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Abstract

Paid news articles are listed within the daily news feed and have to be tagged as spon-
sored due to legal reasons, but there is no unified labelling. The goal of the thesis is to
find suitable automated approaches to distinguish paid and non paid articles. It should
be shown if such a distinguishment is feasible and if so different algorithms will be ap-
plied to the dataset and compared to each other to find out which one performs best,
while keeping over- and underfitting in mind. Further it is investigated if the perfor-
mance of the machine learning models can be increased by including the sentiment of
the articles into the classification. All approaches handled in this thesis are implemented
in the project. The approaches can be evaluated in the thesis based on the evaluation re-
sults of the project. Also the challenges and problems that occurred from data collection
to implementation are tackled in this thesis.
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Kurzfassung

Bezahlte Nachrichtenartikel werden im täglichen Newsfeed aufgelistet und müssen aus
rechtlichen Gründen als gesponsert gekennzeichnet werden, es gibt jedoch keine ein-
heitliche Kennzeichnung. Ziel der Arbeit ist es, geeignete automatisierte Ansätze zur
Unterscheidung von bezahlten und nicht bezahlten Artikeln zu finden. Es soll gezeigt
werden, ob eine solche Unterscheidung möglich. Wenn die Unterscheidung möglich ist
werden unterschiedliche Algorithmen auf den Datensatz angewendet und deren Genau-
igkeit miteinander verglichen um herauszufinden, welche davon am Besten funktionie-
ren. Dabei wird auf die Über- und Unterpassung der Daten Acht gegeben. Weiterhin
wird untersucht, ob die Leistung der automatisierten Lernmodelle durch die Einbezie-
hung der Stimmung der Artikel in die Klassifizierung gesteigert werden kann. Alle in
dieser Arbeit behandelten Ansätze sind im Projekt umgesetzt. Die Ansätze können in
der Arbeit auf Basis der Bewertungsergebnisse des Projekts evaluiert werden. Auch die
Herausforderungen und Probleme, die von der Datenerhebung bis zur Implementierung
aufgetreten sind, werden in dieser Arbeit behandelt.

vii



Chapter 1

Introduction

Automated text classification is no new research area but its history dates back to the
beginning of the 1960s. At this time text classification was not fully automated but
dependent on human defined heuristic methods and a set of rules defined by experts.
This approach is highly inefficient as new rules always have to be introduced by humans
to adapt to new data. Also the detection of complex patterns and relationships requires
a lot of time for humans. Nowadays, the massive increase of textual data available online,
such as online documents, news articles or social media posts renewed and intensified
the interest in the research areas of automated text classification and data mining. The
focus nowadays is on fully automated classification and clustering of the data provided
as the amount of data often is too big to be able to manually analyse all of it [26].

When classifying text it can be distinguished between two main categories: binary
and multiclass classification. The goal of the thesis project is to distinguish paid from
non paid news articles, which is a binary classification problem. Therefore, this thesis
focuses on binary text classification.

1.1 Problem Definition
Paid news are articles sponsored by a person or company to promote themselves, their
company or products. Those articles are published on a news platform and listed within
the daily news feed. News platforms must tag articles as sponsored due to legal reasons.
Announcements, recommendations and other contributions and reports, for whose pub-
lication in periodical media a fee was paid, must be marked as Anzeige (advertisement),
entgeltliche Einschaltung (paid insertion) or Werbung (promotion) as instructed in § 26
media law in [20]. Since there are three terms accepted to mark an article as sponsored
there is no unified labelling. Also the placement of the identifying keyword differs along
platforms. While some platforms provide this information instead of the author tag,
others display it instead of the category or as an image banner with the text “Anzeige”
at the end of the article.

1



1. Introduction 2

1.2 Research Question
To find out if paid news articles can be automatically distinguished from non paid news
articles, multiple algorithms are implemented, optimized, evaluated and compared to
each other. Based on the evaluation and comparison the following research question will
be answered: To which extent can paid articles be automatically identified from online
news platforms?

1.3 Solution Approach
The identification of paid news articles is approached with text classification, which is
a field in machine learning. The approach to identify paid news articles is similar to
the approaches of fake news and spam detection. These approaches deal with binary
classification problems and can therefore be partially applied to the identification of
sponsored news articles. Since there are numerous solving approaches it is necessary
to detect which one fits best on this particular use case. To tackle this problem the
following approaches will be used: Support Vector Machine, Logistic Regression and
Sentiment Analysis.

As data is one of the most important factors to get good results, a lot of high quality
data is needed. Therefore the first big step of the project is to gather enough data, clean
the data and finally label this data in paid and non paid articles.

As a result it should be shown if paid news articles can be distinguished from non
paid articles using machine learning. To achieve this the selected algorithms will be
evaluated and compared to each other. For the evaluation the accuracy, precision, recall
and f1-score as well as the confusion matrix will be calculated. The goal is to find the
best suitable method to section articles in two categories: paid and non paid.

1.4 Thesis Structure
The thesis is structured into 5 main parts. The first chapter covers the technical founda-
tion and provides basic knowledge about the technologies used in the thesis project. In
the second chapter, State of the Art, similar solution approaches are analyzed, summa-
rized and their relevance for this thesis is shown. The methodology the implementation
is based on is handled in the third chapter, followed by the implementation itself. Chap-
ter 6 contains the evaluation and comparison of all algorithms used, as well as a summary
and conclusion of the results. The last part of the thesis tackles conflicts that occured
and possibilities for further research.



Chapter 2

Technical Foundation

2.1 Crawling and Scraping
Scraping is the automated process of downloading, parsing and extracting data from web
pages. This automation accelerates the process of gathering data from online platforms
a lot, as no human has to manually access the pages and copy the desired information
anymore. The outsourcing of this task to a computer program is much faster and cor-
recter. If not only one but multiple pages should be scraped, crawler come into play as
they crawl across one to many pages. The distinction between crawling and scraping is
very vague and therefore these two terms are often used interchangeably [3].

2.2 Machine Learning
Machine learning can broadly be divided into two main strategies: supervised and unsu-
pervised learning. In supervised learning labeled training data is provided to the system
to learn from it. For example labeled news articles with the labels paid true or false
are fed to the system. From this labeled data the system deciphers features of each
label which are then taken to classify new articles as paid true or false. In unsupervised
learning the training data provided to the system is not labeled. The system deciphers
features and groups the data based on similarities. The articles for example are then not
group as paid true or false but as groups of similar texts. There are two main approaches
how the system can predict something: Regression and Classification. Regression fore-
casts continuous variables, such as the price of a house or the temperature for a specific
time. Classification is used for data that has a few distinct outcomes, such as paid or non
paid / sunny, foggy or rainy. A typical algorithm for a regression (continuous variable)
is the Linear Regression and for classification (discrete variable) the Logistic regression
[1, S. 1–2].

Figure 2.1 shows a hierarchical selection of the machine learning approach based on
data, domain and division. When looking at the hierarchy from top to bottom, the first
decision is whether to choose supervised or unsupervised learning. If the data is not
labeled clustering, which is a methodology of unsupervised learning, is chosen. If the
data is labeled a supervised approach is chosen. To decide which model fits best, the
domain of the data is inspected. If the data domain can not or should not be divided, a

3



2. Technical Foundation 4

Figure 2.1: Hierarchical structure of distinction between regression, classification and
clustering based on data-domain-division [12].

regression model is chosen. With a regression model continuous variables are forecasted,
such as the temperature or the price of something. However, if the data domain can
be divided (for example into a few distinct outcomes such as paid or non paid), the
next level of the hierarchy, which deals with the the ease of the domain division, will be
included as well. If the data points of the classes are separable, the original data domain
can be divided and the classification can be applied (input space classification). If it
is not possible to separate the data points of the classes, the original data domain has
to be transformed into a feature space before the classification can be applied (feature
space classification) [12].

2.3 Text Classification
Text classification, also known as document classification, is the process of assigning
text documents one or more classes out of a set of predefined classes. This process
can be automated using supervised or unsupervised machine learning techniques. Text
documents can range from a phrase, a sentences to even one to many paragraphs of text.
Unsupervised text classification does not require prelabeled data. With this approach the
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aim is to find patterns and cluster the data accordion to those patterns. For supervised
learning on the other hand prelabeled training data is needed, from which the features
are then derived. So even for automated supervised text classification, at first some
data needs to be labeled manually. There are several types of text classification that
differ in in how many classes the data should be divided into and how many classes
are to be predicted for a data sample. The three types are: binary classification, multi-
class classification and multi-label classification. Binary classification predicts one of
two classes for a data sample. So the outcome is either the one or the other class. A
use case for such a classification is for example spam filtering. Either the email is spar
or not, there are no other options. Multi-class classification, also known as multinomial
classification, predicts one class out of a set of more than two classes for one data
sample. An example for this is the classification of fruits. The fruit can either be an
apple, a banana or a strawberry but not more than one at the same time. Multi-label
classification is used if for one data sample more than one class can be predicted. This
option comes into play for example when predicting the category of a news article. One
article can belong to the category politics and at the same time also to the category
education [9].

2.4 Logistic Regression
For the master thesis project the classes paid and non paid will be predicted, which are
discrete values. As already mentioned above, a typical algorithm for predicting discrete
variables is the logistic regression. The function used for the calculation of a logistic
regression is the sigmoid function. The feature of such a function is that the output
varies from 0 to 1 as it plateaus after a certain threshold. Any predictions above 1 are
capped to 1 and any prediction below 0 are floored at 0. Therefore, as an output the
probability associated with an event is retrieved. Figure 2.2 shows such a sigmoid curve.

2.5 Support Vector Machine
The support vector machine can be used for classification as well as for regression.
Regarding the amount of data which is necessary to achieve good results, the Support
Vector Machine is a great choice for small datasets. A Support Vector Machine is used
to find the optimal decision boundary to separate two classes. To build the optimal
hyperplane (decision boundary), support vectors are needed. The support vectors are
the points of each class that are closest to the hyperplane. To find the optimal hyperplane
the margin, which is the space between the support vectors, needs to be maximized.

Figure 2.3 shows that there are multiple correct hyperplanes possible to separate the
data. The blue hyperplane H1 as well as the red hyperplane H2 separate the data linearly.
However these two solutions differ a lot concerning the margin of each hyperplane. H2
represents the optimized solution with the maximum margin whereas H1 is a random
solution that also seperates the dataset correctly. In the Figure it can be seen that H1
is much closer to the data points of each class, therefore the margin associated with this
hyperplane is small. To find the optimal position of the hyperplane the support vectors
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Figure 2.2: A sigmoid curve [1, S. 52].

Figure 2.3: Example of maximum margin separator [16].

come into play. The position and alignment of H2 is defined by the position of the two
red dashed lines, which are aligned along the support vectors [16].

When the data is not linearly separable in its input space, the input space can be
mapped to a feature space using a kernel function so that the data becomes linearly
separable in the feature space (as shown in Figure 2.4).

If there is noise in the data, the Support Vector Machine can be subject to overfit-
ting. To avoid overfitting some training errors have to be tolerated in order to reach a
satisfying balance between a maximum margin and a minimum error rate to sustain a
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Figure 2.4: Input space (left) to feature space (right) conversion [33].

proper generalization power of the algorithm. This trade-off can be controlled via the
soft margin constant 𝐶 [4].

2.6 Neural Network
A Neural Network is a supervised machine learning algorithm and consists of multiple
neurons that are interconnected to one or more other neurons. This interconnections
form the network [17]. Neural networks are well suited for complex shapes within the
data that can not be calculated with linear or logistic functions. The more complex
the problem is the more complex the function needs to be. With the complexity of the
function also the accuracy of the Neural Network increases [1, S. 135].

Figure 2.5 shows an abstract overview of the structure of a Neural Network. The left
side represents the input layer, which is composed of the independent variables. These
inputs are taken to predict the dependent variables. This prediction is modeled as the
output layer on the right side. The number of nodes of the output layer is defined by
the number of classes available in dependent variable (distinct values of the dependent
variable). In a regression problem for example, there will be only one node in the output
layer. Between the input and the output layers, there can be multiple hidden layers.
These layers transform the input variables into a higher order function. These hidden
layers are essential for identifying complex relations and patterns [1, S. 136].

2.7 Hyperparameter Tuning
Hyperparameter tuning is the process of finding the optimal combination of hyperpa-
rameters for an algorithm to increase its performance. Hyperparameters are parameters,
which are defined before the construction of the model. Such parameters are for exam-
ple the soft margin constant 𝐶 for the Support Vector Machine or the class weight for
the Support Vector Machine/Logistic Regression. There are two main approaches to
optimize the hyperparameters for an algorihm: Grid Search and Random Search. For
the grid search a set of hyperparameters and their possible values is defined. Then all
possible combinations out of these parameter values are search through exhaustively.
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Figure 2.5: Neural network structure [1, S. 136].

The advantage of this method is that it guarantees that the best parameter combina-
tion will be found. The drawback is that this exhaustive search can be computationally
expensive and time consuming. The Random Search scores with lower processing time
as the hyperparameters are searched randomly. However this comes with the drawback
that it is not guaranteed that the optimal parameter combination will be found [18].

2.8 Feature Extraction
Since machine learning models cannot understand texts directly but only numeric rep-
resentations, numeric features have to be extracted from the input data. There are
multiple approaches of how to extract features from textual data such as the TF-IDF
model, Bag of Words or the one hot encoding. One problem with the Bag of Words
model is that the feature vectors are based on absolute term frequencies. As a conse-
quence words that occur less often can easily be overshadowed by words that occur in
nearly all documents. The problem is that words that occur in nearly all documents are
not significant for classifying the texts into different categories. In fact, words that oc-
cur less often are way more informative and relevant to distinguish classes. The TF-IDF
(term frequency-inverse document frequency) strategy solves this problem, as words
that occur often weigh less that words that occur less frequently [9].

For a Neural Network, features are extracted from the texts using one hot encoding.
Given a “numeric representation of any categorical feature with m labels, the one hot
encoding scheme, encodes or transforms the feature into m binary features, which can
only contain a value of 1 or 0. Each observation in the categorical feature is thus con-
verted into a vector of size m with only one of the values as 1 (indicating it as active).”
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As a numeric representation of the categorical feature is needed, all text labels have to
be converted to numeric representations beforehand [10].

2.9 Sentiment Analysis
Sentiment analysis is the process of extracting emotions from texts to conclude their
polarity. One big challenge when analysing the sentiment is the complexity of the lan-
guage. Words can have different meanings depending on the context they are used in.
Their meaning is dependent on the knowledge domain, the area of expertise and if they
are combined with a negation. The automation of sentiment analysis requires complex
and well-defined boundaries to bring clarity to that ambiguity. Furthermore, the senti-
ment analysis is also dependent on the domain and media the texts come from. Articles
from a news platform for example require a different analysis that texts from social
networks such as Facebook or twitter. Articles from news platforms follow grammatical
rules and usually contain no misspellings. Social media posts on the other hand do not
follow grammatical rules, sentences are often incomplete, misspellings are occasionally
contained in the posts and emoticons are included to show emotions. The results from
a sentiment analysis can be either the polarity or the range of polarity. The polarity
means that the result is either positive, neutral or negative. An example for the range
of polarity are star ratings or rankings on a scale from 1 to 10 [15].

2.10 Technologies Used
The project is implemented in the programming language Python. The libraries used
are scikit-learn, NLTK and Keras.

Scikit-learn: Scikit-learn is a free machine learning library for Python which offers vari-
ous tools for among others data mining and data analysis. It is open source, commercially
usable and build on NumPy, SciPy, and matplotlib. The main applications of scikit-learn
are [7]:

• Classification: the identification the class a data point belongs to.
• Regression: the prediction of a continuous output variable for a data point.
• Clustering: the grouping of similar data points.
• Dimensionality reduction: the reduction of considered random variables.
• Model selection: the comparison and validation of models and hyperparameters.
• Preprocessing: the process of data preparation and feature extraction.

NLTK: NLTK, which stands for Natural Language Toolkit, is a package for building
text analysis programs in python. It consists of the most common algorithms for nat-
ural language processing such as tokenization, stemming, sentiment analysis and many
more. NLTK is well documented and provides a hands-on guide in which the underlying
principles behind the supported language processing tasks are explained [23; 28].
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Keras: Keras is a Neural Networkk API written in Python. It is a high-level API and
therefore easy to use. With keras easy and fast prototyping is possible because it is
modular, user friendly and easy to extend. Regarding the modularity the aim of keras
is to encapsulate all functionalities in standalone modules which can later be combined
when creating new models [19].



Chapter 3

State of the Art

This chapter analyses relevant state of the art approaches of automated text classifica-
tion. Several papers are taken into consideration that tackle similar tasks to the one’s
in the master thesis project, such as binary text classification, the imbalance of data
or finding the optimal model for a certain task. The chapter is divided into two main
parts: the sequential analysis of existing papers in Section 3.1 and a summary and the
relevance of the papers for the master thesis project in Section 3.2.

3.1 Analysis
In this section multiple papers are analysed in terms of their classification approaches.
The analysis focuses on the complete pipeline developed from data acquisition to evalua-
tion, which includes among others data preparation and text preprocessing, classification
algorithms, handling of imbalanced data as well as the system architecture.

3.1.1 Automatic Text Classification of Crawled News
The research in [14] intends to find the appropriate algorithm to automatically classify
a news article in Indonesian language. The classification process from textual input to
categorical output is shown in Figure 3.1 and consists of five main steps:

• Gather the textual input via web crawling and scraping,
• perform multiple text preprocessing steps,
• select relevant features from the preprocessed textual data,
• perform the classification based on the extracted features
• and finally receive the predicted category as output.
Since the classification process of the master thesis project also ranges from data

acquisition via crawling to the prediction of a class for a certain article, the classification
process introduced in Figure 3.1 is a good starting point to develop the classification
process for the project. Similar to the approach of this paper, the data for the master
thesis project is also gathered using web crawler. Regarding text preprocessing it is also
experimented with several approaches such as lemmatization or the removal of stop
words. One big difference is that the paper tackles multinominal classification whereas
the task of this thesis project is binary classifiaction.

11
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Figure 3.1: Classification process from input data to category output [14].

3.1.2 Comparison of multiple Machine Learning Algorithms for the Classification of
Imbalanced Data

The approach stated in [8] can help to solve the task of the master thesis project as
both problems are similar in terms of imbalanced data. Additionally, both approaches
deal with binary classification of news articles. For the classification of the news articles
in [8] multiple machine learning algorithms are considered to build binary classifiers.
Based on these models an evaluation was performed to identify the best model.

Besides the algorithms it is also covered which data is available when scraping as
well as which problems can occur regarding the data. Attention is drawn to the fact
that the desired data might not be available for every article as the provided data can
sometimes be very limited. The title as well as the body text of an article is no problem
but the author of the article is often not provided or simply replaced with an agency. It
is also noted that images must be ignored as the features for the models are based only
on textual data. These remarks have to be kept in mind for the master thesis project
as the data is also gathered using web crawling and scraping.

To find out which method works best for feature selection multiple variations were
experimented with. Models were trained without any feature selection, meaning with
the plain text, as well as with multiple feature selection variations in which it was
experimented with the removal of stop words and stemming among others. Based on
the analysis of the results it is claimed in [8] that stemming can have either a negative,
a positive or no impact on the effectiveness of the model. From this they result that
the effect of stemming cannot be generalized but is highly dependent on the input data.
All in all, this concludes that feature selection is always different depending upon the
algorithm and data used. It shows that there is not one best solution on how to prepare
the data for an algorithm. It always depends on the algorithm and the data provided and
has to be worked out individually through experimenting. The goal of [8] was to compare
multiple algorithms and find out which one fits their data best. For the comparison two
main measurement categories were defined: Effectiveness and Efficiency.

Four effectiveness measures have been selected which depend on the confusion matrix
output, which are: True Positive, False Positive, True Negative, and False Negative. The
following four effectiveness measures have been chosen in [8]:

• precision,
• recall,
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Table 3.1: Effectiveness of F-Measure [8].

Combination SVM C4.5 Naive-Bayesian

Plain 98.95 96.91 97.96
Stop Word Removal 100 96.91 98.97

+ Stemming 98.95 98.95 98.97
+ Chi-Square FS 100 98.95 98.97

• accuracy
• and f-measure (micro-averaging).

The above stated effectiveness measures will also be used in the master thesis project
to compare which variation of an algorithm performs best. In addition to effectiveness,
the following efficiency measures have been chosen in [8]:

• The calculation time needed for model creation,
• the size of the model,
• the number of features for a model and
• further algorithm specifics such as the number of support vectors for Support

Vector Machine models.
Concerning the efficiency measures only the first two items may become relevant when
evaluating the thesis project.

Table 3.1 shows the results from [8] for the f-measure. From these results it can be
seen that in three of four cases the Support Vector Machine (SVM) performed the best.
However, with performances ranging from 96.91% to 100% it can be concluded that
all three models result in a satisfying performance. Even though the Support Vector
Machine outperformed the other models, it is mentioned in [8] that one big downside
of the Support Vector Machine is a very high calculation time. Concerning the train
and test split they settled for a ratio of 70/30 as this ratio showed the most promising
results after several experiments.

When preparing the dataset of the master thesis project similar problems to the ones
mentioned in [8] might occur with feature extraction because of incomplete data, such
as missing authors. Similar to the data and the classification method of this paper, the
master thesis project also deals with imbalanced data and binary classification. In the
paper there is an equal focus on effectiveness and efficiency when comparing the results,
whereas in the master thesis project the main focus is on effectiveness. The effectiveness
measures for the master thesis project are similar to the measures from [8]. Efficiency
measures will only be taken into consideration if the effectiveness of the models does
not differ a lot.

3.1.3 Automated Text Classification using a Cost-Sensitive Support Vector Machine
When dealing with imbalanced data the aim of [6] is to increase the performance for the
majority class while at the same time keeping the error rate of the minority class low.
It is stated that the Support Vector Machine is a popular choice for such a use case as
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risk minimization is possible with this model. Another point that makes the Support
Vector Machine a suitable approach is the fact that this model is able to generalize well
on limited data, in contrary to models such as Neural Networks that require a lot more
data. Further, the Support Vector Machine is well suited for imbalanced datasets, as
the penalties associated with classes can be adapted. With adjusting the penalties it
can be defined which classification errors are worse and therefore should be penalized
higher [6].

A new Support Vector Machine, called Biased Support Vector Machine (BSVM) is
introduced in [6]. This BSVM is based on the metrics recall and specificity. It is pointed
out that a cost-sensitive Support Vector Machine usually provides better results in
terms of recall than a standard Support Vector Machine. Nevertheless, it is criticised
that even the cost-sensitive Support Vector Machine does not provide a way to regulate
the level of recall. This is why the BSVM is introduced, which is said to be able to
regulate the level of recall. According to [6] the main difference to the Support Vector
Machine is that the BSVM always focuses on the priority class, regardless of which
class the majority class is. The performances of the Support Vector Machine and the
BSVM are evaluated and compared to each other based on an imbalanced dataset. For
the evaluation it was decided to not use the accuracy, as this metric calculates the
total correct classified instances, regardless of if the instances are correctly classified as
negative or positive. This means that every correct classification weights the same. If
one class, either positive or negative, is of greater importance the accuracy is not the
right metric to choose as this metric can not favor one specific class. Taking this in
consideration it was decided in [6] to use the precision and the f-value as metrics. The
precision was chosen because the cost of False Positives should be high and the f-value
was chosen because it keeps a balance between precision and recall (high cost associated
with False Negatives). In the experiments of [6] a lower bound for the recall measure
was defined. Since this bound was applied to the training data, the recall of the test
data was not always greater or equal than this lower bound. However, it is claimed that
BSVM produces good classification results in terms of recall as the recall of the test set
is always close to the previously defined lower bound.

Since a Suppport Vector Machine is used in the master thesis project, one of the
most important insights from [6] is that it is stated that a cost-sensitive Suppport Vector
Machine is better in terms of recall than a regular Suppport Vector Machine. Although it
is claimed that a BSVM delivers much better results, a cost-sensitive Suppport Vector
Machine will be used in the master thesis project this algorithm is proven to be a
promising method.

3.1.4 The Impact of Text Preprocessing on Text Classification
The importance of text preprocessing for text classification is shown in [13]. To high-
light the importance, the impact of preprocessing on text classification is extensively
examined. In this research several aspects such as text domain and language, classifi-
cation accuracy and dimension reduction are considered. All possible combinations of
the most common used preprocessing tasks are evaluated and compared to each other
on two different domains (e-mail and news) and in two different languages (Turkish
and English). After analyzing benchmark datasets it is believed that certain combina-
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tions of preprocessing tasks, depending on the domain and language of the texts, could
significantly improve the accuracy of an algorithm [13].

The preprocessing tasks experimented with in [13] are: tokenization, stop-word re-
moval, lowercase conversion and stemming. The extensive experiments were carried out
in multiple languages, with different feature selection approaches and with multiple
datasets namely binary and multiclass as well as balanced and imbalanced datasets.
Since the text language of the master thesis project is neither English nor Turkish but
German, the results of both languages are taken into consideration. The texts of the
master thesis project are news articles, therefore the main focus is on the results of the
news domain of [13]. The news datasets, both from the paper and the master thesis
project, are imbalanced. Further, the classification algorithm used in the research of the
paper as well as the master thesis project is, among others, the Support Vector Machine.

For the experiments in [13] four preprocessing tasks were selected. Since all possible
combinations of the four selected preprocessing tasks are tested this leads to 16 different
combinations in total. The possible values tested for each preprocessing task are:

• Tokenization is either alphanumeric or alphabetic,
• stop-word removal is either applied or not,
• lowercase conversion is either applied or not
• and stemming is either applied or not,

The results of these experiments show the importance of alphanumeric tokenization, as
in feature set of the English news 10% of the selected terms contained numeric char-
acters. Further investigations showed that especially business related news contained
a huge amount of numeric terms, such as ‘1st” and “2nd”. If alphabetic tokenization
would have been applied to this dataset those terms would have been converted to “st”
and “nd” and therefore their significant information would have been lost. The results
also highlight that stop words removal is much dependent on the language, since it
had a positive impact on English news but not on Turkish news. With stemming it is
the opposite case: on Turkish news it has a positive impact and on English news not.
According to the results, lowercase conversion should always be applied, regardless of
domain and language because it reduces the feature size.

As a conclusion of these extensive experiments it is stated in [13] that certain op-
timal preprocessing combinations, which are always dependent on the data used, may
significantly improve the performance of an algorithm. However, if the preprocessing
combination is chosen badly this can also effect the algorithm the other way around
and decrease its performance. Consequential it is stated that there is no best parameter
combination that improves every model independent of data and language. From these
results it can be deduced that for every new text classification task the different pre-
processing tasks should be experimented with. Many preprocessing tasks influence the
performance of the model differently depending on domain and language, which con-
cludes that there is no best overall solution. However, it is concluded that preprocessing
can improve the classification results notable. Consequently, text preprocessing will be
an important step when preparing the data for the classification in the master thesis
project.
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3.1.5 Research if Sentiment Analysis can help to Identify Spam Messages
The research of [5] tries to find out if sentiment analysis can help to identify spam
messages. The focus of this research is to improve spam detection with a conjunction of
sentiment analysis and other text mining and natural language processing techniques. In
order to be able to work with the sentiment, the sentiment of each message of a dataset
first needs to be calculated and added as a new attribute. Then the classification results
with and without the calculated sentiment attributes are compared. As a metric for the
comparison the accuracy is used.

In their research the first step was to find out which classifiers with which hyper-
parameters perform best when identifying spam messages. As they only considered the
Bayesian classifier, they experimented with multiple variations of it to find its optimal
configuration to fit the problem. Before applying the classifiers of course multiple text
preprocessing steps were performed on the dataset. The second step was to calculate
the sentiment score of each email and add this score as a new attribute to the dataset.
To determine the sentiment they considered two approaches: develop an own sentiment
classifier and use an existing classifier. Their own sentiment classifier is based on Senti-
WordNet1 with which the average sentiment polarity of each email was calculated. As
an existing classifier the TextBlob2 classifier was used which provides a simple API for
the desired NLP tasks. To identify the optimal threshold for the sentiment analysis, a
previously labelled dataset was taken and relabelled using the two sentiment classifiers
mentioned above. Finally, the best performing classifiers identified in step one were ap-
plied to the dataset, which was extended with the sentiment features, and the results of
the classifiers with and without the calculated sentiment score were compared to each
other.

The main insight from [5] is the fact that spam messages are more likely to result
in a positive sentiment than non spam messages. Based on this result it is claimed that
the polarity of an email helps to improve the performance of the classifier in most cases.
In the master thesis project it is examined if the polarity of texts helps to identify paid
news articles, as it is believed that not only spam messages but also paid news articles
have the tendency to result in a positive sentiment.

3.1.6 Comparison of Supervised Machine Learning Algorithms in terms of Accuracy
when Classifying News Articles

Three supervised machine learning algorithms are used and to classify Nepali news
articles and compared to each other in terms of accuracy in [11]. The features were
extracted from the textual data using the TF-IDF approach. Then the same features
were used in input data for the Naive Bayes, the Neural Network as well as for the
Support Vector Machine. Finally the results from all three models are compared to each
other. The news articles were collected from multiple news platforms with crawling. All
in all, they collected news articles of 20 different topics such as business, health or sport.
There are some minor imbalances in the news topic distribution but all in all there is
no majority class.

1http://ontotext.fbk.eu/sentiwn.html
2https://textblob.readthedocs.io/en/dev/

http://ontotext.fbk.eu/sentiwn.html
https://textblob.readthedocs.io/en/dev/
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Figure 3.2: News classification system pipeline [11].

Figure 3.2 shows the whole text classification process introduced in [11]. This process
consists of the following steps:

• The preprocessing, which again consists of four steps namely tokenization, special
symbol and number removal, stop word removal and stemming.

• The feature extraction which is done using the TFIDF vectorizer.
• The machine learning itself, which is performed using either the Naive Bayes, the

Support Vector Machine or a Neural Network. The hyperparameters were analyzed
and optimized for each model to reach the best possible classification results.

• The evaluation of the three models using the metrics accuracy, precision, recall
and f-score.

Table 3.2 shows the mean performance of each algorithm. In each case, the mean value
results from the five different runs of an algorithm. As listed in Table 3.2, the Support
Vector Machine, both with RBF and linear kernel, outperforms the other algorithms.
Nevertheless, after the Support Vector Machine the Multilayer Perceptron (MLP) Neu-
ral Network follows with slightly less percentages of precision and recall. Only the Naive
Bayes did not perform that well. It is claimed in [11] that taking everything in consid-
eration the Support Vector Machine outperformed the other algorithms.

The data gathering approaches from [11] and the master thesis project are the same,
both gather data from multiple news platforms using web crawler. Also the classifica-
tion process from text gatehering, text preprocessing to vectorization and evaluation is
similar. In the master thesis proejct it is also experimented with stop words removal and
stemming among others. For the evaluation the metrics recall and f-score are relevant as
well. The optimization of the hyperparameters for the algorithms is performed using the
grid search for the master thesis project as well as in [11]. The Support Vector Machine
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Table 3.2: Results of the four models used [11].

Measures Naive Bayes SVM (Linear) SVM (RBF) MLP

Accuracy 68.31 74.62 74.65 72.99
Precision 69.2 75.2 75.4 73

Recall 68.2 74.6 74.6 73
F Score 67.2 74 74.4 72.2

and the Neural Networks are experimented with in the master thesis project as they
show promising results in Table 3.2.

3.2 Summary and Findings

A good overview of a text classification workflow in introduced in [14] and is shown in
Figure 3.1. A detailed illustration of the pipeline of the whole text classification process
introduced in [11] is shown in Figure 3.2. These two workflow approaches are good
starting points to set up the classification workflow for the master thesis project.

The data for the master thesis project was gathered using web crawler, similar as
presented in [14]. The meta-data provided by web pages is limited. This problem came
up when cleaning the gathered data. Paper [8] also stated the same problem regarding
data limitations. They highlight that for example the author, if provided, has no fixed
location. Regarding the class distribution, the dataset of the master thesis project is
imbalanced and the classification type is binary. [8] and [6] deal with binary classification
of imbalanced data. It is shown in in [6] that a cost-sensitive Support Vector Machine
performs better on imbalanced data than a standard Support Vector Machine (see
Section 3.1.3). The impact of text preprocessing on text classification is shown in [13]
in which several preprocessing tasks namely tokenization, stop-word removal, lowercase
conversion and stemming in a binary and multi class setting are approached (see Section
3.1.4). The results presented in [13] highlight that there is no overall best preprocessing
setting. In fact, the best preprocessing setting for a certain task is always domain and
language specific.

One part of the master thesis project is to examine if a sentiment analysis helps to
improve the identification of paid news articles. In [5] a similar study is presented, in
which the aim to find out if the polarity of an email can increase the accuracy of an
algorithm when identifying spam emails (see Section 3.1.5). Looking at the results from
[11], in which different machine learning algorithms are applied to classify news articles,
Support Vector Machines and Neural Networks show the most promising results (see
Section 3.1.6).

Regarding the evaluation of the algorithms, paper [8] gives detailed insight in their
algorithm performance measurement. The algorithms are evaluated using two different
categories namely effectiveness and efficiency (see Section 3.1.2). A detailed explanation
of the metric chosen for the evaluation is also presented in [6] (see Section 3.1.3).



Chapter 4

Methodology

The implementation of the project is divided into five main steps, which are shown
in Figure 4.1. Data gathering includes all steps that lead to the final database, which
are mainly crawling, scraping and data cleaning (see Section 4.1). The next step, data
preprocessing, deals with text preprocessing methods such as tokenization, stop words
removal, stemming and lemmatization (see Section 4.2). Feature extraction (see Section
4.3) is done using the tfidf (term frequency inverse document frequency) approach,
which means that words that occur often in the texts weight less than words that occur
rarely. Another feature, which is extracted and tested if it improves the performance of
a classifier, is the sentiment of the texts. To get the sentiment score, a sentiment analysis
is performed for every text and the result is stored in an additional database column.
The fourth step is the classification itself (see Section 4.4). To classify the texts three
different approaches are implemented and compared to each other. The approaches used
are: Support Vector Machine, Logistic Regression and Neural Networks. The algorithms
themselves are optimized by hyperparameter tuning. To find the optimal parameter
combinations a grid search is performed. The final step is the evaluation and comparison
of all optimized algorithms. For this the k-fold cross validation is used (see Section 4.5).

Figure 4.1: Process of the project implementation.

19



4. Methodology 20

4.1 Data Gathering
The data was collected from multiple news platforms using crawling and scraping ap-
proaches (see Section 4.1.1). Afterwards the data was cleaned, meaning the removal of
irrelevant articles, the extraction of authors and many more (see Section 4.1.2).

4.1.1 Crawling and Scraping
As a first step, multiple news platforms were crawled to gather the urls of news articles.
Since every news platform has their own HTML structure and their own way how to
provide news articles, a seperate crawler has to be implemented for every platform.
Some news platforms are easy to crawl as they provide an archive. The crawler for
the platforms without an archive are more complex and need more initial effort. Some
articles are identified by an id (for example krone.at) which makes the articles easy to
crawl as the url can to be called with iterating over a defined set of numbers as the
id. Also a google search crawler is implemented for every selected news platform. The
google search crawler gather all articles for multiple predefined search terms in the tabs
“all” and “News”.

After the urls are collected, every url is called and the content of the news article
is scraped. A separate scraper has to be implemented for every selected platform, as
the HTML structure is different for every platform. The crawler and scraper are imple-
mented in Python with BeautifulSoup and Selenium. Selenium is needed because some
platforms load their archive/data asynchronously and therefore parts of the content are
missing on the initial page load. For those cases a Selenium scraper will be implemented,
which awaits the content load with a timeout.

BeautifulSoup Scraper: With the BeautifulSoup library1 one element as well as multiple
elements which match a given selector can be selected. One element can be selected
using the find() method, which returns a single BeautifulSoup element. The method
find_all() returns a list of elements that can be looped through afterwards. To define
which elements to select, a HTML tag is passed to the find-function. To refine the search
a css class or an id can optionally be passed to the find-function as well. Then the text of
the selected elements can be parsed with the get_text() function. This text data can
be stored for example in a database after parsing. To find out which HTML elements
with which classes/ids need to be parsed, the web page is first manually inspected
using the google chrome dev tools. Before the desired elements can be selected with
BeautifulSoup, the HTML of the page needs to be downloaded for example with the
python request library2.

Selenium Scraper: Selenium3 is a web driver that enables python to control the browser
via OS-level interactions. With Selenium a web page can be requested using the brow-
ser.get() function. If the page needs time to load, Selenium can be commanded to
wait using the time.sleep() function. In this project, after the page is fully loaded it

1https://www.crummy.com/software/BeautifulSoup/bs4/doc/
2https://2.python-requests.org/en/master/
3https://www.seleniumhq.org/

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://2.python-requests.org/en/master/
https://www.seleniumhq.org/
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Table 4.1: Initial draft of the news article database.

Name Type

id INTEGER NOT NULL PRIMARY KEY
AUTOINCREMENT UNIQUE

url TEXT UNIQUE
author TEXT

category TEXT
title TEXT
body TEXT
date TEXT

sponsored TEXT
credits TEXT

is handed over from Selenium to BeautifulSoup and the data is extracted as explained
above.

The data is stored in a SQLite database. Table 4.1 shows the initial draft of the
database. It was the goal to gather the following information for every news article: url,
author, category, title, body, date, credits and if this article is sponsored or not. One
important detail is that the url has be be unique in order to be able to perform multiple
crawling iterations without storing any article more than once.

4.1.2 Data Cleaning
Before the actual data cleaning and conversion to same formats can be done, irrelevant
articles have to be removed from the database. Irrelevant articles are: image galleries
(because only textual content can be processed), polls (because most of them are already
expired), epapers, pdfs and weather reports. More irrelevant article categories can occur
during the actual implementation. After the irrelevant articles are removed from the
database, a separate cleaning script is implemented for every news platform, same as
for crawling and scraping, because there are big differences in the textual content and
the format of for example the date. General cleaning steps that are the same for every
platform are:

• Every date string is converted into the datetime format to have a uniform repre-
sentation of the date for later visualisations.

• If the author is missing, the body text is checked for some patterns to extract an
author if possible (for example string in brackets at the end of the text).

• Excessive whitespaces are removed from all texts.
• Every new line is replaced with one white space.
• Newsletter sign up texts are removed if contained in the body text.
Since the goal is to distinguish paid from non paid articles, all gathered articles
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Table 4.2: Stem and Lemma of inflected words.

Word Stem Lemma

study study study
studying study study
studies studi study

have to be labelled as sponsored true or false. To achieve this, multiple sponsored news
articles of every news platform were manually inspected to retrieve the corresponding
identifiers for sponsored articles.

4.2 Data Preprocessing
When preparing the data for the classifiers, the following preprocessing options will be
experimented with:

• stemming,
• lemmatization,
• stop word removal,
• the maximum document frequency (max_df) of a word to be included as a feature
• and minimum document frequency (min_df) of a word to be included as a feature.

Stemming and lemmatization are text normalization techniques that both convert in-
flected words to their root form. The difference is that with stemming the root form does
not need to be a valid word whereas with lemmatization the root form always is a valid
word. Stemming reduces the words to their root form, also called Stem, by removing
the suffixes or prefixes. This can often lead to word stems that are no grammatically
valid words. Lemmatization converts inflected words properly which ensures that the
root form, also called Lemma, is a grammatically valid word. This is achieved using
lexical knowledge to get correct root form [24]. Table 4.2 shows the difference between
stemming and lemmatization. Lemmatization produces the same Lemma for all three
words, whereas stemming produces two different Stems.

Stop words are words that occur is nearly all documents and do not help to separate
texts into classes. As those words are not significant they can be removed from all texts.
This can be done by using default lists such as the list “english” provided by sklearn
or by passing a custom list of stop words. Another possibility to regulate stop words is
through the parameter max_df.

The parameters max_df and min_df define thresholds for the maximum and the
minimum document frequencies of words. max_df defines the maximum document fre-
quency a word is allowed to have to be included when building the vocabulary. All terms
that have a document frequency higher than max_df will be ignored. min_df works the
other way around. It defines the minimum document frequency a word must have to
be included when building the vocabulary. All terms that have a document frequency
lower than min_df will be ignored.
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4.3 Feature Extraction
The data is vectorized using the TF-IDF approach. The TfidfVectorizer from sklearn
converts the data into a matrix of TF-IDF features. This vectorizer accepts the prepro-
cessing options mentioned above as parameters. The stemming and the lemmatization
can be applied by passing them as the TF-IDF’s tokenizer. The other preprocessing
options can be passed using the vectorizers same-named parameters. Before building
the vocabulary all words will be converted to lowercase, as suggested in [13]. For this
no parameter needs to be set as it is the TfidfVectorizers default. The term TF-IDF
is composed of the TF (Term Frequency) and the IDF (Inverse Document Frequency),
which causes rare words to have higher weights than words that occur more often.

As an additional feature the sentiment for every news article will be calculated.
Then it will be evaluated for every algorithm used if the sentiment scores improve its
performance. To calculate the sentiment the Google Cloud Natural Language API will
be used4. This API returns a sentiment score as well as a magnitude. To interpret those
values thresholds for the score as well as for the score-magnitude combination need to
be defined.

4.4 Classification
To find the algorithm which fits best when identifying paid news articles, multiple al-
gorithms will be taken into consideration and experimented with. The approaches used
in this project are: Support Vector Machine, Logistic Regression and Neural Networks.
The optimal hyperparameters for the Support Vector Machine as well as for the Logistic
Regression will be identified using the grid search5. With a grid search the optimal
values for the parameters for a certain model can be determined. It is hard and time con-
suming to manually find the best hyperparameter combinations. Grid search automates
this process and performs a cross validation to get the best performing hyperparameter
combination. To use a grid search, the following parameters have to be provided:

• estimator: the model which is used,
• param_grid: a list of parameters to be optimized; for every parameter an array

of values has to be provided.
It is also possible to change the scoring function of the cross validation. As a scoring
function precision, recall, f1-score and others can be chosen (see model documentation
6). The scoring functions used in the master thesis project are recall and f1-score.

Hyperparameters to optimize for the Support Vector Machine: The following hyperpa-
rameters were considered for the optimization of the Support Vector Machine:

• kernel,
• C,
• and class_weight.
4https://cloud.google.com/natural-language/
5https://scikit-learn.org/stable/modules/grid_search.html
6https://scikit-learn.org/stable/modules/model_evaluation.html

https://cloud.google.com/natural-language/
https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/model_evaluation.html
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Figure 4.2: Support Vector Machine hyperparameter kernel [2].

Figure 4.3: Support Vector Machine hyperparameter C (soft margin constant) [2].

The first hyperparameter is the kernel, which defines the flexibility of the classifier. The
higher the degree of the polynomial, the more flexible the decision boundary gets [2].
Figure 4.2 shows how the kernel parameter affects the hyperplane. The linear kernel
leads to a straight line whereas the polynomial kernel leads to a curve with a bend
depending on the degree .

The second hyperparameter is C, also called soft-margin constant. The larger the
value of C is, the larger is the penalty that is assigned to errors/margin errors [2].
Figure 4.3 shows how the parameter C affects the hyperplane of the Support Vector
Machine. The left illustration shows a Support Vector Machine with a high value for C.
This leads to a hyperplane which is close to several data points and has a narrow margin.
For the right illustration a low value is chosen for C, which leads to a hyperplane with
a much larger margin. Not only the margin but also the orientation of the hyperplane
is affected by the value of C.

The third hyperparameter is the class_weight, which is an optional parameter for
the Support Vector Machine. If the class_weight is not provided every class has the
same weight. If the class_weight is set to be balanced then the weights for the classes
are automatically adjusted inversely proportional to class frequencies, leading minor
classes to have higher weights.
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Figure 4.4: Decision regions of Logistic Regression depending on hyperparameter 𝐶 [22].

Hyperparameters to optimize for the Logistic Regression: The following hyperparameters
were considered for the optimization of the Logistic Regression:

• solver,
• C,
• and class_weight.

The first hyperparameter named solver is the algorithm used in the optimization prob-
lem. The values considered for this parameter are: liblinear (a good choice for small
datasets, limited to one-versus-rest schemes) and lbfgs (recommended for use for small
data-sets, used by default because its robustness) [29]. The hyperparameter C is the
regularization parameter (𝐶 = 1

𝜆). The effect of 𝜆 is described in [22] as follows:

Lambda (𝜆) controls the trade-off between allowing the model to increase
it’s complexity as much as it wants with trying to keep it simple. For exam-
ple, if 𝜆 is very low or 0, the model will have enough power to increase it’s
complexity (overfit) by assigning big values to the weights for each parame-
ter. If, in the other hand, we increase the value of 𝜆, the model will tend to
underfit, as the model will become too simple.

The parameter 𝐶 works the other way around. If a small value is chosen for 𝐶 the
regularization strength is increased. As a consequence the model is kept simple and
therefore is prone to underfit the data. If on the other hand a big value is chosen for
𝐶 the regularization strength is low. As a consequence the model can get very complex
and therefore is prone to overfit the data. Figure 4.4 shows how the decision regions
change depending on the value chosen for 𝐶 [22].

The hyperparameter class_weight defines the weight associated with each class.
If the class_weight is set to be balanced the weight for each class is automatically



4. Methodology 26

adjusted inversely proportional to the class frequencies. If not set every class has the
same weight.

Parameters to optimize for the Neural Network: For the optimization of the Neural Net-
work it will be experimented with the following parameters:

• vocabulary_size,
• input_length,
• epochs,
• and batch_size.
The first parameter, vocabulary_size, is no direct parameter of the algorithm but

used in the feature extraction step. In contrary to the TfidfVectorizer (used for the
Support Vector Machine and the Logistic Regression) the vocabulary size needs to be
defined for the one hot encoding. Therefore the parameter vocabulary_size is used
to define the maximum vocabulary size, meaning the amount of features extracted.
Multiple values will be experimented with to see how the vocabulary size affects the
performance of the model.

As the input_length has to be passed to the model, every one hot encoded article
has to be brought to the same length. To achieve this, a concrete input_length is
defined and the all articles are cut to this length. This is done using the pad_sequences
function, which either cuts the array at the end if it is bigger than the defined length
or fills up the array with zeros at the end until the defined length is reached.

One Epoch is when the entire dataset is passed forward and backward through the
Neural Network once. If the number of epochs it set to just one epoch the model will
underfit. Multiple epochs need to be performed until the Neural Network reaches its
optimum. However, if the number of epochs is too high, to model will be overfitted [31].
It will be experimented with the number of epochs to whether over nor underfit the
model.

The batch_size is the total number of training examples present in a single batch.
It is used to not have to pass the entire dataset into the Neural Network at once but
in several batches with a defined batch_size [31]. If not specified, the batch size will
have a default value of 32 [25].

4.5 Evaluation
An extensive evaluation is performed to achieve three main goals:

• Evaluate the performance of each model to optimize its performance by the tuning
of hyperparameters. The goal is to tune the hyerparameters in such a way that
the model best fits the given data without over- or underfitting the model.

• Compare the optimized models of all algorithm used to each other to find the
best performing classifier. The goal is to rank the Support Vector Machine, the
Logistic Regression and the Neural Network in terms of model performance.

• Compare the results of the optimized models with and without including the
results of the sentiment analysis. The aim is to see if the sentiment feature improves
the performance of the model.
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Table 4.3: Confusion Matrix.

Predicted Label
Positive Negative

Actual Label
Positive True Positive False Negative
Negative False Positive True Negative

To achieve goal one, the optimization of one model, the algorithms themselves will
be evaluated and optimized using the recall, f1 score and the confusion matrix.

The 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (see Formula 4.1) indicates how many of all predicted positives are
actual positives. This metric is a good choice when the cost associated with False Pos-
itives should be high. An example for high costs associated with False Positives is the
email spam detection. Emails that are no spam messages (actual negative) should in no
case be classified as spam (False Positive). The 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is calculated as follows:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
. (4.1)

The 𝑟𝑒𝑐𝑎𝑙𝑙 score shows how many positives out of all actual positives were classified
correctly. This metric is a good choice when the cost associated with False Negatives
should be high. Regarding the master thesis project, the aim is identify the paid articles.
Therefore, if a paid article (Actual Positive) is predicted as non paid (Predicted Nega-
tive), the cost associated with such errors should be high. The formula for the 𝑟𝑒𝑐𝑎𝑙𝑙,
which calculates how many of all actual positives are classified as positive, is

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
. (4.2)

If the aim is to keep a balance between 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙, the 𝑓1𝑠𝑐𝑜𝑟𝑒 (see
Formula 4.3) is a good choice, because it takes the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 as well as the 𝑟𝑒𝑐𝑎𝑙𝑙 into
account. In [32] it is stated that the 𝑓1𝑠𝑐𝑜𝑟𝑒 is the metric to choose for an uneven class
distribution. Since in the master thesis project there is an uneven class distribution
the main focus will be, alongside with the recall, on the f1-score while evaluating and
optimizing the algorithms. The 𝑓1𝑠𝑐𝑜𝑟𝑒, in which the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and the 𝑟𝑒𝑐𝑎𝑙𝑙 are
integrated, is calculated as follows:

𝑓1𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
. (4.3)

Also the confusion matrix will be analyzed to see how many paid articles are not
identified as paid ones (see Table 4.3). Those articles are represented as False Negatives.

The final evaluation and comparison of the Logistic Regression and the Support
Vector Machine, which approaches goal two and three, is done with the k-fold cross
validation7. The metrics used are recall and f1-score and the amount of folds is ten.

7https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
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Figure 4.5: 5-fold cross validation [30].

The metric used for the Neural Network is the accuracy and the amount of folds is also
ten. When performing a cross validation the initial dataset is partitioned into a number
of subsets. Each iteration one set is held out and the model is trained on the remaining
sets. Then the model is tested on the set which was held out. The 𝑘 in k-fold cross
validation represents the number of partitions the dataset will be split into. When a
specific value for 𝑘 is chosen, it can be used instead of 𝑘. Meaning if 𝑘 = 10 it becomes
the 10-fold cross-validation. Figure 4.5 shows the iterations of a 5-fold cross validation.
In [30] it is illustrated which partitions are used for training and which partition is used
for testing for every iteration.

The process of the 5-fold cross validation is describe in [30] as follows:
• take one group as a holdout set for testing,
• fit a model on the remaining groups,
• evaluate the model on the holdout set,
• keep the evaluation score and discard the model,
• calculate the overall model performance by taking the evaluation scores from all

iterations into consideration.
After the evaluation of the optimized models with the 10-fold cross-validation the

last step is to evaluate if the sentiment feature improves the performance of the model.
To achieve this the Logistic Regression is trained with and without the sentiment feature
and the results from these two models are compared to each other.



Chapter 5

Implementation

5.1 Data Gathering
Figure 5.1 shows the news distribution of the final database per year. The most articles
are from 2018, as the iterations of the crawling process were maily executed in 2018.
From the past years fewer articles were available as many news platforms either provided
no archive or in some cases even deleted articles after some time. During the scraping
process it became clear that articles are deleted from time to time as the longer the
time gap was between url crawling and content scraping the more articles were not
available anymore at the previously crawled url. The moment this issue was detected
the crawler and scraper were always executed at the same day from this time on. From
a few platforms news even before 2014 were collected. However it was decided to cap all
articles before 2014 since sufficient articles were only available for the minority of the
platforms.

Figure 5.1: Distribution of the articles of the final database per year.

29
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Figure 5.2: Platform distribution of articles before capping krone.

5.1.1 Crawling and Scraping
The news articles were collected from 12 different news platforms. Their initial platform
distribution is shown in Figure 5.2. At first the majority of the articles were from
“krone”. In fact, nearly half of all articles were from this single source. To prevent
that the classifiers are biased because of this huge imbalance, the “krone” articles were
cut to the same amount of the “pressetext” articles. The new platform distribution
after the capping is shown in Figure 5.3. There is still some imbalance because these
two sources make up more than half of all articles. Nevertheless, the imbalance of the
news platform distribution was decreased a lot by cutting the “krone” articles. The two
majority platforms can not be capped any further as this would result in having too few
data to work with. In order to really solve this imbalance the crawling and the scraping
processes would need to be executed over a much longer period to gather enough data
from every platform.

For every platform mentioned in Figure 5.3 two crawler were implemented: one initial
crawler and a second one which only collected sponsored articles. The initial crawler
gathered as much urls as possible from the platform itself, the archive of the platform (if
provided) and via the google search. These crawlers were executed multiple times over
months to always include the newly published articles. As after those crawling iterations
the imbalance of paid and non paid articles was too high (only about 10% paid articles)
a second crawler was implemented for every platform, which only gathers paid articles
and ignores non paid articles to compensate this imbalance. Finally a distribution of
29% paid and 71% non paid articles was reached, as shown in Figure 5.4. The classifiers
were trained on the highly imbalanced (10% paid) and again on the fewer imbalanced
(29% paid) data. The results showed that the distribution of 29% paid and 71% non
paid is sufficient to lead to good results. Of course the imbalance of the data still needs
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Figure 5.3: Platform distribution of the articles of the final database.

Figure 5.4: Class distribution of articles.

to be considered when implementing the classifiers.
After every crawling iteration, the content of the newly gathered urls was scraped.

To achieve this a separate content scraper was implemented for every platform. One
big challenge with the scraper was that some platforms had multiple different HTML
layouts for their articles, depending on the article category. This led to many special
cases which needed to be integrated iteratively into the corresponding platform scraper.

Table 4.1 shows the database which was created before the scraping. It shows the
attributes that wanted to be collected about an article. The following attributes are
available for every article:

• id,



5. Implementation 32

• url,
• title,
• body
• and if the article is sponsored.

Also the date is available for nearly all articles. Only 61 out of 44058 articles do not
provide the date.

The remaining attributes are not available for all articles and therefore not included
when classifying the articles. The author and the credits (which agencies contributed
to the articles; from where the content is taken) were extracted from the body text for
some articles. However, this information could not be extracted for many articles and
therefore is not relevant for the classification. The category was an interesting attribute
as it could show tendencies which categories are sponsored more often. This attribute
was dropped too because of lack of data.

During the crawling and scraping process several problems occurred. The first prob-
lem is that after multiple hours of scraping one scraper was blocked because of too
many requests. The same problem occurred with the google search selenium scraper.
After too many executions the google “i am not a robot” captcha was triggered on every
new execution try. Another challenge, which was already mentioned above, was that if
the time gap between crawling and scraping was too big, some articles had already
been deleted and therefore the content could not be scraped anymore. Additionally, for
some urls it was not possible to scrape any content because only textual data can be
processed in this specific task and some pages contained mainly image galleries, videos,
polls, epapers or similar non textual content.

5.1.2 Data Cleaning
Before the actual cleaning steps are performed, the database needed to be cleaned up,
meaning that articles that are irrelevant for classifying the news articles had to be
removed. Irrelevant articles that were contained in the database are:

• Test articles,
• image galleries and slideshows: for example baby image galleries (because only

text content is relevant);
• video content: video livestream, viral videos (because only text content is relevant);
• result tables: sport results, election outcome percent table;
• articles in which the body text is missing (for example https://www.krone.at/1607987);
• e-papers (for example http://epaper.heute.at/#/documents/171014_HEU);
• weather reports, horoscopes, quizzes, live ticker and many more.

After the content of the articles was scraped and the irrelevant articles were removed, all
the gathered information needed to be cleaned. The conversion of the data to a common
format and the extraction of data for additional database columns was achieved using
RegEx1. To get the datetime for every article, the date and time information often
needed to be extracted from strings which held not only the date and time information
but in some cases filler words, such as “last updated at”, or even the author of the

1https://www.regular-expressions.info/

https://www.regular-expressions.info/
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article. Therefore a separate RegEx to extract the datetime was implemented for every
platform.

Since some platforms use shortcuts for their authors, one attempt to extract the au-
thor was to create a list of author shortcuts and check if some of the shortcuts were con-
tained at the end of a body text. An example list is: [’apa’, ’dpa’, ’tmn’, ’jba’,
’spe’, ’sar’, ’sch’, ’rer’, ’KOB’, ’KOP’, ’mei’, ’red’, ’JSt’, ’ufi’,
’afp’, ’mja’]. However, the information could not be extracted for a sufficient amount
of aritcles to be relevant for the classification.

The process of labelling the articles as paid or non paid was also different for every
platform. Some platforms use one single identifications string (for example “Bezahlter
Inhalt” for kleinezeitung) while others use multiple identifications strings (for example
“Promotion”, “Advertorial” or “Bezahlte Anzeige” for krone). One platform even used
an image banner to mark the article as sponsored. In this case it was checked if the
class associated with the promotion image banner was contained in the HTML markup
of the news articles from this platform.

After all semantic cleaning steps were finished, all excess white spaces were removed.
First all new lines were converted into a single white space. Then the excess white
spaces were removed so that just one white space separates the words. In the end, the
beginning and the trailing white spaces were removed using the txt.lstrip() and the
txt.rstrip() functions.

5.2 Data Preprocessing
The parameters considered for the preprocessing are stemming, lemmatization, max_df,
min_df and stop word removal, as described in Section 4.2.

To test the impact of stop words removal a list of German stop words was taken
from PyPI2. The overall score is exactly the same with and without the removal of
those stop words. The only thing that changed with the stop words removal is that
numbers in the confusion matrix shifted. The number of False Negatives decreased by
6 but simultaneously the number of False Positives increased by 6. Looking at these
results it was decided to not include stop words removal in the final preprocessing steps.

As with the parameter max_df an upper limit for the frequency of terms can be
defined, it was decided to use this parameter to regulate more frequent words, such as
stop words, instead of using a predefined list of stop words. Max_df is more flexible
because all words that have a document frequency higher than its value will be ignored,
therefore document specific stop words can easily be removed without building a list of
custom stop words.

Also the parameter min_df is believed to be important, as words that occur too
infrequently are not significant enough when classifying the news articles.

The Tables 5.1 and 5.2 show that the impact of min_df is much bigger than the
impact of max_df when classifying this imbalanced dataset. The bigger the value of
min_df is, the worse the performance of the classifier gets. This means that if min_df
is too big, a lot of significant words will be ignored. Therefore min_df is set to 4 for the
final algorithm, which means that words that occur in less than 4 documents will be

2https://pypi.org/project/stop-words/

https://pypi.org/project/stop-words/
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Table 5.1: Impact of max_df tested on the Support Vector Machine.

max_df Recall F1-score

1.0 0.97 0.97
0.9, 0.8, 0.7, 0.6, 0.5 0.96 0.97

Table 5.2: Impact of min_df tested on the Support Vector Machine.

min_df Recall F1-score

1, 4, 5, 6 0.97 0.97
2, 3 0.96 0.97
0.01 0.96 0.95
0.05 0.94 0.89
0.1 0.92 0.84
0.2 0.86 0.74
0.3 0.84 0.72

ignored. For the parameter max_df the value 0.7 is chosen, as the values from 0.5 to 0.9
performed equally well and 0.7 is the middle of those parameters. With a value of 0.7
for the max_df, words that occur in more than 70% of the documents will be ignored.

Stemming and Lemmatization both did not improve the results a lot. The improve-
ment of the overall score was under 1% for the WordNetLemmatizer3. The result with
the SnowballStemmer4 was even slightly worse (0.002% worse than without a tokenizer).
Therefore it was decided to use neither stemming nor lemmatization.

5.3 Feature Extraction
To extract features from the news articles two main approaches needed to be imple-
mented. The first approach is the TFIDF, which is used for the Support Vector Machine
and the Logistic Regression. The second approach is the one hot encoding, which is
used to prepare the data for the Neural Network. Additionally to these two feature
extraction approaches, the sentiment score of each article was calculated and added as
a feature. To store the feature the final database was extended by an additional column
called sentiment. The algorithms were trained with and without this additional feature
to test if it can increase the performance of the model.

TFIDF: The body texts of all news articles are converted to a matrix of TF-IDF fea-
tures using the TfidfVectorizer5. The TfidfVectorizer computes the word counts,

3https://www.nltk.org/_modules/nltk/stem/wordnet.html
4https://www.nltk.org/_modules/nltk/stem/snowball.html
5https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

https://www.nltk.org/_modules/nltk/stem/wordnet.html
https://www.nltk.org/_modules/nltk/stem/snowball.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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Program 5.1: One hot encoding of train and test set for the Neural Network.

1 vocab_size = 30000
2 X_train = [one_hot(d, vocab_size,filters='!"#$%&()*+,-./:;<=>?@[\]^_`{|}~',lower=

True, split=' ') for d in X_train]
3 X_test = [one_hot(d, vocab_size,filters='!"#$%&()*+,-./:;<=>?@[\]^_`{|}~',lower=True

, split=' ') for d in X_test]

idf (inverse document frequencies) and tfidf (text frequency inverse document frequency)
values all at once [21]. The preprocessing parameters explained above are passed to the
TfidfVectorizer as follows: TfidfVectorizer(max_df=0.7, min_df=4). The dateset
is split into train and test set with a test set size of 25%. Therefore the training set
contains 33043 articles and the test set 11015 articles. The training set has a shape of
(33043, 87690) after applying the TfidfVectorizer. The first number of the shape
(33043) represents the amount of articles TfidfVectorizer the second number (87690)
represents the amount of features. In this case the vocabulary of the training dataset
consists of 87690 items (features). Each item of this vocabulary has its own idf (in-
verse document frequency) score. The first 15 entries of the vocabulary created by
the TfidfVectorizer are as follows: {’pcc’: 56117, ’se’: 65643, ’hat’: 34706,
’zum’: 85928, ’oktober’: 54656, ’2018’: 604, ’zwei’: 86477, ’neue’: 53142,
’anleihen’:
5325, ’einer’: 20392, ’verzinsung’: 79653, ’00’: 0, ’laufzeit’: 45504,
’fünfeinhalb’: 28667, ’jahre’: 39548}. The corresponding first 15 items of the
idf array are: [4.49384799, 2.82186557, 8.22754146, 9.79615737, 9.61383582,
9.00770001, 8.84064593, 9.00770001, 9.20837071, 9.79615737, 8.84064593,
9.61383582, 9.20837071, 9.61383582, 9.20837071]. The values in the idf array be-
long to the words in the dictionary linked by the index. The third item of the vocabulary
(“hat”) for example has an idf score of 8.22754145533445.

One Hot Encoding: Before the actual one_hot encoding, the two classes (’0’: non paid,
’1’: paid) had to be converted to binary labels instead of strings and the vocabulary
size had to be defined. Multiple experiments show that the vocabulary size has a big
influence on how well the model performs. These experiments are shown in Table 5.11.
Program 5.1 shows the one_hot encoding of the train and test set. When encoding the
texts, multiple characters, such as punctuation and special characters (see parameter
“filters” in line 2 and 3), are filtered from the texts since they are not relevant to the
task. As already discussed in Section 4.3 all words should be converted to lowercase,
which is handled through the parameter lower=True.

As the length of the input data needs to be passed to the model, it has to be ensured
that the data always has the same length. So the encoded X_train and the X_test from
Program 5.1 had to be converted to a predefined length using the pad_sequences6. For
illustration purposes a sequence length of 100 was chosen. Figure 5.5 shows how the
feature array of one article looks like after pad_sequences was applied to it. As one can
see, the feature array was filled up with zeros at the end of the array until the defined

6https://keras.io/preprocessing/sequence/

https://keras.io/preprocessing/sequence/
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Figure 5.5: One hot encoded data after pad_sequences

Program 5.2: Sentiment calculation of one text.

1 def calculateSentiment(body):
2 document = types.Document(
3 content=body,
4 type=enums.Document.Type.PLAIN_TEXT)
5 sentiment = client.analyze_sentiment(document=document).document_sentiment
6 print('Sentiment: score {}, magnitude {}'.format(sentiment.score, sentiment.

magnitude))

length of 100 was reached.

Sentiment Analysis: The Sentiment Analysis was implemented using the Google Cloud
Natural Language API. One sentiment calculation is shown in Program 5.2. To analyze a
text the text itself has to be passed via the content parameter (line three). Additionally
the type of the content has to be defined. This is done via the type parameter (line
four). In this case the type is PLAIN_TEXT, as only textual data from the news articles
will be passed to the API. The Google API is called with the parameters described (line
five) and returns the sentiment score (sentiment.score) as well as the magnitude of
the sentiment score (sentiment.magnitude).

Based on the score and the magnitude it is differentiated if the sentiment of an article
is either positive, neutral or negative. To be able to map the results to one of these three
options, thresholds for the sentiment score in combination with the magnitude had to be
defined. The magnitude can have values from 0.0 to infinity. Every sentiment, regardless
of whether it is positive or negative, adds up to the magnitude score. A low magnitude
indicates that there are few expression of mood in the text and therefore results in a
neutral sentiment. The thresholds for positive, neutral and negative sentiment outcomes
are as follows:
Positive Sentiment:

• A sentiment score greater than 0.5 always results in a positive sentiment.
• If the sentiment score is between 0.1 and 0.5 not only the sentiment score but also

the sentiment magnitude is considered. A sentiment magnitude greater that 0.15
leads to a positive sentiment whereas a sentiment magnitude less than or equal to
0.15 leads to a neutral sentiment.

Neutral Sentiment:
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• A sentiment score between 0.1 and 0.5 in combination with a sentiment magnitude
less than or equal to 0.15 results in a neutral sentiment.

• A sentiment score between −0.1 and 0.1 always results in a neutral sentiment.
• A sentiment score between −0.5 and −0.1 in combination with a sentiment mag-

nitude less than or equal to 0.15 results in a neutral sentiment.
Negative Sentiment:

• A sentiment score less than or equal to −0.5 always results in a negative sentiment.
• If the sentiment score is between −0.5 and −0.1 not only the sentiment score but

also the sentiment magnitude is considered. A sentiment magnitude greater that
0.15 leads to a negative sentiment whereas a sentiment magnitude less than or
equal to 0.15 leads to a neutral sentiment.

For illustration purposes and to first test the sentiment thresholds three executions of
the code from Program 5.2 were performed with different textual input. The results are
analyzed in terms of sentiment score and sentiment magnitude based on the thresholds.
For the first execution the following positive sentence was passed to the API: “Das Wet-
ter ist schön heute! Ich freue mich schon auf das Treffen mit meinen lieben Freunden”.
With a sentiment score of 0.8 and a sentiment magnitude of 1.7 this sentence clearly
resulted in a positive sentiment according to the thresholds. As a second example the
neutral sentence “Das ist ein Beispiel für eine Gefühlsanalyse mit der Google NLP API”
was taken. As expected the sentence resulted in a neutral sentiment with a sentiment
score of −0.1 and a sentiment magnitude of 0.1. For completeness, as a third example
the following negative sentence has also been passed to the API: “Ich mag diese Buch
überhaupt nicht! Es is langweilig und ich werde ich sicher nicht weiterempfehlen”. This
sentence resulted in a clearly negative sentiment with a sentiment score of −0.9 and a
sentiment magnitude of 1.8.

Figure 5.6 shows the sentiment distributions of all paid articles. 63.99% of these
articles resulted in a positive sentiment and only 9.98% resulted in a negative sentiment.
This shows that the majority of the paid articles indeed results in a positive sentiment
and confirms the assumption that sponsored articles tend to be positive. However, the
significance is with under 70% not as high as assumed, since a quarter of all paid articles
resulted in a neutral sentiment.

Figure 5.7 shows the sentiment distribution of all non paid articles. On the contrary
to the distribution of the paid articles, the non paid articles have a slight tendency to
result in a negative sentiment. However, the distribution of positive (26.78%), neutral
(30.69%) and negative (42.53%) articles is way more balanced for the non paid articles,
as all of the three classes are under 50%. Figure 5.6 and Figure 5.7 show that the paid
and the non paid articles have the opposite tendency of sentiment, as the paid articles
have the tendency to be positive and the non paid articles have the tendency to be
negative.

5.4 Classification
Since the aim is to optimize not the majority but the minority class, custom scoring
functions needed to be defined for the grid search. These scoring functions are defined
as shown in Program 5.3. Line two defines the recall scoring function, line three the
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Figure 5.6: Positive, neutral and negative sentiment distribution of the paid articles.

Figure 5.7: Positive, neutral and negative sentiment distribution of the non paid articles.

Program 5.3: Scoring functions for the grid search.

1 from sklearn.metrics import make_scorer, recall_score, f1_score
2 recallscore = make_scorer(recall_score, pos_label='1', average='binary')
3 f1score = make_scorer(f1_score, pos_label='1', average='binary')

f1-score scoring function. The parameter pos_label=’1’ tells the scorer to optimize
for the label 1, which represents the paid articles. The parameter average=’binary’
causes that only results for the class specified by pos_label will be reported. These
scoring functions will be applied to the grid search of the Support Vector Machine and
the Logistic Regression.



5. Implementation 39

Program 5.4: Grid search for the Support Vector Machine.

1 tuned_parameters = [{'kernel': ['rbf'], 'gamma': ['auto', 1e-3, 1e-4], 'C': [1, 10,
100], 'class_weight': ['balanced', None]
},

2 {'kernel': ['linear'], 'C': [1, 10, 100], 'class_weight': ['
balanced', None]}]

3 scores = [recallscore, f1score]
4
5 for score in scores:
6 vect = TfidfVectorizer(max_df=0.7, min_df=4)
7 clf = GridSearchCV(SVC(), tuned_parameters, cv=5, scoring=score)
8 pipe_lr = Pipeline([('vect',vect), ('clf',clf)])
9 pipe_lr.fit(X_train, y_train)

10 print("Best parameters set found on development set:" + clf.best_params_)

Table 5.3: Support Vector Machine: best performing models for recallscore.

Recall Variance Parameters

0.961 (+/-0.010) {’C’: 1, ’class_weight’: ’balanced’, ’kernel’: ’linear’}
0.957 (+/-0.010) {’C’: 10, ’class_weight’: None, ’kernel’: ’linear’}
0.957 (+/-0.011) {’C’: 10, ’class_weight’: ’balanced’, ’kernel’: ’linear’}
0.956 (+/-0.012) {’C’: 100, ’class_weight’: ’balanced’, ’kernel’: ’linear’}
0.956 (+/-0.012) {’C’: 100, ’class_weight’: None, ’kernel’: ’linear’}

5.4.1 Support Vector Machine
The grid search performed to find the optimal hyperparameter combination for the Sup-
port Vector Machine is shown in Program 5.4. A shortened version of the code is shown
to highlight the most important points. Line one and two each define a list of hyper-
parameters with an array of suggested values. For each list a model for every possible
combination of the parameters will be fitted. All results from both lists will be compared
to each other to find the best performing combination (line seven of the Listing). Line
three defines which scoring functions to use. The grid search will be performed for each
scoring function (loop in line five). After the execution two best performing parameter
combinations will be outputted, one for every scoring function. Line ten prints out those
best performing combinations. The original, not shortened, implementation also prints
out a list of all fitted models with their parameter combination and the according score
of the model. The Tables 5.3 and 5.4 show the best performing models.

The five best performing Support Vector Machine models and their score are shown
in Table 5.3 for the recallscore and in Table 5.4 for the f1score. From these tables
it can be seen that the best performing parameter combinations are the same for both
scoring functions. Therefore the parameter combination chosen for the final Suuport
Vector Machine is {’C’: 1, ’class_weight’: ’balanced’, ’kernel’: ’linear’}.
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Table 5.4: Support Vector Machine: best performing models for f1score.

F1 score Variance Parameters

0.970 (+/-0.004) {’C’: 1, ’class_weight’: ’balanced’,
’kernel’: ’linear’}

0.970 (+/-0.005) {’C’: 10, ’class_weight’: None,
’kernel’: ’linear’}

0.969 (+/-0.005) {’C’: 10, ’class_weight’: ’balanced’,
’kernel’: ’linear’}

0.969 (+/-0.005) {’C’: 100, ’class_weight’: ’balanced’,
’kernel’: ’linear’}

0.969 (+/-0.005) {’C’: 100, ’class_weight’: None,
’kernel’: ’linear’}

Program 5.5: Final algorithm of the Support Vector Machine.

1 vect = TfidfVectorizer(max_df=0.7, min_df=4)
2 clf = svm.SVC(C=1, class_weight='balanced', kernel='linear')
3 pipe_lr = Pipeline(('vect',vect), ('clf',clf))
4 y_pred = pipe_lr.fit(x_train, y_train).predict(x_test)

After analyzing the results from the grid search as stated above, the final algorithm
of the Support Vector Machine was implemented as shown in Program 5.5. Line one
defines the TfidfVectorizer as described in Section 5.3. Line two defines the Support
Vector Machine model with the optimized hyperparameters. These two steps are chained
in line three using a pipeline7. The model is then fitted using this pipeline, the training
data and the training labels in line four (fit()). The prediction is also performed in
the same line (predict()) using the test data.

The overall score of the model defined in Program 5.5 is 98% and the runtime was 32
minutes. Table 5.5 shows the full classification report of the model. This report shows
the precision, recall and f1-score for the class 0 as well as the class 1. From this report
it can be seen that the model performs slightly better for the classification of the non
paid articles. This is due to the imbalance of the dataset, as way more non paid articles
were provided to the model to learn and generalize from. However, with a precision,
recall and f1-score of 97% the model performed well for the classification of paid articles
too. The confusion matrix is shown in Table 5.6. It shows that 84 articles are False
Negatives, which means that they are predicted to be non paid but actually are paid
articles. It also shows that 96 articles are False Positives, which means that they are
classified as paid articles although they are actually non paid articles. All in all, there
is a misclassification of 1.6%.

7https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
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Table 5.5: Classification report of the final Support Vector Machine.

Class Precision Recall F1-score Support

0 0.99 0.99 0.99 7779
1 0.97 0.97 0.97 3236

micro avg 0.98 0.98 0.98 11015
macro avg 0.98 0.98 0.98 11015

weighted avg 0.98 0.98 0.98 11015

Table 5.6: Confusion Matrix of the final Support Vector Machine.

Predicted Label
Positive Negative

Actual Label
Positive 7695 84
Negative 96 3140

Program 5.6: Grid search for the Logistic Regression.

1 tuned_parameters = [{'solver': ['liblinear'], 'penalty': ['l1', 'l2'], 'C': [1, 10,
100], 'class_weight': ['balanced', None]
},

2 {'solver': ['lbfgs'], 'penalty': ['l2'], 'max_iter': [100, 1000,
4000], 'C': [1, 10, 100], 'class_weight

': ['balanced', None]}]
3 scores = [recallscore, f1score]
4
5 for score in scores:
6 vect = TfidfVectorizer(max_df=0.7, min_df=4)
7 clf = GridSearchCV(LogisticRegression(), tuned_parameters, cv=5, scoring=score)
8 pipe_lr = Pipeline([('vect',vect), ('clf',clf)])
9 pipe_lr.fit(X_train, y_train)

10 print("Best parameters set found on development set:" + clf.best_params_)

5.4.2 Logistic Regression
The grid search performed to find the optimal hyperparameter combination for the Lo-
gistic Regression is similar to the one for the Support Vector Machine stated above.
The program works in the same way as explained for Program 5.4. The two main dif-
ferences are the hyperparameters and the algorithm used. The parameter combinations
to experiment with are defined in line one and two. In line seven instead of the Support
Vector Machine the Logistic Regression is defined as the algorithm to use. The Tables
5.7 and 5.8 show the best performing models.

The five best performing Logistic Regression models and their score are shown in Ta-
ble 5.7 for the recallscore and in Table 5.8 for the f1score. Other than for the SVM,
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Table 5.7: Logistic Regression: best performing models for recallscore.

Recall Variance Parameters

0.964 (+/-0.008) {’C’: 10, ’class_weight’: ’balanced’,
’penalty’: ’l2’, ’solver’: ’liblinear’}

0.964 (+/-0.008) {’C’: 10, ’class_weight’: ’balanced’,
’max_iter’: 100, ’penalty’: ’l2’}

0.964 (+/-0.008) {’C’: 10, ’class_weight’: ’balanced’,
’max_iter’: 1000, ’penalty’: ’l2’, ’solver’: ’lbfgs’}

0.964 (+/-0.008) {’C’: 10, ’class_weight’: ’balanced’,
’max_iter’: 4000, ’penalty’: ’l2’, ’solver’: ’lbfgs’}

0.962 (+/-0.006) {’C’: 100, ’class_weight’: ’balanced’,
’max_iter’: 100, ’penalty’: ’l2’, ’solver’: ’lbfgs’}

Table 5.8: Logistic Regression: best performing models for f1score.

F1 score Variance Parameters

0.970 (+/-0.003) {’C’: 100, ’class_weight’: ’balanced’,
’penalty’: ’l2’, ’solver’: ’liblinear’}

0.969 (+/-0.003) {’C’: 10, ’class_weight’: ’balanced’,
’penalty’: ’l2’, ’solver’: ’liblinear’}

0.969 (+/-0.003) {’C’: 10, ’class_weight’: ’balanced’,
’max_iter’: 100, ’penalty’: ’l2’, ’solver’: ’lbfgs’}

0.969 (+/-0.003) {’C’: 10, ’class_weight’: ’balanced’,
’max_iter’: 1000, ’penalty’: ’l2’, ’solver’: ’lbfgs’}

0.969 (+/-0.v) {’C’: 10, ’class_weight’: ’balanced’,
’max_iter’: 4000, ’penalty’: ’l2’, ’solver’: ’lbfgs’}

the Logistic Regression has different best performing parameter combinations for the re-
call and the f1-score. The best performing parameter combination for the recall is {’C’:
10, ’class_weight’: ’balanced’, ’penalty’: ’l2’, ’solver’: ’liblinear’}
as shown in line one of Table 5.7 whereas the best performing parameter combination for
the f1-score is {’C’: 100, ’class_weight’: ’balanced’, ’penalty’: ’l2’, ’sol-
ver’: ’liblinear’} as shown in line one of Table 5.8. The only difference of the two
best performing models is the parameter 𝐶. The value of 𝐶 is 10 for the recallscore
and 100 for the f1score. For the final algorithm the best performing parameter combi-
nation from the recallscore is taken to keep a balance between a too simple and too
complex model to neither underfit nor overfit the data.

Program 5.7 shows the final implementation of the Logistic Regression. Same as for
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Program 5.7: Final algorithm of the Logistic Regression.

1 vect = TfidfVectorizer(max_df=0.7, min_df=4)
2 clf = LogisticRegression(C=10, class_weight='balanced', penalty='l2', solver='

liblinear')
3 pipe_lr = Pipeline([('vect',vect), ('clf',clf)])
4 y_pred = pipe_lr.fit(x_train, y_train).predict(x_test)

Table 5.9: Classification report of the final Logistic Regression.

Class Precision Recall F1-score Support

0 0.99 0.99 0.99 7779
1 0.97 0.97 0.97 3236

micro avg 0.98 0.98 0.98 11015
macro avg 0.98 0.98 0.98 11015

weighted avg 0.98 0.98 0.98 11015

the Support Vector Machine, the TfidfVectorizer is defined as described in Section
5.3. Line two defines the Logistic Regression model with the parameter combination
chosen above. In line three a pipeline is used again to chain the vectorizer and the
model from line one and two. In line four the model is fitted using this pipeline, the
training data and the training labels (fit()). The prediction is also performed in the
same line (predict()) using the test data.

The overall score of the model defined in Program 5.7 is 98% and the runtime was 28
seconds, which is 70 times faster than the runtime of the Support Vector Machine from
Program 5.5. Table 5.9 shows the full classification report, which shows the precision,
recall and f1-score for the class 0 as well as the class 1. It can be seen that the model
performs slightly better for the classification of the non paid articles as well. Same as
stated above for the Support Vector Machine, this is due to the imbalance of the dataset,
as way more non paid articles were provided to the model to learn and generalize from.
However, with a precision, recall and f1-score of 97% the final model of the Logistic
Regression performed well for the classification of paid articles too. The confusion matrix
from Table 5.10 shows that 87 articles are False Negatives, which means that they are
predicted to be non paid but actually are paid articles. It also shows that 104 articles
are False Positives, which means that they are classified as paid articles although they
are actually non paid articles. All in all, there is a misclassification of 1.7%.

5.4.3 Neural Network
In order to be able to use the same evaluation metrics as for the Support Vector Ma-
chine and the Logistic Regression, the recall and the f1-score metrics needed to be
implemented for the Neural Network. The implementation can be seen in Appendix B.1.
Before passing the data to the Neural Network the features needed to be extracted using
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Table 5.10: Confusion Matrix of the final Logistic Regression.

Predicted Label
Positive Negative

Actual Label
Positive 7692 87
Negative 104 3132

Table 5.11: Impact of the vocabulary size on the performance of the Neural Network.

vocabulary size time recall f1 loss

1000 6min 6sec 0.989 0.905 0.299
10000 28min 23sec 0.940 0.949 0.148
50000 2h 10min 2s 0.966 0.961 0.123
80000 3h 36min 37sec 0.967 0.961 0.114

the one hot encoding as described in Section 5.3 paragraph “one hot encoding”. The
optimization of the model was done by experimenting with the data as well as with the
model itself. Concerning the data it was experimented with the size of the vocabulary
as well as the input length of the model.

Table 5.11 shows the impact of the vocabulary size on the performance of the Neu-
ral Network. The number of epochs was set to 20 for these experiments to keep the
calculation time low. The input length was set to the same value as the vocabulary size.
The vocabulary sizes of 50000 and 80000 performed best, only with small differences
in recall and loss. The vocabulary size of 50000 performs a bit worse but scores with
considerably shorter calculation time. Since the f1 score is the same for both and the
recall and loss does not differ a lot, the value 50000 is chosen as the vocabulary size for
the final Neural Network.

Table 5.12 shows the impact of the input length on the performance of the Neural
Network. For the experiments the number of epochs was set to 20 and a vocabulary
size of 80000 was chosen. The figure shows that with an increase of the input length
the computation time increases rapidly. The recall and the f1-score also increase but
much slower. The input length of 80000, which is the same value as the vocabulary size,
delivers the best results. Therefore the input size will be set to the same value as the
vocabulary size.

Table 5.13 shows how the parameter batch_size affects the performance of the
model. For these experiments the number of epochs was set to 20 to keep the calculation
time low. The results from the table show that the larger the batch size gets, the worse
the model performs. A batch size of 33043, which is equal to the number of training
samples available, performs the worst. Looking at these results the default value of 32
will be used for the batch_size as this value led to the best result.

Table 5.14 shows how the Neural Network improved over the epochs. It can be seen
that after epoch 3 the model did not improve anymore. The highest validation recall
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Table 5.12: Impact of the input length on the performance of the Neural Network.

input length time recall f1 loss

500 5min 2sec 0.939 0.950 0.115
1000 5min 56sec 0.938 0.952 0.122
10000 29min 22sec 0.934 0.954 0.132
50000 2h 21min 2sec 0.948 0.963 0.113
80000 3h 36min 50sec 0.951 0.962 0.121

Table 5.13: Impact of the batch size on the performance of the Neural Network.

batch size time recall f1 loss

32 4min 41s 0.959 0.963 0.100
256 3min 44s 0.948 0.960 0.073
512 3min 36s 0.943 0.957 0.068
1536 3min 34s 0.942 0.956 0.071
3304 2min 35s 0.816 0.886 0.145
6608 2min 36s 0.761 0.838 0.284
16521 2min 36s 0.391 0.5189 0.485
33043 2min 41s 0.196 0.297 0.526

Table 5.14: Improvement of the Neural Network over epochs.

Epoch loss recall f1-score

1 0.0775 0.9555 0.9553
2 0.0579 0.9616 0.9647
3 0.0571 0.9642 0.9646
4 0.0620 0.9544 0.9619
5 0.0627 0.9581 0.9630
6 0.0636 0.9610 0.9644

was reached in epoch 3 (0.9642), the highest validation f1-score in epoch 2 (0.9647). The
lowest validation loss was reached in epoch 3 (0.0571). Therefore it can be concluded
that 3 epochs are sufficient to get good results and the value 3 is chosen for the number
of epochs of the final algorithm.

Program 5.8 shows the final and optimized implementation of the Neural Network.
The metrics used to evaluate the model are fmeasure_pred, which is the implementation
of the f1-score, and recall_pred, which is the implementation of the recall score (see
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Program 5.8: Final algorithm of the Neural Network.

1 model = Sequential()
2 model.add(Embedding(50000, 8, input_length=50000))
3 model.add(Flatten())
4 model.add(Dense(1, activation='sigmoid')
5 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=[fmeasure_pred,

recall_pred])
6 model.fit(X_train, y_train, epochs=3, validation_data=(X_test, y_test))

Figure 5.8: Results of the final Neural Network of its epochs

Appendix B.1). The vocabulary size as well as the input length is set to 50000 and the
model is training over three epochs. The plotted results over the epochs are shown in
Figure 5.8.

Figure 5.8 shows the performance of the final model over its three epochs. The blue
lines represent the results for the training set and the orange lines represent the results
for the test set. The upper left image shows the recall score and the lower left image the
loss of the model for the recall. The right side shows the same information as the left
side, but for the f1-score. The recall and the f1-score as well as their losses are almost
the same for the training set. However one can see that for the test set the recall score
is slightly decreasing after epoch two whereas the f1 score is not.

The accuracy of of the model defined in Program 5.8 is 98% and the runtime was 21
minutes and 30 seconds. Table 5.15 shows the detailed classification report of the model
after all three epochs. This report shows the precision, recall and f1-score for the class 0
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Table 5.15: Classification report of the final Neural Network.

Class Precision Recall F1-score Support

0 0.98 0.99 0.99 6207
1 0.98 0.96 0.97 2605

micro avg 0.98 0.98 0.98 8812
macro avg 0.98 0.98 0.98 8812

weighted avg 0.98 0.98 0.98 8812

Table 5.16: Confusion Matrix of the final Neural Network.

Predicted Label
Positive Negative

Actual Label
Positive 6161 46
Negative 108 2497

as well as the class 1. The precision is exactly the same for the classes 0 and 1. However,
the recall as well as the f1 score are with a score of 99% both slightly better for class
0. This is due to the imbalance of the dataset as stated above for the Support Vector
Machine and the Logistic Regression. Nevertheless, the performance of the model for
class 1 is with a recall of 96% and a f1 score of 97% still pretty satisfying. The confusion
matrix in Table 5.16 shows that 46 articles are False Negatives, which means that they
are predicted to be non paid but actually are paid articles. It also shows that 108 articles
are False Positives, which means that they are classified as paid articles although they
are actually non paid articles.



Chapter 6

Evaluation

The evaluation is split into four main parts. The first part, Section 6.1, tackles the
10-fold cross validation of the Support Vector Machine, the Logistic Regression and the
Neural Network. In the section the evaluation results of all models are compared to
each other to see if which one performs the best. Section 6.3 evaluates and analyses the
impact of the sentiment scores on the performance of the model. In this section it is
shown if the sentiment scores can help improving the models. Section 6.4 recaps and
analyses the main findings from the previous sections. Furthermore, in this section the
models are evaluated not only regarding their recall and f1-score, but also in terms of
their run time performance. This section also answers the research question stated in
Section 1.2. The last part, Section 6.5, draws a conclusion of the evaluation results.

6.1 10-Fold Cross Validation of the Support Vector Machine and the
Logistic Regression

In this section, a 10-fold cross validation is performed for the Support Vector Machine
and the Logistic Regression. As scoring methods the scoring functions recallscore
and f1score from Program 5.3 are used again. The models are evaluated once for each
metric and the results are compared to each other independently for each metric.

Program 6.1 shows the implementation of the 10-fold cross validation. First the Sup-
port Vector Machine and the Logistic Regression classifiers and their hyperparameters
are defined in line two and three. For this the final and optimized models from Section
5.4.1 and 5.4.2 are taken. The data is vectorized using the the optimized TfidfVectorizer
(line one) as described in Section 5.2. Line five and six define the pipelines for vectoriza-
tion and classification, one for each classification algorithm. Then an array of models to
evaluate is created, to be able to loop over the models and store the results in a corre-
sponding array for later visualisations. In line 15 the scoring function is defined among
others. In this example the recallscore is used. This code is executed a second time
using the f1score instead. The 10-fold cross validation itself is performed according to
the code from line 13 to 16. The results, stored in the results array, are then used to
create a boxplot, which is shown in Figure 6.2 for the recallscore and in Figure 6.1
for the f1score.

Figure 6.1 shows the result of the 10-fold cross validation of the Support Vector

48
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Program 6.1: Implementation of 10-fold cross validation.

1 vect = TfidfVectorizer(max_df=0.7, min_df=4)
2 clf_logreg = LogisticRegression(C=100, class_weight='balanced', penalty='l2', solver

='liblinear')
3 clf_svm = svm.SVC(C=1, class_weight='balanced', kernel='linear')
4
5 pipe_logreg = Pipeline([('vect',vect), ('clf',clf_logreg)])
6 pipe_svm = Pipeline([('vect',vect), ('clf',clf_svm)])
7
8 models = []
9 models.append(('LR', pipe_logreg))

10 models.append(('SVM', pipe_svm))
11
12 results = []
13 for name, model in models:
14 kfold = model_selection.KFold(n_splits=10, random_state=42, shuffle=True)
15 cv_results = model_selection.cross_val_score(model, X, Y, cv=kfold, scoring=

recallscore)
16 results.append(cv_results)

Figure 6.1: 10-fold cross validation of Support Vector Machine and Logistic Regression
with f1 scoring.

Machine (SVM) and the Logistic Regression (LR) using the f1score. The results for
the f1-score are almost the same for both models, with a difference of only 0.001692%.
Also the standard deviation of both models is almost the same (0.00126 difference).

Figure 6.2 shows the result of the 10-fold cross validation of the Support Vector
Machine (SVM) and the Logistic Regression (LR) using the recallscore. Same as for
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Figure 6.2: 10-fold cross validation of Support Vector Machine and Logistic Regression
with recall scoring.

the f1-score, the results for the recall for both models do not differ a lot. The recall
for the Support Vector Machine is 0.9697 and for the Logistic Regression 0.9691 (only
0.000617 difference). Also the standard deviation of both models is almost the same
(0.001454 difference).

6.2 10-Fold Cross Validation of the Neural Network
Since the default metric defined for the Neural Network is the accuracy and during the
experiments of applying the custom scoring functions the the 10-fold cross validation of
the Neural Network a lot of problems occurred, it was decided to keep to accuracy metric
for the evaluation. The accuracy is simply the number of total correct predicted instances
divided by the total number of instances. Program 6.2 shows the implementation of the
10-fold cross validation of the Neural Network. Line one to seven define and return
the compiled model. In line nine the keras model is wrapped using a Keras Classifier1

wrapper so that it can be used by scikit-learn. This wrapped network is then taken in
line 12 to perform the cross validation.

Figure 6.3 shows the result of the 10-fold cross validation from Program 6.2. From
these results it can be seen that the Neural Network performed approximately equally
well than the Support Vector Machine and the Logistic Regression as the score (mean
accuracy) of both models is 0.98.

1https://keras.io/scikit-learn-api/

https://keras.io/scikit-learn-api/
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Program 6.2: 10-fold cross validation of Neural Network.

1 def neuralNetwork():
2 model = Sequential()
3 model.add(Embedding(vocab_size, 8, input_length=max_length))
4 model.add(Flatten())
5 model.add(Dense(1, activation='sigmoid'))
6 model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
7 return model
8
9 neural_network = KerasClassifier(build_fn=neuralNetwork, epochs=3, verbose=2)

10 results = []
11
12 scores = cross_val_score(neural_network, X_train, y_train, cv=10)
13 results.append(scores)

Figure 6.3: 10-fold cross validation of Neural Network with accuracy score.

6.3 Impact of Sentiment Scores on Model Performance
The assumption that most paid articles result in a positive sentiment turned out to be
true with a percentage of 63.99% positive paid articles (see Figure 5.6). However with
just slightly over half of the paid articles resulting in a positive sentiment this feature
looks not as promising as expected for the identification of paid articles. Nevertheless,
experiments with the feature of the body texts and the sentiment scores were performed
as follows.

As the Logistic Regression scores with the lowest computation time, the experiments
with the sentiment addition were carried out with the optimized model of the Logistic
Regression. Table 6.1 shows the precision, recall and f1-score for the classes “0” (not
sponsored) and “1” (sponsored) for the model with and without included sentiment fea-
ture. From the results it can be seen that there is not much difference in the performance
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Table 6.1: Performance of Logistic Regression with and without sentiment analysis.

sentiment class precision recall f1-score

not included 0 0.99 0.99 0.99
included 0 0.99 0.98 0.98

not included 1 0.97 0.97 0.97
included 1 0.95 0.97 0.96

Table 6.2: Confusion matrix of Logistic Regression with and without sentiment analysis.

Without Sentiment With Sentiment
Predicted Label Predicted Label

Positive Negative Positive Negative

Actual Label
Positive 7673 106 7618 161
Negative 103 3133 97 3139

neither for class “0” nor for class “1”.
In addition to the scoring metrics also the confusion matrix was calculated for the

model with and without included sentiment scores. Table 6.2 shows the comparison
of both confusion matrices. Table 6.1 showed that there is not much difference in the
performance. Table 6.2 on the other hand gives more insights on how the results changed.
With the inclusion of the sentiment scores it can be seen that the false positive rate
decreased but at the same time the false negative rate increased. This shows that the
misclassified items just shifted but were not minimized.

6.4 Results
As stated above, the performance of the Support Vector Machine, the Logistic Regres-
sion as well as the Neural Network does not differ a lot. So it can be concluded that
this performance is the upper limit for the performance that can be reached with the
data provided.

The sentiment result turned out to be not significant enough to increase the perfor-
mance of the model. However, in case of doubt the sentiment result could be inspected
for marginal articles in future research. One thing that is certain is that if an article
results in a negative sentiment it is not likely to be sponsored as the rate of negative
paid articles is under 10% (see Figure 5.6). However the positive sentiment rate of the
sponsored articles is not high enough to contribute enough to be a relevant feature and
was therefore decided to not be included.

Since all three algorithms performed approximately equally well, they were also
analyzed in terms of computation time, which is shown in Table 6.3. This table shows
that the Logistic Regression was by far the fastest computed model with around 27
seconds, followed by the Neural Network (NN) with around 22 minutes and the Support
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Table 6.3: Computation time of final models.

SVM Logistic Regression NN

Computation time 32min 59sec 26.9 sec 21min 47sec

Vector Machine (SVM) with around 33 minutes. Therefore, in terms of computation
time, the Logistic Regression outperformed the other algorithms by far.

To answer the research question it can be said that it is definitely possible to dis-
tinguish between paid and non paid news articles. The question to which extent can
paid articles be automatically identified from online news platforms can be answered by
taking a closer look at the recall score for class “1” of the optimized models:

• With the Support Vector Machine, it is possible to automatically classify 97% of
the paid articles correctly as paid ones from online news platforms.

• With the Logistic Regression, it is possible to automatically classify 97% of the
paid articles correctly as paid ones from online news platforms.

• With the Neural Network, it is possible to automatically classify 96% of the paid
articles correctly as paid ones from online news platforms.

6.5 Conclusion
Neural networks are extremely flexible and can identify patterns and significant features
from any data structure. However, this is just possible if a sufficient amount of training
data is provided. Small and medium sized dataset usually contains too little training
example for Neural Networks to generalize well and achieve good results. Moreover, the
amount of parameters available to modify is very high for a Neural Network. Therefore,
lots of experiments have to be performed to find the optimal parameter combination for
the optimal results.

The amount of free parameters in a Neural Network can easily get very high. Due to
this the model is endangered of overfitting if not enough training points are provided to
prevent it. Additionally it will be very time consuming to train datasets that are large
enough to avoid overfitting [27].

Since with linear models, such as the Support Vector Machine and the Logsitic
Regression, fewer hyperparameters can be adjusted as for a Neural Network, the grid
search for those models is less time consuming. Therefore, good results can be achieved
faster and easier. With the Support Vector Machine even a global optimum can be
guaranteed. To avoid overfitting and underfitting certain regularisation parameters can
be experimented with. The amount of data needed for such linear models is smaller
than for the Neural Network. Therefore, the Support Vector Machine and the Logistic
Regression are good choices for small to medium sized datasets.

All in all, the Support Vector Machine, the Logistic Regression and the Neural Net-
work performed approximately equally well. The improvements of the Neural Network
were stopped as soon as reasonable results were achieved since the aim was to include
a simple Neural Network to see if such a model can compete with linear models, such
as the Support Vector Machine and the Logistic Regression, when classifying news ar-
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ticles. From the results it can be concluded that with an increase of labelled news data
available, a Neural Network can get very relevant when choosing the optimal model.



Chapter 7

Conflicts and Further Research

This chapter highlights the main issues in limitations that occurred during the imple-
mentation of the project in Section 7.1, as well as the possibilities for further research
and improvement in Section 7.2.

7.1 Issues and Limitations
As discussed in Chapter 5, after crawling urls for new articles the content of those
articles needes to be scraped timely. Otherwise it could happen that some articles are
not available anymore as they were deleted shortly afterwards.

Another big challenge is the distribution of paid and non paid articles. Within the
daily news feed way more not sponsored than sponsored articles get published. There-
fore, if all news articles are taken the ratio between paid and non paid articles would
be too imbalanced to achieve good classification results. To counteract this so that the
dataset gets more balanced, in another crawling and scraping iteration only paid articles
were stored and the non paid articles were discarded. This was repeated until a rea-
sonable distribution was reached. Also not all platforms provide an archive. Therefore,
news from previous years can’t be taken into consideration since those articles are just
available for a few but not the majority of all platforms.

7.2 Possibilities for Further Research
Since the performance of the algorithms was limited to the quality of the data, for
further research it is recommended to continue gathering data and solve the imbalance
of the platform distribution the articles come from.

The amount of data available is sufficient for the Support Vector Machine and the
Logistic Regression, but to further improve the results of the Neural Network it is crucial
to collect way more data. Then the experiments and algorithm comparisons should be
repeated to see if the Neural Network can outperform the Support Vector Machine and
the Logistic Regression.
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Appendix A

CD-ROM/DVD Contents

Format: CD-ROM, Single Layer

A.1 PDF
Path: /

Obermayr_Theresa_2019.pdf Master Thesis

A.2 Source Code
Path: /project

project.zip . . . . . . . . Source Code of Algorithm Implementation and
Evaluation

A.3 Online-Literature
Path: /online-sources

literature . . . . . . . . Online sources referenced in the thesis
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Additional Source Code

Program B.1: Implementation of metrics precision, recall and f1-score for NN

1 from keras import backend as K
2
3 def precision(y_true, y_pred):
4 true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
5 predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
6 precision = true_positives / (predicted_positives + K.epsilon())
7 return precision
8
9 def recall(y_true, y_pred):

10 true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
11 possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
12 recall = true_positives / (possible_positives + K.epsilon())
13 return recall
14
15 def fbeta_score(y_true, y_pred, beta=1):
16 # If there are no true positives, fix the F score at 0 like sklearn.
17 if K.sum(K.round(K.clip(y_true, 0, 1))) == 0:
18 return 0
19 p = precision(y_true, y_pred)
20 r = recall(y_true, y_pred)
21 bb = beta ** 2
22 fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon())
23 return fbeta_score
24
25 def f1_score(y_true, y_pred):
26 return fbeta_score(y_true, y_pred, beta=1)
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