Evaluation of Printed Augmented Reality
Markers

Thomas M. Irrer

MASTERARBEIT

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im November 2019



© Copyright 2019 Thomas M. Irrer

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.



Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, November 24, 2019

Thomas M. Irrer



Contents

Declaration

Abstract

Kurzfassung

1

Introduction

1.1 Context . . ..........
1.2 What is Augmented Reality?
1.3 Goal . ... ... .. .....

Visual Augmented Reality Markers

2.1 Introduction . . . ... .. ..
2.2 History .. ... ... .. ..
2.3 Visual Marker Systems . . . .
24 Why QR-Codes? . . ... ..
2.5 Versions . .. .........

2.5.1 Structure . .. .. ..
2.6 Visual marker problems . . .

Functionality of QR Codes

3.1 Introduction. ... ... ...
3.1.1 Pre-Processing . . . .
3.2 Detection . . ... ... ...
3.3 Decoding .. .........
Implementation
4.1 Libraries . . . . .. ... ...
4.2 Architecture . . . . ... ...
4.3 Optimization . . .. .. ...
4.4 Time complexity . . .. ...
4.5 QR code failure . . . .. . ..
Evaluation
5.1 Introduction. . . ... .. ..
5.2 Codesize . ... .......

iii

=,

S,

DN =

W 1 O O U

—_

19
19
26
27

28
28
29
31
32
33



Contents
5.3 Lighting . . . . . . . . e
5.4 Design . . . . ..o
6 Conclusion

A CD-ROM/DVD Contents

References
Literature . . . . . . . e e
Online Sources . . . . . . o o e s

40
44

50

52



Abstract

The increase in the computational capacities of phones, in addition to the increased
quality of the cameras installed in them, gave rise to untold possibilities for augmented
reality applications. With the wider use of AR systems, the range of situations marker
systems are used in also increased. Naturally, this leads to marker systems being used
in suboptimal conditions, causing failure in the system. The reasons for this failure,
however, may not always be obvious. The initial goal of this project was the creation of
a tool that allowed the developer of an AR application to quickly evaluate the quality
of a locale or display mode for their AR markers, as well as provide feedback on what
may be responsible for the failure. The intention was to test many images to find a
correlation between obvious problems of the images, such as blur or poor lighting, in
order to determine which problems influence the detection process. In this paper the
attempt at finding a method by which to judge the quality of images for augmented
reality applications is detailed. It includes a brief overview of the topic of AR and a
deeper dive into the sub-genre of visual marker-based AR. The path to finding said
method required the analysis of images containing AR markers, specifically QR codes.
As such the way by which QR codes are detected and decoded is explained in detail,
including most reasons why the detection might fail. Additionally, the program by which
the analysis took place is discussed in its implementation, from the software architecture,
the libraries used to the ways the implemented process differs from the standard QR
code detection as well as from other detection methods. The results of testing hundreds
of images on image conditions and the ability to find a QR code in them make up one
chapter, which also includes an explanation of the results and their meaning for Code
detection. The results of this testing did reveal some of the issues and their influence
on the detection, however, no satisfactory method of judging or grading could be found
to accurately represent the issues present in the image.

Vi



Kurzfassung

Fortschritte in der Rechenleistung und der Qualitdt der verbauten Hardware in Mo-
biltelefonen erlaubt die Entwicklung immer gréflerer und ambitionierteren Augmented
Reality (AR) Anwendungen. Durch die weiter verbreitete Nutzung, stieg allerdings auch
die Verwendung von AR-Systemen in ungeeigneten Situationen, was zum Scheitern der
Projekte fithren kann. Die Griinde fiir dieses Scheitern sind aber nicht immer offensicht-
lich. Zu Beginn war das Ziel dieses Projektes die Entwicklung von analytischer Software
um Entwickler von AR-Anwendungen mit visuellen Marker-Systemen mehr Daten iiber
die Bedingungen unter welchen die Marker-Systeme verwendet werden, zu liefern. Spe-
zielle Probleme, die es zu erkennen und quantifizieren galt waren die Lichtbedingung
und Ausrichtung der visuellen Marker. Das Ziel war Griinde fiir das Scheitern zu benen-
nen, zu quantifizieren und Feedback iiber mogliche andere Probleme zu liefern. Diese
Arbeit beschreibt die Methodik, mit welcher ein Versuch getétigt wurde, ein System
zu entwickeln, welches Bilder fiir ihre Nutzbarkeit fiir AR Anwendungen bewertet. Die
Arbeit beinhaltet eine kurze Zusammenfassung der historischen Entwicklung von AR
Systemen und eine tiefer gehende Erklédrung des Subgenres von AR-Systemen basierend
auf visuellen Markern, speziell QR-Codes. QR-Codes sind die priméren Test Marker fiir
dieses Projekt und als solches wird die Funktionalitét, welche die Erkennung und Deco-
dierung ausmacht, genau unter die Lupe genommen. Von speziellem Interesse sind die
Bedingungen unter welchen die Erkennung von QR-Codes scheitert, um daraus Schliisse
itber die allgemeine Erkennung von AR-Markern zu ziehen. Um eine Korrelation zwi-
schen bestimmten Aspekten von Bildern, wie zum Beispiel die Lichtsituation, und dem
Scheitern von der Erkennung von QR-Codes zu finden, wurde Software implementiert
um eine grofle Menge an Bildern testen zu kénnen. Das Programm entwickelt fiir diesen
Zweck wird in seiner Architektur und Funktion erklart, die Libraries verwendet, in ihrer
Rolle fiir dieses Projekt angesprochen. Die Resultate des Evaluierens von tiber 100 Bil-
dern, welche QR-Codes in verschiedensten Situationen zeigen, macht ebenso ein Kapitel
aus. Das Ziel war es hier nicht zu messen wann die Erkennung von QR-Codes scheitern,
sondern zu hinterfragen was sich aus dem Scheitern einer speziellen Methode iiber die
im Bild gegebenen Bedingungen schliessen lésst.

vii



Chapter 1

Introduction

1.1 Context

With the rise in computing power in mobile devices as well as the increase in mobile
internet connection speeds, an abundance of Augmented Reality (AR) applications have
been developed. Given the breadth of real-world scenarios, AR is applied in suboptimal
use conditions are inevitable. The following paper is interested in the particular condi-
tions that affect the quality of use for AR systems using visual AR markers. A wide array
of images containing visual markers were analyzed through different means of computer
vision and general image analysis combined with a marker detection and analysis tool
in order to attempt to establish a connection between data points of image quality and
failure to detect the code correctly. The operative question arising through this pro-
cess is: Which performance-relevant criteria are essential for evaluating the quality of a
printed or displayed augmented reality marker?

1.2 What is Augmented Reality?

The classification of Virtual Reality(VR) and AR is a problem the research community
has been struggling with for a while. VR is generally associated with the science fiction
idea of a Star Trek type Holodeck, allowing a user to fully immerse themselves in
a synthetic, computer-generated world, which emulates emulated all stimuli associated
with the experience in that world. The current technological possibilities are far removed
from the science fiction, as the virtual worlds only include visual and auditory feedback
and are generally rather limited in the interaction possibilities. Finding the connection
between AR and VR proves difficult as, either has been described as special cases of the
other; AR being a special case of VR, or AR being a general concept and Virtual reality
being a specific field under it. For the sake of this paper the connection will be drawn as
described by Bimber and Raskar in the introductions to their book on the topic of Spatial
Augmented Reality: “Rather than immersing a person into a completely synthetic world,
AR attempts to embed synthetic supplements into the real environment(...)” [3, p. 2].
The integration of synthetic information into the real environment knows barely any
bounds and finding the edges of what can reasonably be defined as AR seems close to
impossible. One aspect which is required for an AR application is a user in order to create
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a spatial connection between the real environment and the augmentations. This allows
the distinction between the mimicking of hologram technologies by projecting images
onto glasses and the displaying of the same images on a monitor, the first being an
example of AR and the second arguably not. Similar to the above mentioned Holodeck,
the synthetic information generated does not need to be strictly visual, as both auditory
and sensory applications are not only imaginable but were implemented to a degree.
Through the use of a phones geo-location feature linked with a specifically designed
app, an art installation was created at a Holocaust memorial in Berlin. The installation
allows visitors to experience a concert that was performed in 2008 at the memorial
for which the musicians were positioned throughout the area. As the orchestra was
spread all over the area of the memorial, the app uses the GPS position of the phone
to recreate the music which would have been heard at any point in the memorial.
This project fulfills the requirement explained in the book Spatial Augmented Reality
of creating a spatial relation (“registration”) between the real environment and the
augmentations [3, p. 2]. An example of how touch and movement can be synthetically
recreated, hydraulically mounted driving simulators fulfill the requirements somewhat.
By tilting the chair gravity on the user can emulate the forces experienced, while driving,.
Added screens and surround sound can further increase the immersion into the system.
By combining the hydraulic seat with a head-mounted display, the setup could easily
be classified as Virtual Reality. This shows that the transition between AR and VR is
no strict separation, but more of a gradient of how much of the real environment flows
into the experience. The connecting tissue for all AR is the extension of the human
experience of the real world by a technological component. For the sake of this thesis,
these applications are of no relevance, as the artistic value of AR or its influence on
user experience is of no interest. The primary form of AR used for this project is visual
AR systems. One prominent example of such systems are the Google Glasses, head-
mounted computers, which use a camera and a small display create a head-up display.
Using image recognition the device was able to project objects into a user’s field of
view i.e., a keyboard projected onto the user’s hand in order to accept calls. Somewhat
related to AR glasses, projecting 3D objects onto surfaces is a common application
of AR systems. By viewing an AR marker through an application designed for this
purpose using the device’s camera, 3D objects can be projected on the marker. The use
of markers provides the advantage of being able to select the 3D model based on the
marker, allowing for multiple different objects to be projectable, as well as providing
better data to the system allowing for a more stable projection. The use of visual markers
for storing information causes a return to the question of whether the system can be
classified as AR. An Example of QR codes, which are the primarily tested system of
this work, can be used to link to websites, connect to WIFI networks, used for cashless
payment and much more. Using a code to link to an internet site definitely qualifies
as augmenting reality, however, the interaction possibilities are limited to make the
classification of AR arguable at best.

1.3 Goal

As eluded to previously, visual AR marker systems were the primary driver of this thesis
and project. The initial intent of this work was the creation of a tool allowing developers
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to gain deeper insight into why their designed AR markers failed in a specific situation.
The goal was the creation of a rating system as well as providing feedback on what
may be hindering the detection process. This turned out to be virtually impossible
to achieve with classical methods, due to multiple complications. The nature of AR
markers allows issues in early steps of the detection process to permeate only causing
failure later. Additionally finding a correlation between calculated or measured image
statistics to whether or not AR markers can be found in the image proved to difficult. As
a consequence, attempts at creating the mentioned rating system, all suffered from high
levels of arbitrary selection of values. A combination of these factors led to a change in
approach to only gathering data, which could be used in future works to feed a neural
network in order to use the self-adjusting nature of such systems to create a system that
could evaluate images in a way impossible to achieve for human capabilities.



Chapter 2

Visual Augmented Reality Markers

2.1 Introduction

This chapter serves to provide an introduction into the field of visual augmented reality
Markers, in both their applications as well as their functionality. This includes a short
overview of the general development of augmented reality as a whole, as well as a more
detailed explanation of the application and functionality of visual marker systems in
general, and QR codes specifically.

2.2 History

The field of Augmented reality is not limited to a specific device or medium and can
even vary in the sensory form it is perceived as. As such the definition of AR is fraught
with inconsistencies, as the introduction already eluded to. In order to potentially give
a better idea of what AR entails the next section will briefly address the development
of augmented reality. Augmented reality systems use a wide array of different marker
technologies from GPS markers, as shown with incredible virality in Pokemon GO,
RFID Tags used in automatic museum guides or Sound markers better known as speech
activation. Historically the field of augmented reality was a topic of research since 1968
when Ivan Sutherland created the first augmented reality system [12] which used two
tiny CRT displays and semi-reflective mirrors to allow a user to see both the image of
the monitors and their surroundings. In conjunction with a position sensor, it enabled
the projection of simple wire-frame objects into the field of view of a user. The technical
limitations of the time restricted the usage to an area of about two square meters and
a head tilt of a maximum of 40 degrees. The term Augmented Reality referring to the
superimposing of computer-generated data onto the view of the real world was coined
in 1992 by Tom Caudell and David Mizell, who also discussed the required registration
for the alignment of the real and virtual world. The improvements of mobile devices in
conclusion with the 1993 introduced GPS System allowed for new developments in AR.
1996 saw the introduction of 2D matrix markers allowing for camera tracking with six
degrees of freedom by Jun Rekimoto, a development that culminated in 1999 with the
presentation of the open-source ARToolKit pose-tracking library, which is still in use to
this day. The general barcode marker systems used for data storage, existed long before
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that, as the first barcodes were developed back in 1948 in the form of one-dimensional
data storage systems for commercial payment tracking in checkout lines, which would
go on to reduce human error as well as repetitive strain injuries. The improvement to
2D barcode occurred in 1987 with the development of the PDF417 codes, which stored
data in patterns of 4 bars and spaces, overall 17 modules long. Seven years later in
1994, the Toyota subsidiary Denso Wave was tasked with improving the barcodes used
in the automotive factories, with more speed and error-free decoding. The decision to
publicize the specifications allowed for the widespread adaption of the system, which
can be seen today. The increased availability of mobile phones with built-in cameras
lead to advancements in the tracking of real camera images and the addition of virtual
objects. Improvements in computational power in mobile devices also saw the return
of wearable devices with more precise tracking sensors to ensure minimal drift in the
head-mounted displays. Increases in precision in GPS tracking and computational power
allowed for more applications to run on mobile devices with lower effort, leading to
the development of more consumer applications such as games or PDA applications.
2005 saw the introduction of three-axis accelerometers into mobile phones, allowing
for the development of better orientation detection systems. From that point to the
current moment the biggest developments were a product of the incredible increase
of computation power as well as mobile internet connectivity, allowing for borderline
limitless AR applications. An extensive list of developments and examples, including the
ones mentioned here, was found in a technical report Institute for Computer Graphics
and Vision at the Graz University of Technology [1].

2.3 Visual Marker Systems

Visual markers are the primary target technology of this work. As the name suggests
require a camera to record either specific designs which are either stored in a marker
library of the corresponding software or uses computer vision techniques to detect and
project onto a surface in the image. Storing information in square barcode was possible
since the 1950s. The tracking and superimposing of images and 3D models onto these
codes, however, is a rather new development, which arrived in 1999 available to the
public in the form of ARToolkit. As this form of marker tracking was one of the failing
processes which inspired this project, the functionality of the system is the topic of the
next paragraph. The initial goal of ARToolkit was the creation of an AR supported
conferencing system. This includes virtual monitors, which project a video stream of
a communication partner onto the markers for the user wearing the head-mounted
display (HMD) and a tabletop surface bounded by six markers, within which pens can
be tracked to write or draw on in the virtual world. The process of locating the size-
known markers, which represent the base of the virtual monitors, begins by thresholding
the input image and finding contour regions which can be fitted by four line segments,
which are then extracted [9, p. 4]. Through perspective transformation, the position of
the markers in the camera space is determined, which can then be used to calculate
the transformation parameters needed to inject the video-stream back into the image.
The ARToolkit project itself, seems basic for modern standards, but the library, created
from the project, allowing for pose-tracking with six degrees of freedom, using square
fiducials and an approach to the recognition of markers, released open-source under
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the GPD license, would go on to allow a wide range of people to work with AR. The
system is still in use to this day with One of the more common applications of this
technology being the projection of 3D models onto the code or the surface when viewed
through the camera lens. The process by which QR codes are located in an image share
some similarities with the process of ARToolkit, which will be the topic of the following
chapters.

2.4 Why QR-Codes?

To test the impact of certain image features on marker detection quality, a particular
visual marker is necessary to attempt some marker detection. For this project, Quick
Response codes (QR Codes) were chosen as a visual marker. The reasons for this choice
were the accessibility of the system, given its open-source nature, making it easier to
analyze the detection process. Additionally, the QR system is particularly robust, with
multiple layers of error correction and redundancy, allowing for decoding even in disad-
vantageous situations. Particularly the error correction capabilities allow for additional
analysis as the difference between the code which was detected in the image might differ
from the actual marker, the disparity between which can be measured, providing more
data. The specific structure and subsequent detection process of QR Codes also allow
for gradual failure, as only parts of the code might get found, which further enables the
recognition of problems with the image, a different marker system might not allow for.
Even the downside of using a highly specialized marker such as QR codes are limited, as
the steps necessary for successful detection are shared with many AR Systems, allowing
for results to be more generically applicable. The specifics of how and why QR code
detection fails is addressed in a later chapter.

2.5 Versions

There are five different variants of QR codes on the market currently. The most common
and most likely to be referred to as QR codes are the model 1 and model 2 codes, model
2 being an improvement on the original model 1 byte increasing the maximum version
from 14 (73 x 73 modules) to version 40 (177 x 177 modules), a module hereafter referring
to one black or white segment of the QR code. QR codes are primarily used to store
text or number sequences, requiring the version of the code to be selected based on the
amount of data supposed to be stored. Additionally, the amount of data that can be
encoded in a QR code depends on the error correction level of the code, which represents
a trade-off between the amount of storable data and the amount of data which could be
restored in case parts of the code are not correctly read. Reasons for an incomplete or
incorrect reading of the code were discussed in the previous section 2.6. As an example a
version 1 code, consisting of 21 x 21 modules can store 152 bits of data at Error correction
level L, the lowest level, but only 82 bits at the highest level H. In order to store the
same 152 bits of data at the highest level of error correction a version 3-H would be
required, which allows for up to 208 bits of data to be encoded. Version 40, the highest
version of model 2 codes, built up of 177 x 177 modules enables up to 23648 bits of data
to be encoded. In order to store numbers or letters in the code, an encoding structure
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is required. This is however not the limit on the amount of data that can be stored, as
one of the modes describing the data structure encoded in the bit data, the Structured
Append mode allows for the encodations of the data from a particular message to be
split over multiple QR Codes, by encoding the length of the data sequence and one
codes position in it, in each QR code. Other encoding modes describe the default data
structure of the bit-stream. The first of which being the numeric mode. It enables up to
7089 numeric characters from the decimal digit set 0 to 9, by storing three digits per 10
bits, to be encoded in a version40-L code. The alphanumeric mode enables the encoding
of 45 separate characters, i.e. 10 numeric digits (0-9), 26 alphabetic characters (A-Z),
with no capitalization as well as 9 symbols (space, $, %, *, +, — , ., /, :). To achieve this,
two characters are represented by 11 bits, reducing the number of characters storable in a
version 40 code to 4296. The most common encoding for the commercial use of QR codes
is an 8-bit character set. Given that QR codes are an invention of a Japanese company
the initial encoding system for 8 bit data was the JIS X 0201 standard which enables
the storage of the same 10 numeric digits (0-9), 26 - 2 alphabetical characters, for lower
case and capitalized letters, 32 symbols, as well as 96 phonetic Japanese katakana signs.
Modern implementations allow for single-byte encoding in the ISO8859-1 standard, also
known as Latin 1, UTF-8 and Shift_ JIS, the first two used for western languages and the
latter offering encoding for the Japanese language. Using 8 bit to encode one character
lowers the number of storable characters to 2953 or roughly 1/8 of the bit capacity.
Given its Japanese roots, a standard for encoding Kanji symbols exists which requires
a 13-bit binary codeword, per symbol. The FNC1 mode is used for messages encoded
according to the UCC/EAN Application Identifiers standard as well as in accordance
with industry standards according to AIM International. Lastly, the Extended Channel
Interpretation (ECI) mode is used to include data stream interpretations different from
the default, allowing international character sets, general-purpose interpretations for
e.g, encryption, user-defined interpretations for closed industry applications or control
information for structured append. Through this and the binary form of the data, any
feasible way of encoding data could be theoretically be encoded in a QR code. This
allows QR codes to find uses from industrial labeling to cashless payment methods.

2.5.1 Structure

The exact structure of QR symbols as described in the ISO/IEC 18004:2000(E) [15, p. 6]
standard consists of function patterns which include, position detection patterns, timing
patterns and alignment patterns, as well as an encoding region which contains format
and version information as well as the data and error correction codewords. The entire
symbol needs to be surrounded by a quiet zone as per standard. An illustration of this
structure can be seen in figure 2.1. The finder pattern consists of three identical position
detection patterns at the upper left, upper right and lower left corners of the symbol
respectively. One position detection pattern is 7 x 7 modules of size and containing
concentric squares of alternating black and white color, as can be seen in figure 2.2.
The advantage of this specific structure is its rotational invariance, visualized in figure
2.3, as regardless of the direction the pattern is parsed from the ratio is 1:1:3:1:1 of
black:white:black:white:black module. The identification of all three position detection
patterns unambiguously defines the location and orientation of the symbol, ignoring the
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Quict Zonc
Position Detection Pattern

| Seperator for Position
Detection Patterns

Timing Pattern

Alignment Pattern

Format Information

Version Information

\ Data and Error Correction

Figure 2.1: Structure of QR codes recreated from [15, p. 13].

A: 3 modules

A B |C B: 5 modules
C: 7 modules

Figure 2.2: Structure of a position detection pattern recreated from [15, p. 13].

possibility of image being mirrored or flipped. Omitted from the previous listing of
the components of a QR code, the position detection patterns are surrounded by a one
module wide separator, constructed of all light modules. Row and column six contain
the timing pattern, alternating light, and dark one module wide pattern, connecting the
position detection patterns. The regular nature of the pattern allows for the establishing
of estimated module size and module density. “Each Alignment Pattern may be viewed
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Figure 2.3: Visualization of the rotational invariance of position detection patterns recre-

ated from [2, p. 3].
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Figure 2.4: Data and error correction codeword structure in Version 2-M QR code

recreated from [15, p. 48].
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Error Correction Level | Binary Indicator
L 01
M 00
Q 11
H 10

Table 2.1: Binary indicator of error correction level in format information.

as three superimposed concentric squares and is constructed of dark 5x5 modules, light
3x3 modules and a single central dark module [15, p. 13].” The number of alignment
pattern is dependant on the version of the code and only exist in codes of model 2
Version 2 or larger. They are position symmetrically on either side of the diagonal from
the top left and bottom right corner and spaced as evenly as possible. The primary
purpose of the alignment patterns is the compensation of image distortion. Lastly, a
crucial component of QR codes is the mandatory quiet zone around the symbol of
at least 4 modules width, free of any markings and of similar brightness as the light
modules of the code. The remaining descriptors from figure 2.1 are related to the encoded
information. Figure 2.4 shows an example of how data codewords, as well as error
correction codewords, are stored in a code of version 2 with error correction level M.
There are four different levels of error correction Low (L), Medium (M), Quartile (Q)
and High (H). They are capable of restoring approximately 7, 15, 25 and 30% of the
code for the respective level. QR codes generate a series of error correction codewords
which are added to the data codewords, meaning the higher the correction level the
lower the amount of actual data can be stored in a code of the same version. Two types
of mistakes can be corrected in the data: erasures and errors. erasures are erroncous
codewords at known locations and errors at unknown locations. Erasure would be an
unscanned or undecodable symbol character. An error is a misdecoded character. The
number of erasures e and errors t correctable by the system can be calculated using the
following formula 2.1, where d is the number of error correction codewords and p is the
number of misdecode protection codewords, followed by an example calculation taken
from the QR code ISO standardization document[15, p. 33]:

e+ 2t <d—p. (2.1)

“For example, in a version 6-H symbol there is a total of 172 codewords, of
which 112 are error correction codewords (leaving 60 data codewords). The
112 error correction codewords can correct 56 misdecodes or substitution
errors, i.e. 56/172 or 32.6% of the symbol capacity.”

Information on the error correction level of a code is stored in the format information
area adjacent to the position detection patterns. It contains a 15-bit sequence of 5 data
bits and 10 error correction bits. The first two bits contain the error correction level.
The binary indicators and their respective error correction level can be seen in table 2.1,
The remaining three bits contain information on the masking pattern used for the code.
Code masking is done to ensure no structural pattern, particular the 1011101-bit order
found in the position detection patterns, appear by accident in the data area of the
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Mask binary indicator Condition
000 (i +7)mod2 =0
001 tmod2 =0
010 jmod3 =
011 (i+j)mod3 =0
100 (§+4)mod2 =
101 (i-7)mod2 + (i-j)mod3 =0
110 ((1-7)mod2 + (i-j)mod3)mod2 =
111 ((1-j)mod3 + (¢ -j)mod2)mod2 =0

Table 2.2: Masking condition for each binary indicator.
] =S

1aa

Figure 2.5: QR code mask patterns for their respective binary indicator.

code, as well as attempting to ensure a balance between light and dark modules. The
masking patterns are generated as functions of the conditions in table 2.2. The resulting
binary matrices, as seen in figure 2.5 are applied to the codes binary module pattern,
excluding the function patterns, as well as the format and information areas, reversing
each module which corresponds to a dark module in the masking pattern. The resulting
matrix is evaluated through penalties for undesirable features. The penalties calculated
for the masking results consider, adjacent modules of the same color within the same
row or column, blocks of the same color, the sequence dark, light, three dark, light,
dark, appearing in the result as well as the proportion of dark modules in the entire
code. This process is repeated for each masking pattern and the result with the lowest
penalty is selected. The selected mask is stored in the last three bits of the format
information to enable unmasking, the reversal of the masking operation, in order to
read the code. The version information encoded adjacent to the bottom left and top
right position detection pattern contains an 18-bit sequence of 6 data bits and 12 error
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Data Codewords Error Correction Codewords
Block 1 | D1 | D2 | .. | D11 El |E2 | .. | E22
Block 2 | D11 | D13 | ... | D22 E23 | E24 | ... | E44
Block 3 | D23 | D24 | ... | D33 | D34 | E45 | E46 | ... | E66
Block 4 | D35 | D36 | ... | D45 | D46 | E67 | E68 | ... | E88

Table 2.3: Data structure example for Version 5-H QR Code.

correction bits. Only versions 7 to 40 contain the Version information, making an all-
zero data string impossible. It is encoded twice in the code since its correct decoding is
essential to the decoding of the complete symbol. Although the version of the code can
be estimated, if more than one position detection pattern could be found in the image, a
mismatch between the calculated and the encoded version could give insight into display
problems, however. The encodation process requires the input data to be converted into
a bitstream, segmented into a mode indicator, a character count indicator as well as
the data bitstream itself. In addition, an Extended Channel Interpretation mode allows
for en- and decoding of alternative interpretations of the byte values, e.g. Greek letters.
The default encoding modes include numeric, alphanumeric, JIS8 byte encoding, as well
as Kanji characters. Additional mode indicators exist for the end of the message in the
form of 0000, as well as structured append indicators, which are used for data that
is stored across multiple QR codes. Lastly, the FNC1 mode is used for data encoded
according to specific industry standards agreed upon with AIM International or the
UCC/EAN Application Identifiers standard. To construct the final codeword sequence
to be stored in the symbol data codeword sequence is divided into n blocks according to
the version and error correction level. The final sequence is constructed by taking data
from each block in turn: data block 1, codeword 1; data block 2, codeword 1, ..., data
block n — 1, final codeword, data block n, final codeword, and similarly for the error
correction blocks. In order to exactly fill the number of modules in the encoding region,
3, 4 or 7 remainder bits may be required dependant on the version. The ISO standard
provides an example of how this process is applied to a code of version 5 2.3, which is
also the table referred to in the quote [15, p. 46]:

“For example, the Version 5-H symbol comprises four data and four error
correction blocks, the first two of each of which contain 11 data and 22
error correction codewords respectively, while the third and fourth pairs of
blocks contain 12 data and 22 error correction codewords respectively. In
this symbol, the character arrangement can be depicted as follows. Each
row of the table corresponds to one block of data codewords (shown as
Dn.”) followed by the associated block of error correction codewords (shown
as En); the sequence of character placement in the symbol is obtained by
reading down each column of the table in turn.”

The stored codeword sequence is therefore in order: D1, D12, D23, ..., D33, D45, D34,
D46, E1, E23, E45.,..., E22, K44, E66, E&8. The calculation of the polynomial arith-
metic for QR codes is done using bit-wise modulo 2 arithmetic and byte-wise module
100011101 arithmetic. This results in a Galois filed of 2° with 100011101 representing
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the field’s prime modulus polynomial 2%+ 2% + 2% + 22 + 1. The data codewords are the
coeflicients of the terms of a polynomial, sorted from first being the highest power term,
to the last being the lowest. The error correction codewords are the remainder after a
division of the data codewords with a polynomial g(z) based on the version and level of
the code. The extensive list of all thirty-one generator polynomials can be found in the
ISO\IEC 18004:2000(E) QR code standard [15, pp. 67-73]. The remainder of this divi-
sion results in the error correction codeword, again sorted by the order of coefficients,
the highest being the first error correction codewords and the zero power coefficient
being the last. As the full extent of the Reed-Solomon error correction method used for
QR codes extends the scope of this paper, only a brief overview of the steps will be
provided here. The Reed Solomon decoder attempts to identify the position and mag-
nitude of ¢ errors or e erasures, as well as correct the errors and erasures. The received
codewords with errors R = (rg, 71,79, ..., 7,,), all being elements of GF(2%), are fed into
the syndrome calculator, generating e syndromes, which only depend on the errors. The
calculating is done by substituting the roots of the generator polynomial into the ele-
ments of R. Using these syndromes the locations of the errors can be calculated using
Euclid’s algorithm, which in turn enables the calculation of the size of the error. By
adding the complement of the error size to the value at the error position, the error can
be corrected.

For completion sake the 4 other types of QR codes described on the website of
Denso Wave, will be quickly addressed in the following, however only model 1 and 2
are of interest for this paper. IQR codes are a further advancement to the structure
by enabling not only rectangular codes in addition to solely square codes while also
raising the theoretical maximum to version 61, which corresponds to a code of 422 by
422 modules. In a similar vein, Micro QR codes feature only one orientation pattern
enabling the printing of these codes in spaces to small for regular QR codes. The so-
called frame QR system allows for areas of the code to be left blank for logos or designs.
Lastly, the SQRC (Secure Quick response codes) don’t differ from model 2 codes in
appearance, but require data keys to decode the information stored within correctly
enabling the codes to be used store private information in order to use them, e.g. as a
cashless payment system.

2.6 Visual marker problems

This chapter will cover aspects of images and QR codes that may influence the detection
or decoding process. How the project software detect and subsequently deals with these
problems will be addressed at a later point. In the figure 2.6 some of the issues with
printed markers are displayed, from top left:

1. General noise and perspective distortion are just a factor of any form of photog-
raphy used to scan the code no matter the system.

2. This image represents two different problems. On the one hand printing errors
and on the other inconsistent lighting, both of which can influence the contrast of
the code to its surroundings.

3. The third image is meant to show general image issues such as slight blur from
e.g failing auto-focus or movement either by the camera or the code.
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Figure 2.6: Issues with printed markers.

4. Tt cannot be guaranteed that a code will always be used in the ideal or even
same environment, as such contrast changes from colored light or shadows might
interfere with the detection.

Obviously, visual AR markers need to be recorded by cameras. This first step, before
any image processing or decoding, can even take place, might already be flawed enough
to prevent any successful continuation. Causes of errors range from user error in shaky
footage and too large distance to the code to problems arising through poor lighting
conditions, such as glare or shadows on the code to simply technical limitations or fail-
ure, in the form of defect sensors or an unclean lens. The main goal of this project
is to determine whether or not these mentioned problems can not only measured and
detected, but to what degree they can be corrected for in the detecting software. Unfor-
tunately some of the problems share features in the recorded images. As an additional
problem more than one image distorting problems might be present in an image, further
exacerbating the gathering specific data. To combat this the images used for testing are
specifically selected and digitally created to highlight one specific image feature, allow-
ing for more precision in the data gained. The gained results are additionally compared
to other tests, which shared the goal to find the limitation of the QR code detection
algorithm. The images used for testing are included for the specific problem present in
the image and allow for a theory on why the detection or decoding fails. Blurred images
can fail in any of the steps required, dependant on the amount and type of blurring
present in the image. Most light blur should be compensated for by the binarization
of the image as this should restore edges although rather imprecisely. If the blur has a
particular direction, i.e. motion blur this effect might be uneven across the code causing
perceived shifting in the position of the modules and either failing to locate the code
or overwhelming the error correction system. Uneven blurring across the code through
the low depth of field or caused by lens-distortion correction algorithms, as seen in fig-
ure 2.7 (b) could lead to similar problems. The correct lighting conditions are crucial
for the successful detection and decoding of QR codes. The selected images exhibiting
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(a) (b)
Figure 2.7: Examples of blurred QR codes.

suboptimal lighting are therefore wider in scope. Shadows and glare on the code itself
can cause the detection to fail if the position detection patterns are disrupted by them,
as seen in figure 2.8 (a,b). Additionally, the overall brightness and corresponding con-
trast between the area of the QR code and the surrounding quiet zone is of interest
as it might influence the quality of the code detection. Similarly, images with incon-
sistent lighting conditions cause problems through incorrect binarization. Dark images
containing bright arcas will represent this problem.

The next set of QR code problems are the result of not following the specifications
set for better QR code detection. This includes codes with designs and logos within
the encoding area, which should be correctable by to error correction system. This also
includes colored codes or portions of codes that require the proper grayscaling method to
ensure the light and dark areas of the code remain correct, shown in figure 2.9 (b), which
contains a code with one position detection pattern in color. Additionally, redesigned
position detection patterns may cause a failure to detect the code. To properly test
the limitations of noncompliant QR codes deliberately broken ones are included in this
category. This includes filling in quiet zones, areas of the code colored in or removed,
disrupted position detection patterns, as well as multiple types of noise added to the
code, for example of which can be seen in figure 2.9 (¢,d). In this category, unintentionally
broken codes are also covered. Scratches, marks or printing errors cause mistakes in the
encoding region of the code which need to be corrected through the error correction.
The last category of images deals with the incorrect usage of codes by displaying them
in flawed ways. Displaying a QR code on a monitor will introduce noise and as can be
seen in figure 2.10 (b) patterns which might cause the detection or decodation to fail.
Also included are codes which are hindered in their detectability by the position of the
camera. Codes viewed at to close of a distance will cause the required quiet zone to be
obstructed as well as patterns and noise as a result of the print becoming visible, same as
codes viewed at to great a distance causing the code to be potentially illegible. Rotated
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Figure 2.8: Examples of QR codes with flawed lighting conditions.

codes are included in this category, although the nature of the position detection system
makes rotations around the normal of the code inconsequential. Viewing the code at an
angle, however, may cause errors and failure at a certain angle. Lastly, codes displayed
on curved surfaces may break the process of transforming the image data to a binary
matrix. The goal of this project is to find ways of detecting these image problems within
images and attempt to counteract their effects. This requires an understanding of the
process by which a QR code is detected and subsequently decoded, which is explained
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Figure 2.9: Purposeful misuse of QR codes.

in the following chapter.
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Figure 2.10: Examples of poorly positioned QR codes.



Chapter 3

Functionality of QR Codes

3.1 Introduction

The steps of the algorithm by which a QR code is analysed can be separated into three
distinct sections:

e Dpre-processing,
e detection,
o decoding.

This represents an optimized implementation of the QR code detection process, as the
ISO standardized detection does not require preprocessing and works on RGB images.
This, however, requires the contrast between the code and its surroundings to be already
high, which is one of the results of preprocessing the image. Each of these steps provides
a rather specific output. The pre-processing produces a binary image, the detection
process finds and extracts the code itself and provides a binary matrix of the QR code
and lastly, the decoding step extracts the data and error correction codewords, and the
encoding method from the matrix to generate the string of characters encoded therein.
This structure could allow for each of the steps to be exchanged to suit an application,
although the detection is married rather tightly to the decoding, through the structure
of the code. It is, however, possible to adapt the decoding step to be used for different
applications from simple data storage.

3.1.1 Pre-Processing

Grayscale

The goal of the preprocessing step is the transformation of the image into a more
analyzable form, namely into a binary image or binary matrix. As an initial step, the
original color image from the camera must be transformed into a gray-scale image.
This transformation reduces the number of possible colors from 256° to 256 requiring
a method to reduce the complexity wisely and not lose crucial image data. For this
project, six different gray-scaling methods were implemented. The nomenclature was
taken from Kanan and Cottrell’s paper on the influence of the grayscaling method on
image recognition quality [8, pp. 1-3]. Reasons for the inclusion of specific algorithms

19
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stem from either their special ability to emphasize certain aspects of the colors in the
original image, their approach to emulating human color perception or their relation
to other grayscaling methods that they seek to improve upon. What role the separate
algorithms play in the detection of visual augmented reality markers is addressed in
chapter 5, dedicated to testing and comparing the different approaches. This section
only serves to provide an introduction to the math applied. In order to improve the
readability of the gray-scaling section, the names of gray-scaling algorithms will be
italicized and the first letter capitalized, e.g. Luminance. All of the following functions
G require R, G, and B, corresponding to the color channels of the pixel operated on.
The input values are stored in an 8bit form and may or may not require mapping to
the range 0 to 1, dependant on the method. The output values are byte values as well
and may require mapping to that number space as well. The first two color-to-grayscale
algorithms are Intensity and Gleam. Both utilize a mean of the RGB channels:

R+G+ B

GIntensity = %v (31)
R/-I—Gl-l— B

Cipeam = EEIEE (32)

the later however using gamma corrected values R', G' and B’ of the input values.
They were arrived at through the gamma correction function I'(t) =t = t22. Unlike
these initial two methods Luminance attempts to match human brightness perception
by weighing the input channels differently:

GLuminance =03-R+059-G+0.11- B. (33)

Luminance is a standard grayscaling algorithm frequently used in computer vision and
image processing software. Similarly Luma, calculated as follows

GlLuma = 0.2126 - R' 4+ 0.7152 - G' +0.0722 - B, (3.4)

uses a weighted sum of the gamma-corrected RGB values to arrive at a solution. Of
particular interest are the functions Luma and Gleam as the general goal of gamma
correction is the approximation of the nonlinear brightness perception of humans from
the linear digital data. The accurate representation of brightness, however, is not the
primary goal of the testing but the maximizing of the contrast between the light and
dark areas of the code is. As such experimentation with the gamma value used for the
correction is a goal of the testing.

GValue = maX(R, G, B) (35)

Value represents the achromatic V channel of the HSV color space and provides an
absolute brightness value for each pixel. On a similar note Luster corresponds to the
L channel of the HLS(Hue, Lightness, Saturation) color space. It is calculated as the
mean of the minimum and maximum RGB values,

max(R,G, B) + min(R, G, B
GLuster = ( ) 9 ( ) (36)
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Luster is significantly less sensitive to outliers in color intensity unlike Value, which is
maximised by one color channel being bright, Luster requires all three channels to be
highly saturated in order to maximise its value. The Lightness grayscaling method is
intended to closely correspond to human perception through a non linear transformation
of the RGB color space into the CIELAB and CIELUV color spaces. The calculation of
the transformation is done as follows,

1

GLightness = (m) - 116 - f(Y) - 16)7 (37)

where the lightness nonlinearity f(¢) is calculated as

5 or 53
ft) = {t for t > (55" (3.8)

:- (%)2 ‘t+ 55 otherwise,
with Y being the perception equalized sum of the input values
Y =0.2126 - R+ 0.7152 - G + 0.0722 - B, (3.9)

which results in a gamma-corrected value between 0 and 1. Examples of five of these
grayscaling methods can be seen in figure 3.1, which shows Intensity b, Luminance c,
Lightness d, Value e and Luster f. The inclusion of the HSV color circle demonstrate
some of the grayscaling properties, such as the achromatic nature of Luster and Value
resulting in a monochrome circle, or the Intensity being calculated from all three color
channels equally, resulting in a repeating pattern unlike the other two methods, to which
the colors contribute to different degrees. Lastly Decolorize, which was not successfully
implemented for this project, also uses a different color space, in this case, the Y chan-
nel in YPQ space to derive its brightness. The exact implementation as described by
Dodgson and Grundland exceeds the scope of this section. The resulting color chan-
nels, however “consist of an achromatic luminance channel Y; ; and a pair of chromatic
opponent-color channels: yellow-blue (...) and red-green” [6, p. 7]. The resulting image
contains innate gamma correction as well as preserving color contrast in its Y compo-
nent. The design objectives set out for this grayscaling method include the magnitude
of the grayscale contrast reflecting the magnitude of the color contrast in the original
image [6, p. 4], which leads to the assumption, that it may provide a higher contrast
between the light and dark QR code modules. At this point an image wide contrast in
the form of the Root-mean-square (RMS) contrast could be calculated, to potentially
judge the quality of the image or grayscaling method. This form of contrast evaluation
is calculated from the sum of the deviation of pixel intensities from the average intensity
of the entire image. The correlation between this value and the quality of code detection
is difficult to establish, it can, however, serve as a data-point to compare the different
grayscaling methods by.

Binarization

The last step to bring the image into a form suitable for QR code detection is the bina-
rization of the image. The initial goal of image thresholding was the extraction of objects
from their background in an image, the resulting images, however, serve the QR code
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Figure 3.1: Grayscaling methods used for testing in the project. In order, (b) Intensity,
(¢) Luminance, (d) Lightness, (e) Value and (f) Luster.
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detection well as the code strongly differs from the surrounding area. Image thresholding
or binarization can be separated into two distinct types of algorithms: global and local
thresholding. Global binarization establishes a single value all pixels of the image are
compared against and sorted into foreground and background pixels and colored black
or white accordingly. Local or adaptive methods calculate multiple threshold values for
smaller areas of the image, either segments of a grid applied to the image or for areas
centered on each individual pixel. Generally speaking, adaptive binarization is com-
putationally more expensive, for the advantage of being less susceptible to brightness
changes over the image. For this project, two global and five local binarization methods
were implemented and compared. The first and least complex method is to use the mean
value T of the image I as a threshold. The image of size n - m contains pixels of gray
values L[1,2,..., L] denoted as lij, i and j denoting the row and column position of a
specific pixel. It follows that the global mean value of the image is calculated as:

E;Zg,jzo lz’,j

T(I)global_mean = ~ n-m (3.10)
which improves on using the median of the color space as a threshold, by allowing the
overall brightness of the image to factor into the background/foreground separation.
The second global thresholding implemented is a version of Otsu’s thresholding method
[10, p. 63], it proposes the generation of a threshold value through the analysis of the
histogram of the grayscale image. The values I of the image I are transformed into a
histogram of width L, which for this implementation is 255, for sake of storage as a byte.
Subsequently, the histogram is normalized and for sake of the calculation regarded as a
probability distribution using the following formulas 3.11 and 3.12. The number of pixels
at a level h is denoted as n;, with the total number of pixels being N = n +nq+, ..., 0y,
calculated as:

Nh
=T 11
L
Pr=0,) pp=1 (3.12)
h=0

Presupposing two classes Cy and C] of pixels in the image, background and objects,
separated via the threshold at the level k, Cy containing all gray value of the histogram
with the levels [0,1, ..., k] and C containing [k+1, ..., L]. It follows that the probabilities
of class occurrence wy and w; and the class mean levels pg and pq are calculated as:

wy = th = w(k), (3.13)

wy; = Z pp=1—w(k), (3.14)
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and

k

=1 Z; (3.15)
L

= Z B Lh _%. (3.16)

The zeroth- and first-order cumulative moments of the histogram up to level k are
calculated as,

k
h=0
k
k)= h-py. (3.18)
h=0

L
pr =p(L) =) B pps (3.19)

up being the total mean level of the original picture. The measures of class separation,
which are used to determine the quality of a selected threshold k require the variance
of the classes oy and oy:

k L
p 2 Pn
op = E o) ’;, E (h—pq)” - o (3.20)
h=0 h=k+

The measures of threshold quality referred to as the “goodness” of the threshold by
Otsu [10, p. 63] are discriminant criterion measures A, x and 7:

0_2 0'2 0_2
A=-L, k=L n=-L (3.21)
Ow Ow or
where
aﬁ, =wp - 08 +w, o, (3.22)
o =w- (po — pr) +w- (1 — pr)°, (3.23)
L
or =Y (h—pr)’ - pp- (3.24)
h=0

The optimal threshold kx is the value that maximizes n or 0123. To arrive at that value
a simple sequential search is performed to find the value which provided the highest
class separation. Even though it is referred to as a global thresholding method, Otsu’s
method could feasibly be applied to smaller sections of the image to compensate for
lighting changes over the image. This would run the risk of creating unintended edges
at the borders between two sections of the image as the threshold would most likely
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differ between them. Calculating Otsu for every pixel based on the surrounding pixels
in a radius is technically possible, however computationally rather expensive due to
the nonlinear time complexity. The nonlinear time complexity is a trait shared by the
following binarization methods. Using the above-mentioned technique of calculating the
mean of the image considers the global lighting condition of the image, as every pixel
contributes to the threshold. The fact remains that a global threshold cannot correctly
distinguish between fore- and background is the brightness of the image is not constant
throughout because of, e.g, shadows or glare in the image. To compensate for this
problem, local adaptive mean thresholding calculates the mean value of an area around
each pixel. The threshold ¢; ; for each pixel of the image is calculated as such, with
{d € 2Z + 1} being half the side length of the search area. d must be an odd number
to ensure an even distribution of pixels around the target point. The calculation of the
local threshold using r, half the diameter rounded, i.e., down,

i+r,j+r
R L) (3.25)

b = 27

must be repeated for every single pixel n;; in the image. In order to alleviate the
problem of noise, a constant C' is added to the calculated mean to ensure a more even
binarization in areas of similar colors. This can correct for some of the problems, however
only an increase in the size of the search area can improve the binarization quality
significantly. This however becomes very expensive to compute very rapidly. As an
cheaper approximation adaptive median thresholding only calculates the median value
of an area around each pixel as a threshold, this results in a cheaper to calculate, but
less accurate binarization method. A trade-off which applies to most of the methods
proposed in the literature. The Gaussian adaptive thresholding extends the adaptive
mean threshold by, weighing the individual pixel values in the search area not equally,
but based on their distance to the primary pixel, based on a Gaussian distribution.
Bernsen'’s locally adaptive binarization method [7] uses the range between maximum and
minimum values in a local window to establish a threshold. The implementation follows
Can Eyupoglu’s implementation [5, p. 622], who used the method for the extraction of
text from images. The method requires a radius r similar to the previous methods, as
it is applied to an area around each pixel just the same. Initially the highest Zj,; ;, and
lowest Z,,, values of the area are gathered. The threshold ¢ value and the measure of
the contrast c are calculated for the area centered on pixel n; ;:

Ziow + Zhi
tij = w7 (3.26)

Cij = Zhigh — Ziow- (3.27)

Using these values the pixel n; ; is labeled as fore- or background. By calculating a basic
measure of contrast the downfall of locally adaptive thresholding methods, large areas of
low contrast can be detected and false positives avoided. This method is similar in time
complexity to using the median of the area as a threshold. Lastly, a considerably cheaper
method was implemented. Instead of using an area around each pixel as a measuring
area for the threshold, this method separates the image into a grid, calculating a mean
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threshold for each segment. In order to avoid sharp edges at the borders between two
grid elements the threshold for a specific pixel is calculated from the four surrounding
grid centers, and linearly scaling the respective thresholding values based on the distance
of the pixel to the grid center. The second variant of this grid-mean approach is used
as well, which differs in two points. One of the implementations uses a constant size
for the grid elements, while the other uses a constant number of grid elements. The
second implementation determines the threshold not via linear interpolation, but as the
average of the 3 x 3 grid neighborhood. All the steps in the preprocessing of the image
need to be applied carefully, as no reduction in data complexity can occur without some
overlap in results, causing errors in the following steps. Given the wide array of possible
image manipulations that can occur in the preprocessing, particular attention needs to
be paid to how these processes influence the following detection step. This is also the
reason why a plurality of the testing done occur ed for the image manipulation in the
first step.

3.2 Detection

The initial detection of a QR code in an image is done by parsing the image for the
position detection patterns, seen in figure 2.1. Many approaches exist to speed up this
step such as using feature detection [2] or edge detection [13]. As detection speed is
not the goal of this project, but accuracy is, the implementation follows the reference
decode algorithm given in the ISO specification for QR Codes [15, p. 60]. The initial step
in the reference algorithm, suggests using the median of the minimum and maximum
reluctance value of the image as a threshold. The thresholding, however, is covered in the
previous section. The first step of the detection requires the detection of the position
detection patterns. The patterns are rotationally invariant in ratio, allowing for the
parsing of the image line by line, or more precisely every third line, as the center block
of the pattern needs to be 3 modules wide, requiring the smallest possible code that can
be displayed in an image, to have position detection patterns with a center of at least 3
pixels in width and height. To compensate for angular distortions a tolerance of half a
module width is possible. When the ratio of 1:1:3:1:1 of dark:light:dark:light:dark pixels
is found, the position of the first and last points within the pattern are established and
stored. The distance between these points is stored and used as an initial rough estimate
of the size of a position detection pattern. The parsing for the patterns is repeated for
the columns between the edge points established before, establishing vertical boundaries
for the pattern. The horizontal parsing is repeated within these borders, enabling the
calculation of the center point of the pattern, as well as an estimate of the size of
a module in pixels, as a seventh of the width of the position detection pattern. This
process is repeated until three or more position detection patterns are found. Should
more than three patterns get found in an image, the three patterns are selected which
have the closest module sizes. In order to establish the orientation of the code, the
relation between the position detection patterns has to be analyzed. Given the structure
of a QR code the distance between the top right and bottom left detection pattern, must
always be bigger than the distance to the third pattern. Assuming the code to be not
mirrored only one arrangement of the three patterns enables this to be true, allowing
construction as it is implied by the orientation of the finder pattern. With the position
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detection patterns found, a provisional version V of the code can be calculated as

d
410

V =
4 9

(3.28)

where d is the distance between centers of the upper left and upper right position
detection pattern, and X being the nominal X dimension of the symbol, calculated
from the widths w,; and w,,. of the same patterns

W] + Wy

o (3.29)

Dependant on the version calculated this way the algorithm continues differently. Should
the version be 6 or less, this is specified as the defined version. If the version is higher
the detection process is extended by a detection step for the alignment patterns. Using
the positions of the position detection patterns a provisional position of the alignment
patterns is established and the image region around that position is parsed for the
1:1:1:1:1 dark:light:dark:light:dark module pattern to find the exact position of the
alignment pattern. Should this not be successful the estimated position is used in the
following step. The ISO standard for QR codes suggests applying a grid for each section
separated by alignment patterns, with the intersections of the grid-lines coinciding with
the centers of the modules of the codes segment. By sampling every intersection of the
grid-lines and determining the pixel at that position, a binary matrix can be constructed
by mapping dark pixels to a binary 1 and light pixels to a 0.

3.3 Decoding

From the previously generated bit matrix the format information encoded adjacent to
the upper left position detection pattern is read and decoded in order to receive the error
correction level and the mask pattern. As an additional safety measure, these properties
are encoded two more times adjacent to the other two position detection patterns. In
the next step, the mask pattern is applied to the encoding region of the bit matrix,
in the form of an XOR condition on each dark module of the mask pattern and the
bit matrix. The data stored in the QR code are position in two-module wide columns
beginning in the lower right corner and alternating upwards and downwards from the
right to the left side. The block interleaving described in chapter 2, section 2.5.1 needs
to be reversed in order to arrive at the final bit stream. This data containing data and
error correction codewords, and potential errors and erasures, is subjected to the error
correction process described in the previous chapter to restore the original bitstream
message intended to be stored in the code. This bit-stream is divided into segments
corresponding to the mode and character count indicators contained within every single
segment. Each segment is then decoded according to the rules for the mode.



Chapter 4

Implementation

This chapter covers the implementation of the software produced in conjunction with
this thesis, as the program was used to generate the testing data shown in the following
chapter. As the process by which a QR code is detected in an image is described at
length in the previous chapters only the aspects in which the implementation differs
from the ISO standard will be explored here.

4.1 Libraries

Libraries used for this project are OpenCV, BoofCV, and ZXing (“Zebra Crossing”)
for their image processing and QR Code detection capabilities. Additionally, JavaF'X
was used to create the user interface and to display data generated by the software.
The full extent of the capabilities of the computer vision libraries vastly exceeds what
was necessary for the project. Therefore the decision was made to create a separate
implementation of the QR code detection, allowing for more control over the process
and also easier access to exact values used in the detection and decoding. As an added
factor the QR code detection and decoding of BoofCV and ZXing are designed to
be used for other means, therefore the reason for failure difficult to extract from the
process. The final implementation draws heavily on the ZXing implementation, although
heavily altered in the preprocessing step, as well as the added ability to persist more
of the data relevant for the detection and decodation process, to allow for partial finds
of codes existing. Aspects kept in almost their entirety are the error correction process,
which needed to be adapted to fit the altered steps leading up to it, as well as the
classes which store QR code relevant data for damasking, version information, format
information, error correction level information and the positions of alignment patterns
for the respective version of QR code. These data classes cannot be altered as they
are required by the QR code standard and successful detection and decoding would
not be possible without them. As for the use of BoofCV and ZXing they primarily
served as a starting point to learn about the process by which QR codes are detected.
BoofCV is the more powerful, not only code detection system, but also general computer
vision library. Its wider scope makes it more difficult to follow the flow of information
through the detection process. ZXing, on the other hand, proved easier to understand
in its implementation, making it the primary source to draw from for implementing a
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very specialized QR code detector. Both libraries are designed for integration in other
software making functionality the primary goal and failure an edge case. As failing codes
and the reasons for that failure is the primary interest of this project, work had to be
done to ensure every failure state is properly documented in order to aid the analysis of
code detection failing. OpenCYV is perhaps the more well-known computer vision library
and it was initially used for its computer vision and image manipulation capabilities.
With the adaptation of the ZXing implementation, it lost some of its purposes in the
project as the image classes were adapted to serve the project better. It is now mainly
used for gathering still images from a live video feed via an external camera or from a
video file. The goal was to use this to increase the speed at which images can be analyzed
as a video could contain a stream of different frames containing relevant information.
This proved to be a poor approach to testing multiple images as the video stream parsing
did not perform as expected as it could not be slowed down or paused in a way that was
conducive to the overall goal, making the testing with slower methods of binarization
for example impossible. The loading of video files did provide some valuable insight as
it allowed for the testing with moving QR codes, codes changing sizes or the image
gradually being blurred more. The goal of being able to quickly test multiple images
was achieved by allowing the selection of multiple files when loading images into the
program.

4.2 Architecture

In order to allow for the testing of BoofCV, ZXing and the new implementation, as well
as specialized trials, tester classes were created which handle both the calling of the
implementations which need to be tested, as well as compiling a report dependant on
what is tested. All the QR detection algorithms were embedded to allow the creation of
a report which contains as much information as the algorithm can return. The BoofCV
implementations provide the positions of the finder-pattern and alignment pattern as
well as the version and the encoded text as well as the corner points of the code for easier
visualization. Additionally, it includes a failure cause, which only documents the step at
which the code failed. The ZXing algorithm returns the positions of the finder pattern
and the encoded message. It also contains the raw byte data as well as information on
the barcode format of the result, as the same result class is used for any of the 2D
barcodes ZXing can decode. The custom detection algorithm allows for more as it was
designed to provide more information. This includes all found pattern structures in the
code, the binary matrix form of the found code, the error corrected code in bit matrix
form, the message stored within and the format and version information of the code.
Unlike the other two implementations, a report can be generated from a failed detection
as well, allowing for a report containing only two position detection patterns to exist.
Comparing the amount of found position patterns over different preprocessing scenarios
provides additional data aiding in the analysis. This setup of using tester classes in
order to create specific reports for tested situations allows for i.e. the comparison of two
detection methods, testing of multiple different grayscaling methods or just the detection
of a single QR code in a single image by a single implementation. It is close to a Facade
pattern in its structure, as the tester classes serve as a connecting point between the
user interface and the underlying logic of the QR code detection systems. Additional a
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Figure 4.1: Process flowchart of the implemented software for testing images.

class for documenting the goings-on to aid in debugging was implemented as a singleton
to be accessible anywhere in the software, without slowing down the program through
system print output at runtime. This logging class is also used to document any failure
state in the detection and decoding process, including which step of the process failed
and the reason for that failure. The user interface serves to enable the customization
of the testing processes as well as displaying the results of these tests. One particular
goal was to display the binarized image before beginning the test allowing for informed
testing, as some combinations of grayscaling and thresholding will result in nonsensical
images, which cannot result in successful detection.
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4.3  Optimization

The generation of the binary matrix containing the QR code after the detection process
differs from the method proposed in the ISO standard, of using the found position
detection and alignment patterns to position a grid over the image with each intersection
of grid-lines corresponding to the center of one module of the code. Based on the version
of the code and the number of alignment patterns in it, the code is separated, with the
alignment patterns separating the sections. The resulting grids are parsed with the
color of the pixel at each gridline intersection being compared to a threshold value,
calculated as the median of the highest and lowest brightness value of the still color
image. The generation allows for an anisometric grid, however, no angular distortion
can be accounted for with the proposed system, as no method of pixel selection for grid
intersections is described in the standard. To account for distortion in the image the
parsing of the modules constituting the code is not done via a grid, but by calculating a
transformation matrix to transform the code into a binary matrix of the dimensions of
the code. This allows for the correct parsing of trapezoidal shapes, likely to result from
viewing the square code at an angle. To calculate this transformation 4 pairs of points
are needed, as the points in the desired bit-matrix can be considered as transformations
of the original points [4, p. 381]. For this process, the center of the position detection
patters, as well as the center of the alignment pattern are used. These points are detected
in the original image, the pairings for these points are the locations these points are
mapped to, which can be seen in figure 4.2 showing the two quadrilaterals Q1 and Q2
used for this transformation. The pairs of points are notated as x; to x, as the points
in the original image, and the transformed points as 2 to 2. The transformation can
be described as

x' =M - a, (4.1)
or
35:1 1 v 1 0 0 0 —z- 96:1 —Y1 43:1 arq
Y1 0 0 0 = w 1 —x-y1 —yi-y ay
/ / /
To Ty Yo 1 0 0 0 —zp- 25 —yo- 9 a3
/ / /
Yol 10 0 0 = yo 1 —29-y2 —wy2-y2| |an (4.2)
7= ] / . .
X3 T3 Y3 1 0 0 0 —x3-T3 —Y3-T3 Q99
/ /
y%, 0 0 0 = y3 1 —x3- ?/;; —Y3 7/;3 Q23
Ty zg Yy 1 0 0 0 —x4-24 —Ys- Ty asy
/ / /
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One particular point can be calculated as

I / /
Ty =011 - T; + Q10 Yy +G13 — g1 - Ty Ty — A3 - Yy Ty,
r_ ! /
Yi =Qo1 " T+ Qoo+ Y; + Qo3 — 31~ Tj Y — A32 * Y; ~ Yi

which allows the creation of a system of linear equations through which the unknown
parameters a can be solved. The transformation is applied row by row, with the end-
points of the resulting array of points being controlled, as imperfect detection of the
finder patterns could cause a slight shifting of the pattern. Points that fall outside the
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Figure 4.2: Example of the points used for transformation.

image by less than one pixel are moved to be back in the image, which is valid as the
list of points is linear. For the sake of efficiency, the list of points is analyzed from the
ends inward until a pixel falls inside the image. The entire process is repeated for every
row in the code until a binary matrix of the correct size for the code version is created.

4.4  Time complexity

All of the described grayscaling methods have a linear time complexity as the gray
output value of each pixel is calculated from the three color values of the same pixel,
requiring every element to be calculated once. The optional denoising steps of either
median or mean filtering, are non linear functions as they require the calculation of
a mean or median of the neighborhood for each pixel, causing the resulting per pixel
complexity to be O(r’log(r)) with r being the radius of the filter kernel, which was
selected as 1, as it is only used for salt and pepper noise removal. The same applies to the
mean filtering, as is also requires all pixels of the pixel neighborhood to be looked up. The
same time complexity applies to the image sharpening filter, as it requires the calculation
of values for each pixel based on the filter kernel. There are proposed solutions for median
filtering in constant time [11], as well as improvements on the calculation speed of the
image improvement methods. This, however, was not implemented as time efficiency is
not the goal of implementation, but the influence of the process on the detection quality.
These improvements may be relevant should the tool be applied to, i.e., video-streams
significant increases in calculation time would be of interest. A similar sentiment applies
to the implemented binarization methods. The global mean thresholding has a linear
time complexity of O(n) as the mean of all pixels has to be established. The application
of the threshold to the image is not part of this or the following calculations as it is the
same for every single algorithm in its linear time complexity. The time complexity for
Ostu’s method [10] is dependant on the number of bins in the histogram required to
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calculate the threshold and is, therefore, dependant on both the size of the image and the
amount of different gray values in it. It is calculated as max(O(n), O(k?), with k being
the number of gray values possible in the input image. The local thresholding methods all
require quadratic time complexity based on the size of the pixel neighborhood in which
the threshold is calculated from. It follows that the time complexity is O(n - 7“2) as the
threshold has to be calculated for every pixel from its surrounding area. This applies to
the adaptive mean, adaptive median, adaptive Gaussian thresholding methods as well
as Bernsens’s technique. A possible workaround is a clustering approach to these local
methods. Segmenting the image via a grid and calculating the threshold for each grid
segment separately reduces the computational effort significantly. To prevent sharp edges
at the grid borders, the threshold values for every single pixel are linearly interpolated
based on their distance to the nearest grid centers. This allows for linear time complexity
as every pixel is only involved once in the threshold calculation.

45 QR code failure

This section will go over the entire process of detecting and decoding a QR code in order
and most importantly describe the conditions, by which each step can fail. This is done
in preparation for the following chapter which describes the results of attempting QR
code detection on a variety of flawed images. Figure 4.3 shows the steps taken for the QR
code detection and decoding process, starting with the pattern detection. Looking at the
chart in detail it can be seen that it begins with a binary image. The methods applied
to arrive at this image are omitted from the chart as well as this section of the paper
as they were described at length in previous chapters and can not fail pre se, but can
however produce nonsensical images, may cause failure during future steps. The pattern
detection step scans the image for the position detection patterns to establish location
information in order to proceed with the transformation. The first failure state which
can occur is the image size being smaller than 23 by 23 pixels, as that is the smallest
image that could house a QR code of 21 by 21 modules and one pixel for contrast around
the edges. This can only occur with doctored digital images and would never result from
a recording, but is included for completion’s sake. The next set of failure conditions all
come from the amount of position detection patterns found in the image. Less than three
patterns being found are recorded and the detection process stopped as the following
steps require three positional patterns exactly. If more than three patterns are found
the module sizes of the patterns are compared and the three patterns with the closest
matching size are selected. This can fail if the size differences between the patterns
exceed a certain value, at which the perspective distortion would be too great to ensure
correct decoding. Assuming the correct three patterns were linked to the module size
for the entire code can be calculated by counting the black and white changes between
the positional patterns. If this fails the average module size of the position detection
patterns is used for the entire code. Should the size of the detected modules differ by a
large amount the process stops as the found patterns do not belong to the same QR code
and were matched by either incorrectly connecting patterns from multiple codes in the
image or false positives arising in noise or background patterns. By dividing the distance
between two position detection patterns by the module size the number of modules can
be estimated and with it the version of the code. The position of the alignment patterns
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Binary Image

First Failure Success

Figure 4.3: Flowchart displaying the process of detecting and decoding a QR code in a
binary image.
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are dependant on the version of the code, making the detection of the simpler black
and white sequence more feasible. This can still fail as it requires the position of the
alignment pattern to be estimated based on the position of the locator patterns, which
will cause decoding problems if the code is distorted. Figure 4.4 is used to visualize
the detection and decoding process showing the results of the image transformations,
a being the binary input image, arrived at by using Intensity gray-scaling and a global
Otsu thresholding, and 4.4 (b) showing the binary matrix after the transformation. The
calculation of the perspective transformation matrix can not fail destructively, although
the calculated matrix may be incorrect for the QR code if the patterns were mapped
incorrectly, causing the bit-matrix to be generated by sampling the wrong area of the
image. Should this be the case the following step will fail as the reading of the metadata
from the code will not match the code in the image. Only codes version 7 or higher
contain the version information bits in the code as this is also the first version of code
containing more than one alignment pattern and with that multiple blocks of data. The
18 bits of version information are extracted from the matrix and decoded to find the
closes matching version. Up to three bits of error is tolerated here as no two version info
codewords differ in less than 8 bits. The same is repeated for the second copy of the
version information at the diagonally opposed position detection pattern. If none of the
versions found this way match the dimensions of the code the detection must stop as
no information on the data block alignment can be gathered. The format information
is encoded in 5 bits, the first three describing the data mask and the last two the error
correction level. In order to compensate for errors in this information ten bits of error
correction data are included with the format information, allowing for the calculation
of a Hamming distance between the bit-string and the entries in the associated format
information lookup table, from which the closes matching entry is selected. Should no
match with a distance of less than 3 be found the detection is considered a failure.
In the following step the binary matrix is unmasked, the result of which can be seen
in figure 4.4 (¢), by flipping bits of the matrix where the condition of the data mask
found in the previous step, is true. A function pattern that includes the finder pattern,
separator and format information, the alignment patterns, the timing patterns, and the
version information areas is created and every bit of the matrix not contained therein
considered as the data area of the code. Following the data arrangement of the version
of the QR code, the bit data is extracted from the data area and based on the version
and split into blocks. The error correction is applied block by block until the entire bit
sequence is corrected. The error correction can fail if the number of errors exceeds the
correction capabilities of the level, which manifests itself in the calculation of the error
positions failing. In the following decoding of the bit-stream errors generally, originate
from a miss-match between the number of bits read at one time and the number of
bits required for the decoding mode. This overview of the failure conditions of the QR
code detection algorithms makes the necessity of analyzing the input image apparent, as
errors at the initial steps can propagate through the entire system. Finding correlations
between specific problems with the image and the point a code fails at in the detection
and decoding process is the goal of the testing in the following chapter.
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Figure 4.4: Example of the results of the demasking. The first image (a) shows the
binarized version of the image, (b) the code extracted from the image and (¢) the binary
matrix after applying the datamask to it.



Chapter 5

Evaluation

5.1 Introduction

Continuing on the changes made the evaluation of the project also needed to be adapted
to the changing goals. As a result, the goal of the evaluation is to find significant differ-
ences in the detection quality between different approaches to steps in the algorithm.
This allows for assumptions to be made on what might impede the detection in the
image as the different approaches may accentuate or lessen certain image statistics. The
testing was done using the same image set used by the creator of BoofCV to compare
their QR code detection to four different detection algorithms [14]. The image set con-
tains approximately 450 images of one or multiple QR codes in a variety of situations.
The application used for testing is not designed to detect multiple QR codes in an
image, therefore images containing multiple codes were either not used for testing or
edited using image manipulation software to remove codes while attempting to keep the
overall brightness of the image approximately the same. The images range in size from
approximately 550 x 300 pixels to 4000 x 4000 pixels. This size disparity revealed the
first aspect which required testing.

5.2 Code size

In the initial testing phase, the problem of large images requiring significantly more
time to calculate thresholded images became apparent, this could be corrected through
better-optimized forms of thresholding. The size of the image appeared to influence the
chance of detection, however. The following test will attempt to find if the size of the
image influences the chance of finding the position detection patterns of a QR code.
The testing set contains copies of the same image at full and half size, which did not
get achieve detection at the same rate. This leads to the first question of how does the
size of the QR code in the image in both dimensions in pixels, as well as the percentage
of the whole image affect the detection process. To increase the amount of test possible
with the limited testing data the images used for testing which contain more than one
QR code were manipulated as to make the detection of all but one code impossible
by disrupting the position detection pattern, repeating for each code present in the
image. This allowed for the doubling of the testing data for the first evaluation. The
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Global Mean Adaptive Mean Grid mean:size Grid mean
All Found 6 6 5 6
2 found 0 0 1 0

Table 5.1: Results of testing 6 images of different sizes.

Global Mean Adaptive Mean Grid mean:size Grid mean:amount
All Found 4 6 10 9
2 found 1 0 0 0
1 found 2 2 0 0
failure 3 2 0 1

Table 5.2: Amounts of position detection patterns found in images of differing sizes.

first test serves as a control group, using two copies of three images showing two codes
at even lighting conditions, an example can be seen in figure 5.1. It shows a cropped
version where the code takes up a bigger percentage of the image while keeping the
pixel dimension of the code equal. The testing is done using Intensity grayscaling and
four different binarization methods:

1. Global Mean,

2. Adaptive Mean,

3. Grid Mean: Size,

4. Grid Mean: Amount.

Adaptive mean thresholding is the least susceptible to brightness inconsistencies and
therefore serves as a control group as it should have a higher success rate than global
mean in unevenly lit images. Lastly, two implementations of a grid thresholding algo-
rithm are compared, one using a fixed grid-size the other using a fixed amount of grid
elements. The theory would suggest that grid-based thresholding would be the most af-
fected by changes in the size of the image. The following table documents the results of
the testing, by counting the amount of position detection patterns were found correctly
for each method. The one failing detection in the grid mean thresholding with constant
grid size seems to arise from the border between grid elements coinciding with the posi-
tion detection pattern causing a slight amount of noise and disruption. To achieve more
data on the binarization process the same set of binarization methods was tested on 5
images containing two QR codes at different image sizes or codes taking up different
amounts of space in the image in relation to its size. As an added challenge the codes
are lit differently, one falling in shadow, while the other is lit directly. Examples of the
images used can be seen in figure 5.2, both of which exist in multiple version of different
sizes. Additionally the images were duplicated and one of the codes made undetectable,
in order to ensure no incorrect pattern matching. The results of this test were rather
surprising as the detection of the position detection patterns failed for adaptive mean
binarized images, especially images in which the code size in pixels was particularly high.
The reason for this becomes apparent when analysing the binary images, as well as the
thresholding method closer. Looking at the binary image in figure 5.3 (b) it can be seen
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Figure 5.1: Control group image.

that the position detection patterns are binarized incorrectly. The code in the original
image is about 800 pixels wide, making the 3 x 3 module wide center of one position
detection pattern larger than 100 pixels, the threshold for each pixel is determined for
a square neighborhood around each pixel of 57 x 57 pixels however, meaning only dark
areas of the code are evaluated. As a result of this the threshold of pixels at the center
of the position locator patterns is close to the value of the pixel itself, resulting in noise
being enough to elevate individual pixels above the threshold. A solution to this problem
is the selection of a threshold mean neighborhood which at least the width of three QR
code modules. The one failure of the grid mean thresholding with a constant amount
of grid elements also occurred in a large image. The constant amount of gird elements,
in this case 50, results in more pixels being part of one grid square and the distance of
the borders between grid elements being further from the calculated value at the center.
This lowers the accuracy of the process and causes noise. This noise not only caused the
position detection pattern to be obscured, but also allowed for the detection of three
finder pattern sequences in the noise of the background, which seems to be a result of
the larger image size, as the amount finder pattern candidates is significantly higher
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Figure 5.2: Example of the tested images for different sizes and lighting conditions.

in the large images. Generally these false positives are removed for not matching the
estimated module size of other position locator patterns. In that particular case 5.3 (c)
the patterns in the noise matched in module size causing the detection to stop as three
patterns were found. This could be corrected by comparing the position of the finder
patter centers to each other. The position detection patterns create a triangle between
them, which can not have an angle bigger than 90°. This could be tested for, allowing for
slight variation from perspective distortion or curved surfaces, to exclude mismatched
patterns from the detection. The failures of the global thresholding are unrelated to
the image size, but the result of the selected threshold not matching the entire image
evenly, because of the inconsistent lighting, causing destructive thresholding as can be
seen in figure 5.3 (a). As such unevenly lit images are the target of the next test.

5.3 Lighting

To avoid the size of the image and QR code to influence this test the selected images
were scaled and cropped to ensure equal conditions for all test images. The testing is
done for two groups of images one with the overall brightness of the image varying
and the second one with inconsistent lighting across the image in the form of bright
spots or shadows. The techniques tested are global- and local mean thresholding, global
Otsu thresholding, which may improve upon regular global mean thresholding, as the
determining of the threshold is significantly more advanced, and lastly local Gaussian
thresholding, which is used to add additional context to the local mean threshold. The
first test uses 15 images containing three QR codes, which were manipulated so only
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Figure 5.3: Examples of the errors occurring in the binarization process. (a) shows the
result of global mean thresholding on images with inconsistent lighting. (b) is the result
of the diameter selected for adaptive mean thresholding being smaller than the center of
the position detection pattern, resulting in incorrect binarization. (c) shows an example
of how noise can cause incorrect detection and prevent the search for the correct finder
pattern.

one is detectable, at different overall brightness levels. The goal is to find the position
detection patterns in the code, which generally correlates to a decodable QR code.
Table 5.3 shows the number of finder patterns that could be found for each binarization
method. The results of this test do not contain any surprises. The lightest image 5.4
failed for all methods which can be attributed to the overblown light areas disrupting the
ratio between light and dark modules in the position detection patterns. The other cause
of failure were the darker images, which suffered from a similar issue as encountered
with local thresholding in the previous test. The range of values present in the image
is exceptionally low, meaning the threshold value is close to both light and dark areas,
resulting in miss-determination for slight deviations in brightness, resulting in noise in

the final image. As before noise can interfere with the detection of the locator patterns
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Global Mean Global Otsu Local Mean Local Gaussian
All Found 9 8 9 9
2 found 1 2 3 0
1 found 1 1 0 0
failure 4 4 3 6

Table 5.3: Results of attempting QR code detection on images of varying brightness.

G. Mean G. Otsu L. Mean L. Gaussian
All Found 3 0 5 8
. 2 found 3 0 2 0
Bright spots 1 found 3 0 1 0
failure 0 9 1 1
All Found 4 5 7 7
2 found 1 0 1 1
Shadows 1 found 3 3 0 0
failure 0 0 0 0

Table 5.4: Results of QR detection on images with inconsistent lighting in the form of
shadows and bright spots. Comparing global (G.) and local (L.) thresholding methods.

as the sequence may be broken due to it, as well as causing false positives outside of
the code. How close the image values are can be seen in 5.4 (b) which uses values 4, 5,
6 and 7 to generate the binarization for each of the quadrants. As expected constant
poor lighting conditions affect all methods about equally, variations in brightness across
the image however do not. The next test attempts pattern detection with the same 4
binarization methods on 17 images which either contain a significantly brighter area than
the rest or a shadows being cast across all or parts of QR codes. In order to more easily
distinguish between the results, they are separated in the table. 5.4. This clearly shows
how Otsu’s method is not suited to calculate a global threshold, for images containing
a significantly brighter area. The goal of Otsu’s method is the calculation of a threshold
that separates the largest values which contribute to the image. The extremely bright
area of the tested images results in a value that separates the bright area from the rest
of the image, causing the QR code to be lost in the background. Figure 5.5 visualizes
this dynamic using one of the example images, displaying the binarized image using
Otsu’s method on the left and the global mean threshold on the right. Through both
methods, only one position detection pattern could be found, however. Otsu’s method is
significantly better suited for images with a lesser gap between the brightest and darkest
areas, such as the shadow test images, on which it performs above slightly better than
global mean thresholding. For those images neither can compete with locally adaptive
methods of thresholding however, both tested methods only fail to detect the position
detection pattern which is disrupted by glare and therefore impossible to detect for most
systems. Comparing the detection results of local and global thresholding methods can
be used to determine whether an image contains a shadow or other source of brightness
change, as the local thresholding will generally be more successful in these scenarios.
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Figure 5.4: Examples from the testing of particularly light or dark images. Image (a)
shows the brightest image in the tested set. The position detection patterns can not be
found as the overabundant light disrupts the ratio of the pattern. (b) shows the result of
applying global thresholding to the darkest image used. The four quadrants of the image
were binarized with different values in order left to right: 4, 5, 6, 7, in order to visualize
the small range of brightness across the image.
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Figure 5.5: Binarization of image containing a bright spot. (a) showing the result of
global mean thresholding and (b) the result of using Otsu’s method of creating the thresh-
old value.

This can be supported by comparing the positions of the found patterns to ensure no
false positives.

5.4 Design

QR codes are used a lot in promotional material and as such are often presented with
parts or the whole in color. Additionally, certain liberty is taken with the shape and
content of the code. In the following some examples of QR codes, deliberately breaking
the standard are tested. The first image serves as an example of how codes might be
broken. It combines multiple levels of non-compliance with the standard. Figure 5.6
shows the potential of using the error correction capabilities to embed symbols in the
code. The shape of the position detection patterns may fail for certain implementations,
as the pattern is not consistent over the diagonal. Further, the color choice of the “dark”
modules is significantly lighter than recommended. The successful decoding of this code
is only possible because the code uses the highest error correction level H, allowing for a
quarter of the encoding area to be obstructed. Applying the error correction, encoding,
and remasking to the resulting data the originally intended code can be restored. Should
the code contain more errors than the intentionally placed ones, it is quite feasible
that the error correction may not be successful. During the next testing of colored
QR codes this same code was tested and the design in the center was detected as
a position detection pattern multiple times, which may inhibit the detection process
of poorly implemented code detection systems. The discussion of the previous image
eluded to the color of the dark modules, potentially causing problems. The following
test compares three grayscaling methods to find their influence on the contrast between
light and dark modules, specifically for codes with colored modules. The tested images
contain 9 images of either colored QR codes, colored parts of QR codes or black codes
on colored backgrounds. The intention of the test is the comparison of grayscaling
methods: Intensity, Luma, using a 7y of ﬁ, and Luma using a v = 2. Gamma, correction
is necessary because video capture devices, as well as displays, do not correctly display
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(b)

Figure 5.6: Example of non compliant QR code. (a) is the original image which was
scanned. (b) shows side by side the binary matrix which was extracted from the image
on the right, and the error corrected and remasked version on the left.

luminance. The values selected here roughly correspond to what would be used for
gamma correction for a CRT Monitor, as well as its inverse used to revert the process.
Lastly Value will be tested, as its achromatic nature may influence the detection of color
codes differently from other methods. The test results are also judged on the amount of
position detection pattern found, therefore require binarization to take place. For this
local mean thresholding is used as it proved to be the most consistent over the previous
test. The testing revealed that certain color values result in significantly lower contrast
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Intensity Luma (12.2) Luma (2) Value
All Found 5 4 6 3
2 found 0 1 1 1
1 found 3 1 1 0
Failure 1 3 1 5

Table 5.5: Results of testing images of varying brightness using different grayscaling
methods and different values for gamma.

to the surrounding area than required for flawless detection. This is well visualized
in figure 5.7 showing the results of using different grayscaling methods on a QR code
with a colored position detection pattern. Using Intensity grayscaling the binarization
can function properly, using Value however a very light gray square remains of the red
pattern causing the binarization to be unsuccessful. The relevance of correct gamma
correction is another aspect of this test, which yielded interesting results. Figure 5.8
shows that the clear improvement of the binary image resulting from it. Application
of any gamma correction changes the linear brightness function to a quadratic one,
changing the range in which certain brightness values lie. Figure 5.9 demonstrates how
this can cause the binarization to fail if the code modules are close to the background
in brightness.



5. Evaluation

Figure 5.7: Example of the grayscaling testing done. (a) shows the original image. (b)
contains the binarized image after Intensity grayscaling which succeeded. (¢) shows side
by side the result of Value grayscaling and the resulting binary image.
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(b) o ©

Figure 5.8: Example of the testing with different values for the gamma correction. (a)
being the original image, (b) using 7 = 2 and (¢) v = 2—12 It clearly shows how the
contrast suffers from incorrect gamma correction.



5. Evaluation

Figure 5.9: Example of a gamma correction catastrophe. The first figure (a) shows the
original image. By applying different values for gamma (b) v = 2 and (c) v = 55 the
grayscaling process disrupted the content so much, that no successful binarization was
possible for figure (b) anymore.
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Chapter 6

Conclusion

The goal of this project was the determination of how image quality affects the detection
process of QR codes and general visual AR markers. The initial goal of creating a
program to “judge” image quality immediately proved problematic to solve as any rating
process arrived at with classical means would be arbitrary at best and flawed at worst,
as the number of potential parameters and their influence on each other is not possible
to evaluate. The structure of the data does open the door for another solution though.
Using QR codes as an example, a detection system could be used to annotate the images
in order to train a neural network on the aspects, which make QR codes undetectable.
Particularly the comparisons between different binarization techniques and grayscaling
techniques may provide enough data to objectively grade images on their contrast and
composition via a neural network to quickly determine detection chances. It appears
reasonable to assume that such a grading system could then be applied to other AR
systems that share features with QR codes, and provide correct or at least usable data
for these systems as well. Particularly the comparison with AR Toolkit and other square
binary marker systems seems possible. Additional insights gathered from the work on
this project address flaws in current detection methods. The given goal of the project
being about gathering data, a system was needed which continues computations on the
aspects of the code, even if the detection process already failed at some point, e.g. if fewer
than three position detection patterns were found. The QR detection systems used to
learn how the process works could only guide the development so far, as the result they
provide exists in a binary state, of the code being found or not found. Understanding and
analyzing the data which caused the failure, allowed for the postulating of theories on
how the process may be improved to allow for a higher rate detection in images, which
currently have zero chance of yielding pattern position. One of the theories was the
result of researching the iQR code system, which improves upon QR code by increasing
the variety of shapes and sizes they can be displayed as, while also removing two of the
position detection pattern. The exact detection manner is not part of the public domain
at this point, it can, however, be assumed that the combination of the one existing
positional pattern and the black-white iterating border on two sides of the code, aids
the location process of the code. This structure is similar to that of regular QR codes,
in how the position detection patterns are connected by the black and white alternating
timing pattern. It appears feasible to use the timing patterns in connection with one or
two position detection patterns in order to find or estimate missing positional patterns.
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This is obviously just a theory which would require time not allotted for this project to
test. Unrelated to the possibility of this being functional, it might not be relevant to the
way QR codes are used. This sentiment of not being relevant to the common usage of QR
codes extends to this entire project. The common use cases for QR codes do not include
the detection in a single image but in a stream of images retrieved from the camera.
In this way, only a single successful detection is necessary to succeed. As a result, the
method by which the testing was done might be flawed from the beginning. Determining
the quality of the images received from the camera of a phone would require a different
setup to test and would likely have different requirements in its testing, i.e. results
being available in close to real-time, preventing some approaches tested in this project.
However with the goal of creating a tool for developers and not end-users, this criticism
falls flat, as the goal for the developer will not be the quick, but accurate evaluation
of scenarios. Additionally, an individual photo may reveal problems with the image
acquisition that an interpolated image stream may never be subject to. The wide field
of both phone hardware and Marker systems, with their respective detection processes,
results in a wide range of possible points of failure, meaning that problems with outdated
hardware or software may not be immediately apparent. A tool capable of anticipating
problems with poorly implemented marker detection software would definitely provide
some value to developers and allow for the creation of a more consistent application,
and as such a better user experience. Personally, the project required me to learn new
information in fields I did not expect at the start. In particular, the math involved at
every step of the detection and decoding processes required a lot of work, with the error
correction calculations especially, as the mathematical concept of fields, was not a topic
in any project before. The perspective transformation proved to be an interesting use
case of something which was learned for a different context in the past. On the topic
of the project structure, the goal being set rather loosely, proved to be a blessing and
a curse, as the finding of specific aspects to prove or disprove was virtually impossible.
This led to no solution for this project and problem ever being complete as some new
combination of parameters is always possible and reasonable to test, leaving a feeling of
something always missing from the project. On the positive side, this allowed for a lot
more testing methods to be possible, as few things were beyond the scope of the project
in that area.



Appendix A

CD-ROM/DVD Contents

The accompanying DVD contains this paper in both PDF form as well as the full
TEXsource code. Additionally the source code of both programs created for the purpose
of testing is included. This serves only for completion sake and not to be used for
additional testing as neither usability nor the creation of executable software was the
goal of the project. Lastly the images used for the evaluation in chapter 5 are included
on the DVD.
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