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Abstract

Image scaling is one of the basic topics in the field of computer graphics
and nearly everyone has already used some kind of upsampling algorithm,
for example by enlarging a photo with Photoshop or Paint. Upscaling an
image can be difficult, especially if the resulting image should not only be of
a higher resolution but also of higher visual quality. A good result is most
difficult to achieve if the input image is a very small pixel image which is
defined by only a few pixels and colors, like a pixel art image. This is because
there is just a very small space for all the images’ information to be placed.
Several approaches have been implemented to extract all this information
and generate a new image of larger size, while keeping or even improve the
visual outcome.

The main part of this master thesis is to reimplement one of these al-
gorithms, to be specific, the Depixelizing Pixel Art algorithm by Johannes
Kopf and Dani Lischinski, which was published as scientific paper only and
not as Open Source implementation code. The main focus of this thesis is on
understanding how this process works and which steps are necessary for the
best possible outcome. The algorithm is implemented as ImageJ Plugin and
produces a vector based representation of the pixel art image as final out-
put. Along with this basic implementation some additional improvements
are introduced. Included in this extensions are an export of the output im-
age as PDF file and the introduction of a color gradient wherever possible.
The goal of these last steps is to make the image look even smoother. The
algorithm is tested with several test images and the results are shown and
discussed at the very end of this thesis.
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Kurzfassung

Eine Änderung der Größe und der Auflösung eines Bildes, auch Skalierung
genannt, ist eine der Grundoperationen im Bereich Computer Grafik. Na-
hezu jeder hat diese schon einmal beim Vergrößern eines Bildes in Photoshop
oder Paint verwendet. Beim Vergrößern der Bilder sind einige Aspekte zu
beachten, besonders wenn das Bild nicht nur größere Dimensionen, sondern
auch eine bessere visuelle Qualität haben soll. Das ist besonders schwierig,
wenn das zu vergrößernde Bild sehr klein ist und nur aus wenigen Pix-
eln und Farben besteht. Der Grund dafür ist, dass sehr viel Information
in sehr kleinen Dimensionen gespeichert werden muss. Es wurden bereits
einige Ansätze implementiert, die sowohl diese extrahierten Informationen
verarbeiten, als auch die visuelle Repräsentation des vergrößerten Bildes
verbessern.

Der Hauptteil dieser Masterarbeit beschäftigt sich mit der Reimplemen-
tierung eines Ansatzes von Johannes Kopf und Dani Lischsinki namens
Depixelizing Pixel Art, der nur in Form eines wissenschaftlichen Papers,
nicht aber als Open Source Code veröffentlicht wurde. Zu verstehen, wie
dieser Ansatz funktioniert und welche Schritte für das bestmögliche Ergeb-
nis nötig sind, steht dabei im Mittelpunkt dieser Arbeit. Der Algorith-
mus wird als ImageJ Plugin implementiert und generiert ein, auf Vektoren
basiertes, Endergebnis. Zusätzlich zu dieser Basis-Implementierung werden
auch einige Erweiterungen vorgestellt und implementiert, die das Endre-
sultat als PDF-Datei exportieren. In weiterer Folge wird ein Farbverlauf
an Stellen hinzufügt, an denen es sinnvoll erscheint, um die Qualität des
vergrößerten Bildes noch weiter zu verbessern. Der gesamte Algorithmus
wird mit diversen Bildern getestet und die Endresultate, sowie eventuelle
Schwierigkeiten werden am Ende der Arbeit behandelt.

vii



Chapter 1

Introduction

1.1 Motivation
The motivation for choosing this topic for the master thesis was to fully un-
derstand and being able to describe and reimplement the process of image
upsampling which Kopf and Lischinski introduced in 2011 [6] for the first
time. The Depixelizing Pixel Art technique includes multiple steps of which
each single step will be described in every detail to completely understand
the algorithm. In addition to the basic implementation per the documenta-
tion, some extensions were implemented afterwards to improve the outcome
even more.

The thesis starts off with this introduction chapter that also explains
some basic terms like “image editing”, “image processing”, “raster graphics”
and “vector images”, as well as delivering a definition of pixel art images.
Afterwards, Chap. 2 describes some already implemented algorithms for im-
age upsampling, where pixel art images are taken into account in particular.
Chapter 3 comprises the documentation of the first part of the implemented
algorithm where every single step from generating a similarity graph to draw-
ing a resulting image with ImageJ overlays is described. Chapter 4 is about
the extensions that were implemented to make the image look smoother.
First the result is exported as PDF file and afterwards a color gradient is
introduced to the resulting image wherever it is feasible. Afterwards, the
different implementation states are displayed in Chap. 5 using several test
images that show eventual difficulties during the implementation process.
An evaluation of each of these steps is done and the results are discussed.
Finally, a conclusion (see Chap. 6) ends the thesis with some final thoughts
and some ideas for future work.
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1. Introduction 2

(a) (b)

Figure 1.1: Visual representation of two test images. In (a) there is the well
known “Space Invader”, which is the smallest test image with only 10 × 10
pixels and two colors. Figure (b) pictures “Yoshi”, which is known from the
Super Mario games. This image is the largest test image with 28× 30 pixels
and a color-depth of 8.

1.2 Pixel Art
Pixel art is a term that describes digital art at a pixel level. But other than
photos or other digital paintings nowadays, which also consist of pixels,
real pixel art images are created since the mid-1990s and were used in the
most early computer games. At this time developers were forced to create
images using limited graphics and computing resources. Because of these
limitations the images were as small as possible and also contained only as
many different colors as really needed. In this type of image every pixel was
set and colored by hand. Because of this fact every pixel in the image matters
and deleting a pixel or offsetting just a few pixels could have a significant
effect on the image.

The pixel art images used for developing and testing the implemented
algorithm are well known from old computer games. The smallest one of
these test images had a size of 10×10 pixels and contained only two different
colors, whereas the largest one had a size of 28 × 30 pixels and contained
eight different colors. These two images are shown in Fig. 1.1 where they
were scaled to the same size for a better visual representation. For more
information about pixel art or how to create it see [18, 24, 11].
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1.3 Image Processing vs. Image Editing
To get started with the whole upsampling topic one has to understand some
basic techniques and keywords. Two of these keywords are image editing
and image processing. The severe difference between these two expressions,
as well as their meaning, are described in this section.

1.3.1 Image Processing

Image processing in most cases refers to digital image processing. But it is
also a denotation for optical and analog image processing, irrespective of
not being used commonly.

Digital image processing, which can be translated into German as “Bild-
verarbeitung”, is the use of computer algorithms to perform image process-
ing on digital images. Basically it is the computational transformation of
an image signal. According to this, image processing is any form of signal
processing for which the input is an image, such as a photograph, illustra-
tion or video frame. The phrase image processing is mainly used with a
technical background whereas image editing is commonly used in an artis-
tic way. Image processing includes the processes of registering, identifying,
analyzing, editing, saving and displaying images, photos, illustrations, single
video frames or other digital graphical documents.

Tom Fletcher defined image processing as “the study of any algorithm
that takes an image as input and returns an image as output” [4], which
simplifies the previous definitions.

Image processing is often used in the fields of computer graphic and
computer vision. Computer graphic mainly uses images, which are made
from physical models manually, instead of being generated from imaging
devices such as a camera. More information about image processing can be
found on [13, 14, 27, 32].

1.3.2 Image Editing

Image editing is a specific part of image processing, which is, compared to
image processing, considered a creative, artistic act.

Image editing [15, 28, 32] (translated into German as “Bildbearbeitung”)
describes the processes of altering images, including digital photographs,
traditional photographs or illustrations. Traditional analog image editing
is known as photo retouching, using tools such as an airbrush to modify
photographs, or editing illustrations with any traditional art medium. With
the use of graphic software programs, such as Adobe Illustrator1, Adobe

1http://www.adobe.com/at/products/illustrator.html
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Photoshop2 or Paint3, the user can manipulate, enhance and transform im-
ages with, for example, removing unwanted elements like dust specks and
scratches, adjusting the geometry of the image like rotating and cropping,
sharpening or softening the image, making color changes or adding special
effects to the image.

The main goal of every image editing process is to improve the qual-
ity of the input image. Some main procedures, which nearly every image
editing tool supports, are contrast adjustment, noise removal, change of im-
age orientation and image size, cropping, color and contrast change, gamma
correction and the use of the image histogram.

Most image editing programs can handle vector graphics as well as raster
graphics. The difference of these two types and their advantages and disad-
vantages compared to each other, can sometimes be crucial in the editing
process. Because of this they are described in more detail in the following
section.

1.4 Pixel Images vs. Vector Graphics

There are several sources, online as well as in a printed form [2, 30, 33, 35],
that define the difference between pixel graphics and vector images.

1.4.1 Pixel Images

Pixel images are also known as bitmap or raster graphics. Images of this
type are made up of the smallest possible image parts, called pixels. These
pixels are arranged as regular image matrix with discrete coordinates, each
one containing a pixel value (see Fig. 1.2(b)). Furthermore, the more pixels
an image contains the more possibilities of different pixel values are given.
According to this the color-depth of an image is defined by the amount of
colors represented in the graphic.

Pixel graphics are mostly used in photography, as this type of graphic is
suitable especially for the representation of photos and complex color gradi-
ents. There are also some very convenient image editing programs, for exam-
ple Adobe Photoshop, Adobe Elements4, Adobe Lightroom5 or Gimp6. Pixel
graphics can be identified by the file extensions JPG/JPEG7, PNG (Portable
Network Graphics), PSD (Photoshop Document), TIF (Tagged Image File
Format), BMP (Bitmap) and GIF (Graphics Interchange Format).

2http://www.adobe.com/at/products/photoshop.html
3http://www.getpaint.net/index.html
4http://www.adobe.com/at/products/photoshop-elements.html
5http://www.adobe.com/at/products/photoshop-lightroom.html
6https://www.gimp.org/
7The file extension is named after the Joint Photographic Experts Group that devel-

oped the JPEG norm.
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One advantage of pixel images is that the resolution (dpi) can be changed
as desired. Dpi is short for “dots per inch” and therefore a measuring unit.
It describes how many single pixels are placed on a one inch line. An image
with a dpi of 300 has 300 pixels placed on such a small line. These pixels
describe colors, shadings and details of the graphic. The more dpi an image
has the more details can be recognized and more difficult and smoother color
gradients are possible. Another advantage is the fact that every single pixel
of such an image could be edited separately if needed. The possibilities of
changing the image at such a deep level are nearly endless.

Of course there are disadvantages as well with this type of image. The
biggest one is probably that, when scaling a pixel image, the appearance
becomes granular. This is why image upscaling with raster images in general
does not work quite well. Another disadvantage is the file size of a raster
image. A photo that was edited with Adobe Photoshop probably has several
layers and the size can increase up to over 100 MB very easily. This happens
because each pixel information has to be stored in the image file, which is
very storage intense. To counteract this storage problem different ways of
compression have been introduced in the past. One of them is, for example,
the LZW compression8, which is used in the TIFF format. This compression
stores several neighbored pixels with the same color as one color value. This
saves time and reduces the needed storage capacity.

1.4.2 Vector Graphics

Vector graphics on the other hand do not consist of pixels but of basic geo-
metrical elements such as lines, curves, polygons or circles, which are defined
as mathematical functions. These elements do not need many parameters
and are easy to create (see Fig. 1.2(c)). A circle for example is just defined
by its radius and center. In addition, one can include several properties like
line width, contour and fill color or even fill patterns and color gradients.
Changes like this are executed on mathematically defined regions or on ele-
ments itself, in contrast to pixel graphics where every single pixel has to be
changed.

Vector graphics are often used in the printing industry to create geo-
metric designs, logos, icons, info graphics and fonts. The favored program
to work with using vector graphics or vector designs is Adobe Illustrator
[19]. Vector images in general are saved as AI (Adobe Illustrator), EPS (En-
capsulates Post Script), SVG (Scalable Vector Graphic) or PDF (Portable
Document File) files. EPS, AI and PDF are more often used in prepress
procedures whereas SVG is used for the web.

One advantage of vector images over pixel images is the fact that they
need less storage capacity. This is the result of geometrical forms and vectors

8The name is compound of the programmers’ last names A. Lempel, J. Ziv, T. Welch.
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(a) (b) (c)

Figure 1.2: The Difference of a pixel and a vector image. The original image
(a) can either be provided as pixel image (b) or as vector image (c). In (b)
the image part looks granular and one can see the underlying pixel structure.
In (c) on the other hand, the outer contour is defined by a curve, which is
displayed as a clear line with no pixel artifacts. The outer contour is defined
by interpolation points through which the line is passing. Two control points
for every interpolation point define the entrance angle as well as the exit
angle of the line.

being defined by only a few points or vectors. Small forms and fonts can
therefore be described with just a few mathematical formulas. As a result,
these image files have a smaller size than pixel images and need less execution
time for being generated. Another advantage is that these kind of images
can be scaled (up or down) easily without getting blurry or granular and
without any information loss. This is because the mathematically defined
forms are newly calculated every time the image is resized so that a new
form is generated in the desired size. Compared to an upscaled pixel image,
an upscaled vector image looks smoother and does not suffer from any stair-
casing effects. Moreover vector graphics can be edited more easily than pixel
graphics, as they are not reduced to one layer in an editing program. One can
edit the color and the line thickness for each element individually without
any problems and save the image several times in different sizes for different
situations. For example, a logo can be used in a smaller size on a website
and the same logo can be used in a much bigger size to be printed on a
banner.

One disadvantage that comes with the usage of vector images is that such
images can never show color gradients or details as natural as pixel images
can. With a photo much more detail, shading and depth information can
be provided. To get a similar result with a vector image a large amount of
elements has to be generated. The elements are getting very small whereby
the file size gets bigger and the complexity of such a detailed illustration is
very high. Furthermore, it is not possible to edit every single point in the
image but only a path. If a path segment is deleted another element has to
fill up or has to be put over the missing spot, besides one wants to define a
transparent region in the image.



Chapter 2

State of the Art

The algorithm that was implemented as master project belonging to this
written master thesis (see Chap. 3 for the whole implementation process) is
basically a vectorization program, which takes a raster image as input and
delivers a vector image as output file. The advantage of a vector based image
as described in Sec. 1.4 is that it can easily be scaled with no stair-casing
artifacts or information loss. To get a better understanding why this fact
is so important for the implementation, the next section explains the most
important differences between some state of the art scaling algorithms based
on pixel graphics as well as some well known vectorization algorithms.

2.1 Image Upsampling
There are several upsampling techniques for pixel images. The conventional
way is to apply a linear filter to the image, which is generated by using
either analytical interpolation or signal processing theory. The most used
techniques are Nearest-Neighbor, bilinear, Bicubic and Lanczos interpola-
tion. In general, these techniques work well for larger images but, as an
example in Fig. 2.3 shows, the results for pixel art images suffer from blur-
ring or stair-case artifacts in some cases.

2.1.1 Nearest-Neighbor Upsampling

The Nearest-Neighbor upsampling [2, 16, 12] is the most basic of all these
algorithms and it requires the least processing time because it only consid-
ers one pixel of the original image. The algorithm has the effect of simply
making each pixel larger by replacing every pixel with a number of pixels
of the same color. The size of the interpolation kernel can be chosen indi-
vidually. There is an example of a 2D Nearest-Neighbor interpolation kernel
in Fig. 2.1. The resulting image is larger than the original and preserves all
the original’s details but may show some stair-casing effect, especially where

7
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Figure 2.1: This image shows an interpolation kernel of the Nearest-
Neighbor interpolation 𝑘𝑛𝑛(𝑥, 𝑦) in 2D with −3 ≤ 𝑥, 𝑦 ≤ 3. The graphic
is taken from [2].

diagonal lines are enlarged in the original image. This stair-casing artifact is
one negative side effect of the Nearest-Neighbor interpolation. One example
image is shown in Fig. 2.3(a) with the original image looking just the same
but being 16 times smaller.

2.1.2 Bilinear Upsampling

In mathematics, bilinear interpolation [2, 16, 12] is an extension of linear
interpolation for interpolating functions of two variables (e.g. 𝑥 and 𝑦) on a
rectilinear 2D grid.

The key idea is to perform linear interpolation first in one and then in
the other direction. Although each step is linear in the sampled values and in
the position, the interpolation as a whole is not linear but rather quadratic
in the sample location. The two dimensional kernel 𝑘bilin can be described as
the product of the two belonging one dimensional kernels 𝑘lin(𝑥) and 𝑘lin(𝑦)
for the 𝑥 and the 𝑦 dimension respectively. These two kernels can generally
be described as

𝑘lin(𝑎) =
{︃

1− 𝑎 for |𝑎| < 1,

0 for |𝑎| ≥ 1.
(2.1)

The two dimensional kernel can then be described as
𝑘bilin(𝑥, 𝑦) = 𝑘lin(𝑥) · 𝑘lin(𝑦)

=
{︃

1− 𝑥− 𝑦 + 𝑥𝑦 for 0 ≤ |𝑥|, |𝑦| < 1,

0 otherwise.
(2.2)

The one- and two-dimensional interpolation kernels of the bilinear interpo-
lation are displayed in Fig. 2.2.

When using bilinear interpolation for upsampling images also some un-
desirable blurring of details can occur. Nevertheless in computer vision and
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(a) (b)

Figure 2.2: Example images of the bilinear interpolation according to [2].
The one-dimensional bilinear interpolation kernel (a) and the interpolation
kernel of the bilinear interpolation 𝑘bilin(𝑥, 𝑦) in 2D (b) with −3 ≤ 𝑥, 𝑦 ≤ 3.

image processing, bilinear interpolation is one of the most used resampling
techniques.

Unlike other interpolation techniques such as Nearest-Neighbor and bicu-
bic interpolation, this interpolation technique considers the values of the four
neighbors closest to the known pixel coordinate (𝑥0, 𝑦0), which are defined
as

𝐴 = 𝐼(𝑢0, 𝑣0),
𝐶 = 𝐼(𝑢0, 𝑣0 + 1),

𝐵 = 𝐼(𝑢0 + 1, 𝑣0),
𝐷 = 𝐼(𝑢0 + 1, 𝑣0 + 1),

(2.3)

with 𝑢0 = ⌊𝑥0⌋ and 𝑣0 = ⌊𝑦0⌋. After a linear interpolation in both the
horizontal and the vertical direction, two new values 𝐸, 𝐹 are calculated as

𝐸 = 𝐴 + (𝑥0 − 𝑢0) · (𝐵 −𝐴) = 𝐴 + 𝑎 · (𝐵 −𝐴),
𝐹 = 𝐶 + (𝑥0 − 𝑢0) · (𝐷 − 𝐶) = 𝐶 + 𝑎 · (𝐷 − 𝐶)

(2.4)

as the distance 𝑎 is defined as 𝑥0 − 𝑢0. The final interpolation value 𝐺 can
then be calculated as

𝐼(𝑥0, 𝑦0) = 𝐺 = 𝐸 + (𝑦0 − 𝑣0) · (𝐹 − 𝐸)
= 𝐸 + 𝑏 · (𝐹 − 𝐸)
= (𝑎− 1)(𝑏− 1)𝐴 + 𝑎(1− 𝑏)𝐵 + (1− 𝑎)𝑏𝐶 + 𝑎𝑏𝐷.

(2.5)

The result of the bilinear interpolation looks much smoother and more
natural than the one with the Nearest-Neighbor.1 However, stair-casing can
happen with this approach as well. The algorithm is also quite fast due to
its simplicity.

Despite the bilinear approach and the Nearest-Neighbor interpolation,
which are the interpolation methods used most of the time, there are the

1Compare Fig. 2.3(a) and Fig. 2.3(b) for better understanding.



2. State of the Art 10

(a) (b)

(c) (d)

Figure 2.3: Comparison of different upsampling techniques. The original
Pixel Art image is used as input. This image is upsampled in different ways,
the first being Nearest-Neighbor interpolation figured in (a). The second
image (b) is the result of the input image being interpolated with the bilinear
interpolation, in (c) the result of the bicubic interpolation is captured and
(d) shows the resulting image with the Lanczos interpolation.

Bicubic and the Lanczos interpolation. These techniques are not very dif-
ferent in the end results, which can also be seen in Figs. 2.3(c) and 2.3(d),
compared to the bilinear interpolation. The Bicubic interpolation consideres
more neighbored pixels as the bilinear approach, which causes some kind of
ringing effect in the example picture. The Lanczos interpolation delivers an
even worse ringing end result. This is because there are not that many dif-
ferent colored neighbor pixels of a specific pixel which causes this error. A
more detailed description of how these two interpolation methods work can
be found on [2, 16, 12].
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2.2 Pixel Art Upsampling Techniques
Because of the fact that the images in the very first computer games were
quite small, upsampling techniques that use filters like the Nearest-Neighbor
or the bilinear approach described in Sec. 2.1.2 do not work well for such
small pixel art images. This is why some different algorithms were developed
over time. All of these new algorithms, which were especially implemented
for pixel art images, were used in the emulation area. Nearly none of these
techniques was introduced at a conference or a public venue. However, most
of them are Open Source and free to use. Because of this, only two different
techniques, namely the EPX/Scale2X algorithm and the hqx algorithm are
described in the next section.

2.2.1 EPX and Scale2x Algorithm

The EPX and the Scale2x interpolation technique were developed at dif-
ferent times but both end up producing the exact same output. These two
algorithms are described in this section.

EPX Algorithm

The first algorithm to mention is the EPX algorithm [5]. Developed some-
where around the early 1990’s by Eric Johnston – EPX is short written for
Eric’s Pixel Expansion – it was primarily used to convert computer games
in such a way that they can be played not only on the computer, which they
were initially made for, but on other devices as well.

The EPX technique expands every pixel of the original image 𝐼 into four
new pixels (see Fig. 2.4(a)) by considering the color 𝑃 of the original pixel
and four more colors of the neighboured pixels, as can be seen in Fig. 2.4(b).
The colors of the initial pixels are defined as

𝑃 = 𝐼(𝑢, 𝑣), 𝑇 = 𝐼(𝑢, 𝑣 − 1),
𝑅 = 𝐼(𝑢 + 1, 𝑣), 𝐵 = 𝐼(𝑢, 𝑣 + 1),
𝐿 = 𝐼(𝑢− 1, 𝑣).

(2.6)

The resulting image has a width and a height, which are twice as high
as the dimensions of the original input image. To determine the color of
the new pixels a four-connection-neighborhood is assumed with the original
pixel.

The color 𝑃1 of the newly generated upper left pixel is defined by con-
sidering the color of the neighbored pixels on the top (𝑇 ) and the left side
(𝐿) of the original pixel respectively. If these two neighbors have the same
color, also 𝑃1 is assigned the same color. If they do not share the same color
the original color 𝑃 is assigned to 𝑃1. This procedure is done for the three
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Figure 2.4: Pixel extension and neighborhood situation used by the EPX
algorithm. Picture (a) shows how an initial pixel with color 𝑃 = 𝐼(𝑢, 𝑣) is
converted into four new pixels with the colors 𝑃1, 𝑃2, 𝑃3, 𝑃4 and (b) shows
all neighbors of the initial pixel in the original image, which have the colors
𝑇, 𝐿, 𝐵, 𝑅 assigned, that are considered during the coloring process.

other new pixels as well, considering the colors of the top and right neigh-
bors (𝑇 and 𝑅) for assigning a color to 𝑃2, the colors of the bottom and left
neighbors (𝐵 and 𝐿) for coloring the new pixel on the bottom left in the
color 𝑃3 and the bottom and right neighbors’ colors (𝐵 and 𝑅) for assigning
a color to 𝑃4. After the four new parts of the image are colored, one more
examination has to be done. If three or more out of the four colors 𝑇 , 𝐿,
𝑅 and 𝐵 are the same all four new pixels are painted in the color of the
original pixel, which is 𝑃 , because otherwise there might be a loss of color
information in the end result.

For a better understanding some pseudocode is provided in Prog. 2.1.
There are also some examples of different coloring situations in Fig. 2.5. The
image shows the colors of the neighboring situation (𝑃, 𝑇, 𝐿, 𝐵 and 𝑅) and
the four resulting colors 𝑃1, 𝑃2, 𝑃3 and 𝑃4 for the resulting pixels.

Scale2x Algorithm

The Scale2x algorithm was developed by Andrea Mazzoleni [25, 26] to im-
prove the quality of old games with a low video resolution. At this time
Mazzoleni did not know about the EPX implementation, but delevoped an
algorithm that came out with the exact same result as the EPX technique.
The only difference is that the definition of the Scale2x algorithm (which
can be seen as pseudocode in Prog. 2.2) is slightly different, wherefore this
approach is slightly faster. The four new pixels are initialized with the color
of the original pixel 𝑃 = 𝐼(𝑢, 𝑣) in the first step, whereupon it is checked
whether tree or more of the four initial neighboring pixels have the same
color. In this case, the new pixels are colored in the same way as in the EPX
algorithm, otherwise the next pixel is processed.
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Algorithm 2.1: The EPX algorithm

1: function epxUpsampling(𝑃, 𝑇, 𝐿, 𝐵, 𝑅)
2: (𝑃1, 𝑃2, 𝑃3, 𝑃4)← ((0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0))
3: if 𝑇 = 𝐿 then
4: 𝑃1 ← 𝑇
5: end if
6: if 𝑇 = 𝑅 then
7: 𝑃2 ← 𝑇
8: end if
9: if 𝐵 = 𝐿 then

10: 𝑃3 ← 𝐵
11: end if
12: if 𝐵 = 𝑅 then
13: 𝑃4 ← 𝐵
14: end if
15: if 3 colors of {𝑇, 𝐿, 𝑅, 𝐵} are the same then
16: (𝑃1, 𝑃2, 𝑃3, 𝑃4)← (𝑃, 𝑃, 𝑃, 𝑃 )
17: end if
18: return (𝑃1, 𝑃2, 𝑃3, 𝑃4)
19: end function
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Figure 2.5: Some initial neighborhood situations and the solution for the
new pixels’ colors. In (a) the four neighbors are of only two different colors,
which means that for every pixel the color is defined by the adjacent neighbor
pixels. The upper left pixel is colored blue because of the colors 𝑇 and 𝐿
being blue. The new bottom right pixel is painted, because of 𝑅 and 𝐵 being
green, in a green color. The top right and bottom left pixels are colored in
the original pixels’ color gray, because the respective neighbors differ in color.
In (b) and (c) more than three neighbored pixels have the same initial color,
whereas all new pixels are painted gray. For (d) only the upper left pixel is
painted blue because of its neighbors being the same color.
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Algorithm 2.2: The Scale2x algorithm

1: function scale2xUpsampling(𝑃, 𝑇, 𝐿, 𝐵, 𝑅)
2: (𝑃1, 𝑃2, 𝑃3, 𝑃4)← (𝑃, 𝑃, 𝑃, 𝑃 )
3: if 𝑇 ̸= 𝐵 ∧ 𝐿 ̸= 𝑅 then
4: if 𝐿 = 𝑇 then
5: 𝑃1 ← 𝑇
6: end if
7: if 𝑅 = 𝑇 then
8: 𝑃2 ← 𝑇
9: end if

10: if 𝐿 = 𝐵 then
11: 𝑃3 ← 𝐵
12: end if
13: if 𝑅 = 𝐵 then
14: 𝑃4 ← 𝐵
15: end if
16: end if
17: return (𝑃1, 𝑃2, 𝑃3, 𝑃4)
18: end function

(a) (b) (c)

Figure 2.6: Comparison of the EXP/Scale2x algorithm and the hq4x proce-
dure. In (a) the original image is to see, which is upscaled with the Nearest-
Neighbor algorithm. Figure (b) shows the result of the EPX/Scale2x proce-
dure and (c) is the end result for the the hq4x algorithm.

The border situation is solved the same way in both algorithms. If the
initial pixel is located at the image border the value of the neighbored pixels,
that are not included in the image any more, is assumed to be the same as
the value of the border pixels. Figure 2.6 shows example images with the
first one being the original input image upscaled with the nearest neighbor
approach (pictured in Fig. 2.6(a)). The second one (see Fig. 2.6(b)) shows
the result of the EPX/Scale2x upsamling.
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2.2.2 The hqx Upsampling Algorithms

The problem with the EPX and the Scale2x algorithm described before is
that these algorithms in their original form can upsample an image only by
a factor of 2. The hqx family however is a set of algorithms, namely the
hq2x, hq3x and hq4x algorithm, which can upsample an image by a factor
of 2, 3 or 4 respectively. These techniques were developed by Maxim Stepin
[34] especially for small pixel art images. The algorithms are quite fast and
produce high-quality result images.2 They are used in a number of emulation
systems until now. For this there are also a number of implementations in
different languages, like the Java implementation by Edu Garcia [17] or the
C# implementation by Tamme Schichler [29], which are both Open Source.
The procedure of all of these implementations, however, is the same.

Starting with a specific pixel 𝑃 determine a 8-neighborhood-connection.
The first step is to analize the 3×3 area around the source pixel. For each of
the eight neighbors the color difference between the neighbor and the central
pixel 𝑃 is calculated in the YUV color space. If the colors differ more than
48, 7 or 6 units in the Y, U or V channel respectively the neighbor pixel
is considered distant to the center pixel. If the channels do not differ that
much the pixel is considered close to 𝑃 . By comparing all eight neighbors
there are 28 = 256 different possibilities of distant/close combinations.

For every single one of these distant/close combinations one color entry
in a lookup-table is generated considering a predefined neighborhood (which
gets greater with the algorithms degree) around the source pixel. In this way
repetitive color combinations can be found more easily and edges, lines and
color patterns are prevented by interpolating the pixels of the original image.

It is just a logical consequence that the larger the input image is, the
longer the algorithm takes to produce the lookup-table and the resulting
output image. Because of this, it is possible but not reasonable to take a
photograph as input image. Instead the pixel art images and images up to a
resolution of 256× 256 can be interpolated in real time. In Fig. 2.6(c) there
is an example of an image being upscaled with the hq4x algorithm.

2.3 Image Vectorization Techniques
As mentioned in Sec. 1.4 there are severe differences between pixel im-
ages and vector graphics. So besides the upsampling techniques described
in Secs. 2.1 and 2.2, which produce only pixel graphics as end results, there
are several techniques that produce a scale invariant vector graphic as end
result. This section gives a more detailed overview about several vectoriza-
tion techniques, namely the Potrace, the Diffusion Curves and the Adobe
Live Trace algorithm.

2Hqx stands for high quality (hq) magnification (x).
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Figure 2.7: Showing the way of how a path is generated with the Potrace al-
gorithm. Starting at a specific vertex the path moves forward always keeping
the white pixels on the right and the black pixels on the left side. In the case
of the very last image there are two possible ways for the path to continue.
This situation is solved with the turn policy of the Potrace algorithm. This
image is taken from [31].

2.3.1 Potrace

Peter Selinger introduced an algorithm called Potrace3 [31]. The algorithm
is fast, simple and very efficient. Furthermore “it tends to produce excel-
lent results”. However, this algorithm is only suitable for binary images and
therefore not usable with the most pixel art images or color images.

As many other algorithms, the Potrace performs several steps for the
best result possible. This steps are

• generating several paths from the input image using a turn policy,
• generating polygons from these paths,
• applying vertex adjustments and smoothing and
• doing curve optimization to finalize the output.

Starting with the input image (see Fig. 2.9(a) for example) it is assumed
that the background color is the white color (continuing over the borders of
the image) and the foreground is made up of all pixels with a black color.

The Potrace algorithm starts at a pair of adjacent pixel being of different
color. It then travels along the edges keeping the black pixel on the left
and the white pixel on the right hand side. Whenever hitting a corner the
algorithm decides either to go straight ahead, turn left or to turn right
depending on the colors of the surrounding pixels (as can be seen in Fig. 2.7).
In the case of a checkerboard pattern, the algorithm has to decide whether
to go left or right. To decide which way to go, there are several turn policies
implemented. In terms of the left- and the right-policy the path is always
extended to the left or the right side. The black- and the white-policy prefer
to connect black or white components respectively. The majority- and the
minority-policy prefer to connect the color that occurs most/least frequently
in a predefined neighborhood. Last but not least there is the random-policy
that makes a random choice. This is repeated as long as the path returns

3Potrace is a combination of the words polygon and tracer, which describes the algo-
rithm in just one word. See http://potrace.sourceforge.net/.

http://potrace.sourceforge.net/
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(a) (b)

Figure 2.8: Two possible results for a polygon of a specific closed path
with (a) being the optimal polygon and (b) being a non-optimal polygon,
depending on the number of line segments. The images is taken from [31].

to its starting point and becomes a closed path. After finding such a closed
path, it is removed from the image by inverting all pixel values inside of
the path. The result is a new image, to which the algorithm is applied
recursively until no more black pixels are left. The end result of this step is
a set of multiple closed paths that describe the outer contour of each region
in the original image.

The next step is to generate an optimal polygon, approximating a specific
closed path for all of the closed paths being found in the earlier step. Such
a polygon consists of several straight lines approximating the shape of the
closed path. Note that there can be more than one possibility of a polygon
for a certain sequence of vertices (see Fig. 2.8(a) and Fig. 2.8(b)). To decide
which polygon is the more optimal one, the number of segments is counted
and the one with the lower number of segments in the polygon is assumed
to be the better one. The result of this step can be seen in Fig. 2.9(b) for a
specific example.

The next step is to adjust the vertices of the polygon and to smooth
everything. For each set of three consecutive vertices 𝑎𝑖, 𝑎𝑖+1 and 𝑎𝑖−1 of
the polygon, two line segments (𝑎𝑖, 𝑎𝑖+1) and (𝑎𝑖, 𝑎𝑖−1) are created and the
midpoints of these lines are defined as 𝑏1 and 𝑏2. Considering the angle
between the three points 𝑏1, 𝑎𝑖 and 𝑏2 and depending on the result of a
corner detection method it is decided whether to connect the two midpoints
via a quadratic Bézier curve, with the original vertex 𝑎𝑖 being the control
point, or via two straight line segments (𝑏1, 𝑎𝑖) and (𝑎𝑖, 𝑏2).

The next step is additional, as it does not change the visible output so
much that the normal user would see any difference. However, the optimal
last step is to further optimize the curve consisting out of Bézier curves and
straight line elements. For this, adjacent Bézier curve segments are joint
together wherever this is possible (see the result of this step in Fig. 2.9(c)).

To finish the approach the curves are filled with the belonging color
repectively to the original input image. Afterwards the resulting image can
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Figure 2.9: All steps of the Potrace algorithm using a test image, which
is taken from the original paper [31]. The example image (a) is the original
image. This image is devided into multiple closed subpaths, of which an
optimal polygon is created (b). Furthermore corners are detected, Bézier
curves and straight line segments are generated and the resulting contour is
optimized by conjoining adjacent Bézier curves wherever possible (c). The
final output image is shown in (d).

be rendered. The output image for the example is shown in Fig. 2.9(d) with
all Bézier curves being connected and the regions being colored.

2.3.2 Diffusion Curves

Another vectorization algorithm was introduced by Alexandrina Orzan et
al. [9]. It converts an image into several vector-based primitives to make it
look more smooth-shaded. This primitives are called diffusion curves.

The general idea of a diffusion curve is to define different colors on ei-
ther side of the curve, which smoothly change along the curve as well. An
image is defined by a number of these diffusion curves whereas the color
and sharpness of the curve, which is also interpreted as contour, can be
defined individually. These curves also support some geometrical editing or
keyframe animation. Another advantage of this curves is that they deliver a
resolution independent representation of the resulting image, which makes
it easily scalable without losing image information as discussed in Sec. 1.4.
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The curves can either be drawn by hand or an already existing image can be
traced to automatically fit the curves. What makes the diffusion curves more
practical than, for example, the gradient meshes from Adobe4 is that they
offer the same complexity with additional advantages: The diffusion curves
are sparse and meaningful features are corresponded by them. Furthermore,
they are easy to create, manipulate and animate. If there is no need for
manual editing, there still is the option of a fully automatic conversion of a
bitmap image into a diffusion curve representation.

The disadvantage of this algorithm is the fact that it uses the Canny
edge detection [3], which is not suitable for such small pictures as pixel art
images.

The diffusion curve itself is a geometric curve defined as cubic Bézier
spline. This spline is formed by a set of control points 𝑃 , which can be seen
in Fig. 2.10(a). Furthermore, there are two sets of color control points 𝐶𝑙

and 𝐶𝑟 for the color control points on the left and the right hand side of
the curve (see Fig. 2.10(b)). Note that the array for the control points on
one side can be bigger as the one for the other side if there are more color
transitions on one of the two sides. Additionally, there is a set of blur control
points Σ (see Fig. 2.10(c)) to define the smoothness of the color transition
done between the two sets of color control points. Black hereby indicates
a sharp transition whereas white indicates a smooth transition. The final
output for the example image is shown in Fig. 2.10(d).

As mentioned before, there are different ways to create an image using
diffusion curves. One way is to manually create an image by first sketching
the lines where the diffusion curves should be located and then filling in the
color manually on all the diffusion curves. An example of this approach is
pictured in Fig. 2.11.

Another way is the fully automated approach where the algorithm con-
verts an image into a diffusion curve representation by using the Canny
detector [3] to trace the visible edges of the original input image. After-
wards each pixel-chain is approximated with a diffusion curve. In Fig. 2.12
the automatic transformation of an example image is shown.

A third approach is a mix of both approaches mentioned before. It is
called “assisted” method. The user can trace parts of the original image
himself and the algorithm recovers the underlying color of the original image.
To provide some help for the artist there is a tool called “Active Contours”,
which attracts the active contour to the highest gradient values in the input
image. The curve automatically snaps to the nearest edge.

4See [22] for further information about the gradient mesh.
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Figure 2.10: The general functionality of the diffusion curves as described
in [9]. A diffusion curve is defined as a basic Bézier curve with an array of
control points 𝑃 as can be seen in (a). Additionally there are two arrays
𝐶𝑙, 𝐶𝑟 for the color control points of the left and the right side of the curve
(see (b)). Furthermore, an array of blur control points Σ is given in (c), which
indicates how the control points of either side are interpolated. Black hereby
indicates a sharp, white a smooth transition. The final output is shown in (d).

2.3.3 Adobe Live Trace

Adobe developed another tracing algorithm called Live Trace [19, 21, 23].
The underlying algorithm is neither Open Source nor published in any
way. But similar to the other vectorization approaches it transforms a pixel
graphic into a vector image, tracing the visible edges of an image. The artist
or user can also do some pre-adjustments, for example choose a specific color,
and one still has full control to finesse the tracing with an Image Trace panel
that presents all options in one place.

The process is very easy for the user, as only one button needs to be
clicked. This approach is particularly helpful when converting a sketch on
paper into a vector image that can then be further modified. For this the
original image is scanned or painted with a computer program like Pho-
toshop that handles pixel images. After opening and selecting the scan or
image with Illustrator there is a button, which says “Image Trace” in English
or “Interaktiv Nachzeichnen” in German. By clicking this button the image
is traced automatically with the Live Tracing algorithm of the program.

One can either use a predefined setting or generate a new setting where
different parameters can be defined individually. If the underlying image, for
example, is a gray scale image a specific threshold value can be chosen to
generate a binary image. Every pixel lighter than this threshold is assumed
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Figure 2.11: An example of manually created diffusion curves. The manual
creation of an image using diffusion curves starts the same as the creation
of any other image: with some sketching (a). After adjusting the sketch and
positioning the curves the color is added and the plain diffusion curves look
like the ones in (b). The generated output image is pictured in (c). These
images are taken from the original paper [9].

(a) (b)

(c) (d)

Figure 2.12: Example images of automatically created diffusion curves. The
input image (a) is automatically converted into a finished diffusion curve
representation (d). For a better imagination one plain diffusion curve with
the color control points is pictured in (b) along with the color differences of
the original image (c). The images are taken from [9].

to be white, all darker ones are assumed to be black. With a specific palette
of colors one can define a number of colors that should be used to trace
the underlying image. For every pixel in the original image the color of
the palette with the smallest color distance is chosen. According to this
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parameter also a maximum number of colors for the tracing can be set.
There are some more parameters to chose like a maximal/minimal contour
length or line width.

After either generating a new tracing setting or choosing a standard
approach there is furthermore the possibility to convert the result into a
vector representation that can be changed by the user. The individual curves
with the control points are enabled and one can adjust the form of the curves
as well as for example the fill color or delete/add any control points to adjust
the shape even more.

What is also really important to know is that the resolution of the image
has a deep impact on how the result turns out. A higher resolution will make
the vector graphic look more detailed, whereas a lower resolution smooths
the image out by not caring too much about smaller details. An example is
shown in Fig. 2.13. The tracing of an image with a higher resolution takes
longer than the tracing of an image with lower resolution but the result of
the image with the higher resolution in general looks more pleasing. The
execption to this general rule is an artist who wants to achieve a more plain
or cartoony look. For this a lower resolution might be preferable.

2.4 Algorithm by Kopf and Lischinski
The precedent sections all explained some algorithms for image upsampling,
but all of them had some issues to deal with when it comes to pixel art
images. Johannes Kopf and Dani Lischinski proposed an approach [6] where
they introduced a new kind of upsampling technique for the specific kind
of pixel art images. In this section a short overview about this approach is
given as it is explained in more detail in Chap. 3 where the reimplementation
of the algorithm with Java/ImageJ is described.

The challenges Kopf and Lischinski figured out while working with such
small images are not that much in number, but essential in their effect if
they are not considered. All issues, that came up, can be summarized into
four basic challenges:

First, every pixel matters. In such small images every pixel has its right
to exist. Despite the fact that in the beginning every pixel of an image was
placed by hand, there is no room for any additional pixels. So every pixel
carries as much information (position and color for example) as possible.

Second, it has to be assumed that every pixel is connected to eight neigh-
bored pixels at most. This is to make sure that even pixels that may seem
to be visually disconnected under magnification are still connected in the
original image.

Third, the difficulty about an eventual checkerboard pattern has to be
considered. It has to be discovered which of the two colors meeting in the
checkerboard pattern is assumed to be the foreground and which is assumed
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Figure 2.13: The Adobe Live Trace algorithm is another way to convert a
pixel image into a vector image. However, it has to be kept in mind that the
resolution of the input image is important for the outcome. Here an original
image with a resolution of 300 dpi (a) is traced. The resulting image can be
seen in (b). The details are clear to see as there are a lot of small holes, for
example, in the region of the eyebrow or the shadows around the eye. The
same image, but with a smaller resolution of 150 dpi, looks like (c) when
traced. The small holes close up more and more and the image does not look
like a sketch any more. The result with a resolution of 72 dpi is shown in
(d). Here the details are reduced to a minimum and the image looks very
cartoony and plain compared to the image shown in (b).

to be the background color. According to the result the pixels in the fore-
ground color are connected.

Last but not least, it is still very hard to say if there are jaggies in the
image or if the assumed jaggies are a feature of the small image. Diagonally
connected pixels, for example, can in some cases be wiggly in the resulting
image, in other cases however they should be smoothed out for a better
result.

To solve this difficulties, Kopf and Lischinski developed a completely new
approach for vectorizing very small images. The basic steps of the algorithm
are pictured in Fig. 2.14 for a better understanding. Kopf and Lischinski
start of with generating a similarity graph (like the one in Fig. 2.14(b))
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(d) (e) (f)

Figure 2.14: The algorithm of Kopf and Lischinski described with images
for the basic steps. In (a) the input pixel art image is shown. A similarity
graph is generated containing all possible connections of every pixel in (b).
This similarity graph is furthermore flattened in (c) and used to generate a
Voronoi diagram shown in (d). At the visible edges of this Voronoi diagram
the quadratic B-Splines are fitted (see (e)) for producing the final output
image, which is shown in (f).

depending on the original input image pictured in Fig. 2.14(a). For this all
pixels are connected with their eight neighbors but only if their color is the
same. Pixels with a different color are never connected. In case of a checker-
board pattern in a 2 × 2 pixel region there are two diagonal connections
for both colors as can be seen in Fig. 2.14(b), indicated by the red diagonal
lines. Only one of these two connections can stay and the other one has to be
deleted. The connection that stays should always be the edge, which connects
the foreground pixels. To find out which edge is connecting the foreground
pixels, an own heuristic is implemented. These heuristics determine whether
the edge is connecting an island pixel to a larger part (island-heuristic),
if the connection is part of a longer curve connection (curve-heuristic), or
if the edge connects two pixels of a sparse region (sparse-heuristic).5 Af-
ter executing the heuristic and identifying the foreground connection, the
edge connecting the background pixels can be deleted. Also both diagonal

5These heuristics are explained in detail in Sec. 3.2.2.
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Figure 2.15: Example images of the Depixelizing Pixel Art algorithm. After
tracing the example input image in (a) the algorithm leads to the resulting
image shown in (b). The same is done with the slightly larger example image
“Yoshi” (c) again. The result, which is pictured in (d), looks very clean and
smooth compared to (c).

connections in a 2 × 2 pixel region, where all pixels have the same color,
are deleted. The result after this step is a planar similarity graph like the
one in Fig. 2.14(c). Using this planar similarity graph a Voronoi diagram
is generated by splitting all remaining diagonal connections in the middle,
generating new intersection points and reconnecting all seeds to the nearest
neighbors, as shown in Fig. 2.14(d). The final step is then to fit quadratic
B-Splines to the visible edges of Fig. 2.14(e), which leads to the final output
shown in Fig. 2.14(f).

This algorithm delivers really good results especially for pixel art images.
While it works for virtually all kinds of images, the computation time for
regular images with higher resolution is too long. In Fig. 2.15 there are two
more examples of the “Depixelizing Pixel Art” algorithm.

This approach was used as starting point for the master project, which
was a reimplementation of the algorithm using Java/ImageJ, including some
adjustments on the algorithm and exporting the image as vector representa-
tion. All the steps, changes and difficulties are described in Chaps. 3 and 4.



Chapter 3

Java/ImageJ Implementation

In this section the algorithm which was implemented as master project,
using Java/ImageJ [36], is described and explained in detail. All steps of the
approach are also done by Kopf and Lischinski, however, some adjustments
had to be done in Java to accomplish the same result.

3.1 Generating the Reference Image
The original input image, which is a pixel image, is opened with ImageJ and
displayed as a two-dimensional image matrix 𝐼(𝑢, 𝑣) as shown in Fig. 3.1.
The width of the image is referred to as 𝑀 and the height of the image is
referred to as 𝑁 with 𝐼 : 𝑀 ×𝑁 ↦→ R.

Figure 3.1: The input image is represented as two dimensional image ma-
trix.

26
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(a) (b)

Figure 3.2: The pixel centers and pixel corners are marked for each pixel
in the image. In (a) all pixel centers of the image are marked. A detailed
version of a pixel set is displayed in (b). The center points of the pixels are
shown as a magenta colored crosses and the corner points are surrounded by
green colored squares.

3.2 Generating the Similarity Graph
After opening the image, the next step is to generate a similarity graph 𝐺𝑆 . A
graph 𝐺 = ⟨𝑆, 𝐸⟩ consists of a set of seeds 𝑆 and a set of edges 𝐸 that connect
the seeds. A similarity graph 𝐺𝑆 graphically shows the connections between
each pixel 𝑠0 and its multiple neighbor seeds (for example 𝑠1), whereby
only pixels with the same color or with a very similar one (depending on a
predefined threshold) are connected via an edge 𝑒𝑠0,𝑠1

in the pixel center (see
Figure 3.2). The pixel centers of the original image representation 𝐼(𝑢, 𝑣) are
described as

𝑢 = (𝑢 + 0.5, 𝑣 + 0.5), (3.1)

with 𝑢 ∈ [0, 𝑀 − 1] and 𝑣 ∈ [0, 𝑁 − 1] because it is worked with overlays
in ImageJ and these ones have the origin placed in the upper left corner,
which is also a pixel corner. The center points are marked in Fig. 3.2 (b) as
magenta colored crosses and are referred to as seeds (S). All seeds that are
considered neighbors to one specific seed 𝑣 are described as 𝒩 (𝑣) and can
include eight neighbors at maximum with a 8-neighborhood-connection. The
corner points of each pixel are described as

𝑥𝑘(𝑢, 𝑣) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︀
𝑢
𝑣

)︀
for 𝑘 = 0,(︀

𝑢+1
𝑣

)︀
for 𝑘 = 1,(︀

𝑢+1
𝑣+1

)︀
for 𝑘 = 2,(︀

𝑢
𝑣+1

)︀
for 𝑘 = 3

(3.2)

and are marked in Fig. 3.2 (b) as green colored squares.
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Neighbored pixels can share up to two pixel corners if they have a straight
connection and one at maximum if they are diagonally connected. Depending
on this, one pixel corner can be a pixel corner of three other pixels as a
maximum, which can be described as

𝑥0(𝑢, 𝑣) = 𝑥1(𝑢− 1, 𝑣) = 𝑥2(𝑢− 1, 𝑣 − 1) = 𝑥3(𝑢, 𝑣 − 1),
𝑥1(𝑢, 𝑣) = 𝑥0(𝑢 + 1, 𝑣 − 1) = 𝑥2(𝑢, 𝑣 − 1) = 𝑥3(𝑢 + 1, 𝑣 − 1),
𝑥2(𝑢, 𝑣) = 𝑥0(𝑢 + 1, 𝑣 + 1) = 𝑥1(𝑢, 𝑣 + 1) = 𝑥3(𝑢 + 1, 𝑣),
𝑥3(𝑢, 𝑣) = 𝑥0(𝑢, 𝑣 + 1) = 𝑥1(𝑢− 1, 𝑣 + 1) = 𝑥2(𝑢− 1, 𝑣).

(3.3)
There are basically two steps included for generating a similarity graph

𝐺𝑆 = ⟨𝑆𝑆 , 𝐸𝑆⟩, which is initialized with an Array or a List of seeds as 𝑆𝑆

and an empty List of edges 𝐸𝑆 in the beginning. In this case the seeds to
work with are all the pixel centers 𝑢 of the inpu image 𝐼.

3.2.1 Generating All Possible Connections

To connect one specific seed with all eight neighbors the first thought is
to generate eight edges 𝑒 from a specific seed 𝑠 = (𝑢, 𝑣) to all the neigh-
bored seeds 𝑠𝑗 = (𝑢𝑗 , 𝑣𝑗). But as this similarity graph is a non-directed,
non-weighted graph representation, it does not matter if the connection is
generated as 𝑒𝑠,𝑠𝑗

or 𝑒𝑠𝑗 ,𝑠, because this is basically the same edge just cre-
ated in two different directions. What actually matters is if the edge already
exists. To ensure that no edge is generated twice, each pixel only generates
four edges at most in predefined directions with the purpose to connect a
specific seed 𝑠 with just four of its connected neighbor seeds, which are
𝑠0 = (𝑢 + 1, 𝑣 − 1), 𝑠1 = (𝑢 + 1, 𝑣), 𝑠2 = (𝑢 + 1, 𝑣 + 1) and 𝑠3 = (𝑢, 𝑣 + 1)
in specific, if the pixel is a non-border pixel. If the seed is located at the
border each of these edges is generated only if the second seed, which should
be connected to the seed 𝑠, exists. In general all edges of a specific seed 𝑠
can be defined as

𝐸(𝑆) = {𝑒𝑠,𝑗 | 𝑗 ∈ [0, 3] ∧ 𝑠𝑗 ∈ 𝑆}. (3.4)

If the color of the two pixels which should be combined is the same, the edge
𝑒𝑠,𝑠𝑗

between the seeds 𝑠 and 𝑠𝑗 is added into the edge set 𝐸𝑆 of the similarity
graph. The general procedure is described as pseudo code in Alg. 3.1. If all
possible edges (without considering the fact of only connecting pixels with
the same color) would be connected in the similarity graph the maximal
amount of edges can be described as

𝐴𝐸 = (5 + (𝑁 − 2) · 4) · (𝑀 − 1) + 𝑁 − 1. (3.5)
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Algorithm 3.1: The general procedure of generating the similarity graph
with using the dimensions of width (𝑀) and height (𝑁) of the input image.

1: function GenerateSimGraph()
2: 𝑆𝑆 ← {}, 𝐸𝑆 ← {}, 𝐺𝑆 = ⟨𝑆𝑆 , 𝐸𝑆⟩
3: for (𝑢, 𝑣), with 𝑢 ∈𝑀, 𝑣 ∈ 𝑁 do
4: 𝑆𝑆 ← 𝑢
5: end for
6: for all 𝑠 in 𝑆𝑆 do
7: (𝑠0, 𝑠1, 𝑠2, 𝑠3) = getNeighborPixels(𝑠)
8: if 𝑠0 ∈ 𝑆𝑆 then
9: if 𝑠0.𝑐𝑜𝑙𝑜𝑟 is similar to 𝑠.color then

10: 𝐸𝑆 ∪ 𝑒𝑠,𝑠0
11: end if
12: end if
13: if 𝑠1 ∈ 𝑆𝑆 then
14: if 𝑠1.color is similar to 𝑠.color then
15: 𝐸𝑆 ∪ 𝑒𝑠,𝑠1
16: end if
17: end if
18: if 𝑠2 ∈ 𝑆𝑆 then
19: if 𝑠2.color is similar to 𝑠.color then
20: 𝐸𝑆 ∪ 𝑒𝑠,𝑠2
21: end if
22: end if
23: if 𝑠3 ∈ 𝑆𝑆 then
24: if 𝑠3.color is similar to 𝑠.color then
25: 𝐸𝑆 ∪ 𝑒𝑠,𝑠3
26: end if
27: end if
28: end for
29: return 𝐺𝑆

30: end function

3.2.2 Resolving and Deleting the Diagonal Connections

After this step all crossing diagonal edges between four pixels have to be
resolved, which is called simplifying the graph. Therefore a pixel set of 2×2
pixels is extracted from the original image representation and the diagonal
pixels are compared. As all crossing blue lines are connecting 4 pixels with
the same color, both of the diagonal connections can be removed from the
edge set 𝐸𝑆 . If there is only one diagonal edge in a 2 × 2 pixel set, this
edge is kept, as can be seen in Fig. 3.4(b). However, if the extracted 2 × 2
section includes two diagonal connections that represent two pixel sets of
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different colors, both diagonals were generated but have to be reworked to
delete one edge. This is shown in Fig. 3.4(c) with the red crossing lines.
Only one of the diagonals must be kept, whereas the other one has to be
deleted from the edge set because there can only be one diagonal edge in a
2×2 pixel set at most. To determine which connection has to be removed an
own heuristic has been implemented, calculating the sum of three different
weights for each diagonal and keeping the one with the larger result. The
three heuristic parts are the following:

Curve

If an edge is part of a curve, connecting several seeds in a line, the edge
should be kept. A curve is a sequence of edges in the graph which only
connects valence-2 seeds. Valence-2 seeds are seeds that have two connected
neighbors at max. The curve heuristic calculates the length of both curves,
of which the two diagonal connections are part of, and votes for keeping
the diagonal which is part of the longer curve. An example is shown in
Fig. 3.4(c), where the two red lines connecting the black pixels are both
part of the same curve of length 7. The red diagonals connecting the white
pixels only have a length of 1 as they have no valence-2 neighbours. Therefore
the curve heuristic suggests to keep the connection between the black pixels.

Sparse Pixel

The sparse pixel heuristic measures the size of the component connected to
the diagonal. As can be seen in Fig. 3.3(a) the magenta colored component
has a smaller size (includes less seeds) than the green component. As a result
the green colored component is supposed to be part of the background. The
green edge is deleted, the magenta edge is kept. The heuristic implements
exactly the procedure that a human eye automatically performs, as humans
tend to recognize the sparser color as foreground color, whereas the more
capacious region is imagined as background.

Island

Figure 3.3(b) shows the situation of a valence-1 node (a node with only one
neighbored connection) being connected to only one diagonal neighbor. This
diagonal connection is part of an edge pair that has to be resolved. In case
of deleting the magenta edge, a single island pixel would be generated. As
the image should not be cut into too many small regions, the heuristic votes
for deleting the green diagonal and keeping the magenta one, connecting the
single island pixel to a greater number of all connected seeds.

Summing up the results of all three parts of the heuristic the diagonal
edge with the smaller result is deleted. After all the diagonal edge pairs are
resolved, the resulting planar similarity graph looks like Fig. 3.5(a).
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(a) (b)

Figure 3.3: Two of the heuristics explained by using example images. The
sparse pixel heuristic in (a) shows that the magenta colored component is
sparser than the green colored component and therefore votes for keeping the
magenta connection. The island heuristic shown in (b) detects that a single
island pixel is created if the magenta connection would be deleted. The island
heuristic suggests to keep the magenta connection.

(a) (b) (c)

Figure 3.4: The detailed steps of generating the similarity graph. The edges
for the straight neighbors are drawn in a black color in (a), the diagonal
neighbors that do not have to be reworked are shown in a blue color (see
(b)) and the diagonal neighbors that have to be reworked are indicated by a
red color in (c).

3.3 Generating the Voronoi Diagram
To be able to generate a Voronoi diagram it is important to know what a
Voronoi diagram is in the first place and what it is used for. The definition
of a Voronoi diagram and the concrete implementation description are part
of this section.
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(a) (b) (c)

Figure 3.5: The planar similarity graph with the crossing edges being re-
solved. The final similarity graph is shown in (a). A smaller section of this
graph which is marked in (b) is taken for further explanations. The example
image for further explanation is shown in more detail in (c).

3.3.1 General Information

A Voronoi diagram in general is a partitioning of a plane into regions based
on distance to points in a specific subset of the plane. That set of points,
which are also called seeds, is specified beforehand. For each seed there is a
corresponding region consisting of all points closer to that seed than to any
other. These regions are called Voronoi cells. The cells are defined as

𝑅𝑛 = {𝑛 ∈ 𝑁 | 𝑑(𝑛, 𝑘) ≤ 𝑑(𝑛, 𝑗)}, for 𝑘, 𝑗 ∈ 𝑁, 𝑗 ̸= 𝑘. (3.6)

So the region 𝑅𝑛 is defined as every seed 𝑛 of all seeds in the graph 𝑁 of
which the distance to a specific seed 𝑘 is smaller than to any other seed 𝑗
in the graph, with 𝑘 must not be equal to 𝑗. In Fig. 3.6(a) such a Voronoi
diagram is displayed. The black crosses are associated with the seeds in this
case and the gray lines indicate the borders of the Voronoi cells. It has to
be mentioned that an accurate Voronoi diagram consists of cells which can
be of either a convex or a concave form.

3.3.2 Creating the Voronoi Diagram from the Similarity
Graph

For this approach the version of a simplified Voronoi diagram is used, to
not get any concave Voronoi cells. To explain how the Voronoi diagram
is generated from the similarity graph in the next step of the algorithm,
a smaller section of the original similarity graph is used (see Figs. 3.5(a)
and 3.5(b)).
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(a) (b)

Figure 3.6: Showing the difference of an accurate and a simplified Voronoi
diagram. In (a) an accurate Voronoi diagram is shown, consisting of both,
convex and concave elements. In (b) a simplified version, which is only con-
sisting of convex elements, is printed.

Initializing the Seeds

The Voronoi diagram is also represented as a graph 𝐺𝑉 = ⟨𝑆𝑉 , 𝐸𝑉 ⟩ with
𝐸𝑉 ← {} in the beginning and 𝑆𝑉 is initialized with the corner points of
the original input image. So for every pixel in 𝐼(𝑢, 𝑣) the upper left corner
𝑥0(𝑢, 𝑣) is inserted in the seed set 𝑆𝑉 of the Voronoi diagram. As at this point
not all seeds are included into 𝑆𝑉 some special cases have to be considered.
If 𝑢 = 𝑀 − 1 the upper right corner 𝑥1(𝑢, 𝑣) is inserted in 𝑆𝑉 and used
as seed as well and if 𝑣 = 𝑁 − 1 the corner on the bottom left 𝑥3(𝑢, 𝑣) is
handled the same way. As a last seed the bottom right corner 𝑥2(𝑢, 𝑣) is
included into 𝑆𝑉 in the case of 𝑢 = 𝑀 − 1 and 𝑣 = 𝑁 − 1. This includes all
corner points at the right/bottom border of the image as well.

Generating the Edges

As a next step, all diagonal edges of the similarity graph are cut in half
(see Fig. 3.7(a)). As the position of the cut is always a corner position,
exactly four pixels meet at this position and all four of their pixel centers
𝑢1, 𝑢2, 𝑢3, 𝑢4 need to be known for further steps. As two of them are the
ones that are connected via the diagonal edge, the pixel centers of these are
already known as 𝑢1 = (𝑥1, 𝑦1) and 𝑢2 = (𝑥2, 𝑦2). According to this, the
two remaining pixel centers can be specified as

𝑢3 = (𝑥1, 𝑦2), 𝑢4 = (𝑥2, 𝑦1). (3.7)

As the position of the cut mentioned in the beginning is a corner point,
this position can be found by identifying the common corner of all four
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pixels. This common corner 𝑥𝑘(𝑢, 𝑣) with 𝑘 ∈ [0, 3] is also a seed in the newly
generated seed set of the Voronoi diagram 𝑆𝑉 , which is used for further steps.

As the diagonal edge of the similarity graph connects 𝑢1 and 𝑢2, a new
line is generated from 𝑢3 to 𝑢4. This is also displayed in Fig. 3.7(b). After-
wards the seed 𝑥𝑘(𝑢, 𝑣) is deleted from 𝑆𝑉 and two new seeds 𝑠1 and 𝑠2 are
generated at the same position where 𝑥𝑘(𝑢, 𝑣) was located initially. These
two seeds are moved on the newly generated line exactly to the middle po-
sition between the original position and the two neighbored pixel centers,
which can be seen in Fig. 3.7(c). In the specific case of this algorithm the
new positions can be simplified as

𝑠1 = (𝑢 + 0.25, 𝑣 + 0.25), 𝑠2 = (𝑢− 0.25, 𝑣 − 0.25) (3.8)

if the newly generated diagonal line segment (𝑢3, 𝑢4) is connecting the bot-
tom left and the top right pixel of the 2 × 2 pixel block. Otherwise, if the
diagonal connects the bottom right pixel an the top left pixel of the 2 × 2
block the new positions of 𝑠1 and 𝑠2 are initialized as

𝑠1 = (𝑢− 0.25, 𝑣 + 0.25), 𝑠2 = (𝑢 + 0.25, 𝑣 − 0.25). (3.9)

After this step is done, the two new seeds are connected via an edge 𝑒 =
𝑒𝑠1,𝑠2

, which is included in the edge set 𝐸𝑉 (see Fig. 3.7(d)).
The last steps to finish the Voronoi diagram are to connect the newly

generated seeds 𝑠1 and 𝑠2 to two other seeds in the graph, to be fully con-
nected. For this the distances of the new seeds and all other seeds in 𝑆𝑉

are calculated and the two seeds with the smallest distance are chosen to
generate a new edge. Each seed 𝑠 in 𝑆𝑉 , which is generated because of a
diagonal edge being cut, has exactly three neighbors connected via an edge.
The seeds that are located at a corner position of the original image have
four connections. In Fig. 3.7(e) all seeds of 𝑆𝑉 are shown and in Fig. 3.7(f) all
connections have been initialized correctly. The resulting Voronoi diagram
can be seen in Fig. 3.6(b).

3.4 Generating the Small Shapes from the
Voronoi Diagram

To be able to detect even larger shapes in the image first of all, each Voronoi
cell has to be described as a shape itself. Such a shape consists of an outer
contour made up of a list of adjacent seeds and the related connecting edges.
As in the resulting Voronoi diagram representation 𝐺𝑉 there is no informa-
tion about the individual cells itself, a minimalistic Dijkstra algorithm is
used to generate all small shapes of the Voronoi diagram.

The Dijkstra algorithm is an approach to find the shortest path between
an initial node and an end node in a graphical representation. As with the
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: This images show how the Voronoi diagram is generated from
the given similarity graph. In (a) the diagonal connections of the similarity
graph are cut in half and at the position of the cut the seed 𝑠 is deleted from
𝑆𝑉 . After this a line, which is perpendicular to the diagonal, is generated in
(b) and newly generated seeds are placed on this line, located on either side
of the diagonal (c). These new seeds are connected by an edge (d). Seeds
that were generated because of an edge being cut are furthermore connected
to two more seeds of 𝑆. For this, the two minimal distances between the new
seed and any seed in 𝑆 are calculated and the new seed is connected to these
two seeds. Any new seed is therefore connected to three other seeds at most.
Seeds that lie on a corner position of the original image can be connected
to four other seeds at most. In (e) all seeds that have to be connected are
displayed as blue dots and in (f) the finished Voronoi diagram is visible.

Voronoi diagram a non-weighted, non-directed graph is used, only the step
count from the initial node to the end node is considered.

To generate a small shape from the Voronoi diagram, first a copy of the
graph needs to be created. Next, two seeds which are connected via an edge
are used to start with. It does not matter if these two seeds are located
at the border of the graph or anywhere in the middle. In Fig. 3.8(a) the
Voronoi diagram is shown with two seeds marked. The green seed 𝑆 is the
source seed and the magenta seed is the target seed. The positions of both
of these seeds are known.

The next step of the approach is to delete the direct connection, the
edge between the two seeds, from the graphical representation. The reason
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for this is the following: If this connection stays in the graph, the shortest
path between the source and the target seed would be this direct connection
and a shape would never be found.

In the next step, all neighbors of the current seed 𝑆 are searched for and
it is checked if one of the neighbor seed is the actual target seed. If this is
not the case the seed with the smallest distance to 𝑆 is saved in a Hashmap.
As all three neighbors have a distance of 1 in the first step, all three detected
neighbor seeds 𝐴, 𝐵 and 𝐶 are saved to search from their position for the
target seed. As an additional important information, the current seed 𝑆 is
saved as previous seed for 𝐴, 𝐵 and 𝐶. This approach is shown in Fig. 3.8(c).
The light blue color of a seed indicates that this seed is in the list of seeds
of which the neighbors have to be detected and tested for being the target
seed.

In the next iteration the same procedure happens with the current seed
being moved from 𝑆 to 𝐴. So all neighbor seeds of 𝐴 are determined, whereat
the connection from the new current seed 𝐴 to its previous seed 𝑆 is not
stored. After that it is checked, whether the target seed is one of them or not
and if not, all neighbors are saved in the list of seeds to be searched forward.
The current node again is stored as previous seed for the new found seeds 𝐷
and 𝐸. This second iteration can be seen in Fig. 3.8(d). Two more iterations
where done in exactly the same way with using 𝐵 and 𝐶 as current seeds.

The current seed in the fifth iteration is now 𝐷. As one of the neighbors
of 𝐷 is the target seed, the search can be stopped and the shortest path
has been found as shown in Fig. 3.8(e). At this point all seeds of the shape
are known, as the previous seed for every current seed was stored. So to
generate the connecting edges, which make up the outer contour of the new
shape, basically the way has to be gone in the opposite direction by starting
at the end point and connecting this seed via an edge to its previous seed.
The previous seed afterwards becomes the current seed and is connected to
its previous seed again via an edge. This procedure is repeated until the last
edge from the current seed to the initial seed is generated.

For the last step, the edge from the initial seed to the target seed is
included into the edges of the shapes outer contour to make up a closed
contour. The final shape is then fully specified by its linked seeds 𝑆, 𝐴,
𝐷 and 𝐼 and all the connecting outer contour edges which can be seen in
Fig. 3.8(f).

To make sure that all shapes of the Voronoi diagram are found but
none of them exists twice, a special procedure is executed after every shape
generation. Edges of the shape that connect border seeds in the Voronoi
diagram are deleted right after the shape generation, because these edges
cannot be part of a second shape. Edges of the newly generated shape which
already exist in another shape are deleted as well, because of the fact that
no edge can be used in more than two different shapes. As edges are deleted
after every new shape generation at some point seeds with no connections
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Figure 3.8: The generation of a shape using the Dijkstra algorithm. The
first step is to determine the initial seed 𝑆 and the target seed, which is
shown in (a), the direct connection is deleted in (b) and the neighbors of the
current node 𝑆 are found. The current node is then moved to the neighbor
with the smallest distance. As all three of the found neighbors have the same
distance, all three are saved as further current nodes which is indicated with
the light blue color of the seeds in (c). After the second iteration the current
node is 𝐴 and the new found seeds 𝐷 and 𝐹 are also stored as further current
seeds (see (d)). After three more iterations one neighbor of the current node
is the actual target node and as this happens the searching can be stopped
immediately in (e). The final shape is then defined by the seeds that were
stored as previous seeds of the current seed, as well as the target and the
initial seed. The edges are generated by going back to the initial seed step
by step as can be seen in (f).

to neighbored seeds exist in the Voronoi diagram. These seeds are deleted
as well. The reason behind this is to not generate a shape twice and to not
disturb the generation of the shapes with the remaining seeds and edges in
the graph. The procedure of generating shapes is repeated until no edges
and seeds are left in the initial Voronoi diagram.

The outcome of this step looks exactly like the resulting image of the
Voronoi diagram but with the big difference that now the image is not rep-
resented as a graph anymore, but as a number of shapes. So what happened
is that every single Voronoi cell has transformed into a real shape being
described by an outer contour. This outer contour is a list of linked seeds as
well as a list of consecutive edges at the same time.
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3.5 Generating the Big Shapes from the Small
Shapes

The generation of the small shapes has the advantage that every shape is
initialized with an associated color. This color is determined by calculating
the average 𝑥 and 𝑦 position 𝑥, 𝑦 of all seeds 𝑠, which are 𝑚 in number, in
the shape’s outer contour as

𝑥 = 1
𝑚
·

𝑚−1∑︁
𝑖=0

𝑠𝑖,𝑥, 𝑦 = 1
𝑚
·

𝑚−1∑︁
𝑖=0

𝑠𝑖,𝑦 (3.10)

and getting the color of the original image exactly at this average position.
This color information is relevant for the next part of the algorithm.

All small shapes that are connected via a common edge and have the
same color are combined to one larger shape. The practice to do so is de-
scribed here and shown in Fig. 3.9.

In the beginning, one small shape out of all the shapes that were gener-
ated in the previous step is taken as initial shape. Afterwards all neighbored
shapes, which have the same color and share an edge with the initial shape,
are temporarily stored in a list as shown in Fig. 3.9(a) with the top shape
being assumed the initial shape.

The last step of the unification is to generate a new shape from all edges
of the initial and the neighbored shapes (see Fig. 3.9(b)). This is done for
one neighbor at a time, repeating as many times as necessary to combine
all neighbored shapes into one resulting big shape. To unify two shapes, all
edges, except the common edge of both shapes, are included into the new
shapes outer contour. As this edge list is not sorted, one initial edge is taken
out of the pool of edges. It does not matter which one is taken as the contour
is always a closed one. The chosen edge consists of two seeds. One seed is
assumed to be the final seed and the second seed is taken as the current
seed. This initial edge is then deleted from the unsorted and added to a
sorted contour list. Afterwards the list of unsorted edges is searched for the
second edge including the current seed. There always have to be two edges
sharing one seed and these edges are adjacent. After finding this specific
edge, which includes the current seed as well, this edge is also deleted from
the unsorted and added into the sorted contour list. The second seed, which
is not the shared one, is finally taken as new current seed. This procedure
is repeated as many times as necessary to completely empty the unsorted
edge list. After combining two shapes to one new shape the initial small
shapes are deleted from the shape representation working with. Duplicated
representations of the graph should be used for such calculations to not lose
any important information of the former calculations.

The same example as before is shown in Fig. 3.9(c) after the first itera-
tion. The new initial shape (in this case the largest one) should be further
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: The basic approach to combine two shapes. An initial shape (in
this case the top one) is determined in (a) and all neighbored shapes (that
share a common edge) are found in (a) as well. A new shape is created out
of all edges of both shapes, except the common edge. This edge list is sorted
for a better comparison and to order the seeds. The final shape is shown in
(b). Further examples are shown in (c) and (e) where shapes that should
be combined are shown. In (d) and (f) the resulting single shape is printed.
After the combination of the resulting image in (f) no more combinations of
the white shape with any neighbors can be done.

connected to two other neighbored shapes on the bottom. For this case, also
the common edges are deleted and the remaining edges are being sorted to
make calculations and comparison easier (see Fig. 3.9(d)). The final step for
this specific example image is shown in Fig. 3.9(e), where the big shape is
combined with a smaller one to generate a big shape that includes all white
Voronoi cells (see Fig. 3.9(f)). If no more neighbors with the same color are
found the big shape is completed and the next initial shape is taken into
account. The Dijkstra is running recursively as long as no single small shape
is left in the shape representation and all big shapes have been generated
successfully.

With this approach there is a small difficulty to overcome. To explain
this difficulty, a more complicated example is shown in Fig. 3.10. As can
be seen in Fig. 3.10(a) the current shape, which is worked with, is the big
shape surrounded by the red line. The red line indicates the outer contour.
Figure 3.10(b) shows, that there are two more shapes that can be combined
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(a) (b) (c)

Figure 3.10: With this image the difficulty of combining two or more shapes
and not only generating an outer, but also an inner contour is shown. In (a)
the initial shape is marked via the red outer contour. In (b) two more shapes
are shown, which can be combined with the initial shape. In (c) it is clearly
visible that after the combination of the three shapes an outer contour as
well as an inner contour has been created.

with the big shape. With this example as the combination is completed the
shape is not only defined by an outer, but also by an inner contour. While
sorting all edges in the unsorted edge list the seed, which was determined as
initial seed, is found after some time again with the closing edge of the outer
contour. But the unsorted edge list is not empty because some edges are not
part of the outer contour any more, but they are forming an inner contour.
The resulting perception of this fact is now, as the first contour is closed
while sorting the unsorted edge list but there are still edges in this list, an
inner contour has to be defined. There can be multiple inner contours of one
shape. These are all saved in a separate list.

3.6 Fitting the Splines
With the big shapes all being created from the smaller shapes, the spline
generation can be initialized. In general, this is not complicated, because all
shapes include a linked list which includes all seeds of the outer contour.
The spline fitting is done to make the resulting image look smoother and
not as edgy as the Voronoi diagram does. In this chapter only the procedure
of calculating the different spline interpolations is described. The resulting
images and eventual problems are described in Sec. 3.7.

3.6.1 Catmull-Rom Splines

The Catmull-Rom splines [1] are a family of local interpolation splines. This
type of spline is defined by several control points 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖) through which
the line passes during the interpolation process. These splines are generated
by a piecewise cubic interpolation of four control points (see Fig. 3.11 for a
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Figure 3.11: Spline interpolation with Catmull-Rom Splines.

better understanding). The line only passes through the two control points
in the middle. Given four control points 𝑝1, 𝑝2, 𝑝3 and 𝑝4, which are all
seeds of the shape’s outer contour, the connected line is drawn between 𝑝2
and 𝑝3. To calculate the interpolation points between these two points, the
function 𝐶(𝑡) is used, which produces 𝑥- and 𝑦-coordinates located between
𝑝2 and 𝑝3. The variable 𝑡 is a steadily increasing number between 0 and 1.
This means if 𝑡 = 0 the 𝑥- and 𝑦-coordinates calculated are exactly these
of 𝑝2 and if 𝑡 = 1 the resulting coordinates are the ones of 𝑝3. The smaller
the increasing steps of 𝑡 are, the more interpolation points are calculated.
The smoothness of the outer contours’ appearance is directly dependent on
the number of interpolation points. This means that, the more interpolation
points there are, the smoother the outcome will look.

The function 𝐶(𝑡) with 𝑡 ∈ [0, 1] can be written as either

𝐶(𝑡) = 0.5 ·
[︀

𝑡3 𝑡2 𝑡 1
]︀
·

⎡⎢⎢⎣
−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0

⎤⎥⎥⎦ ·
⎡⎢⎢⎣

𝑝1
𝑝2
𝑝3
𝑝4

⎤⎥⎥⎦ (3.11)

or as an equation in scalar form

𝐶(𝑡) = 0.5 · (𝑡3 · (−𝑝1 + 3𝑝2 − 3𝑝3 + 𝑝4) +
𝑡2 · (2𝑝1 − 5𝑝2 + 4𝑝3 − 𝑝4) +
𝑡 · (−𝑝1 + 𝑝3) + 2𝑝2),

(3.12)

which furthermore can be divided into the 𝑥- and 𝑦-function

𝑥(𝑡) = 0.5 · (𝑡3 · (−𝑥1 + 3𝑥2 − 3𝑥3 + 𝑥4) +
𝑡2 · (2𝑥1 − 5𝑥2 + 4𝑥3 − 𝑥4) +
𝑡 · (−𝑥1 + 𝑥3) + 2𝑥2),

(3.13)

𝑦(𝑡) = 0.5 · (𝑡3 · (−𝑦1 + 3𝑦2 − 3𝑦3 + 𝑦4) +
𝑡2 · (2𝑦1 − 5𝑦2 + 4𝑦3 − 𝑦4) +
𝑡 · (−𝑦1 + 𝑦3) + 2𝑦2).

(3.14)
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Figure 3.12: Spline interpolation with the quadratic B-Spline.

3.6.2 Quadratic B-Splines

B-Spline is short written for Basis-Spline. B-Splines [10] have certain advan-
tages over Bézier curves as their degree is not dependent on the number of
control points and the individual segments of a B-Spline are easy to connect.
As the B-Spline is an approximating curve it has to be defined by control
points. The control points in this case are all seeds of a shape’s outer con-
tour. In addition to the control points one has to define so called knots. The
knots are real numbers that offer additional control over the curve. There are
several types of B-Splines but the two most important ones are the uniform
and the nonuniform B-Splines.

Using the uniform B-Spline the knots are spaced equally. In the nonuni-
form B-Spline the knots can be specified by the user and do not have to be
equally spaced.

In this case only the uniform B-Spline is used with a degree of 2. It is
called the quadratic uniform B-Spline. Assuming three seeds, which are the
control points 𝑝1, 𝑝2 and 𝑝3, to work with. These three seeds are consecutive
seeds of the shape’s outer contour. The generated curve segment will not
touch any of these points as it is a B-Spline approximation (see Fig. 3.12).
The start point 𝐾1 and end point 𝐾2 of the curve can be calculated as

𝐾1 = 1
2 · (𝑝1 + 𝑝2), 𝐾2 = 1

2 · (𝑝2 + 𝑝3). (3.15)

The quadratic B-Spline segment can be calculated as

𝑃 1(𝑡) = 0.5 ·
[︀

𝑡2 𝑡 1
]︀
·

⎡⎣ 1 −2 1
−2 2 0
1 1 0

⎤⎦ ·
⎡⎣ 𝑝1

𝑝2
𝑝3

⎤⎦ (3.16)

with 𝑡 ∈ [0, 1], which can again be written as the scalar equation

𝑃 1(𝑡) = 0.5 · (𝑡2 − 2𝑡 + 1) · 𝑝1 +
0.5 · (−2𝑡2 + 2𝑡 + 1) · 𝑝2 +
0.5 · 𝑡2 · 𝑝3.

(3.17)
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3.6.3 Cubic Bézier Curves

The Bézier curve [8, Chap. 1], [10] in general is a parametric curve 𝑃 (𝑡)
which is a polynomial function of the parameter 𝑡. Other than with the
B-Spline the degree of the Bézier curve always depends on the number of
control points. A quadratic Bézier curve therefore is controlled by three
points, namely a starting point, a control point and an end point. Inter-
polation with this method would not be that different from the B-Spline
interpolation approach and the curve could not be controlled as easily as it
should. To achieve better control of the curve the cubic Bézier curve was
implemented in the algorithm. The cubic Bézier curve is controlled by four
points, whereat it is running through the most outer ones and attracted by
the interior control points. This allows much more control over the curve,
which is the reason why this type of curve is used for PostScript [20], as well
as for a number of draw applications like Adobe Illustrator [19].

To achieve a similar result as in the previous approaches it is necessary
to generate new interpolation as well as control points for the curve. The
next paragraph explains how these points are calculated. To get a better
understanding of the process see Fig. 3.13.

Assume a big shape made up of an outer contour 𝐶 = (𝑝0, 𝑝1, 𝑝2, . . . ,
𝑝𝑛−1) of length 𝑛. In the final image, all in all, 𝑛 single Bézier curves are
generated which should smoothly connect to a spline. The goal is not to in-
terpolate but approximate these 𝑛 initial points. To do so, new interpolation
points have to be declared as first and last point of each Bézier curve. These
points 𝑀 𝑖 lie exactly in the middle of the path between a specific point 𝑝𝑖

and its neighbored point 𝑝𝑖−1 with 𝑖 ∈ [0, 𝑛 − 1]. The belonging equation
would look like

𝑀 𝑖 = |(𝑝𝑖 − 𝑝𝑖−1) · 0.5− 𝑝𝑖|. (3.18)

For the specific case of the first point 𝑝0 with 𝑖 = 0 the neighbor point is not
𝑝𝑖−1, as this point does not exist, but 𝑝𝑛−1 as it is always a closed shape.

In the example shown in Fig. 3.13 there are four initial points 𝑝0, 𝑝1, 𝑝2
and 𝑝3. The new interpolation points for this shape are calculated according
to Eq. 3.18 as the points exactly in the middle between 𝑝3 and 𝑝0, 𝑝0 and 𝑝1,
𝑝1 and 𝑝2 and 𝑝2 and 𝑝3 and are called 𝑀0, 𝑀1, 𝑀2 and 𝑀3 respectively
(see Fig. 3.13(b)).

The next step is to generate the two control points for each cubic Bézier
curve. Therefore each initial point 𝑝𝑖 and the two neighbored interpolation
points 𝑀 𝑖 and 𝑀 𝑖+1 are necessary. Again for the specific case of 𝑖 = 𝑛− 1
the both neighbors of 𝑝𝑖 are 𝑀 𝑖 and 𝑀0 due to the closed shape. The both
control points of this set of three points are located at three quarters of the
way between the interpolation points and the initial point and are referred
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to as 𝑐𝑖·2 and 𝑐𝑖·2+1. The equations for this control points can be written as

𝑐𝑖·2 = |(𝑀 𝑖 − 𝑝𝑖) · 0.75−𝑀 𝑖|,
𝑐𝑖·2+1 = |(𝑀 𝑖+1 − 𝑝𝑖) · 0.75−𝑀 𝑖+1|,

(3.19)

with 𝑖 ∈ [0, 𝑛 − 1]. For the specific set in Fig. 3.13(b) of 𝑀0 and 𝑀1 as
interpolation points and 𝑝0 as the belonging initial point the first control
point generated is located at three quarters of the way between 𝑀0 and
𝑝0, whereas the second control point is located at three quarters of the way
between 𝑀1 and 𝑝0. These control points are called 𝑐0 and 𝑐1 and the
equations for calculating them are

𝑐0 = |(𝑀0 − 𝑝0) · 0.75−𝑀0|,
𝑐1 = |(𝑀1 − 𝑝0) · 0.75−𝑀1|.

(3.20)

After all control points are generated (which can be seen in Fig. 3.13(c))
the actual interpolation takes place. Each Bézier curve is generated with two
interpolation points 𝑀 𝑖 and 𝑀 𝑖+1 and the belonging control points 𝑐𝑖·2 and
𝑐𝑖·2+1 with 𝑖 ∈ [0, 𝑛 − 1]. Again the last segment is a special case with the
interpolation points of 𝑀𝑛−1 and 𝑀0 and the control points of 𝑐(𝑛−1)·2 and
𝑐(𝑛−1)·2+1. The interpolation points for the Bézier curve in general can be
calculated with the formula

𝑃 𝑖(𝑡) =
[︀

𝑡3 𝑡2 𝑡 1
]︀
·

⎡⎢⎢⎣
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

⎤⎥⎥⎦ ·
⎡⎢⎢⎣

𝑀 𝑖

𝑐𝑖·2
𝑐𝑖·2+1
𝑀 𝑖+1

⎤⎥⎥⎦ , (3.21)

which would be

𝑃 0(𝑡) =
[︀

𝑡3 𝑡2 𝑡 1
]︀
·

⎡⎢⎢⎣
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

⎤⎥⎥⎦ ·
⎡⎢⎢⎣

𝑀0
𝑐0
𝑐1

𝑀1

⎤⎥⎥⎦ (3.22)

for the first Bézier curve interpolation. This formula can again be written
as the scalar equation

𝑃 0(𝑡) = (1− 𝑡)3 ·𝑀0 +
3𝑡(1− 𝑡)2 · 𝑐0 +
3𝑡2(1− 𝑡) · 𝑐1 +
𝑡3 ·𝑀1,

(3.23)

for which the assumption holds that the smaller the increasing steps of 𝑡
are, the smoother the shape’s contour in the resulting image will be. The
final output of the interpolation for the chosen example shape is shown in
Fig. 3.13(d).
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3.6.4 Optimizing the Cubic Bézier Curve

In Sec. 3.7 the issue of holes occurring whenever more than two shapes
share a seed (see Fig. 3.16(b) for a better understanding) is described. To
eliminate this problem the approach of the cubic Bézier curve is optimized
with a small change.

The initial situation with a shape of 𝑛 initial points stays the same (as
can be seen in Fig. 3.14(a)). The optimization happens in the second step of
the approach when each point is examined whether being used by more than
two shapes or not. If the seed is used by only two shapes nothing changes in
the procedure. If the point is used by at least three shapes the initial point is
interpreted as interpolation point as well. So such an initial point 𝑝𝑖 is used
to create an interpolation point using Eq. 3.18 and after that the point is
included into the list of interpolation points as well. All interpolation points
for the specific example of Fig. 3.14 are shown as blue circles in Fig. 3.14(b)
assuming that the initial points 𝑝0 and 𝑝2 are used in multiple shapes.

The generation of the control points is the next step. Basically, this is not
different to the approach without the optimization. Each initial point and the
belonging neighbored interpolation points are used to calculate the control
points’ position with Eq. 3.19. If this specific initial point is an interpolation
point as well there are two more control points generated at one third of
the length between those points as well. These two points control the point
that is an initial point, as well as an interpolation point. The result for the
calculated control points can be seen in Fig. 3.14(c). The last step is again
the same as with the non-optimized cubic Bézier curve as an interpolation
between two interpolation points and the two interior control points is done
according to Eq. 3.21.

3.7 Showing the Output
As in this implementation of the algorithm ImageJ is used, an overlay is
created to display the resulting image in a first step. Because ImageJ itself
can not render a filled spline, the generated splines have to be interpreted
as polygons. For this approach a certain amount of the interpolation points
are calculated and stored in a list as described in Eq. 3.21 for the cubic
Bézier curve or in Eq. 3.11 for the Catmull-Rom interpolation. Afterwards
a polygon is created in ImageJ via drawing small lines from one stored
interpolation point to the next. The polygon then can be filled with a specific
color and printed on the overlay. Each spline type interpolates a little bit
different because of which all results look similar but not the same.

In Figure 3.15(a), for example, the resulting image with the Catmull-
Rom interpolation can be seen. As this method passes through all the con-
trol points there are no holes visible in this image but also due to this fact
the polygons, that are generated to be displayed by ImageJ, are overlapping.
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This is clearly visible in Fig. 3.15(b) with only the outline of the polygons
being visible. Furthermore, this means that at some points the depth infor-
mation (of which shape is lying over another) can be deluded by the render
order of the single polygons. The earlier a polygon is rendered, the more it
lies on the bottom of the image and the other way round. The advantage
is that the roundness and smoothness of the image looks fine, however not
perfect.

Figure 3.16, amongst others, shows the interpolation results of the Qua-
dratic B-Splines. In Fig. 3.16(a) it is clearly visible which disadvantage the
usage of pure B-Splines has on the output image if three or more splines
contain the same seed. With the seed not being passed through, but only
approximated there are holes visible in the image wherever a seed is used
by three or more shapes. In Fig. 3.16(b) the resulting image for the cubic
Bézier curves is shown. This method produces holes at the same position
of the multiple used seeds but compared to the method shown in the first
image (Fig. 3.16(a)) these holes are much smaller because the two control
points used make it possible to approximate even more than the one control
point used with the quadratic B-Spline. To fully eliminate the spacing the
optimized cubic Bézier spline, as described in Sec. 3.6.4, is used to include
seeds, which are used multiple times into the list of interpolation points.
The interpolation afterwards is exactly the same procedure as described in
Eq. 3.21. In this way all gaps are closed and no more holes remain in the
resulting image (see Fig. 3.16(c)). One minor disadvantage of this approach
is that the smoothness suffers a little bit at exactly these multiple used inter-
polation points and the image does not appear as “round” as the resulting
image of the Catmull-Rom interpolation.
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Figure 3.13: These images show the whole process of generating a Bézier
curve according to a given shape made up of the four initial points 𝑝0, 𝑝1, 𝑝2
and 𝑝3. In the first step all interpolation points for the shape pictured in (a)
are calculated with Eq. 3.18 for all initial points of the shape. The resulting
midpoints are shown as blue circles in (b). For the second step the control
points for a set of one initial point and two belonging interpolation points
are generated with Eq. 3.19 for each initial point. These control points are
displayed as smaller green circles in (c). For the last step two interpolation
points and the interior two control points are used to interpolate the cubic
Bézier curve according to Eq. 3.21. All in all there are as many Bézier curves
generated as interpolation points exist. All these Bézier curves are smoothly
connecting because of the interpolation points’ location. The resulting curve
can be seen in (d) as red curve.
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Figure 3.14: These images show the whole process of generating a Bézier
curve with a given shape made up of the four initial points 𝑝0, 𝑝1, 𝑝2 and
𝑝3 pictured in (a). In the first step all interpolation points for the shape
are calculated with Eq. 3.18 for all initial points of the shape. Included in
this step now is an examination of every initial point. If an initial point
is part of more than two shapes this point is interpreted as interpolation
point as well. The resulting interpolation points are shown as blue circles in
(b). For the second step the control points for a set of one initial point and
two belonging interpolation points are generated with Eq. 3.19 for each initial
point. If the initial point is also interpreted as interpolation point this process
is repeated with also generating two control points at one quarter of the way.
The resulting control points are displayed as smaller green circles in (c). For
the last step two interpolation points and the interior two control points
are used to interpolate the cubic Bézier curve according to Eq. 3.21. All in
all there are as many Bézier curves generated as interpolation points exist.
All these Bézier curves are smoothly connecting because of the interpolation
points’ location. The resulting curve can be seen in (d) as red curve.
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(a) (b)

Figure 3.15: The result of the Catmull-Rom interpolation. The final out-
put with the Catmull-Rom spline interpolation is visible in (a). The image
looks nicely round and smooth. In (b) only the outlines of different poly-
gons rendered with ImageJ are shown. The disadvantage of these polygons
overlapping is clearly visible.

(a) (b) (c)

Figure 3.16: Resulting images for different interpolation techniques. Picture
(a) shows the disadvantage of B-Splines generating holes where more than
two splines meet. Image (b) pictures the same points as in (a) being inter-
polated with a cubic Bézier curve. Also in this result holes appear, wherever
three or more shapes share one seed, even if these gaps are smaller than the
ones produced by the B-Spline approach. To overcome this problem a seed
that is used by more than two shapes is handled as interpolation point in
(c), whereby all splines are forced to touch the seeds position. According to
this the holes are closed but the smoothness of the resulting image suffers a
little bit.



Chapter 4

Extensions

Chapter 3 ended with a proper, however not optimal, solution for the ren-
dering. This section describes some extensions that were implemented addi-
tionally to the basic approach of Kopf and Lischinski. Because there is no
information about the exact rendering process used by Kopf and Lischinski
given in the original paper, another way of extracting a PDF file is used
in this implementation. Among this, also a method for introducing a color
gradient to the resulting image is explained.

4.1 Generating a PDF File Using Bézier Curves
As a matter of fact, the method described before uses a polygon approxima-
tion of the different spline types, which is not an optimal solution because
no real Bézier splines are generated but only approximated by interpolation.
Therefore another way of extracting these splines has to be found. The prob-
lem is solved with the use of iText.1 It is used in particular whenever content
is generated dynamically including personalized or customized content.

When using iText [7] for generating a PDF-file there are basically five
steps to follow, which are

• generating a document with dimensions as big as the final output,
• generating a PdfWriter instance,
• opening the document,
• adding content to it, and finally
• closing the document.

For creating, a new document is instantiated as big in size as the resulting
image should be. To do so, a rectangle with a width and a height according
to the resulting dimensions is created via using the parameters like this:

Document document = new Document(new Rectangle(width, height));

1https://sourceforge.net/projects/itext/

50
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The width and the height used are instantiated as the width and height
of the original input image multiplied with a magnification factor that can
be determined by the user. Next a PdfWriter instance has to be created to
determine the PDF format of the document. The PfdWriter is implemented
as a specific implementation of the abstract DocWriter class, which can also
be implemented as HtmlWriter or RtfWriter. Creating a PdfWriter like

PdfWriter writer =
PdfWriter.getInstance(document, new FileOutputStream(path));

creates a PdfWriter instance with the document object as parameter as well
as a FileOutputStream as parameter, which specifies an absolute path as lo-
cation where the document is saved after being generated. After creating the
writer, the documents is opened via the method document.open() where-
upon some background initializations take place. After opening the docu-
ment, one is able to fill content into it by placing, for example, quadratic or
cubic Bézier curves. This is done by using the writer.getdirectContent()
method, which receives the so called PdfContentByte. Furthermore content
can be applied to this PdfContentByte object, which is further referred to
as “cb”. To generate a Bézier curve in the content of the PDF the curveTo()
method is used. This method can be used with either four or six parameters.
With four parameters used the curve is described as quadratic Bézier curve
using the current 𝑥-, 𝑦-coordinates as starting point, the first and second
parameters as 𝑥-, 𝑦-coordinates of the single control point and the third
and fourth parameters as the 𝑥-, 𝑦-coordinates of the endpoint. The same
procedure is done with six parameters with the only difference of the curve
being described as a cubic Bézier curve, now with the 𝑥-, 𝑦-coordinates of
the control points being defined by the first and second and the third and
fourth parameter respectively. The last two parameters are the coordinates
of the end point. A cubic Bézier is therefore generated as

cb.curveTo(p1.getX(),p1.getY(),p2.getX(),p2.getY(),p3.getX(),p3.getY());

with p1 being the first and p2 being the second control point, p3 is defined
as the end point of the Bézier curve.

In the implementation only cubic Bézier curves are generated because
these came out the best. The coordinates for the control and intersection
points have already been calculated for the previous step (as described in
Secs. 3.6.3 and 3.6.4) so the only difficulty was to include the magnifica-
tion scale. This was done by multiplying the original coordinates by the
magnification factor chosen by the user in the beginning. The end result
of the curves being saved as PDF-file can be seen in Fig. 4.1(a) compared
to the one being done with the polygon approach shown in Fig. 4.1(b). By
looking at a specific part of the image with a clear curve visible it is to see
that the polygon approach produces tiny straight lines as outer contour (see
Fig. 4.2(b), which is not visible when using larger images. With the iText
approach however, clear Bézier curves with no straight sections in between
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(a) (b)

Figure 4.1: Example images of the polygon approximation methode and
the export with iText. In (a) the resulting image with the PDF export using
the iText approach is visible whereas in (b) the old version with the polygon
approximation using plain ImageJ overlays can be seen.

(a) (b)

Figure 4.2: The differences of the exported Bézier curves and the polygon
approximation in detail. In (a) the contour between the shapes is a smooth
line caused by the PDF export of the Bézier curves, in (b) on the other hand
there are some unwanted artifacts and the lines do not look that smooth
because of the piecewise line approximation with the polygon approach.

are generated, which leads to a cleaner and smoother output image shown
in Fig. 4.2(a).

One minor issue that came up when comparing the resulting images was
that in some cases the exported PDF images were presented with little holes
between neighbored shapes as can be seen in Fig. 4.3(a). This happened
because in some cases the interpolation points of the two curves in this
section did not consist of exactly the same coordinates. To eliminate these
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(a) (b) (c)

Figure 4.3: Closeup of a contour between two shapes showing small gaps.
In (a) one can see an enlarged extraction of the exported image 4.1(a) before
the stroke was added. The holes at the contour where the two shapes meet
are clearly to see in this magnified image. In (b) the same extraction is shown
with the stroke added and the coordinates being resolved. All the gaps are
gone and the contour is smooth and not perceptibly larger. The figure in (c)
shows the complete image after resolving the gaps. Compared to the image in
Fig. 4.1(a) no difference can be seen in this size but with a higher resolution
the differences could be seen as pictured in (a) and (b).

small gaps two different approaches were implemented. On the one hand
the interpolation points were checked a second time to be exactly the same
coordinates when sharing the same position. On the other hand a small
stroke was drawn at the outer contour of the shape being as small as possible
so that the gaps were closed but the outcome was not manipulated too
much. This stroke has a width 𝑤 depending on the magnification scale 𝑀
to be sure that this approach works in all different sizes. It was defined as
𝑤 = 0.01 · 𝑀/2 due to some testing and finding this as best result. The
resulting figure is shown in Fig. 4.3(c) after resolving the gaps. Compared
to the image in Fig. 4.1(a) no difference can be seen at this size but with a
higher resolution the differences could be seen in exactly the same way as
shown in Figs. 4.3(a) and 4.3(b).

4.2 Introducing the Color Gradient
As the image is now defined by clear lines and constructed by using cubic
Bézier curves the improvement compared to the original pixel art image
from the beginning can not be overlooked. To take it another step further
in parts of generating a smooth output image, the idea was to introduce a
color gradient wherever neighbored colors in the image are similar enough
to blend. How this was implemented is described in this section.
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4.2.1 Color Gradients with iText

For the approach of the color gradients iText provides a method by using a
so called shading pattern as fill or stroke color of a shape. Such a pattern can
be initialized in two ways, either as radial gradient or as axial gradient. The
radial gradient is defined by two circles, between which the gradient varies
from a start color to an end color. These circles are defined by a center point
as well as a radius. To initialize such a radial gradient one has to use the
static method PdfShading.simpleRadial like

1 PdfShading radial = PdfShading.simpleRadial(writer, x0, y0, r0, x1, y1,
r1, colorStart, colorEnd, true, true);

2 PdfShadingPattern radialGradient = new PdfShadingPattern(radial);
3 cb.setShadingFill(radialGradient);

which defines the first circle of the gradient with a center point 𝑝0 = (𝑥0, 𝑦0)
and a radius 𝑟0 and the second circle with a center point 𝑝1 = (𝑥1, 𝑦1)
and a radius 𝑟1. The parameters colorStart, colorEnd can be defined
as RGB colors and the two boolean values in the very end define if the
starting/ending colors are extended in excess of the start and/or the end. To
use this pattern in place of the fill color for example, the PdfShading object
is used to create a PdfShadingPattern object as can be seen in line two of
the code snippet. Finally this radialGradient of type PdfShadingPattern
is set as fill pattern in the third line.

The axial gradient works very similar. All steps are the same as with
the radial gradient, except the initialization of the PdfShading object. The
axial gradient is not defined as two circles but as two points, a start point
and an end point, between which the gradient happens. In case of this type
of gradient the PdfShading object is defined as

PdfShading axial = PdfShading.simpleAxial(writer, x0, y0, x1, y1,
colorStart, colorEnd, true, true);

where 𝑝0 = (𝑥0, 𝑦0) is the starting point and 𝑝1 = (𝑥1, 𝑦1) is the end point
of the gradient. The parameters colorStart, colorEnd again define the two
colors at the beginning and the end of the gradient and the two boolean vari-
ables in the end of the code snippet define whether the colors are extended
in excess of the start and/or the end positions. The PdfShading object can
be set as PdfShadingPattern as before with the radial gradient.

Figure 4.4 shows two example images, one picturing a radial gradient
(see Fig. 4.4(a)) and the other showing an axial gradient (see Fig. 4.4(b)),
which were implemented with this basic methods of ImageJ. Parts of the
plugin are incorporated in the appendix (see Sec. A.2). The whole plugin is
included into the final implementation of the master’s project.
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(a) (b)

Figure 4.4: The resulting images of a radial gradient (a) and an axial gradi-
ent (b) generated with iText. The area is a 18×18 canvas and the coordinates
for the center points/radii of the two circles for the radial gradient as well as
the two points for the axial gradient are adjusted to this.

(a) (b)

Figure 4.5: The original input image and the result after generating the big
shapes. Image (a) shows the original input image that was used to create the
image in (b), which shows the subdivision of the input image in larger shapes
after combining same colored neighbor shapes of the Voronoi diagram.

4.2.2 Gradients in the Image

To get the gradients included in the output image of the project each shape
and its neighbors have to be looked at individually. To begin this process all
different colors of the image have to be considered. So for a better under-
standing take the mushroom in Fig. 4.5(a) as input image again. After the
first steps described in Chap. 3 the result looks like Fig. 4.5(b) and consists
of a series of big shapes. These shapes are defined by an outer contour of
consecutive seeds and a color, basically.
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The first step for the gradients is to extract all different colors of the
image and save all of them in a list. To get an even better result, the back-
ground shape was ignored for this and the background color was considered
non-existent if it would only appear in one shape of the image.

If the image contains only four or less colors there is no gradient done
at all because the image contains not enough color information and the
information loss of the image using a gradient in such a situation would be
too big. Also, the color distances are to big in this situations in most cases.

After inserting all different colors in a list this list is sorted from brightest
to darkest color. To do so, the color difference 𝑐diff from all pairs of colors in
the list is calculated and sorted in ascending order. The distance calculation
is done according to the equation

𝑐diff = 1
3 · ((𝐶0,𝑅 − 𝐶1,𝑅) + (𝐶0,𝐺 − 𝐶1,𝐺) + (𝐶0,𝐵 − 𝐶1,𝐵)), (4.1)

where two colors 𝐶0 = (𝐶0,𝑅, 𝐶0,𝐺, 𝐶0,𝐵) and 𝐶1 = (𝐶1,𝑅, 𝐶1,𝐺, 𝐶1,𝐵) are
compared according to the medium differences in the R, G, and B value.
If 𝑐diff is a negative number 𝐶1 is consider brighter than 𝐶0 but if 𝑐diff is
a positive number it is considered the other way round. If the distance is
exactly zero the colors are considered the same brightness and listed one
after another.

After sorting the list of colors the first two colors in the list are taken
and all shapes in the image with the lighter color are identified and stored
in a list 𝐿 = (𝑙0, 𝑙1, 𝑙2, . . . , 𝑙𝑛−1, 𝑙𝑛). Iterating over all of these elements in
the list 𝐿 for each Shape 𝑙𝑥, 𝑥 ∈ [0, 𝑛] all neighbored shapes2 with the
second color, the darker one, are identified and as well stored in a list
𝐷 = (𝑑0, 𝑑1, 𝑑2, . . . , 𝑑𝑛−1, 𝑑𝑛).

The situation to work with in one iteration is now the following: There
is a single shape of the lighter color 𝑙𝑥 and a list of neighbored shapes of the
darker color 𝐷. To make sure that the right gradient is used for smoothing
this neighbored shapes (this could either be a radial or an axial gradient)
first of all the circularity of the lighter shape 𝑙𝑥 has to be calculated as

Circularity(𝑆) = 4 · 𝜋 · 𝐴(𝑆)
𝑃 (𝑆)2 , (4.2)

with Circularity(𝑆) ∈ [0, 1] in general, where 𝑆 is any arbitrary shape that
is defined by a closed outer contour consisting of consecutive seeds. The
nominator 𝐴(𝑆) is defined as the area and the denominator 𝑃 (𝑆) is defined
as the circumference of the shape. The outer contour of 𝑆 is a list (of length
𝑚) of several seeds (𝑝0, 𝑝1, . . . , 𝑝𝑚−1) where each seed 𝑝𝑛, 𝑛 ∈ [0, 𝑚 − 1]
is defined by a 𝑥- and a 𝑦-value like 𝑝𝑛 = (𝑥𝑛, 𝑦𝑛) and 𝑝0 and 𝑝𝑛 are

2Again neighbored shapes are shapes that share at least one edge.
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(a) (b) (c) (d)

Figure 4.6: Axial and radial shapes according to their circularity. The figure
in (a) is of a pretty round shape as one can see. The circularity of this shape
is 0.8906, for what this shape is considered radial. The circularity of figure(b)
is 0.2159, which actually indicates a non round shape. But the smaller the
circularity gets, the more a shape is forming a roundish shape with a hole in
it. Also the shape in (b) looks a bit like half a donut shape and is assumed
to be round because of this. The shapes in (c) and (d) have a circularity of
0.7853 and 0.5133 and are therefore considered axial.

consecutive seeds. Because of this the circumference 𝑃 (𝑆) of a shape 𝑆 can
be calculated as

𝑃 (𝑆) =
𝑛∑︁

𝑖=0

√︁
(𝑝𝑖+1,𝑥 − 𝑝𝑖,𝑥)2 + (𝑝𝑖+1,𝑦 − 𝑝𝑖,𝑦)2, (4.3)

which is the sum of the length of all pairs of consecutive seeds in the outer
contour. Furthermore, the area 𝐴(𝑆) is defined as

𝐴(𝑆) = 1
2 ·

𝑛∑︁
𝑖=0

(𝑝𝑖,𝑥 − 𝑝𝑖+1,𝑥) · (𝑝𝑖,𝑦 + 𝑝𝑖+1,𝑦). (4.4)

The results for the calculation of the circularity of the shape 𝑙𝑥 is a number
in range [0, 1]. To be able to continue with the gradients in an appropriate
way a shape 𝑆 is either considered axial if 0.245 < Circularity(𝑆) < 0.800 or
radial if 0.245 ≥ Circularity(𝑆) ≥ 0.800. These threshold values were found
to work best after testing. In Fig. 4.6 examples of radial and axial shapes
are pictured along with their circularity.

Axial Shapes

So if a shape is considered axial according to its circularity the situation to
work with is the following: There is one axial shape of the lighter color 𝑙𝑥
and a list of darker neighbored shapes 𝐷. There are some different situations
that have to be considered when introducing an axial gradient as well. First
of all, it has to be checked if the shape of the lighter color already has a
gradient introduced, which can happen in later iterations.
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The initial shape 𝑙𝑥 holds no gradient: If there is no gradient in 𝑙𝑥 yet
the amount of neighbored shapes has to be figured out. If 𝐷 only contains
one shape the axial gradient is introduced using Eqs. 4.7–4.9. If there is
more than one neighbor one has to go further.

It has to be checked if the lighter shape is surrounded by the neighbor
shapes. This is done by first saving all outer contour nodes of the darker
shapes in a list 𝐶𝑑 = (𝑝0, 𝑝1, . . . , 𝑝𝑚−1) with a length of 𝑚 and then finding
both, the smallest and the greatest 𝑥-value as well as the smallest and the
greatest 𝑦-value in this list according to

𝑥min = min 𝑝𝑖,𝑥,

𝑥max = max 𝑝𝑖,𝑥,

𝑦min = min 𝑝𝑖,𝑦,

𝑦max = max 𝑝𝑖,𝑦

(4.5)

where 𝑖 ∈ [0, 𝑚 − 1]. After this the minimum/maximum 𝑥-values and the
minimum/maximum 𝑦-values of the outer contour nodes of 𝑙𝑥, witch are
named 𝑥𝑠𝑀𝑖𝑛, 𝑥𝑠𝑀𝑎𝑥, 𝑦𝑠𝑀𝑖𝑛, 𝑦𝑠𝑀𝑎𝑥 respectively, are saved as well using the
same method as for the darker nodes. Now if the following condition holds
the lighter colored shape is assumed to be surrounded by the darker neigh-
bored shapes:

(𝑥𝑚𝑖𝑛 < 𝑥𝑠𝑀𝑖𝑛)∧(𝑥𝑚𝑎𝑥 > 𝑥𝑠𝑀𝑎𝑥)∧(𝑦𝑚𝑖𝑛 < 𝑦𝑠𝑀𝑖𝑛)∧(𝑦𝑚𝑎𝑥 > 𝑦𝑠𝑀𝑎𝑥). (4.6)

If after this step the lighter shape is assumed to be surrounded by all the
neighbored shapes not an axial but a radial gradient is introduced using
Eqs. 4.10 and 4.11.

But if 𝑙𝑥 is considered not surrounded only one neighbor shape is needed
for introducing an axial gradient. This specific shape 𝑑 is the one that shares
the longest common contour with the lighter shape of all neighbored shapes.
The length of a contour is just assumed as the number of common nodes.
Finally, after finding 𝑑 an axial gradient is introduced using Eqs. 4.7–4.9
and assuming 𝑙𝑥 as lighter and 𝑑 as darker shape.

The initial shape 𝑙𝑥 holds a gradient: If there is already a gradient
introduced to 𝑙𝑥 the first thing is to save the lighter color 𝐶 𝑙 of the already
existing gradient, which is always the starting color no matter what type
of gradient. After that, the issue of a surrounded lighter shape 𝑙𝑥 has to be
solved as described in the paragraph before using Eqs. 4.5 and 4.6, after
what the shape is either assumed surrounded or not surrounded.

If the latter assumption holds, a search for the shape with the longest
common contour is performed again and the axial gradient is generated
using Eqs. 4.7–4.9 but with the only difference that the lighter color for the
new gradient is the previously saved lighter color 𝐶 𝑙 of the already existing
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gradient. In this case, it does not matter what kind of gradient already exists
in the lighter shape.

If the lighter shape is surrounded by the neighbors, however, it does
matter. So if the gradient in 𝑙𝑥 is an axial one nothing is done, because
the old axial gradient is considered more important in an axial shape as an
eventual new radial gradient. But if the existing gradient is a radial gradient
this type of gradient is extended by creating a new radial gradient according
to Eqs. 4.10 and 4.11 but with the one difference that the previously saved
color 𝐶 𝑙 is used as starting color this time.

Radial Shapes

With radial shapes the whole situation is a little bit easier. If 𝑙𝑥 is a radial
shape it is also checked if there already is a gradient and if so, the lighter
color is saved as 𝐶 𝑙.

Furthermore, if 𝑙𝑥 is surrounded by its neighbor shapes or also if at least
three of the assumptions for the surrounding (see Eq. 4.6) are true then a
radial gradient is introduced again using Eqs. 4.10 and 4.11 (possibly using
the previously saved 𝐶 𝑙 as lighter color if there was a gradient in 𝑙𝑥 before).
With this nearly all of the situations for a radial shape can be solved because
a radial shape is surrounded by darker neighbors in most cases. If this is not
the case and the light shape is not surrounded it is checked if the list of all
neighbors 𝐷 only contains one element. If this is the case this single shape’s
circularity is calculated and according to the result the last decision is made.

If the only neighbor shape is an axial shape also an axial gradient is
created according to Eq. 4.7–4.9. If the neighbor shape is a radial shape
however the gradient to be introduced is also a radial gradient, which is
implemented using Eqs. 4.10 and 4.11.

Generating an Axial Gradient

Creating an axial gradient with iText, as explained in Sec. 4.2.1, only needs
two points (a start point and an end point) of the gradient and two belonging
colors. Whenever an axial gradient is generated between two shapes in the
image the gradient is generated in the lighter shape only and the colors
of the gradient are the lighter color as starting and the darker color as
ending color. The process of calculating the belonging start and end point
is started of by having a lighter colored shape 𝑙 and a darker shaded shape
𝑑, which are sharing a common edge like Fig. 4.7(a) shows. The shape 𝑙 is
colored with a light gray color to make imagination more easy. The blue
dots are indicating the common outer contour seeds of the both shapes. For
the calculation of the starting point of the gradient this common contour
is saved in a list of consecutive seeds 𝐾 = (𝑝1, 𝑝2, . . . , 𝑝𝑛). To make the
gradient look even more precisely, the node before 𝑝1, which is 𝑝0, and the
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Figure 4.7: Generating an axial gradient. Image (a) indicated a shape 𝑙,
which is the shape with the lighter color, and the common contour of the
two shapes to smooth, which is shown as blue contour. The seed 𝑝1 is the first
seed and 𝑝𝑛 is the last seed of the common contour. Image (b) shows adding
the seed 𝑝0 before 𝑝1 and 𝑝𝑛+1 after 𝑝𝑛 to get a better position for the
starting point of the gradient. In (c) the relation of 𝑝0 and 𝑝𝑛+1 is indicated
with a imaginary line passing through both seeds. This is important for the
next step of calculating the end point of the gradient, which is the farthest
seed of the common contour to this line. This end point finally is shown in
(d) as red colored seed 𝑔0. In (e) now the starting point 𝑔1 of the gradient
is also printed, which is calculated as the intersection of the original line
passing through 𝑝0 and 𝑝𝑛+1 and the perpendicular line passing through 𝑔0.
The final gradient is then shown in (f).

node after 𝑝𝑛, which is 𝑝𝑛+1 in the closed outer contour of 𝑠𝑙 are added
in the first and the last position of the list 𝐾 = (𝑝0, 𝑝1, . . . , 𝑝𝑛, 𝑝𝑛+1), as
Fig. 4.7(b) illustrates. The next step is to imagine a line passing through 𝑝0
and 𝑝𝑛+1 (see Fig. 4.7(c)). There is no actual line equation necessary for the
next steps but the implementation of the algorithm assumes the two points
lying on a straight line. First the endpoint 𝑔0 of the gradient is calculated
by finding the seed 𝑝𝑥 in the common contour, which is the farthest from
the imagined line between 𝑝0 and 𝑝𝑛+1. For this the distance 𝑑(𝑝0, 𝑝𝑛+1, 𝑝)
between the line and every seed 𝑝 = (𝑥, 𝑦) (except 𝑝0 and 𝑝𝑛+1 because
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their distance would be zero of course) in 𝐾 is calculated according to the
general equation

𝑑(𝑝0, 𝑝1, 𝑝) =
|(𝑝1,𝑦 − 𝑝0,𝑦) · 𝑝𝑥 − (𝑝1,𝑥 − 𝑝0,𝑥) · 𝑝𝑦 + 𝑝1,𝑥 · 𝑝0,𝑦 − 𝑝1,𝑦 · 𝑝0,𝑥|√︁

(𝑝1,𝑦 − 𝑝0,𝑦)2 + (𝑝1,𝑥 − 𝑝0,𝑥)2
.

(4.7)
The seed with the greatest distance to the line is finally taken as the end
point of the gradient. An example can be seen in Fig. 4.7(d) showing the
end point 𝑔0 of the gradient as red colored seed. The final step for the axial
gradient is calculating the end point of the gradient. This is actually really
easy because this point 𝑔1 is assumed to be the intersection point of the
line through 𝑝0 and 𝑝𝑛+1 and the perpendicular line passing through 𝑔0 (see
Fig. 4.7(e) for a better understanding). The point 𝑔1 is defined as

𝑔1 = (𝑔0,𝑥 − 𝑘 · (𝑝𝑛+1,𝑦 − 𝑝0,𝑦), 𝑔0,𝑦 + 𝑘 · (𝑝𝑛+1,𝑥 − 𝑝0,𝑥)) (4.8)

with 𝑘 being calculated as

𝑘 =
(𝑝𝑛+1,𝑦 − 𝑝0,𝑦) · (𝑔0,𝑥 − 𝑝0,𝑥)− (𝑝𝑛+1,𝑥 − 𝑝0,𝑥) · (𝑔0,𝑦 − 𝑝0,𝑦)

(𝑝𝑛+1,𝑦 − 𝑝0,𝑦)2 + (𝑝𝑛+1,𝑥 − 𝑝0,𝑥)2 . (4.9)

With this start point calculated, iText creates an axial gradient starting at
𝑔1 with the lighter color and ending at 𝑔0 with the darker color. The axial
gradient for the example shape is shown in Fig. 4.7(f).

Now it is even more understandable why the seed before the first and the
seed after the last common contour seeds are chosen to build up the line. If
the first and last common contour seeds 𝑝1, 𝑝𝑛 would be taken for calculating
the endpoint, the starting point would be calculated nearer to the endpoint
and the space for the gradient to develop would be very small in the most
cases. Using the seeds before and after the first and the last contour seeds
respectively enlarges this space a little bit and makes the gradient look more
natural.

Generating a Radial Gradient

Creating a radial gradient in done a little bit different than creating an axial
one. The axial gradient is generated in only one of two shapes. The radial
gradient, however, considers more than two shapes in the most cases. One of
them is the shape with the lighter color and the others (which can be several)
are of the darker color. In Fig. 4.8(a) a situation is shown were a shape of the
lighter color (shown as light gray shape) and several neighbored shapes (with
blue colored outline seeds) are visible. To create a radial gradient with iText
as described in Sec. 4.2.1 two circles need to be initialized. These circles are
described by two center points, two radii and two colors. The starting color
(which is the inner one) is assumed to be the lighter color and the end color
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is assumed to be the darker color. The two center points are assumed to be
at the same position, which is defined as the position at the average 𝑥- and
𝑦-coordinates of the outer contour 𝑂 of the lighter shape. The outer contour
again is assumed to be a closed contour 𝑂 = (𝑝0, 𝑝1, . . . , 𝑝𝑛−1) with a length
of 𝑛 consecutive seeds. Also the last seed 𝑝𝑛−1 is adjacent to the first seed
𝑝0. The center points of the circles are described as 𝑐 = (𝑥, 𝑦) with 𝑥 and
𝑦 being the average 𝑥- and 𝑦-coordinate of the outer contour that can be
calculated as

𝑥 = 1
𝑛

𝑛−1∑︁
𝑖=0

(𝑝𝑖,𝑥), 𝑦 = 1
𝑛

𝑛−1∑︁
𝑖=0

(𝑝𝑖,𝑦). (4.10)

The next step, after defining the start and end color and calculating the
center point, is to define the radius for the inner, smaller circle. For this the
distances 𝑑 between all nodes in 𝑂 and the center point 𝑐 are calculated as

𝑑 =
√︁

(𝑥− 𝑝𝑖,𝑥)2 − (𝑦 − 𝑝𝑖,𝑦)2, (4.11)

with 𝑖 ∈ [0, 𝑛− 1]. The smallest as well as the greatest distance are saved as
𝑑0 and 𝑑1 respectively. This step is illustrated in Fig. 4.8(b) with the green
dotted lines indicating the smallest distance 𝑑0 and the greatest distance
𝑑1 of an outer contour seed and the center point. According to these two
distances the radius of the smaller circle is calculated as 𝑟0 = (𝑑0 + 𝑑1)/2,
which is just the medium distance. Figure 4.8(c) shows this step for a better
understanding.

Next up is calculating the greater radius, the one for the outer circle.
This is done by first storing all outer contour seeds of the darker neighbored
shapes, that are not a common node with the lighter shape, in a list 𝑁 =
(𝑝0, 𝑝1, . . . , 𝑝𝑛−1) with 𝑛 again being the length of this list. These seeds
are basically all seeds that are marked with a blue color in Fig. 4.8(d). To
get the radius for the greater circle the same steps as for the smaller circle
are done. First calculating all distances of these seeds to the center point
according to Eq. 4.11, then storing the greatest and smallest one as 𝑑0, 𝑑1
(see Fig. 4.8(d)) and finally calculating the radius as medium distance like
𝑟1 = (𝑑0 + 𝑑1)/2 (see Fig. 4.9(a)). The resulting two circles are shown in
Fig. 4.9(b) with both having their center point in 𝑐. The smaller circle is
indicated via a green colored, dotted outline with radius 𝑟0, the larger one
via a blue dotted outline with radius 𝑟1.

The last step for defining the radial gradient is to combine the lighter
shape and all neighbored darker shapes into one shape for the gradient to
be placed onto. The approach for this is basically the same as described in
Sec. 3.5. The common contour seeds of the lighter and darker shapes are
deleted and a new outer contour is defined as closed contour of consecutive
seeds including all non common seeds of the shapes. The newly created
shape can be seen in Fig. 4.9(c) with the black nodes as new outer contour.
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Figure 4.8: The first part of a radial gradient creation. In (a) the single
shape with the lighter color (colored in light gray) and the neighbored shapes
with the darker color (indicated via the blue outer contour nodes) can be
seen. Also the center point for the gradient circles 𝑐 = (𝑥, 𝑦) is illustrated.
In (b) the smallest and greatest distances between 𝑐 and all outer contour
seeds of the lighter shape are calculated and stored as 𝑑0 and 𝑑1. The radius
𝑟0 for the smaller circle is calculated as the medium distance of 𝑑0 and 𝑑1 as
shown in (c). Figure (d) shows that the steps that were done for the smaller
circle are also executed for the larger circle by calculating the greatest and
smallest distances 𝑑0, 𝑑1 again but now for the outer contour seeds of the
darker neighbored shapes.

The gradient finally happens inside of this new shape and looks like the one
pictured in Fig. 4.9(d).
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Figure 4.9: The second part of a radial gradient creation. The radius for the
larger circle is again calculated as medium distance of the smallest distance
𝑑0 and the greatest distance 𝑑1 of the center and the outer contour seeds
for the neighbor shapes in (a). The resulting two circles for the gradient are
shown in (b) indicated by differently colored dotted lines together with the
belonging radii in the same color. In (c) the result of the lighter and the
darker shapes being merged is visible. The new outer contour is visualized
as black colored seeds. Also the two circles of the gradient can be seen. The
gradient finally takes place in between those two circles. The result of the
radial gradient calculation is pictured in (d).



Chapter 5

Examples and Evaluation

In this chapter some example images are shown picturing all the steps that
were needed to create the resulting images. All the different images are
ordered in the same way to make a comparison between the single images
easier. Also some evaluation is done on the different methods that were used
and how good they performed.

The first picture for every test image shows the original input image.
These original images are pictured in Figs. 5.1(a), 5.2(a), 5.3(a), 5.4(a),
5.5(a) and 5.6(a). The test images vary in size between a 10 × 10 and a
28× 30 size and a color amount between two and fourteen colors. The first
steps of generating the similarity graph (see Fig. 5.1(b) for example) and
the Voronoi diagram (see Fig. 5.1(c) for example) are the same for all test
images used. In this steps the connections of a pixel and its neighbors are in-
troduced and resolved in some special cases of crossing diagonals. Afterwards
the pixels are reshaped to make the connections to the neighbors even more
visible and more detailed. These steps work perfectly fine for all test images.
After the Voronoi diagram has been generated the big shapes, pictured in
Fig. 5.1(d) for the “Space Invader” test image, can be created by combining
several neighbored shapes with the same color to one big shape. This proce-
dure is also the same for all test images and produces the expected output
as well. The next thing to do was extracting splines from this big shaped
image. For this some different ways were discovered and tested. First of all,
the Catmull-Rom interpolation was introduced. This method produced even
bigger shapes as before (see Fig. 5.1(e) for the first test image). With the
single shapes now overlapping, the result looks good indeed, but it is not
an optimal solution. Some negative effects of this approach can be seen in
Fig. 5.3(e) or Fig. 5.4(e) were one or even both of the eyes disappear after
being covered by an overlying larger shape. To improve the result and re-
solve the covering problem the quadratic B-Splines (which can be seen in
Fig. 5.1 (f) for the “Space Invader” test image again) were introduced. These
splines, however, came out non-optimal again, by generating holes between
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the single shapes that use a common outer contour seed. To improve on
these holes the next step was to use cubic Bézier curves instead of quadratic
B-Splines to make the holes look smaller (see Fig. 5.1(g)) by approximating
more towards the shape’s outer contour. This worked a little bit better, but
could not fully close the holes. To make sure the gaps disappear the seeds
that were used by more than two shapes are included into the interpolation
process. This led to the result pictured in Fig. 5.1(h) were no gaps appear
between the shapes anymore. One can say that this solution would be good
enough but with a higher resolution one can still see the small straight line
sections on the contours that happen because of the approximation of the
Bézier curves. So for a final optimization the cubic Bézier spline was not
approximated but generated via PostScript using the iText library that per-
fectly generated the cubic Bézier curves and exported the whole image as
PDF file. Also the color gradients were introduced wherever possible. For
the test images in Figs. 5.1(a), 5.2(a) and 5.6(a) no color gradient was gen-
erated because either the color distances were to big to introduce a gradient
or the overall amount of color in the image was considered to small. For the
input images shown in Figs. 5.3(a), 5.4(a) and 5.5(a) a color gradient was
generated, which can be seen in the very last picture of the belonging test
sets. In general generating the Bézier curves with iText works perfectly fine
and the introduction of the color gradient works fine for all test images as
well, however the radial gradient tends to produce smoother gradients and
works a little bit better than the axial gradients in terms of smoothing the
neighbored colors.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.1: All implementation steps for the test image “Space Invader”.
The original input image is shown in (a). Generating the similarity graph
(b), the Voronoi diagram (c) and the big shapes (d) works perfectly fine.
The Catmull-Rom interpolation in (e) produces overlapping shapes and the
interpolation with the quadratic B-Spline method (f) produces the opposite
worst case with the holes. The interpolation with the cubic Bézier splines is
shown in (g), which produces smaller holes, and the same method but with
resolved multiple seed usage is pictured in (h), which lets the holes disappear.
Picture (i) shows the final result with the export to PDF. There was no color
gradient introduced, because of the color amount of the input image being
too small.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.2: All implementation steps for the test image “Mushroom”. The
original input image is shown in (a). Generating the similarity graph (b), the
Voronoi diagram (c) and the big shapes (d) works perfectly fine. The Catmull-
Rom interpolation in (e) produces overlapping shapes and the interpolation
with the quadratic B-Spline method (f) produces the opposite worst case
with the holes. The interpolation with the cubic Bézier splines is shown in
(g), which produces smaller holes, and the same method but with resolved
multiple seed usage is pictured in (h), which lets the holes disappear. Picture
(i) shows the final result with the export to PDF. There was no color gradient
introduced, because the color distances were considered too big.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.3: All implementation steps for the test image “Boo”. The original
input image is shown in (a). Generating the similarity graph (b), the Voronoi
diagram (c) and the big shapes (d) works perfectly fine. The Catmull-Rom in-
terpolation in (e) produces overlapping shapes and in this case even one shape
is completely overlapped by a larger shape, because of which an eye disap-
peared in the resulting image. The interpolation method with the quadratic
B-Spline (f) produces the opposite worst case with the holes showing. The
interpolation with the cubic Bézier splines is shown in (g), which produces
smaller holes, and the same method but with resolved multiple seed usage
is pictured in (h), which lets the holes disappear. Picture (i) shows the final
result with the export to PDF. In this specific case, only one radial gradient
is produced.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 5.4: All implementation steps for the test image “Dolphin”. The
original input image is shown in (a). Generating the similarity graph (b),
the Voronoi diagram (c) and the big shapes (d) works perfectly fine. The
Catmull-Rom interpolation in (e) produces overlapping shapes, because of
which both eye shapes are completely overlapped by a larger shape. The
interpolation with the quadratic B-Spline method (f) produces the opposite
worst case with the holes showing. The interpolation with the cubic Bézier
splines is shown in (g), which produces smaller holes, and the same method
but with resolved multiple seed usage is pictured in (h), which lets the holes
disappear. Picture (i) shows the final result with the export to PDF.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.5: All implementation steps for the test image “Toad”. The original
input image is shown in (a). Generating the similarity graph (b), the Voronoi
diagram (c) and the big shapes (d) works perfectly fine. The Catmull-Rom
interpolation in (e) produces overlapping shapes and the interpolation with
the quadratic B-Spline method (f) produces the holes. The interpolation with
the cubic Bézier splines in (g) produces smaller holes and the same method
but with resolved multiple seed usage is pictured in (h), which lets the holes
disappear. Picture (i) shows the final result with the export to PDF.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: The first steps for the test image “Yoshi”. The original input
image is pictured in (a), the similarity graph in (b) and the Voronoi diagram
in (c). Picture (d) shows the big shapes, (e) the Catmull-Rom interpolation
and (f) the interpolation with the quadratic BSpline method.
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(a) (b)

(c )

Figure 5.7: The last steps for the test image “Yoshi”. The interpolation
with the cubic Bezier splines is shown in (g), the optimized method with
the resolved multiple seed usage is pictured in (h) and (i) pictures the final
result.



Chapter 6

Conclusion

As the example images in Chap. 5 show, the outcome of the implemented
algorithm works pretty fine and the results are very smooth looking. Com-
pared to the input images, the results keep the color amount and the beauty
of simplicity by being smoother and best of all, scale invariant.

The algorithm works perfectly fine up to this stage and the steps that
Kopf and Lischinski used for their original algorithm were successfully trans-
ferred to Java/ImageJ. Wherever there were any difficulties, the steps of
solving these issues were included into the description. The additional steps
and improvements, that were introduced in this thesis, are explained step
by step. Additionally, before and after images are pictured to make the
changes even more understandable. With the introduction of the gradients
the images got their finishing touch in the end.

As the color gradients are a special eye catcher in the resulting images,
there are some situation where the color transition may attract some neg-
ative attention with coming across too harsh. Unlike the radial gradient,
which works perfectly fine in all images, the linear gradient could be im-
proved in further projects. One thing that comes to mind is dividing the
two shapes meeting at the common contour into several smaller sections
and applying a linear gradient to each one. For this an appropriate method
to divide the shapes and apply the color gradients would be necessary. An-
other potential issue for further projects would be the optimization of the
execution time. As all the steps used in this implementation are computa-
tionally intensive, the execution time increases with the size of the image.
But as this project is intended to work for very small images especially, it
did not affect this project in a negative way.
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Appendix A

Technical Information and
Source Code

A.1 Technical Information
Eclipse Version: 4.5
ImageJ Version: 1.50d–1.51b
iText Version: 5.5.8

A.2 Source Code
In this part of the appendix a helpful code snippet is shown that is mentioned
in the thesis. The complete source code will be included in the final upload
for the master’s project.

The following plugin creates a radial/axial gradient in a 18 × 18 area.
There is no export of a PDF included because it is only a demonstration of
the gradient initialization.

1 import {...}
2
3 public class TestImagesIText implements PlugIn{
4
5 private static String OutputDirectory = IJ.getDirectory("home");
6
7 public void run(String arg) {
8 drawImage(OutputDirectory);
9 }

10
11 public static String drawImage(String path) {
12 int width = 18;
13 int height = 18;
14
15 BaseColor startColor = new BaseColor(0, 200, 255);
16 BaseColor endColor = new BaseColor(100, 255, 0);
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17
18 Document document = new Document(new Rectangle(width, height));
19
20 try {
21 PdfWriter writer = PdfWriter.getInstance(document, new

FileOutputStream(path));
22 document.open();
23 PdfContentByte cb = writer.getDirectContent();
24
25 /∗ axial shading (writer , startPoint , endPoint, startColor , endColor,

continue before startPoint , continue after endPoint) ∗/
26 PdfShading axial = PdfShading.simpleAxial(writer, (float)width/2,

0, (float)width/2, (float)height, startColor, endColor, true, true);
27 PdfShadingPattern axialGradient = new PdfShadingPattern(axial);
28
29 /∗radial shading (writer , midPoint1X, midPoint1Y, midPoint2X,

midPoint2Y, startColor, endColor, continue before startPoint, continue after
endPoint) ∗/

30 PdfShading radial = PdfShading.simpleRadial(writer, (float)width
/2, (float)height/2, (float)1.5, (float)height/2, (float)width/2, (
float)height/2, startColor, endColor, true, true);

31 PdfShadingPattern radialGradient = new PdfShadingPattern(radial);
32
33 cb.setShadingFill(radialGradient);
34 cb.moveTo(0, 0);
35 cb.lineTo(width, 0);
36 cb.lineTo(width, height);
37 cb.lineTo(0, height);
38 cb.closePath();
39 cb.fill();
40 }
41
42 catch (DocumentException de) {
43 IJ.log(de.getMessage());
44 }
45 catch (IOException ioe) {
46 IJ.log(ioe.getMessage());
47 }
48 document.close();
49 return path;
50 }
51 }



Appendix B

DVD Content

Format: CD-ROM, Single Layer, ISO9660-Format

B.1 PDF-Files
Pfad: /

_DaBa.pdf . . . . . . . Masterthesis (whole document)

B.1.1 Literature

Pfad: /literature/printed
*.pdf . . . . . . . . . . Copies of the used literature as PDF

documents.

B.1.2 Online-Literature

Pfad: /literature/online
*.html . . . . . . . . . . Copies of the used online literature as HTML

documents.
*.pdf . . . . . . . . . . Copies of the used online literature as PDF

documents.

B.2 Java-Files
Pfad: /implementation/java/*

*.java . . . . . . . . . . Java Source Code for the ImageJ PlugIn.

B.3 Miscellaneous
Pfad: /images/*
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*.png . . . . . . . . . . Original Pixel Images
*.pdf . . . . . . . . . . Original Vector Images

*.png
*.pdf
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