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Kurzfassung

Diese Arbeit beschreibt ein System (Dynamic Geometry Middleware), das
eine Audio-Engine in die Lage versetzt, mit einer dynamisch, also zur Laufzeit
generierten und veränderten/zerstörten Spielwelt-Geometrie, umzugehen.
Die Audio-Engine soll trotz dieses Setups umgebungsabhängige Effekte wie
Hall und Echos sowie das korrekte "‘Panning"’ und Filtern von Sounds bieten
können.

Dabei wird davon ausgegangen, dass eine Audio-Engine bereits vorhan-
den ist, die diese Features grundsätzlich mitbringt. Es wird beschrieben,
welche Schnittstellen zur Audio-Engine bzw. der Spiel-Logik vonnöten sind
und wie die Daten-Strukturen bezüglich der Spielwelt-Geometrie und der
dazu verwendeten "‘Baumaterialien"’ beschaffen sein müssen, um mit den
beschriebenen Algorithmen zu funtionieren.

Weiter wird darauf eingegangen welche sinnvollen Abstriche im Vergleich
zur realen akustischen Physik gemacht werden können um bei akzeptablen
Laufzeitgeschwindigkeiten maximalen Realismus zu erzielen.
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Abstract

An algorithmic solution (Dynamic Geometry Middleware) is presented, which
enables a game audio engine to handle a dynamically created game world
geometry and changes to this geometry during runtime. The audio-engine
should be enabled to provide environmental effects such as reverberation
and delay-effects, attenuation over distance and sound-occlusion besides a
surrounding sound panning in such a dynamic game geometry. Further-
more the requirements to this audio-engine (which is encapsulated from the
game-logic-system) and necessary deductions to the real worlds acoustics
are discussed.
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Chapter 1

Introduction

Within the last 15 years video game industry increased the amount of atten-
tion on game sound. Reasons for that may be the enhanced computing power
their clients have at disposal, the wide spread of superior (surround) sound
systems which are in use to play video games, the knowledge about the ben-
efits of a “good game sound” related to immersion and realism. Therefore a
wide range of software-tools and dedicated specialists are around to satisfy
the markets and the gamers expectations.

What means “good sound” in a technical manner besides the usage of
well produced sound samples and unique musical compositions? It is the
meaningful utilisation of the correct panning, the usage of distance-effects
(filtering, attenuation) and the consideration of occlusion and obstruction
(the absence of a direct path from source to listener). Furthermore “environ-
mental effects” (reverb and delay) must be parameterised properly according
to the game worlds geometry and its material composition (e.g. a storage
building, a small living-room, a cave etc.).

A typical approach in game audio programming is to define such sound
areas within a well known game world and assign a proper reverberation
effect on each sound source which is located in this area. But within the last
years so called open world games became increasingly popular which means,
that the game world geometry may be created dynamically, during runtime
and cannot be foreseen by the audio programmer.

1.1 Concept of this thesis
This theses describes an audio system which copes with the challenges of a
dynamically created game world geometry and furthermore changes to this
system like destroyed walls. It describes the features of a state-of-the-art
game audio system and their relation to the game worlds geometry. A major
part will cover techniques which assure that the present geometry model is
kept up to date in spite of changes to this geometry during runtime.

1



1. Introduction 2

The presence of a basic sound-engine is assumed, and the requirements
to this systems data structures and its interface are described. This basic
sound-engine uses OpenAL + EFX (Effects Extension). When it comes to
the description of common features of audio engines, OpenAL + EFX will
be used as reference.

The major part of this work will cover an algorithmic solution for the
sound system to keep an approximation of the current game world by organ-
ising its geometry using a tree-structure. The occurring examples will work
on a 2D game world, but the described techniques could be expanded for a
3D solution as well.

The algorithmic examples refer to Java implementations and explana-
tions about structural matters are done by an object orientated point of
view.

1.2 Motivation
Due to the increasing popularity of open world games and other games, that
build their game world dynamically during runtime (e.g. “Minecraft1”) there
is a strong demand for a system, that can find the right acoustical settings
for this game world geometry without human intervention.

Another field of application would be games, which provide user level
editors. It is not usual to put the strain of defining audio parameters to the
user, so a system to automatise this procedure has to be present.

The related programming work is done in Java utilising OpenAL Soft2

and its effects extension EFX. Each of these technologies are working cross-
platform. OpenAL Soft and EFX are LGPL-licensed3 which means a working
solution could be provided to the public.

1https://minecraft.net/
2http://kcat.strangesoft.net/openal.html
3See [12]) for more information about LGPL.



Chapter 2

State of the Art

2.1 Current Situation on the Market
Gameplay bases on three components: Graphics, behaviour (physics and
AI) and sound. During the 90s e.g. there were huge improvements in the
first two components developed while sound was left kind of behind. The
CPU was strongly limited and the game-sound had to get along with left
overs. In contrast, sound generation and propagation has not received as
much attention due to the extremely high computational cost of simulating
realistic sounds [9].

When searching for up to date literature concerning the generation of
environmental and acoustic data in game programming, one will quickly fig-
ure out, that most of the relevant papers/books were written until the mid
2000s. Accordingly to various online discussions at this time the computa-
tional power of normal PCs has reached a level that made it unnecessary to
buy dedicated audio hardware and the marked started to shrink.

3D-Sound technologies such as audio wave tracing are used nowadays
in games where audio has been payed enough attention. Games with very
sophisticated soundscapes (e.g. Battlefield 4, Crackdown) usually use their
own home brewed systems. There is no sound engine around, that can be
used with Java directly and provides the possibility to define materials with
their acoustic parameters and wraps the functionality of OpenAL into a tidy
interface at the same time.

2.1.1 Audio APIs

This section lists the most important currently available audio APIs and
gives an overview of their features.

3



2. State of the Art 4

OpenAL (Open Audio Library)

OpenAL is an interface to the audio hardware. In order to produce high-
quality audio output, specifically multichannel output of 3D arrangements of
sound sources around a listener, the interface consists of numerous functions
[11]. OpenAL is designed to be cross-platform and is meant to be an audio
equivalent to OpenGL. The corresponding code-base to this thesis is done
by using OpenALs Java binding via the LWJGL1, which allows to deploy
software for Windows, Linux and Mac OS.

OpenAL Soft is an LGPL-licenced [12] software implementation of the
OpenAL 3D audio API. It is a free alternative to the proprietary OpenAL.
OpenAL Soft provides the capabilities for playing audio in a virtual 3D envi-
ronment. Distance attenuation, doppler shift, and directional sound emitters
are among the features handled by the API. More advanced effects, including
air absorption, occlusion, and environmental reverb, are available through
the EFX extension. It also facilitates streaming audio, multi-channel buffers,
and audio capture [13].

The frequency filtering capabilities of OpenAL Soft are rather coarse
grained. There is a low-pass filter and a high-pass filter only.

XAudio2

XAudio2 is a low-level audio API by Microsoft. It provides a signal pro-
cessing and mixing foundation for games that is similar to its predecessors,
DirectSound and XAudio [14].

Moreover it provides the possibility to place sounds into a 3D environ-
ment as well as a set of filtering operations (high/low/band-pass filters),
environmental effects (e.g. reverb) and occlusion/obstruction filtering. See
section 2.2 for more information about these features.

Web Audio API

The “Web Audio API” is specified as a high-level JavaScript API for pro-
cessing and synthesising audio in web applications.

The primary paradigm is of an audio routing graph, where a
number of AudioNode objects are connected together to define
the overall audio rendering. The actual processing will primarily
take place in the underlying implementation (typically optimised
Assembly/C/C++ code), but direct JavaScript processing and
synthesis is also supported [16].

It supports filters (high pass, low pass, band pass, high shelf, low shelf,
peaking and notch), sound synthesis (OscillatorNode). Additionally a set of

1Light weight Java game library (www.lwjgl.org).
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effect nodes are available (Convolver Node, which is basically a reverb effect,
DelayNode, DynamicCompressorNode, GainNode etc.).

2.1.2 Audio Middleware

The term “Audio Middleware” is a generalisation of software, which links
the game logic (or the games objects) to the audio system.

Middleware is software that connects game developers with the
hardware ... they use in development. Just as Pro Tools lets
you generate sound from a computer, middleware lets users links
sounds to game objects etc. [2].

Audio Middleware can be seen as an abstraction of the underlying Audio
APIs functionality.

The currently most popular and powerful audio middleware systems are
Audiokinetics Wwise2 and Fmod3. Both ship along with a graphical inter-
face similar to a DAW (Digital Audio Workstation). They link game events
and game entities with audio events and encapsulate audio designers work
from coding. Both are capable to deploy cross-platform output.

An automated handling of a dynamic changing to the game world is
missing at both systems. A dedicated software layer is necessary with both
systems.

2.2 Features
This section is a summary of features which are expected from a state of the
art game audio system. Since OpenAL Soft and its effects extension EFX
is used in the corresponding code base some explanations are done referring
to OpenALs specification and its restrictions concerning OpenAL Soft.

A goal of this section is to point out how important the presence of
a geometry model is, when it comes to the automation of these features
parameterisation.

2.2.1 3D Localisation

This term basically means that the audio output of a virtual source is prop-
erly panned accordingly to the appearance of this source in the games scene.
The so achieved spacial hearing experience depends on the hardware and the
speakers setup. More sophisticated technologies take the HRTF (Head Re-
lated Transfer Function) into account which simulates the configuration of
humans physiology like phase differences caused by the location of both ears.

2https://www.audiokinetic.com/products/wwise/
3http://www.fmod.org/
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Figure 2.1: Sounds from sources within the radius of the reference distance 𝑎
will be clamped to 𝑔 = 1.0 while sounds from beyond the maximum distance
𝑐 would not be heard at all. In between the gain value is interpolated linearly
(rolloff factor 𝑏).

2.2.2 Distance Effects

Air Absorption

Air Absorption models the filtering of high frequencies over increasing dis-
tances between source and listener. This factor may be altered to simulate
sound propagation in different media (e.g. under water). OpenAL-EFX al-
ready provides a function to set an air absorption factor.

Attenuation Over Distance

OpenAL comes along with various “distance models”. The most reasonable
and common in top down 2D-games is the “clamped linear distance model”.
It can be calculated like shown in the equations 2.1, 2.2 and 2.3, where 𝑑
is the current distance, 𝑔 is the gain, 𝑎 is the reference distance, 𝑏 is the
rolloff factor and 𝑐 is the maximum distance (See [6] for more details.). The
equations

𝑑1 = 𝑚𝑎𝑥(𝑑, 𝑎), (2.1)
𝑑2 = 𝑚𝑖𝑛(𝑑1, 𝑐), (2.2)

𝑔 = (1− 𝑏 · 𝑑2 − 𝑎

𝑐− 𝑎
) (2.3)

determine the gain of a source in relation to its distance to the listener. Its
behaviour can be seen in figure 2.1.

2.2.3 Environmental Effects

Although real-world sound propagation and environmental effects are quite
complicated and have many contributing factors, by far, the two greatest
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determining factors in overall sound characteristics are environmental ge-
ometry and material composition [1].

Environmental effects mean the natural phenomenons of reverberations
and echoes. These additions to the original sound gives the listener orienta-
tion and information about the environment he is currently in (e.g. a cave,
a stadium, a small living room etc.). This is caused by sound waves which
bounce off of various structural components before they can reach the lis-
teners ear.

Other then in real worlds physics—where sound propagates in concentric
and continuous waves—in digital applications sound has to be discretised.
In other words what is considered a circularly spreading wave in real world
acoustics can be modelled as set of rays circularly arranged from the same
origins.

A first intention, when it comes to the work on a sound engine, may be
the achievement of a maximal level of realism. In non real-time applications
which neglect computational complexity, environmental data are gained by
using an intensive utilisation of ray cast operations. They are used for exam-
ple in 3D walk-around software which may be applied in architectural pre-
visualisation for example. In the paper A beam tracing method for interactive
architectural acoustics a system which uses beam tracing data structures and
algorithms to compute propagational paths from a static source to a moving
listener is introduced. This approach needs at least a preprocession to work
in real time [5]. Other than in many cases of computer game development
computational cost is not an important issue since these calculations can be
done offline.

Considering that the major chunk of the available computational power
in a typical game-cycle is dedicated to graphics and logic, the audio proces-
sion has to get along with “the rest”. That means, that expensive ray cast
operations in order to compute a maximal number of early reflections and
late reflections (see section 2.2.3) must be reduced to a minimum while a
good parameterised utilisation of delay and reverb effects could lead to a
satisfying result as well.

Sound waves in the digital domain are considered a set of rays. This
section describes the relevant occurrences of sound reception in a game world
in order to achieve a realistic impression.

Direct Signal

The direct signal is perceived, when a sound reaches the listeners ears with-
out any interferences. The signal will be affected by distance effects only
(see section 2.2.2).

In real wold physics this sound would be received delayed accordingly
to the distance, the sound waves have to travel. In my experience in many
computer games audio this fact is ignored. In some cases a delayed sound
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would be considered rather a bug than realism.

Early reflections

Early reflections (or first-order-reflections) correspond to what audio pro-
ducers know as echoe- or delay-effects. The used terminology leans against
the parameters of common reverb and delay effects, like Apples Logic Pro´s
reverb effect PlatinumVerb.

As shown in figure 2.2 an early reflections sound path is bounced off of
an geometrical obstacle once before it hits the listener. The oncoming signals
strength and its frequency composition is determined by the material, the
geometric obstacle is made of and the total length of this path (compared
to the direct signal). So the absorption behaviour of the material causes
filtering operations which are added to the distance effects.

Pre-Delay

The pre-delay is the time between the reception of the direct signal and
an early reflection (see figure 2.3). Its value is determined by the speed the
sound propagates in the current medium. A default assumption may be dry
air at 20∘C which gives a speed of sound of 343 metres per second. At this
point may be mentioned, that a good architecture should provide a global
unit of distances.

Late reflections

Late reflections are higher order reflections and in general perceived as a dif-
fuse “tail of sound” (see figures 2.2 and 2.3). Therefore a reverb effect comes
into play. Its parameterisation depends on the attributes of the room, the
listener is currently in. The rooms’ shape, its material composition and the
listeners position within this environment should be considered for proper
settings.

Initial Delay

This parameter sets the amount of time between the direct signal and the
beginning of the diffuse sound tail. It is normally greater than the early
reflections pre-delay [15].

Decay Time

Also known as the Reverb Time sets the length of the reverb tail. Big rooms
cause longer decay times than smaller ones do. Of course, the material com-
position of this room has to be taken into account as well.
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Figure 2.2: Representative paths of a direct signal, an early reflection and
a higher order reflection.

Figure 2.3: Occurrence of a signal with its environmental effects over time
(x-axis).

2.2.4 Occluded/Obstructed Sounds

Occlusion or obstruction are given by the absence of a direct path from source
to listener where occlusion can be described as a total obstruction. OpenAL
“Effects Extensions Guide” [6] suggest, that only a sound which is in the
same acoustic room, than the listener is can possibly obstructed. If a source
is located in a different environment its occlusion related filtering would
mask any obstruction-filtering anyway. This approach bares optimisation
potential though it is not a strictly true assumption in the real world (See
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Figure 2.4: The occluding geometries materials attributes determine the
attenuation of the signals high-frequencies and low-frequencies.

ListenerSource 2

Source 1

lightly obstructed

highly obstructed

Figure 2.5: The obstructive effect is determined by the included angle in
the path between source and listener.

figures 2.4 and 2.5 for examples.).
Storing potential obstacles bounding boxes will increase efficiency greatly,

but at the expense of some accuracy [6]. The presence of an obstacle can be
determined by checking whether the direct line between source and listener
intersects a bounding box.
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2.2.5 Material Composition

The level of sophistication in materials behaviour is determined by the fil-
tering capabilities of the underlying audio API. In case of OpenAL Soft fil-
tering operations can be processed either on low frequencies (LF-Reference
= 250 Hz) or high frequencies (HF-Reference = 5000 kHz). So a materials
attributes consist of its reflectivity (LF and HF) and its absorption (LF and
HF). A linear absorbing behaviour of materials like concrete can be rec-
ommended as an efficient solution. Though this approach differs from real
world acoustics it satisfies the demands of games audio.

2.2.6 Apertures

To work with multiple acoustic environments a concept of apertures is re-
quired. In this context apertures are areas of wall segments which divide two
acoustic environments and are permeable for audio signals. A very obvious
example would be a clear-air opening like a doorway or an open window
between two rooms. But furthermore closed doors and walls which are ac-
cordingly to their thickness and material composition not total occluding for
a sound signal are considered to be apertures. So apertures are needed to
pan sounds from adjacent rooms in a right way considering the game worlds
geometry and its material composition.

Figure 2.6 illustrates the placement of apertures in a typical 2D game
world scenario. As one can see in the image, apertures are basically lines,
while the placement of a source needs a point coordinate only. In practical
use the source will be placed on the apertures point nearest to the listener.

Regarding a dynamical change to the geometry a recalculation of the
affected rooms apertures has to be performed. Apertures must be consid-
ered dynamic and are heavily affected by the users interaction (destroyed
walls, doors etc.). For calculations concerning the placement and updating
of apertures see 4.6.

2.2.7 Channel Strip Model

The priorly described features will result in a multichannel output (e.g.
stereo/surround) which basically utilises panning, filtering operations and
environmental effects (reverb and delay). Their setup in the context of a
channel strip model can be seen in figure 2.7. Since the environmental effects
result in additional signals to the original sources signal, a duplication of the
direct signal is sent to “Auxiliary Send Channels”.
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L
is
te
n
e
r

Source

Figure 2.6: The pink structures mark the apertures—all areas on the walls,
which are permeable for a sound signal. Noises from adjacent environments
have to be perceived from these apertures.



2. State of the Art 13

Parameter n
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Figure 2.7: A channel strip model of the audio output as known by hardware
mixers or DAW-Software (Digital Audio Workstations) is presented in the
image. The direct signal passes through the “Channel” where its panning
and distance effects (filter) takes place. The outgoing signal is split and sent
to “Aux Send 0” and “Aux Send 1” where the environmental effects are
interconnected.



Chapter 3

The Dynamic Geometry
Middleware

The main task of the Dynamic Geometry Middleware (DGM) is to keep the
game worlds geometry model up to date so that the sound engine main-
tains its capability to provide the features as described in chapter 2 in a
dynamically changing and/or a dynamically generated game world.

3.1 Integration Into a Games Architecture
The layer diagram in figure 3.1 illustrates the integration of the DGM in a
typical game architecture.

The listing below mentions the Dynamic Geometry Middlewares tasks:
• Passing play-, pause-, stopping requests from the game logic towards

the sound engine.
• Keep game worlds geometry model consisting of wall/obstacle-segments,

rooms/regions and apertures.
• Update the geometry model in case of a changing. This process has to

be invoked by the game logic utilising the DGMs interface.
• Automatically parameterisation of environmental effects regarding to

a rooms geometrical and material set up and the listeners and sources
positions. The parameterisation of environmental effects settings is not
covered by this work. The presence of an up to date geometrical model
can be seen as a fundamental prerequisite for such a task though.

• Providing an interface which enables the game logics programmers to
announce creational and destructive events. And furthermore define
materials and specify their acoustic behaviours in terms of reflectivity
and absorption.

14
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Figure 3.1: This Layer Diagram shows the role of the DGM in the context
of a game engine architecture. The red areas mark the domain of the games
audio procession while the game engines core is shown in the green areas.
The output section on the right represents audio and graphics output. “Play
sound request” stands for play, stop and pause requests. A closer explanation
of the geometry model itself and its updating algorithms take place in section
4.

3.2 Representation of Materials
Each wall in the game world has to consist of a material. In this data-
object are reflectivity and occlusion values (e.g. for high and low frequen-
cies) recorded. The algorithms described in section 4 will work under the
assumption that all rooms in this game world are closed structures. This
required a material “Air”, which is used in clear-air openings (see section
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2.2.6) like open doors or windows and has no reflective or absorptive im-
pacts. Additionally a discussion how to decide whether an opening between
two rooms is a door or a short corridor can be omitted this way.

The “Material” class provides the method to compute the remaining gain
after a signal has travelled through one distance unit of this material. Even
though this is a total denial of real worlds physics it is absolutely adequate
for game audio to make this fall off linear over distance.

3.3 Representation of the Geometry
In order to perform efficient collision detection geometrical objects are rep-
resented as rectangles with its length and width, its position coordinates
and its material. A frequently performed task for a game sound system in
general is to check for intersections of propagational paths with bounding
boxes. To keep the performance of the system in acceptable dimensions an
axis aligned geometry is recommended. Though rotated geometry elements
could be handled as well this thesis covers the procession of axis aligned
geometry only.

3.4 Representation of Environments/Regions
In the following sections rooms are also called regions. In game audio a room
is considered to be an acoustic environment with its own reverberant param-
eters. These parameters can be derived from the rooms material composition
(reflectivity), its size and shape.

Concerning the reflective quality of a room, its adjoining walls mate-
rial composition have to be known. For the reverbs parameterisation the
average of theses walls material attributes is utilised. By controlling reverb
parameters such as room size, reverb level, reflections level, air absorption,
reverberation decay time etc, a sound designer can accurately simulate many
different types of environment [8].

The “Region” object keeps connectivity data which store occlusion val-
ues and aperture coordinates to adjacent rooms. In order to provide the
features of occlusion in combination with apertures (see 2.2) all acoustic
environments are organised in a graph where each room is represented by a
node and the occlusion values are represented by the edges.

Figures 3.2(a) and (b) show a game world which is resolved in this fash-
ion. It remains a simple tree search task to determine what parts of a signal
and from which direction could a listener in room “B” perceive a sound that
occurs in environment “D”.
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Figure 3.2: Figure (a) shows a typical 2D-Game scenario. We have serval
rooms which are connected by apertures with different occlusion values. The
representation of this game world as a tree-like structure will make it simple
to determine what the listener in 𝐵 can hear from the adjacent rooms. Note,
that the tree in (b) contains the node 𝐴 twice. The algorithm will decide
to render the path with less occlusion and ignore other occurrences of this
node.

3.4.1 The PAS (Potential Audible Set)

Since the attenuation over distance as described in 2.2.2 the acoustic scope of
each room has a limitation. The PAS of a room consists of its neighbouring
environments within the radius of the max distance variable. The rooms´
center could be taken as the PAS’s center as a very simple solution.

As an additional optimisation each room node stores a reference to the
neighbouring rooms within the PAS only, since sounds from outside the PAS
can be ignored at all.



Chapter 4

Implementations

4.1 Quad-Tree
In order to keep the sound system encapsulated from the games logic it has
to preserve its own data to describe rooms and separations of these rooms.
Therefore a change of the worlds geometry (creation, destruction etc.) must
entail a measuring of these changes and further more a merge with the so
far known data. These data will be needed to localise sound sources and
the sound listener within the game world. In other words the data structure
has to be capable to describe polygonal shapes and be proper for efficient
collision detection.

K-d trees are k-dimensional trees. They are used to organise k-dimensional
data. K-d trees in the 2D-domain are called quad-trees while oct-trees
are used for 3-dimensional data. In this section a 2-dimensional game world
example is discussed. In order to get the described algorithms working on
3-dimensional data the algorithms must be extended properly.

Quad-trees can be seen as axis aligned hierarchical partitionings of 2-
dimensional data.

A quad-tree is a tree whose nodes are either leaves or have four
children [7].

The root node includes the whole game world and each parent node has 4
children. Until the fulfilment of a stop criteria each parent node is divided
into 4 child nodes in recursive fashion. Typical criteria for stopping the
recursive creation of sub nodes include the tree reaching a maximum depth
or the child nodes getting smaller than an arbitrary set minimum size.

18
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4.1.1 The QuadTreeNode Object

In the following algorithmic descriptions QuadTreeNode objects are assumed
to be composed like

𝑛←< 𝑓, 𝑠, 𝑚, 𝑟, 𝑡, 𝑤, 𝑥, 𝑦 > .

The following lists the data a QuadTreeNode has to record:
• 𝑓 : QuadTreeNode father: The denotation of the parent element as

“father” is adopted from [10].
• 𝑠: QuadTreeNode[] sons: This denotation is also transferred from [10].

The presence of parent and child elements is a basic requirement to
work as a tree structure. Furthermore if a request for a QuadTreeNodes
child element returns null, this element is a leaf.

• 𝑚: Material material determines if a leaf belongs to a wall or a
room. The absence of an assigned material member indicates that a
leaf belongs to a room.

• 𝑟: Region label: If the request for the label of a QuadTreeNode re-
turns null, the element is currently not assigned to a region.

• 𝑡: short sonType: Indexes if this element is a northwestern, northeast-
ern, southwestern or southeastern quadrant of its father (see 4.6).

• 𝑤, 𝑥, 𝑦: (double width, double x, double y).

4.1.2 Creation of a Quad-Tree

In the following the child nodes are denoted as quadrants or sons. Figure
4.1 shows a simple example of a quad-tree and its corresponding graph (see
[4]).

Algorithm 4.1 shows the recursive computation of a quad-tree where leafs
store weather they belong to the inner of a room or to a wall segment. The
QuadTreeNode objects are initialised with its material variable material =
null, which means it is considered to be a room leaf by default. During the
creation process a material is assigned if the specific node is identified as a
wall leaf. This distinction will be needed when it comes to an interpretation
of the quad-trees data (see section 4.3). The accuracy of the result and the
runtime complexity are defined by 𝜖 and 𝑚 and the general decision, which
collision detection technique should be used (see section 4.2). Where 𝑚 is
the minimum size of leafs which means it is the stopping criteria for this
algorithm. The value of 𝑚 is arbitrary set and dictates the balance between
resolution of the quad-tree and runtime performance.

As shown in figures 4.2 this data structure can be used to approximate
any polygonal shape. As mentioned above the quad trees components are
axis-aligned. In this specific example the wall segments are axis-aligned as
well which is of course not compulsory. Inside the method yieldNodeType
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Figure 4.1: A simple example of a quad-tree. Note, that the maximal num-
ber of searching iterations per tree level is 4 which leads to very efficient
behaviour when it comes e.g. to the determination of the listeners position.

a collision detection algorithm is called. See section 4.2 for different box
intersection and collision detection methods and section 4.7 for their impact
on the performance.

4.2 Collision Detection
A very important issue in terms of performance and accuracy is the collision
detection method, which is used when it comes to a quad-trees generation.
The algorithm 4.1 calls a generically denoted collitionDetectionMethod.
This section gives an overview of different techniques and their qualities. See
section 4.7 for a direct comparison of the discussed techniques performance
and memory usage properties.

4.2.1 Point-Box Intersection

A very basic routine in 2D programming is to answer the question whether
a point 𝑃 (𝑥, 𝑦) intersects with a box (in the so far given examples the wall
sections are represented as axis-aligned boxes) 𝑅(𝑢, 𝑣, 𝑤, ℎ), where 𝑢, 𝑣 mark
the upper left corner point and 𝑤, ℎ are width and height of the rectangle.
Algorithm 4.2 shows the basic routine. Its integration in the quad-tree cre-
ation procedure is demonstrated in algorithm 4.3.

The major advantage of this approach is free adjustable (via 𝜖 as shown
in algorithm 4.1) level of accuracy and the minimal number of quad-tree
leafs it creates. A quad-tree creation which utilised this algorithm processes
a collision detection for every position 𝑥, 𝑦 within the quad-trees root node
which is of course the most costly strategy one can imagine.
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(a)

(b)

Figure 4.2: Figure (a) shows an example of a 2D world. The grey structures
mark the walls. The screenshot has an original resolution of 1024×768 where
𝑠 = 700, 𝑚 = 4 and 𝜖 = 10. Figure (b) shows the leafs of the resulting quad-
tree (filled with random colour). The inaccuracy of this approximation can
be seen at the white remaining areas.
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Algorithm 4.1: Recursive computation of a quad-tree. A QuadTreeNode
object 𝑛, which is the root node of the computed tree is passed in. 𝑠 is the
start size of the the quad-tree. 𝑚 is the minimal size a leaf can have. 𝜖 is
the threshold wether a leaf marks a wall or a room.

1: function computeQuadTree(𝑛)
2: 𝑖, 𝑚← yieldNodeType(𝑛, 𝑚, 𝜖)
3: if 𝑖 = 0 then
4: 𝑐𝑆 ← 𝑛.𝑠/2 ◁ 𝑐𝑆 = size of the child nodes.
5:
6: childNW ←< 𝑛, 𝑁𝑊, 𝑐𝑆 , 𝑥, 𝑦 >
7: 𝑛.𝑠.[𝑁𝑊 ]← childNW
8: computeQuadTree(childNW )
9:

10: ... divide into NE, SE, SW in same fashion
11:
12: else
13: if 𝑖 = 2 then
14: 𝑛.𝑚← 𝑚
15: end if
16: end if
17: end function
18:
19:
20: function yieldNodeType(𝑛, 𝑚, 𝜖)
21: 𝑑← 𝑠/2 ≥ 𝑚 ◁ Denotes if a leaf is further divisible.
22: return < collisionDetectionMethod(𝑛, 𝑚, 𝜖, 𝑑) >
23: end function

4.2.2 AABB-AABB Intersection

A way more effective strategy is to make profit from the fact that quad-
tree nodes are boxes as well, that can be easily tested for intersection with
the worlds geometry segments. As the name suggests a constraint for this
technique is of course that the game world is represented in axis aligned rect-
angles. See algorithm 4.4 for the collision test itself and 4.5 for its integration
in the quad-tree creation process.

In this approach the priorly used threshold value 𝜖 has no affection and
the results accuracy is determined by the minimum size 𝑚 only. Another
method (isTotallyIncluded(𝑛, 𝑤)) is introduced, which checks if a quad-
tree node 𝑛 is totally included by a wall segment 𝑤. Otherwise it has to be
further divided—if divisible. If it cannot be divided anymore, it is declared
as a wall leaf.

This strategy is very fast since it operates on boxes with a minimum
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Algorithm 4.2: A basic point-box intersection test. A point 𝑃𝑥,𝑦 and a
rectangle 𝑅 =< 𝑥, 𝑦, 𝑤, ℎ > are passed in. The method returns 1 if 𝑃 is
located on 𝑅. Else 0 is returned. Note that the lines 2—12 could be expressed
as “OR” constraints as well but the given solution performs better since
unnecessary check-ups may be omitted.

1: function pointBoxIntersection(𝑃, 𝑅)
2: if 𝑃.𝑥 < 𝑅.𝑥 then
3: return 0
4: end if
5: if 𝑃.𝑥 > 𝑅.𝑥 + 𝑅.𝑤 then
6: return 0
7: end if
8: if 𝑃.𝑦 > 𝑅.𝑦 then
9: return 0

10: end if
11: if 𝑃.𝑦 < 𝑅.𝑦 −𝑅.ℎ then
12: return 0
13: end if
14: return 1
15: end function

size of 𝑚 but its accuracy is limited at the same coarse level. Furthermore,
it creates a needlessly high number of quad-tree leafs which raise memory
usage and may have negative affection to the performance of the system in
large game worlds.

See figure 4.3 for a comparison of the so far presented collision detec-
tion techniques results and section 4.7 for a discussion of performance and
memory usage.

4.2.3 Hybrid 1

This technique combines the priorly described techniques in order to get
the efficient behaviour of the AABB-AABB algorithm and the accuracy
characteristics of the point-box intersection test. Therefore the function-
ality of the point-box intersection approach is extracted to the method
pointBoxCollision and in the so far known yieldNodeType integrated
as shown in algorithm 4.6.

Figure 4.4 shows a result of the “Hybrid 1” collision detection algorithm.
It reveals an improvement in terms of accuracy compared to the pure AABB-
AABB intersection algorithm. The slightly worse result in computational
time can be seen in section 4.7.
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(a)

(b)

Figure 4.3: Comparison of AABB-AABB intersection method (b) to point-
box intersection detection (a). The AABB-AABB approach produces unnec-
essarily more quad-tree leaf instances, is less accurate but significantly faster
than the point-box intersection technique (Hybrid 2 version—see 4.2).
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Algorithm 4.3: The call of collisionWithWalls performs a point-box-
intersection test of the point 𝑃𝑥,𝑦 with every known wall segment. The
method returns 0 if 𝑛 must be divided, 1 if 𝑛 is a room leaf and 2 if 𝑛
is a wall leaf. In this case the material 𝑚 is returned as well. Otherwise (0
or 1) null is returned instead of a material object.

1: function yieldNodeType(𝑛, 𝑚, 𝜖)
2: 𝑠← 𝑛.𝑠/2
3: 𝑑← 𝑠/2 ≥ 𝑚 ◁ Denotes if a leaf is further divisible.
4: 𝑝𝐶 ← 0 ◁ Positive collision counter variable
5: 𝑛𝐶 ← 0 ◁ Negative collision counter variable
6: 𝑚← 𝑛𝑢𝑙𝑙 ◁ material initialised by 𝑛𝑢𝑙𝑙.
7: for all positions 𝑥, 𝑦 of 𝑛 do
8: if collisionWithWalls(𝑥, 𝑦) then
9: 𝑝𝐶 ← 𝑝𝐶 + 1

10: if 𝑚 = 𝑛𝑢𝑙𝑙 then
11: 𝑚← collisionWithWalls(𝑥, 𝑦).𝑚
12: end if
13: else
14: 𝑛𝐶 ← 𝑛𝐶 + 1
15: if 𝑛𝐶 > 𝜖∧!𝑑 then
16: return 1, 𝑛𝑢𝑙𝑙
17: end if
18: if 𝑝𝐶 > 𝜖∧!𝑑 then
19: return 2, 𝑚
20: end if
21: if 𝑛𝐶 > 𝜖 ∧ 𝑝𝐶 > 𝜖 ∧ 𝑑 then
22: return 0, 𝑛𝑢𝑙𝑙
23: end if
24: end if
25: end for
26: end function

4.2.4 Hybrid 2

The output result of “Hybrid 2” is exactly the same as a quad-tree processed
by using the point-box-intersection technique while revealing a way better
computational efficiency. The algorithm can be seen in 4.7.

4.3 Labeling a Quad-Tree
Like described in section 4.1 we gained data which allow very efficient tree
search operations but furthermore there is still the need to connect the leafs
of our search tree semantically and determine their affiliation with a room.
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Algorithm 4.4: A straight forward intersection detecting algorithm for
axis-aligned boxes only. It has a boolean returning type and two rectangles
𝑅1, 𝑅2 as input values. Each rectangle consists of an upper left corner point
(𝑥, 𝑦), a width (𝑤) and height (ℎ) value.

1: function aabbAabbCollision(𝑅1, 𝑅2)
2: if 𝑅1.𝑥 + 𝑅1.𝑤 < 𝑅2.𝑥 ∨𝑅1.𝑥 > 𝑅2.𝑥 + 𝑅2.𝑤 then
3: return 0
4: end if
5: if 𝑅1.𝑦 > 𝑅2.𝑦 −𝑅2.ℎ ∨𝑅1.𝑦 −𝑅1.ℎ > 𝑅2.𝑦 then
6: return 0
7: end if
8: return 1
9: end function

Algorithm 4.5: Integration of the “AABB-AABB” intersection test in the
quad-tree creation process. A new object type Wall 𝑤 ←< 𝑥, 𝑦, 𝑤, ℎ, 𝑚 >
appears here, which is an axis-aligned rectangle with already described prop-
erties and an additional Material 𝑚 assigned. The game worlds geometry
consists of Walls.

1: function yieldNodeType(𝑛, 𝑚)
2: 𝑠← 𝑛.𝑠/2
3: 𝑑← (𝑠/2 ≥ 𝑚) ◁ Denotes if a leaf is further divisible
4: 𝑤 ← checkCollisionWithAllWalls(𝑛)
5: if 𝑤 ̸= 𝑛𝑢𝑙𝑙 then
6: if isTotallyIncluded(𝑛, 𝑤) then
7: return 2, 𝑤.𝑚
8: else
9: if 𝑑 then

10: return 0, 𝑛𝑢𝑙𝑙
11: else
12: return 2, 𝑤.𝑚
13: end if
14: end if
15: else
16: return 1, 𝑛𝑢𝑙𝑙
17: end if
18: end function

As one looks at the input-data there is only one binary question to ask
for each 𝑥, 𝑦 in the game world 𝐼(𝑥,𝑦). Whether a coordinate (𝑥, 𝑦) belongs to
a wall or a room. This setup reminds strongly of the problem of labeling,
which typically comes from the field of digital imaging.
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Algorithm 4.6: This algorithm differs from the AABB-AABB approach by
utilising the point-box-collision technique if a node cant be divided anymore
and it is neither a pure room leaf nor a pure wall leaf.

1: function yieldNodeType(𝑛, 𝑚, 𝜖)
2: 𝑤 ← checkCollisionWithAllWalls(𝑛)
3: if 𝑤 ̸= 𝑛𝑢𝑙𝑙 then
4: if isTotallyIncluded(𝑛, 𝑤) then
5: return 2, 𝑤.𝑚
6: else
7: if 𝑑 then
8: return 0, 𝑛𝑢𝑙𝑙
9: else

10: return pointBoxCollision(𝑛, 𝑚, 𝜖)
11: end if
12: end if
13: else
14: return 1, 𝑛𝑢𝑙𝑙
15: end if
16: end function

Figure 4.4: Result of a quad-tree creation utilising the “Hybrid 1” collision
detection technique. Its accuracy is regarding to the threshold parameter 𝜖,
while still unnecessarily many nodes are produced.
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Algorithm 4.7: The presented algorithm performs the “Hybrid 2” collision
detection and differs to “Hybrid 1” by resolving all nodes which are not
purely wall or room nodes utilising the point-box-intersection technique.

1: function yieldNodeType(𝑛, 𝑚, 𝜖)
2: 𝑤 ← checkCollisionWithAllWalls(𝑛)
3: if 𝑤 ̸= 𝑛𝑢𝑙𝑙 then
4: if isTotallyIncluded(𝑛, 𝑤) then return 2, 𝑤.𝑚
5: elsereturn pointBoxCollision(𝑛, 𝑚, 𝜖)
6: end if
7: else
8: return 1, 𝑛𝑢𝑙𝑙
9: end if

10: end function

(a) (b)

Figure 4.5: A key concept for common algorithms in binary image labeling
is the connectivity of single pixels. Figure (a) shows a 4-neighbourhood while
a 8-neighbourhood can be seen in (b).

4.3.1 Introduction: Labeling

In binary images, a pixel can take on exactly one of two val-
ues. These values are often thought of as representing the “fore-
ground” or the “background” in the image [3].

The primary task of region labeling in binary images is to interpret the
number and type of objects in such images. A connected binary region is a
group of touching foreground pixels in the simplest case.

There are various techniques known to solve this problem on binary
images such as region labeling with flood filling (either iterative, recursive
or combined solutions1).

Independent of which technique is used, the type of neighbouring must
be settled before to determine of two pixels are “connected” to each other.
Figure 4.5 shows how a 4- or a 8-connected definition of “neighbouring”
looks like. The different definitions could lead to different results (see [3]).

1See [3] for more detailed information about the various techniques on region labeling
in binary images.
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Figure 4.6: Note, that the quadrants are denoted as “Northwest”, “North-
east”, “Southwest” and “Southeast”, while the boundaries are called like
geographic directions (N, E, S, W).

4.3.2 Algorithmic Solution for (Binary) Quad-Trees

As seen in section 4.3.1 a very fundamental idea of labeling algorithms in
general are neighbourhoods. But in case of a quad-tree this concept is not
given in a clear way. This section refers to an algorithmic solution by Hanan
Samet published in 1981 (see [10]).

Fundamentals

A fundamental concept for this approach is the relation between a quadrant
and the boundaries of its parent node as shown in 4.6.

The “reflect” method returns the sonType value 𝑟, which is located at
a given sonType 𝑖 reflected over a direction 𝑑. Consider figure 4.6 at the fol-
lowing examples to understand sonType reflect(direction, sonType):
reflect(W, NW) returns NE, reflect(S, NW) returns SW.

The “adj” method is very simple and returns true or false if a given
sonType value 𝑟 is adjacent to a border 𝑑. For example: adj(W, NW) gives
true while adj(S, NW) returns false. See figure 4.7 for the relationship of
the so far described classes.

4.3.3 Key Functions of the Labeling Class

The visitation of the quad-tree starts from its northwestern most element
and propagates towards the east and the south. It traverses the tree in pos-
torder by recursive calls. The main call of the labeling procedure is shown
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Node

short: sontype
node: father
list<node>: sons
Material: material
Region: label

getters and setters

Region

float[]: color
list<node>: nodes

moveNodesToOtherRegion()

Labeling

Node: rootNode
list<Region[]>: merges

process_Labeling()
adj()
reflect()
assign_Label()
get_Equal_Adj_Neighbour()
label_Adjacent()
clean_Up_Merges()

Figure 4.7: The class diagram visualises the relations of the so far described
classes. A closer look at the “Labeling” class‘s methods is taken in section
4.3.3.

in algorithm 4.8. As already mentioned a major problem is the retrieval of
neighbouring elements which is solved by the function getEqualAdjacentNeighbour(QuadTreeNode
𝑝, short 𝑑). It returns the neighbour of node 𝑝 in direction 𝑑, which has
a greater or equal size. If the node 𝑝 is on the edge of the game world, null
is returned [10]. See algorithm 4.9.

4.3.4 Merging Regions

At line 7 in algorithm 4.10 a method assignLabel(𝑝, 𝑞) is called. The
input parameters 𝑞 and 𝑝 are both QuadTreeNodes which are identified as
neighbouring room elements. In other words, these elements belong to the
same region and have to end up with the same label. If 𝑝 already is labeled, 𝑞
will be assigned the same label and vice versa. If none of these leafs is labeled
yet, a new region object is created and assigned to both as label. Under
certain circumstances 𝑞 and 𝑝 are already assigned with different labels (see
4.12). In this case these regions are added to ArrayList<Region[]> merges.
Iterating over merges and merging its entries is the final step of this labeling
technique.

4.4 The General Quad-Tree Traversal Technique
The combination of the algorithms 4.9 and 4.10 is a fundamental technique
to “operate” on a quad-tree. The retrieval of a regions border elements and
computation of apertures as described in 4.6 use this approach as well.
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Algorithm 4.8: Main call of the labeling procedure as described in [10]. A
QuadTreeNode 𝑝 is passed in.

1: function label(𝑝)
2: if 𝑝.𝑠[0] ̸= 𝑛𝑢𝑙𝑙 then ◁ label in order NW, NE, SW, SE
3: label(𝑝.𝑠[𝑁𝑊 ])
4: label(𝑝.𝑠[𝑁𝐸])
5: label(𝑝.𝑠[𝑆𝑊 ])
6: label(𝑝.𝑠[𝑆𝐸])
7: else
8: if 𝑝.𝑚 = 𝑛𝑢𝑙𝑙 then
9: 𝑞 ← getEqualAdjNeighbour(𝑝, 𝐸)

10: if 𝑞 ̸= 𝑛𝑢𝑙𝑙 then
11: labelAdjacent(𝑞, 𝑁𝑊, 𝑆𝑊, 𝑝)
12: end if
13: 𝑞 ← getEqualAdjNeighbour(𝑝, 𝑆)
14: if 𝑞 ̸= 𝑛𝑢𝑙𝑙 then
15: labelAdjacent(𝑞, 𝑁𝑊, 𝑁𝐸, 𝑝)
16: end if
17: end if
18: end if
19: end function

Algorithm 4.9: Algorithmic description of the retrieval of an equally or
greater sized neighbouring node of node 𝑝 in direction 𝑑.

1: function getEqualAdjNeighbour(𝑝, 𝑑)
2: QuadTreeNode 𝑞 ← 𝑛𝑢𝑙𝑙 ◁ init node 𝑞 with 𝑛𝑢𝑙𝑙
3: if 𝑝.𝑓 ̸= 𝑛𝑢𝑙𝑙 ∧ adj(𝑑, 𝑝.𝑡) then
4: 𝑞 ← getEqualAdjNeighbour(𝑝.𝑓, 𝑑)
5: else
6: 𝑞 = 𝑝.𝑓
7: end if
8: if 𝑞 ̸= 𝑛𝑢𝑙𝑙 ∧ 𝑞.𝑠[0] ̸= 𝑛𝑢𝑙𝑙 then
9: 𝑟 ← reflect(𝑑, 𝑝.𝑡)

10: 𝑞 = 𝑞.𝑠[𝑟]
11: end if
12: return 𝑞
13: end function

4.4.1 Generalisation of this Technique

In the following sections this technique will be denoted as general quad-
tree traversal technique. To generalise the function labelAdjacent() has
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Algorithm 4.10: Finds all descendants of node 𝑟 adjacent to node 𝑝, in
quadrants 𝑞1 and 𝑞2.

1: function labelAdjacent(𝑟, 𝑞1, 𝑞2, 𝑝)
2: if 𝑟.𝑠[0] ̸= 𝑛𝑢𝑙𝑙 then
3: labelAdjacent(𝑟.𝑠[𝑞1], 𝑞1, 𝑞2, 𝑝)
4: labelAdjacent(𝑟.𝑠[𝑞2], 𝑞1, 𝑞2, 𝑝)
5: else
6: if 𝑝.𝑚 = 𝑛𝑢𝑙𝑙 then
7: assignLabel(𝑝, 𝑟)
8: end if
9: end if

10: end function

(a) (b)

Figure 4.8: Since the algorithm propagates from the northwestern most ele-
ment towards the east and the south, in certain constellations a wall segment
may “cover” underlying leafs. See the yellow and dark blue areas in example
(a). After processing cleanUp_Merges() the affected regions are unified as
shown in (b).

to be changed to operateOnAdjacent() which is described in algorithm
4.11.

Let us discuss an example for a deeper understanding. A QuadTreeNode
𝑃 is given and an operation on the element(s) in the east should take place.
Algorithm 4.12 shows how to invoke this action.

The neighbourhood in the east of a node 𝑃 should be explored. The
call of getEqualAdjacentNeighbour(𝑃, 𝐸) will return 𝑄. If 𝑄 ̸= 𝑛𝑢𝑙𝑙,
it will be passed to operateOnAdjacent(𝑄, 𝑁𝑊, 𝑆𝑊, [𝑥]). In figure
4.9 (a) 𝑄 is a leaf, while in (b) a node has to be handled. In this case
operateOnAdjacent will do recursive calls to operate on both: The north-
western and the southwestern quadrants of 𝑄.
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Algorithm 4.11: Generalisation of algorithm 4.10. Again a node 𝑟 and the
sontypes (NW, NE etc.) 𝑞1, 𝑞2 are passed in. Additional parameters which
might be needed for the specific procedure are denoted as [𝑥].

1: function operateOnAdjacent(𝑟, 𝑞1, 𝑞2, [𝑥])
2: if 𝑟.𝑠[0] ̸= 𝑛𝑢𝑙𝑙 then
3: labelAdjacent(𝑟.𝑠[𝑞1], 𝑞1, 𝑞2, [𝑥])
4: labelAdjacent(𝑟.𝑠[𝑞2], 𝑞1, 𝑞2, [𝑥])
5: else
6: ... ◁ Operations on the desired element.
7: end if
8: end function

Algorithm 4.12: The sonType values 𝑞1 and 𝑞2 are the reflected quad-
rants to the desired direction. Example: Eastern direction northwestern and
southwestern quadrants.

1: ...
2: QuadTreeNode 𝑄← getEqualAdjacentNeighbour(𝑃, 𝐸)
3: if 𝑄 ̸= 𝑛𝑢𝑙𝑙 then
4: operateOnAdjacent(𝑄, 𝑁𝑊, 𝑆𝑊, [𝑥])
5: end if
6: ... ◁ ... can be performed towards N, E, S and W

P Q P
NW

SW
Q

(a) (b)

Figure 4.9: The method operateOnAdjacent has to distinguish weather
𝑄 is a leaf (a) or a node (b). In case of (b) a recursive call will carry out
the operation (which may use the parameter [𝑥]) on both (NW and SW)
quadrants.

4.5 Handling Changes to the Geometry
As one thinks about the graph of the quad-tree example in figure 4.1, a
changing on the described geometry—whether a destruction or a creation—
can be simply handled by the replacement of the affected subtree. In other
words the major part of the magic has already happened in the sections
4.1.2 and 4.3.
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4.5.1 Merging Changes into Existing Data

To process a changing, that affects several wall segments we assume that a
list of added or removed geometry elements is passed to our system. As a
next step the outer bounds of the geometrical changing 𝑏 is computed. This
simple task is described in algorithm 4.13.

Algorithm 4.13: This function simply computes and returns the boundary
coordinates (𝑏 =< 𝑖𝑥,𝑦, 𝑗𝑥,𝑦 >) of a list of rectangles (𝑤 =< 𝑒1, 𝑒2, ..., 𝑒𝑛 >).
Note, that we assume an upright positive y-axis.

1: function computeOuterBounds(𝑤)
2: 𝑖.𝑥← MAX ◁ init returning values with MIN/MAX.
3: 𝑖.𝑦 ← −MAX
4: 𝑗.𝑥← −MAX
5: 𝑗.𝑦 ← MAX
6: for all 𝑒 of 𝑤 do
7: if 𝑒.𝑥 < 𝑖.𝑥 then
8: 𝑖.𝑥← 𝑒.𝑥
9: end if

10: if 𝑒.𝑥 + 𝑒.𝑤 > 𝑗.𝑥 then
11: 𝑗.𝑥← 𝑒.𝑥 + 𝑒.𝑤
12: end if
13: if 𝑒.𝑦 > 𝑖.𝑦 then
14: 𝑖.𝑦 ← 𝑒.𝑦
15: end if
16: if 𝑒.𝑦 − 𝑒.ℎ < 𝑗.𝑦 then
17: 𝑗.𝑦 ← 𝑒.𝑦 − 𝑒.ℎ
18: end if
19: end for
20: 𝑏←< 𝑖, 𝑗 >
21: return 𝑏
22: end function

With this data the so far known quad-tree can be traversed, starting at
the root node 𝑟, in order to find the QuadTreeNode 𝑛, which totally embraces
the outer bounds 𝑏. Algorithm 4.14 demonstrates how this can be achieved
by utilising the method
boolean totallyIncluded(QuadTreeNode 𝑛, double[]𝑏),
which simply returns true if 𝑛 totally includes 𝑏, else false is returned. The
algorithm works under the assumption that 𝑏 is at least totally included by
the root node 𝑟.

Now, that the root node of the subtree which has to be recalculated is
known, it simply can be passed to the computeQuadTree algorithm (4.1).

The logical next step is to pass this subtrees root node to the labeling
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Algorithm 4.14: This method returns the QuadTreeNode 𝑛 which totally
embraces a rectangle described by the coordinate set 𝑏 =< 𝑖𝑥,𝑦, 𝑗𝑥,𝑦 >.

1: function findAllEmbracingNode(𝑏, 𝑟)
2: 𝑛← 𝑟 ◁ Copy input node 𝑟
3: 𝑐← 𝑟.𝑠
4: if totallyIncluded(𝑐[𝑁𝑊 ], 𝑏) then
5: 𝑛← findAllEmbracingNode(𝑏, 𝑐[𝑁𝑊 ])
6: else
7: if 𝑡𝑜𝑡𝑎𝑙𝑙𝑦𝐼𝑛𝑐𝑙𝑢𝑑𝑒𝑑(𝑐[𝑁𝐸], 𝑏) then
8: 𝑛← findAllEmbracingNode(𝑏, 𝑐[𝑁𝐸])
9: else

10: if totallyIncluded(𝑐[𝑆𝑊 ], 𝑏) then
11: 𝑛← findAllEmbracingNode(𝑏, 𝑐[𝑆𝑊 ])
12: else
13: if totallyIncluded(𝑐[𝑆𝐸], 𝑏) then
14: 𝑛← findAllEmbracingNode(𝑏, 𝑐[𝑆𝐸])
15: end if
16: end if
17: end if
18: end if
19: return 𝑛
20: end function

algorithm (4.8). Figure 4.10 shows the intermediate result prior the call of
cleanUp_Merges().

As one can see in the image, this would lead to an unsatisfying result
since the northern border of 𝑛 adjoins an already known region which has to
be merged with the currently calculated region in 𝑛. To solve this problem
all the bordering elements of 𝑛 have to be visited in order to check, if already
labeled, non-wall elements are beyond their borders. Algorithm 4.15 shows
how this can be accomplished, assuming, that 𝑛 is already known and by
using a variant of the general quad-tree traversal technique (see section 4.4).
The final result can be seen in figure 4.11.

In the discussed example two additional wall segments appeared with no
influence to the number of regions in the game world. See figures 4.12 (a)
and (b) for another example where a wall segment is removed, so that two
priorly known regions merge to one.

4.6 Calculating Apertures
As described in section 2.2.6 apertures are lines, located on the border of a
region. The placement of these lines depends on the occluding attributes of
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Figure 4.10: The red rectangle marks the outer boundaries of the changed
geometry, while the yellow box denotes the node 𝑛 which is the nearest
ancestor of the affected leafs that totally includes the red rectangle.

the wall in this section. To be clearer, a sound that occurs in an adjacent
room will appear from the aperture which has less occlusion to the room,
the listener is currently in.

Sources are placed on point coordinates and not on lines. So the source
has to be placed on the point on the aperture which is nearest to the listener.

4.6.1 Finding a Quad-Tree Regions Border Elements

A first step to yield the apertures of a region to its adjacent ones is to find
the bordering elements. The knowledge of a regions border is not just neces-
sary to calculate apertures. The material composition of a regions “walls”,
which is needed to parameterise the environmental effects (see section 2.2.3),
can only be derived from the border elements of this room. To set up the
environmental effects, the “shape” of a room should also be considered be-
side the area. Therefore other geometrical properties of this region may
be calculated2. The very interesting question how e.g. the eccentricity of a
quad-tree region could be calculated and how the result should influence the

2See [3] for more information about different geometrical properties (e.g. compactness
and roundness) of binary image regions.
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Figure 4.11: Solved merging by using the algorithm like described in 4.5.1.

(a) (b)

Figure 4.12: A wall segment is removed, so that priorly known regions have
to merge. Image (a) shows the status before the call of cleanUp_Merges().
The final result can be seen in (b).

parameterisation of a reverb effect would exceed the scope of this work.
The border elements of a quad-tree region can be found by using the

general quad-tree traversal technique (see 4.4) for each leaf of a region in
every direction. This variant of operateOnAdjacent has to set the entry
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Algorithm 4.15: The input value QuadTreeNode 𝑛 embraces all affected
elements of the quad-tree. This algorithm describes how to visit the borders
(N, W, S, E) of 𝑛 in order to check the seam to the so far known quad-tree
to perform a sufficient merging later on.

1: function relabel(𝑛)
2: removeAllLabels(𝑛)
3: label(𝑛)
4: visitBorder(𝑁, 𝑛, 𝑁𝑊, 𝑁𝐸)
5: visitBorder(𝑊, 𝑛, 𝑁𝑊, 𝑆𝑊 )
6: visitBorder(𝑆, 𝑛, 𝑆𝑊, 𝑆𝐸)
7: visitBorder(𝐸, 𝑛, 𝑁𝐸, 𝑆𝐸)
8: end function
9: function visitBorder(𝑝, 𝑞1, 𝑞2, 𝑑)

10: if 𝑝.𝑠[0] ̸= 𝑛𝑢𝑙𝑙 then
11: visitBorder(𝑝.𝑠[𝑞1], 𝑞1, 𝑞2, 𝑑)
12: visitBorder(𝑝.𝑠[𝑞2], 𝑞1, 𝑞2, 𝑑)
13: else
14: 𝑞 ← getEqualAdjNeighbour(𝑝, 𝑑)
15: if 𝑞 ̸= 𝑛𝑢𝑙𝑙 then
16: assignLabel(𝑝, 𝑞)
17: end if
18: end if
19: end function

isBorderElement ← true and the direction of the adjacent wall element
in each QuadTreeNode which has a neighbouring wall element. Additionally
a list of these border leafs List<QuadTreeNode> borderElements must be
collected and stored in the respective region object.

4.6.2 Extracting Apertures

Object-Type: ConnectivityData

Each leaf, which is identified as a bordering element gets a connectivity data
object assigned.

𝑐←< 𝑟, 𝑑, gl , gh >

Connectivity data consist of:
• 𝑟: adjacentRegion—Initialised to null.
• 𝑑: direction—The direction towards the adjacent wall element.
• gl : lowFrequencyGain—Initialised to 1.0.
• gh :highFrequencyGain—Initialised to 1.0.



4. Implementations 39

In order to find these apertures the following requirements have to be ful-
filled after the successive search for a regions border elements like described
above:

• Every region object keeps a list of its border leafs (see section 4.6.1)
• Every border leaf keeps a record about the direction (N, E, S, W) to

the adjacent wall element.
• Every wall leaf of our quad-tree keeps a record about the “material”

(see section 3.2) it is made of.
• Every region (room) has closed boundaries. Openings like windows

and doors are modelled by using a “clear air material”.
Since apertures consist of a subset of the bordering elements, the al-

gorithm has to visit each border element 𝑛 of a region 𝑅 and perform an
exploration towards its borderDirection 𝑑. Again the general quad-tree
traversal technique (see section 4.4) is used. It proceeds towards 𝑑 and de-
creases lowFrequencyGain 𝑙 and highFrequencyGain ℎ accordingly to the
current wall elements size and the material it is made of.

The stopping criteria for this procedure are:
• A room node is reached.
• The gain values 𝑙 and ℎ have become ≤ 0.0.
As soon as the exploration has reached a room leaf, a check for this leafs

regional belonging has to take place, to make sure, that the found region is
not 𝑅 again.

The method exploreBorder is another variant of operateOnAdjacent
(see algorithm 4.11). It explores a wall, starting from a bordering leaf 𝑛 to-
wards direction 𝑑 as shown in algorithm 4.16. The QuadTreeNode 𝑞 is the ad-
jacent wall element which was priorly found by the getEqualAdjacentNeighbour
method, while 𝑐 is the current ConnectivityData object.

A shortcoming of this approach is that diagonally located elements are
neglected. Therefore an enhancement of the quad-tree traversal could be
considered.

4.7 Performance and Memory Usage

4.7.1 Performance Tests

Since the collision detection calculations take the major part of the comput-
ing time, this section has a strong focus on the comparison of the different
techniques described in section 4.2. The described performance measure-
ments were done without any graphical representation so that different ren-
dering times could not blur the outcomes. The tests were done on the already
well known game world geometry setup as used in the sections before.
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Algorithm 4.16: The algorithm performs a walls occlusion measurement
starting from a QuadTreeNode 𝑛. QuadTreeNode 𝑞 is the adjacent wall and
𝑐 is the current connectivity data.

1: function exploreBorder(𝑞, 𝑞1, 𝑞2, 𝑛, 𝑐)
2: if 𝑏.𝑠[𝑁𝑊 ] ̸= 𝑛𝑢𝑙𝑙 then
3: exploreBorder(𝑞.𝑠[𝑞1], 𝑞1, 𝑞2, 𝑐)
4: 𝑐2← copy(𝑐)
5: exploreBorder(𝑞.𝑠[𝑞2], 𝑞2, 𝑞1, 𝑐2)
6: else
7: if 𝑞.𝑚 = 𝑛𝑢𝑙𝑙 then ◁ A non wall element is reached
8: if 𝑞 ̸= 𝑛 then
9: 𝑐← 𝑛𝑢𝑙𝑙

10: return ◁ We are in the same region!
11: else
12: 𝑐.𝑟 ← 𝑞.𝑟
13: 𝑛.𝑐← 𝑐
14: end if
15: else
16: 𝑠← 𝑞.𝑤
17: 𝑚← 𝑞.𝑚
18: l ← 𝑐.gl
19: h ← 𝑐.gh
20: ... ◁ Compute l and h reduction accordingly to 𝑠 and 𝑚.
21: if l ≤ 0.0 ∧ h ≤ 0.0 then
22: 𝑐← 𝑛𝑢𝑙𝑙 return ◁ Total occlusion
23: else
24: 𝑐.gh ← h
25: 𝑐.gl ← l
26: end if
27: 𝑑← 𝑞.𝑐.𝑑
28: 𝑟 ← getEqualAdjacentNeighbour(𝑞, 𝑑)
29: if 𝑟 ̸= 𝑛𝑢𝑙𝑙 then
30: exploreBorder(𝑟, 𝑞1, 𝑞2, 𝑛, 𝑐)
31: else
32: return
33: end if
34: end if
35: end if
36: end function
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Table 4.1: 𝑠 = the scale factor. We assume a root node size of 700 units
(𝑠 = 1). If for example 𝑠 = 0.5 root node size is 350. The whole geometry is
scaled by 𝑠 as well. 𝑠𝑀𝑖𝑛 = the minimum size of a leaf, 𝜖 = the accuracy
threshold value, 𝑡 = the duration (of collision detection only) in milliseconds
and 𝑀 = the amount of created leafs.

Technique 𝑠 𝑠𝑀𝑖𝑛 𝜖 𝑡 𝑀

Point-Box 0.5 10 4 221.427 841
AABB-AABB 0.5 10 - 18.949 1312
Hybrid 1 0.5 10 4 40.754 1312
Hybrid 2 0.5 10 4 327.946 841
Point-Box 1.0 10 4 1632.224 1891
AABB-AABB 1.0 10 - 32.712 2833
Hybrid 1 1.0 10 4 103.44 2833
Hybrid 2 1.0 10 4 727.914 1891
Point-Box 1.5 10 4 6740.274 3166
AABB-AABB 1.5 10 - 66.768 5956
Hybrid 1 1.5 10 4 241.53 5956
Hybrid 2 1.5 10 4 2282.84 3166

The table 4.1 shows the results of performance tests with different col-
lision detection techniques as described in section 4.2 on different scales of
the example game worlds. As one can see in column 𝑀 the “AABB-AABB”
approach and the “Hybrid 1” variant generate the same number of quad-
tree leafs while the “Point-Box” intersection technique and the “Hybrid 2”
variant generate an identical quad-tree as well.

Figure 4.13 compares these groups graphical and shows their character-
istics in differently scaled set ups.

The computing time measurements of the quad-tree creation can be seen
in 4.14, while the major chunk of computational complexity is used for col-
lision detections as shown in 4.15.

4.7.2 Memory Usage

Figure 4.16 shows the class diagram of the so far described implementations.
In table 4.2 the memory usage of these classes on a 64 bit machine is listed.
Each instance has a 16-bit header and its total size is rounded up to the next
multiple of 83. Table 4.3 exemplifies how these memory usage calculations
are done on the “Material” class Concrete.

3http://btoddb-java-sizing.blogspot.co.at/
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Figure 4.13: The growth of the number of generated nodes has no linear
behaviour since different scaled set ups can be divided more or less efficient
into quad-tree nodes.

Figure 4.14: This graph shows the computational times of the quad-tree
generation itself which means the collision detection times are subtracted.
There are similarities between “Point-Box” and “Hybrid 2” as well as between
“AABB-AABB” and “Hybrid 1” noticeable again. This is caused by the same
number of produced nodes the respective group has to process.
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(a)

(b)

Figure 4.15: The graphics (a) and (b) compare the performance of the
described collision detection techniques on different scales of the example
game world.
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Table 4.2: Memory usage in bytes per instance of each class as seen in class
diagram 4.16. The byte values are minimum sized. Arrays, which are held
by some classes are assumed to be empty. Their minimum memory size (32
bites) is taken into account.

Class bytes / instance
QuadTreeNode (Leaf) 104
QuadTreeNode (Node) 144
ConnectivityData 40
Region 200
Aperture 48
Material 152
Wall 56

Table 4.3: Memory usage calculation of the class “Concrete”. Note, that
the total sum 152 is divisible by 8. Otherwise an additional padding must be
taken into account.

Concrete
Class header 16 bytes
String id
String overhead 64 bytes
“Material1410257419562225000” → 27 * 2 bytes 52 bytes
Padding (to the next multiple of 8) 4 bytes
float occlusion_Hf 4 bytes
float occlusion_Lf 4 bytes
float reflectivity_Hf 4 bytes
float reflectivity_Lf 4 bytes
Total 152 bytes

Example

Since the listings in table 4.2 are calculated with empty arrays in the various
classes actual memory usage has to be demonstrated by examples.

Let us compare the memory usages of the same game world geometry
solved by different collision detection algorithms. As described in the sections
4.2 and 4.7.1 the resulting quad-trees differ depending on the used collision
detection technique.

Figure 4.17 shows the solved example game world by utilising the Hybrid
2 (a) approach, respectively the AABB-AABB collision detection technique
(b). The different results in terms of memory cost are listed in table 4.4.
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(a)

(b)

Figure 4.17: The figures above show the test game world differently solved.
For (a) “Hybrid 2” collision detection algorithm was used while “AABB-
AABB” was utilised for (b). The walls consist of 17 “Concrete” segments
and 1 “Clear Air” wall (the horizontal dark blue segment in the upper right).
Leafs which have acoustic connectivity to adjacent Regions are drawn black.
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Table 4.4: The table below sums up the memory usage of all objects as
created on the game world examples shown in figures 4.17 (a) and (b). The
column 𝑐 denotes the count of the particular object, while 𝐵 stands for byte.
𝐿 abbreviates “Leafs” and 𝑁 replaces “Nodes”.

Hybrid 2 AABB-AABB
𝑐 Object 𝐵 𝑐 Object 𝐵

1891 𝐿 196664 2833 𝐿 294632
630 𝑁 65520 944 𝑁 98176

3 Region: 3 Region:
R1: 85 𝐿, 1 Arp. 872 R1: 89 𝐿, 1 Arp. 904
R2: 371 𝐿, 1 Arp. 3160 R2: 336 𝐿, 1 Arp. 2888
R3: 495 𝐿 3952 R3: 502 𝐿 4208

32 ConnectivityData 1280 23 ConnectivityData 920
2 Aperture 96 2 Aperture 96
2 Material 304 2 Material 304

18 Wall 1008 18 Wall 1008
Total 272856 Total 403136

4.8 Optimisation
In the sections above the computations of regions, the regions borders, the
connectivity to other regions and the location of this connections (aper-
tures) have been described in separated steps. All of these procedures use
their specified variants of the general quad-tree traversal technique. An
obvious optimisation approach is to combine these steps to minimise the
number iterations. For didactic purposes and the possibility to do perfor-
mance tests on each of these steps they are described separately in this
thesis.

As one can see in section 4.7.1 the computational complexity of opera-
tions on quad-trees in general depends strongly on the size of this tree while
the trees size increases in steps on linearly increased scales of the game
world. This means, that a potential optimisation lies in the game worlds de-
sign. In order to optimise a game worlds design in respect to the “Dynamic
Geometry Middleware” further investigations would be necessary to derive
the needed set of rules.

Another improvement in terms of run time complexity concerns the col-
lision detection. In current implementations every node is collision tested
against every known wall segment during the quad-trees creation. But a
collision test actually is necessary against those wall segments which have
a positive collision test agains the father of this node only. Therefore an
additional list of colliding wall segments for every node must be recorded.
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This would increase the memory usage. A pay off may be expected on game
worlds of larger scales.



Chapter 5

Conclusion

In general the presented system turned out to be a very flexible tool when
it comes to approximate arbitrary polygonal shapes (rooms) where initially
the shapes boundaries (wall segments) are known only. In particular the
practical use in context of a games sound system still is to be proven. The
restriction on an axis aligned game world geometry (which is just a matter
of the utilised collision detection technique) and the fact that the system
neglects diagonally located neighbouring leafs limits the range of games the
software could be implemented in.

A still missing link to the sound engine is the automated parameteri-
sation of environmental effects based on the “Dynamic Geometry Middle-
ware’s” results. The area and material composition can easily extracted from
the presented system which basically is sufficient for setting up a proper
reverb effect. But to achieve more sophisticated results and correctly pa-
rameterise e.g. a predelay and decay times, further calculation concerning
the room’s geometrical properties (e.g. the compactness of a region) have to
take place.

Since these operations are well explored in the field of “digital image
procession” (in relation to binary image labeling) a transfer of these tech-
niques from into the domain of quad-tree regions would be very interesting
task and a potential field for further scientific works.
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