
Unsupervised Identification of the Rigid
Parts of an Unknown Articulated Object

Anna M. Maureder

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Juni 2018

© Copyright 2018 Anna M. Maureder

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, June 26, 2018

Anna M. Maureder

iii

Contents

Declaration iii

Abstract vi

Kurzfassung vii

Notation viii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Goal . 2
1.3 Methodology . 2

2 State-of-the-Art Pose Estimation 4
2.1 Surface Registration . 4

2.1.1 Functionality . 4
2.1.2 Difficulties . 5
2.1.3 Optimization . 6

2.2 Pose Estimation of articulated Objects 6
2.2.1 Digitalization of the Object . 6
2.2.2 Segmentation . 7

2.3 Supervised Methods . 7
2.4 Unsupervised Methods . 8

2.4.1 Related Work . 8
2.4.2 Main Drawbacks . 10

3 Linear Approach 11
3.1 Cluster Detection by Region Growing 11
3.2 Subdividing into Clusters . 12
3.3 Merging Sub Clusters to Rigid Parts . 13
3.4 Joint Estimation . 14
3.5 Implementation . 14

3.5.1 Chosen Environment . 15
3.5.2 Overview . 15
3.5.3 Region Growing . 16
3.5.4 PCA . 16

iv

Contents v

3.5.5 Cluster Tree . 18
3.5.6 Registration Procedure . 18

3.6 Results . 21
3.7 Possible Improvements . 23

3.7.1 Assuring corresponding, similar Clusters 25
3.7.2 Matching Error . 25
3.7.3 Initial Alignment of the largest Rigid Part 26

3.8 Outcome . 26

4 Feature-Based Approach 27
4.1 Fast Point Feature Histograms . 27

4.1.1 Normal Estimation . 27
4.1.2 SPFH and FPFH . 29
4.1.3 Feature Histograms . 30
4.1.4 Feature Matching . 31
4.1.5 Adaptions for 2D . 31

4.2 LRP Algorithm . 32
4.2.1 Basic Functionality . 32
4.2.2 Input Data . 32
4.2.3 Implementation Steps . 34
4.2.4 Detection of sparse Correspondences 34
4.2.5 Detection of the largest Rigid Part 37
4.2.6 Cluster Detection by Region Growing 37
4.2.7 Detection of linked Rigid Parts 39

4.3 Implementation . 40
4.3.1 Iterative Segmentation . 40
4.3.2 Feature Matching . 42
4.3.3 RANSAC . 45
4.3.4 Joint Rotation . 45

4.4 Results . 46
4.4.1 Histogram Distances for Feature Matching 48
4.4.2 Main Drawbacks . 51

4.5 3D Implementation . 53

5 Conclusion 55
5.1 Achieved Results . 55
5.2 Main Difficulties and Drawbacks . 56
5.3 Future Work . 57

A CD Contents 58

References 59
Literature . 59

Abstract

The proposed work addresses the issue of identifying the rigid parts of an unknown
articulated object to subsequently estimate the joints representing its pose. Most existing
pose estimation methods take advantage of user inputs to estimate the joints’ positions,
for example, markers or an object model. However, methods that operate completely
independent of manual user input constitute a great potential. One solution approach
for this situation is proposed by the non-rigid registration of an articulated object in
different poses, also referred to as template matching. Inspired by unsupervised state-
of-the-art pose estimation procedures, two segmentation approaches are implemented.
The main goal is thereby to reduce the number of computation steps for segmenting an
articulated object into its rigid parts.

vi

Kurzfassung

Die vorliegende Arbeit behandelt die Segmentierung eines unbekannten, artikulierten
Objekts in dessen Körperteile, um anschließend die Gelenke und Pose zu beschreiben.
Häufig angewandte Methoden basieren auf manuellen Benutzereingaben, welche als Hil-
festellung bei der Segmentierung dienen. Dazu zählen etwa auf dem Körper platzierte
Marker oder ein vorhandenes Referenzmodel. Hingegen bieten Methoden, die unabhän-
gig von Benutzereingaben fungieren, großes Potential. Ein Lösungsansatz dafür stellt die
Registrierung von einem artikulierten Objekt in zwei verschiedenen Posen dar. Inspiriert
durch State-of-the-Art Methoden in diesem Bereich werden zwei Segmentierungsalgo-
rithmen implementiert. Die Zielsetzung dabei ist, die Anzahl der Berechnnungsschritte
für diese rechenaufwendige Prozedur zu reduzieren.

vii

Notation

𝑀 Input mesh
𝒫 Set of rigid parts
𝒥 Set of joints
𝒞 Set of clusters
𝒯 Set of transformations
𝐶𝑖 Cluster
𝐶𝑖,𝑗,··· Sub cluster with varying depth
𝑝𝑖 Principal axis of 𝐶𝑖

𝑠𝑖 Secondary axis of 𝐶𝑖

𝑑𝑖 Divider position of 𝐶𝑖

𝜃 Orientation of 𝐶𝑖

𝑝𝑖(𝑥, 𝑦) 2D cluster point of 𝐶𝑖

𝑝𝑖(𝑥, 𝑦, 𝑧) 3D cluster point of 𝐶𝑖

𝑐𝑖(𝑥, 𝑦) Centroid of 𝐶𝑖

𝑗𝑡𝑖(𝑥, 𝑦) Joint between two clusters 𝐶𝑖 and 𝐶𝑗

𝑔(𝑝𝑖, 𝑝𝑗) Geodesic distance between two cluster points
𝑑(𝑝𝑖, 𝑝𝑗) Euclidean distance between two cluster points
𝑒 Squared error distance between two clusters
𝑒avg Average error distance per point between two clusters
𝜏 Threshold
𝑁 Node in a tree
left Left child of 𝑁

right Right child of 𝑁

ℒ Set of matching sub cluster pairs
𝐿𝑖,𝑗 Sub cluster of ℒ
LRP Largest rigid part 𝑃 of a cluster 𝐶𝑖

𝒞𝑈 Set of unmatched clusters
𝐶𝑈 Cluster with no allocation to a rigid part 𝑃

𝒰 Set of unclustered points
𝑢𝑖(𝑥, 𝑦) Unclustered point
𝑟 Radius

viii

ix

𝑛𝑖 Normal vector of a point 𝑝𝑖

𝐻𝑖 Feature histogram of a point 𝑝𝑖

𝐻𝜇 Mean feature histogram of a cluster 𝐶𝑖

Chapter 1

Introduction

Pose and motion estimation of articulated objects is a fundamental task in Computer Vi-
sion due to the progressive digitalization of day-to-day processes. A variety of practical
applications exist, such as activity recognition, video surveillance and human-computer
interfaces. An application the thesis emerged from is the pose capture of a real-world
articulated object used as input for a digital animation process. By detecting the ob-
ject’s associated rigid parts and joints in two consecutive poses, the animation between
transformed rigid parts can be determined and applied on a digital character.

1.1 Problem Statement
Generally, pose estimation of an articulated object can be described as a segmentation
problem, as the individual rigid parts and joints linking them are desired. The vast ma-
jority of existing pose estimation approaches take advantage of assumed object models
in 3D, manually-labeled joints and rigid parts to determine basic information about
an object’s pose. Often combined with a machine-learning approach, the results are
promising after a completed training phase. However, methods that detect the pose of
an unknown object are great possibilities, as the pose estimation operates completely
independently of user input. Among those methods, the non-rigid registration (see Sec-
tion 2.1) is a well-known approach. The input of this algorithm comes from two or more
poses of one articulated object. By merging one template pose with another query pose,
part correspondences can be determined and the articulated object is segmented into
its rigid parts. By applying this approach to an unknown input consisting of an object
in two poses, five core questions are formulated to be considered:

• In which form is the input data for pose estimation received?
• Which data points correspond to one another in two different poses?
• To which rigid part can a data point be assigned to?
• How can the joints, linking detected rigid parts, be estimated?
• Which joints/rigid parts correspond to one another in two different poses?

Many challenges emerging from different stages of the pose estimation procedure have
to be overcome (see Section 2.2). First of all, digital input data of an articulated object
in the real world has to be captured. Thereby, input noise emerging from low resolu-

1

1. Introduction 2

tion scanning technologies is an essential factor which has to be considered for pose
estimation. Furthermore, the ambiguity of body parts poses a significant difficulty, es-
pecially if the articulated object is composed of symmetric body parts. One of the main
drawbacks of current methods is the computational-expensive procedure to detect rigid
parts. The root of this problem originates from the detection of correct point correspon-
dences between two input meshes. As this directly influences the run time, there is a
great demand for improvements, particularly if real-time applications are required.

1.2 Goal

By means of current approaches in this particular field (see Chapter 2), this thesis
addresses the issue of detecting the initial pose of an unknown articulated object given
in two poses. The focus lies thereby on reducing the number of computation steps of the
segmentation procedure. A detailed overview of the used notations can be found in the
Chapter before. The main goal can be formulated as segmenting an articulated object
𝑀 into its unknown number 𝑛 of rigid parts 𝒫 = {𝑃1, . . . , 𝑃𝑛} and extracting all 𝑚
joints 𝒥 = {𝑗𝑡1, . . . , 𝑗𝑡𝑚} linking those parts. The input poses are represented by two
point clouds 𝐶1 and 𝐶2 of 𝑀 in two different poses being composed of 2D points in the
form of 𝑝𝑖(𝑥, 𝑦). It is assumed that the digitalized poses are already available, to fully
focus on the segmentation. 𝐶1 is used as a template to be registered with 𝐶2. The main
task is to determine a part assignment 𝑃𝑖 and the corresponding transformation 𝑇𝑖 for
all points of the template that aligns them with all points of 𝐶2. The main difficulty
is that only a set of unsorted points of 𝐶1 and 𝐶2 is present. No further information,
such as manual labeling by the user or an object model as indicator for the number
of rigid parts, are available. The only assumption that can be made is that 𝑀 only
consists of rigid parts that can not be deformed or stretched. Comparing two poses
being adopted by the articulated object, the geodesic distance 𝑔(𝑝𝑖, 𝑝𝑗) between two
mesh points 𝑝𝑖(𝑥, 𝑦) and 𝑝𝑗(𝑥, 𝑦) remains constant. It is also taken advantage of the
knowledge that points located on a rigid part 𝑃𝑖 undergo the same transformation 𝑇𝑖.

1.3 Methodology
To accomplish the proposed goal, an analysis of state-of-the-art pose estimation ap-
proaches is conducted in Chapter 2. Additionally, the concept of surface registration
is presented (see Section 2.1) to provide necessary background knowledge on object
segmentation. Consequently, two segmentation approaches are implemented taking un-
supervised methods (see Section 2.4) into consideration. Although the referred pose
estimation approaches are performed on 3D data sets, it was a conscious decision to
conduct the implementation on 2D point clouds. The main advantages include fewer
degrees of freedom of the data and a possible pose estimation in the absence of 3D
reconstructed data. Furthermore, attention can be brought to an implementation of
potential improvements.

The first approach is a straightforward and linear method (see Chapter 3) that aims
to drastically reduce the computation steps of previous approaches. This is achieved by
iteratively subdividing 𝐶1 and 𝐶2 with a “divide and conquer” approach. Corresponding

1. Introduction 3

sub clusters are verified to match; in negative cases they are further subdivided. This
attempt only depends on all point coordinates of 𝐶1 and 𝐶2 and the orientation 𝜃 of
the clusters. In the case of many linked parts or too dissimilar transformations between
𝐶1 and 𝐶2 this approach is not reliable, as clusters being compared are not actually
corresponding to one another. To address the segmentation with a focus on articulated
objects with a typical skeleton structure (e.g. a human), a feature-based approach (see
Chapter 4) is implemented. In this case, additional descriptors are extracted for all
points of 𝐶1 and 𝐶2. These assist the initial alignment of the input clusters to detect a
reliable corresponding rigid part. Proceeding from there, joints can be estimated and all
linked rigid parts are detected iteratively. The main reference paper for this approach is
from Guo et al. [11]. The main contribution of the proposed feature-based segmentation
approach is the reduction of computation steps considering the recursive detection of
linked rigid parts. In contrary to [11], the feature computation and matching is only
applied for the first alignment. Then, motion information about the rigid parts is taken
into account to stepwise align them in two poses. By demonstrating the outcome from
the proposed approaches (see Section 4.4), evident drawbacks, main difficulties and
possibilities are outlined. Furthermore, planned future work is proposed to compensate
originated difficulties (see Chapter 5). All of these things offer a solid base for further
improvements in this area.

Chapter 2

State-of-the-Art Pose Estimation

To answer the posed questions (see Chapter 1), attention during research was directed
towards pose estimation of articulated objects. The majority of the selected reference
papers focus on the pose extraction of a human body. Depending on the approach,
different steps are required; these can generally be subdivided into the digitalization of
the object to be captured (see Section 2.2.1) and its segmentation into rigid parts (see
Section 2.2.2). Regardless of the chosen approach, many difficulties must be overcome,
in order to estimate the joints and pose. A key role of the pose estimation method is the
registration of surfaces (see Section 2.1). It is commonly referred to as an optimization
problem, as the goal is to obtain the best possible outcome.

2.1 Surface Registration
Generally, registration in Computer Vision and Computer Graphics refers to the align-
ment of overlapping parts of two or more digital data sets [28]. The most essential
component is the detection of point correspondences between two surfaces to be reg-
istered, often supported by RANSAC [9]. One main application is the alignment of
two or more incomplete range scans of an object from different view points to obtain
a complete model. Further applications are symmetry detection, subpart identification
and articulation of non-rigid objects. For this reason, a vast number of pose estimation
and skeleton extraction approaches rely on a successful registration of the digitalized
objects.

2.1.1 Functionality
In general, a discriminatory approach between rigid and non-rigid registration can be
used. In the former case, it is assumed that two surfaces are related by a rigid trans-
formation, which can be seen in Figure 2.1 (a). A well-known approach for a rigid
registration is the Iterative Closest Point (ICP) [5]. It requires a similar initial position
of two shapes to avoid a local optimum. For this purpose it is often taken advantage of
the Principal Component Analysis (PCA) [33] of shapes. With each iteration step the
point correspondences between two input objects are updated by selecting the closest
points. In the next step, the rigid transformation between two shapes is recalculated
considering the detected correspondences. A matching error 𝑒 is achieved, which states

4

2. State-of-the-Art Pose Estimation 5

(a) (b)

Figure 2.1: Rigid registration of two similar objects (a) [21] and non-rigid registration
of an object [10] in two different poses composed of several rigid parts (b).

the total Euclidean distance between the associated points of the registered shapes. The
algorithm terminates after a predefined number of iterations or if a specified value for 𝑒
is achieved. In the case of two non-rigid surfaces composed of multiple rigid parts (e.g. a
human), a rigid registration will not lead to a convincing result, because the individual
rigid parts may undergo different rigid transformations. In this case, a non-rigid reg-
istration is required to perform a segmentation into rigid parts, which can be seen in
Figure 2.1 (b).

2.1.2 Difficulties
Some factors complicate the accomplishment of a visual successful registration. Main
difficulties are noisy data and outliers that can often arise from low resolution scans.
Furthermore, there might only be a limited amount of overlapping data, which is the
case for multiple incomplete scans of an object from different view points. Self occlusion
and variations from initial poses are factors that also complicate a successful registra-
tion. In the case of a non-rigid registration, the main difficulty is the establishment of
point correspondences between two poses, because several transformations of the rigid
parts must be considered (see Figure 2.2). Specific constraints can be set to reduce the
correspondence space. These include, for example, the computation of point features,
which are quantities that add additional information besides its coordinates to a point.
By applying feature matching between two shapes, possible point correspondences can
be detected. Saliences also play a major role in correspondence detection; these are rep-
resented by points that are considerably different than neighboring points. By placing
markers on the object or assuming topology, the allocation of points to rigid parts can
be simplified. Also, the prior information of articulation places a valuable contribution,
as no deformations have to be considered. One main drawback of the non-rigid regis-
tration is that it is expensive and time-consuming to compute, due to the fact that the
corresponding body parts of two poses must be detected iteratively. Additionally, the
inevitable difficulty of detecting the global optimum related to ambiguous body parts
is present.

2. State-of-the-Art Pose Estimation 6

(a) (b)

Figure 2.2: The main difficulty of the non-rigid registration is the detection of point
correspondences between two input shapes (a). It is the basis for an alignment of one
object in different poses (b) [31].

2.1.3 Optimization
Several optimization approaches are proposed to overcome certain of the stated dif-
ficulties. One established method, regarding the detection of correspondences, is the
Expectation-Maximization (EM), which alternates between two steps: detecting corre-
spondences and optimizing the transformation. To avoid local minima a global optimiza-
tion can be pursued, for example, by forming a decision tree. Furthermore, stochastic
optimization takes into account statistics and probabilities. Popular related methods
apply voting and belief propagation, such as Markov Random Fields (MRF).

2.2 Pose Estimation of articulated Objects
To successfully estimate the pose of an articulated object, generally two main steps must
be performed: the digitalization of the object and the segmentation of the digital model
into its rigid parts. Although 3D scanners are an approved method for digitizing real
world objects, reconstruction from 2D images are gaining importance. As this thesis
focuses on the segmentation of the input data into rigid parts, the digitalization of the
object will not be covered in detail.

2.2.1 Digitalization of the Object
As a first step, the object to be captured must be digitalized for the subsequent seg-
mentation step. Through scanning, the real shape is collected as either 2D or 3D data.
The raw data in the form of 2D images, video streams, or even point clouds in 2D or 3D
can be directly used for pose estimation. Multiple commercial 3D scanners are available;
they strongly vary in precision and resolution depending on the cost. Usually, a sub-
sequent reconstruction step is performed that converts the raw data into a mesh. This

2. State-of-the-Art Pose Estimation 7

(a) (b)

Figure 2.3: Estimating the pose of an articulated object with an object model, providing
prior information about the rigid parts (a). By fitting shapes to a digitized model, the
joints can be determined (b) [18].

procedure frequently uses the registration of multiple scans from different view points.
RGB-D sensors have become more significant for 3D reconstruction [10], because they
are easily accessible and inexpensive. Furthermore, 3D reconstruction from images and
videos is frequently made use of because no expensive 3D scanners are required. These
methods include Shape from Silhouette [4, 26], Shape from Shading [15] as well as Shape
from Motion [17]. Ramakrishna [22] performs a 3D human pose reconstruction by man-
ually placing 2D landmarks on single images. Certain approaches skip the digitization
step and take a 3D mesh from a modeling software as input.

2.2.2 Segmentation
The crucial Computer Vision task of the pose estimation is the segmentation of the
digitized object into its rigid parts, in order to estimate the joints and pose. The main
idea is to allocate each data point of an input object to a rigid part. For this process, any
prior information in addition to the input data is indispensable. Regarding the non-rigid
registration, the same object in another pose is required, which is usually referred to as
a template. Generally, the segmentation approaches are classified into supervised (see
Section 2.3) and unsupervised methods (see Section 2.4), whereby the former depends
on manual user input.

2.3 Supervised Methods
Supervised methods for pose estimation greatly simplify the segmentation procedure,
as certain assumptions of the object can be made. Examples include the placement of
markers on the real object or the digitized model in order to label its joints, linking the
rigid parts (see [20]). Furthermore, the usage of an object model is frequently employed
to obtain prior knowledge about the number of rigid parts, and possibly the shape of
an object (see [20, 29, 35]). Michoud et al. [18] propose a shape fitting approach with
prior knowledge of the object to be captured (see Figure 2.3). Other approaches use

2. State-of-the-Art Pose Estimation 8

(a) (b)

Figure 2.4: Detection of joints of an object by sequentially moving the rigid parts one
by one (a), (b) [4].

the motion information of known point correspondences from image sequences (see [14,
34]). The approach proposed by Baker et al. [4] sequentially estimates each joint by the
person being captured moving one body part at a time. By extracting and registering
the resulting CSPs (Colored Surface Points), a joint can be estimated (see Figure 2.4).
Further approaches utilize training data and machine learning to estimate the pose of

a human (see [25]). The approach by Lifshitz et al. [16] uses a Convolutional Neural
Network (CNN) to train a key point detector on 2D images.

2.4 Unsupervised Methods
Although the supervised pose estimation approaches from Section 2.3 result in promising
results, they depend on manual user input to be specified before the segmentation.
Thus, they are either time consuming, inconvenient or restrict themselves to specific
articulated objects (e.g. humans). Therefore, unsupervised methods are proposed that
work independently from user inputs. These are applicable for unknown articulated
objects without having prior knowledge about the topology. The proposed methods
only require an articulated object in two different configurations as input. As those
assumptions conform to the goal of this thesis, all reference papers are listed under
related work (see Section 2.4.1).

2.4.1 Related Work
A main approach for non-rigid registration is proposed by Anguelov [1] that applies the
Correlated Correspondence Algorithm [3]. The algorithm takes a template mesh of an
object 𝑀0 and any number 𝑛 of meshes of the same object 𝑀1, . . . , 𝑀𝑛 in different con-
figurations as input. The algorithm then performs a Markov Network with loopy belief
propagation and Expectation-Maximization to iterate between finding a decomposition
of the template into rigid parts, and detecting them in the other meshes. Thereby, it
takes advantage of the PCA and ICP. Furthermore, a random clustering is applied
to facilitate the detection of associated rigid parts (see Figure 2.5). Another approach
proposes the recursive detection of body parts by the Largest Rigid Part Algorithm

2. State-of-the-Art Pose Estimation 9

Input mesh Random clustering Segmentation

Figure 2.5: Segmentation of a template mesh 𝑀 into its rigid parts by applying random
clustering and a probabilistic framework to iteratively detect associating rigid parts in
another mesh [1].

(a) (b)

Figure 2.6: Detecting the largest rigid part of an object by detecting point correspon-
dences by feature matching and applying RANSAC (a). Linked parts to the detected LRP
are detected by region growing and reapplying the algorithm (b) [11].

(LRP) [11]. It discovers the rigid parts of an object in different configurations by ini-
tially detecting the largest rigid part. This is represented as the biggest overlapping
point clusters between two poses by applying a single rigid transformation. To achieve
this, sparse correspondences are detected by performing feature matching in combina-
tion with RANSAC. Proceeding from a detected LRP, linked rigid parts are recursively
searched by growing clusters from all remaining unclustered points and reapplying the
algorithm (see Figure 2.6).

Chang et al. [6] developed an approach for the alignment of articulated shapes
from range scans with missing data in different poses. They sampled the motion of
corresponding points by matching feature descriptors of both shapes. The generated

2. State-of-the-Art Pose Estimation 10

Figure 2.7: Alignment of articulated objects in the form of incomplete range scan by
feature matching and clustering of generated motion [6].

(a) (b)

Figure 2.8: Detection of the rigid parts of an object by local (a) and global (b) Sym-
metrization [19].

motion in the form of transformations is clustered to detect the most optimal shape
alignment (see Figure 2.7). A related approach by Chang et al. [7] proposed skinning
weights to the motion. Additionally, Expectation-Maximization is applied to update
those weights and the calculated transformation.

Another segmentation approach relies on Symmetrization [19], by detecting and
aligning the body parts’ symmetry axes (see Figure 2.8). De Goes et al. [8] detect
consistent segments from a single pose by computing the diffusion distance of a surface.
Another unsupervised method poses the probability-based registration of an articulated
human body in the form of voxels [27]. By fitting splines to the data, the input object
can be segmented into its rigid parts.

2.4.2 Main Drawbacks
The proposed approaches achieve convincing results concerning the accuracy of the seg-
mentation and the detection of rigid parts. However, they all require a considerable
number of computation steps to iteratively detect point correspondences and subse-
quent rigid parts from an object in two poses. This reflects on the run time of the
algorithm, which offers therefore great potential for improvements (e.g. to allow pose
estimation in real-time). Using the existing methods as a reference (see Section 2.4.1),
two segmentation approaches are proposed. Thereby, the main focus is to reduce the
number of computation steps of the Correlated Correspondence Algorithm [3] and the
LRP Algorithm [11]. To fully focus on the segmentation of an articulated object into its
rigid parts, the data input in the form of a 2D point cloud is assumed to be available.

Chapter 3

Linear Approach

Analyzing the reference papers’ [1, 11] main drawbacks concerning the unsupervised
segmentation, the first implemented approach aims to considerably reduce the number
of computation steps. Unlike previous approaches, point correspondences are not sought
in order to segment the articulated object. Instead, a segmentation is performed, in order
to find point correspondences. The approach operates in a straightforward way, as it
linearly subdivides an articulated object 𝑀 in two different configurations (referred to
as 𝐶1 and 𝐶2) into sub clusters. The subdividing of these clusters proceeds until all sub
clusters can be matched (see Section 3.2). Thereby, it is taken advantage of the PCA to
associate sub clusters of 𝐶1 and 𝐶2.

3.1 Cluster Detection by Region Growing
First, the resolution of 𝑀 is estimated, in order to have an indicator for the specific
threshold values. Thus, ten random points are selected from 𝑀 and the distance to their
closest points are calculated. Next, the median value is taken as the resolution to avoid
distortion in the case of outliers. Then, the initial goal is to remove possible noise and
outliers to proceed the segmentation approach with the two clusters 𝐶1 and 𝐶2. This
is achieved by applying region growing on all points of 𝑀 . A cluster 𝐶𝑖 is grown from
an unclustered point 𝑢𝑖(𝑥, 𝑦). Another point 𝑢𝑗(𝑥, 𝑦) is added to the cluster 𝐶𝑖 if the
Euclidean distance between them 𝑑(𝑢𝑖, 𝑢𝑗) is below a predefined threshold 𝜏 . As a next
step, all points of 𝐶𝑖 are iteratively compared to the remaining unclustered points, in
order to allow the cluster to grow further. Once, all points of 𝐶𝑖 have been treated and
no further points are added to the cluster, any unclustered point is used as a seed to grow
another cluster 𝐶𝑗 . If there are no unclustered points left, the cluster with the highest
number of points 𝑛 is selected as an input cluster for the segmentation algorithm. The
remaining clusters are classified as noise and rejected for further computations. The
region growing is performed for both configurations of 𝑀 in order to proceed to the
segmentation with the clusters 𝐶1 and 𝐶2 (see Figure 3.1).

11

3. Linear Approach 12

(a) (b)

Figure 3.1: Taking an articulated mesh 𝑀 in the form of a point cloud as input (a),
noise is removed to achieve the input clusters 𝐶1 (b).

3.2 Subdividing into Clusters
The first step of the subdividing process is the computation of the principal axes 𝑝1
and 𝑝2 of 𝐶1 and 𝐶2. They are required to offer a similar divider position base for the
subdividing procedure. For that, the orientation 𝜃 of all clusters, that is

𝜃(𝒞) = 1
2 tan−1

(︂
2 · 𝜇11(𝒞)

𝜇20(𝒞)− 𝜇02(𝒞)

)︂
, (3.1)

is calculated by computing their central moments

𝜇𝑝𝑞(𝒞) =
∑︁

(𝑥,𝑦)∈𝒞

(𝑥− �̄�)𝑝 · (𝑦 − 𝑦)𝑞. (3.2)

The divider positions 𝑑 are then determined by computing the perpendicular secondary
axes 𝑠1 and 𝑠2 to 𝑝1 and 𝑝2 through the centroids 𝑐1 and 𝑐2. The secondary axes divide
𝐶1 and 𝐶2 into the sub clusters 𝐶1,1 and 𝐶1,2 as well as 𝐶2,1 and 𝐶2,2. The association
of clusters between 𝐶1 and 𝐶2 is determined by the sub clusters that are located to
the left or right of 𝑠1 and 𝑠2 (see Figure 3.2). In each iteration step two related sub
clusters are then verified to match. By applying the ICP on two associated clusters 𝐶𝑝 =
{𝑝1, . . . , 𝑝𝑚} and 𝐶𝑞 = {𝑞1, . . . , 𝑞𝑚}, a certain matching error 𝑒 is computed between
their associated cluster points. To eliminate the dependency between the matching error
and the number of cluster points 𝑚, the average error per point of 𝐶𝑝 and 𝐶𝑞, that is

𝑒avg(𝐶𝑝,𝐶𝑞) = 1
|𝐶𝑝|

·
𝑚∑︁

𝑖=0
‖𝑝𝑖 − 𝑞𝑖‖

2, (3.3)

is calculated. This is assuming that the two clusters 𝐶𝑝 and 𝐶𝑞 contain the same number
of cluster points 𝑚. In the case of varying point amounts, excessive points are not
considered in the error amount calculation. Two clusters 𝐶𝑝 and 𝐶𝑞 are stated to match,
if 𝑒avg < 𝜏 . It is quite essential to determine an appropriate threshold 𝜏 , taking the
resolution of the input data into account. In the case of being overvalued, clusters are

3. Linear Approach 13

Figure 3.2: Subdividing 𝐶1 and 𝐶2 into two sub clusters by computing the secondary
axes 𝑠1 and 𝑠2 perpendicular to 𝑝1 and 𝑝2 through the centroids 𝑐1 and 𝑐2. Associated
clusters are visualized in the same color: red for both left clusters and blue for both right
clusters.

more likely to match, potentially resulting in insufficient subdividing. On the contrary, it
becomes increasingly unlikely that clusters match. This will result in further subdividing
and the detection of too many rigid parts. If the matching between two clusters does not
succeed, they are both further subdivided into two sub clusters. The whole procedure is
repeated recursively for all clusters 𝒞 = (𝐶𝑖,1, . . . , 𝐶𝑖,𝑚) of 𝐶1 and 𝐶2 until all associated
sub clusters of 𝐶1 match the sub clusters of 𝐶2. These are then stored in a list ℒ sorted
by their actual location resulting from a cluster tree (see Section 3.5.5).

3.3 Merging Sub Clusters to Rigid Parts
In the next step, adjacent sub clusters from ℒ are iteratively merged and subsequently
verified to ensure they still match. This process is required to rejoin, if necessary, seg-
mented sub clusters to the rigid parts of the articulated object (see Figure 3.3). This
is the case, if a rigid part was subdivided during the previous subdividing step (see
Section 3.2). The merging begins with the first set of associated sub clusters in the
list (𝐿1,𝑖, 𝐿2,𝑖) and their adjacent sub clusters (𝐿1,𝑖+1, 𝐿2,𝑖+1). If the resulting merged
clusters can be matched in terms of the matching error 𝑒avg, the merging proceeds with
the following cluster set 𝐿1,𝑖+2, 𝐿2,𝑖+2. If not, the merging is not executed and 𝐿1,𝑖, 𝐿2,𝑖

are stored in a list of resulting rigid parts 𝒫. The merging procedure then initiates with
𝐿1,𝑖+1, 𝐿2,𝑖+1. The process terminates if all clusters of ℒ are processed and consequently
all sub clusters are assigned to rigid parts 𝒫 = {𝑃1, . . . , 𝑃𝑚}.

3. Linear Approach 14

merging of clusters

(a)

(b)

Figure 3.3: Merging of neighboring sub clusters from 𝐶1 stored into ℒ (a) into matching
rigid parts 𝒫 = {𝑃1, . . . , 𝑃𝑚} (b).

3.4 Joint Estimation

After detecting the rigid parts 𝒫 = {𝑃1, . . . , 𝑃𝑚}, the joints linking them are esti-
mated. As an initial approach, the points of intersection between all principal axes of
𝒫 = {𝑃1, . . . , 𝑃𝑚} are computed, which are determined to represent the joints. How-
ever, this calculation assumes that the rigid parts are symmetric; as in the other case
the principal axes may not represent the skeleton of a rigid part. For this reason, an-
other approach must be taken into account. Anguelov [1] declares a joint 𝑗𝑡(𝑥, 𝑦) as
a point belonging to two neighboring rigid parts 𝑃𝑖 and 𝑃𝑗 that undergoes the same
transformation 𝑇𝑖(𝑗𝑡) = 𝑇𝑗(𝑗𝑡). In the current implementation a cluster point is only
allocated to one rigid part 𝑃 . An improvement of the current situation is therefore to
select a desired number of closest points between neighboring rigid parts and calculate
the average point representing the joint 𝑗𝑡 (see Figure 3.4).

3.5 Implementation
In order to primarily focus on a potential optimization of current segmentation ap-
proaches, the proposed algorithm is implemented in 2D. The input for the segmentation
is a 2D point cloud of an articulated object. Similar to 3D point clouds, it is represented
by its surface, which is described by its hull.

3. Linear Approach 15

Figure 3.4: Estimation of the joint 𝑗𝑡1 located between the detected rigid parts 𝑃1 and
𝑃2 of 𝐶1 by selecting the four closest points and calculating an average point.

3.5.1 Chosen Environment

Java is chosen for the programming environment, using ImageJ1 as an image processing
library. The environment depends on the following factors:

• familiarity and prior experience,
• complexity,
• availability of plug-ins for image processing.

As ImageJ is mainly used for 2D-use cases, another implementation would be possible
in 3D using PCL in C++ (see Section 4.5). As a result, attention could be brought to
3D segmentation and visualization of articulated objects.

3.5.2 Overview
The algorithm was split into several java classes to separate the individual steps within
the algorithm from one other. The starting point of the algorithm is represented by the
class Segmentation. As input it solely requires a stack of two 2D images indicating the
point clouds of a mesh 𝑀 in two different poses. As a first step, all potential cluster
points are detected by iterating over the 2D images. An unclustered point 𝑢𝑖(𝑥, 𝑦) is
determined by a pixel colored in black, and is stored as a ClusterPoint object with its
image coordinates. Next, possible noise is removed from the input meshes, represented
by the detected cluster points. The result is two point clusters 𝐶1 and 𝐶2 which represent
the articulated object in two poses. A class Cluster was implemented to store a cluster
𝐶𝑖 with all of its points, its centroid 𝑐𝑖, its resolution, the orientation 𝜃 as well as the
principal and secondary axes 𝑝𝑖 and 𝑠𝑖. For the simultaneous subdividing of the clusters
𝐶1 and 𝐶2 into sub clusters(see Section 3.2), a ClusterTree class was implemented (see
Algorithm 3.2). Each node 𝑁 contains thereby two associated clusters 𝐶1,𝑖 and 𝐶2,𝑖. The
Registration class is applied on two associated clusters from a node 𝑁 , which registers
them by taking advantage of the ICP and Procrustes fitting. The recursive subdiving
approach returns a list of matching sub clusters that are subsequently merged to rigid
parts (see Algorithm 3.3). The Visualization class is responsible for displaying the
sub clusters and rigid parts in different colors, and drawing PCA related components,

1http://imagej.net

3. Linear Approach 16

Cluster

- points: List<ClusterPoint>
- centroid: ClusterPoint
- joint: ClusterPoint
- orientation: double
- resolution: double
- removeNoise: boolean

+ align(): void
+ divideClusters(): Cluster[]
+ mergeClusters(): Cluster
+ estimateJoint(): void

ClusterTree

- subclusters: List<Cluster>
- root: Node
- registration: Registration

- Node: class
- left: Node
- right: Node
+ subdivide(): List<Cluster>
+ mergeClusters(): void
+ estimateJoints(): void

Registration

- c_i: Cluster
- c_j: Cluster
- error: double
- errorPerPoint: double
- errorThreshold: double

+ match(): boolean

Matrix

+ translate(): void
+ rotate(): void
+ multiplication(): void

Visualize

- resultImages: ImageStack
- colors: Color[]

+ drawPoints(): void
+ drawDot(): void
+ colorClusters():void
+ drawAssociations(): void
+ addToResults()
+ showResults()

Segmentation

- im: ImagePlus
- tree: ClusterTree
- c1: Cluster
- c2: Cluster
- subclusters: List<Cluster>
- rigidParts: List<Cluster>

+ showResults(): void

ClusterPoint

- coordinates: double[]

+ distance(): double

Figure 3.5: UML diagram of the classes related to the implementation of the linear
segmentation approach.

such as the axes and joints of the rigid parts. The Matrix class provides operations for
performing transformations on clusters. An overview of the architecture can be seen in
Figure 3.5.

3.5.3 Region Growing
One main algorithm to remove outliers is the region growing from unclustered points
given as input from a mesh 𝑀 (see Algorithm 3.1).

3.5.4 PCA
One main factor, when subdividing a cluster 𝐶𝑖, is the computation of its secondary
axis, which represents the divider 𝑑. To simplify the segmentation of 𝐶𝑖 into a left and
right sub cluster, it is horizontally aligned. This is achieved using a rotation Matrix
with the negative orientation of the cluster (see Section 3.2). As a first step, the cluster
is translated so that the desired rotation point (which is the centroid of the cluster)
is located at the origin of the coordinates. After applying a rotation matrix with the
negative orientation as angle on the cluster’s points, it is translated back to the initial
position:

public List<ClusterPoint> alignAxis(double orientation) {
points = Matrix.translate(points, -centroid.getX(), -centroid.getY());
points = Matrix.rotate(points, orientation);
points = Matrix.translate(points, centroid.getX(), centroid.getY());

3. Linear Approach 17

Algorithm 3.1: Noise removal of an input point mesh 𝑀 = {𝑢1, . . . , 𝑢𝑛} in the form
of unclustered points. The first unclustered point 𝑢1 of 𝑀 is used as seed and grows a
cluster 𝐶current = {𝑝1, . . . , 𝑝𝑚} by iteratively adding points located inside a threshold 𝜏
from the seed. Once, all points have been examined, the largest cluster 𝐶max is returned
and defined as articulated object to be segmented.

RemoveNoise(𝑀)
Input: 𝑀 = {𝑢1, . . . , 𝑢𝑛}
Returns: the largest cluster 𝐶max = {𝑝1, . . . , 𝑝𝑚}

𝐶max ← ()
𝐶current ← ()
𝑛← ⌊𝑀⌋
𝑚← ⌊𝐶current⌋
while 𝑛 > 0 do

𝐶current ← 𝐶current + 𝑢1
for 𝑖 = 1, . . . , 𝑚 do

𝑀 ←𝑀 − 𝐶current
for 𝑗 = 1, . . . , 𝑛 do

if 𝑑(𝑝𝑖, 𝑢𝑗) < 𝜏 then
𝐶current ← 𝐶current + 𝑢𝑗

end if
end for

end for
𝑀 ←𝑀 − 𝐶current
if 𝑚 > ⌊𝐶max⌋ then

𝐶max ← 𝐶current
end if
𝐶current ← ()

end while
return 𝐶max

end

orientation = 0;

return points;
}

As a consequence, the secondary axis going through the cluster’s centroid is vertically
aligned. For subdivision the 𝑥-coordinate of each point from the cluster to be divided
is compared to the centroid’s 𝑥-coordinate:

for (ClusterPoint point : points) {
if (point.getX() <= centroid.getX()) {

left.add(point);
} else {

right.add(point);
}

}

3. Linear Approach 18

3.5.5 Cluster Tree
The subdivision of the clusters 𝐶1 and 𝐶2 is realized with a depth-first approach in
a tree, storing associated clusters in its nodes. Consequently, 𝐶1 and 𝐶2 represent the
root and are subdivided from the left to the right. A node 𝑁 of the tree contains two
related clusters 𝐶1,𝑖 and 𝐶2,𝑖, where 𝑖 defines whether the node is a left (𝑖 = 1) or right
(𝑖 = 2) node of the parent. The actual decision maker of the algorithm is the registration
(see Section 3.5.6) of two associated clusters of a node. The resulting error 𝑒avg decides
whether two clusters match, and subsequently require further subdivision:

public List<Cluster[]> subdivide(Node node) {
registration = new Registration(node.cluster[0], node.cluster[1]);

if (!registration.match()) {
split(node);
subdivide(node.left);
subdivide(node.right);

} else {
subclusters.add(node.clusters);

}
return subclusters;

}

In the case of further subdividing, a Node left, containing the clusters 𝐶1,𝑖,1 and 𝐶2,𝑖,1, as
well as a Node right, containing the clusters 𝐶1,𝑖,2 and 𝐶2,𝑖,2 originate. If two associated
sub clusters 𝐶1,𝑖,𝑗 and 𝐶2,𝑖,𝑗 in a Node 𝑁 match, no further subdividing is performed.
The resulting leaves of the tree are the final matching sub cluster sets and are stored in
a list ℒ = (𝐿1,1, 𝐿2,1, . . . , 𝐿1,𝑚, 𝐿2,𝑚) from left to right (see Algorithm 3.2). By applying
a depth-first approach, the matching clusters stored in the list are actual neighboring
clusters in 𝐶1 and 𝐶2. As a result, the adjacent sub clusters from ℒ can be verified to
be merged (see Algorithm 3.3). Figure 3.6 illustrates the subdividing step in the form
of a ClusterTree and the merging of the resulting leaves.

3.5.6 Registration Procedure
The Registration class aims to apply a rigid transformation on the reference points
from cluster 𝐶𝑖 which results in the lowest error distance 𝑒 to the target points of
the input cluster 𝐶𝑗 . For an initial alignment, 𝐶𝑖 and 𝐶𝑗 are similarly oriented and
translated so that their centroids 𝑐𝑖 and 𝑐𝑗 overlap. Then, iteratively the best possible
alignment of 𝐶𝑖 and 𝐶𝑗 is aimed for. As a first step, the sorted associated target points
for the reference points are computed. This is achieved by seeking the closest neighbor
for each reference point 𝑝𝑖 in terms of the smallest Euclidean distance 𝑑(𝑝𝑖, 𝑝𝑗) to a
target point 𝑝𝑗 . As a next step, Procrustes fitting [30] is applied to the reference points
and its associated target points. Procrustes fitting tries to enforce a rigid transformation
between two corresponding, sorted point lists which results in a squared error distance 𝑒.
In the case of a smaller error than from previous iterations the reference and associated
points are stored as final transformations and target points. Additionally, the smallest
error is updated. By applying the calculated transformation from Procrustes fitting,
the iterative process initiates with updated reference point coordinates. It terminates,
if the two clusters finally match or the maximum number of iterations is reached. This

3. Linear Approach 19

Algorithm 3.2: Recursive subdividing of two clusters 𝐶1 and 𝐶2, in the form of a
Node N in a ClusterTree, into matching sub clusters. The registration is performed
on two corresponding clusters in N to verify them to match, in which case they are
stored in a list of matching sub clusters. Otherwise, if the two clusters do not match,
they are further subdivided. The list with all matching sub clusters ℒ is returned once
the subdivide algorithm terminates.

1: ClusterTree(𝐶1, 𝐶2)
Input: the clusters 𝐶1, 𝐶2
Returns: the list of sub clusters ℒ

2: ℒ ← ()
3: left ← nil
4: right ← nil
5: 𝑁 ← ⟨𝐶1, 𝐶2, left, right⟩
6: ℒ ← Subdivide(𝑁)
7: 𝑃 ←MergeClusters(L)
8: end

9: Subdivide(𝑁)
10: if match(𝐶1(𝑁), 𝐶2(𝑁)) then ◁ apply registration on two clusters
11: ℒ ← ℒ+ 𝑁
12: else
13: left(𝑁)← Split(𝑁)
14: right(𝑁)← Split(𝑁) ◁ split the cluster into a left and right sub cluster
15: Subdivide(left(𝑁))
16: Subdivide(right(𝑁)) ◁ recall the algorithm with the sub clusters
17: end if
18: return ℒ ◁ return all matching sub clusters after termination
19: end

is required, in order to avoid an infinite loop that would occur if two clusters do not
match. The iterative algorithm can be seen in the following code snippet:

while (!match() && iterations < MAX_ITERATIONS) {
association = getAssociation(referencePoints, targetPoints);

pro.fit(referencePoints, association);
tmp_error = pro.getError();

if (tmp_error < error) {
error = tmp_error;
finalTargetPoints = association;
finalReferencePoints = referencePoints;

}

ClusterPoint c = calculateCentroid(finalReferencePoints);

// apply the calculated transformation from procrustes fitting to the reference points

referencePoints = Matrix.translate(referencePoints, -c.getX(), -c.getY());

3. Linear Approach 20

Algorithm 3.3: Merging of the sub clusters ℒ = ((𝐿1,1, 𝐿2,1), . . . , (𝐿1,𝑚, 𝐿2,𝑚)), re-
sulting from Algorithm 3.2 in the order of being stored, to the rigid parts 𝒫. Merged
adjacent clusters 𝐿𝑖,𝑗 and 𝐿𝑖,𝑗+1 from 𝐶1 and 𝐶2 are then verified to still match. The
merging proceeds until clusters do not match anymore. In this case, the last merged
cluster pairs are stored as rigid parts 𝑃1 and 𝑃2. The algorithm then continues with the
next cluster pair in the list and terminates if all pairs have been traversed. The list with
all detected rigid parts 𝒫 is returned.

1: MergeClusters(ℒ)
Input: the sub clusters ℒ = ((𝐿1,1, 𝐿2,1), . . . , (𝐿1,𝑚, 𝐿2,𝑚))
Returns: the rigid parts 𝒫

2: 𝒫 ← ()
3: 𝑃1 ← 𝐿1,1
4: 𝑃2 ← 𝐿2,1
5: 𝑛← ⌊ℒ⌋
6: for 𝑖 = 2, . . . , 𝑛 do
7: 𝑚1 ←Merge(𝑃1, 𝐿1,𝑖)
8: 𝑚2 ←Merge(𝑃2, 𝐿2,𝑖)
9: if match(𝑚1, 𝑚2) then ◁ apply ICP on two merged clusters

10: 𝑃1 ← 𝑚1
11: 𝑃2 ← 𝑚2 ◁ continue merging with merged clusters
12: else
13: 𝒫 ← 𝒫 + (𝑃1, 𝑃2)
14: 𝑃1 ← 𝐿1,𝑖

15: 𝑃2 ← 𝐿2,𝑖 ◁ proceed merging with current clusters
16: end if
17: end for
18: 𝒫 ← 𝒫 + (𝑚1, 𝑚2)
19: return 𝒫
20: end

referencePoints = Matrix.rotate(referencePoints, Math.acos(pro.getR().getEntry(0,
0)));

referencePoints = Matrix.translate(referencePoints, c.getX() + pro.getT().getEntry
(0), c.getY() + pro.getT().getEntry(1));

iterations++;
}

The average error per point 𝑒avg is calculated by dividing the total squared error 𝑒 by
the total number of reference points. In the case of 𝑒avg<𝜏 two clusters are determined
to match:

public boolean match() {
double errorPerPoint = error / amountPoints;

if (errorPerPoint < errorThreshold) {
return true;

}

3. Linear Approach 21

merging clusters to rigid parts

(a) (b)

Figure 3.6: Subdividing of 𝐶1 and 𝐶2 into matching clusters by a depth-first approach in
a tree. The subdividing terminates if all sub clusters of 𝐶1 and 𝐶2 match after registering
them (a). Detection of the rigid parts of 𝐶1 and 𝐶2 by iteratively merging adjacent sub
clusters of ℒ that they still match (b).

return false;
}

3.6 Results
At first, the implemented algorithm was applied on two point clouds of an articulated
object composed of two rigid parts. The estimated resolution accounts to 7.0 for 𝐶1 and
𝐶2. The segmentation results are directly dependent on the matching error threshold
𝜏 which can bee seen on Table 3.1. The higher the threshold 𝜏 , the fewer clusters and
subsequently rigid parts can be detected. The reason is that two clusters are more
likely to match and are not further subdivided. The lower, the more clusters and rigid
parts will be detected, as clusters require further subdividing in order to match. Figure
3.7 shows the segmentation results with an error threshold 𝜏 = 4.0 in which case the
correct number of rigid parts is detected. However, the segmentation position does not
correspond to the actual joint of 𝐶1 and 𝐶2. The reason for this is, that the average
error 𝑒avg is calculated without any weighting of points. Points located near a joint must
be treated particularly cautiously. By decreasing the threshold 𝜏 to a value of 3.5, the
joint estimation can be considerably improved. However, not the right number of rigid
parts is detected. In the case of an articulated object, composed of three rigid parts
linked like a chain, similar results can be achieved (see Figure 3.8).

As the main goal is to segment a human-like articulated object into its rigid parts, a
more complex mesh was taken as input. Contrary to the previous input objects, a rigid
part is linked to multiple other rigid parts, such as the extremities of a human to the
torso. Figure 3.9 shows the segmentation results with a threshold 𝜏 of 8.0. In this case,
only three rigid parts can be detected. By decreasing 𝜏 to 7.0 (see Figure 3.10), further

3. Linear Approach 22

Rigid parts 𝜏 detected clusters detected rigid parts
3.0 6 4

2 3.5 6 3
4.0 6 2
5.0 13 7

3 6.0 8 5
7.0 6 3
7.0 41 29

5 7.5 15 6
8.0 15 3

Table 3.1: Segmentation results with varying values for 𝜏 .

(a) (b)

(c) (d)

Figure 3.7: Taking a Mesh 𝑀 in two poses with only two rigid parts as input, with a
threshold 𝜏 = 4.0, six clusters are detected in 𝐶1 (a) and 𝐶2 (b), which result in two rigid
parts (c) and (d).

subdividing is performed, which leads to six rigid parts. However, the points from a
rigid part may be located far away from one another, which leads to joints being placed
in desolated point areas (see Figure 3.10). The reason is that the segmentation is solely
determined by the secondary axis of the object that does not consider the coherence of
logical related points (see Section 3.7 for details).

3. Linear Approach 23

(a) (b)

(c) (d)

Figure 3.8: Taking a Mesh 𝑀 in two poses with three rigid parts as an input, with a
threshold 𝜏 = 7.0, six clusters are detected in 𝐶1 (a) and 𝐶2 (b), which results in three
rigid parts (c) and (d).

3.7 Possible Improvements
In the case of more complex objects with a skeletal structure, where one rigid part is
linked to more than two rigid parts, the segmentation algorithm in its simple form fails.
Although varying thresholds 𝜏 are used for the registration, there are either too many
or too few rigid parts detected. The main issues can be summarized as the following:

1. By linearly subdividing a cluster 𝐶𝑖 along its secondary axis, more than two sub
clusters can originate. In this case, a sub cluster might consist of points located
far apart from one other, which distorts the segmentation into rigid parts.

2. Clusters being compared might not contain the same number or not even the
same corresponding points, because dividing only builds on the secondary axis
as divider. In the case of considerable transformation differences of corresponding
rigid parts, the position of the computed secondary axis and subsequently the sub
clusters, may considerably differ from one another.

3. The segmentation procedure results only into approximated rigid parts. The rea-
son for this is that sub clusters might match even if some points considerably
contribute to a higher average matching error. Points with a notable low error will
compensate these outliers and as a result, a successful match may be detected.

3. Linear Approach 24

(a) (b)

(c) (d)

Figure 3.9: Taking a more complex Mesh 𝑀 in two poses with five rigid parts as an
input, with a threshold 𝜏 = 8.0 , 15 clusters are detected in 𝐶1 (a) and 𝐶2 (b), which
results in three rigid parts (c) and (d).

Still, there might be a better segmentation position with fewer points.
4. In the case of detecting two matching clusters that are a part of a rigid part,

no further operations to detect the actual rigid part they belong to are directly
conducted. It is anticipated to be detected in a later step by merging neighboring
sub clusters.

5. By further sub dividing sub clusters, merging becomes more difficult, because the
clusters are scattered next to each other. This makes it difficult to guarantee that
stored adjacent clusters are associated in two different poses.

Since the aforementioned issues are responsible for the unsuccessful results for articu-
lated objects, the initial approach needs to be extended.

3. Linear Approach 25

(a) (b)

Figure 3.10: Joint estimation for a mesh 𝑀 composed of five rigid parts, with a threshold
𝜏 = 7.0, 29 rigid parts are detected in 𝐶1 (a) and 𝐶2 (b). The scattering of points belonging
to the same rigid part leads to a joint estimation in desolated point areas.

3.7.1 Assuring corresponding, similar Clusters
During the segmentation of an object in two different poses, there is the chance that the
divided parts being compared do not contain the same number or points, or that they
even contain additional points that correspond to another rigid part (see issues 1 and
2 from Section 3.7). Since this state might result in undesirable matching errors, parts
with the same sizes could be generated by region growing. This could be implemented
by starting the clustering with two points that are the farthest from the centroids of two
input clusters. By growing regions with the same number of points, presumably similar
clusters are compared. Additionally, the detection of multiple clusters is considered and
treated individually.

3.7.2 Matching Error
The current matching error is determined by the average error per point 𝑒avg where
no weighting of points is considered. Consequently, considerable close point correspon-
dences might compensate for points that contribute to a high error as they do not belong
to the same rigid part. The goal should be to focus solely on the best point correspon-
dences as an indicator where the segmentation must take place, namely in the area of
higher distances between corresponding points. By introducing weights to points, the
error 𝑒 would be more expressive as instead of compensating points with a high error
distance, a further segmentation will be conducted. Furthermore, by locating those out-
liers, the segmentation could be conducted by selecting the best matching points instead
of linearly subdividing a cluster (see issues 3 and 4 from Section 3.7).

3. Linear Approach 26

3.7.3 Initial Alignment of the largest Rigid Part
The most crucial deficit of the proposed algorithm is that it does not result in a suc-
cessful segmentation regarding complex articulated objects, whose rigid parts are not
composed like a chain. Instead, a rigid part may be linked to multiple rigid parts. As
a result, the objects are too complex to be linearly subdivided. One suggestion for im-
provement in regards to the initial alignment of the object, is the detection of a reliable
corresponding largest rigid part. Then, recursively linked parts of this largest rigid part
may be detected. A similar approach was taken during the recursive algorithm from
Guo et al. [11] (see Section 4.2). The results are directly dependent on the extent of
the transformations of the two articulated clusters 𝐶1 and 𝐶2. The more different the
transformations are, the higher the chances are that the initial alignment of the largest
rigid part will fail. This is because the ICP expects a good starting alignment. It is
assumed that the largest rigid part contributes most to the principal axis and the initial
alignment. But in the case of a considerable unbalance of the other rigid parts, the
alignment of the LRP might shift in a certain direction and it might not be detected
during the ICP. As a result, the whole algorithm fails, if only the points’ locations and
the cluster axes (see Section 3.8) are considered.

3.8 Outcome
Although many optimizations are proposed, the desired segmentation results for com-
plex objects will not be achieved. However, the implementation of this linear approach
allowed me to acquire a significant amount of knowledge regarding the segmentation
of non-rigid objects into their rigid parts. The most relevant observation is that rely-
ing only on the coordinates of points is not sufficient for the segmentation of complex
articulated objects. The reason is that with an increasing number of rigid parts, the
detection of correct point correspondences between 𝐶1 and 𝐶2 becomes increasingly dif-
ficult. Additional point descriptors are required to detect reliable point correspondences
between 𝐶1 and 𝐶2. The focus at this point is shifted to a feature-based segmentation
approach (see Chapter 4).

Chapter 4

Feature-Based Approach

To solve the main difficulty of detecting reliable point correspondences between 𝐶1 and
𝐶2, the focus on the second approach is on point features. They are introduced because
they provide additional, meaningful information about a point 𝑝𝑖 besides its coordinates.
For this reason, point feature histograms, namely Fast Point Feature Histograms (FPFH)
[23] are calculated for all points of 𝐶1 and 𝐶2. A histogram of a point 𝑝𝑖 describes
the curvature of a surface defined by itself and its 𝑘 neighbors. By detecting similar
point feature histograms between 𝐶1 and 𝐶2 (referred to as feature matching), point
correspondences are acquired. These are then used for an initial alignment of 𝐶1 and 𝐶2
so that their largest rigid parts overlap. Proceeding from the largest rigid part, linked
rigid parts can be detected. This approach is closely related to Guo et al. [11].

4.1 Fast Point Feature Histograms
The Fast Point Feature Histograms Algorithm is an improved approach of the Persistent
Point Feature Histogram for 3D Point Clouds [24] in terms of computation time. It
focuses on computing a feature histogram for a point 𝑝𝑖 by comparing its normal 𝑛𝑖 to
the normals of all 𝑘 neighbors. The choice of these point features are the following:

• rotation- and scale-invariant,
• easy comparison of feature histograms,
• approval of the approach,
• straightforward adaption of different dimensions (2D and 3D).

The data input for this algorithm is a list of 𝑛 unordered points given as 𝑝𝑖(𝑥, 𝑦, 𝑧). It
only provides information about the points’ coordinates in 3D space. As a result, no
surface is provided for the computation of feature histograms. Therefore, in an initial
step the neighborhood and normals of all points is computed (see Section 4.1.1).

4.1.1 Normal Estimation
First, the normals of all unordered points from the input clusters 𝐶1 and 𝐶2 are esti-
mated, following the approach of Hoppe et al. [13]. The normal 𝑛𝑖 of a point 𝑝𝑖 can
be calculated by considering all of the neighboring points 𝑘 within a radius 𝑟 of 𝑝𝑖.
Subsequently, a least squared fitting line 𝑋 in the form 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 to all selected

27

4. Feature-Based Approach 28

Figure 4.1: Normal estimation of a cluster point 𝑝𝑖 of 𝐶𝑖 by calculating the least squared
fitting line 𝑋 to the neighborhood inside a radius 𝑟. Calculation of the eigenvector 𝑛2 by
forming the covariance matrix of 𝑝𝑖 and all 𝑘 points.

points including 𝑝𝑖 is computed. This is achieved by minimizing the squared distances

𝑑𝑖𝑠𝑡2(𝑥𝑖, 𝑦𝑖) = (𝑎𝑥𝑖 + 𝑏𝑦𝑖 + 𝑐)2 (4.1)

from all points to 𝑋, that sum up to an error

𝑒 =
𝑘∑︁

𝑖=1
𝑑𝑖𝑠𝑡2(𝑥𝑖, 𝑦𝑖). (4.2)

The unknown parameters 𝑎, 𝑏 of 𝑋 are calculated with the covariance matrix of all
points, that is (︃

𝑥2 − 𝑥 · 𝑥 𝑥𝑦 − 𝑥 · 𝑦
𝑥𝑦 − 𝑦 · 𝑥 𝑦2 − 𝑦 · 𝑦

)︃
·
(︂

𝑎
𝑏

)︂
= 𝜆 ·

(︂
𝑎
𝑏

)︂
, (4.3)

resulting in two pairs of an eigenvalue and eigenvector (𝑛1, 𝜆1) and (𝑛2, 𝜆2). The normal
of 𝑝𝑖 is calculated solving the linear equation for the normal vector 𝑛2 which is repre-
sented by 𝜆2. This procedure is conducted for all points of 𝐶1 and 𝐶2 (see Figure 4.1).
Next, the computed normals are globally oriented. All 𝑛 normals are traversed, starting
with a normal 𝑛𝑖 of any point 𝑝𝑖. Thereby, it is of particular importance to select a
normal that assures consistent orientations between 𝐶1 and 𝐶2. Taking its orientation
as parent normal 𝑛𝑝, the angle 𝛿 between 𝑛𝑝 and all neighboring point normals 𝑛𝑘, that
is

𝛿 = 𝑛𝑝 · 𝑛𝑘, (4.4)

is calculated, expecting that |𝑛𝑝| = |𝑛𝑘| = 1. In the case of 𝛿 < 0, 𝑛𝑘 must be flipped
180°, that 𝑛𝑘 = −𝑛𝑘. If all 𝑘 normals have been verified to be oriented in consideration
of 𝑛𝑝, any normal 𝑛𝑘 is selected as current 𝑛𝑝. The whole algorithm proceeds until all 𝑛
normals have been verified to correspond with their parent normal 𝑛𝑝 (see Figure 4.2).

4. Feature-Based Approach 29

(a) (b)

Figure 4.2: Global flipping of all point normals (black lines) of a surface considering a
parent point (green) (a) to similarly orient them (b).

Figure 4.3: Calculation of the Darboux frame 𝑢𝑣𝑤, in order to obtain the features
between a point set described by three angles.

4.1.2 SPFH and FPFH
As an intermediate step before computing the FPFH, the Simplified Point Feature His-
togram (SPFH) of a point 𝑝𝑖 is computed. This is achieved by calculating three geometric
features between 𝑝𝑖 and each of its 𝑘 neighbors 𝑝𝑘. For the following calculations, 𝑝𝑖 rep-
resents the point that has the smallest angle between its normal and the vector formed
by two compared points; 𝑝𝑗 corresponds to the other point. Using their normals 𝑛𝑖 and
𝑛𝑗 , a Darboux 𝑢𝑣𝑤 frame (𝑢 = 𝑛𝑖, 𝑣 = (𝑝𝑗 − 𝑝𝑖)× 𝑢, 𝑤 = 𝑢× 𝑣) is calculated, which
describes the coordinate system of a point on a surface (see Figure 4.3). Consequently,
the following three angles

𝛼 = 𝑣 · 𝑛𝑗 ,

𝜑 = 𝑢 · (𝑝𝑗 − 𝑝𝑖) ·
1

‖𝑝𝑗 − 𝑝𝑖‖
,

𝜃 = arctan(𝑤 · 𝑛𝑗 , 𝑢 · 𝑛𝑗),

(4.5)

4. Feature-Based Approach 30

Figure 4.4: The point region for the calculation of the feature histogram 𝐻𝑖 for a point
𝑝𝑖. The SPFH of 𝑝𝑖 and its 𝑘 neighbors (inside the grey circle) is weighted with the SPFHs
of all 𝑘 neighbors (grey points inside the colored circles) [23].

are calculated and then categorized into a histogram (see Section 4.1.3). The SPFH of
𝑝𝑖 is then weighted to its FPFH, that is

FPFH(𝑝𝑖) = SPFH(𝑝𝑖) + 1
𝑛
·

𝑛∑︁
𝑘=1

1
𝑤𝑘
· SPFH(𝑝𝑘), (4.6)

by computing the SPFH for all of its 𝑘 neighbors. The weight 𝑤𝑘 represents the Eu-
clidean distance 𝑑(𝑝𝑖, 𝑝𝑘). The influence region diagram for a Fast Point Feature His-
togram of a point 𝑝𝑖 can be seen in Figure 4.4.

4.1.3 Feature Histograms
The resulting feature values for each point 𝑝 of 𝐶1 and 𝐶2 in the form of three angles
between its 𝑘 neighbors are categorized using a histogram 𝐻 = {𝑏1, . . . , 𝑏𝑚} containing
𝑚 = 𝑞𝑛 bins to consider all possible combinations of the three feature values. Thereby,
𝑞 represents the number of intervals that a feature value can be categorized into. The
number of feature values is represented by 𝑛. Taking into account three feature values
calculated between a point set (𝑝𝑖,𝑝𝑗) the bin value at the index

𝑖𝑑𝑥 =
𝑛∑︁

𝑖=1
𝑞(𝑓𝑖) · 2𝑖−1 (4.7)

from 𝐻𝑖 is incremented by 1. The function 𝑞(𝑓𝑖) returns the interval, the specific feature
value is allocated to, ranging from 0 to 𝑞 − 1. Finally, each bin contains the number
of point pairs that are allocated in the specified value interval. As soon as the feature

4. Feature-Based Approach 31

histograms of all points from 𝐶1 and 𝐶2 are computed, only salient histograms are used
for the detection of point correspondence between 𝐶1 and 𝐶2, in order to reduce the
correspondence space. To achieve this, the mean of all feature histograms 𝜇 of a cluster
𝐶𝑖 is calculated. Subsequently, the distance of a feature histogram 𝐻𝑖 is compared to
𝐻𝜇 and in the case of being outside the value 𝜇± 𝜎, it is denoted as unique and passed
to the next step of detecting matching histograms between 𝐶1 and 𝐶2. The standard
deviation, that is

𝜎 = 1
𝑁
·

𝑁∑︁
𝑏=1

(𝐻𝑖(𝑏)−𝐻𝑖)2, (4.8)

is therefore calculated for all histograms 𝐻𝑖 with 𝑁 data entries of all cluster points.

4.1.4 Feature Matching
Next, all unique feature histograms of 𝐶1 are aiming for detecting the most similar
feature histograms from 𝐶2. For this reason, different histogram-similarity criteria are
determined, in order to measure the similarity between two histograms 𝐻𝑖 and 𝐻𝑗 with
𝑏 bins each. In order to detect the best fitting histogram, three main criteria that are
most frequently applied for this specific use case [12, 32] are attempted. As per the first
criterion, the squared Euclidean distance (L2), that is

𝜀(𝐻𝑖, 𝐻𝑗) =
𝑏∑︁

𝑛=1
‖𝐻𝑖(𝑛)−𝐻𝑗(𝑛)‖2, (4.9)

is calculated. In [11] this distance was selected as the only similarity criterion between
feature histograms. It generates more point correspondences (see Section 4.4) than the
other two criteria and operates straightforward. Furthermore, the statistical Chi-Square
(𝜒2) divergence, that is

𝜒2(𝐻𝑖, 𝐻𝑗) =
𝑏∑︁

𝑛=1

‖𝐻𝑖(𝑛)−𝐻𝑗(𝑛)‖2

‖𝐻𝑖(𝑛) + 𝐻𝑗(𝑛)‖ , (4.10)

is examined which achieves considerably fewer point correspondences than the L2 form.
Finally, the Kullback-Leibler (KL) divergence, that is

𝜅(𝐻𝑖, 𝐻𝑗) =
𝑏∑︁

𝑛=1
‖𝐻𝑖(𝑛)−𝐻𝑗(𝑛)‖ · ln 𝐻𝑖(𝑛)

𝐻𝑗(𝑛) , (4.11)

is calculated, which is the most computationally expensive one due to the application of
ln. Due to the fact that a histogram with 𝑞𝑛 bins may contain many zero values, in the
case of a division or logarithmic operation all zero-values are replaced with the value 1.

4.1.5 Adaptions for 2D
In order to compute the proposed feature histograms for 2D points, all points are treated
like 3D points. This is achieved by setting each z-coordinate to 0 to allow for all calcu-
lations originally targeting 3D points. 2D point clouds are generally composed of fewer

4. Feature-Based Approach 32

points than 3D point clouds, which results in fewer neighboring points for both normal
estimation and feature computation. As a result, the computation time is considerably
reduced. Since the number of point correspondences is also reduced, all histograms are
considered during the feature histogram matching, not just salient ones.

4.2 LRP Algorithm

The approach proposed by Guo et al. [11] aims to detect the so-called Largest Rigid
Part (LRP) of two poses of an object, in order to have a solid basis for a successful
segmentation into the rigid parts. A similar procedure is sought in the proposed feature-
based approach.

4.2.1 Basic Functionality
As an initial step, the LRP Algorithm attempts to detect the most reliable correspon-
dences between two clusters 𝐶1 and 𝐶2. For this, local point descriptors (see Section
4.1) are computed. The requirement for a sparse correspondence between two cluster
points 𝑝𝑖(𝑥, 𝑦) and 𝑝𝑗(𝑥, 𝑦) is that they are reciprocal, meaning that two correspond-
ing point feature histograms are the most similar to one another. Some of the sparse
correspondences are assumed to be wrong. Therefore, RANSAC is applied to the point
correspondences, in order to aim for a single rigid transformation to detect the LRP,
which is supported by the largest overlapping point cluster between 𝐶1 and 𝐶2. In the
case of a human, this would be the torso. Subsequently, all linked rigid parts to the
LRP are detected by recursively applying the algorithm on grown clusters from the
current LRP. The most crucial component of the algorithm is the initial alignment of
𝐶1 and 𝐶2, in order to detect the actual largest rigid part of the articulated object. This
step is of particular importance, because the subsequent detection of further rigid parts
proceeds from there.

4.2.2 Input Data
For the proposed 2D implementation, the 2D hulls of an articulated object in two differ-
ent poses are taken as input (see Figure 4.6). Therefore, an articulated wooden puppet
was taken as reference model (see Figure 4.5). The resulting data sets in the form of 2D
points were traced manually, as some essential factors needed to be considered for suc-
cessful segmentation results. The application of an automatic scanning approach would
lead to further challenges, such as noise and corner detection, which is not the focus of
this thesis. To support the point cohesiveness of a rigid part after a transformation or
segmentation, joint-likely spheres were placed between rigid parts; these are also used
as rotation points. For the computation, they are treated like they belong to a rigid
part and no prior information about any joints are extracted. To obtain an indicator
for the adjustment of thresholds (e.g. the maximum distance to the closest point), the
resolution of the input clusters is computed. By applying the approach from Section
3.1, the estimated resolutions account to 9.0 for 𝐶1 and 8.9 for 𝐶2.

1https://www.aliexpress.com/item/8-12-inch-Joints-wood-Wooden-mannequin-toy-wooden-puppet-
wooden-manikin-Home-Decoration-Model-Painting/32809065479.html

4. Feature-Based Approach 33

Figure 4.5: As input model an image of an articulated puppet1was traced in order to
obtain 2D points describing its hull.

(a) (b)

Figure 4.6: Taking an articulated object (puppet) in two different poses 𝐶1 (a) and
𝐶2 (b) in the form of a 2D point cloud representing its hull as input.

4. Feature-Based Approach 34

4.2.3 Implementation Steps
In order to re-implement the proposed LRP Algorithm in 2D, only minor modifica-
tions concerning point coordinates and feature histograms had to be accomplished (see
Section 4.1.5). Concerning the detection of linked rigid parts, an approach with fewer
computation steps was implemented. Generally, the implementation can be split into
six main parts:

1. The PCA is applied on the input clusters 𝐶1 and 𝐶2 to estimate the normals of
all points.

2. Fast Point Feature Histograms (FPFH) are computed for all points of 𝐶1 and
𝐶2, in order to compute sparse point correspondences by feature matching that
require to be reciprocal.

3. The RANSAC approach is applied to these correspondences to detect a rigid
transformation 𝑇 that aligns the largest rigid parts of 𝐶1 and 𝐶2. In each iteration,
clusters are detected from overlapping points. The LRP is assigned to the largest
overlapping point cluster.

4. All remaining unmatched clusters 𝒞𝑈 from 𝐶1 and 𝐶2 are taken as input to detect
linked rigid parts to the current LRP.

5. Joints are estimated between the current LRP and all unmatched clusters 𝒞𝑈

linked to the LRP. These are required for associating two clusters from 𝐶1 and
𝐶2.

6. Linked rigid parts are detected by overlapping two corresponding clusters’ joints
and rotating one cluster onto the other one. Certain constraints and a weighted
error are taken into account.

4.2.4 Detection of sparse Correspondences
At first, the normals as well as the feature histograms for all points of 𝐶1 and 𝐶2 (see
Section 4.1) are computed. Results of the normal flipping procedure can be seen in Figure
4.7. It can be observed that the flipping of normals does not globally succeed. This is
because of the corner positions of the 2D hull. Considering two normals surrounding a
corner point, they are expected to face each other. However, during the normal flipping
they are similarly oriented, although the corner point between them should counteract
this behavior. As a consequence, the global flipping of the normals, depending on the
given data set, does not lead to a better ratio of right point correspondences. For this
reason, the normal flipping is passed over in the 2D implementation. For the detection of
sparse correspondences between 𝐶1 and 𝐶2 three histogram distances (see Section 4.1.4)
are considered. Depending on the distance chosen as the criterion and number of the
regarded neighboring points for the feature computation, more or fewer correspondences
may be detected; refer to Section 4.4 for a detailed comparison. The mean histogram
of all histograms from 𝐶1, as well as a unique histogram can be seen in Figure 4.8,
considering ten points for the feature histogram computation. Figure 4.9 represents
the point correspondences between 𝐶1 and 𝐶2 resulting from feature matching. It is
evident that points located near a corner are more likely to detect a reciprocal point
correspondence than points located on smooth surfaces. The reason for this is that these
features are determined to be unique, which makes them more distinguishable. On the

4. Feature-Based Approach 35

contrary, all points located on a smooth surface have similar feature histograms. As some
of these correspondences are assumed to be wrong, a RANSAC approach is applied on
all correspondences, in order to reject the false ones (see Section 4.2.5).

(a) (b)

(c) (d)

Figure 4.7: Normal estimation of two clusters 𝐶1 (a) and 𝐶2 (b). All normals are oriented
similarly by traversing all normals globally (c) and (d).

4. Feature-Based Approach 36

(a) (b)

Figure 4.8: Computing the 𝜇 histogram of 𝐶1 to represent frequently arising feature
histograms (a). A unique histogram is stated to considerably deviate from the 𝜇 his-
togram (b).

Figure 4.9: Visualization of the point correspondences established from reciprocal feature
matching between all points of 𝐶1 (red) and 𝐶2 (blue). As distance criteria the L2 distance
with a feature neighborhood of ten points is applied.

4. Feature-Based Approach 37

4.2.5 Detection of the largest Rigid Part
The dense point correspondences from the previous computation step (see Section 4.2.4)
may contain several errors. Therefore, RANSAC is applied, in order to detect a single
rigid transformation 𝑇 that leads to the biggest overlapping point cluster of 𝐶𝑖 and 𝐶𝑗 .
Thereby, in each iteration, two random point correspondences are selected and used for
the calculation of 𝑇 , which is applied on 𝐶𝑖 to be translated onto 𝐶𝑗 . The number of
required iterations for a successful alignment of the largest rigid parts highly depends
on the ratio of correct and incorrect point correspondences. Based on visual assessments
and the calculated probability of choosing two correct correspondences from the actual
LRP (torso), the required number of RANSAC iterations can be estimated. In the case
of the L2 distance, approximately 20% of the point correspondences are assumed to be
correct and located on the torso (see Figure 4.9). By calculating the probability that
almost assures (99%) the desired alignment of 𝐶1 and 𝐶2, that is

1− (𝑛 · 𝑞𝑛) = 0.99,

1− (𝑛 · 0.8𝑛) = 0.99,

𝑛 = 247.857,

(4.12)

the number of iterations 𝑛 can be set to 250. In each iteration, clusters are grown from
all overlapping points with an Euclidean distance 𝑑(𝑝𝑖, 𝑝𝑗) (again below a predefined
threshold 𝜏). The procedure is applied to both 𝐶𝑖 and 𝐶𝑗 which results in two rigid
parts as output representing the largest overlapping clusters (see Figure 4.10). The final
transformation 𝑇 of the RANSAC approach, which leads to the largest overlapping
clusters, is applied to the reference cluster 𝐶1. This procedure is required in order to
similarly align 𝐶1 and 𝐶2 for further computations (see Section 4.2.6).

4.2.6 Cluster Detection by Region Growing
After successfully detecting a LRP for the input clusters 𝐶𝑖 and 𝐶𝑗 , they are added to
a list of rigid parts 𝒫. Potentially linked rigid parts are detected from region growing
of all non-clustered points 𝒰 = {𝑢1, . . . , 𝑢𝑛}. These comprise all cluster points of 𝐶1
and 𝐶2 excluding already detected rigid parts 𝒫. An adapted region growing procedure
from Section 3.5.3 is applied, with the previously detected LRP as seed. This approach
not only returns the largest cluster, but all clusters above a certain size. The result
is a set of clusters 𝒞𝒰 for each 𝐶𝑖 and 𝐶𝑗 comprised by unclustered points. In the
case of detecting more than one cluster resulting from region growing, the clusters that
correspond to one another in two different poses must be associated. This might be,
for example, the case for the extremities linked to the torso. This association step is
essential, as the detection of linked parts to the previously detected LRP assumes two
clusters representing similar rigid parts. Thereby, the joint 𝑗𝑡 is estimated for a cluster
𝐶𝑈 (see Figure 4.11). The joints between two rigid parts are estimated, by taking the
two closest points between them, and calculating the average point. Two clusters with
reciprocal closest joints, represented by the Euclidean distance 𝑑(𝑗𝑡𝑖, 𝑗𝑡𝑗), are assumed
to correspond. The joints are further used for the detection of linked rigid parts (see
Section 4.2.7).

4. Feature-Based Approach 38

(a) (b)

Figure 4.10: Alignment of the largest overlapping clusters from 𝐶1 (a) and 𝐶2 (b) by
performing 250 RANSAC iterations on the detected point correspondences from feature
matching. The resulting clusters are the LRPs.

(a) (b)

Figure 4.11: Estimation of a joint 𝑗𝑡𝑖 and 𝑗𝑡𝑗 between a detected LRP and two linked
clusters 𝐶𝑈 for correspondence and part detection (a). Resulting joints for all grown
clusters 𝐶𝑈 from the initially detected LRP (b).

4. Feature-Based Approach 39

4.2.7 Detection of linked Rigid Parts
In [11], the feature detection and histogram matching in combination with RANSAC
was reapplied to the linked clusters to the already detected LRP. However, this approach
has not been re-implemented in 2D for the detection of further rigid parts. The pro-
posed approach manages to operate less computational-expensive and time-consuming
as RANSAC as well as feature computation and matching are not required. Thereby,
the knowledge that rigid parts are transformed by rotating around a joint is used. For
that purpose, the estimated joints 𝒥 = {𝑗𝑡1, · · · , 𝑗𝑡𝑛} resulting from the approach of
Section 4.2.6 are taken into account. First, two input clusters 𝐶𝑖 and 𝐶𝑗 are transformed
so that their joints overlap. Next, the principal axes of 𝐶𝑖 and 𝐶𝑗 are aligned to guess
an initial alignment that should further reduce the computation steps. Then, 𝐶𝑖 is itera-
tively rotated around its joint into the direction of an decreasing least squared error 𝑒 in
order to overlap with 𝐶𝑗 . By iteratively updating 𝑒 after each rotational step, the most
ideal overlapping position between the linked rigid parts can be detected. Thereby, the
joints are used as weights for the error calculation. A point 𝑝𝑖 being located far away
from its allocated joint 𝑗𝑡𝑗 does not contribute as much to the matching error as points
located near the joint. A weight 𝑤 is calculated by comparing the Euclidean distance
𝑑(𝑝𝑖, 𝑗𝑡𝑗) to the maximal distance 𝑑max between 𝑗𝑡𝑗 and the furthest allocated point,
that is

𝑤𝑖 =
{︃
‖𝑝𝑖 − 𝑗𝑡𝑗‖ · 1

𝑑max
if 𝑤𝑖 > 0.5,

0 otherwise.
(4.13)

In case of a weight below 0.5, which indicates that a point is far located from a joint,
the weight is determined to be 0. Subsequently, a total matching error

𝑒 =
𝑚∑︁

𝑖=1
‖𝑝𝑖 − 𝑞𝑖‖

2 · (1− 𝑤𝑖)2, (4.14)

is calculated by combining the distance of a point of 𝐶𝑖 to its closest point of 𝐶𝑗 and
the joint weight 𝑤. The error is squared, in order to further weaken the influence of
cluster points that are located far away from the joint. The final detected rigid parts
are represented by the biggest clusters, resulting from a rotation with the lowest error 𝑒.
Lastly, all points with a closest point below a certain threshold 𝜏 are taken as input for
region growing to reject possible overlapping points from other rigid parts. It is assumed,
that two linked rigid parts are almost similarly aligned, therefore the distance threshold
𝜏 is considerable small. The largest cluster is finally returned as detected linked part
and taken as input for the current LRP (see Figure 4.12). The whole approach proceeds
with this LRP to detect further linked rigid parts. If no further linked parts exist,
another unmatched cluster 𝐶𝑈 with no allocation to a rigid part 𝑃 is segmented by
joint rotation. With varying distance thresholds 𝜏 for the selection of closest points or
region growing, either target points may be skipped, or unnecessary points from another
rigid part are added. Those circumstances lead to difficulties for the detection of linked
rigid parts. Detailed results about this appearance are discussed in Section 4.4.

4. Feature-Based Approach 40

(a) (b) (c)

Figure 4.12: The joints 𝑗𝑡𝑖 and 𝑗𝑡𝑗 (green dots) of the reference cluster 𝐶𝑖 (red) and
the target cluster 𝐶𝑗 (blue) are overlapped and the principal axis are oriented similarly.
The associated target points for 𝐶𝑖 are computed (a). Stepwise rotation of 𝐶𝑖 onto 𝐶𝑗 in
the direction of a decreasing matching error 𝑒 until its minimal value is achieved (b). The
largest overlapping cluster of 𝐶𝑖 and 𝐶𝑗 given a threshold 𝜏 is assigned to the current
LRP (c).

4.3 Implementation
For the implementation in Java the individual steps of the Largest Rigid Part Algorithm
have been split into individual classes; this is to give it a better overview (see Figure
4.13). Again ImageJ was used as a processing library.

4.3.1 Iterative Segmentation
The iterative segmentation algorithm is performed in the Segmentation class, in which
all steps proposed in Section 4.2 are implemented (see Algorithm 4.1). The segmenta-
tion will proceed until no unclustered points of 𝐶1 and 𝐶2 remain. In the first step of
the iterative segmentation approach, rigid parts that have already been detected are
removed from the unclustered points (removeAllLRPs()). Next, clusters are detected
either for an initial input, or in the case of an already existing LRP, to detect its linked
rigid parts. Joints are only estimated if there is a previously detected LRP; this is the
case for all iterations except for the first one. Then, all matching clusters are pushed
on a Stack (pushMatchingClusters()) to be processed in the form of a “last in - first
out” process. In the case of an empty stack, all clusters have been processed and the
algorithm terminates:

while (unclusteredReference.size() > MIN_SIZE || !clusters.isEmpty()) {
removeAllLRPs();

referenceClusters = RegionGrowing.detectClusters(unclusteredReference);
targetClusters = RegionGrowing.detectClusters(unclusteredTarget);

if (currentLrps != null) {
detectJoints(currentLrps, referenceClusters, targetClusters);

4. Feature-Based Approach 41

Cluster

- points: List<ClusterPoint>
- double resolution
- centroid: ClusterPoint
- orientation: double
- normalNeighbors: int
- featureNeighbors: int

+ alignAxis(): void
+ calculateFPFHs(): void
+ calculateNormals(): void

Segmentation

- c_i: Cluster
- c_j: Cluster
- unclusteredReference: List<ClusterPoint>
- unclusteredTarget: List<ClusterPoint>
- assocClusters: Stack<Cluster[]>
- rigidParts: List<Cluster[]>

Matrix

+ translate(): void
+ rotate(): void
+ multiplication(): void

Visualize

- resultImages: ImageStack
- colors: Color[]

+ drawPoints(): void
+ drawDot(): void
+ colorClusters():void
+ drawAssociations(): void
+ addToResults()
+ showResults()

Main

- im: ImagePlus
- c1: Cluster
- c2: Cluster
- rigidParts: List<Cluster>

+ showResults(): void

ClusterPoint

- coordinates: double[]
- neighbors: List<ClusterPoint>
- normal: double[]
- FPFH: Histogram

+ distance(): double
+ dotProduct(): double
+ substract(): double

Histogram

- histogram: int[]
- bins: int

+ meanHistogram: Histogram
+ squaredDistance(): double
+ chiSquare(): double
+ kullback(): double
+ addHistograms(): Histogram
+ multiplyHistograms(): Histogram

FPFH

- p_i: ClusterPoint
- numberFeatures: int
- numberIntervals: int
- bins: int
- SPFH: Histogram
- weightedSPFH: Histogram
- FPFH: Histogram

+ calculateFeatureHistogram(): void

NormalEstimation

- point: ClusterPoint
- neighbors: List<ClusterPoint>

+ estimateNormal()

FeatureMatching

- c_i: Cluster
- c_j: Cluster
- referencePoints: List<ClusterPoint>
- targetPoints: List<ClusterPoint>
- fileWriter: FileWriter
- error: double
- associations: Association
- sourceAssociations: Map<Integer,Integer>
- targetAssociations: Map<Integer,Integer>

 - getAssociation(): Map<Integer, Integer>
 - closestPoint(): int

RANSAC

- c_i: Cluster
- c_j: Cluster
- referencePoints: List<ClusterPoint>
- targetPoints: List<ClusterPoint>
- randomPoints1: List<ClusterPoint>
- randomPoints2: List<ClusterPoint>
- numIterations: int

 + getLargestRigidParts(): Cluster[]
 + getTransformedPoints(): List<ClusterPoint>

PartDetection

- c_i: Cluster
- c_j: Cluster
- referencePoints: List<ClusterPoint>
- targetPoints: List<ClusterPoint>
- rigidParts: Cluster[]
- error: double
- distanceThreshold: double
- maxDistanceToJoint: double

 - PointCorrespondence: class
 - referenceIndex: int
 - targetIndex: int
 - distance: double
 - getRotationDirection()
 - getCorrespondences(): List<PointCorrespondence>
 - initialOrientation(): void
 - findBiggestCluster(): void

RegionGrowing

- seeds: List<ClusterPoint>
- inputPoints: List<ClusterPoint>

+ detectClusters(): List<Cluster>
+ nearestNeighbors(): List<Cluster>

Figure 4.13: UML diagram of the classes related to the implementation of the feature-
based segmentation approach.

}

if (referenceClusters.size() != 0 && targetClusters.size() != 0) {
pushMatchingClusters();

}

if (clusters.isEmpty()) {
return;

}
...

}

If unmatched clusters 𝐶𝑈 still exist, two corresponding clusters are popped from the
Stack. In the absence of allocated joints, no LRP has been detected yet. Therefore, the
FeatureMatching class (see Section 4.3.2) is applied to two corresponding clusters. In
combination with RANSAC, an initial LRP can be detected. On the other hand, two
LRPs are obtained by joint rotation of two corresponding clusters onto one another.
In this case, the PartDetection class is used to detect linked rigid parts from the
previously detected LRPs:

{
...
currentClusters = clusters.pop();

if (currentClusters[0].getJoint() == null) {
FeatureMatching fm = new FeatureMatching(currentClusters[0], currentClusters[1])
;
Map<Integer, Integer> denseCorrespondances = fm.getCorrespondences();

4. Feature-Based Approach 42

RANSAC ransac = new RANSAC(currentClusters[0], currentClusters[1],
denseCorrespondances);
currentLrps = ransac.getLargestRigidParts();
unclusteredReference = ransac.getTransformedReferencePoints();

}

else {
PartDetection pd = new PartDetection(currentClusters[0], currentClusters[1]);
currentLrps = pd.getLinkedParts();

}

largestRigidParts.add(currentLrps);
}

4.3.2 Feature Matching
For the calculation of point normals required for the feature histograms, the class
NormalEstimation is developed. It takes a point 𝑝𝑖 with its 𝑘 neighbors as input. Then,
the least fitting line on these input points is detected (as described in Section 4.1.1), and
the smallest lambda value 𝜆2 is selected. By setting the 𝑥-value of the normal to 1.0,
the 𝑦-value can be calculated by inserting 𝜆2 into the Equation 4.3. The resulting vector
represents the normal vector 𝑛𝑖 for 𝑝𝑖. If it is oriented exactly vertically or horizontally
the resulting 𝑦-value is either infinite or NaN. In these cases, the normal is either set to
(0,1) or (1,0). Lastly, the normal is normalized:

double eigenvalue = Math.min(lambda1, lambda2);

covarianceMatrix = new double[][] {
{ a - eigenvalue, b},
{ b, c - eigenvalue}

};

double[] normal = new double[2];

normal[0] = 1.0;
normal[1] = (eigenvalue * normal[0] - covarianceMatrix[0][0] * normal[0])/

covarianceMatrix[0][1];

if(Double.isInfinite(normal[1])){
normal[0] = 0;
normal[1] = 1;

} else if (Double.isNaN(normal[1])){
normal[1] = 0;

}

double length = Math.sqrt(Math.pow(normal[0], 2) + Math.pow(normal[1], 2));
normal[0] /= length;
normal[1] /= length;

point.setNormal(normal);

A ClusterPoint class was implemented to store the normal 𝑛𝑖 for each point and
the resulting feature histogram (FPFH). This is stored in the form of a Histogram
object containing an int[] array for categorizing the feature values. For the calculation

4. Feature-Based Approach 43

Algorithm 4.1: Iterative segmentation algorithm to acquire the corresponding rigid
parts 𝒫 from the unclustered points 𝒰𝑟 of the reference cluster 𝐶1 and 𝒰𝑡 of the target
cluster 𝐶2. In each iteration, clusters that have not been assigned to a rigid part 𝑃 are
detected by region growing. Corresponding clusters 𝐶𝑈 are stored in a Stack 𝐶, in order
to process one cluster pair at a time by a LIFO procedure. For the initial iteration,
feature matching is applied on two clusters 𝐶𝑈 . The detected correspondences 𝑐 are
taken as input for RANSAC to detect the LRPs of two corresponding clusters 𝐶𝑈 . For
all further iterations, the LRP is detected by joint rotation of two corresponding clusters
𝐶𝑈 .

1: Segmentation(𝐶1, 𝐶2)
Input: the reference and target cluster 𝐶1 and 𝐶2
Returns: the rigid parts 𝒫 of the input clusters

2: 𝒰𝑟 ← 𝐶1
3: 𝒰𝑡 ← 𝐶2
4: 𝐶 ← ()
5: 𝑚← ⌊𝐶⌋
6: 𝑛← ⌊𝒰𝑟⌋
7: 𝒫 ← ()
8: LRP𝑟 ← ()
9: LRP𝑡 ← ()

10: while 𝑛 > 0 ∨ 𝑚 > 0 do
11: 𝒰𝑟 ← 𝒰𝑟 − LRP𝑟

12: 𝒰𝑡 ← 𝒰𝑡 − LRP𝑡 ◁ remove LRP𝑠 from all unclustered points 𝒰𝑟 and 𝒰𝑡

13: 𝑟 ← clusters(𝒰𝑟)
14: 𝑡← clusters(𝒰𝑡)
15: 𝐶𝑈 ← match(𝑟, 𝑡)
16: 𝐶 ← push(𝐶𝑈) ◁ push corresponding cluster 𝐶𝑈 on the stack 𝐶
17: if LRP ̸= 𝑛𝑢𝑙𝑙 then
18: jointEstimation(𝐶)
19: end if
20: current ← pop(𝐶) ◁ pop one cluster set from the stack 𝐶
21: if joint(current) = 𝑛𝑢𝑙𝑙 then
22: 𝑐← FeatureMatching(current)
23: LRP ← RANSAC(𝑐)
24: else
25: LRP ← PartDetection(current)
26: end if
27: 𝒫 ← 𝒫 + LRP
28: end while
29: return 𝒫
30: end

4. Feature-Based Approach 44

of a feature histogram of a point 𝑝𝑖, its 𝑘 neighbors are considered. The FPFH class
implements various operations for vectors, such as the dot or cross product to implement
the equation from Section 4.1:

public void featureHistogram(p_i) {
SPFH = SPFH(p_i);

for (ClusterPoint p_k : p_i.getNeighborhood()) {
double weight = p_i.distance(p_k);
weightedSPFH = weightedSPFH.addHistograms(SPFH(p_k).multiplyHistograms(1.0 /
weight));

}

FPFH = SPFH.addHistograms(weightedSPFH.multiplyHistograms(1.0 / p_i.
getNeighborhood().size()));

p_i.setFPFH(FPFH);
}

The three feature values of a point 𝑝𝑖 result from the computation of three angles
between a point set 𝑝𝑖 and 𝑝𝑗 :

double feature1 = dot(v, n_j);
double feature2 = dot(u, p_j.subtract(p_i)) / p_j.distance(p_i);
double feature3 = Math.atan2(dot(w, n_j), dot(u, n_j));

By setting a minimum and maximum value a feature value can adopt, as well as the
desired number of intervals, a feature is classified into a certain interval. The resulting
interval is used to calculate the index in the histogram to be incremented:

private int getInterval(double feature, double min, double max) {
feature -= 0.001; // avoid an out of range interval in case of feature = max
double range = (max - min) / numberIntervals;
return (int) ((feature - min) / range);

}

Subsequently, point correspondences are detected by computing the distances between
all feature histograms of 𝐶1 and 𝐶2 (see Section 4.2.4). For that, the closest point al-
gorithm is configured to use the distance between histograms instead of the Euclidean
distance between points. Reciprocal point correspondences between 𝐶1 and 𝐶2 are re-
turned in form of point indices Map<Integer,Integer> of the clusters:

for (Map.Entry<Integer, Integer> entry : reference.entrySet()) {
Integer referenceIndex = entry.getKey();
Integer targetIndex = entry.getValue();

ClusterPoint currentRefPoint = originalReference.get(referenceIndex);
ClusterPoint currentTargetPoint = originalTarget.get(targetIndex);

...
if ((reciprocalMatching && target.get(targetIndex) == referenceIndex){

finalReferencePoints.add(currentRefPoint);
finalTargetPoints.add(currentTargetPoint);
finalAssociations.put(referenceIndex, targetIndex);

}
}

4. Feature-Based Approach 45

4.3.3 RANSAC
The RANSAC algorithm takes the computed sparse correspondences between two clus-
ters in the form of a Map<Integer, Integer> as input. In each iteration, two random
point correspondences are selected from the map to calculate an affine transformation
𝑎 between the selected points from each 𝐶𝑖 and 𝐶𝑗 . The reference points from 𝐶𝑖 are
filled into a transformation matrix TM . The assumed target points from 𝐶𝑗 represent
the vector 𝑏. By utilizing the DecompositionSolver class, the affine transformation,
represented by the vector 𝑎, that is⎛⎜⎜⎝

𝑥1 𝑦1 1 0 0 0
0 0 0 𝑥1 𝑦1 1
𝑥2 𝑦2 1 0 0 0
0 0 0 𝑥2 𝑦2 1

⎞⎟⎟⎠
⏟ ⏞

TM

·

⎛⎜⎜⎝
𝑎00
𝑎01
𝑎10
𝑎11

⎞⎟⎟⎠
⏟ ⏞

𝑎

=

⎛⎜⎜⎝
𝑥′

1
𝑦′

1
𝑥′

2
𝑦′

2

⎞⎟⎟⎠
⏟ ⏞

𝑏

, (4.15)

can be computed:
double[][] TM = fillTransformMatrix(referencePoints);

double[] b = new double[] {
targetPoints.get(0).getX(), targetPoints.get(0).getY(),
targetPoints.get(1).getX(), targetPoints.get(1).getY()

};

DecompositionSolver solver = new SingularValueDecomposition(MatrixUtils.
createRealMatrix(TM)).getSolver();

RealVector a = solver.solve(MatrixUtils.createRealVector(b));

In the end of an iteration, a region growing approach with a threshold 𝜏 is conducted
on all overlapping points, resulting from the applied affine transformation 𝑎 on the
reference points. The value is thereby considerable small, because a right alignment
during any iteration is assumed. The biggest clusters are stored and, after termination
of the RANSAC procedure, returned as the LRPs. The whole procedure is considerably
time consuming. The total run-time can be reduced by taking a smaller number of
correspondences as input, which directly affects the required number of iterations until
the right match is detected.

4.3.4 Joint Rotation
A main approach required for the detection of linked rigid parts to an already detected
LRP, is the rotation around the estimated joints of corresponding clusters. First, the
reference points from 𝐶𝑖 and the target points from 𝐶𝑗 are translated to the origin and
similarly aligned:

referencePoints = Matrix.translate(c_i.getPoints(), -c_i.getJoint().getX(), -c_i.
getJoint().getY());

targetPoints = Matrix.translate(c_j.getPoints(), -c_j.getJoint().getX(), -c_j.
getJoint().getY());

initialOrientation(c_i.getJoint());

4. Feature-Based Approach 46

Next, the reference points are aimed to be rotated onto the target points. This is achieved
iteratively by applying a stepwise rotation in the direction of an reduced matching error
𝑒, which is computed beforehand. By terminating at the point where the weighted total
error increases again, the assumed biggest overlap is achieved:

for (PointCorrespondence pointCorrespondence : pointCorrespondences) {
ClusterPoint referencePoint = referencePoints.get(pointCorrespondence.

referenceIndex);

double distanceToJoint = referencePoint.distance(new ClusterPoint(0, 0));
double currentError = pointCorrespondence.distance;
double weight = (1 - distanceToJoint / maxDistanceToJoint);
weight = weight < 0.5 ? 0.0 : weight;
totalError += currentError * Math.pow(weight, 2);

}

To only remain the rigid part and reject corresponding points that do not belong to the
desired rigid part, a region growing algorithm is applied. As a result, only the largest
cluster is kept as successful detected rigid part (see Algorithm 3.1).

4.4 Results

Applying the proposed approach on the 2D data set of an articulated object (see Section
4.2.2), different segmentation results could be achieved with adjusted parameters (see
Table 4.1). These are based on the estimated resolution of 8.01 and 8.2 for 𝐶1 and
𝐶2. The results of iteration 1 show that almost all rigid parts and joints could be
detected correctly. The segmentation errors result from the imprecise joint estimation
of corresponding rigid parts (see Figure 4.15). Consequently, it is assured that the
computed closest two points 𝑝𝑖 and 𝑝𝑗 of a cluster 𝐶𝑈 to the LRP are not neighboring
points by comparing the Euclidean distance 𝑑(𝑝𝑖, 𝑝𝑗) to a threshold 𝜏 . In a positive case,
the third closest point 𝑝𝑘 to the LRP is selected instead of the second closest point.
By doing so, improved joint estimation results could be achieved. Another occurring

Parameter Description
FN Number of neighbors for the feature histogram
NN Number of neighbors for the normal computation
RANSAC Closest point distance for RANSAC
JR Closest point distance for joint rotation
W Minimum joint weight of a point to influence the error
DC Distance criterion for feature matching
Iteration FN NN 𝜏 RANSAC 𝜏 JR W DC

1 6 2 3.0 6.0 0.5 Euclidean
2 6 2 3.0 7.0 0.5 Euclidean
3 6 2 3.0 6.0 0.3 Euclidean
4 4 2 3.0 6.0 0.3 Euclidean
5 10 2 3.0 7.0 0.3 Chi-Square
6 6 2 3.0 6.0 0.3 Kullback-Leibler

Table 4.1: Segmentation parameters to be adjusted for different segmentation results.

4. Feature-Based Approach 47

(a) (b)

Figure 4.14: Segmentation results for 𝐶1 (a) and 𝐶2 (b) with the parameters of iteration
1 (see Table 4.1).

(a) (b)

Figure 4.15: An imprecise estimation of joints of corresponding clusters (a) leads to a
considerable point offsets during the rotation of the reference cluster (red) onto the target
cluster (blue) (b).

4. Feature-Based Approach 48

(a) (b)

Figure 4.16: Segmentation results for 𝐶1 (a) and 𝐶2 (b) with the parameters of iteration
2 (see Table 4.1). By improving the joint computation and adjusting the parameter JR,
a more precise segmentation compared to iteration 1 could be achieved.

problem was the incorrect detection of rigid parts with no further linked parts (see
4.16). The reason is that only the closest 50% of the points to the joint are considered
for the error calculation. As a result, no precise overlapping between 𝐶1 and 𝐶2 could be
obtained. To solve the problem of imprecise overlapping of two rigid parts resulting from
joint rotation, the weight W was decreased to 0.3. Consequently, more points located far
away from the joint contribute to the total matching error. The resulting segmentation
into rigid parts is considered as successful (see Figure 4.17). In order to focus on the
main goal of reducing the number of computations steps, improvements could be done
for the feature matching and RANSAC approach. To achieve that, different histogram
similarity criteria are applied for the feature matching (see Section 4.4.1). The increase
of histogram bins by providing a higher number of intervals 𝑞 did not lead to an improved
alignment. Therefore the minimum number of two intervals 𝑞 was retained.

4.4.1 Histogram Distances for Feature Matching
Three different distances are considered as histogram similarity criteria: the Euclidean,
the Chi-Square and the Kullback-Leibler distance. Compared to the other two histogram
distances, the Euclidean distance results in the highest number of point correspondences.
This leads to a higher number of RANSAC iterations. On the other hand, also the num-
ber of correct correspondences is higher. Thus, the overall probability of detecting the

4. Feature-Based Approach 49

(a) (b)

Figure 4.17: Segmentation results for 𝐶1 (a) and 𝐶2 (b) with the parameters of iteration
3 (see Table 4.1). By adjusting the weight parameter W , a successful segmentation into
all rigid parts could be achieved.

LRP is considerable high. A successful initial alignment can be achieved by only con-
sidering four neighbors for the feature computation (FN = 4), and two neighbors for
the normal estimation (NN = 2) (see Figure 4.18). The number of RANSAC iterations
is set to 250. In the case of applying the Chi-Square distance, fewer correspondences
are detected in comparison to the Euclidean distance. However, the ratio of correct
correspondences is too low for an successful detection of the LRP (see Figure 4.19).
Consequently, the Chi-Square distance is determined as not useful for this segmentation
approach. Finally, the Kullback-Leibler distance was applied with an enlarged feature
neighborhood (FN = 6). There are fewer point correspondences detected in comparison
to the Euclidean distance. However, the ratio of correct correspondences is higher. As a
consequence, the number of RANSAC iterations can be reduced to 100 for a successful
alignment (see Figure 4.20). In a further step, the Euclidean distance and the Kullback-
Leibler distance are compared in terms of their runtime, as they both acquire successful
alignment results of the actual LRP. The Euclidean distance requires fewer neighboring
points for the computation of feature histograms. In contrary, the Kullback-Leibler dis-
tance has a higher ratio of correct point correspondences. By comparing the run time,
the Kullback-Leibler represents the fastest choice with 8.0731 seconds for the segmenta-
tion approach, followed by the Euclidean distance with 8.8683 seconds. Completing the
segmentation approach several times, the run time may considerably vary, depending
on background calculations, such as the visualization of segmentation results. As the

4. Feature-Based Approach 50

(a) (b)

Figure 4.18: Applying the Euclidean distance on the feature histograms of 𝐶1 and
𝐶2 with the parameters of iteration 4 (see Table 4.1), in order to detect point correspon-
dences (a). The initial LRP can be detected successfully witb 250 RANSAC iterations (b).

Figure 4.19: Applying the Chi-Square distance on the feature histograms of 𝐶1 and 𝐶2
with the parameters of iteration 5 (see Table 4.1), in order to detect point correspondences.

4. Feature-Based Approach 51

(a) (b)

Figure 4.20: Applying the Kullback-Leibler distance on the feature histograms of 𝐶1 and
𝐶2 with the parameters of iteration 6 (see Table 4.1), in order to detect point correspon-
dences (a). The initial LRP can be detected successfully witb 100 RANSAC iterations (b).

goal of this thesis is the reduction of the number of computation steps, the run time is
not further considered. Summarizing, the proposed segmentation approach successfully
detects the rigid parts of an articulated object whose poses are not considerable differ-
ent from one another. Therefore, the approach was applied on further poses in order
to face the difficulties of considerable different transformations, orientations and partial
occlusion (see Figure 4.21). In the case of these input poses, the segmentation approach
fails. The reason is that there are not sufficient correct point correspondences detected
between two poses (see Figure 4.22), which results from ambiguous body parts. As a
result, during the RANSAC iterations the LRP is not detected.

4.4.2 Main Drawbacks
The main drawback of the proposed segmentation algorithm regards the first initial
alignment of 𝐶1 and 𝐶2 to detect the actual LRP of the articulated object. In the case
of a failure, the linked rigid parts can not be detected, as they are directly dependent
on a successful initial alignment. By increasing the number of RANSAC iterations, the
probability of a correct initial alignment is increased; however, it also directly affects
the runtime and should therefore not be exaggerated. A major factor for the successful
detection of a LRP is the input data in the form of a 2D hull of the object. As the
object’s surface is imitated by 2D points, the region growing is much more error-prone.
The reason for this is that unlike with 3D, the points of a rigid part in 2D have a
considerably lower number of neighbors. If there are a few missing points from a rigid
part, it will not be fully detected during the region growing due to the resulting point

4. Feature-Based Approach 52

(a) (b) (c)

Figure 4.21: The segmentation approach is applied on three more complex poses that
face partial occlusion (a), considerable different transformations of rigid parts (b) and
orientations (c). In these case the initial detection of the LRP fails which leads to an
unsuccessful segmentation.

(a) (b)

Figure 4.22: The point correspondences, applying the Euclidean distance, between more
complex poses, facing partial occlusion (a) and considerably different transformed rigid
parts and orientation (b).

offset. This is especially drastically during the RANSAC approach, as it results in the
initial LRP. To counteract this behavior, more and closer hull points may be added to
the input mesh. A further main problem is that the algorithm proceeds iteratively from
already detected rigid parts. This makes the whole procedure notably unstable and error-
prone, because one incorrect rigid part detection could lead to an overall unsuccessful
segmentation. Furthermore, occlusion of rigid parts (e.g. the hand touches the leg) poses
difficulties, as the region growing would detect those movements as potentially linked
clusters. The difficulty of ambiguous rigid parts results from the simple 2D data set

4. Feature-Based Approach 53

which is the main reason that the proposed algorithm fails for most of the data sets.
Most of the discussed drawbacks concerning the input data can be overcome by an
implementation in 3D (see Section 4.5).

4.5 3D Implementation
The next step would be to transfer the optimized 2D implementation into 3D to reduce
the number of computation steps from [11] (see Section 4.2.1). It can be implemented
by using the Point Cloud Library 2 which operates on 3D point clouds. Certainly, many
new challenges must be overcome due to the three-dimensional space. Straightforward
rotation of linked rigid parts around their estimated joints will pose a major difficulty in
3D, since multiple rotation axes are available. In return, it is noticeable that PCL offers
many required functions by default. For example, both Fast Point Feature Histograms
completed with the normal estimation and sub sampling of dense point clouds are
already provided. Especially, the feature histogram computation can be conducted with
a few lines, by computing all point normals:

pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normalEstimation;
pcl::PointCloud<pcl::Normal>::Ptr referenceNormals(new pcl::PointCloud<pcl::Normal>)

;

normalEstimation.setInputCloud(referenceCloud);
normalEstimation.setKSearch(5);
normalEstimation.compute(*referenceNormals);

As a next step, those computed normals are taken as input for the computation of the
feature histograms of the point clouds:

pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal> fpfhEstimation;

pcl::PointCloud<pcl::FPFHSignature33>::Ptr referenceFeatures(new pcl::PointCloud<pcl
::FPFHSignature33>);

fpfhEstimation.setKSearch(5);
fpfhEstimation.setInputCloud(referenceCloud);
fpfhEstimation.setInputNormals(referenceNormals);
fpfhEstimation.compute(*referenceFeatures);

An appropriate dataset for the 3D segmentation constitutes the SCAPE data set [2],
which provides scans of a human in different poses (see Figure 4.23).

2http://pointclouds.org

4. Feature-Based Approach 54

(a) (b)

Figure 4.23: Taking two 3D poses of an articulated object as input (a), (b), the seg-
mentation approach can be implemented in 3D.

Chapter 5

Conclusion

In the first project phase, intense research was conducted regarding pose estimation
to detect a main issue to focus on for this thesis. It was essential to form an overall
perspective on the state-of-the-art methods of pose estimation of articulated objects.
During this process the field of unsupervised pose estimation of unknown objects was
frequently referred to because its related approaches perform completely independently
of user input. Therefore, the non-rigid registration became a major indicator for pos-
sible optimizations. Taking existing, unsupervised methods as a reference (see Section
2.4), two approaches for the segmentation of an articulated object into its rigid parts
were developed. Thereby, the main goal of this thesis became the reduction of the
number of computation steps in the segmentation procedure. The first approach was
a linear, straightforward, divide-and-conquer procedure. It recursively divides two 2D
point clouds of the same object in different configurations into matching sub clusters
(see Chapter 3). The subdivision was performed with a cluster tree and depth-first
traversal to segment the point clouds from one side to the other. Next, all neighboring
clusters were verified to be merged, in case they represented a subdivided rigid part.
After merging, the rigid parts of the objects may be obtained. The second approach to
be implemented tried to compensate for the drawbacks of the linear approach, specif-
ically the segmentation of articulated objects with a skeletal structure (e.g. a human)
(see Chapter 4). This approach uses both feature matching [23] and RANSAC for the
initial alignment of the two point clouds to detect the Largest Rigid Part – LRP. Due
to the motion constraints of rigid parts by their joints, linked rigid parts to the LRP
could be detected. The reference paper for this approach is represented by Guo et al.
[11].

5.1 Achieved Results
The linear approach aimed for a drastic decrease in the number of computation steps
required for the segmentation of an articulated object. To do this, the segmentation
relied only on the point coordinates of the input clusters 𝐶1 and 𝐶2 and the initial
orientation of clusters. The proximate rigid parts could be detected for simple objects,
composed of a few rigid parts that are linked like a chain. However, the results regarding
points located near an actual joint were not precise. In the case of more complex objects,

55

5. Conclusion 56

the approach in its simple form failed. Different optimization possibilities were proposed
to counteract most of the issues that emerged. Eventually, it became evident that a more
advanced approach would be required for the segmentation of a complex, articulated
object.

Next, a feature-based approach was developed to overcome the main difficulty of
detecting reliable point correspondences between 𝐶1 and 𝐶2. Feature matching in com-
bination with RANSAC was applied for the initial alignment and the detection of the
actual rigid part. The resulting LRP could be detected successfully. This approach con-
tributes to the subsequent detection of further linked rigid parts to the LRP. It utilizes
the constrained translation of rigid parts that result from their estimated joints. Un-
like the approach from [11], with this approach only a stepwise rotation around the
joint is required to detect a rigid part. For the successful detection of an actual linked
rigid part to the LRP, joint weights were introduced. Thus, there are considerably fewer
steps needed in comparison to both the recursive application of the feature matching and
RANSAC approaches. By adjusting the different thresholds used in the implementation,
the correct number of joints and rigid parts could be detected in two different poses.
Furthermore, a successful correspondence of rigid parts and joints could be achieved for
a specific data set. Subsequently, the results are satisfying, if not necessarily precise. By
testing further poses of the same articulated object, no successful segmentation could
be achieved. This behavior can be explained by the input data in the form of a 2D hull
of the object which was created manually for this specific 2D-use case. Especially the
ambiguous body parts of the input mesh pose a major difficulty for the detection of
correct point correspondences.

Overall, the greatest achievement is the knowledge gained about pose estimation
of articulated objects regarding segmentation and surface registration. Since the imple-
mentation of basic algorithms required for the two proposed segmentation approaches
was conducted from scratch, a deep understanding of concepts such as feature matching
was acquired. Additionally, the newly acquired familiarization with scientific papers is
noteworthy.

5.2 Main Difficulties and Drawbacks
A key difficulty at the beginning of the research phase was the vast amount of refer-
ences about pose estimation. It was difficult to uncover one key aspect to focus on for
this thesis. A general overview had to be created to familiarize myself with the relevant
material. To gain a deep understanding of the reference approaches, the implementation
was conducted in 2D to fully focus on possible segmentation optimizations. When de-
scribing a 3D object in 2D, important information about its 3D pose is lost. Thus, it is
impossible to gain the actual pose without being confronted with ambiguous poses. For
this reason no transformations towards the 𝑧-axis were assumed for the implementation
of the two approaches. Due to the limited amount of available test data, the manual
creation of 2D point clouds of an articulated object in different configurations was also
a time-consuming procedure. Since the success of segmentation approaches are directly
dependent on appropriate data sets, multiple datasets were manually created. Certain
requirements concerning the input data had to be fulfilled such as achieving a certain
density of data points to make it less error-prone for region growing.

5. Conclusion 57

A drawback of the linear approach is that it can only achieve successful results if a
simple object with a rigid part only linked to a maximum of two other parts is given
as input. For the segmentation of complex objects it generally fails and is therefore not
useful for the desired goal.

The main drawback of the proposed feature-based approach is that it is dependent
on a successful initial alignment of two different poses. If this first main step fails, the
pose of the articulated object cannot be successfully extracted. Another drawback is
the application of RANSAC, as too many iterations are required for a correct alignment
of 𝐶1 and 𝐶2. The main deficit is the 2D test data which is not ideal for a precise
segmentation into rigid parts. However, this condition can be overcome by conducting
additional improvements (see Section 5.3).

5.3 Future Work
To overcome the difficulty of manually creating test data form articulated objects in
2D, the object’s hull could be directly computed from the silhouette of the real-world
object. It would result in a high number of points that could be used for the segmentation
step. The next step would be the implementation of the algorithm in 3D, based on the
implementation of Guo et al. The focus would be thereby to implement an optimized
segmentation into rigid parts to reduce the number of computation steps (similar to the
approach in 2D). Another interesting possibility would be to take the computed pose
of an object as input for a machine-learning approach. It could result in a collection
of different template shapes. With a growing learning phase, a considerably accelerated
pose estimation mechanism could be created. Another objective would be to integrate
an optimized segmentation approach into an actual pose capture application to transfer
the pose resulting from the joints of a real object onto a digital character.

Appendix A

CD Contents

The enclosed CD includes the thesis in digital form and additionally all used reference
images, results and illustrations. Furthermore, the source code of the two segmentation
approaches with all dependencies is included.

Path: /
Thesis.pdf Thesis in digital form
SourceCode.zip Source Code of the Java Implementation

Path: /images/illustrations
*.ai Original Adobe Illustrator-Files
*.pdf Original pdf images

Path: /images/results
*.png Original pixel images

Path: /images/references
*.png Original pixel images

58

References

Literature

[1] Dragomir Anguelov et al. “Recovering articulated object models from 3D range
data”. In: Proceedings of the 20th conference on Uncertainty in Artificial Intelli-
gence. AUAI Press. 2004, pp. 18–26 (cit. on pp. 8, 9, 11, 14).

[2] Dragomir Anguelov et al. “SCAPE: shape completion and animation of people”.
In: ACM Transactions on Graphics (TOG). Vol. 24. 3. ACM. 2005, pp. 408–416
(cit. on p. 53).

[3] Dragomir Anguelov et al. “The Correlated Correspondence Algorithm for Unsu-
pervised Registration of Nonrigid Surfaces”. In: Advances in Neural Information
Processing Systems 17. Ed. by L. K. Saul, Y. Weiss, and L. Bottou. MIT Press,
2005, pp. 33–40 (cit. on pp. 8, 10).

[4] Simon Baker, Takeo Kanade, et al. “Shape-from-silhouette across time part ii:
Applications to human modeling and markerless motion tracking”. International
Journal of Computer Vision 63.3 (2005), pp. 225–245 (cit. on pp. 7, 8).

[5] Paul Besl and Neil McKay. “Method for registration of 3-D shapes”. In: Sen-
sor Fusion IV: Control Paradigms and Data Structures. Vol. 1611. International
Society for Optics and Photonics. 1992, pp. 586–607 (cit. on p. 4).

[6] Will Chang and Matthias Zwicker. “Automatic Registration for Articulated
Shapes”. In: Proceedings of the Computer Graphics Forum (Proceedings of Sym-
posium on Geometry Processing 2008). Vol. 27. 5. Copenhagen, Denmark, 2008,
pp. 1459–1468 (cit. on pp. 9, 10).

[7] Will Chang and Matthias Zwicker. “Range Scan Registration Using Reduced De-
formable Models”. In: Proceedings of the Computer Graphics Forum (Proceedings
of Eurographics 2009). Vol. 28. 2. Wiley Online Library. 2009, pp. 447–456 (cit. on
p. 10).

[8] Fernando De Goes, Siome Goldenstein, and Luiz Velho. “A hierarchical segmen-
tation of articulated bodies”. In: Proceedings of the Computer Graphics Forum.
Vol. 27. 5. Wiley Online Library. 2008, pp. 1349–1356 (cit. on p. 10).

[9] Martin Fischler and Robert Bolles. “Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography”.
In: Readings in Computer Vision. Elsevier, 1987, pp. 726–740 (cit. on p. 4).

59

References 60

[10] Song Ge and Guoliang Fan. “Articulated Non-Rigid Point Set Registration for
Human Pose Estimation from 3D Sensors”. Sensors 15.7 (2015), pp. 15218–15245
(cit. on pp. 5, 7).

[11] Hao Guo, Dehai Zhu, and Philippos Mordohai. “Correspondence estimation for
non-rigid point clouds with automatic part discovery”. The Visual Computer 32.12
(2016), pp. 1511–1524 (cit. on pp. 3, 9–11, 26, 27, 31, 32, 39, 53, 55, 56).

[12] Günter Hetzel et al. “3D object recognition from range images using local feature
histograms”. In: Proceedings of the International Conference on Computer Vision
and Pattern Recognition, 2001. Vol. 2. IEEE. 2001, pp. II–II (cit. on p. 31).

[13] Hugues Hoppe et al. “Surface Reconstruction from Unorganized Points”. In: Pro-
ceedings of the 19th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’92. New York, NY, USA: ACM, 1992, pp. 71–78 (cit. on
p. 27).

[14] Emre Kalafatlar and Yucel Yemez. “3d articulated shape segmentation using mo-
tion information”. In: Proceedings of the 20th International Conference on Pattern
Recognition (ICPR), 2010. IEEE. 2010, pp. 3595–3598 (cit. on p. 8).

[15] Fabian Langguth et al. “Shading-aware multi-view stereo”. In: Proceedings of the
European Conference on Computer Vision. Springer. 2016, pp. 469–485 (cit. on
p. 7).

[16] Ita Lifshitz, Ethan Fetaya, and Shimon Ullman. “Human pose estimation using
deep consensus voting”. In: Proceedings of the European Conference on Computer
Vision. Springer. 2016, pp. 246–260 (cit. on p. 8).

[17] Lu Lou et al. “Accurate multi-view stereo 3D reconstruction for cost-effective plant
phenotyping”. In: Proceedings of the International Conference Image Analysis and
Recognition. Springer. 2014, pp. 349–356 (cit. on p. 7).

[18] Brice Michoud et al. “Real-time marker-free motion capture from multiple cam-
eras”. In: Proceedings of the 11th International Conference on Computer Vision,
2007. ICCV 2007. IEEE. 2007, pp. 1–7 (cit. on p. 7).

[19] Niloy Mitra, Leonidas Guibas, and Mark Pauly. “Symmetrization”. In: Proceedings
of the ACM Transactions on Graphics (TOG). Vol. 26. 3. ACM. 2007, p. 63 (cit.
on p. 10).

[20] Greg Mori and Jitendra Malik. “Estimating human body configurations using
shape context matching”. In: Proceedings of the European Conference on Com-
puter Vision. Springer. 2002, pp. 666–680 (cit. on p. 7).

[21] Li Peng and Wang Jian. “Improved algorithm for point cloud registration based
on fast point feature histograms”. Journal of Applied Remote Sensing 10.5 (2016),
pp. 10–23 (cit. on p. 5).

[22] Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. “Reconstructing 3d human
pose from 2d image landmarks”. In: Proceedings of the European Conference on
Computer Vision. Springer. 2012, pp. 573–586 (cit. on p. 7).

References 61

[23] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. “Fast point feature his-
tograms (FPFH) for 3D registration”. In: Proceedings of the International Con-
ference on Robotics and Automation, 2009. ICRA’09. IEEE. 2009, pp. 3212–3217
(cit. on pp. 27, 30, 55).

[24] Radu Bogdan Rusu et al. “Persistent point feature histograms for 3D point
clouds”. In: Proceedings of the 10th International Conference for Intelligent Au-
tonomous Systems (IAS-10), Baden-Baden, Germany. IOS Press. 2008, pp. 119–
128 (cit. on p. 27).

[25] Avinash Sharma, Etienne Von Lavante, and Radu Horaud. “Learning shape seg-
mentation using constrained spectral clustering and probabilistic label transfer”.
In: Proceedings of the European Conference on Computer Vision. Springer. 2010,
pp. 743–756 (cit. on p. 8).

[26] Aravind Sundaresan and Rama Chellappa. “Markerless motion capture using mul-
tiple cameras”. In: Proceedings of the Computer Vision for Interactive and Intel-
ligent Environment, 2005. IEEE. 2005, pp. 15–26 (cit. on p. 7).

[27] Aravind Sundaresan and Rama Chellappa. “Segmentation and probabilistic reg-
istration of articulated body models”. In: Proceedings of the 18th International
Conference on Pattern Recognition, 2006. ICPR 2006. Vol. 2. IEEE. 2006, pp. 92–
96 (cit. on p. 10).

[28] Gary Tam et al. “Registration of 3D point clouds and meshes: a survey from rigid
to nonrigid”. IEEE Transactions on Visualization and Computer Graphics 19.7
(2013), pp. 1199–1217 (cit. on p. 4).

[29] Yuandong Tian, Lawrence Zitnick, and Srinivasa Narasimhan. “Exploring the spa-
tial hierarchy of mixture models for human pose estimation”. In: Proceedings of
the European Conference on Computer Vision. Springer. 2012, pp. 256–269 (cit.
on p. 7).

[30] Shinji Umeyama. “Least-squares estimation of transformation parameters between
two point patterns”. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 13.4 (1991), pp. 376–380 (cit. on p. 18).

[31] Oliver Van Kaick et al. “A survey on shape correspondence”. In: In Proceedings of
the Computer Graphics Forum. Vol. 30. 6. Wiley Online Library. 2011, pp. 1681–
1707 (cit. on p. 6).

[32] Eric Wahl, Ulrich Hillenbrand, and Gerd Hirzinger. “Surflet-pair-relation his-
tograms: a statistical 3D-shape representation for rapid classification”. In: Pro-
ceedings of the 4th International Conference on 3-D Digital Imaging and Modeling,
2003. IEEE. 2003, pp. 474–481 (cit. on p. 31).

[33] Svante Wold, Kim Esbensen, and Paul Geladi. “Principal Component Analysis”.
Chemometrics and Intelligent Laboratory Systems 2.1-3 (1987), pp. 37–52 (cit. on
p. 4).

[34] Stefanie Wuhrer and Alan Brunton. “Segmenting animated objects into near-rigid
components”. The Visual Computer 26.2 (2010), pp. 147–155 (cit. on p. 8).

References 62

[35] Bangpeng Yao and Li Fei-Fei. “Action recognition with exemplar based 2.5 d
graph matching”. In: Proceedings of the European Conference on Computer Vision.
Springer. 2012, pp. 173–186 (cit. on p. 7).

	Declaration
	Abstract
	Kurzfassung
	Notation
	Introduction
	Problem Statement
	Goal
	Methodology

	State-of-the-Art Pose Estimation
	Surface Registration
	Functionality
	Difficulties
	Optimization

	Pose Estimation of articulated Objects
	Digitalization of the Object
	Segmentation

	Supervised Methods
	Unsupervised Methods
	Related Work
	Main Drawbacks

	Linear Approach
	Cluster Detection by Region Growing
	Subdividing into Clusters
	Merging Sub Clusters to Rigid Parts
	Joint Estimation
	Implementation
	Chosen Environment
	Overview
	Region Growing
	PCA
	Cluster Tree
	Registration Procedure

	Results
	Possible Improvements
	Assuring corresponding, similar Clusters
	Matching Error
	Initial Alignment of the largest Rigid Part

	Outcome

	Feature-Based Approach
	Fast Point Feature Histograms
	Normal Estimation
	SPFH and FPFH
	Feature Histograms
	Feature Matching
	Adaptions for 2D

	LRP Algorithm
	Basic Functionality
	Input Data
	Implementation Steps
	Detection of sparse Correspondences
	Detection of the largest Rigid Part
	Cluster Detection by Region Growing
	Detection of linked Rigid Parts

	Implementation
	Iterative Segmentation
	Feature Matching
	RANSAC
	Joint Rotation

	Results
	Histogram Distances for Feature Matching
	Main Drawbacks

	3D Implementation

	Conclusion
	Achieved Results
	Main Difficulties and Drawbacks
	Future Work

	CD Contents
	References
	Literature

