within a single
“thread pool domain” where latency is critical. Most stages should
be connected via direct function call. I would only put a separate
thread pool and queue in front of a group of stages that have
long latency or nondeterministic runtime, such as performing disk
I/O.

Furthermore, due to the fact that every stage has its own thread pool,
context switching overhead is generally considerably higher than in tradi-
tional event-based architectures [40]. Apart from that, queues tend to be an
unsuitable data structure for high-concurrency applications, because they do
not allow for concurrent access by multiple parties. Lastly, SEDA requires a
fair amount of fine-tuning on the part of the developer in order to function
flawlessly [41].

2.2.4 Actor Model

In an actor-based architecture, actors are the universal primitive of con-
current processing. An actor is an isolated (i.e. self-contained) entity that
executes program logic. Actors can communicate with each other via asyn-
chronous messages that can contain arbitrary data and a reference to the
sender. Based on the nature of the received message, the actor can exe-
cute side-effect-logic like writing a file to disk, but can also send messages
to other actors—including the original sender. Actor-based architectures are
similar to event-based architectures in the sense that both implement com-
munication via message passing. The concept of a direct response like in all
aforementioned architectural patterns—be it via a call stack or a callback
handler—becomes irrelevant [11].

2. Technical Background 19

Figure 2.10: Illustration of an actor-based control flow. Actors are repre-
sented as circles and messages are represented as rockets. The speed monitor
actor periodically sends a message containing the current speed to the cruise
control actor. If a deviation of the desired speed is detected, an adjustment
message is sent to the throttle control actor, who again sends a message to
the engine. Image source: [13].

Flow of Control

Event-based architectures work by the principle of inversion of control (see
section 2.2.2), which is a necessity given the intrinsic mechanisms of events.
However, this limits the clearly defined structure of the program code and
tends to be less idiomatic in nature. Message passing between actors, on
the other hand, does not rely on inversion of control [11]. Control remains
solely with the sending actor, since it can decide, to whom—if at all—to
send further messages (see figure 2.10). This aids in reduced complexity when
designing concurrent programs. In this perspective, actor-based architectures
can be seen as a compromise between thread- and event-based architectures.

Another aspect of actor-based program flow is that the loose coupling
introduced by events is further extended. Instead of memorising references
to the callee function, actors have the choice of sending a message back in
order to create symmetric communication. Furthermore, an actor’s internal
state can only change in response to incoming messages—there is no way of
modifying actor state directly via methods or variables [13, p. 38]. This simple
fact has great implications on state management across the application; this
architectural characteristic is known as share-nothing architecture [3, p. 3].

Incoming messages are handled via mailboxes, which are basically actor-
specific queues that receive, filter and defer incoming messages. Like in event-
based architectures, there is no guarantee in which order messages arrive
in the mailbox and—since the actor model does not specify a medium for

2. Technical Background 20

Threads

Dispatcher

CPUs

Mailbox Queue

Mailbox Queue

Mailbox Queue

Mailbox Queue

Picks the Actor and the
message from Mailbox

Actor and message
are allocated to a
thead for execution

Threads mapped to
the Processor Cores

Figure 2.11: This graphic illustrates how resources are handled in a typical
actor system. A dispatcher distributes messages of actors to operating system
threads based on certain strategies (e.g. load balancing). Image source: [10]

.

passing messages (which may also be network-based, see below), a message
can take arbitrarily long to reach its destination [6, p. 97]. Since only the
corresponding actor can access his mailbox and only one message is processed
at a time, no concurrency issues—like race conditions—can arise for the
actor state and the mailbox as well as in between messages [7, p. 12]. The
orchestration of message processing is done by a dispatcher, i.e. a part of
framework logic that handles the execution of asynchronous, actor-based
logic [10, p. 97]. See figure 2.11 for a basic illustration of resource mapping
within an actor system.

Actors are also resilient, i.e. robust in the case of failure. Erlang, one of
the programming languages first to embrace the actor model, coined the term
let-it-crash; due to the isolated nature of actors, one actor unable to proceed
working (i.e. crashing) will not affect other actors. The actor model also
supports hierarchical structures of actors, which enable supervising actors to
restart crashed actors [1].

Scalability

Due to the lightweight nature of actors, they can be used in abundance on
single systems. P. Haller and M. Odersky state that 5000 concurrently active
threads can support over 1200000 concurrent actors [12, p. 2]. Moreover, due
to their share-nothing nature, actors are not limited to one physical system,
but work as well on distributed and replicated systems [10, p. 233]. This
makes the actor model by far the most scalable of all models listed herein.

2. Technical Background 21

Drawbacks

The practice of relinquishing shared state and using immutable messages for
communication reduces the risk of problems inherent to high concurrency—
like race conditions and deadlocks—but does not eliminate them. Further-
more, inconveniences arise when a specific execution order is crucial; while
event-based architectures provide callback functions to handle this situation,
guaranteeing execution order within actor-based architectures is non-trivial.
What’s more is that actors generally do not expose the benefits of inheritance
and hierarchy to the outside [20]. Also, like in event-based architectures, there
is no additional compiler support (see section 2.2.2).

Chapter 3

State of the Art

As already mentioned in section 2.1, Development, developing software is
greatly facilitated using existing building blocks instead of writing the en-
tirety of program code from scratch. Especially Web server applications
benefit from frameworks—i.e. third-party software that can be extended
with application-specific code—because frameworks generally provide sup-
port for standard, repetitive procedures like handling network communica-
tion, database access, caching1 and URL mapping2. The process of min-
imising repetitive code and maximising code reusability can be described as
reducing boilerplate code or by the acronym DRY 3 [15, p. 149] [22, p. 1].

Modern Web frameworks often include ways of abstracting concurrency
or build on existing concurrency frameworks themselves. This can save the
developer from having to deal with low-level concerns like thread scheduling
and message passing (see section 2.2.1 and 2.2.4, respectively). Full-stack
Web frameworks often handle many—if not all—tasks common to specific
networking applications. They may even include their own Web server to im-
prove the handling of numerous concurrent requests. Inbound and outbound
network communication represents a large share of common features. Also,
served assets like websites and images play a role in certain use-cases (but
do not in case of a purely API-focussed server). Storage in form of cache
and data persistence is also important for most applications. However, asyn-
chronous I/O and Event- and Actor-based interfaces are the main focus of
this chapter. Figure 3.1 gives a brief overview of typical full-stack framework
capabilities.

This chapter presents selected approaches to performance-critical event-
based and actor-based concurrency abstraction with respect to the criteria
defined in section 2.1 and taking into account the technical issues elaborated
in section 2.2. The respective technologies were chosen according to their

1The cache is mainly short-lived memory used for faster delivery of dynamic data.
2URL mapping is the process of deciding which action should be taken based on the

requested network URL.
3Don’t repeat yourself

22

3. State of the Art 23

Integrated HTTP Server

Data persistence

HTTP Interface Web Service API

Asynchronous I/O

Actor SystemCache

Asset compilationTemplate Engine

Form Validation

Figure 3.1: A Web framework aims to facilitate development by includ-
ing frequently used capabilities. Image based on the structure of the Play!
Framework [15].

current relevancy and popularity in the current technological background
and ordered with regard to their applicability in the context of this thesis.

3.1 Event-based technologies

3.1.1 Node.js

Node.js4 is not only a framework, but rather a dedicated open source soft-
ware platform for purely event-driven applications. User-level code is written
in the JavaScript scripting language and interpreted by the V8 5 engine also
used in the Google Chrome Web browser6 [17, p. 19]. JavaScript was origi-
nally used primarily for programming client-side website behaviour; however,
Node.js uses a module system7 to add various Web server-specific features.
These features include—among others—networking abstractions, file and op-
erating system abstractions and replication and scheduling utilities8. The
platform also includes its own Web server via the http module9.

4http://nodejs.org/
5https://code.google.com/p/v8/
6https://www.google.com/intl/en/chrome/browser/
7Using the CommonJS module specification (http://www.commonjs.org/)
8See http://nodejs.org/api/ for an exhaustive list of system modules or https://www.

npmjs.org/ for a popular extension module repository.
9http://nodejs.org/api/http.html

http://nodejs.org/
https://code.google.com/p/v8/
https://www.google.com/intl/en/chrome/browser/
http://www.commonjs.org/
http://nodejs.org/api/
https://www.npmjs.org/
https://www.npmjs.org/
http://nodejs.org/api/http.html

3. State of the Art 24

Program 3.1: This example illustrates the concepts introduced at the be-
ginning of section 3.1.1. In line 1, a HTTP network abstraction is loaded and
line 2 calls a function that requests the creation of a new server instance;
this function receives an anonymous callback function, which is called upon
each incoming HTTP request. The function’s two parameters are the HTTP
request and response, respectively. Line 3 and 4 generate the response by
setting the HTTP status code, the Content-Type header and the response
body. The server is started via the function listen, which accepts a network
port and IP address. Code source: [17, p. 9]

1 var http = require('http');
2 http.createServer(function (req, res) {
3 res.writeHead(200, {'Content-Type': 'text/plain'});
4 res.end('Hello World\n');
5 }).listen(8124, "127.0.0.1");
6 console.log('Server running at http://127.0.0.1:8124/');
7

Development

Program modules are represented by JavaScript files. The entry point of a
program must be defined by specifying the main JavaScript file upon ap-
plication launch [17, p. 16]. To use a module, it can be included using the
require command. Program flow typically propagates via callbacks (see sec-
tion 2.2.2). An example of these concepts can be seen in program 3.1. Due
to the functional nature of JavaScript, callback functions can be the main
driving force of asynchronous program flow. The following factors support
this [42]:

• First-class functions can be handled like any other data type; they can
be stored in variables, passed as parameters and executed when needed.

• Parts of the program flow can be composed of multiple anonymous
functions, which allows for flexible ordered execution (as seen in pro-
gram 3.1).

However, there are several caveats to exclusively callback-driven program
flow. For one, multiple callbacks executed sequentially are not guaranteed to
return in order. There is also no predefined way of awaiting multiple call-
back results. Also, callbacks—when used excessively—tend to lead to quite
unreadable code and, ultimately, to a condition known as the Pyramid of
Doom (see program 3.2). To relieve these problems, the promise paradigm
can be used as an abstraction for callbacks. With a promise framework like
the one included in the popular jQuery library10 or the Q library11, sequen-
tial functions can be written more idiomatically as a chain of commands

10http://jquery.com/
11https://github.com/kriskowal/q

http://jquery.com/
https://github.com/kriskowal/q

3. State of the Art 25

Program 3.2: Multiple dependent callback functions can lead to a structure
called Pyramid of Doom, which can impede code readability. Every step
function (i.e. step1, step2, . . .) asynchronously depends on the result of the
previous one. In this example, code indentation tends to increase faster than
line progression. Code source: [27, p. 21]

1 step1(function (value1) {
2 step2(value1, function (value2) {
3 step3(value2, function (value3) {
4 step4(value3, function (value4) {
5 // Do something with value4
6 });
7 });
8 });
9 });

10

Program 3.3: By using a promise library, sequential asynchronous process-
ing can be simplified. The then function accepts a first-class callback function
and, optionally, an error handler (as seen in line 7). Code source: [27, p. 21]

1 step1()
2 .then(step2)
3 .then(step3)
4 .then(step4)
5 .then(function (value4) {
6 // Do something with value4
7 }, function (error) {
8 // Handle any error from step1 through step4
9 })

10

(see program 3.3). When a promise is created, the result is deferred, i.e. re-
turned at a later point in time. If the action of the promise was successful,
the promise is resolved, otherwise it is rejected. There is also a comprehen-
sion (i.e. a specialised syntactic construct) that allows for resolving multiple
promises in parallel and treating the results as a single array of values as
soon as all promises are resolved:

1 Q.all([stepA, stepB]).then(function (results) {
2 var resultA = results[0];
3 var resultB = results[1];
4 });

Another means of program flow in JavaScript is via explicit events. In
Node.js, this can be conveniently done by using the events module12. New

12http://nodejs.org/api/events.html

http://nodejs.org/api/events.html

3. State of the Art 26

Program 3.4: A simple example of explicit events. First, the emitter created
through the events module registers a behaviour (in form of a callback
function) for a certain event type (i.e. doorOpen). At an arbitrary point in
time an event of this type is created and triggers the callback function. Code
source: [43]

1 var events = require('events');
2 var eventEmitter = new events.EventEmitter();
3
4 var ringBell = function ringBell()
5 {
6 console.log('ring ring ring');
7 }
8 eventEmitter.on('doorOpen', ringBell);
9

10 eventEmitter.emit('doorOpen');
11

events are created and handled by an instance of EventEmitter (see program
3.4). This way, a very flexible (yet flat, see section 2.2.2) program flow can
be realised.

The async13 module provides a number of functions that abstract and
simplify working with asynchronous actions in a functional way and has an
even wider scope than the Q library. For instance, it introduces comprehen-
sions to apply an asynchronous function to multiple values (each()) and
facilitates control flow with helpers for serial and parallel execution:

1 async.parallel([
2 function(){ ... },
3 function(){ ... }
4], callback);

Independently of the exact method of implementing concurrency in Node.js,
inversion of control (see section 2.2.2) plays a big role and its drawbacks (e.g.
reduced code readability) are hard to avoid without using special libraries
[6, p. 93]. However, because JavaScript is a very popular language due to
its use in website development, the fast adoption rate and shallow learning
curve of Node.js help with building a rich ecosystem around the platform
[17, p. 27].

Node.js applications can also benefit from certain framework modules
that add MVC 14 capabilities. One such module is the express framework15,
which includes features such as advanced routing and templates and brings
Node.js one step closer to being a full-stack Web framework.

13https://github.com/caolan/async
14Model-View-Controller
15http://expressjs.com/

https://github.com/caolan/async
http://expressjs.com/

3. State of the Art 27

Scalability

Applications running on Node.js per default only use a single thread for pro-
cessing [42]. As mentioned in the previous chapter, this has a positive effect
on scheduling overhead. Because of the nature of JavaScript and Node.js
(e.g. asynchronous networking and file abstractions as well as the use of call-
backs), it is comparably easy to write code that does not block the processing
thread. However, if blocking occurs, the consequence is that the whole appli-
cation is unable to process any requests until the blocking action has finished.
On the other hand, this removes any need for synchronisation concerns and
prevents address space conflicts between threads [6, p. 105].

To scale out (see section 2.1.5) a Node.js-based application, two main
steps can be taken: scaling out only on a single multi-core machine or scal-
ing out on multiple machines. The first can be archived by creating multiple
instances of the same program using the cluster module16 of Node.js (see
program 3.5). This way, a master process obtains control over several child
processes that handle requests asynchronously based on load balancing [17,
p. 64]. The technique of having one process create child instances is called
forking. If forking is not supported by the operating system (e.g. on Win-
dows17 systems), the application creates multiple threads in the same pro-
cess. Running the application on multiple servers has no special implications
for Node.js; if shared state is desired, it has to be archived by a messaging
protocol like pub-sub [17, p. 137].

Performance

Node.js is considered very suitable for massive connection concurrency and
data-heavy applications [27, p. 44]. The V8 engine executes JavaScript code
at a very favourable speed; interfaces that often slow down browser-based
applications (like the DOM 18) are not present in a server-side environment.
However, since the code is executed via interpretation, its execution is inher-
ently slower than the execution of binary files or virtual machine bytecode.
Figure 3.2 illustrates the serious implications of intensive computations on
response time.

3.1.2 Eventmachine

Ruby19 is a dynamic programming language that has a high adoption rate
due to the popular Ruby on Rails MVC framework that powers a lot of
modern Websites [22, p. 11]. However, unlike JavaScript, Ruby was not con-

16http://nodejs.org/api/cluster.html
17http://windows.microsoft.com/
18Document Object Model
19https://www.ruby-lang.org

http://nodejs.org/api/cluster.html
https://www.ruby-lang.org

3. State of the Art 28

Program 3.5: The clustermodule provides an abstraction of creating mul-
tiple instances of a program. The first process executing the code is defined
as the master process and all other processes (the number of processes de-
pends on the number of processing cores in the system) are forked as child
processes. Code source: [17]

1 var cluster = require('cluster');
2 var http = require('http');
3 var numCPUs = require('os').cpus().length;
4
5 if (cluster.isMaster) {
6 // Fork workers.
7 for (var i = 0; i < numCPUs; i++) {
8 cluster.fork();
9 }

10 ...
11 } else {
12 // Worker processes have a http server.
13 http.Server(function(req, res) {
14 res.writeHead(200);
15 res.end("hello world\n");
16 }).listen(8000);
17 }
18

Figure 3.2: In this figure taken from a performance analysis of D. Torstens-
son and E. Eloff, requests are sent to a Node.js server with different payload
sizes. The requests are sent both with and without authentication; authen-
tication is done by hashing (i.e. processing) the whole payload using the
SHA1-HMAC algorithm. Larger payloads are more computationally inten-
sive and result in a longer response time. Image source: [27].

3. State of the Art 29

Program 3.6: This program demonstrates how blocks can be used with
the TCPServer library (included in Ruby’s standard library) to create a new
thread for every incoming network client. The block (line 4 to 8) acts as a
container applied to the result of previous operations, similar to a closure
in JavaScript ; the client variable is the result of the new method of the
Thread class, which accepts a TCPSocket object. Code source: [44]

1 require 'socket'
2 server = TCPServer.new(2202)
3 while true
4 Thread new(server.accept){ |client|
5 msg = client.readline
6 client.write "You said: #{msg}"
7 client.close
8 }
9 end

10

ceived with non-blocking event-driven behaviour in mind. Eventmachine20 is
a library that aims to facilitate the process of developing non-blocking Web
server applications in Ruby.

Development

As mentioned in section 3.1.1, JavaScript uses anonymous and first-order
functions to manage asynchronous program flow. Due to Ruby’s object-
oriented nature, these concepts are not supported at language-level; instead,
it supports so-called blocks that in some way can act like anonymous func-
tions and receive parameters from previous operations [9]. See program 3.6
for a simple demonstration of how blocks can be used to create a basic net-
working server.

To create a non-blocking networking server in Ruby, more complex op-
erations are needed. This includes creating and managing a complete event-
loop21 and using the IO class and the accept_nonblock method of the
TCPSocket class to create logical concurrency on one thread (an exhaus-
tive example can be seen in [44]). Operations like handling connections and
reading input from the sockets also have to be managed explicitly by the
developer [44].

EventMachine provides a simple way to abstract the process of managing
event-based concurrency with Ruby. It includes its own event-loop—or re-
actor—which creates and handles events across the application. To interact
with the environment, the reactor provides asynchronous interfaces—called

20http://rubyeventmachine.com/
21Strictly speaking, since no events are involved, this is called a reactor loop [44].

http://rubyeventmachine.com/

3. State of the Art 30

Program 3.7: A simple echo server, i.e. a server that responds in a simple
way depending on what the request contains. A Ruby module (line 5) contains
the necessary logic and is managed by the EventMachine system. Line 10
initialises the reactor loop and line 11 starts the server using the predefined
module.

1 require 'rubygems'
2 require 'eventmachine'
3
4 module EchoServer
5 def receive_data data
6 send_data "You said: #{data}"
7 end
8 end
9

10 EventMachine::run {
11 EventMachine::start_server "127.0.0.1", 2202, EchoServer
12 }
13

Connections, which have to be defined within the reactor loop. EventMachine
includes several ways of creating connections:

• Creating a subclass of the Connection class and overriding its meth-
ods, then passing the class reference to the connect method of Event-
Machine

• Creating a module with the appropriate methods for handling connec-
tions (see program 3.7)

• Using a block (see program 3.6) and overriding methods of the connec-
tion object passed as parameter

Program 3.7 demonstrates, how the simple TCP server from program 3.6 can
be implemented using the EventMachine reactor. Besides this comprehensi-
ble TCP communication functionality, EventMachine also includes function-
ality for deferring or postponing program logic. Deferring is important when
interacting with code that would normally block the event-loop (see program
3.8). The Timer class or the add_timer and add_periodic_timer methods
can be used to execute program logic at an arbitrary point in time (e.g. for
scheduled or recurring tasks). There is also a Queue comprehension for man-
aging multiple asynchronous tasks at once (cf. the all comprehension of the
Q library in section 3.1.1).

3. State of the Art 31

Program 3.8: An example of using EventMachine to achieve JavaScript-
like callback functionality in Ruby. A long-running operation can be put in a
block, the execution of which is managed by EventMachine via its threadpool.
After the execution has completed, the result is passed to another block (i.e.
the “callback”) as a parameter.

1 operation = proc {
2 # long-running operation, e.g. database query
3 }
4 callback = proc { |result|
5 # do something with result
6 }
7
8 EventMachine.defer(operation, callback)
9

Scalability and Performance

Like JavaScript, Ruby is an interpreted scripting language and as such perfor-
mance is inherently inferior to compiled languages22 (cp. section 3.1.1, Per-
formance). When using the default Ruby VM23, a security measure called
Global Interpreter Lock prevents program threads from archiving physical
concurrency by only executing one logical thread at once (see figure 3.3).
This is done to prevent sharing non thread-safe code with other threads [45].
Thus, to scale a Ruby application running on the default virtual machine,
several process instances have to be created. This is similar to Node.js and
many implications that apply to scaling Node.js applications also apply to
Ruby. JRuby24 is an alternative implementation of the standard Ruby in-
terpreter which theoretically allows for controlling physical concurrency at
application level [45].

3.1.3 Others

There are numerous other examples of event-driven concurrency frameworks
that are less documented or fitting to be presented in depth here. React25

is a framework written in PHP26, a scripting language that is often used in
simple Web server applications [6, p. 36]. Twisted27 is a reactor library for

22However, Web servers that focus heavily on I/O-bound operations like network and
database communication may not need as much CPU performance as e.g. a server used
for image processing.

23Virtual Machine, a program that executes code inside a dedicated environment.
24http://jruby.org/
25http://reactphp.org/
26https://php.net/
27https://twistedmatrix.com/

http://jruby.org/
http://reactphp.org/
https://php.net/
https://twistedmatrix.com/

3. State of the Art 32

Ruby 1.9 JRuby

Logical
Threads

Ruby Interpreter

Kernel Kernel

Java VM

Logical
ThreadsGIL

OS Threads OS Threads

Figure 3.3: The Global Interpreter Lock of the Ruby VM prevents appli-
cation logic to control parallel program execution on OS threads because it
executes only one Ruby thread at once. However, with JRuby, this is possible.
Image source: [45].

the Python28 scripting language; its capabilities are similar to the EventMa-
chine library presented in section 3.1.2. Java NIO29 (see section 2.2.2) is
a general interface for non-blocking I/O operations that allows for creating
asynchronous Web server applications on a low level.

3.2 Actor-based technologies

3.2.1 Play!

Play! 30 is a full-stack Web application framework for development in Scala31

and Java. Since both languages are compiled to Java bytecode and run on
the Java VM, both languages can be used side by side and libraries from
the exhaustive Java ecosystem can be included; as of version 2, the Play!
framework is written solely in Scala [15]. Play! uses the Akka32 actor system,
which is—like the Scala language and Play! itself—managed by Typesafe
Inc.33; all three products are available as an integrated environment called
Activator.

28https://www.python.org/
29Native Input and Output
30http://www.playframework.com/
31http://www.scala-lang.org/
32http://akka.io/
33https://typesafe.com/

https://www.python.org/
http://www.playframework.com/
http://www.scala-lang.org/
http://akka.io/
https://typesafe.com/

3. State of the Art 33

Program 3.9: This program contains a very simple demonstration of how
application-level code integrates with the Play! framework. def defines a new
method, which is wrapped by the Action constructor method. The actual
method logic is passed to the Action wrapper as a block, which has to return
a Result object. The Okmethod in line 4 converts a string to a Result object
with the HTTP status code 200, indicating a successful operation with a non-
empty response.

1 // Synchronous action
2 def shortProcessingRequest = Action {
3 val result = (2 + 2).toString
4 Ok(result)
5 }
6

Development

Play! is different from all aforementioned frameworks (see section 3.1), not
only in the sense that it uses actor-based concurrency, but also in that it
is based on a compiled programming language rather than an interpreted
scripting language. Existing since 2003, Scala is a rather young program-
ming language that is syntactically very similar to Java, but extends it with
functional programming capabilities and a more sophisticated type system.
Since it has native support for comprehensions associated with concurrency
and a more concise syntax, it is better suited for applications with a high
amount of application-level concurrency operations [15, p. 9]; therefore, in
this section Play! ’s functionality is presented using Scala.

Play! builds upon the MVC model, which means that incoming requests
are handled by a user-defined controller structure. A controller contains Ac-
tions, i.e. methods that mapped to certain types of requests. Each con-
troller method must return an object of the class Result, which contains
the data to be sent back to the client [23, p. 27]. When defining an action,
there are two basic types of actions in terms of concurrency—synchronous
and asynchronous. Asynchronous actions must return an object of the type
Future[Result]. A future is similar to a promise (see section 3.1.1, De-
velopment) and indicates that the result is not available at the momentary
point of execution, but at an arbitrary time in the future; only when the
calculation of the result has finished (either successfully or due to failure)
the response is sent to the client (see program 3.9 and 3.10, respectively) [15,
p. 86].

Scala provides various language features and libraries for handling con-
currency like the scala.concurrent library, which includes versatile compre-
hensions for resolving one or multiple future results. However, Play! includes
the Akka actor system and the respective libraries to even further facilitate

3. State of the Art 34

Program 3.10: Returning asynchronous results is slightly more complex
than returning synchronous results (see program 3.9). Using the async
method of the Action object, a block returning a future result can be
invoked. The ContactDatabase.findById method is a fictional database
query that returns e.g. a Future[Contact] object. Since the block expects
a Future[Result] object as a return value, the database result has to be
mapped to an action result. The map method invokes a new block, which
is executed when the future operation is resolved successfully. This block
receives the non-future result as a parameter, which is wrapped by the
Ok method. Thus, the result type of the statement in line 3 changes from
Future[Contact] to Future[Result].

1 // Asynchronous action
2 def longDatabaseRequest = Action.async {
3 ContactDatabase.findById(123) map {
4 result =>
5 Ok(result.toString)
6 }
7 }
8

concurrent processing. Akka is used by Play! internally for various tasks like
request handling, but it can also be used at application-level [15, p. 83].
The actor system can be used for scheduling one-time and recurring opera-
tions, but its eponymous use is to manage actors (see section 2.2.4). In Play!,
explicitly used actors are well-suited for autonomous tasks like handling com-
munication with third-party Web services or sending emails. Program 3.11
demonstrates a simple actor used to send emails. The actor class inherits
from the Actor class of the Akka library. As mentioned in section 2.2.4, ac-
tors do not share any state and communicate via messages. The actor class
has to implement the receive method, which is called when messages arrive.
Messages can have any type, but are usually sent via different case classes,
depending on the context of the message. For sending an email, these classes
would contain for instance an email address and some text content. The
receive method uses a block with pattern matching to determine the mes-
sage type. Based on the message type, different actions can be taken by the
actor. To send a message to an actor, the actor reference can be generated
by the actor system. Messages can be sent using the ! method, the ? method
can be used to “ask” the actor, i.e. send a message and act upon a future
response.

Scalability

Scala—even though its name being a portmanteau of the words scalable and
language—does not support scalable actor systems at language level. It only

3. State of the Art 35

Program 3.11: This program is a demonstration of a simple actor used to
send emails.

1 case class DefaultMail(
2 email: String,
3 content: String
4)
5
6 case class ImageMail(
7 email: String,
8 image: String
9)

10
11 class Mailer extends Actor {
12
13 def receive = {
14 case DefaultMail(email, content) =>
15 sendDefaultMail(email, content)
16 case ImageMail(email, image) =>
17 sendImageMail(email, image)
18 }
19
20 def sendDefaultMail ...
21
22 def sendImageMail ...
23
24 }
25
26 class Test {
27
28 val mailer = Akka.system.actorOf(Props[Mailer])
29
30 def test() = {
31 mailer ! DefaultMail("john@doe.com", "Hello John")
32 }
33
34 }
35

makes assumptions about the underlying host’s thread model [12, p. 3]. The
majority of Play! ’s scalability is due to the included Akka actor system [10, p.
16]. How exactly this system behaves depends on the runtime configuration,
which is defined via configuration files. Actors are generally associated with
a certain execution context, i.e. a certain configuration of the actor system.
In Akka, there are two main types of execution contexts or executors:
Thread pool executor Multiple worker threads are preallocated and in-

coming messages are distributed among free threads—this minimises
thread overhead

3. State of the Art 36

Fork join executor If the amount of work for single messages exceeds a
certain size, the task can be split among multiple processing cores by
creating (i.e. forking) multiple instances of tasks that distribute work
among them

Each execution context allows for configuring the minimum and maxi-
mum number of threads that are used as well as a multiplication factor that
is based on the available cores. This allows for a very specific configuration
of the actor system: if an execution context tends to dispatch many small
tasks, the maximum number of threads can be increased, if there are few
large tasks, fewer threads should be used [10, p. 105].

There is also a number of different dispatcher types to choose from, de-
pending on whether actors should share a mailbox and the order in which ac-
tors are handled. Furthermore, the behaviour of mailboxes upon exhaustion
can also vary from neglecting new messages to not being sent new messages
[10, p. 104].

All these configuration options account to the single-system scalability
of Akka. However, actors are not bound to reside on one single system. The
means of communication between actors is not specified and can also be
done using networking with remote systems. The default implementation of
communication between different Akka systems uses TCP and the akka://
URL scheme. The orchestration of the entirety of actor subsystems is done
by a master node system that handles message dispatching [10, p. 233]. This
way, Akka can be scaled out to a large number of systems.

Performance

Play! internally uses the Netty34 HTTP server, which builds upon Java NIO
(see section 3.1.3) to achieve non-blocking I/O capabilities [15, p. 52]. While
Netty has proven to be capable of serving more than 40000 requests per
second35, this on only pure network communication without Web-specific
processing and I/O involved. The same request-based tests conducted on a
Play! application yield 9000 requests per second. Even with website-typical
database operations and processing, a single Play! application can serve 1350
to 2400 request per second [46]. What is also noteworthy is that due to the
adaptive nature of its actor system, Play! delivers formidable performance
even without the need for any application-level configuration.

3.2.2 Lattice

Lattice36 is a lightweight Web framework for the Ruby scripting language
(see section 3.1.2). It actually represents a combination of several different

34http://netty.io/
35Tested on an Amazon EC2 cluster (http://aws.amazon.com/ec2/)
36https://github.com/celluloid/lattice

http://netty.io/
http://aws.amazon.com/ec2/
https://github.com/celluloid/lattice

3. State of the Art 37

Program 3.12: This program is an adaption of the actor example presented
in program 3.11. Celluloid actors can be created by simple including the
Celluloid object inside a Ruby class.

1
2 class Mailer
3
4 include Celluloid
5
6 def send_default_mail(email, content)
7 send_mail(...)
8 end
9

10 def send_image_mail(email, image)
11 send_mail(...)
12 end
13
14 end
15
16 class Test
17
18 mailer = Mailer.new
19
20 def test()
21
22 mailer.async.send_default_mail("john@doe.com, "Hello John")
23
24 end
25
26 end
27

technologies that make up the entirety of the framework. Lattice uses the Cel-
luloid actor system37 for processing and builds upon the Reel38 Web server.
On application level, it uses the Ruby port of Webmachine39, which was
originally written in Erlang40, to facilitate the handling of HTTP requests
by mapping URL routes to respective controller methods [47].

Program 3.12 demonstrates how to create actors with Celluloid. By in-
cluding the Celluloid object in a default Ruby class body, actor function-
ality is added to the class. When creating an instance of this class, a new
Celluloid actor is initialised. To execute an asynchronous routine, the async
method of the actor object has to be called, followed by the respective method
name.

37http://celluloid.io/
38https://github.com/celluloid/reel
39https://github.com/seancribbs/webmachine-ruby
40http://www.erlang.org/

http://celluloid.io/
https://github.com/celluloid/reel
https://github.com/seancribbs/webmachine-ruby
http://www.erlang.org/

3. State of the Art 38

When using the async method on an actor (as seen in program 3.12), no
value is returned. However, using the future method returns a Celluloid::
Future object, which represents a rather primitive promise (see section
3.1.1). There is also an explicit way of creating promises by creating a new
instance of the Celluloid::Future object with a block parameter contain-
ing the asynchronous logic. The only way to resolve a promise is to block
current execution and wait for completion; there are no comprehensions like
mapping or resolving multiple promises at once [48].

3.2.3 Others

Apart from the above frameworks, there are hardly any full-stack Web frame-
works that use the actor concurrency model. Lift41 is another example of a
Scala-based actor-driven framework that is similar to Play!. However, there
is no option to develop applications in Java, it does not offer versatile actor
functionality compared to Akka and the ecosystem (i.e. support by other
developers) is not as advanced as with Play!. Xitrum42 is another Scala- and
Akka-based Web framework that aims to offer functionality similar to Lift.
spray43 is a lightweight general-purpose I/O framework also based on Scala
and Akka. It offers a number of modules for extension, including spray-can
and spray-http, which can be used to implement a low-level HTTP server.

41http://liftweb.net/
42http://xitrum-framework.github.io/
43http://spray.io

http://liftweb.net/
http://xitrum-framework.github.io/
http://spray.io

Chapter 4

Implementation

This chapter is a documentation of experiences and remarks during the cre-
ation of a concurrent high-performance Web application1—from deciding on
the programming language, the Web framework as well as supplementary
technologies to developing, deploying and maintaining the actual applica-
tion. Results are used to gain additional and more detailed knowledge about
the topic.

4.1 Prerequisites

4.1.1 Requirements

Depending on the projected success and behaviour of the application, the
following requirements were decided on in advance:

• The application is a social network. This implies a high request fre-
quency and many atomic database operations.

• There should be client applications for Web as well as for mobile oper-
ating systems, so the communication between applications should be
flexible.

• Several third-party Web services have to be included, either via pure
HTTP interfaces or using native libraries.

• Since the success of the application can not be predicted, a high scaling
range—also using multiple servers—is necessary.

In order to efficiently process the countless atomic operations that are
implied by a social network applications—like interactions between users—as
well as the communication to third-party Web services, event- or actor-driven
programming paradigms should be heavily used throughout the application.

1At the time of writing, this Web application is live and already has several thousand
users via the Web and mobile clients. However, due to corporate secrecy, the name of the
application will not be disclosed here.

39

4. Implementation 40

4.1.2 Language and Framework

After defining the prerequisites, the next step is to find a language and a
framework that fit the defined needs; since these two elements depend on one
another, deciding on a framework inherently limits the choice of languages.
Research about modern event- or actor-driven frameworks yielded several
possibilities, most of which are listed in chapter 3. Based on the extent
of framework documentation, interoperability with other technologies and
community size, the two final options were Node.js and Play!.

While Node.js has the advantage of supporting a simple and widespread
programming language and includes a high-performance event-loop, Play!
appealed by supporting a type-safe, object-oriented language (either Java
or Scala) with a solid set of libraries due to Java’s history as a popular
enterprise language. Furthermore, scaling on single systems is handled very
differently by the two frameworks with Node.js leveraging multiple process
instances and Play! using an actor system. Finally, Play! was chosen due to
the better application structure and the superior CPU utilisation (considered
that there may be some minor image processing operations).

This left two choices of language: Java and Scala. Even though Scala
is not as widespread as Java—which may result in difficulties finding de-
velopers in later stages of the project—it offers various advanced features
including syntax simplifications and library-level functionality for concur-
rent operations, option data types and number ranges as well as a purely
object-oriented structure2.

4.1.3 Drivers and Libraries

The present Web application features two kinds of data storage: aMongoDB3

database is used for persisting any long-lived information and a Redis4 key-
value store is used for short-lived information like caching as well as for
pub-sub communication (details follow in section 4.2). Both components are
accessed as SaaS 5 due to simple deployment and maintenance. A number
of different drivers expose libraries to facilitate communication with these
technologies; unfortunately, currently only few drivers support asynchronous
non-blocking I/O. Using blocking data access drivers with Play! would elim-
inate most of the performance gains achieved by Play! ’s non-blocking I/O
due to the occupation of processing threads.

The only asynchronous MongoDB driver at the time of writing was Reac-
2Java has an inconsistent type system with types like int or boolean not being part

of the global object hierarchy.
3http://www.mongodb.org/
4http://redis.io/
5Software as a Service, third-party companies that offer provision and maintenance of

software on their own servers.

http://www.mongodb.org/
http://redis.io/

4. Implementation 41

Clients

Heroku Server System

Server Instances

Play! Play!
Web Application Web Application

MongoDB
Database

Redis
Cache

Figure 4.1: The final project setup that resulted from the preceding con-
siderations. Note that client requests are distributed among server instances
by the server system, but every server instance connects to the database and
cache individually.

tiveMongo6, a driver implementation written in Scala that basically exposes
the MongoDB API to the application without any additional features like
included DAO7 functionality. However, this enables a very flexible way of
interacting with the database, which is especially suitable for atomic opera-
tions like increasing a single numeric value or deleting a property. Reactive-
Mongo offers a Play! plugin for easy integration with the framework (e.g. by
managing connections according to application start/stop).

For interfacing with the Redis server, the rediscala8 driver proved to
be a good choice by offering non-blocking access to the most important
server operations. rediscala even offers dedicated actor superclasses designed
for use with Akka (see section 4.2.4). On the downside, rediscala does not
provide a dedicated Play! plugin, thus custom framework integration had to
be implemented in order to use the driver. A diagram of the used technologies
can be seen in figure 4.1.

The application also makes use of several other libraries, e.g. for sending
emails. Here, a great advantage of Scala comes into play: due to being com-
piled to Java bytecode, Scala is binary compatible with all available Java
libraries. For instance, the Apache Commons9 email implementation written
in Java can also be used to send emails in Scala10.

6http://reactivemongo.org/
7Data Access Object, a pattern used by database libraries to simplify storage and

retrieval of code objects in the database.
8https://github.com/etaty/rediscala
9http://commons.apache.org/

10Blocking Java functions can also be wrapped with Futures (see sections 3.2.1 and
4.2.2) in order to create non-blocking, actor-based Scala functions.

http://reactivemongo.org/
https://github.com/etaty/rediscala
http://commons.apache.org/

4. Implementation 42

4.2 Development

This section describes how actor-driven patterns were used to realise relevant
parts of a Web server application with respect to the prerequisites defined
in the last section.

4.2.1 Requests and Actions

As already mentioned in section 3.2.1, Play! uses different controller actions
to determine if a request should be served synchronously or asynchronously
(see program 3.9 and 3.10, respectively). A good example for a synchronous
request is an action that returns the current server time for the request sign-
ing procedure11. Here, no database action is necessary and the retrieval of
system time does not consume much processing time. However, nearly all
requests to the Web server involve some kind of database operation; either
resources are read or written or a combination of multiple operations is exe-
cuted. When writing a value to the database, the response is served after the
operation completes to indicate success or failure to the client; this way, the
client can decide for itself whether it waits for the response or, for instance,
updates the user interface right after sending the request.

4.2.2 Basic Asynchronous Operations

Working With Futures

The majority of asynchronous operations involve database or cache access.
The database driver and the cache driver both return Future objects, i.e. the
respective calls return almost instantaneously and yield a value that is re-
solved later (cf. program 3.10). In the simplest case, this value can be mapped
to a Result object and returned by an asynchronous action. However, this is
not always the case; frequently, the returned value has to be processed and
results are even used as parameters for new database operations. Program
4.1 shows an example with two nested Future resolutions.

A typical occurrence of two database operations is for instance when a
new user should be created with a unique username. The outmost block
is the default asynchronous Action block with a body parser as argument.
This body parser converts the text from the request body into a JSON
object12 suitable for further processing. This body must contain a desired
username, which is obtained by traversing the JSON abstract syntax tree
(using the \ method). Next, a database query is initiated using the provided
username. This query returns a Future[Option[User]] object; the Option

11Requests are only valid for a certain timespan to prevent replay attacks, i.e. capturing
and sending a request multiple times.

12JavaScript Object Notation, commonly used for HTTP communication, http://json.
org/

http://json.org/
http://json.org/

4. Implementation 43

Program 4.1: This is a basic example of how two database operations can be
nested in a Play! application. Created, Conflict and InternalServerError
are helpers for the response status codes 201, 409 and 500, respectively.

1 def insertUniqueUser() = Action.async(parse.json) {
2 request =>
3 val username = (request.body \ "username").as[String]
4 UserService.findByUsername(username) flatMap {
5 case None =>
6 UserService.insert(request.body) map {
7 case Some(id) =>
8 Created("New user created with id " + id)
9 case None =>

10 InternalServerError("User could not be created")
11 }
12 case Some(user) =>
13 Future.successful(Conflict("Username exists!"))
14 }
15 }
16

type indicates that the value can either be present (Some) or absent (None).
The flatMap method is similar to the map method, but instead of Result
objects, all statements inside the block must return Future[Result] objects.
If the database query returns an object of the type None, no user with the
given username is found and thus the new user can be inserted and the result
of the database operation can be mapped to a Result using map. However,
if the username already exists, no subsequent database operation has to
be initiated and the response can be sent instantly. To generate a readily
resolved Future, the Future.successful method can be used.

To resolve multiple Future objects in parallel and work with the com-
bined results of the single asynchronous operations, the for comprehension
can be used; see program 4.2 for an example.

Apart from database and cache operations, Future objects also result
from using Play! ’s integrated WS Web service library. Since HTTP requests
take an arbitrary amount of time to return, the use of asynchronous process-
ing yields high performance gains since this way, a potentially slow third-
party Web server only delays the application’s response to the client, but
does not inflict the application’s performance by blocking threads.

Deferring Program Flow

Certain operations are not relevant to the further program flow and can be
executed concurrently without the need for resolving return values. These
asynchronous side-effects can be executed at any point during program flow.
For instance, if the user requests that his photo album should be deleted,

4. Implementation 44

Program 4.2: In this example, two images are uploaded to a remote server.
Only when both uploads have completed, the response should be sent con-
taining the URLs oft both images. The for comprehension receives a block
with multiple Future[String] assignments. The yield statement wraps
these Future objects in a single Future[(String, String)] object. This
is a type called a tuple, i.e. two objects combined into one. The map compre-
hension in line 4 maps this Future to a simple tuple, the values of which can
be retrieved using the ._1 and _.2 properties (line 6).

1 (for {
2 picture1Url <- uploadPicture(picture1)
3 picture2Url <- uploadPicture(picture2)
4 } yield (picture1Url, picture2Url)) map {
5 result =>
6 Ok("Here are your pictures:\n" + result._1 + "\n" + result._2)
7 }

the request may return as soon as the album object is removed from the
database, but the deletion of the actual image files (which may take some
time) can be deferred to a later point in time:

1 def deleteAlbum(id: String) = Action.async {
2 AlbumService.deleteById(id) map {
3 case true =>
4 ImageService.deleteForAlbum(id)
5 Ok("Your album was deleted!")
6 case false =>
7 InternalServerError("Something went wrong!")
8 }
9 }

Deferring execution can also be done using Akka’s scheduling function-
ality. The present application uses this scheduling functionality to obtain a
new access token for authentication from Web services, depending on when
the old token expires. The execution can be scheduled at a specific point in
time or repeated periodically:

1 import play.api.libs.concurrent.Akka
2
3 Akka.system.scheduleOnce(10.minutes)(sendReminderEmail())
4
5 // The first parameter defines the initial delay, the second one the interval
6 Akka.system.schedule(Duration.Zero, 30.minutes)(renewAccessToken())

Technically, actors can also be used to defer program flow, but are gen-
erally used for more sophisticated operations (see section 4.2.3).

4. Implementation 45

Program 4.3: This configuration statement defines a custom dispatcher
called image-processing-dispatcher that uses a fork-join executor and at
most two threads in order not to block the application.

1 akka {
2 actor {
3 image-processing-dispatcher {
4 fork-join-executor {
5 parallelism-max = 2
6 }
7 }
8 }
9 }

Converting Blocking Code

Of course, not all operations return asynchronous results, especially when us-
ing third-party or Java libraries. Wrapping blocking method calls in Future
objects that can be resolved by Akka is rather trivial:

1 def asynchronousOperation(param: String): Future[String] = {
2 Future {
3 synchronousOperation(param)
4 }
5 }

When resolving Future objects within a Play! application, Play! ’s de-
fault dispatcher is used (for information about dispatchers see section 3.2.1,
Scalability). However, especially for computationally expensive operations
like image processing it is advisory to use a dedicated dispatcher. New dis-
patchers can be created by defining them in the Akka configuration within
Play! ’s configuration files (see program 4.3). Program 4.4 gives an example
of an expensive image processing operation converted to an asynchronous
operation that can be deferred using a custom dispatcher. At the beginning
of the code example, a reference to the custom dispatcher is created using
Akka’s lookup functionality. The Future block wraps the expensive opera-
tion and defines the dispatcher that should be used to resolve the Future
object (i.e. how it should be processed by the actor system). The operation
itself consists of a operating system call to a image processing command line
tool. The waitFor method blocks the dedicated dispatcher thread until the
processing has finished. After that, the Future object is resolved with a File
reference to the generated image.

4.2.3 Actor-based Operations

Since Play! does not expose the underlying actor structure to its libraries,
application can be built without explicitly using any actors. However, the

4. Implementation 46

Program 4.4: This program shows how a comparably expensive image pro-
cessing operation can be deferred using a custom dispatcher.

1 val dispatcher = Akka.system.dispatchers.lookup("akka.actor.image-
processing-dispatcher")

2
3 def generateImage(filename: String): Future[File] = {
4
5 Future {
6
7 val cmd = Array(
8 "convert",
9 "-background", "black",

10 "-fill", "white",
11 ...
12 filename
13)
14
15 Runtime.getRuntime.exec(cmd).waitFor()
16
17 new File(filename)
18
19 } (dispatcher)
20
21 }
22

present application uses four actors for complex concurrency operations: the
Mailman and Notifier actors are used to defer and isolate complex asyn-
chronous operations, namely sending emails and mobile notifications, respec-
tively. These two actors are structurally rather similar to the Mailer actor
presented in program 3.11, but include extensive logic to generate the dif-
ferent notifications depending on the received actor message. However, the
Feeder and Subscriber actors are more complex and play an important role
in section 4.2.4.

4.2.4 Advanced Actor Usage

The application also includes a news feed using a technology called Web-
sockets to send events to subscribed client applications over TCP. The basic
idea is that when one user takes a specific action, other users that are inter-
ested in that action get notified instantly. A rather trivial approach would be
to keep a collection of currently subscribed clients and notify them directly
when a certain event occurs according to what events they have subscribed
to. However, as defined in section 4.1, Requirements, the application should
be scalable to multiple systems. This introduces a problem: clients that sub-
scribed on one particular system will not get events that occurred on other

4. Implementation 47

systems since the event is not propagated across all systems.
The solution is to use a centralised messaging system. Options include

dedicated protocols like AMQP13, but since the application already uses
Redis, which supports the Pub/Sub14 paradigm, using this system is more
practicable. Pub/Sub works by publishing messages to the central server,
which forwards them to all systems who have subscribed to the corresponding
message type.

Publishing to the Redis server can be easily done using the rediscala
library; for instance, the following line of code is used to publish a message
when a user abcd likes a photo 1234:

1 RedisService.publish("/picture/1234/likes", "abcd")

Due to the side-effect nature of publishing a message, this may also be done
using an actor.

Subscribing and receiving messages is the more complex part of the cen-
tralised message passing lifecycle. Ideally, incoming Redis messages should
be translated to Akka messages for subsequent handling inside the actor sys-
tem. Fortunately, rediscala includes the RedisSubscriberActor superclass
to facilitate subscribing to messages. Program 4.5 shows how this subscriber
actor class is structured and used to receive custom Redis publish messages.
Besides the publish channel, Redis messages may include a pattern signature;
messages are then only distributed to the subscribers that signify interest in
the particular pattern. To be able to use the RedisSubscriberActor su-
perclass, the subscriber actor has to supply two methods. The onMessage
method is called when a message without a pattern arrives; however, be-
cause in this case only pattern messages are used, this message can return
an empty object. The onPMessagemethod receives pattern messages and tells
the Feeder actor to send the message to the currently connected clients. The
subscriber actor has to be initialised upon application start; this can be done
using Play! ’s Global object, which can override the onStart method. Inside
the onStart method, the subscriber actor is created using the Props object,
which creates a new class instance using specified constructor parameters.
The second parameter, Nil, indicates, that the subscriber should not listen
to a particular channel; the third parameter is a sequence of patterns con-
sisting of one pattern that matches likes for any picture. Note that this actor
uses rediscala’s own dispatcher. A diagram of how information flow happens
within the setup can be seen in figure 4.2.

The fourth and last actor, is the Feeder actor. This is a standard actor
that listens for two types of messages:

• If a client connects to the application via Play! ’s WebSocket.tryAccept
controller action, the actor receives a message containing the desired

13Asynchronous Message Queuing Protocol, http://www.amqp.org/
14Publish-Subscribe, for Redis implementation see http://redis.io/topics/pubsub

http://www.amqp.org/
http://redis.io/topics/pubsub

4. Implementation 48

Program 4.5: This program shows how the RedisSubscriberActor su-
perclass can be used to create an actor class that listens for custom Redis
publish messages.

1 class Subscriber(channels: Seq[String] = Nil, patterns: Seq[String] =
Nil) extends RedisSubscriberActor(Redis.socket, channels, patterns,
Redis.password) {

2
3 def onMessage(message: Message) {
4 Nil
5 }
6
7 def onPMessage(message: PMessage) {
8 Feeder.push((message.channel, message.data))
9 }

10
11 }
12
13 object Global {
14
15 override def onStart(app: Application) = {
16 Akka.system.actorOf(Props(classOf[Subscriber], Nil, Seq("/

picture/*/likes")).withDispatcher("rediscala.rediscala-client-worker
-dispatcher"))

17 }
18
19 }
20

feed (e.g. /picture/1234/likes) and a reference handle to the client.
The actor then stores the client inside a collection.

• If a feed message arrives, the actor iterates over its client collection
and identifies clients that have indicated interest in the message. The
actor then sends relevant information (like which user has liked which
picture) to the client over the WebSocket.

4.3 Deployment and Scaling

The described Play! application can run on any platform that can execute
Java bytecode. Since it even includes its own Web server, it represents an in-
tegrated container that is readily suitable for deployment over multiple server
instances. The present application is designed to use identical replications of
actor systems on every system, the only means of sharing application state
being the message passing via the Redis server (see program 4.5). This means
that the application can theoretically be scaled out indefinitely, provided a
load balancer serves incoming requests fast enough to the server instances

4. Implementation 49

Webserver A

Client B Client C Client DClient A

Webserver B

Redis Server

Figure 4.2: Schematic information flow between systems and clients. Client
A triggers an event, e.g. likes a picture, which concerns the other three clients.
The event is processed by server A, which sends the information directly to
all connected clients. Server A publishes the event also to the central Redis
server, which propagates it to all subscribed servers. Server B then sends the
received information on to all connected clients.

and the database and cache communication happens at a formidable speed.
A Play! application could be scaled out in a different way: instead of

automated replications, the application could be designed using different
modules on different systems that communicate via a central Akka system.
This way, a number of systems could handle network I/O and other systems
could handle side effects or intensive computations like image processing.

Chapter 5

Evaluation

In the previous chapter, the implementation characteristics of an actor-based
Web framework were observed from the view of a developer (see chapter 4).
While these aspects are important during the development of an applica-
tion, once the application is publicly accessible, performance is a paramount
factor. This chapter documents tests conducted with respect to performance
criteria defined in chapter 2—for example request frequency and response
time (see section 2.1.4).

5.1 Prerequisites

Modern Web server performance can be defined by the system’s behaviour
when processing a high number of simultaneous requests. Ideally, the re-
sponse time for each request should be as low as possible and should not
increase significantly with the number of simultaneous requests.

To test the behaviour of thread-based applications side by side to event-
based applications, tests should preferably be conducted under very similar
conditions, the only major difference being asynchronous processing. Since
in section 4.1.2 the Play! framework was identified as a feasible choice for
demonstrating asynchronous processing in Web frameworks, Play! is also
used in the following performance tests. To achieve comparable performance,
the thread-based contender application should ideally also be run on the
Java virtual machine (JVM). This leaves numerous choices due to the high
number of Java-based Web frameworks. The first choice was the Grails1

framework, which is based on Groovy2 language. Since Groovy—like Scala—
is also an extension language to Java and can be run on the Java VM, it
seemed like a good choice to compare to Play!. However, Grails proved to
have a much larger memory footprint compared to Play! and even exceeded
the 512MB memory limit on the server container (see below). This imbalance

1https://grails.org/
2http://groovy.codehaus.org/

50

https://grails.org/
http://groovy.codehaus.org/

5. Evaluation 51

ruled out Grails as a fitting contender. The Spring MVC 3 framework was the
next Web framework taken into consideration. Spring MVC is regarded as a
similar solution compared to Play!, especially when it comes to application
structure and runtime behaviour [15, p. 109]. As its name implies, Spring
MVC features a comparable MVC (Model-View-Controller) structure; how-
ever, Spring MVC does not include its own Web server, but can be executed
on a number of different servers. In order to provide similar capabilities as
Play! ’s integrated Netty server (see section 3.2.1, Performance), Jetty4 was
used as a Web server for the Spring MVC application.

Obviously, to achieve neutral performance measurements, the two appli-
cations must be run on identical, yet independent systems. This, as well as
the desire to simulate conditions also present in production setups, led to
the decision to conduct the performance tests on virtual servers hosted by a
cloud PaaS 5. Due to the simplicity of deployment and replication, Heroku6

was the platform of choice. On Heroku, various application technologies—
including Java—can be deployed and run within isolated containers in a
controlled, reproducible fashion. The containers used for testing both are
equipped with an Intel Xeon X5550 quad-core processor clocked at 2.67GHz
and can address 512MB of memory.

Both applications were set up using their default configuration and using
the Java 7 platform. Tests were implemented as controller actions within
the MVC environment and were triggered using HTTP requests to certain
URLs, exactly as connecting via a website or HTTP interface would. Details
on the individual tests are available in section 5.2. To simulate the response
of the servers to large client demand, a single personal computer does not
suffice. Manual testing, for instance with a browser, can only create several
requests per second and even automated testing with tools like JMeter7 may
not produce desirable results due to limited bandwidth of a standard internet
connections. Thus, a specialised online service that focusses on the simulation
of large client loads under realistic conditions was used for testing; loader.io8

offers multiple options of load testing and the free plan supports up to 10000
concurrent connections per test.

5.2 Testing

The first test conducted was a benchmark test to ensure that both systems
perform equally in terms of raw computing power. To get an impression of

3http://spring.io/
4http://www.eclipse.org/jetty/
5Platform as a Service. A computing platform provided by a third-party company using

large-scale computing and networking systems.
6http://www.heroku.com
7http://jmeter.apache.org/
8https://loader.io/

http://spring.io/
http://www.eclipse.org/jetty/
http://www.heroku.com
http://jmeter.apache.org/
https://loader.io/

5. Evaluation 52

processing speed, the time to complete an arithmetic integer operation can
be measured. Initially, the recursive calculation of a certain number in the
Fibonacci9 series was chosen as a suitable calculation. However, the tests pro-
duced very different results between the Scala and Java applications. This
is due to the fact that the Scala compiler uses a technique called tail re-
cursion, which simplifies certain recursive constructs [49]. Thus, an iterative
implementation of the Fibonacci algorithm was employed with almost equal
outcome: the calculation of the 100000th Fibonacci number took the Spring
MVC application 342 milliseconds and the Play! application 340 milliseconds
on average during ten passes.

After ensuring that both systems work with equal computation speed, the
actual load tests could be conducted. loader.io offers a test type that grad-
ually increases the request frequency over a set amount of time; in all tests
listed here, request frequency was increased during a timeframe of 30 seconds,
meaning that each test lasted 30 seconds and then stopped. By measuring
the average response time for a certain request frequency, the behaviour of
the servers can be characterised. loader.io offers a Web-based graph that dis-
plays this behaviour for one test per server; however, to acquire the graphs
used in this chapter, a dedicated script gathered the different datasets and
merged them to graphs that display the data for both applications with equal
scale.

There are two main test categories. The first observes the behaviour of
the servers for “on-system operations”, i.e. calculations that demand compu-
tation time directly on the server—like for instance image processing. The
second category observes “off-system operations” like Web requests, database
queries or cache lookups. Both categories feature a number of tests with vary-
ing parameters to generate different benchmarks of the server behaviour.
During all tests, parameters were chosen in a way that generated interesting
and meaningful results, but without compromising server stability; load was
limited to the maximum both servers could handle without crashing.

On-system tests simulated server load by calculating a certain Fibonacci
number for each request, thus blocking either the Web thread (in the Spring
MVC application) or an actor-based worker thread (in the Play! applica-
tion). The complexity of the calculation was increased with different step
sizes (with the linear increase rate of the request frequency being constant)
and the most interesting results were chosen for presentation in the following
section.

Off-system tests loaded the content of a website10, which was chosen be-
cause of its resilience) and tunnelled it through the server applications to the
client. This proxy11-like behaviour simulates operations that happen outside

9Fibonacci numbers are produced by adding up the previous two numbers of the series,
starting with 0 and 1.

10http://www.google.com was used due to its resilience.
11A proxy server is a system that transmits network requests back and forth between

http://www.google.com

5. Evaluation 53

of the server system and block only threads on purely thread-based applica-
tions, while not consuming threads in event- and actor-driven applications.
Since an increase in website size did not make much difference for the tests,
the website to load was constant and the request frequency increase was
increased with each test. Again, the most notable results were chosen for
presentation.

5.3 Results

On-system Tests

The first test was set up using the relatively fast calculation of the 1000th
Fibonacci number. A single request of this kind took both applications on
average 170 milliseconds to process. However, with increasing request fre-
quency, the average response times of the two applications drift apart with
the Play! application achieving generally lower response times, the differ-
ence being about 1000 milliseconds at 5000 requests per second (see figure
5.1). However, when increasing the computation complexity by calculating
the 5000th Fibonacci number—resulting in an average response time of 300
milliseconds per request—the response time difference between the two ap-
plications decreases with Play! still being faster, but only with a difference
of about 500 milliseconds at 5000 requests per second (see figure 5.2). A
further increase of the computation complexity to the 10000th and 50000th
Fibonacci number—resulting in 300 and 400 milliseconds average response
time per request, respectively—shows that the response times of the two ap-
plications become more and more similar until being nearly identical for the
50000th Fibonacci number (see figures 5.3 and 5.4).

Off-system Tests

As already mentioned in section 5.2, off-system tests were conducted by
loading the content of the main page of Google12, which, at the time of
testing, contained 44 kilobytes of data and took about 170 milliseconds to
load. Starting at a request frequency of 0 to 100 requests per second, the Play!
application outperforms the Spring MVC application from about 30 requests
per second and maintains low response times until the end of the test, while
the response times of the Spring MVC application continue to rise more
steeply (see figure 5.5). Increasing the request frequency to 1000 exhibits
even more pronounced results with the Play! application being slower at the
beginning, but from about 180 requests per second on maintaining a response
time of about 800 milliseconds while the Spring MVC application becoming
ever slower until the difference accounts to about 2400 milliseconds at 1000

client and target. This has different uses, for instance increased anonymity.
12http://www.google.com

http://www.google.com

5. Evaluation 54

Spring MVC Play!

00 10001000 20002000 30003000 40004000
00

500500

10001000

15001500

20002000

25002500

Requests / SecondRequests / Second

R
es

po
ns

e
Ti

m
e

(m
s)

R
es

po
ns

e
Ti

m
e

(m
s)

Figure 5.1: Iterative calculation of the 1000th Fibonacci number. Request
frequency is increased to 5000 within 30 seconds.

Spring MVC Play!

00 10001000 20002000 30003000 40004000
00

10001000

20002000

30003000

40004000

50005000

Requests / SecondRequests / Second

R
es

po
ns

e
Ti

m
e

(m
s)

R
es

po
ns

e
Ti

m
e

(m
s)

Figure 5.2: Iterative calculation of the 5000th Fibonacci number. Request
frequency is increased to 5000 within 30 seconds.

requests per second (see figure 5.6). During the third test of this category,
request frequency is increased to 5000, obviously putting a lot of pressure
on the applications. The response graph for this test looks very similar to
the first graph of the on-system category (see figure 5.1) with response times

5. Evaluation 55

Spring MVC Play!

00 10001000 20002000 30003000 40004000
00

10001000

20002000

30003000

40004000

50005000

60006000

70007000

Requests / SecondRequests / Second

R
es

po
ns

e
Ti

m
e

(m
s)

R
es

po
ns

e
Ti

m
e

(m
s)

Figure 5.3: Iterative calculation of the 10000th Fibonacci number. Request
frequency is increased to 5000 within 30 seconds.

Spring MVC Play!

00 10001000 20002000 30003000 40004000
00

50005000

1000010000

1500015000

2000020000

2500025000

Requests / SecondRequests / Second

R
es

po
ns

e
Ti

m
e

(m
s)

R
es

po
ns

e
Ti

m
e

(m
s)

Figure 5.4: Iterative calculation of the 50000th Fibonacci number. Request
frequency is increased to 5000 within 30 seconds.

of both applications increasing continuously at a high rate and the Play!
application being about 3800 milliseconds faster (see figure 5.7).

5. Evaluation 56

Spring MVC Play!

00 2020 4040 6060 8080
00

5050

100100

150150

Requests / SecondRequests / Second

R
es

po
ns

e
Ti

m
e

(m
s)

R
es

po
ns

e
Ti

m
e

(m
s)

Figure 5.5: Loading and serving an off-system website. Request frequency
is increased to 100 within 30 seconds.

Spring MVC Play!

00 200200 400400 600600 800800
00

10001000

20002000

30003000

40004000

50005000

Requests / SecondRequests / Second

R
es

po
ns

e
Ti

m
e

(m
s)

R
es

po
ns

e
Ti

m
e

(m
s)

Figure 5.6: Loading and serving an off-system website. Request frequency
is increased to 1000 within 30 seconds.

5.4 Interpretation

Looking at the tests, it is obvious that there is a significant difference be-
tween the on-system and off-system tests. In the on-system scenario, the per-

5. Evaluation 57

Spring MVC Play!

00 10001000 20002000 30003000 40004000
00

20002000

40004000

60006000

80008000

1000010000

1200012000

Requests / SecondRequests / Second

R
es

po
ns

e
Ti

m
e

(m
s)

R
es

po
ns

e
Ti

m
e

(m
s)

Figure 5.7: Loading and serving an off-system website. Request frequency
is increased to 5000 within 30 seconds.

formance difference between the blocking and the non-blocking application
decreases with increasing server load while in the off-system scenario, the per-
formance difference increases. Regarding the concurrency models detailed in
section 2.2, this behaviour can be explained with the different resource usage
on the servers. The context-switching overhead of the purely thread-based
Spring MVC application leads to a slower performance at a lower request fre-
quency, while the actor-based Play! application employs worker threads and
reuses the same threads for network communication and request handling.
However, with increasing computation complexity, the processing resources
of both systems tend to be consumed wholly, which practically annihilates
any advantage of lower context-switching overhead and worker threads; since
both systems use identical hardware, both processors are saturated at the
same point.

With off-system operations, on the other hand, the outcome is completely
different. While the Play! application achieves slower response times at the
beginning due to the computational intensity of maintaining and orches-
trating the actor system, it does not use up threads while waiting on the
answer of the off-system Web server. Thus, up to a certain point, the Play!
application can maintain almost equal response times even with an increas-
ing request frequency. The Spring MVC application does not disengage the
current thread during waiting for the response; this effectively blocks the
current thread, raising the need to create or use another thread for the next
incoming request. This puts more pressure on the operating system sched-
uler and creates contest-switching overhead. Moreover, since the processors

5. Evaluation 58

used have four cores, only four threads can achieve physical concurrency at
once; therefore, the Play! application can use resources more efficiently by at
all times doing active computations on all cores. However, when the request
frequency exceeds the speed with which the Play! application can handle
communication with the off-system Web server, response times increase with
actor queue size. This again creates a scenario in which the response time is
directly proportional to the request frequency, much like with non-saturated
on-system operations.

Chapter 6

Conclusion and Future
Development

Developing event- and actor-driven applications still poses some difficulties.
The purely thread-based concurrency model seems like a natural abstraction
choice for developing Web server applications, but problems like blocking
and context-switching overhead make event- and actor-based operations the
better choice for most Web-typical use-cases. On the other hand, although
event- and actor-based paradigms have existed for decades, they represent
a significant departure from traditional thread-based programming and thus
may seem a less attractive choice for developers. To approach this problem,
modern Web frameworks and libraries offer simple abstractions for complex
operations; these range from concurrency comprehensions to system-wide
abstractions like completely hiding the underlying actor system, like the
Play! framework does. Many of these frameworks also offer thread-based
processing, which further minimises the learning curve. Node.js makes use
of JavaScript and its event-driven development paradigms, which are known
to even less experienced Web developers.

Regardless of the technology used, when developing applications with a
high amount of concurrency, close attention has to be paid to maintain a clear
application structure. Modern Web frameworks and libraries often facilitate
this process by offering simplifications and structural rules and guides. How-
ever, purely thread-based have the advantage of ordered execution, which
results in a structural clarity that is hard to obtain with event- and actor
driven development.

It can be concluded from the tests documented in chapter 5 that asyn-
chronous processing reduces response times for most Web server specific
tasks like querying databases and caches as well as communicating with
third-party Web services. However, most of these advantages come into ef-
fect only above a certain request frequency. Projects that tend to benefit the
most from asynchronous processing are characterised by a high number of

59

6. Conclusion and Future Development 60

computationally inexpensive requests involving database or networking op-
erations; a prominent example for this use-case are social networks, where a
lot of users use the same platform simultaneously. For smaller projects like
personal websites, on the other hand, purely thread-based applications may
be the better choice since they can be developed with traditional paradigms
in a widespread language like PHP. Another use-case for thread-based appli-
cations are systems that focus on intensive on-system calculations at a high
request frequency. Here, the best strategy may be to use a highly synchronous
architecture and scaling out to multiple systems.

Especially with the uprise of more frameworks and libraries, event- and
actor-driven paradigms currently are gaining popularity and importance.
There is an initiative called the Reactive Manifesto, which advocates asyn-
chronous, non-blocking behaviour throughout Web applications, even includ-
ing client applications [34]. Many emerging as well as older technologies are
adding asynchronous functionality in order to offer modern functionality.
Such technologies include the asynchronous additions made to C#1 in ver-
sion 5, the Grails 2.3 events API and the @Async annotated methods in
Spring MVC 3 [25] [18]. Another notable example is the Martini2 frame-
work for the Go3 language, which uses extensive asynchronous processing
featuring a concurrency model called Pipelines.

Even though there are numerous new technologies, only few mature Web
frameworks already make use of them, despite potentially large performance
gains for exactly these systems. For instance, Node.js has a shallow learn-
ing curve and exceptional performance and documentation, but lacks appli-
cation structure and compile-time warnings. Many other frameworks that
were taken into consideration for this thesis lacked either proper function-
ality or essential documentation. However, the high number of event- and
actor-driven Web frameworks currently in early stages of development gives
a positive outlook on the future progress of the subject. With demands and
user numbers ever growing, the Web is merely at the beginning of reaching its
full potential. Event- and actor-driven paradigms—if sufficiently embraced
by Web developers—can play a major role in creating a fast, efficient Web
for the future.

1http://msdn.microsoft.com/en-us/vstudio/hh341490.aspx
2http://martini.codegangsta.io/
3http://golang.org/

http://msdn.microsoft.com/en-us/vstudio/hh341490.aspx
http://martini.codegangsta.io/
http://golang.org/

Appendix A

Contents of the CD-ROM

Format: CD-ROM, Single Layer, ISO9660-Format

A.1 Master Thesis

Path: /

Hessenberger_Felix.pdf A digital version of this document in PDF
(Portable Document Format) format

A.2 Online Sources

Path: /Online Sources

*.pdf Digital versions of the used online sources,
named according to citation numbers

A.3 Test Applications

Path: /Test Applications

play/* Source code of the Play! application from
chapter 5

spring/* Source code of the Spring MVC application
from chapter 5

61

/
Hessenberger_Felix.pdf
/Online Sources
*.pdf
/Test Applications
play/*
spring/*

References

Literature

[1] Joe Armstrong. Programming Erlang: Software for a Concurrent
World. Pragmatic Bookshelf, 2007.

[2] Rob Von Behren, Jeremy Condit, and Eric Brewer. “Why Events Are A
Bad Idea (For High-Concurrency Servers)”. In: HotOS. Lihue, Hawaii,
USA, 2003, pp. 19–24.

[3] Daniele Bonetta, Danilo Ansaloni, and Achille Peternier. “Node.Scala:
Implicit Parallel Programming for High-Performance Web Services”.
In: Euro-Par. Rhodes Island, Greece, 2012, pp. 626–637.

[4] David Carrera et al. “Evaluating the Scalability of Java Event-Driven
Web Servers”. In: International Conference on Parallel Processing.
Montreal, Canada, 2004, pp. 134–142.

[5] Vaarnan Drolia, Cedric Ansley, and Chin Shen. “Threads vs Events
for Server Architectures”. Survery Paper, National University of Sin-
gapore, 2010.

[6] Benjamin Erb. “Concurrent Programming for Scalable Web Architec-
tures”. MA thesis. University Ulm, 2012.

[7] Joakim Eriksson. “Representation of Asynchronous Communication
Protocols in Scala and Akka”. MA thesis. Linköping University, 2013.

[8] Jeffrey Fischer, R Majumdar, and Todd Millstein. “Tasks: Language
Support for Event-Driven Programming”. In: ACM SIGPLAN 2007
Workshop on Partial Evaluation and Program Manipulation. Nice,
France, 2007, pp. 134–143.

[9] Michael Fitzgerald. Learning Ruby. O’Reilly Media, Inc, 2007.

[10] Munish K. Gupta. Akka Essentials. Packt Publishing, 2012.

[11] Philipp Haller and Martin Odersky. “Event-Based Programming With-
out Inversion of Control”. In: Joint Modular Languages Conference.
Oxford, UK: Springer-Verlag Berlin, 2006, pp. 4–22.

62

References 63

[12] Philipp Haller and Martin Odersky. “Scala Actors: Unifying Thread-
based and Event-based Programming”. In: Theoretical Computer Sci-
ence 410.2 (Feb. 2009), pp. 202–220.

[13] Philipp Haller and Frank Sommers. Actors in Scala. artima Press, 2011.

[14] Cal Henderson. Building Scalable Web Sites. O’Reilly Media, Inc, 2006.

[15] Peter Hilton, Erik Bakker, and Francisco Canedo. Play for Scala: Cov-
ers Play 2. Manning Publications Co., 2013.

[16] Gregor Hohpe. “Programming Without a Call Stack - Event-Driven
Architectures”. In: Object-Oriented Programming, Systems, Languages
and Applications. San Diego, California, USA, 2005, pp. 12–21.

[17] Tom Hughes-Croucher and Mike Wilson. Node - Up and Running.
O’Reilly Media, Inc, 2012.

[18] Peter Ledbrook. “Application Architectures in Grails”. In: GR8Conf
US. Minneapolis, Minnesota, USA, 2014, pp. 32–48.

[19] Edward A. Lee. “The ProblemWith Threads”. In: Computer 39.5 (May
2006), pp. 33–42.

[20] Paul Mackay. “Why Has the Actor Model Not Succeeded?” In: SUR-
PRISE 97. London, UK, 1997, pp. 20–23.

[21] Sucheta Nadimpalli and Shikharesh Majumdar. “Techniques for
Achieving High Performance Web Servers”. In: International Confer-
ence on Parallel Processing. Toronto, Canada, 2000, pp. 233–242.

[22] Rob Orsini. Rails Cookbook. O’Reilly Media, Inc, 2008.

[23] Alexander Reelsen. Play Framework Cookbook. Packt Publishing, 2011.

[24] Sencha Inc. “Web Applications Come of Age”. Working Paper, 2011.

[25] Don Syme, Tomas Petricek, and Dmitry Lomov. “The F# Asyn-
chronous Programming Model”. In: Practical Aspects of Declarative
Languages. Austin, Texas, USA: Springer-Verlag Berlin, 2011, pp. 175–
189.

[26] Stefan Tilkov and Steve Vinoski Verivue. “Node.js : Using JavaScript to
Build High-Performance Network Programs”. In: Internet Computing,
IEEE 14.6 (2010), pp. 80–83.

[27] Daniel Torstensson and Erik Eloff. “An Investigation Into the Applica-
bility of Node.js as a Platform for Web Services”. MA thesis. Linköping
University, 2012.

[28] Bryan Veal and Annie Foong. “Performance Scalability of a Multi-
Core Web Server”. In: Architecture for Networking and Communica-
tions Systems. Princeton, New Jersey, USA: ACM Press, 2007, pp. 57–
66.

References 64

[29] Matt Welsh, David Culler, and Eric Brewer. “SEDA : An Architec-
ture for Well-Conditioned, Scalable Internet Services”. In: Symposium
On Operating Systems Principles. Banff, Canada: ACM Press, 2001,
pp. 230–243.

Online Sources

[30] url: http://www.ietf.org/rfc/rfc2616.txt (visited on 03/30/2014).

[31] url: http://royal.pingdom.com/2007/12/07/a-history-of-the-dynamic-
web/ (visited on 02/21/2014).

[32] url: http://www.adaptivepath.com/ideas/ajax- new- approach-web-
applications/ (visited on 02/21/2014).

[33] url: http://docs.oracle.com/cd/E19900-01/819-4741/fygaj/index.html
(visited on 03/30/2014).

[34] url: http://www.reactivemanifesto.org/ (visited on 09/21/2014).

[35] url: http://www.nakov.com/inetjava/lectures/part-1-sockets/InetJava-
1.3-Multithreading.html (visited on 03/02/2014).

[36] url: http://blogs.technet.com/b/markrussinovich/archive/2009/07/08/
3261309.aspx (visited on 03/02/2014).

[37] url: http://mmcgrana.github.io/2010/07/threaded-vs-evented-servers.
html (visited on 03/30/2014).

[38] url: http://www.ibm.com/developerworks/java/library/j-jtp0730/index.
html (visited on 03/30/2014).

[39] url: http://software. intel .com/en- us/blogs/2008/06/05/nitrogen-
narcosis - part - ii - the - serious - drawbacks - of - explicit - multi - threading/
(visited on 03/02/2014).

[40] url: http ://matt - welsh .blogspot . co . at/2010/07/ retrospective - on -
seda.html (visited on 03/30/2014).

[41] url: http://thornydev.blogspot.co.at/2012/01/events-and-event-driven-
architecture.html (visited on 03/11/2014).

[42] url: http://blog.mixu.net/2011/02/01/understanding- the- node- js-
event-loop/ (visited on 07/03/2014).

[43] url: http://www.sitepoint.com/nodejs-events-and-eventemitter/ (vis-
ited on 06/12/2014).

[44] url: https : / / dl . dropboxusercontent . com / u / 635 / em \ _export . pdf
(visited on 07/13/2014).

[45] url: https://www.igvita.com/2008/11/13/concurrency- is-a-myth-in-
ruby/ (visited on 07/28/2014).

http://www.ietf.org/rfc/rfc2616.txt
http://royal.pingdom.com/2007/12/07/a-history-of-the-dynamic-web/
http://royal.pingdom.com/2007/12/07/a-history-of-the-dynamic-web/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/
http://docs.oracle.com/cd/E19900-01/819-4741/fygaj/index.html
http://www.reactivemanifesto.org/
http://www.nakov.com/inetjava/lectures/part-1-sockets/InetJava-1.3-Multithreading.html
http://www.nakov.com/inetjava/lectures/part-1-sockets/InetJava-1.3-Multithreading.html
http://blogs.technet.com/b/markrussinovich/archive/2009/07/08/3261309.aspx
http://blogs.technet.com/b/markrussinovich/archive/2009/07/08/3261309.aspx
http://mmcgrana.github.io/2010/07/threaded-vs-evented-servers.html
http://mmcgrana.github.io/2010/07/threaded-vs-evented-servers.html
http://www.ibm.com/developerworks/java/library/j-jtp0730/index.html
http://www.ibm.com/developerworks/java/library/j-jtp0730/index.html
http://software.intel.com/en-us/blogs/2008/06/05/nitrogen-narcosis-part-ii-the-serious-drawbacks-of-explicit-multi-threading/
http://software.intel.com/en-us/blogs/2008/06/05/nitrogen-narcosis-part-ii-the-serious-drawbacks-of-explicit-multi-threading/
http://matt-welsh.blogspot.co.at/2010/07/retrospective-on-seda.html
http://matt-welsh.blogspot.co.at/2010/07/retrospective-on-seda.html
http://thornydev.blogspot.co.at/2012/01/events-and-event-driven-architecture.html
http://thornydev.blogspot.co.at/2012/01/events-and-event-driven-architecture.html
http://blog.mixu.net/2011/02/01/understanding-the-node-js-event-loop/
http://blog.mixu.net/2011/02/01/understanding-the-node-js-event-loop/
http://www.sitepoint.com/nodejs-events-and-eventemitter/
https://dl.dropboxusercontent.com/u/635/em_export.pdf
https://www.igvita.com/2008/11/13/concurrency-is-a-myth-in-ruby/
https://www.igvita.com/2008/11/13/concurrency-is-a-myth-in-ruby/

References 65

[46] url: http://blog.papauschek.com/2013/04/real-world-performance-of-
the-play-framework-on-ec2/ (visited on 08/08/2014).

[47] url: https://github.com/celluloid/celluloid/wiki/Basic-usage (visited
on 08/09/2014).

[48] url: https://github.com/celluloid/celluloid/wiki/Futures (visited on
08/08/2014).

[49] url: http://oldfashionedsoftware.com/2008/09/27/tail-recursion-basics-
in-scala/ (visited on 08/21/2014).

http://blog.papauschek.com/2013/04/real-world-performance-of-the-play-framework-on-ec2/
http://blog.papauschek.com/2013/04/real-world-performance-of-the-play-framework-on-ec2/
https://github.com/celluloid/celluloid/wiki/Basic-usage
https://github.com/celluloid/celluloid/wiki/Futures
http://oldfashionedsoftware.com/2008/09/27/tail-recursion-basics-in-scala/
http://oldfashionedsoftware.com/2008/09/27/tail-recursion-basics-in-scala/

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Motivation
	Objective
	Structure

	Technical Background
	Terms and Definitions
	Network Communication
	Dynamic Content
	Asynchronous Requests
	Request Frequency and Response Time
	Scalability
	Development

	Concurrency Models
	Purely Thread-based Model
	Event-based Model
	Staged Event-driven Architecture
	Actor Model

	State of the Art
	Event-based technologies
	Node.js
	Eventmachine
	Others

	Actor-based technologies
	Play!
	Lattice
	Others

	Implementation
	Prerequisites
	Requirements
	Language and Framework
	Drivers and Libraries

	Development
	Requests and Actions
	Basic Asynchronous Operations
	Actor-based Operations
	Advanced Actor Usage

	Deployment and Scaling

	Evaluation
	Prerequisites
	Testing
	Results
	Interpretation

	Conclusion and Future Development
	Contents of the CD-ROM
	Master Thesis
	Online Sources
	Test Applications

	References
	Literature
	Online Sources

