
Generating Runtime Type Validations for
JavaScript Based on the Static Type
Information Provided by its Superset

TypeScript

Fabian Pirklbauer

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2017

© Copyright 2017 Fabian Pirklbauer

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, September 22, 2017

Fabian Pirklbauer

iii

Contents

Declaration iii

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Problem Definition . 1
1.2 Solution Approach . 2
1.3 Thesis Structure . 2

2 Technical Foundation 3
2.1 Type Systems . 3

2.1.1 Explicitly and Implicitly Typed 4
2.1.2 Execution Errors . 4
2.1.3 Safety and Good Behavior . 5
2.1.4 Type Checking . 5

2.2 JavaScript . 5
2.2.1 Loose Typing . 6
2.2.2 Value Types . 6
2.2.3 Type Conversion . 7
2.2.4 Value Comparison . 8
2.2.5 Objects and Prototypal Inheritance 9
2.2.6 Latest Improvements . 10
2.2.7 Further Reading . 15

2.3 Abstract Syntax Tree . 16

3 State of the Art 18
3.1 JavaScript Supersets . 18

3.1.1 TypeScript . 18
3.1.2 Flow . 24
3.1.3 Others . 24

3.2 Runtime Type Checks . 25
3.3 Generated Runtime Type Checks . 28

iv

Contents v

4 Theoretical Approach 29
4.1 Undetectable Errors . 29

4.1.1 Compiler Analysis Circumvention 29
4.1.2 Polymorphism . 30
4.1.3 Untyped JavaScript Libraries . 31
4.1.4 Type Declaration Mistakes . 31
4.1.5 Erroneous API Responses . 32

4.2 Desired Result . 32
4.3 Definition of Cases . 33

4.3.1 Interfaces and Type Aliases . 33
4.3.2 Variable Declarations and Assignments 33
4.3.3 Type Assertions . 33
4.3.4 Functions . 33
4.3.5 Enums . 34
4.3.6 Classes . 34
4.3.7 Type Queries . 34
4.3.8 Externals . 34
4.3.9 Ambient Declarations . 35

4.4 Required Steps . 35
4.4.1 Configuration . 35
4.4.2 Read Source Files . 35
4.4.3 Syntax Analyzation . 36
4.4.4 Abstraction . 36
4.4.5 Scan Abstraction . 36
4.4.6 Static Type Checks . 36
4.4.7 Transformations . 36
4.4.8 Target Code Emit . 37

4.5 Summary . 37

5 Implementation 38
5.1 Technology . 38

5.1.1 TypeScript Compiler . 38
5.1.2 Runtime Type System . 40

5.2 Architecture . 41
5.2.1 Central Element . 42
5.2.2 Components . 42
5.2.3 Outline . 43

5.3 Application Structure . 44
5.4 Components . 44

5.4.1 Transformer . 44
5.4.2 Mutators . 45
5.4.3 Factory . 53
5.4.4 Context . 53
5.4.5 Utility . 54
5.4.6 Event Bus . 54
5.4.7 Scanner . 54
5.4.8 Options . 55

Contents vi

5.5 Transformation Procedure . 56
5.6 Usage . 57

5.6.1 Application Programming Interface 58
5.6.2 Command Line Interface . 59
5.6.3 Playground . 60

6 Evaluation 62
6.1 Automated Unit Tests . 62
6.2 Continuous Integration . 63
6.3 Operational Test . 63
6.4 Performance Analyzation . 65
6.5 Summary . 65

7 Summary and Outlook 68

A Evaluation Results 70
A.1 Build Time . 70
A.2 Unit Tests Execution Time . 71
A.3 Benchmark Tests . 72

B CD-ROM Contents 79

References 80
Literature . 80
Online sources . 81

Abstract

Even though JavaScript’s dynamic type system can be of advantage in many scenarios,
it adds the risk of introducing errors. Therefore TypeScript was defined as a superset of
JavaScript, with the ability to optionally add type annotations, resulting in increased
code readability, scalability and maintainability. In addition, TypeScript’s static compile
time type checks can detect a multitude of conditions that may cause issues in the
target code at runtime. Although type compatibility is checked during compilation,
type information is not available in the compiled JavaScript code, i.e., at runtime.
The removal of the type information is intended and is defined in the design goals of
the language, even though dynamic type validations can improve the quality of the
executable program. By extending the TypeScript compiler, this thesis provides an
efficient method to maintain the type information for type checks at runtime. These
checks are automatically generated and inserted into the resulting JavaScript code,
which is helpful during the development of a project, to identify possible issues the
TypeScript compiler cannot detect.

vii

Kurzfassung

Obwohl das dynamische Typ-System von JavaScript in vielen Szenarien von Vorteil
sein kann, erhöht es das Risiko, Fehler einzuführen. Um dem entgegenzuwirken, wurde
das JavaScript-Superset TypeScript entwickelt, welches die Möglichkeit bietet, optional
Typ-Annotationen einzufügen, wodurch die Leserlichkeit, Skalierbarkeit und Wartbar-
keit des Codes erhöht wird. Zusätzlich können die statischen Typ-Überprüfungen, die
vom TypeScript-Kompilierer durchgeführt werden, eine Vielzahl an Zuständen erken-
nen, welche zur Laufzeit des Zielcodes möglicherweise zu Problemen führen können. Ob-
wohl die Typ-Kompatibilität zum Zeitpunkt der Kompilierung überprüft wird, sind die
Typ-Informationen zur Laufzeit nicht verfügbar. Das Entfernen dieser Informationen ist
beabsichtigt und in den Design-Zielen der Programmiersprache festgelegt, obwohl dyna-
mische Typ-Validierungen die Qualität des ausführbaren Programms verbessern können.
Durch die Erweiterung des TypeScript-Kompilierers stellt diese Arbeit eine effiziente
Methode zur Verfügung, um die Typ-Informationen für Typ-Kompatibilitätsprüfungen
zur Laufzeit zu erhalten. Diese Überprüfungen werden automatisch generiert und in
dem resultierenden JavaScript-Code eingefügt, welche während der Entwicklung eines
Projekts mögliche Probleme identifizieren können, die der TypeScript-Kompilierer nicht
feststellen kann.

viii

Chapter 1

Introduction

JavaScript is a popular programming language for client and server side applications. It
has evolved considerably in recent years and the latest specification called ECMAScript
2015—also known as ES6—which, among other things, introduced classes to native
JavaScript, was a major step for developers. Even though JavaScript’s dynamic type
system can be of advantage in a lot of scenarios, it adds the risk of introducing errors.
The language tries to perform type conversions in situations where values are not com-
patible, which can lead to unexpected behavior. Therefore TypeScript1 was defined as a
superset of JavaScript, giving developers the ability to optionally add type annotations
to their projects, resulting in increased code readability, scalability and maintainability.
In addition, TypeScript’s static compile time type checks can detect a multitude of con-
ditions that may cause issues in the target code at runtime, before native JavaScript code
is emitted by the preprocessor. The compiler also adds support for the latest JavaScript
features and proposals [38, 97], which enables the use of future language characteristics
that are not yet supported.

1.1 Problem Definition
Although type compatibility is checked during compile time, type information is not
available in the compiled JavaScript code. The removal of the type information is in-
tended and is defined in the design goals of the language [37]. A number of issues have
been filed on Microsoft’s GitHub repository, requesting the ability to automatically gen-
erate runtime type checks [61, 72, 83], which were rejected due to being out of scope
of the language’s goals [36, 63]. Therefore extensive type checks have to be performed
manually for situations in which the compiler cannot detect errors, such as HTTP re-
quests or untyped third party code. This results in increased development effort and
greater susceptibility to errors.

1 https://www.typescriptlang.org

1

https://www.typescriptlang.org

1. Introduction 2

1.2 Solution Approach
Given the fact that suitable type information is available for most situations—either
through type annotations or type inference—suggests that generating runtime type
checks based on the existing data at compile time is technically possible. The informa-
tion which is usually removed by the TypeScript compiler should be reflected in the
target code to obtain it for type compatibility checks during program execution. These
checks should be generated and inserted in the resulting JavaScript code automatically,
which should help to identify possible issues during the development of a project the
TypeScript compiler cannot detect. In order to achieve a desirable result, situations
where verifications need to take place have to be identified carefully. Also the footprint
of code added to a project, as well as the performance impact on the program being
executed, should be as small as possible. While the main purpose of this project is its
use in the phase of development and testing, employing its technique in a production
environment should be considered as well.

1.3 Thesis Structure
In Chapter 2 the technical foundation, including definition of terminology and the in-
troduction of the programming language JavaScript as well as various other terms and
concepts forming the basis for the remaining chapters, will be introduced. In Chapter 3
the superset TypeScript will be explored and compared to a similar project, and an
overview of the current state on automated runtime type checks for JavaScript will be
provided. After the rudiments of the topic have been handled and the state of the art
in the field of runtime type checks for JavaScript has been examined, the theoretical
approach for the thesis project will be elaborated in Chapter 4, followed by its im-
plementation in Chapter 5. Finally, the result will be evaluated in Chapter 6, before
summarizing the outcome of the thesis as well as giving an outlook into the future in
Chapter 7.

Chapter 2

Technical Foundation

This chapter provides an overview of the technical knowledge required for this thesis. It
gives an exposure to the different type systems, the programming language JavaScript
and JavaScript supersets. Also terminology used throughout this paper is specified, since
standards differ across sources [1, p. 97-1].

2.1 Type Systems
There are different kinds of programming languages with different characteristics and
specifications. An essential part of a language is its type system, which has a great impact
on the behavior of a program and may influence the syntax a program is written in. In
general a programming language can be categorized as typed or untyped, where untyped
languages do not have a static type system at all, or have a single type, which can hold
any value [1, p. 97-2]. More precisely a language is considered typed independently of
types being part of the syntax, but simply by the existence of a (static) type system [1,
p. 97-2]. According to Cardelli from Microsoft Research1 a type system is “a collection
of type rules for a typed programming language” [1, p. 97-38] with the purpose to “[...]
prevent the occurrence of execution errors during the running of a program” [1, p. 97-
1]. He further equates type system with static type system and also Pierce defines type
systems as being static [11, p. 2], which categorizes languages as untyped that may
distinguish between types at runtime but do not have knowledge about types during
compilation or interpretation, such as JavaScript (see Sec. 2.2). This notion is further
supported by Louden and Lambert, stating that

languages without static type systems are usually called untyped languages
(or dynamically typed languages). Such languages include [...] most scripting
languages such as Perl, Python, and Ruby. [8, p. 331]

A widely adopted consensus in terminology is to use both, untyped (e.g., in [19, p. 117])
and dynamically typed (e.g., in [5, p. 32] and [9, p. 203]) for languages without a static
type system. Anyway, following the terminology of Cardelli, expressions like statically

1 https://www.microsoft.com/research/

3

https://www.microsoft.com/research/

2. Technical Foundation 4

typed or dynamically typed are avoided in favor for statically checked and dynamically
checked, respectively [1, p. 97-1]. This should help to avoid confusion over languages
having types, but are referred to as untyped.

2.1.1 Explicitly and Implicitly Typed
If types are part of the syntax of a language (e.g., in Java) it is explicitly typed, whereas
in implicitly typed languages, type annotations are assigned automatically by the type
system [1, pp. 97-2–97-3]. Some languages, however, make use of a mixture, allowing
developers to omit type annotations in various scenarios where the type can be inferred
by the compiler [11, p. 10], as shown in the C# code below:

var implicitNum = 10; // implicitly typed as integer
int explicitNum = 10; // explicitly typed as integer

While a type system—explicit, implicit, or a combination of both—may detect possible
execution faults already during compile time, it is not required to guard against specific
errors. There are mechanisms for untyped languages to make them safe [1, p. 97-3], as
outlined in Sec. 2.1.4.

2.1.2 Execution Errors
Errors can occur in various situations and in order to classify a language, it is important
to understand the different types of errors. Cardelli distinguished between trapped errors,
untrapped errors, and forbidden errors [1, p. 97-3].

Trapped Errors

A trapped error causes a program to stop immediately [1, p. 97-3] or to raise an excep-
tion, which may be handled in the program [11, p. 7]. An example for such an error is
a division by zero [1, p. 97-3].

Untrapped Errors

Errors where a program does not crash or raise an exception immediately are called
untrapped errors [1, p. 97-37]. They may remain unnoticed—at least for a while—and
can lead to unexpected behavior [1, p. 97-3]. For example accessing data from an array
that is out of bounds is legal in the programming language C [11, p. 7], but can lead to
errors or arbitrary behavior later in the program [1, p. 97-3].

Forbidden Errors

Following the definition of Cardelli, forbidden errors should include “all of the untrapped
errors, plus a subset of the trapped errors [1, p. 97-3]”. They are not generally defined,
but vary between programming languages and may even not include all untrapped
errors, which leads to a language being considered as unsafe [1, p. 97-4].

2. Technical Foundation 5

2.1.3 Safety and Good Behavior
A programming language can be considered as safe if no untrapped errors can appear,
and is well behaved (i.e., good behaved) if no forbidden errors can occur [1, p. 97-
3], consequently good behavior implies safety. Not all major languages are safe, and
therefore not well behaved, such as C or C++ [11, p. 6], as guaranteeing safety usually
results in increased execution time. An example for a safe language with decreased
development and maintenance time compared to an unsafe language is Java [1, p. 97-5].

2.1.4 Type Checking
To ensure that a program follows the specified rules of its type system and to guarantee
safety and good behavior (i.e., ensuring the absence of forbidden errors [1, p. 97-37]),
as described in Sec. 2.1.3, type checking may be performed. Again, Cardelli treats type
checking and static type checking as equivalent and calls languages that employ such a
technique statically checked [1, p. 97-3]. Dynamically checked programming languages,
on the other hand, may also ensure good behavior by applying sufficient checks at
runtime. Anyway, statically checked languages may also perform verifications during
the execution of a program to guarantee safety, if not all untrapped errors can be
discovered statically during compilation [1, p. 97-4].

2.2 JavaScript
JavaScript dates back to 1996, where its creator Brendan Eich from the company
Netscape2 submitted the language to Ecma International3 [10, p. 28], an “industry
association founded in 1961, dedicated to the standardization of information and com-
munication systems” [46], and since became one of the most popular programming
languages in the world [2, p. 2]. According to GitHub4 it was the most popular language
on its platform by opened Pull Requests5 with a growth of 97% in 2016, followed by
Java, which saw an increase of 63% compared to 2015. Also TypeScript (see Sec. 3.1.1) is
following up, which takes the 15th place with an increase of Pull Requests by 250% [62].

While JavaScript is known for programming inside browsers and for adding visual
effects to websites [12, p. 4], its first use in a product was on the server-side in 1994 [10,
p. 369]. Since then, no application platform for JavaScript was available for 17 years
until Ryan Dahl created and released Node.js6 in 2011, which allowed developers to
build cross-platform applications in JavaScript. It is built upon Google‘s V8 JavaScript
engine7, which is also used in the popular Chrome8 web browser [10, p. 369].

2 Netscape Communications—founded as Mosaic in 1994—released its Netscape Communicator
browser in 1995 which became the leading internet browser at that time [41].

3 https://www.ecma-international.org
4 https://github.com
5 Pull requests on GitHub are used to let other people know about changes made to a repository.

From there on these modification can be reviewed and discussed with collaborators and can be rejected
or merged into the repository [23].

6 https://nodejs.org
7 https://developers.google.com/v8/
8 https://www.google.com/chrome/

https://www.ecma-international.org
https://github.com
https://nodejs.org
https://developers.google.com/v8/
https://www.google.com/chrome/

2. Technical Foundation 6

The following sections give an overview of the language JavaScript, outlining its most
important and interesting concepts. As it would go beyond the scope of this thesis not
all cases—especially the numerous exceptions—are described.

2.2.1 Loose Typing
Like in other programming languages, variables can be declared and values may be
assigned to them. An essential concept of JavaScript is its loose typing, meaning that
any value can be assigned or reassigned at any time to any variable:

let foo = 10;
foo = "I've been a number, now I'm a string";

The term loose typing may be misleading to infer that JavaScript has a type system.
However, when following standard terminology and keeping in mind that type system
is equal to static type system, it is made clear that JavaScript is considered untyped.
It does employ mechanisms to reject code from running, which has semantic errors,
but evaluation is performed during execution, and errors are determined and reported
during runtime [51, p. 291]. Therefore JavaScript can be deemed a dynamically checked
language (see Sec. 2.1.4).

2.2.2 Value Types
JavaScript is an untyped and dynamically checked—but safe—scripting language, as
defined in Sec. 2.1. Most untyped programming languages are necessarily safe, as it
would be exceedingly difficult to maintain the code, if untrapped errors would remain
unnoticed [1, p. 97-4]. Even though considered as untyped, the ECMAScript language
specification defines seven value types [51, p. 16]:

• Undefined,
• Null,
• Boolean,
• String,
• Symbol,
• Number,
• Object.

A major difference to a (statically) typed language is, that in JavaScript only values
are typed, variables are not. When requesting the type of a variable with the typeof
operator during runtime, the assigned value’s type is determined and returned as a
string [18, p. 30]:

let num = 10;
typeof num; // "number"

The string that is returned by the typeof operator does not reflect the previously men-
tioned value types completely. As shown in Tab. 2.1, objects are differentiated by wether
they are callable or not. For objects with a call signature, "function"9 is returned, and

9 Code sequences that are enclosed in quotation marks denote a string, whereas, e.g., identifiers,
keywords, and operators—such as typeof—are not quoted. If it is explicitly pointed out that a given
code is a string, the quotation marks may be omitted.

2. Technical Foundation 7

"object" otherwise. For a value of type Null the result is "object" as well. A proposal
to change the specification and to correct this issue—erroneously indicating that null
is an object—was rejected, as existing code may break [85, 95].

Table 2.1: Result of the typeof operator by a value’s type. [51, p. 164]

Type of Value Result

Undefined "undefined"

Null "object"

Number "number"

String "string"

Symbol "symbol"

Object (not callable) "object"

Object (callable) "function"

2.2.3 Type Conversion
In JavaScript “any [...] value can be converted to a boolean value” [4, p. 40]. If the
interpreter expects a boolean value it performs an implicit conversion [4, p. 46] (see
Sec. 2.2.4). Tab. 2.2 gives an overview of which values are evaluated as true or false
when being converted to a boolean value, either explicitly or implicitly.

Table 2.2: Values evaluated as false or true when converted to a boolean value. [4, p. 40]

Falsy undefined, null, 0, -0, NaN and "" (empty string).
Truthy Any other value, including [] (empty array) and {} (empty object).

There are various situations where a conversion is desired, which can happen implicitly
in JavaScript. For example if a string should be added to a number, and vice versa, the
number is converted to a string, and the result is a concatenation of both values:

"2" + 3 // "23"
"Hello" + 2 + 3 // "Hello23"

The outcome of such an operation will most likely complete without errors, as the
interpreter tries to come up with a sufficient result. Anyway, it has a major influence
on the outcome how such an expression is written. In the example above the string is
seen first by JavaScript, therefore the subsequent numbers are converted to a string.
If, on the other hand, the numbers came first, the result would have been completely
different:

2 + 3 + "Hello" // "5Hello"

Again, even a slight change to the code means an entirely different outcome:
"2" + 3 + "Hello" // "23Hello"

2. Technical Foundation 8

Table 2.3: Type conversions in JavaScript. [4, p. 46, 51, pp. 36–44]

Initial Value String Number Boolean Object
undefined "undefined" NaN false TypeError
null "null" 0 false TypeError
true "true" 1 (i)
false "false" 0 (i)

"" (empty string) 0 false (i)
"1.2" (non-empty, numeric) 1.2 true (i)
"one" (non-empty, non-numeric) NaN true (i)

0 "0" false (i)
-0 "0" false (i)
NaN "NaN" false (i)
Infinity "Infinity" true (i)
-Infinity "-Infinity" true (i)
1 (finite, non-zero) "1" true (i)

{} (any object) (ii) (iii) true
[] (empty array) "" 0 true
[9] (single numeric array) "9" 9 true
["a"] (any other array) (iv) NaN true
() => {} (any function) (ii) NaN true
Symbol("sym") (any symbol) TypeError TypeError true (i)

(i) For situations where converting a value to an object does not throw a TypeError,
a new object of the value’s type is returned. E.g., for the value "Hello world!", new
String("Hello world!") is returned [51, p. 44].
(ii) When converting an object to a string, JavaScript tries to call the toString or valueOf
method on the object and converts the returned value to a string. If no primitive value can
be obtained from either of these methods a TypeError is thrown [4, p. 50].
(iii) The same steps as in (ii) are performed with the difference that valueOf is be preferred
over toString.
(iv) The toString method of the Array object joins the array separated by a comma, which
results in ["a","b","c"] being converted to "a,b,c" [25].

A more comprehensive overview of possible type conversions—summarized by Flanagan
and extended with Symbol type conversions as of the ECMAScript 2015 specification—
can be found in Tab. 2.3, which also highlights situations where type conversions are
not possible or lead to an error.

2.2.4 Value Comparison
In Sec. 2.2.3 the flexibility of JavaScript has already been outlined. Types are converted
to another type if required and possible. The same is true when comparing values.
JavaScript tries to implicitly convert a value to another value if it cannot perform a

2. Technical Foundation 9

comparison at first. Comparing a string that holds a numerical value to an actual number
gives the same result as comparing two values of type Number, since the interpreter
implicitly converts the string to a number:

"5" > 2 // true
"2" == 2 // true

When comparing with the equality operator (i.e., ==) there are a few rules to keep in
mind [4, p. 72]:

• The values null and undefined are considered equal.
• If a number and a string are compared, the string is converted to a number.
• The values true and false are converted to 1 and 0, respectively.
• Objects are compared by reference10, whereas if the value to compare an object

to is a number or a string, JavaScript tries to convert the object to a primitive
value, either by using the object’s toString or valueOf method.

• All other comparisons are not equal.
If a more detailed comparison is required and an automatic conversion of values is not
desired, the strict equality operator (i.e., ===) can be used. Only if type and value
match, the expression evaluates to true:

"2" === 2 // false
2 === 2 // true

Following the rules defined above it is interesting to look at comparing an object to the
string [object Object]:

{} == "[object Object]" // true
{} === "[object Object]" // false

Using the equality operator the object is converted using the default toString method,
which returns "[object Object]", resulting in the compared values being equal. When
making use of the strict equality operator no conversion is performed and the expression
evaluates to false.

2.2.5 Objects and Prototypal Inheritance
Every value, which is not a primitive value (i.e., Undefined, Null, Boolean, Number,
Symbol, or String [51, p. 5])—including functions and arrays—is an object, hence making
JavaScript a highly flexible language. A key concept of the language is the prototypal
inheritance of objects. Every object has a prototype, which is a reference to another
object. Anyway, the prototype is not accessible for all types of objects, but for functions,
or more precisely, constructors [51, p. 3] (see Fig. 2.1). A constructor function is an
ordinary JavaScript function, which—by convention—begins with a capital letter [12,
p. 8]. Initial values can be defined, which may be different for every instance, created
from the constructor:

function Person(name) {
this.name = name;

}

10 In JavaScript an object’s reference “[...] points to [its] location in memory” [24].

2. Technical Foundation 10

Object.prototype

toString
...

Object
constructor function

Person
constructor function

Person.prototype

speak
...

thomas
Person instance

prototype

constructor

prototype

constructor

__proto__

__proto__

Figure 2.1: Prototypal inheritance in JavaScript.

On the other hand, if properties are defined on the function’s prototype, they are shared
across all instances of Person:

Person.prototype.speak = function speak() {
return "Hi, my name is " + this.name;

}

By calling thomas.speak() in the code below, JavaScript looks for a speak property
on the object thomas. As this name is non-existent on the object itself, the interpreter
looks at the object’s prototype and successfully calls the method [16, pp. 85–86].

let thomas = new Person("Thomas");
thomas.speak(); // "Hi, my name is Thomas"

If no property speak would exist on the prototype neither, JavaScript would look at
the prototype’s prototype recursively, until reaching Object. This is called the prototype
chain [16, p. 86].

2.2.6 Latest Improvements
JavaScript is improving rapidly with a number of major and minor changes and im-
provements to the language’s standard. Some additions improve readability and reduce
the amount of lines of code needed to accomplish the same outcome in previous ver-
sions. Others add completely new functionality and concepts to JavaScript. The follow-
ing sections give an overview of additions to the sixth edition of ECMAScript—called
ECMAScript 2015—that make it most distinctive to the standard’s previous version.

2. Technical Foundation 11

Declaration Keywords

Up to the fifth edition of ECMAScript (i.e., ES5), the only declaration keyword available
was var [48, p. 87]. As of the 6th edition of ECMAScript (i.e., ES6), the keywords let—
as seen in previous code snippets—and const are also available [51, p. 194]. In order to
understand the impact of using one keyword over another, a fundamental understanding
of scopes in JavaScript is indispensable. Simpson defines a scope as

[...] the set of rules that govern how the engine can look up a variable by
its identifier name and find it, either in the current scope, or in any of the
nested scopes it’s contained within. [15, p. 13]

JavaScript makes use of a lexical scope model, which is based on where variables and
scope blocks (e.g., functions) are written in the code [15, p. 13]. This means that

no matter where a function is invoked from, or even how it is invoked, its
lexical scope is only defined by where the function was declared. [15, p. 16]

Prog. 2.1 gives an example of how scopes behave in JavaScript and also shows the
importance to be aware of it. While there are ways to get around lexical scoping in
JavaScript, those mechanisms are considered bad practice [15, p. 14] and come with
performance issues [15, p. 21], hence won’t be covered here.

Program 2.1: Variable i is declared on line 7 as counter for a for loop. When function
bar is called from within the loop, the identifier i exists in the scope of bar, or rather in
its enclosing scope foo, and i is assigned the value 2. This results in an infinite loop, as
it will never reach its condition to stop of i being equal to or greater than 10 [15, p. 26].

1 function foo() {
2
3 function bar() {
4 i = 2;
5 }
6
7 for(var i = 0; i < 10; i++) {
8 bar();
9 }

10
11 }
12
13 foo();

Before let and const were introduced, the easiest way to create a scope was a func-
tion [17, p. 7]. Other programming languages, like Java, support block scope [15, p. 7],
which means that variables are scoped by any block that is created, including loops.
JavaScript, however, makes use of a function scope, as shown previously in Prog. 2.1.
As of ES6 the declaration keyword let can be used to block-scope variables, whereas
var leads to the variable being scoped to its parent function or the global scope if no
enclosing function exists. The code below demonstrates that creating a simple block in
combination with a var declaration does not scope the identifier to that block [17, p. 8]:

2. Technical Foundation 12

1 var a = 1;
2
3 {
4 var a = 2
5 }
6
7 console.log(a); // 2

On the other hand, when declaring a on line 4 with the let keyword, the variable is
scoped to its enclosing block:

1 var a = 1;
2
3 {
4 let a = 2
5 }
6
7 console.log(a); // 1

While behavior may vary when using different declaration keywords, exchanging var
with let on line 1 of the previous code example would not have any impact, as the
variable lives in the global scope either way [67, 99]. However, it may be a good practice
to use the block scope behavior for variables with let or const over var at any time,
if not explicitly needed otherwise. This may prevent errors and unexpected behavior,
which is outlined when comparing Prog. 2.1 to Prog. 2.2.

Program 2.2: In this program var has been replaced in favor for let on line 7, compared
to Prog. 2.1. This causes variable i being scoped to the for loop, and not to its enclosing
function foo. Therefore the assignment on line 4 does not change the value of i, and the
loop is called exactly ten times.

1 function foo() {
2
3 function bar() {
4 i = 2;
5 }
6
7 for(let i = 0; i < 10; i++) {
8 bar();
9 }

10
11 }
12
13 foo();

The const keyword behaves exactly the same as let, with the only difference that it
is a constant, meaning that its value is fixed and cannot be changed. An attempt to
reassign a constant identifier results in an error [15, p. 39]:

const a = 1;
a = 2; // TypeError

However, this does not affect, e.g., properties of an object assigned to a constant variable,
unless the object is immutable or its properties are marked as not writeable [39].

const b = { name: "Foo" };
b.name = "Bar";

2. Technical Foundation 13

Program 2.3: Line 5 of the program logs the global window object in browsers, whereas
on line 9 the object bar is logged to the console. [87, p. 18]

1 const foo = function() {
2 console.log(this);
3 };
4
5 foo();
6
7 const bar = { foo };
8
9 bar.foo();

Arrow Functions

For the concept of arrow functions, introduced in ECMAScript 2015, a basic knowledge
of the this keyword is required. In contrast to the function scope, this is bound during
runtime and is not associated to where a function is placed in the code [16, p. 9]. Simpson
puts it to the point that

when a function is invoked, [...] an execution context is created. This [con-
text] contains information about where the function was called from (the
call-stack), how the function was invoked, what parameters were passed,
etc. One of the properties of this [context] is the this reference, which is
used for the duration of that function’s execution. [16, p. 1]

In other words, the value bound to this differs and is influenced by how and from where
a function is called. Arrow functions, on the other hand, use lexical instead of dynamic
binding for this [17, p. 58]. Additionally, they inherit the arguments array from its
parent, and also super and new.target are lexically bound [17, p. 59]. Prog. 2.3 shows
the behavior when using a regular function alongside this.

To highlight the syntactical and behavioral differences of functions compared to
arrow functions, the code below shows a function assigned to a constant, taking one
parameter and returning its value:

const foo = function(a) {
return a;

}

The same function can be written as an arrow function, as shown in the following code
snippet:

const foo = (a) => {
return a;

}

It is possible to write the function even shorter. If only one parameter is given, the
parenthesis around it can be omitted. Also when deciding not to wrap the function’s
body with curly brackets, the result of the statement is returned automatically, therefore
typing return is not required, as shown in the code below:

const foo = a => a;

2. Technical Foundation 14

The main purpose of arrow functions, however, is not to reduce the number of characters
needed for a function, but the lexical binding of this, as shown in Prog. 2.4. Using an
arrow function over a function, or vice versa, without being aware of the differences may
result in unexpected behavior.

Program 2.4: Unlike in Prog. 2.3, where line 5 and 9 logged different objects to the
console, in this example, both log the global window object, due to the lexical binding of
the arrow function, defined on line 1.

1 const foo = () => {
2 console.log(this);
3 };
4
5 foo();
6
7 const bar = { foo };
8
9 bar.foo();

Classes

The introduction of classes was a major step for JavaScript’s standard, although the
concept is not new to the programming language and has been used before. Prog. 2.5
shows a class in ES6, whereas Prog. 2.6 demonstrates how the same result was achieved
in JavaScript prior to the sixth edition of ECMAScript. Both variants are valid in ES6
and can be used in the same way, as follows:

const foo = new Foo(1, 2);
foo.bar(); // 3

When looking at Prog. 2.6, which shows how to accomplish a class-like behavior in ES5
and below, it is made clear that classes in JavaScript don’t work like traditional classes
in other languages and actually rely on the concept of prototypes [17, p. 135].

Program 2.5: A class in JavaScript as of ECMAScript 2015.

1 class Foo {
2
3 constructor(a, b) {
4 this.a = a;
5 this.b = b;
6 }
7
8 bar() {
9 return this.a + this.b;

10 }
11
12 }

2. Technical Foundation 15

Program 2.6: A class in JavaScript prior to ECMAScript 2015.

1 function Foo(a, b) {
2 this.a = a;
3 this.b = b;
4 }
5
6 Foo.prototype.bar = function() {
7 return this.a + this.b;
8 }

String Concatenation

In JavaScript the addition operator can be used for string concatenation, which is still
possible in the 7th edition of the standard, also denoted as ECMAScript 2016 [50].
In the sixth edition of ECMAScript template literals were introduced [51, p. 148, 17,
pp. 47–48], giving developers more flexibility when working with strings. To showcase
the ordinary way to add one string to another, the following code is given:

let firstname = "Foo";
let lastname = "Bar";

To put the values of these variables together the addition operator can be used:
firstname + " " + lastname; // "Foo Bar"

In order to insert a space between firstname and lastname, it needs to be added as a
string between the two variables. The same result can be achieved by creating an array
from these identifiers and to join the values by a space:

[firstname, lastname].join(" "); // "Foo Bar"

Starting with ES6, another possibility is to use template strings—delimited with back-
ticks rather than quotes—where expressions can be inserted [17, p. 48]:

`${firstname} ${lastname}`; // "Foo Bar"

The result of all the previously shown concatenation techniques is identical.

Beyond ECMAScript 2015

The development of JavaScript is dependent on its specification, defined by ECMAScript,
and new editions were not released regularly [86]. Version 5.1 was published in 2011 [52],
from where it took four years until the sixth edition was published in June 2015 [49].
Starting with ECMAScript 2015, a new specification will be released yearly [53].

2.2.7 Further Reading
This section outlined the most important concepts of JavaScript with a focus on the
characteristics that encourage the value of runtime type checks in JavaScript, discussed
later in Ch. 4. Various exceptions or details were not handled, as they would go beyond
the scope of this thesis. If a more sophisticated knowledge of the programming language

2. Technical Foundation 16

is desired, the You Don’t Know JS series by Simpson, JavaScript: The Good Parts
by Crockford and JavaScript: The Definitive Guide by Flanagan, among others, are
recommended.

2.3 Abstract Syntax Tree

An abstract syntax tree (i.e., AST) is the representation of a source program, created
for analyzation purposes [7, p. 99-19], containing only the indispensable portions of the
code [20, p. 12] for the most parts. A syntax tree—or abstract syntax tree—is normally
created by a compiler at an early stage. More specifically it is usually the second out of
five compilation phases [7, pp. 99-2–99-3]:

1. The scanner, or lexical analyzer, reads and tokenizes the source code, where a
token is typically a keyword, an identifier, or a literal.

2. In the next step the parser, also called syntactic analyzer, combines multiple tokens
to, e.g., an expression, a statement, or a declaration. The result of the parser is
the abstract syntax tree.

3. The semantic analyzer performs, among other things, type checks and range check-
ing.

4. In the fourth step of a typical compiler the optimizer creates intermediate code
and applies code improvement algorithms.

5. The code generator is the last step where the final target code of a program is
generated.

To demonstrate how an abstract syntax tree may look like for TypeScript, a variable
declaration was inserted in the online editor AST explorer11, which can visualize the
syntax tree generated by numerous parsers, including JavaScript, various JavaScript
supersets such as TypeScript and Flow, as well as CSS (i.e., Cascading Style Sheets) and
HTML (i.e., Hypertext Markup Language) [70]. The resulting syntax tree is illustrated
in Fig. 2.2.

11 https://astexplorer.net

https://astexplorer.net

2. Technical Foundation 17

SourceFile

VariableStatement

VariableDeclarationList

VariableDeclaration

Identifier
foo

StringKeyword
StringLiteral

"bar"

...

Figure 2.2: Abstract syntax tree of the TypeScript code let foo: string = "bar".

Chapter 3

State of the Art

This chapter’s main focus is on TypeScript, while also other supersets are explored.
Furthermore, the current state of runtime type validations in JavaScript is highlighted,
and the status of automatically generating type checks based on TypeScript code is
discussed.

3.1 JavaScript Supersets
Weisstein defines a superset as

[a] set containing all elements of a smaller set. If 𝐵 is a subset of 𝐴, then 𝐴
is a superset of 𝐵 [...]. [101]

This means that every program that is valid in JavaScript is also legal in a JavaScript
superset, where the purpose of such a superset can be to add features to the original
language. As the source written in the supersets syntax will be compiled to JavaScript,
any additional functionality needs to be representable as JavaScript code as well.

3.1.1 TypeScript
TypeScript was created by Anders Hejlsberg—the designer of C#—at Microsoft [14,
p. 10] and was released in 2012 under the Apache1 open source license version 2.02 [3,
p. xix]. The most important aspect of TypeScript is that it includes a compilation
step where static type checking is performed [14, p. 11]. Type annotations are optional
and the compiler will infer type information where possible [87, p. 10]. TypeScript
also introduces concepts known from other programming languages, such as interfaces
and enumerations (i.e., enums). Not only it is possible to develop a program in the
TypeScript syntax, but also to add type annotations to existing JavaScript projects [14,
p. 13]. The most significant particularities and features are be explored in this section.

1 https://www.apache.org
2 https://www.apache.org/licenses/LICENSE-2.0

18

https://www.apache.org
https://www.apache.org/licenses/LICENSE-2.0

3. State of the Art 19

Basic Types

TypeScript defines a set of basic types, which overlap with JavaScript’s types, listed in
Sec. 2.2.2, while also introducing several new ones, as listed below [28]:

• Tuple is a special kind of an array, only allowing a fixed number of elements.
• Enum may already be known from other programming languages, like Java, and

is useful to define a set of values.
• Any results in type checking not being performed by the compiler. This can be

of advantage when using TypeScript alongside third party libraries where no type
definitions are available.

• Void is the counterpart to Any. Again, it is used in other languages, e.g., to
annotate functions that do not return a value. In TypeScript also variables may
be typed as void, meaning that only undefined or null are accepted as value.

• Never, for instance, is useful for functions that always throw an error or result in
an infinite loop, as no value will ever come back.

While other types, such as Function, or more advanced structures are also available,
the ones listed above in combination with those already defined in JavaScript (i.e.,
Undefined, Null, Boolean, String, Symbol, Number, and Object) are frequently seen in
TypeScript projects.

Type Inference

As already mentioned, TypeScript tries to infer the type if no type annotation is pro-
vided. The example below shows a variable declaration in JavaScript (or TypeScript),
where the TypeScript compiler can automatically infer the type Number from the dec-
laration:

let num = 1;

Therefore it won’t allow any subsequent assignment to num not being a number. For ex-
ample the reassignment num = "foo" would result in the following compiler diagnostic:

Type '"foo"' is not assignable to type 'number'.

The term diagnostic is used over error here, since the compiler won’t stop in such cases
and will try to emit the final JavaScript code by default [87, p. 12]:

let num = 1;
num = "foo";

The code above shows the compiled result, even though the compiler detected a type
error.

Type Annotations

While type inference can be useful in some situations, others require types to be set
explicitly, as shown below:

let num: number;
num = 1;

The variable num is declared, but not initialized, requiring a type annotation in order
to be treated as a number by TypeScript. Omitting the explicit type information, the
compiler would infer the Any type, allowing arbitrary assignments to the variable.

3. State of the Art 20

Type Assertions

Type assertions are a way to provide TypeScript with type information, which is not
available to the compiler. They are like

[...] type [casts] in other languages, but [perform] no special checking or
restructuring of data. [28]

It is the developer who needs to take care of performing sufficient checks when using
a type assertion. Because of the possibility to use any existing JavaScript library with
TypeScript, situations where the compiler does not have type information of the external
package may occur. Type assertions can be a solution to prevent compile time type errors
in such cases:

import RandomName from "random-name";
let name: string = (RandomName as any).getName();

In the example above the default export from the library random-name is imported
as RandomName. This package is neither written in TypeScript nor does it have type
definitions available. However, the library has a callable getName property, returning a
string. As the compiler is not aware of the package’s properties and their return types,
it is necessary to provide the information which type to assert. RandomName is casted to
any, allowing property access independently of their existence. Again, because of type
assertions (or type casts) not performing any special checking, this solution may lead
to errors if the author of the package decides to change its application programming
interface (i.e., API). Therefore manually checking for a callable getName property on
RandomName, as well as verifying the returned value, is recommended. As an alternative
to the type casting syntax with the as keyword, the following may be used:

let name: string = (<any>RandomName).getName();

However, the angle-bracket syntax shown above is not supported when using TypeScript
with JSX3 [28], making the as syntax preferable.

Ambient Type Declarations

In TypeScript either existing structures—such as classes and basic types—can be used as
type annotation, or they can be defined via interfaces or type aliases. The latter are not
part of the code after compilation, while, e.g., classes or enums remain in the JavaScript
code. Anyway, it is also possible to declare, among others, a class or variable as ambient
in TypeScript. This may be useful when consuming a third party package, which is
not written in TypeScript, and no type definitions are available for the library. In the
previous section type casting was used to circumvent this issue. While this is a possibility,
it may not be suitable if the library is used frequently in a project. Prepending, e.g.,
a variable, class, namespace, or an enum with the declare keyword, results in the
declaration being ambient:

declare const RandomName: any;

3 “JSX is an embeddable XML-like syntax [...] meant to be transformed into valid JavaScript [which]
came to popularity with the React framework, but has since seen other applications as well” [68].

3. State of the Art 21

Alternatively the imported package may be described more detailed:
declare const RandomName: {

getName: () => string;
};

From now on the TypeScript compiler can obtain the information of the import having
a callable property getName, which returns a string. However, the declaration will not
be part of the compiled JavaScript program.

Structural Types

Types in TypeScript are structural [87, p. 11], meaning that the type checker looks
at the members of an object, or more specifically its type signature, to ensure type
compatibility, while other major languages, such as C# or Java, use nominal type sys-
tems [94]. Prog. 3.1 gives an example, which would fail in a nominally typed language,
but is possible in the structurally typed language TypeScript.

Program 3.1: An instance of Person can be assigned to a variable with type Named
on line 10, because of TypeScript’s structural type system. In languages with a nomi-
nal type system the class Person would need to implement the interface Named in their
corresponding syntax, for this example to be valid. [94]

1 interface Named {
2 name: string;
3 }
4
5 class Person {
6 name: string;
7 }
8
9 let p: Named;

10 p = new Person();

Classes

TypeScript not only enables static type checking for JavaScript applications, but it also
adds language features. While EcmaScript 2015 introduced classes, TypeScript provides
the enhancement to also define them as abstract, and to add visibility modifiers and
interfaces to them, as shown below:

class Person implements Human {
public name: string;
private age: number;

}

The keywords public, protected and private may be used for class members and
methods. Also it is possible to define members and to provide default values outside of
the constructor, as well as to mark properties as readonly, which prohibits reassign-
ments at compile time:

class Person implements Human {
public readonly id = uid();

}

3. State of the Art 22

Anyway, it is important to note that the modifiers described, as well as implemented
interfaces, are only relevant during compile time. After the final JavaScript code has
been emitted, this information is missing and cannot be used in the running program:

class Person {
constructor() {

this.id = uid();
}

}

Consequently, it is technically possible to assign an arbitrary value to id property of a
Person instance at runtime.

Enums

Enumerations are beneficial for defining a set of values. The TypeScript compiler takes
enum declarations and transforms them into runnable JavaScript code. Given is the
following enum in TypeScript syntax:

enum HairColor {
Black, Blond, Brown, Red, Other

}

This results in the JavaScript code below, which shows a self-executing function, ini-
tializing the identifier HairColor with the data of the enumeration:

var HairColor;
(function (HairColor) {

HairColor[HairColor["Black"] = 0] = "Black";
HairColor[HairColor["Blond"] = 1] = "Blond";
// ...

})(HairColor || (HairColor = {}));

The enum keys can now be accessed at runtime to obtain their corresponding values.
Also it is possible to reveal a key by its value:

HairColor.Black // 0
HairColor[0] // "Black"

However, if the enumeration is declared as constant, the compiler will look up the
numeric value and will insert it directly into the source code, before entirely removing
its definition [54], unless the compiler option preserveConstEnums is used [38].

Namespaces

In TypeScript, namespaces provide a possibility to encapsulate code. They were previ-
ously referred to as internal modules, but have since been renamed to avoid confusion
with native modules of the EcmaScript standard, previously denoted as external mod-
ules in TypeScript [75]. Code within a namespace only exposes its explicitly exported
parts:

namespace Capsule {
let foo = "Hello from Capsule!";

export function bar() {
return foo;

}
}

3. State of the Art 23

Accessing foo of the namespace Capsule would result in undefined, whereas calling
bar would return the value of foo. If taking a look at the JavaScript code generated
from the namespace above, this behavior is made clear:

var Capsule;
(function (Capsule) {

var foo = "Hello from Capsule!";
function bar() {

return foo;
}
Capsule.bar = bar;

})(Capsule || (Capsule = {}));

A variable with the name of the namespace is declared and an empty object is assigned to
it. Only the namespace’s exported parts will be added to this object to be exposed, while
all other values remain exclusively accessible from within the self-executing function
itself.

Parameter Default Values

Another useful feature is the possibility to define default values for parameters in
TypeScript. This gives developers the ability to avoid parameters being undefined
if not passed, and can be useful in various other scenarios.

function log(message: string, logger: Console = console) {
logger.log(message);

}

The example shows a function, which writes a string to the console when omitting the
second parameter. If another log mechanism is desired, it is possible to pass a different
logger to this method, which aligns with the Console interface. The compiled JavaScript
code is shown below:

function log(message, logger) {
if (logger === void 0) { logger = console; }
logger.log(message);

}

If the parameter logger equals undefined, which is the value that is returned by
void 04, the global variable console will be assigned to it. Otherwise the parameter
passed to the function log will be used as is.

Future JavaScript

While the TypeScript compiler can target different JavaScript versions—such as ES3,
ES5, and ES2015—it does also support future ECMAScript proposals, like decorators
and asynchronous functions [38, 97], allowing the use of features which are possibly not
yet implemented in various JavaScript engines. This is achieved by changing parts of
the source, or by including additional code that mimics the behavior of a certain feature
and delivers the same result. The code below uses a pattern, referred to as destructuring
assignment [57], to assign the values 1 and 2 to the identifiers foo and bar, respectively:

let [foo, bar] = [1, 2];

4 The void operator can be used to retrieve the value undefined by calling void(0), which is equivalent
to void 0 [100].

3. State of the Art 24

While this line would remain unchanged when targeting the ES2015 standard or later,
where the array binding pattern is already specified [51, p. 198], the outcome is different
for ES5 and below:

var _a = [1, 2], foo = _a[0], bar = _a[1];

As the pattern is not part of the fifth edition of ECMAScript [48], the compiler substi-
tutes it with an alternative implementation.

3.1.2 Flow

Flow5 is an open source static type checker for JavaScript, developed by Facebook6 [58].
The most noticeable difference to TypeScript is the lack of an extensive compiler pro-
vided by the project itself. Instead, Flow relies on Babel7, a compiler for JavaScript [26],
which “[...] will take [...] Flow code and strip out any type annotations” [65]. Alterna-
tively the library flow-remove-types8 can be used [65].

Another difference between the two JavaScript supersets are their design goals. While
TypeScript’s goal is not to “apply a sound or "provably correct" type system [but to]
strike a balance between correctness and productivity” [37], Flow’s type system “[...]
tries to be as sound and complete as possible” [96]. The syntax itself is mostly identical to
the one of TypeScript [93]. Brzóska sums up the differences between the two languages,
as shown in Tab. 3.1.

Table 3.1: Differences between TypeScript and Flow. [98]

TypeScript Flow

Design Goal correctness and productivity soundness and safety
IDE Integrations top-notch sketchy

Autocompletion yes unreliable
Speed stable degrades

Generic Definitions yes yes
Generic Calls yes no

Library Typings many few

3.1.3 Others
Apart from TypeScript and Flow, there are a variety of other languages that compile
to JavaScript for different purposes. In [71] an extensive list of JavaScript supersets,
parsers, and compilers can be found, containing the following maintained languages
they refer to as superset:

• JavaScript++: This superset supports classes, type checking, and other features.
5 https://flow.org
6 https://code.facebook.com
7 https://babeljs.io
8 https://github.com/flowtype/flow-remove-types

https://flow.org
https://code.facebook.com
https://babeljs.io
https://github.com/flowtype/flow-remove-types

3. State of the Art 25

• Objective-J: This language has the same relationship to JavaScript, as Objective-
C to C.

• JSX: JSX got popular with the React9 framework [68] and adds XML-like syntax
to represent HTML elements in JavaScript.

• oj: This is an Objective-C inspired superset with an experimental type checker.
The collection also contains languages like Scala.js10, which compiles Scala11 code to
JavaScript, or Opal12, a Ruby13 to JavaScript compiler.

3.2 Runtime Type Checks
Type annotations are removed for the compiled JavaScript program in TypeScript and
no additional code is introduced to add checks at runtime. The removal of types is
intended and is defined in the design goals14 of the language:

[Do not] add or rely on runtime type information in programs, or emit dif-
ferent code based on the results of the type system. Instead, encourage pro-
gramming patterns that do not require runtime metadata. [37]

Anyway, runtime type information and validation can be useful in several situations. For
example they can give more accurate error messages during development and can draw
attention to issues, which are not observable during compile time. There are proposals
to expose type information to the runtime and to add runtime type checks, in the
TypeScript community [61, 72, 83]. Regardless of the demand, these features won’t be
added, as they are out of scope for TypeScript [36, 63]. Currently, manually added type
checks are required to identify and to easily trace errors during development. Prog. 3.2
shows a JavaScript function, which only takes up three lines of code, while Prog. 3.3
outlines a function—also in native JavaScript—with the same outcome but with added
type checks, which now requires 13 lines of code.

Program 3.2: A JavaScript function without type checks.

1 function sum(arr) {
2 return arr.reduce((a, b) => a + b);
3 }

While these examples outline the verification of primitive types, like a number or
an array, inspecting an object is more complex. Instances may be checked with the
instanceof operator, which “[...] tests whether an object in its prototype chain has
the prototype property of a constructor” [66], however, interfaces and type alias are
removed by the TypeScript compiler, therefore this kind of verification method is not
possible for such cases.

9 https://facebook.github.io/react/
10 http://www.scala-js.org
11 http://scala-lang.org
12 http://opalrb.org
13 https://www.ruby-lang.org
14 https://github.com/Microsoft/TypeScript/wiki/TypeScript-Design-Goals

https://facebook.github.io/react/
http://www.scala-js.org
http://scala-lang.org
http://opalrb.org
https://www.ruby-lang.org
https://github.com/Microsoft/TypeScript/wiki/TypeScript-Design-Goals

3. State of the Art 26

Program 3.3: The JavaScript function from Prog. 3.2 with type checks.

1 function sum(arr) {
2 if (!Array.isArray(arr)) {
3 throw new TypeError("array expected");
4 }
5
6 return arr.reduce((a, b) => {
7 if (typeof b !== "number") {
8 throw new TypeError("number expected");
9 }

10
11 return a + b;
12 });
13 }

To get around this issue, Rozentals describes three different techniques to employ type
checks for the runtime environment:

• Reflection: The prototype of a JavaScript object holds some information about
the object, which can be accessed. It might, for instance, contain the name of the
constructor function, used to create the object. Limitations apply, since various
information is only available from ECMAScript 5.1, or may not be available at
all [13, pp. 98–100]. Also the name of a constructor is not always suitable to
categorize an object as a type, as the same name may also be used for a different
constructor function, while anonymous functions do not have a name at all. Simply
obtaining the name is also not sufficient to check for implemented interfaces, or
type aliases, as they are compiled away by TypeScript.

• Checking an object for a property: An object could be considered as being
of a type, if specified properties exist on it [13, pp. 101–102, 6, pp. 18–20]. If,
for example, a constructor function Person is given, which defines a getName
property on its prototype, an arbitrary object could be considered as Person,
if it also provides a getName property. This gets already closer to TypeScript’s
structural types (see Sec. 3.1.1).

• Interface checking with generics: This concept requires the definition of a
class for every interface, which holds the property names to identify an object as
having a specific type [13, pp. 102–105, 6, pp. 17–19]. This solution is similar to
the previous approach, but it introduces a pattern, which is more readable and
maintainable.

Another mechanism is to use decorators15, a JavaScript language feature proposal, which
is currently at stage two [69], meaning that it is still a draft and not yet in the specifi-
cation [91]. They can, however, already be used with TypeScript or tools like Babel [44,
45]. The solution used in [84], which makes use of decorators, again requires to add them
to the source code manually. Furthermore, only primitive types and instances can be
checked automatically. Structural type checks—e.g., for custom objects or interfaces—
have to be provided by the developer.

15 https://tc39.github.io/proposal-decorators

https://tc39.github.io/proposal-decorators

3. State of the Art 27

Program 3.4: The following code overwrites the default instanceof behavior for the
given class. [81, 82]

1 class PrimitiveNumber {
2 static [Symbol.hasInstance](x) {
3 return typeof x === "number";
4 }
5 }
6
7 123 instanceof PrimitiveNumber; // true

Program 3.5: The ECMAScript proposal for pattern matching16 would add a sophisti-
cated validation pattern in JavaScript. [81, 88]

1 match (obj) {
2 { x }: /∗ match an object with x ∗/,
3 { x, ... y }: /∗ match an object with x, stuff any remaining properties in y ∗/,
4 { x: [] }: /∗ match an object with an x property that is an empty array ∗/,
5 { x: 0, y: 0 }: /∗ match an object with x and y properties of 0 ∗/
6 }

Program 3.6: The code below shows an ECMAScript proposal for Builtin.is and
Builtin.typeOf17, where the former command determines if two values point to the
same built-in constructor, and the latter can obtain the type of primitive and built-in
values, in contrast to the existing typeof operator which can get the primitive type
only. [81, 89]

1 Builtin.is(Date, Date); // true
2
3 class MyArray extends Array { }
4 Builtin.typeOf(new MyArray()); // "Array"

As runtime type checks are of importance for an application to be robust, the opera-
tors typeof and instanceof are often used to verify a value’s type, which according
to Rauschmayer is “[...] less than ideal, because [it requires] to keep the difference be-
tween primitive values and objects in mind” [81]. Prog. 3.4 shows a technique to enable
instanceof checks also for primitive values, such as strings. He further refers to using
a library for checking types at runtime, and outlines two ECMAScript proposals that
are related to runtime validations [81], which are shown in Prog. 3.5 and Prog. 3.6.

16 https://github.com/tc39/proposal-pattern-matching
17 https://github.com/jasnell/proposal-istypes

https://github.com/tc39/proposal-pattern-matching
https://github.com/jasnell/proposal-istypes

3. State of the Art 28

3.3 Generated Runtime Type Checks
During research, no libraries could be found which automatically generate runtime type
checks from TypeScript code, and validations have to be implemented manually, as
described in the previous section. However, there are libraries which aim to provide a
runtime type system, which are explored in Sec. 5.1.2. While those packages are support-
ive in describing and validating data structures in JavaScript, few projects concentrate
on automatically generating them. As it may not be feasible to create checks without the
data provided by a static type system or some kind of supportive information—such as
type annotations—also no libraries could be discovered which can provide runtime val-
idations from native JavaScript code. However, the Babel plugins babel-plugin-tcomb18

and babel-plugin-flow-runtime19 can generate runtime validations for Flow syntax [33,
76]. Furthermore, a future release of Babel will support TypeScript syntax [27], which
could make it possible to adapt the plugins to also transform TypeScript code.

18 https://github.com/gcanti/babel-plugin-tcomb
19 https://github.com/codemix/flow-runtime/tree/master/packages/babel-plugin-flow-runtime

https://github.com/gcanti/babel-plugin-tcomb
https://github.com/codemix/flow-runtime/tree/master/packages/babel-plugin-flow-runtime

Chapter 4

Theoretical Approach

After defining the terminology for this thesis, as well as giving an overview of avail-
able technologies and projects, the theoretical approach for generating runtime type
checks from TypeScript type annotations for runnable JavaScript code is described in
this chapter. The project of this thesis will further be referred to as ts-runtime (i.e.,
typescript-runtime) or tsr.

4.1 Undetectable Errors
There are various situations where the static type analysis of TypeScript cannot detect
conditions that may lead to errors at runtime. Either a project is written in TypeScript,
and the compiler can infer the type information needed, or type definition files are
provided for untyped JavaScript libraries. In both cases it is possible to introduce errors,
which may cause the type checker to make wrong assumptions about type compatibility.
Also particular programming techniques can result in errors not already being trapped
during compilation.

4.1.1 Compiler Analysis Circumvention
In TypeScript it is possible to perform a special kind of type cast, called type assertion,
as described in Sec. 3.1.1. While the compiler will trigger an error, when trying to assert
an incompatible type—e.g., asserting a string as a number—there exists a special case
to bypass static type checks for a given variable or value entirely. If, e.g., a variable
is annotated or asserted with the Any type, type checking and type inference will be
disabled for this part of the code. The TypeScript documentation describes this as

[...] a powerful way to work with existing JavaScript, allowing you to grad-
ually opt-in and opt-out of type-checking during compilation. [28]

It seems legitimate to use any alongside third party libraries or in situations where the
flexibility of JavaScript’s loose typing (see Sec. 2.2.1) is required. However, opening the
possibility to opt-out of type checks can have a negative impact for projects depending
on libraries where this technique is misused.

29

4. Theoretical Approach 30

The following code outlines a situation where compilation passes, but an error is thrown
at runtime:

let foo: any = "bar";
foo.getNumber();

Because of type checks being disabled for variable foo, access to the not existing prop-
erty getNumber won’t be detected by the compiler. Even if the identifier was annotated
correctly, or its type could be inferred by omitting a type annotation, it is possible to
get around type checks:

let foo: string = "bar";
(foo as any).getNumber();

In both cases the JavaScript runtime engine will throw a TypeError exception, stating
that foo.getNumber is not a function. The examples above highlight the potentiality of
creating conditions where a detectable mistake remains undiscovered by the compiler,
which can cause a running program to be interrupted.

4.1.2 Polymorphism
Polymorphism can lead to errors at runtime in combination with type assertions. While
the TypeScript compiler does check type compatibility in general, it allows to assert
identifiers as types that could be assigned to it. To give an example of such a situation
the following code is given:

class Animal { }

class Cat extends Animal {
miow() {

return "Miow";
}

}

class Dog extends Animal {
woof() {

return "Woof";
}

}

As a next step an instance of Dog is created and assigned to a variable, which is typed
as Animal, as shown below:

let dog: Animal = new Dog();

In order to call the method woof on the Dog instance, it needs to be asserted as follows:
(dog as Dog).woof();

The TypeScript compiler does not raise any concern, as type Dog is assignable to Animal
and therefore is allowing the cast. Subsequently, also the following type assertion passes
without any compiler errors:

(dog as Cat).miow();

While static type checks are successful, the compiled JavaScript code will fail at runtime.
As no method miow exists on the dog object, a TypeError exception with the message
dog.miow is not a function will be thrown at runtime.

4. Theoretical Approach 31

4.1.3 Untyped JavaScript Libraries
If a JavaScript project is written in native syntax, TypeScript cannot infer the type
information needed to perform sufficient static type analysis. In this cases type declara-
tions may be provided manually, as discussed in the following section. DefinitelyTyped1

provides a collection of such type definitions for JavaScript libraries [90]. Anyway, not
all packages have definitions available, especially small projects. A practice often used in
such a situation is to declare the package name, to stop complaints from the TypeScript
compiler about not finding the import:

declare module "MyModule"

After declaring the module it effectively has the Any type applied to it. Therefore, as
already mentioned in the previous section, it is possible to access any property on the
imported module, regardless of whether it exists or not. Also changes to the package’s
API won’t be noticed, and a project depending on the module may break after updating
its dependencies.

4.1.4 Type Declaration Mistakes
Libraries written in TypeScript are usually published as compiled JavaScript code along-
side type declaration files with the extension d.ts. These files include all type informa-
tion, which was removed for the runnable JavaScript code. The compiler can parse the
definitions and can statically check the correct usage of the library, when imported in
another project. If the definitions are generated during compilation, they can be con-
sidered relatively safe to use, unless the Any type is misused. If, however, declaration
files are created manually for a JavaScript library which is not written in TypeScript,
there is a chance that they contain mistakes or that they are not up-to-date with the
implementation. A JavaScript file foo.js may contain the following code:

class Foo {
getName(): string {

return "Foo";
}

}

Its corresponding declaration file foo.d.ts may provide the declaration as shown below:
declare class Foo {

getNumber(): number;
}

The file containing the type declaration for class Foo does not reflect the actual imple-
mentation. The method getNumber, as suggested by the type definition, does not exist
on the class. Code completion in an IDE (i.e., integrated development environment)
may suggest to use this method, which can lead to a runtime exception. Also the static
type checker would complain if attempting to use the implemented method getName, as
it has no knowledge of its existence on the object.

1 http://definitelytyped.org

http://definitelytyped.org

4. Theoretical Approach 32

4.1.5 Erroneous API Responses
When making use of an external API, the response should be of a given structure, which
should be known to the consuming program. An interface may be created to describe
the receiving object and to statically check its usage. However, if the format of the
response changes unexpectedly, it is not possible to reveal this change at compile time,
since the type checker relies on the interface provided. Runtime checks have to be added
manually to ensure that the response conforms to the expected structure. Otherwise an
error may be raised during program execution, or its behavior may be different than
expected.

4.2 Desired Result
The situations discussed in the previous section of this chapter raised the concern of
negligently or unknowingly opting out of static type checks for specific parts of the code,
or providing insufficient or wrong type declaration, which may cause the compiler to
miss incompatible types. These situations may be discoverable at runtime, if runtime
type checks would be employed alongside compile time checks. Information about types
are already available in a TypeScript development environment. Either it is provided
through explicit type annotations, or the compiler tries to infer the type, which leads
to the assumption that this metadata can be used to reflect types and generate rep-
resentations for the runnable JavaScript code. This representations may then be used
to verify if an object conforms to a type based on its structure. Below is a type alias
declaration of its simplest form in TypeScript:

type MyString = string;
let foo: MyString = 10 as any;

This code compiles without any errors, since the number is assigned as Any type to a
variable, which should only accept strings. In the resulting JavaScript program the type
alias, as well as the type assertion, is removed. A concept to keep this declaration also
for the compiled code is shown in the following code snippet:

const MyString = reflect("string");
let foo = 10;

In this case, the name of the type alias is used as identifier for a variable declaration.
Furthermore, the name of the type is used to pass it as a string to a method, which
should return a reflection for it. This still results in a number being assigned to a
variable, which should only accept strings. To catch this type incompatibility, the final
JavaScript code could check the value that should be assigned to foo:

const MyString = reflect("string");
let foo = MyString.accepts(10);

Before the number is assigned, it should be passed to the type representation of MyString,
which should check if the received value is compatible. In case of a violation, the program
should report an error.

4. Theoretical Approach 33

4.3 Definition of Cases
The current situation for TypeScript projects, as discussed in Sec. 3.3, observed that
runtime type checks cannot be generated automatically at this time. Additional effort
is required to integrate code safety features for the compiled program. This means that
situations may be missed where checks would be of advantage. In order to achieve a
development environment where as many undetectable errors (see Sec. 4.1) as possible
are reported during execution time, it may be beneficial to automate the inclusion of
runtime validations. In order to provide generated runtime type checks for a TypeScript
project, cases have to be collected where such verifications have to be performed.

4.3.1 Interfaces and Type Aliases
Interface and type alias declarations are removed by the TypeScript compiler and there-
fore need to be described for the runtime environment. The name of the given type
definition should be used to declare a variable, holding all required information to check
any value for conformance.

4.3.2 Variable Declarations and Assignments
If a variable was declared it also has a type bound to it during compile time. This
type should be used to declare another variable alongside the original declaration, con-
taining the type description or reference. When assigning a value to a variable, type
compatibility should be checked by using the type description declaration.

4.3.3 Type Assertions
Type assertions are comparable to type casts in other languages, with the difference
that no special checks or conversions are performed (see Sec. 3.1.1). To inspect if an
assertion is valid, the same checks should be performed as for variable assignments.
Values asserted as any, as discussed in Sec. 4.1, can be ignored, as they would always
pass.

4.3.4 Functions
There are different types of functions, which need to be distinguished: function dec-
larations, function expressions, and arrow functions (see Sec. 2.2.6). For any of these
types the function has to be reflected to enable type comparison. The runtime descrip-
tion has to include its parameters—which can also be optional—and its return type. If
the function is called, the parameters passed, as well as the returned value, have to be
checked. Additionally, a function can make use of generics to define parameter or return
types [60], as shown below:

function foo<T>(bar: T): T {
return bar;

}

Whatever type the parameter bar—passed to function foo—has, the returned value
must be of the same type, as both are annotated with the generic type parameter T.

4. Theoretical Approach 34

Program 4.1: The enum MyEnum { A } compiled to JavaScript. [54]

1 var MyEnum;
2 (function (MyEnum) {
3 MyEnum[MyEnum["A"] = 0] = "A";
4 })(MyEnum || (MyEnum = {}));

4.3.5 Enums
Enumerations (see Sec. 3.1.1) are compiled to self executing functions, which initialize
a corresponding object [54] (see Prog. 4.1). To enable type checks for the runtime, the
enum has to be described with its members.

4.3.6 Classes
For classes a multitude of cases requiring runtime reflection and checks have to be con-
sidered. Most importantly the entire class—including type parameters (i.e., generics),
its members, extending classes, and implemented interfaces—has to be reflected to use
it as type reference at other places of the program. Methods can be checked the same
way as functions, with the difference that they may also use class type parameters as
type annotations. Furthermore, when instantiating a class sufficient checks should be
performed to ensure that it correctly implements its interfaces.

4.3.7 Type Queries
It is possible to use a value’s type as type annotation in TypeScript, which looks like
the following:

let foo: string = "Bar";
type MyType = typeof foo;

In this case MyType is of type String, since TypeScript’s typeof operator is not to
be confused with JavaScript’s built in operator of the same name. In TypeScript it is
possible to query the type of any identifier, if not attempting to reuse it as a value. In
JavaScript, on the other hand, a type query result may be used as value, while it can
distinguish between six value types at runtime (see Tab. 2.1). If a variable is annotated
with a type query, the type of this variable should also be obtainable at runtime.

4.3.8 Externals
JavaScript programs usually make use of other libraries, which are imported alongside
other project code. If those packages are written in TypeScript, or provide type decla-
ration files, the compiler can use the type information to perform compile time checks.
However, as types are also removed from external projects, their interfaces, type aliases,
class reflections, etc., have to be collected and have to be made available to the runtime
code.

4. Theoretical Approach 35

4.3.9 Ambient Declarations
If globals are not available in the development environment of a project, but it is known
that they will be present in the environment of execution, modules, classes, functions,
and variables can be declared for the compiler without an implementation:

declare function foo(bar: number): string;

After the function foo has been declared as shown above, it can be used according to
its signature throughout the project, but it will be removed for the compiled code. Such
declarations should be collected and should be made available to the runtime the same
way as externals.

4.4 Required Steps

After situations of undetectable errors (see Sec. 4.1) have been clarified, the desired
result of the project (see Sec. 4.2) has been outlined, and conditions where transfor-
mations should take place (see Sec. 4.3) have been pointed out, the steps required to
accomplish automated runtime type checks are specified:

1. Set the configurations for the transformation process.
2. Read the source files of a TypeScript project.
3. Analyze the source code provided.
4. Represent the input as an abstract data structure.
5. Scan the abstraction to obtain type information and relationships.
6. Perform static type analysis and checks.
7. Insert runtime type reflections and assertions.
8. Emit target code for the JavaScript runtime engine.

These steps are described in more detail in the following sections. While giving a theoret-
ical understanding of the concept of the thesis project, no technical details are provided
at this point.

4.4.1 Configuration
As different projects have different requirements regarding the result of the JavaScript
target code, configurations for the transformation process have to be set in advance.
This includes the settings for the TypeScript compiler2 itself, as well as adjustments for
ts-runtime. While the project of this thesis is not intended to be a replacement of the
TypeScript compiler, it should still honor the options of the development environment.
These settings include, among others, the ECMAScript version of the resulting program,
the module system to use, as well as the write location of the output [38].

4.4.2 Read Source Files
The starting point of the transformation process should be an existing project. As for
a usual TypeScript compilation process, the entry files should be passed to ts-runtime,
alongside a set of configurations. All files that are referenced or imported throughout the

2 https://www.typescriptlang.org/docs/handbook/compiler-options.html

https://www.typescriptlang.org/docs/handbook/compiler-options.html

4. Theoretical Approach 36

project should be loaded recursively, resulting in a reflection of the project’s file system
structure. This should enable further steps to interact with the input in memory, leaving
the original files untouched.

4.4.3 Syntax Analyzation
After all contents of the project are available it should be determined, if the provided
code is syntactically correct. This should prevent ts-runtime to fail, due to syntax errors
in the source. If syntactic errors are detected the process should be stopped immediately
to prevent the occurrence of unexpected behavior or results.

4.4.4 Abstraction
In order to perform special checks and transformations to the original code, abstracting
the source is beneficial. A suitable data structure may be an abstract syntax tree (i.e.,
AST), as described in Sec. 2.3. Performing modifications on the input directly via string
modifications is much more error prone, and semantic connections between parts of the
code cannot be extracted easily.

4.4.5 Scan Abstraction
Once the provided source files can be considered syntactically correct and are repre-
sented in an abstract data structure, the type information has to be extracted for future
modifications to the code. It should not only be possible to obtain the explicitly set type
of an AST node, but to also receive the implicitly inferred type. In addition it should
be practicable to follow a type reference’s type, for further processing. To ensure that
important data—e.g., type information, AST node relations, and declared identifiers—is
not becoming inaccessible during the transformations, the abstract syntax tree may be
scanned ahead of changing its nodes.

4.4.6 Static Type Checks
Another important aspect is to already perform static type checks, and to reject the
input from further processing if type incompatibilities can be detected, which has the
advantage of flagging issues to developers early. Also, if the static type analysis can
already find possible violations, the target code may not behave correctly. Anyway, as
it is possible to provide incorrect type declarations for accurate implementations, hence
there should be the possibility to force the process to proceed and to solely rely on type
compatibility checks at runtime. Warnings should be generated at compile time in this
case, to clearly indicate that unexpected results may be a consequence.

4.4.7 Transformations
Situations where modifications have to take place to reflect all required type information,
as well as to introduce runtime type checks based on these reflections, have already
been identified in Sec. 4.3. All required data to perform extensive transformations on
the AST should have already been prepared by the previous steps of the process. This
should make it possible for ts-runtime to proceed with substituting and altering abstract

4. Theoretical Approach 37

syntax tree nodes. The tree should be scanned from the bottom to the top, which
should guarantee that transformations of high level tree nodes already include low level
mutations. Furthermore, a node that is replaced or changed should be mapped to the
original syntax tree node to assure that its initial state can be retrieved at any time.

4.4.8 Target Code Emit
After the transformations have been applied to the syntax tree, it should be converted
to TypeScript compatible syntax code. In a next step this code can then be used to emit
runnable JavaScript, according to the options that were passed when initially triggering
the generation of runtime type checks (see Sec. 4.4.1). In case of inconsistencies or faults,
appropriate warnings and errors should be triggered.

4.5 Summary
To achieve automatically generated runtime type reflections and checks, a series of steps
have to be carried out. To give a better understanding of the conceptual procedure,
Fig. 4.1 illustrates the idea of the transformation process. In the following chapter
the theoretical approach is evaluated, and the project’s technology and architecture is
defined. Also technical peculiarities and limitations are identified to provide a solid base
for the implementation.

Start

Source Code
Analyzation

Abstraction

Static Checks AST Scan

Transformations

Emit Target
Code

End

Figure 4.1: Conceptual procedure of applying transformations to a TypeScript project.

Chapter 5

Implementation

After elaborating situations where runtime errors—even with preceding static type
checks by the TypeScript compiler—may occur (see Sec. 4.1), a program is implemented
which should catch those situations during the execution of the compiled JavaScript
program. All previously defined cases (see Sec. 4.3) should be honored and suitable
technology should be selected to perform the required steps (see Sec. 4.4) to achieve the
desired result (see Sec. 4.2).

5.1 Technology
The project itself is implemented in TypeScript, while the compiled program is executed
in a JavaScript—usually Node.js—environment. It is published on the npm (i.e., node
package manager) registry1, a “[...] public collection of packages of open-source code for
Node.js [...]” [22], which should make it easy for developers to install an executable ver-
sion of ts-runtime on their system. Also other packages should be able to integrate with
this project as fast as possible. This implies that both, an API (i.e., application pro-
gramming interface) and a CLI (i.e., command line interface) is provided. Furthermore,
to create an application that efficiently achieves its goals, it is important to choose ap-
propriate tools and libraries. This includes the process of generating runtime type checks
itself, as well as reflecting and checking type compatibility in the final JavaScript code.
If trusted and established technology is available, which provides functionality that is
needed for the implementation, it is utilized to decrease development and maintenance
effort and to increase the quality of the resulting project.

5.1.1 TypeScript Compiler
The TypeScript compiler exposes an API to use its functionality programmatically. This
makes it possible to read in an existing TypeScript project, perform static type checks
on it, and to emit a compiled JavaScript program, while having control over various
aspects of this process. Several steps that are required to generate type checks for the
JavaScript runtime are provided by the TypeScript compiler. With version 2.3 an API
was exposed to enable abstract syntax tree transformations [29] and an issue preventing

1 https://www.npmjs.com

38

https://www.npmjs.com

5. Implementation 39

traversing the AST [78] was resolved with version 2.4 [30]. Not only the ability to modify
the syntax tree is useful for the project of this thesis, also other features are beneficial.
As ts-runtime makes use of the compiler API later in this chapter, some parts of it are
described in the following sections.

Compiler Components

To receive a runnable JavaScript program from a TypeScript project, a number of
components contribute to the TypeScript compiler [87, p. 251]:

• Scanner: The scanner is responsible for the tokenization of the source code and
is controlled by the parser [87, p. 260].

• Parser: After a source file is tokenized, the parser creates an abstract syntax tree
out of it [87, p. 263].

• Binder: In this part of the compiler, connections between nodes of the AST are
created through symbols [87, p. 267].

• Checker: The checker is the largest part of the TypeScript compiler and performs
static type checks on the source files [87, p. 282].

• Emitter: The emitter translates the TypeScript syntax tree of the source files to
plain JavaScript [87, p. 286], based on the compiler options.

These components do not have to be triggered individually when using the compiler
API, since a wrapper is provided, called Program. It holds the options and source files
of the current compilation [87, p. 254], and provides access to the Checker [87, p. 282]
and Emitter [87, p. 286].

Compiler Options

When starting a compilation through the TypeScript compiler API, a multitude of
options [38] may be passed. They include, but are not limited to, settings for the type
checking behavior, files that should be emitted, and the ECMAScript standard the
resulting JavaScript code should comply to.

Program

A TypeScript project compilation can be triggered by providing the path to one or more
entry files, alongside customized compiler options. All files that are referenced from the
input files are loaded recursively, by making use of a compiler host. Also it exposes the
functionality to emit the compiled JavaScript code.

Compiler Host

The compiler host abstracts, among other things, the reading and writing of input files
by the Program. By default, files will be accessed on the file system, however, a custom
compiler host may be provided.

5. Implementation 40

Node

The abstract syntax tree, which is created during the compilation of a TypeScript
project, consists of nodes, while every node has a specific kind. A file, for example, is
of kind SourceFile, whereas a class declaration is represented by a node with the kind
ClassDeclaration.

Syntax Kind

The TypeScript API exposes an enumeration, named SyntaxKind, which maps a numeric
value to an AST node type (e.g., InterfaceDeclaration). As every syntax tree node defines
a kind property, containing a number from the SyntaxKind enum, it is possible to always
determine the type of a node.

Symbol

The syntax tree abstracts a source file to interact with it in various ways, but it lacks
relations between nodes that are not directly connected to each other. Symbols are
created to provide the relationships between such nodes. While it is possible to identify
a type reference through the AST, there is no link to the declaration of the referenced
type. However, by extracting the symbol of the type reference, the node of the type
declaration can be obtained.

Printer

The compiler API exposes a printer, which can create text out of an AST node recur-
sively. Consequently, it is possible to pass a SourceFile node to the printer and to get
back a string containing TypeScript code.

5.1.2 Runtime Type System
A multitude of libraries are available, which aim to provide a runtime type system for
JavaScript, while several of them are evaluated to use with ts-runtime in the following
sections. Unmaintained libraries are not considered, since issues may not be fixed when
discovered.

ObjectModel

ObjectModel2 is an extensive type system, which “[...] intends to bring strong dynamic
type checking to [JavaScript] web applications” [80]. While being actively maintained
and a detailed documentation is available, this library makes use of a technique that
requires the replacement of parts of the JavaScript code—e.g., object literals—to per-
form validations on them [80], which makes it not entirely suitable for the use with the
project of this thesis.

2 https://github.com/sylvainpolletvillard/ObjectModel

https://github.com/sylvainpolletvillard/ObjectModel

5. Implementation 41

tcomb

The project tcomb3 argues to “[...] check the types of JavaScript values at runtime” [35].
While probably being one of the most famous runtime type checking libraries for
JavaScript—with more than 1300 stars on GitHub [35]—it is again intended to be used
for JavaScript code. Special considerations for TypeScript are not part of this package.

io-ts

Created by Giulio Canti, the author of tcomb, this project claims to be a “TypeScript
compatible runtime type system [...]” [34]. While it did look promising to be used,
some aspects did not meet the expectations. For example being able to define the type
reflection of a class alongside the class declaration itself is not provided by the library,
as well as being able to retrieve a type reference with type parameters (i.e., generics) is
not possible. However, as io-ts4 may evolve over time, a transition of ts-runtime to use
it at a later point is possible.

runtypes

The runtypes5 library is a fairly young project, which intends to provide “runtime valida-
tion for static types” [42]. Anyway, only basic validations can be performed, compared
to more comprehensive systems such as tcomb or io-ts. For example when asserting
a value for being a function, the built in JavaScript typeof operator (see Sec. 2.2.2)
is used, which cannot compare the function’s signature, including parameters and the
return type.

flow-runtime

The flow-runtime6 project states to be “a runtime type system for JavaScript with full
Flow compatibility” [77]. As Flow and TypeScript have a lot of similarities in syntax
and features, this library seems to be most suitable to reflect the static type system of
TypeScript as close as possible. Additionally, flow-runtime provides a package which
generates type checks for Flow projects [76], indicating that a multitude of cases for
Flow syntax, and therefore also for TypeScript, are implemented in this library.

5.2 Architecture
In this section the architecture for the application is designed, which already outlines
how the program operates, and also defines some of the components that are required.
This should give an overview of the different parts of the program, before describing
them more detailed later in this chapter.

3 https://github.com/gcanti/tcomb
4 https://github.com/gcanti/io-ts
5 https://github.com/pelotom/runtypes
6 https://github.com/codemix/flow-runtime

https://github.com/gcanti/tcomb
https://github.com/gcanti/io-ts
https://github.com/pelotom/runtypes
https://github.com/codemix/flow-runtime

5. Implementation 42

5.2.1 Central Element
The transformation process is a sequential process, as defined in Sec. 4.4, which already
suggests that a central element is needed, coordinating all the different steps that need
to be executed. It is responsible for interpreting and triggering specific application logic
in the appropriate situations. Before being able to initiate the actual program flow, this
crucial part of the project has to interpret different settings, including options for the
TypeScript compiler. Also it has to react to possible errors and has to handle them
adequately.

5.2.2 Components
Specific tasks are handed over to dedicated components, which contain the logic for a
selected purpose to keep the project extensible and maintainable.

Options

It is beneficial to control the behavior of ts-runtime when initiating a transformation
process. While the program provides sensible defaults, it is possible to optionally over-
write these default settings by passing the desired options to the application.

Event Bus

Some of the components of the application have access to other components and their
API, whereas other parts of the program do not know the state of the transformation
process. However, it is necessary to observe, or to get notified, if a condition changes,
where an event bus is of advantage. Consequently, the event bus (i.e., bus) is accessible
globally.

Scanner

Not to confuse with the scanner of the TypeScript compiler (see Sec. 5.1.1), this com-
ponent of the thesis project scans the abstract tree of the source files. Ambient and
external declarations are identified, which would not be included in the compiled pro-
gram, but need to be reflected in order to guarantee that type checks can take place
during runtime. Also identifier names across all source files are stored to avoid duplicate
identifiers when introducing new variables during the insertion of runtime type checks.

Mutators

For every situation where runtime type checks are generated (see Sec. 4.3), a mutator
exists, which performs the modification or substitution of the AST node.

Factory

To avoid code duplication, the factory provides a collection of common transformations,
which are performed on syntax tree nodes. It is utilized by the mutators to keep their
footprint as small as possible and to reduce code complexity.

5. Implementation 43

API

Core

TypeScript
Compiler Scanner Mutators Context

Event Bus, Utilities

Figure 5.1: Component architecture of the thesis project.

Context

As not all components of the application are connected to each other, the context
provides a centralized gateway to information, which is required by the mutators or the
factory. It has, among other things, knowledge of the current source file being processed,
the options of the application, and the TypeScript compiler program.

Utilities

Miscellaneous functionality that does not require any link to the state of the program
is collected in the utilities of ts-runtime, which is available from any location of the
project.

5.2.3 Outline
After the main parts of the program have been defined, it is possible to draw connec-
tions between them (see Fig. 5.1). As already stated, the central element (i.e., core)
of the application controls the program flow, therefore having knowledge and access to
all components of ts-runtime. It evaluates the options, creates a TypeScript compiler
program (see Sec. 5.1.1), and triggers the scanning and transforming of the syntax tree,
before emitting a compiled JavaScript project with inserted runtime type checks.

5. Implementation 44

5.3 Application Structure
The following directory structure is used for ts-runtime, which at the same time shows
the most important files and folders of the project:

/src
bin ... Command Line Interface
lib ..Runtime Type Checking Library
mutators ..AST Node Transformers
bus.ts ..Event Bus
context.ts ..Mutation Context
index.ts ..API Exposure
factory.tsCommon AST Node Transformations
options.ts ..Default Options
scanner.ts ...AST Scanner
transform.ts ...Application Core
util.ts ... Miscellaneous Utilities

5.4 Components
In this section the implementation of the core of ts-runtime, as well as of the application’s
components, is described, and connections between different parts of the program are
already drawn.

5.4.1 Transformer
The transformer—located in src/transformer.ts—is the core of the thesis project and
exposes three methods, which may be used via the project’s API:

• getOptions: This function accepts an object as parameter which aligns with the
Options interface, described later in this section. It then merges the passed object
with the default settings, and returns the result. This ensures that all required
options are contained in the resulting object.

• transform: By calling this method a transformation process is initiated. It is
required to pass at least a list of entry file names. Optionally, an Options object
may be passed. The compiled JavaScript files are written to disk, according to the
TypeScript compiler options, if no errors occurred.

• transformReflection: The transform function loads the list of entry files from
disk, which requires a file system to be present. On the contrary, this method
accepts a list of file reflections, which must include the entry files, as well as all
modules referenced, recursively. This enables the application to act without a file
system. Also the target code is not persisted, but a list of file reflections, containing
the compilation result, is returned.

Prog. 5.1 shows a simplified version of the transform function. It is not fully functional,
but should give an idea of the program flow. On line 6, a variable transformer is
passed to a function from the TypeScript compiler API, which references a function
that visits every node of the AST of all source files from the TypeScript program.

5. Implementation 45

Program 5.1: The transform function of the project’s core, reduced to its essentials.
The ts namespace from line 3 and 6 point to the TypeScript compiler API.

1 function transform(entryFiles: string[], options?: Options} {
2 const opts = getOptions(options);
3 const program = ts.createProgram(entryFiles, opts.compilerOptions);
4 const scanner = new Scanner(program, opts);
5 const files = program.getSourceFiles();
6 const result = ts.transform(files, [transformer], opts.compilerOptions);
7 emit(result);
8 }

Program 5.2: An exemplary version of the transformer, that visits all nodes of a
TypeScript program and triggers the transformations.

1 function transformer() {
2 let context: MutationContext;
3
4 const visitor = node => {
5 node = mutate(node, context);
6 return ts.visitEachChild(node);
7 }
8
9 return sourceFile => {

10 context = createContext(sourceFile);
11 return ts.visitNode(sourceFile, visitor);
12 };
13 }

The function code, again reduced to its essentials, is shown in Prog. 5.2, while line 5
indicates the AST node being passed to the mutators of ts-runtime, possibly returning
a substitution. Technically, the abstract syntax tree node’s children are followed to
the very bottom before applying mutations on them. This should assure, that every
transformation already includes modifications from its child nodes.

5.4.2 Mutators
Every mutator of the project extends a base mutator, which provides a simplified API
that is used by the core (i.e., transformer) of the project. Therefore, each mutator must
cohere with its base, which in its simplest form may look like the code below:

class InterfaceMutator extends Mutator {

protected kind = ts.SyntaxKind.InterfaceDeclaration;

protected mutate(node: ts.InterfaceDeclaration): ts.Node {
return node;

}

}

5. Implementation 46

A valid mutator must define a kind property containing a syntax kind—or an array of
syntax kinds—to define which node types the mutator is able to process. Additionally,
the method mutate must exist on a mutator. This function accepts a single parameter,
which is the node to be processed. The mutator may then perform modifications on
it, or can replace the node entirely. Each mutator is meant to be used through the
method mutateNode, defined in the base class. This ensures that the following checks
are performed to discover if the node should be processed:

1. Is the kind of the node supported by the mutator?
2. Is the node flagged to be skipped?
3. Is the node declared ambient, using the declare keyword?

If all of these checks pass the actual mutate method is called. If, however, any of the
conditions above cannot be met, the original node is returned untouched. Based on
the defined cases from Sec. 4.3, the following mutators are implemented, located in
src/mutators, also showing their file names, while omitting the extension .ts:

• ArrowFunctionMutator,
• AsExpressionMutator,
• BinaryExpressionMutator,
• BlockLikeMutator,
• ClassDeclarationMutator,
• FunctionDeclarationMutator,
• FunctionExpressionMutator,
• InterfaceDeclarationMutator,
• SourceFileMutator,
• TypeAliasDeclarationMutator,
• VariableDeclarationListMutator.

Some of the implementations are more complex than others and special cases had to
be taken into account. While every mutator is outlined, some of them are handled in
more detail. All transformation results from this section mostly align with the API of
flow-runtime, the runtime type system that is used in the compiled JavaScript code.

Arrow Function Mutator

The arrow function mutator modifies the body of the passed node, while some peculiar-
ities have to be considered. As for every other function type (i.e., function expression
and function declaration) the parameters are asserted, while they can be optional or
may have a default value. Also every location where the function may return a value is
observed and checked. A major difference to function expressions is that they can omit
the function body, previously described in Sec. 2.2.6. In such a case it has to be created
in order to be able to insert runtime type checks. Alongside changing the arrow func-
tion’s body, it is also annotated. This means that a reflection of the function, including
its parameter types and its return type, will be added to the function object to retrieve
it in other places of the running program.

5. Implementation 47

Program 5.3: The arrow function mutator of ts-runtime.

1 export class ArrowFunctionMutator extends Mutator {
2
3 protected kind = ts.SyntaxKind.ArrowFunction;
4
5 protected mutate(node: ts.ArrowFunction): ts.CallExpression {
6 return this.factory.annotate(
7 this.factory.mutateFunctionBody(node),
8 this.factory.functionReflection(node)
9);

10 }
11
12 }

To better describe how the result of a transformation may look like, the following arrow
function is given:

(): string => "bar";

Furthermore, the arrow function mutator itself is shown in Prog. 5.3, as it is relatively
small compared to other mutators, while the call to mutateFunctionBody on line 7
returns a node, that transforms the function to the following:

() => {
const _returnType = t.return(t.string());
return _returnType.assert("bar");

}

Also a description of the function signature is retrieved via functionReflection on
line 8, which is represented with:

t.function(t.return(t.string()));

Subsequently, the arrow function is annotated with the reflection. The code below de-
picts a fully transformed example, when assuming that the function was assigned to a
variable:

const foo = t.annotate(() => {
const _returnType = t.return(t.string());
return _returnType.assert("bar");

}, t.function(t.return(t.string())));

The variable foo holds the arrow function, with added information about its signature.
The type of the identifier may then be used to declare another variable, like in the
following code snippet:

const bar: typeof foo = (): string => "hi";

This results in the following code in the compiled JavaScript program:
const bar = t.typeOf(foo).assert(/∗ transformed arrow function ∗/);

A function t.typeOf—part of the flow-runtime library—is called with foo, which ex-
tracts the previously annotated information. Therefore it can be checked if the value
that should be assigned to bar matches the type of foo.

5. Implementation 48

As Expression Mutator

Also TypeScript type assertions are checked at runtime. This means that if a value is
casted to another type, it is verified if the value is compatible:

"foo" as number;

The code above is therefore substituted with the statement below:
t.number().assert("foo");

While the assertion used in this example already raises an error when being statically
checked by the TypeScript compiler, there are situations where a cast can be performed
successfully, even though the types do not match (see Sec. 4.1).

Binary Expression Mutator

Binary expressions in JavaScript (and TypeScript) include, but are not limited to, as-
signments, comparisons and bitwise operations [56]. The mutator which is handling such
nodes is only considering assignment operations. It is worth to note that an expression
with an assignment operator is a different AST node than a variable declaration with an
initializer. However, the outcome of the transformation is very similar and is therefore
pictured later in this section.

Block Like Mutator

The transformation API of the TypeScript compiler allows substituting AST nodes by
returning another node from a visitor, i.e., a mutator in case of ts-runtime. While this
functionality is heavily used in the project of this thesis, it does only allow to replace a
node with exactly one other node. There are cases where mutators need to substitute
a node with a list of nodes. These situations include declarations for functions, classes,
and enums:

• As shown in the mutator for arrow functions, they are annotated with their signa-
ture reflection. Also function declarations have to be annotated in the same way,
however, it is not possible to wrap them into another function call, as this would
change the scope of the declaration (see Sec. 2.2.6). Therefore, the annotation is
added beneath the function declaration itself.

• The same applies to enumerations, as they are initialized by a self executing func-
tion in the target code (see Sec. 4.3). Also, there is no information available about
the variable that will hold the enum object, after the TypeScript compiler has
emitted the final JavaScript code, during transformation. Consequently, the an-
notation takes place after the initialization of the runtime representation of the
enumeration.

• The situation is different for classes. Decorators can be used to annotate the class,
but its type parameters need to be available before the first instantiation, to make
use of them in the class signature reflection.

To better illustrate, how the transformation for classes differ from function and enum
declarations in the block-like mutator, the code below is given:

class A<T> { }

5. Implementation 49

The class shown above will result in the following transformation by the block-like
mutator:

const _ATypeParametersSymbol = Symbol("ATypeParameters");
class A<T> { }

The main focus of this example is on the first line of the snippet—while the transformed
class itself is omitted—where a symbol for the class’s type parameters is declared, to
expose it to the same scope as of the class.

Class Declaration Mutator

The class declaration mutator is one of the most complex mutators. It has to consider
a multitude of situations, including that a class may extend another class, may imple-
ment interfaces, may have method and non-method properties, may include function
overloads [59], and can merge with interface declarations [43]. Also class members may
have modifiers such as static, readonly, public, private and protected. To make sure that
all particularities are taken into account, the following steps are performed successively:

1. Reflection: Foremost, the class is annotated with its signature to expose its type
to the runtime. The reflection includes all properties of the class and a reference
to its base class, if available. As a class’s type merges with interfaces of the same
name, it is necessary to retrieve the properties from all declarations of the class
identifier name. Subsequently, the obtained properties can be merged, while also
method overloads are combined.

2. Methods: Class method properties are mutated similar to regular functions, with
the difference, that they may also make use of class type parameters, alongside
type parameters defined on the method itself.

3. Variables: Also non-method properties (i.e., member variables) have to be checked.
Therefore a getter and a setter is defined for it to assert the member’s type each
time a new value should be assigned. If the property is marked as readonly, the
setter will be omitted. Additionally, the initializer is checked for type compatibil-
ity.

4. Type Parameters: All type parameters are initialized in the constructor, making
them accessible to the entire class.

5. Interfaces: If the class should align with one or more interfaces, type compati-
bility is checked when the class is instantiated.

Prog. 5.4 shows a class in TypeScript, where several of these cases are met. The result
after being processed by ts-runtime is shown in Prog. 5.5.

Function Declaration Mutator

The function declaration mutator consists of a single line of code in the mutate method,
which is a call to mutateFunctionBody from the factory. A specialty about functions
of all types, which has not been handled before in this section, is their support for type
parameters, also referred to as generics, which may look like the following in TypeScript:

function foo<T>(bar: T): T[] {
return [bar];

}

5. Implementation 50

Program 5.4: A class in TypeScript, which extends a base class and implements a
single interface. Furthermore, a readonly property is defined, and the method convert is
overloaded. The result, after being processed by ts-runtime, is shown in Prog. 5.5.

1 class NumberConverter extends Singleton implements Converter {
2
3 readonly converter: string = "NumberConverter";
4
5 convert(val: number): number;
6 convert(val: string): number;
7 convert(val: string | number): number {
8 if (typeof val === "number") {
9 return val;

10 }
11
12 return parseFloat(val);
13 }
14
15 }

A parameter of a generic type T, which is not known at compile time, is accepted and the
function should return a value, that is an array of this type. For example, if a number
is being passed to foo, the returned value should be an array of numbers. To support
generics with functions, the factory can detect if a type reference is a type parameter
and adjusts the transformation accordingly:

function foo(bar) {
const T = t.typeParameter("T");
let _barType = t.flowInto(T);
const _returnType = t.return(t.array(T));
t.param("bar", _barType).assert(bar);
return _returnType.assert([bar]);

}

In the code above the annotation, which has already been outlined with the arrow
function mutator, is omitted. A variable is created for the type parameter and the type
of bar is used on every function call. This type may be extracted from an annotation,
or may be inferred from the actual runtime value as accurately as possible, if no type
reflection is available for it. Furthermore, it is possible to provide a default type for the
generic parameter, or to extend another type, which may look like the following:

function elementToString<T extends HTMLElement = HTMLDivElement>(el: T): string {
return el.innerText;

}

This type parameter definition results in the reflection shown below:
const T = t.typeParameter("T", t.ref(HTMLElement), t.ref(HTMLDivElement));

In this case, the value passed to the function must be a HTMLElement, or a subset of it,
while by default T refers to the HTMLDivElement type.

5. Implementation 51

Program 5.5: The resulting JavaScript code after the transformation of the class from
Prog. 5.4.

1 @t.annotate(t.class("NumberConverter", t.extends(t.ref(Singleton)),
2 t.property("converter", t.string()),
3 t.property("convert",
4 t.function(
5 t.param("val", t.union(t.number(), t.string())),
6 t.return(t.number())
7))
8)
9)

10 class NumberConverter extends Singleton {
11
12 constructor(...args) {
13 super(...args);
14 this._converter = t.string().assert("NumberConverter");
15 t.ref(Converter).assert(this);
16 }
17
18 get converter() {
19 return this._converter;
20 }
21
22 convert(val) {
23 let _valType = t.union(t.string(), t.number());
24 const _returnType = t.return(t.number());
25 t.param("val", _valType).assert(val);
26
27 if (typeof val === "number") {
28 return _returnType.assert(val);
29 }
30
31 return _returnType.assert(parseFloat(val));
32 }
33
34 }

Interface Declaration Mutator

The interface declaration mutator requests a reflection of the node’s type from the fac-
tory. If a class with the same name exists in its scope and therefore will be or has already
been merged with the interface declaration, the interface is removed and no mutation
takes place. Also generics and self references are considered during the transformation.

Source File Mutator

This mutator assures the existence of the import of the runtime type checking library,
if required. Also, if ambient or external declarations are collected by the scanner, the
file that holds these declarations is included in every entry file as well:

import "./tsr-declararions";
import t from "ts-runtime/lib";

5. Implementation 52

The first statement will only be added if the file tsr-declarations.js is created by
the transformer, whereas the second statement is always be included, unless the library
has not been used throughout the source file at all. If the identifier t would have already
been used in the project, it would be prefixed with an underscore, until it is guaranteed
that no naming conflicts can occur.

Type Alias Declaration Mutator

Type alias substitutions are very similar to interface replacements, but an important
aspect of them has not been handled yet. Interfaces, type aliases, and classes can ref-
erence themselves in TypeScript. When declaring a reflection of a type at runtime, the
variable that holds the type description won’t be available yet in such cases:

type Foo = { circular: Foo; }

This type alias has a single property circular, which points to its own type. To support
such a behavior in JavaScript, a function is assigned to the identifier substituting the
type, which will be called with a reference to itself when being used for the first time
at execution time:

const Foo = Foo => t.object(t.property("circular", Foo));

This function contains the actual type description, which is not initialized until it is
required by other parts of the program.

Variable Declaration List Mutator

Variable declarations are wrapped within a node of kind VariableDeclarationList, which
includes at least one declaration. The mutator performs a transformation on every
declaration that is annotated with a type—regardless of the existence of an initializer—
unless they are part of a for-of statement, for-in statement, catch clause, or import
clause:

let foo: string = "bar";

This variable declaration is transformed to the following:
let _fooType = t.string(), foo = _fooType.assert("bar");

Another identifier _fooType is introduced to retrieve the type of foo whenever another
value is assigned to it. For constant variables there is no need to declare the variable’s
type alongside the actual declaration:

const foo: string = "bar";

Therefore, by using the const keyword instead of let or var, the assertion is performed
in place:

const foo = t.string().assert("bar");

As the native JavaScript runtime engine should throw an error, if a constant variable is
reassigned, a separate type declaration can be omitted.

5. Implementation 53

5.4.3 Factory
The implementations of the mutators are making use of the factory, which is cre-
ated by the mutation context (see Sec. 5.4.4). It can recursively create reflections for
a type node of an abstract syntax tree, while keeping track of its state. For every
type node kind there exists a method that can come up with a runtime description,
e.g., literalTypeReflection, arrayTypeReflection, or typeReferenceReflection.
If the kind of a node is not determined in advance, the method typeReflection can
be called, which invokes the suitable reflection function. The following syntax kinds are
supported:

• Keywords: Any, Boolean, Never, Null, Number, Object, String, Symbol, Unde-
fined, Void

• Types: Array, Constructor, Function, Intersection, Literal, Parenthesized, This,
Tuple, Union

• Others: TypeLiteral, TypePredicate, TypeQuery, TypeReference, Expression-
WithTypeArguments

However, three types are not yet checked by ts-runtime. As they are reflected with the
Any type by the factory, the transformation process can still finish without errors, but
a warning will be issued if a node with one of the syntax kinds below occurs in the
project:

• IndexedAccessType
• MappedType
• TypeOperator

In addition to type node reflections, also common transformations are collected in the
factory. It can, for example, reflect classes, interfaces, and type aliases, while also pro-
viding methods for the substitution of types. Furthermore the merging of declarations
or method overloads is carried out by this component in certain situations.

5.4.4 Context
The context—or mutation context—is created for every source file during the traversal
of the AST in the transformer. It holds a reference to the TypeScript program and
the TypeScript type checker. Also the compiler options and settings for ts-runtime
can be retrieved from the mutation context, which allows this component to provide
much more sophisticated functionality than, e.g., the utility component. Methods of the
context include, but are not limited to:

• Is a node the implementation of an overload?
• Is a given name declared in the current context?
• Is an identifier used before its declaration?
• Does a given type reference point to itself?
• Does a node include a type reference, that points to itself?
• Retrieve a merged list of members of a class or an interface declaration.

All of these queries require a link to the TypeScript API or the scanner component in
order to come up with a response successfully.

5. Implementation 54

5.4.5 Utility
The utility component is globally available to all parts of the project. It can be imported
and used without any dependencies. It provides a collection of functions, which are
used throughout ts-runtime, to not introduce duplicated code. It includes methods for
determining whether a node is a type parameter of a given type node (e.g., a class,
an interface, or a function declaration), or to extract the extends clause from a class
declaration node, although the entire API is not presented at this point.

5.4.6 Event Bus
The event bus (i.e., bus) is a lightweight wrapper around the EventEmitter, which is
part of Node.js [55]. It includes certain predefined events which can be obtained from
anywhere in the project. It is used to indicate changes of the state of the program (e.g.,
the start of the transformation), or to notify subscribers about other important events,
such as errors and warnings.

5.4.7 Scanner
This component is a key part of ts-runtime. It is instantiated by the core before the
actual transformations take place. It visits every node of the AST from each source
file, whereas a given node is only processed if it may be required for a type reflection.
This includes identifiers, type references, and function declarations, besides a multitude
of other syntax kinds. Furthermore, the scanner saves the name of every identifier of
the project, to prevent naming conflicts when variables are introduced by the mutators.
Most importantly, for every node that is inspected by the scanner an object is created,
which holds a variety of information, including the node’s symbol, the source files where
the node and its type are declared in (if applicable), as well as a list of declarations with
the same name, if the node is, e.g., a class or an interface declaration. The extraction of
this details enables the scanner to determine, whether the scanned node is an ambient
or external declaration, which may look like the following in TypeScript:

declare class Person {
name: string;

}

The class declaration above is declared ambient, meaning that it will only be used for
static type check purposes, before it is being removed by the TypeScript compiler. The
thesis project does not reflect this declaration in place, but adds a runtime representation
to a separate file, as shown below:

t.declare("Person.3174411535",
t.class("Person", t.property("name", t.string()))

);

A type reference may use the ambient class declaration, as follows:
let person: Person;

This TypeScript code will be transformed to the code below by the mutators:
let _personType = t.ref("Person.3174411535"), person;

The number in the runtime reflection is the hashed file name to avoid the overwriting of
global declarations with the same name, and to uniquely identify the type at runtime.

5. Implementation 55

Program 5.6: The interface for the options of ts-runtime.

1 interface Options {
2 compilerOptions?: ts.CompilerOptions;
3 force?: boolean;
4 log?: boolean;
5 noAnnotate?: boolean;
6 libDeclarations?: boolean;
7 declarationFileName?: string;
8 excludeDeclarationFile?: boolean;
9 excludeLib?: boolean;

10 libIdentifier?: string;
11 libNamespace?: string;
12 declarationPrefix?: string;
13 }

5.4.8 Options
In order to provide developers with the ability to adjust the behavior of the thesis
project, the options component exposes an interface, describing the supported settings
(see Prog. 5.6):

• compilerOptions: The options for the TypeScript compiler are included in the
settings for ts-runtime. Especially the rootDir and outDir are important. The root
directory option specifies a base folder, which contains the TypeScript project to be
processed. If no such option is given the common directory of the entry files will be
determined. The outDir option sets the location of the compiled project, whereas
outFile would tell the compiler to concatenate the target code and to only emit
a single file [38]. The option preserveConstEnums will always be enabled, since
constant enumerations need to be available for runtime type checks. By default,
the TypeScript compiler would replace the enum references with their constant
value [38, 40].

• force: The processing is aborted if the TypeScript compiler detects errors for
both, syntactics and semantics. By setting this flag to true, semantic errors do
not cause the transformations to be stopped.

• log: By default, errors, warnings, and other messages will be printed to the console.
To disable the output, this option can be set to false.

• noAnnotate: Functions and classes are annotated with their type reflection,
which can be disabled. The type checking library will try to infer the type from
the value available at runtime.

• libDeclarations: Specific functionality is available globally in a running JavaScript
program, based on its execution context (e.g., Node.js, or web browser). Those
globals won’t be reflected by default.

• declarationFileName: The scanner collects all ambient and external declara-
tions, which are then written to a separate file. The name for this file can be set
via this option.

5. Implementation 56

• excludeDeclarationFile: The file that holds the collection of global declarations
is imported in every entry file of the target code, which may be changed.

• excludeLib: The runtime type checking library is not only loaded in every en-
try file, but in every single module that includes some kind of type reflection or
assertion. To disable these automatic imports, this option can be set to true.

• libIdentifier: Even though naming conflicts should not occur, as the scanner
stores identifiers in use, the name for the library variable may be changed, since
the execution environment of the compiled JavaScript project may already define
a set of global names.

• libNamespace: If a prefix for the library identifier is desired it can be set with
this option.

• declarationPrefix: In some situations new variable declarations are introduced
by the mutators. To easily distinguish generated identifiers from others, a prefix
can be set.

While it is possible to provide settings to the transformer, it is not required to pass
anything but the entry files. The project includes default settings (see Prog. 5.7) that
will be used for every option that is not specified.

Program 5.7: The default options for ts-runtime.

1 {
2 compilerOptions: {},
3 force: false,
4 log: true,
5 noAnnotate: false,
6 libDeclarations: false,
7 declarationFileName: "tsr-declarations",
8 excludeDeclarationFile: false,
9 excludeLib: false,

10 libIdentifier: "t",
11 libNamespace: "",
12 declarationPrefix: "_"
13 }

5.5 Transformation Procedure
A variety of elements work together to achieve the desired result of the thesis project,
which have been pictured in this chapter. While they have been described with a cer-
tain level of detail, not all characteristics of every component could be highlighted. To
better illustrate the procedure of the program, and the interconnections of the different
components, the steps performed by the transformer are described:

1. The transformer obtains a complete set of options by requesting the default set-
tings for ts-runtime and the TypeScript compiler, which can then be merged with
the settings passed. If the options are not valid the transformation is stopped.

5. Implementation 57

2. The root directory for the TypeScript project to be processed needs to be discov-
ered next. Either it is provided through the TypeScript compiler option rootDir,
or it is computed based on the entry files.

3. At this point the transformer distinguishes between a compilation of files from the
file system, or a reflection which is represented by a list of objects containing the
file name and its contents as a string. In order to transform a project without a
file system a custom compiler host (see Sec. 5.1.1) is required, which can provide
the TypeScript program with the appropriate data from the reflection list. For a
regular compilation the standard compiler host, provided by TypeScript, will be
used.

4. A TypeScript program is instantiated with the compiler host, the compiler options,
and the entry files. The TypeScript compiler processes the project and provides
access to the type checker, alongside other useful functionality, like compiler di-
agnostics (i.e., errors).

5. If errors are detected by TypeScript, the processing is being stopped. In case of
the force option being set, the transformation will only be aborted if diagnostics
occur that are not related to semantics.

6. The abstract syntax tree for each source file is scanned, identifiers are stored, and
ambient and external declarations are extracted.

7. The state of the application now allows for the actual transformations to take
place. Every node is passed to the mutators, which perform modifications if re-
quired.

8. As the current TypeScript program is no longer synchronized with the AST of
the source files, it has to be replaced with a new instance. The TypeScript printer
(see Sec. 5.1.1) is used to create a reflection of the project, which—alongside a
compiler host which supports the reflections—is used to create a new program.

9. The target code can now be emitted by the TypeScript program, and the result
is written to disk, or a reflection of the emitted files is created.

10. All external and ambient declarations are requested from the scanner. The trans-
former then creates runtime representations through the factory and includes them
in the emitted result.

11. The transformation process is finished and a file reflection list, containing the
target files, is returned.

A diagram depicting the most significant parts of this process can also be found in
Fig. 5.2.

5.6 Usage
In order to make use of the implemented project, Node.js version 6.0 or above needs to
be installed on the system. Also npm—which comes with Node.js—or yarn7 is required
to install ts-runtime from the npm registry. The following command can be used with
yarn, to add the package as a dependency to a project via the command line:

yarn add ts-runtime

7 https://yarnpkg.com

https://yarnpkg.com

5. Implementation 58

Start

Reflections? Use Custom
Host

Process with
TypeScript

yes

no

Errors?Apply Trans-
formations

End
yesno

Emit Target
Code

Figure 5.2: Simplified diagram of the transformation process.

With npm, the corresponding command is as follows:
npm install ts-runtime --save

After the package is available on a system, different approaches are provided to interact
with ts-runtime, which are described in the following sections.

5.6.1 Application Programming Interface
The library exposes various parts of its internals via an application programming inter-
face (i.e., API). To provide high flexibility when making use of this project, technically
almost all parts are accessible from outside. However, for a typical setup only the op-
tions component, the transformer, as well as the bus may be used, which are exported
from the main file of the published package. In JavaScript the library can be loaded as
shown below:

import * as tsr from "ts-runtime";

5. Implementation 59

Program 5.8: This code makes use of the API of the thesis project and utilizes the bus
component to append TypeScript compiler diagnostics to a file.

1 import * as fs from "fs";
2 import * as ts from "typescript";
3 import { transform, bus } from "ts-runtime";
4
5 const stream = fs.createWriteStream("diags.log", { flags: "a" });
6
7 bus.on(bus.events.DIAGNOSTICS, diagnostics => {
8 logStream.write(
9 ts.formatDiagnostics(diagnostics, {

10 getCurrentDirectory: () => "",
11 getNewLine: () => "\n",
12 getCanonicalFileName: fileName => fileName
13 })
14);
15 });
16
17 bus.on(bus.events.STOP, () => {
18 stream.end();
19 });
20
21 transform("./entry");

In this case, every exported member of the main file of ts-runtime is imported and is
made available through the identifier tsr. To load only specific parts of the application
the following syntax can be used:

import { transform } from "ts-runtime";

While the examples above make use of a code style from the EcmaScript 2015 language
specification [51, p. 302], not all features from this specification are available in Node.js
at this time [47], and the syntax shown below can be used [73]:

const tsr = require("ts-runtime");

However, when using a compiler that supports EcmaScript 2015 modules, which can
produce Node.js compatible JavaScript—such as TypeScript [74] or Babel [79]—the
syntax of the former two examples may be used. After successfully loading the thesis
project, its functionality can be used programmatically, which is outlined in Prog. 5.8.

5.6.2 Command Line Interface
The project of this thesis does also include a command line interface (i.e., CLI), which
requires the package to be installed globally via the command line:

yarn global add ts-runtime

Again, also npm may be used to install ts-runtime:
npm install -g ts-runtime

5. Implementation 60

Figure 5.3: Output of the command line interface, with compiler errors and warnings.
The TypeScript file entry.ts within the directory src was compiled, while the TypeScript
compiler options where loaded from tsconfig.json, and the transformation process was
not aborted on the occurrence of semantic errors, as the force flag was set.

The CLI of the application should now be exposed to the environment variables and it
may be executed from any location of the operating system. To display a help message,
including available options and usage examples, the following command can be run:

tsr --help

The only argument that is required to be passed to the command line interface is a
TypeScript entry file name, while the extension may be omitted. Fig. 5.3 depicts the
CLI output, where the TypeScript compiler options were be loaded from a file, and
the transformation process was not aborted when semantic errors were raised by the
compiler.

5.6.3 Playground
To test and try ts-runtime in a web browser, a playground was created. It takes ad-
vantage of the reflection transformation feature, which does not require an underlying
file system. While the playground source is not included in the published package on
the npm registry, it can be obtained from the repository on GitHub8, where the source
code of the entire thesis project is available. The playground is served directly from this
repository9, as shown in Fig. 5.4, where the transformed and compiled JavaScript code
can be executed in the browser, to not only show the result of the target code, but to
also inspect its behavior at runtime.

8 https://github.com/fabiandev/ts-runtime
9 https://fabiandev.github.io/ts-runtime/

https://github.com/fabiandev/ts-runtime
https://fabiandev.github.io/ts-runtime/

5. Implementation 61

Figure 5.4: Screenshot of the playground of the thesis project, providing a user interface
with support for several options to test transformations and its behavior at runtime.

Chapter 6

Evaluation

In this chapter the implemented thesis project is tested and evaluated. Different methods
are used to measure and verify the quality and functionality of ts-runtime. This should
assure that all components work as intended and the resulting transformations align
with the expected outcome. Furthermore, it should highlight that the implementation
was carried out carefully, while also pointing out potential compromises when making
use of the library.

6.1 Automated Unit Tests
To ensure that the result of the source code transformations, applied to a TypeScript
project, aligns with the expected result, a series of unit tests1 are provided, which should
be executed after modifications have been made to the project’s source code. These tests
raise errors if a mutation changed unexpectedly, possibly resulting in wrong behavior
when used at runtime. If such a change is intended, the corresponding tests have to be
updated as well. The tests do not only cover the mutators itself, but also the project’s
components. In total 456 tests have been written with a code coverage2 of almost 91%
(i.e., 90.59%), while Tab. 6.1 shows a detailed summary of the project’s coverage.

Table 6.1: Code coverage summary, with a total of 90.59% when considering statements,
branches, and lines.

Statements Branches Functions Lines

Components 92.98% 82.63% 94.90% 93.34%
Mutators 97.14% 91.30% 98.18% 96.76%

Total
93.72% 84.14% 95.34% 93.92%

2016/2151 891/1059 389/408 1870/1991

1 “A unit test generally exercises the functionality of the smallest possible unit of code (which could
be a method, class, or component) in a repeatable way [...] to verify that the logic of individual units is
correct” [31].

2 “Code coverage is the percentage of code which is covered by automated tests” [21].

62

6. Evaluation 63

It gives an overview of the total statements executed, the amount of branches—such as
else statements or case clauses—visited, the percentage of functions executed, as well as
the number of relevant lines covered in the tests. For the unit tests itself the framework
Mocha3 is utilized, while the library Istanbul4 extracts the code coverage report.

6.2 Continuous Integration

The ts-runtime project takes advantage of the continuous integration (i.e., CI) practice,
which can be defined as

[...] a development practice where developers integrate code into a shared
repository frequently, [which] can then be verified by an automated build
and automated tests. [102]

This reduces the risk of introducing errors to the library accidentally. When pushing
changes to the remote repository5, the source code is built automatically by the contin-
uous integration platform Travis CI 6, where the state of each build is publicly visible7.
The following steps are performed when invoking a CI build:

1. Build the project with the native TypeScript compiler.
2. Build the project again with ts-runtime, with the result of step one.
3. Run the unit tests for all components and mutators.
4. Execute the command line interface from the build of step two.

If one of the steps from above is not successful, the build is considered as failed, which
is transparently indicated on the repository website of the project. In this case all issues
should be addressed before releasing a new version of the library to the node package
manager registry. If a build was successful, the code coverage statistics are transmitted
to Coveralls8, a web service that keeps track of changes over time, providing an interface
to explore coverage for individual files, alongside determining if code coverage increased
or decreased in comparison to the previous builds. Again, these insights are available to
the public9 and are clearly shown on the repository website of ts-runtime.

6.3 Operational Test
After the project of this thesis has been tested using automated unit tests, and its
code coverage has been revealed, it should also be verified by applying transforma-
tions to a random library. For this purpose the TypeScript project pretty-algorithms10—
containing “pretty, common and useful algorithms with modern [JavaScript] and beau-
tiful tests” [64]—was obtained from a list of trending libraries on GitHub11, which was

3 https://mochajs.org
4 https://istanbul.js.org
5 https://github.com/fabiandev/ts-runtime
6 https://travis-ci.org
7 https://travis-ci.org/fabiandev/ts-runtime
8 https://coveralls.io
9 https://coveralls.io/github/fabiandev/ts-runtime

10 https://github.com/jiayihu/pretty-algorithms
11 https://github.com/trending/typescript

https://mochajs.org
https://istanbul.js.org
https://github.com/fabiandev/ts-runtime
https://travis-ci.org
https://travis-ci.org/fabiandev/ts-runtime
https://coveralls.io
https://coveralls.io/github/fabiandev/ts-runtime
https://github.com/jiayihu/pretty-algorithms
https://github.com/trending/typescript

6. Evaluation 64

1 5 10 15 20 25

2.00

2.25

2.50

2.75

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑠𝑒
𝑐𝑜

𝑛
𝑑
𝑠

standard
ts-runtime
ts-runtime (fixed)

Figure 6.1: Comparison of unit test execution times of the library pretty-algorithms. The
label standard refers to a build with the native TypeScript compiler, while ts-runtime
refers to a build with generated runtime type checks with the project of this thesis, and
ts-runtime (fixed) denotes a build where the type incompatibilities of the previous build
were resolved. The dashed lines indicate the average of all iterations of a given build.

the most popular TypeScript repository on the day of testing [92]. The package was
built locally and its tests were run against the original code base. Subsequently, it was
built using the ts-runtime CLI and the unit tests were executed again. No errors were
reported with the build of the native TypeScript compiler, and the average time required
to execute a total of 52 unit tests after 25 runs was 2.17 seconds. With the build of the
thesis project, three tests failed due to type incompatibility, with an average execution
time of 2.38 seconds. After resolving the failing tests, the median time to complete the
test suites was again 2.38 seconds, meaning that there was a difference of 0.21 seconds
between running the unit tests against the two different builds. Fig. 6.1 depicts the
time required to run the unit tests with all three builds. As the increase in execution
time is given by the runtime type system provided by flow-runtime—which is utilized
to enable runtime type reflections and assertions—the time required to build a project
with ts-runtime is more meaningful to emphasize the performance of the thesis project,
which is outlined in Tab. 6.2. On average, a ts-runtime build was 0.8 seconds slower,
reaching around 71% of the performance of a native TypeScript compiler build, despite
its supplementary functionality. The detailed results, which could be examined in this
section, can further be found in Sec. A.1 and A.2. All data was gathered on a system
running macOS 10.12.6 with a 2.5 GHz Intel Core i7 processor, 16 GB of 1600 MHz
DDR3 memory and Node.js version 6.11.2.

6. Evaluation 65

Table 6.2: The average time required in seconds to build pretty-algorithms with the native
TypeScript API, as well as the ts-runtime API and CLI. While a standard TypeScript
build creates a JavaScript application out of TypeScript code, the ts-runtime builds also
take care of generating and including runtime type checks.

Average Build Time

TypeScript CLI 1.94s
ts-runtime CLI 2.72s
ts-runtime API 2.71s

6.4 Performance Analyzation
In addition to running the unit tests with a ts-runtime build of pretty-algorithms in a
Node.js environment, the library was also compared in a browser with Benchmark.js12,
“a robust benchmarking library that supports high-resolution timers [and] returns sta-
tistically significant results” [32]. For graphically representing the results, Astrobench13

was used. Since including runtime type checks to a project also means that a repre-
sentation of a type system is required, it was to be expected that the original build
will outperform ts-runtime. Anyway, it may be of advantage to gain knowledge of the
performance impact. When running the benchmarks, the original library could reach
56,564,588 operations per second on average, while the ts-runtime build scored 14,234
operations per second, meaning that it reached 0.025% of its performance. The closest
result of the two builds was 21,462 operations per second with generated runtime type
checks, compared to 1,648,386 operations per second with the original package, which
is about 77 times faster. When comparing results of a primitive type check, a type com-
patibility verification of a class, as well as an interface, ts-runtime could accomplish its
best result of 79,935 versus 338,363 operations per second (see Fig. 6.2), which is al-
most 24% of the performance of the JavaScript code with handwritten type checks. The
entire dataset of the benchmarks regarding pretty-algorithms can be found in Sec. A.3,
whereas Tab. 6.3 provides an overview of test results not related to that library. The
benchmarks were captured on the same system as in Sec. 6.3, with the web browser
Chrome14 version 60.0.3112.113.

6.5 Summary
The evaluation results could reveal that a project built with ts-runtime does not get
close to the performance of a regular TypeScript build. This is due to the inclusion
of a runtime type system, which is capable of reflecting and verifying complex data
structures. While this overhead is added by the library flow-runtime, which is used for
the runtime type checks itself, the performance of building a package with the thesis
project performs close to building with the native TypeScript compiler, despite the

12 https://github.com/bestiejs/benchmark.js
13 https://github.com/kupriyanenko/astrobench
14 https://www.google.com/chrome/

https://github.com/bestiejs/benchmark.js
https://github.com/kupriyanenko/astrobench
https://www.google.com/chrome/

6. Evaluation 66

A B

1 · 105

2 · 105

3 · 105

3.38 · 105

0.80 · 105

Figure 6.2: This diagram shows the benchmark results of checking a class for type
compatibility in a web browser, in operations per second. 𝐴 displays the outcome of
verifying the type manually, while 𝐵 shows the score when making use of generated
runtime type checks.

additional tasks that have to be performed. Furthermore, different testing environments
may influence the results. Altough results may vary throughout operating systems and
testing environments, the package ts-runtime-test15 is available on GitHub to reproduce
the tests of this chapter locally, including the unit tests mentioned in Sec. 6.3, as well
as the benchmark tests described in Sec. 6.4. Furthermore a detailed overview of the
evaluation results can be found in Sec. A.

15 https://github.com/fabiandev/ts-runtime-test

https://github.com/fabiandev/ts-runtime-test

6. Evaluation 67

Table 6.3: The results of the generated checks denote the runtime benchmarks for a
build with the thesis project, for all of the tables below. For the manual checks, the
typeof operator was used for the results of Tab. 6.3a, the instanceof operator for the
benchmarks of Tab. 6.3b, and Object.hasOwnProperty, as well as the strict equality
operater (i.e., ===), for Tab. 6.3c.

(a) Results of checking a value for being a string.

Manual Checks Generated Checks

Iterations/Cycle 43,234,495 69,510
Samples (Cycles) 92 89

Operations/Second 791,979,841 1,275,061
Margin of Error ±0.75% ±1.03%

(b) Results of checking a value for being an instance of a class.

Manual Checks Generated Checks

Iterations/Cycle 27,266 5,139
Samples (Cycles) 65 81

Operations/Second 338,363 79,935
Margin of Error ±3.90% ±4.74%

(c) Results of checking a value for compatibility to an interface.

Manual Checks Generated Checks

Iterations/Cycle 1,800,557 3,140
Samples (Cycles) 86 90

Operations/Second 31,744,772 58,404
Margin of Error ±1.04% ±1.09%

Chapter 7

Summary and Outlook

This thesis explored the field of runtime type checks for JavaScript, with a detailed
overview of its type system, which was also compared to those of other programming
languages. Subsequently, the JavaScript superset TypeScript was examined in detail to
provide a sophisticated overview of its characteristics and features, while also pointing
out differences to and similarities with the superset Flow. It could be determined that
the static compile time type analysis of TypeScript can detect a multitude of potential
errors, while there are also situations where the compiler cannot detect possible issues
for the target code. As no additional type checking techniques are included and type
information is not available in the compiled JavaScript code (i.e., at runtime), other
techniques have to be employed to ensure that unexpected conditions can be observed
and reacted to during program execution, resulting in increased development and main-
tenance effort. Therefore a method was elaborated to automatically generate runtime
type checks based on the type annotations of a TypeScript project. A theoretical con-
cept was constructed, before a project was implemented that can extract the required
information and emit a JavaScript program with integrated runtime validations. For
the runtime type system itself a third party library was used, which was developed with
the JavaScript superset Flow in mind, but provides a multitude of features which are
applicable for runtime type checks that align with the behavior of TypeScript’s static
type system.

Subsequently, the resulting project was evaluated—including its API, CLI and the
runnable JavaScript code—to prove its quality and functionality and to also provide
insights into performance analyzations and benchmarks. The findings verified the oper-
ability of the project of this thesis, and the functioning of the target code. Build times are
in an acceptable range, compared to those of the native TypeScript compiler, and type
incompatibilities are reported correctly during runtime. While the generation of type
checks is efficient, the performance of the executable program with added runtime type
checks cannot compete with the unmodified version. This is attributable to the com-
prehensive type system that is included, as well as its internal verification processes.
While a decrease in execution time was to be expected, the results were not satisfactory
to be used in a production system. However, making use of the thesis project in the
phase of development may be beneficial to detect unexpected behavior and conditions
at execution time. This suggests the use of a different library, which carries out type
checks more efficiently to improve the performance at runtime. An interface could be

68

7. Summary and Outlook 69

provided which supports exchanging the runtime type system, without the requirement
to make changes to the underlying framework. This would also allow other developers to
employ a custom implementation or a preferred library for the runtime type reflections
and assertions with as little effort as possible.

To ensure that future development does not break the project’s operability, an ex-
tensive collection of automated unit tests—including code coverage statistics—is part
of the project to also enable continuous integration, which is triggered automatically
when changes to the remote code repository are detected, helping to preserve code qual-
ity over time and to report unexpected behavior that may be introduced with changes
to the code base. The provided test suite is also useful to verify contributions to the
original project from other developers.

The latest version of the source code of the project of this thesis—named ts-runtime—
can be obtained from GitHub1, while an online playground2 is also available to transform
TypeScript syntax in a browser and to execute the resulting JavaScript code.

1 https://github.com/fabiandev/ts-runtime
2 https://fabiandev.github.io/ts-runtime/

https://github.com/fabiandev/ts-runtime
https://fabiandev.github.io/ts-runtime/

Appendix A

Evaluation Results

A.1 Build Time

Iteration TypeScript CLI ts-runtime CLI ts-runtime API
1 1.942s 2.740s 2.677s
2 1.928s 2.716s 2.723s
3 1.946s 2.685s 2.671s
4 1.898s 2.697s 2.735s
5 1.903s 2.689s 2.734s
6 1.921s 2.686s 2.743s
7 1.946s 2.735s 2.633s
8 1.936s 2.685s 2.680s
9 1.913s 2.704s 2.686s

10 1.922s 2.740s 2.750s
11 1.926s 2.761s 2.655s
12 1.931s 2.706s 2.651s
13 1.947s 2.718s 2.717s
14 1.926s 2.702s 2.736s
15 1.916s 2.710s 2.736s
16 1.908s 2.716s 2.736s
17 1.949s 2.718s 2.763s
18 1.931s 2.733s 2.629s
19 1.924s 2.732s 2.718s
20 1.923s 2.716s 2.682s
21 1.944s 2.706s 2.784s
22 1.952s 2.717s 2.744s
23 1.955s 2.708s 2.686s
24 2.010s 2.793s 2.711s

70

A. Evaluation Results 71

Iteration TypeScript CLI ts-runtime CLI ts-runtime API
25 1.969s 2.711s 2.682s

Average 1.935s 2.717s 2.708s

A.2 Unit Tests Execution Time

Iteration TypeScript Build ts-runtime Build
ts-runtime Build

(fixed)
1 2.108s 2.371s 2.430s
2 2.131s 2.319s 2.419s
3 2.159s 2.346s 2.436s
4 2.181s 2.350s 2.450s
5 2.082s 2.351s 2.329s
6 2.124s 2.349s 2.333s
7 2.118s 2.342s 2.361s
8 2.089s 2.327s 2.349s
9 2.110s 2.344s 2.397s

10 2.119s 2.335s 2.390s
11 2.102s 2.374s 2.348s
12 2.107s 2.332s 2.347s
13 2.227s 2.455s 2.360s
14 2.214s 2.455s 2.335s
15 2.231s 2.490s 2.341s
16 2.216s 2.472s 2.333s
17 2.240s 2.470s 2.374s
18 2.143s 2.347s 2.338s
19 2.232s 2.355s 2.339s
20 2.308s 2.343s 2.356s
21 2.286s 2.366s 2.343s
22 2.178s 2.360s 2.369s
23 2.179s 2.331s 2.350s
24 2.174s 2.354s 2.447s
25 2.173s 2.460s 2.512s

Average 2.169s 2.376s 2.375s

A. Evaluation Results 72

A.3 Benchmark Tests

TypeScript Build ts-runtime Build

Iterations/Cycle 131,426 151
Samples (Cycles) 89 86

Operations/Second 2,455,478 2,693
Margin of Error ±0.87% ±2.36%

misc/activity-selection#activitySelector

TypeScript Build ts-runtime Build

Iterations/Cycle 50,024 195
Samples (Cycles) 93 93

Operations/Second 919,213 3,629
Margin of Error ±0.21% ±0.78%

misc/huffman#huffman

TypeScript Build ts-runtime Build

Iterations/Cycle 23,703 146
Samples (Cycles) 90 91

Operations/Second 441,323 2,698
Margin of Error ±0.65% ±0.49%

misc/inversions-count#countInversions

TypeScript Build ts-runtime Build

Iterations/Cycle 15,024 32
Samples (Cycles) 93 88

Operations/Second 277,705 579
Margin of Error ±0.87% ±0.69%

misc/longest-common-subsequence#findLCS

TypeScript Build ts-runtime Build

Iterations/Cycle 15,524 102
Samples (Cycles) 94 93

Operations/Second 291,322 1,912
Margin of Error ±0.87% ±0.68%

misc/longest-common-subsequence#lcsLength

A. Evaluation Results 73

TypeScript Build ts-runtime Build

Iterations/Cycle 90,632 455
Samples (Cycles) 92 92

Operations/Second 1,684,257 8,528
Margin of Error ±0.56% ±0.61%

misc/maximum-subarray#maxCrossSubarray

TypeScript Build ts-runtime Build

Iterations/Cycle 11,553 17
Samples (Cycles) 86 87

Operations/Second 204,981 315
Margin of Error ±0.62% ±1.65%

misc/maximum-subarray#maxSubarray

TypeScript Build ts-runtime Build

Iterations/Cycle 565,446 236
Samples (Cycles) 93 88

Operations/Second 10,313,122 4,281
Margin of Error ±1.07% ±0.67%

misc/priority-queue#extractMax

TypeScript Build ts-runtime Build

Iterations/Cycle 445,302 391
Samples (Cycles) 92 91

Operations/Second 8,108,396 7,159
Margin of Error ±0.88% ±0.71%

misc/priority-queue#increasePriority

TypeScript Build ts-runtime Build

Iterations/Cycle 286,848 206
Samples (Cycles) 92 90

Operations/Second 5,296,213 3,791
Margin of Error ±0.89% ±0.66%

misc/priority-queue#insert

A. Evaluation Results 74

TypeScript Build ts-runtime Build

Iterations/Cycle 51,412 322
Samples (Cycles) 92 92

Operations/Second 947,689 6,004
Margin of Error ±1.28% ±0.80%

misc/rod-cutting#bottomUpCutRod

TypeScript Build ts-runtime Build

Iterations/Cycle 27,315 180
Samples (Cycles) 92 90

Operations/Second 511,249 3,333
Margin of Error ±0.55% ±0.73%

misc/rod-cutting#cutRod

TypeScript Build ts-runtime Build

Iterations/Cycle 58,578 49
Samples (Cycles) 92 91

Operations/Second 1,079,036 912
Margin of Error ±0.88% ±0.65%

misc/rod-cutting#topDownCutRod

TypeScript Build ts-runtime Build

Iterations/Cycle 3,512,823 1,013

Samples (Cycles) 92 93
Operations/Second 64,198,881 18,877

Margin of Error ±0.92% ±0.56%

search/binary-search#binarySearch

TypeScript Build ts-runtime Build

Iterations/Cycle 4,338,946 331
Samples (Cycles) 89 90

Operations/Second 76,632,545 6,072
Margin of Error ±1.11% ±2.06%

search/binary-search-tree#insert

A. Evaluation Results 75

TypeScript Build ts-runtime Build

Iterations/Cycle 463,402 20
Samples (Cycles) 94 87

Operations/Second 8,496,621 368
Margin of Error ±0.94% ±0.68%

search/binary-search-tree#maximum

TypeScript Build ts-runtime Build

Iterations/Cycle 473,362 18
Samples (Cycles) 93 87

Operations/Second 8,672,193 334
Margin of Error ±0.93% ±0.53%

search/binary-search-tree#minimum

TypeScript Build ts-runtime Build

Iterations/Cycle 471,958 27
Samples (Cycles) 92 89

Operations/Second 8,655,508 499
Margin of Error ±0.84% ±1.33%

search/binary-search-tree#predecessor

TypeScript Build ts-runtime Build

Iterations/Cycle 423,236 21
Samples (Cycles) 91 89

Operations/Second 7,657,685 392
Margin of Error ±1.05% ±0.70%

search/binary-search-tree#remove

TypeScript Build ts-runtime Build

Iterations/Cycle 443,428 18
Samples (Cycles) 91 87

Operations/Second 8,162,362 331
Margin of Error ±0.91% ±0.59%

search/binary-search-tree#search

A. Evaluation Results 76

TypeScript Build ts-runtime Build

Iterations/Cycle 480,070 18
Samples (Cycles) 88 85

Operations/Second 8,592,765 329
Margin of Error ±1.04% ±0.67%

search/binary-search-tree#successor

TypeScript Build ts-runtime Build

Iterations/Cycle 411,043 26
Samples (Cycles) 90 89

Operations/Second 7,411,455 478
Margin of Error ±0.92% ±0.54%

search/binary-search-tree#transplant

TypeScript Build ts-runtime Build

Iterations/Cycle 68,002 309
Samples (Cycles) 94 89

Operations/Second 1,271,033 5,643
Margin of Error ±0.52% ±1.20%

sort/counting-sort#countingSort

TypeScript Build ts-runtime Build

Iterations/Cycle 46,278,689 8,884

Samples (Cycles) 92 93
Operations/Second 857,754,288 163,276

Margin of Error ±0.87% ±0.77%

sort/heap-sort#left

TypeScript Build ts-runtime Build

Iterations/Cycle 46,204,099 8,941

Samples (Cycles) 91 94
Operations/Second 850,272,444 163,986

Margin of Error ±0.93% ±1.21%

sort/heap-sort#right

A. Evaluation Results 77

TypeScript Build ts-runtime Build

Iterations/Cycle 588,664 202
Samples (Cycles) 88 91

Operations/Second 10,738,762 3,758
Margin of Error ±1.47% ±0.69%

sort/heap-sort#maxHeapify

TypeScript Build ts-runtime Build

Iterations/Cycle 196,323 122
Samples (Cycles) 91 90

Operations/Second 3,634,607 2,236
Margin of Error ±0.70% ±0.67%

sort/heap-sort#buildMaxHeap

TypeScript Build ts-runtime Build

Iterations/Cycle 96,408 36
Samples (Cycles) 90 87

Operations/Second 1,774,855 643
Margin of Error ±0.83% ±0.72%

sort/heap-sort#heapSort

TypeScript Build ts-runtime Build

Iterations/Cycle 327,267 1,765

Samples (Cycles) 93 89
Operations/Second 6,090,107 32,420

Margin of Error ±0.59% ±0.68%

sort/insertion-sort#insertionSort

TypeScript Build ts-runtime Build

Iterations/Cycle 330,844 887
Samples (Cycles) 92 91

Operations/Second 6,066,608 16,813
Margin of Error ±0.53% ±1.18%

sort/merge-and-insertion-sort#mergeAndInsertionSort

A. Evaluation Results 78

TypeScript Build ts-runtime Build

Iterations/Cycle 86,821 1,124

Samples (Cycles) 95 92
Operations/Second 1,648,386 21,426

Margin of Error ±0.59% ±0.43%

sort/merge-sort#merge

TypeScript Build ts-runtime Build

Iterations/Cycle 19,730 115
Samples (Cycles) 92 95

Operations/Second 356,236 2,158
Margin of Error ±0.69% ±1.60%

sort/merge-sort#mergeSort

TypeScript Build ts-runtime Build

Iterations/Cycle 188,938 345
Samples (Cycles) 94 94

Operations/Second 3,520,557 6,471
Margin of Error ±0.79% ±0.44%

sort/quick-sort#partition

TypeScript Build ts-runtime Build

Iterations/Cycle 59,085 80
Samples (Cycles) 92 94

Operations/Second 1,119,694 1,495
Margin of Error ±0.59% ±0.52%

sort/quick-sort#quickSort

TypeScript Build ts-runtime Build

Iterations/Cycle 186,947 238
Samples (Cycles) 93 87

Operations/Second 3,502,988 4,346
Margin of Error ±0.68% ±1.09%

sort/selection-sort#selectionSort

Appendix B

CD-ROM Contents

Format: CD-ROM, Single Layer, ISO9660-Format

Contents:
/

thesis.pdf.......................................Digital Copy of the Thesis
assets/...Vector and Raster Graphics

diagrams/..Diagrams and Charts
images/.. Images and Screenshots

project/..Thesis Project Source
references/..Online References

79

References

Literature

[1] Luca Cardelli. “Type Systems”. In: Computer Science Handbook. Ed. by Allen B.
Tucker. 2nd ed. Boca Raton, FL, USA: Chapman & Hall/CRC, 2004. Chap. 97
(cit. on pp. 3–6).

[2] Douglas Crockford. JavaScript: The Good Parts. Unearthing the Excellence in
JavaScript. Sebastopol, CA, USA: O’Reilly Media, 2008 (cit. on pp. 5, 16).

[3] Stevens Fenton. Pro TypeScript. Application-Scale JavaScript Development.
2nd ed. Apress, Feb. 2014 (cit. on p. 18).

[4] David Flanagan. JavaScript: The Definitive Guide. 6th ed. Sebastopol, CA, USA:
O’Reilly Media, 2011 (cit. on pp. 7–9, 16).

[5] Philippa Anne Gardner, Sergio Maffeis, and Gareth David Smith. “Towards
a Program Logic for JavaScript”. In: Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’12. Philadelphia, PA, USA: ACM, 2012, pp. 31–44 (cit. on p. 3).

[6] Ross Harmes and Dustin Diaz. Pro JavaScript Design Patterns. Application-
Scale JavaScript Development. Apress, 2008 (cit. on p. 26).

[7] Kenneth C. Louden. “Compilers and Interpreters”. In: Computer Science Hand-
book. Ed. by Allen B. Tucker. 2nd ed. Boca Raton, FL, USA: Chapman & Hal-
l/CRC, 2004. Chap. 99 (cit. on p. 16).

[8] Kenneth C. Louden and Kenneth A. Lambert. Programming Languages: Princi-
ples and Practices. 3rd ed. Boston, MA, USA: Course Technology, 2011 (cit. on
p. 3).

[9] Jaime Niño. “Type Systems Directed Programming Language Evolution:
Overview and Research Trends”. In: Proceedings of the 50th Annual Southeast
Regional Conference. ACM-SE ’12. Tuscaloosa, Alabama: ACM, 2012, pp. 203–
208 (cit. on p. 3).

[10] Den Odell. Pro JavaScript Development. Coding, Capabilities, and Tooling. Ex-
pert’s voice in Web development. Apress, 2014 (cit. on p. 5).

[11] Benjamin C. Pierce. Types and Programming Languages. Cambridge, MA, USA:
MIT Press, 2002 (cit. on pp. 3–5).

[12] Martin Rinehart. JavaScript Object Programming. Apress, 2015 (cit. on pp. 5,
9).

80

References 81

[13] Nathan Rozentals. Mastering TypeScript. Birmingham, UK: Packt Publishing,
Apr. 2015 (cit. on p. 26).

[14] Nathan Rozentals. Mastering TypeScript. 2nd ed. Birmingham, UK: Packt Pub-
lishing, 2017 (cit. on p. 18).

[15] Kyle Simpson. Scopes & Closures. You Don’t Know JS. Sebastopol, CA, USA:
O’Reilly Media, Mar. 2014 (cit. on pp. 11, 12).

[16] Kyle Simpson. this & Object Prototypes. You Don’t Know JS. Sebastopol, CA,
USA: O’Reilly Media, Apr. 2015 (cit. on pp. 10, 13).

[17] Kyle Simpson. Types & Grammar. You Don’t Know JS. Sebastopol, CA, USA:
O’Reilly Media, Jan. 2016 (cit. on pp. 11, 13–15).

[18] Kyle Simpson. Up & Going. You Don’t Know JS. Sebastopol, CA, USA: O’Reilly
Media, Apr. 2015 (cit. on pp. 6, 16).

[19] Sam Tobin-Hochstadt and Matthias Felleisen. “Logical Types for Untyped Lan-
guages”. In: Proceedings of the 15th ACM SIGPLAN International Conference
on Functional Programming. ICFP ’10. Baltimore, Maryland, USA: ACM, 2010,
pp. 117–128 (cit. on p. 3).

[20] Christian Wagenknecht and Michael Hielscher. Formale Sprachen, abstrakte Au-
tomaten und Compiler. Lehr- und Arbeitsbuch für Grundstudium und Fortbil-
dung. 2nd ed. Wiesbaden, DE: Springer Vieweg, 2014 (cit. on p. 16).

Online sources

[21] About Code Coverage. June 2017. url: https://confluence.atlassian.com/clover/a
bout-code-coverage-71599496.html (visited on 08/22/2017) (cit. on p. 62).

[22] About npm. url: https://www.npmjs.com/about (visited on 07/15/2017) (cit. on
p. 38).

[23] About pull requests. url: https://help.github.com/articles/about-pull- requests/
(visited on 04/21/2017) (cit. on p. 5).

[24] Arnav Aggarwal. Explaining Value vs. Reference in Javascript. July 2017. url:
https://codeburst. io/explaining- value- vs- reference- in- javascript- 647a975e12a0
(visited on 09/01/2017) (cit. on p. 9).

[25] Array.prototype.toString() - JavaScript. 2017. url: https://developer.mozilla.org
/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/toString (visited
on 04/24/2017) (cit. on p. 8).

[26] Babel - The compiler for writing next generation JavaScript. url: http://babeljs
.io (visited on 08/23/2017) (cit. on p. 24).

[27] babel-plugin-syntax-typescript. url: https://github.com/babel/babel/tree/7.0/pa
ckages/babel-plugin-syntax-typescript (visited on 08/30/2017) (cit. on p. 28).

[28] Basic Types - TypeScript. url: https://www.typescriptlang.org/docs/handbook
/basic-types.html (visited on 05/08/2017) (cit. on pp. 19, 20, 29).

https://confluence.atlassian.com/clover/about-code-coverage-71599496.html
https://confluence.atlassian.com/clover/about-code-coverage-71599496.html
https://www.npmjs.com/about
https://help.github.com/articles/about-pull-requests/
https://codeburst.io/explaining-value-vs-reference-in-javascript-647a975e12a0
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/toString
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/toString
http://babeljs.io
http://babeljs.io
https://github.com/babel/babel/tree/7.0/packages/babel-plugin-syntax-typescript
https://github.com/babel/babel/tree/7.0/packages/babel-plugin-syntax-typescript
https://www.typescriptlang.org/docs/handbook/basic-types.html
https://www.typescriptlang.org/docs/handbook/basic-types.html

References 82

[29] Ron Buckton. GitHub Pull Request #13940. Expose public API for transfor-
mation. Feb. 2017. url: https://github.com/Microsoft/TypeScript/pull/13940
(visited on 07/15/2017) (cit. on p. 38).

[30] Ron Buckton. GitHub Pull Request #15377. Fix visitEachChild for signatures.
Apr. 2017. url: https://github.com/Microsoft/TypeScript/pull/15377 (visited on
07/15/2017) (cit. on p. 39).

[31] Building Effective Unit Tests. url: https://developer.android.com/training/testin
g/unit-testing/index.html (visited on 08/08/2017) (cit. on p. 62).

[32] Mathias Bynens. A benchmarking library. url: https://github.com/jiayihu/prett
y-algorithms (visited on 08/28/2017) (cit. on p. 65).

[33] Giulio Canti. Babel plugin for static and runtime type checking using Flow
and tcomb. url: https : / / github . com / gcanti / babel - plugin - tcomb (visited on
08/30/2017) (cit. on p. 28).

[34] Giulio Canti. io-ts - TypeScript compatible runtime type system for IO validation.
url: https://github.com/gcanti/io-ts (visited on 07/15/2017) (cit. on p. 41).

[35] Giulio Canti. tcomb - Type checking and DDD for JavaScript. url: https://gith
ub.com/gcanti/tcomb (visited on 07/15/2017) (cit. on p. 41).

[36] Ryan Cavanaugh. GitHub Issue #1573. Runtime type checking. Comment
#68374376. Dec. 2014. url: https://github.com/Microsoft/TypeScript/issues
/1573#issuecomment-68374376 (visited on 07/02/2017) (cit. on pp. 1, 25).

[37] Ryan Cavanaugh and Jonathan D. Turner. TypeScript Design Goals. Sept. 2014.
url: https://github.com/Microsoft/TypeScript/wiki/TypeScript-Design-Goals
(visited on 07/02/2017) (cit. on pp. 1, 24, 25).

[38] Compiler Options - TypeScript. url: https://www.typescriptlang.org/docs/hand
book/compiler-options.html (visited on 07/04/2017) (cit. on pp. 1, 22, 23, 35, 39,
55).

[39] const - JavaScript. 2017. url: https://developer.mozilla.org/en-US/docs/Web/Ja
vaScript/Reference/Statements/const (visited on 09/07/2017) (cit. on p. 12).

[40] Constant Enum Declarations - TypeScript Language Specification. url: https://g
ithub.com/Microsoft/TypeScript/blob/master/doc/spec.md#94-constant-enum-d
eclarations (visited on 07/19/2017) (cit. on p. 55).

[41] Sean Cooper. Whatever happened to Netscape? Oct. 2014. url: https://www.e
ngadget.com/2014/05/10/history-of -netscape/ (visited on 04/21/2017) (cit. on
p. 5).

[42] Tom Crockett. runtypes - Runtime validation for static types. url: https://gith
ub.com/pelotom/runtypes (visited on 07/15/2017) (cit. on p. 41).

[43] Declaration Merging - TypeScript. url: https://www.typescriptlang.org/docs/ha
ndbook/declaration-merging.html (visited on 07/18/2017) (cit. on p. 49).

[44] decorators transform - Babel. url: https://babeljs.io/docs/plugins/transform-dec
orators/ (visited on 07/03/2017) (cit. on p. 26).

https://github.com/Microsoft/TypeScript/pull/13940
https://github.com/Microsoft/TypeScript/pull/15377
https://developer.android.com/training/testing/unit-testing/index.html
https://developer.android.com/training/testing/unit-testing/index.html
https://github.com/jiayihu/pretty-algorithms
https://github.com/jiayihu/pretty-algorithms
https://github.com/gcanti/babel-plugin-tcomb
https://github.com/gcanti/io-ts
https://github.com/gcanti/tcomb
https://github.com/gcanti/tcomb
https://github.com/Microsoft/TypeScript/issues/1573#issuecomment-68374376
https://github.com/Microsoft/TypeScript/issues/1573#issuecomment-68374376
https://github.com/Microsoft/TypeScript/wiki/TypeScript-Design-Goals
https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md#94-constant-enum-declarations
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md#94-constant-enum-declarations
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md#94-constant-enum-declarations
https://www.engadget.com/2014/05/10/history-of-netscape/
https://www.engadget.com/2014/05/10/history-of-netscape/
https://github.com/pelotom/runtypes
https://github.com/pelotom/runtypes
https://www.typescriptlang.org/docs/handbook/declaration-merging.html
https://www.typescriptlang.org/docs/handbook/declaration-merging.html
https://babeljs.io/docs/plugins/transform-decorators/
https://babeljs.io/docs/plugins/transform-decorators/

References 83

[45] Decorators - TypeScript. url: https://www.typescriptlang.org/docs/handbook/de
corators.html (visited on 07/03/2017) (cit. on p. 26).

[46] Ecma International. url: https : / / www . ecma - international . org (visited on
04/21/2017) (cit. on p. 5).

[47] ECMAScript 2015 (ES6) and beyond. url: https ://nodejs .org/en/docs/es6/
(visited on 08/02/2017) (cit. on p. 59).

[48] ECMAScript 2015 Language Specification. ECMA-262 5.1 Edition. June 2011.
url: http://www.ecma-international.org/ecma-262/5.1/Ecma-262.pdf (visited on
04/23/2017) (cit. on pp. 11, 24).

[49] ECMAScript 2015 Language Specification - ECMA-262 6th Edition. June 2015.
url: https://www.ecma-international.org/ecma-262/6.0/ (visited on 04/23/2017)
(cit. on p. 15).

[50] ECMAScript 2016 Language Specification - ECMA-262 7th Edition. June 2016.
url: https://www.ecma-international.org/ecma-262/7.0/ (visited on 05/04/2017)
(cit. on p. 15).

[51] ECMAScript Language Specification. ECMA-262 6th Edition. June 2015. url:
http://www.ecma- international.org/ecma-262/6.0/ECMA-262.pdf (visited on
04/23/2017) (cit. on pp. 6–9, 11, 15, 24, 59).

[52] ECMAScript Language Specification - ECMA-262 5.1 Edition. June 2011. url:
https ://www.ecma- international .org/ecma- 262/5.1/ (visited on 05/04/2017)
(cit. on p. 15).

[53] ECMAScript Next support in Mozilla. Jan. 2017. url: https://developer.mozilla
.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_Next_suppo
rt_in_Mozilla (visited on 05/04/2017) (cit. on p. 15).

[54] Enums - TypeScript. url: https://www.typescriptlang.org/docs/handbook/enum
s.html (visited on 05/08/2017) (cit. on pp. 22, 34).

[55] Events - Node.js Documentation. url: https://nodejs.org/api/events.html (visited
on 07/18/2017) (cit. on p. 54).

[56] Expressions and operators. 2017. url: https://developer.mozilla.org/en/docs/We
b/JavaScript/Guide/Expressions_and_Operators (visited on 07/17/2017) (cit. on
p. 48).

[57] Nick Fitzgerald and Jason Orendorff. ES6 In Depth: Destructuring. May 2015.
url: https://hacks.mozilla.org/2015/05/es6-in-depth-destructuring/ (visited on
08/23/2017) (cit. on p. 23).

[58] flow - Open Source at Facebook - Facebook Code. url: https://code.facebook.co
m/projects/1524880081090726/flow/ (visited on 08/23/2017) (cit. on p. 24).

[59] Functions - TypeScript. url: https://www.typescriptlang.org/docs/handbook/fu
nctions.html (visited on 07/18/2017) (cit. on p. 49).

[60] Generics - TypeScript. url: https://www.typescriptlang.org/docs/handbook/gen
erics.html (visited on 07/03/2017) (cit. on p. 33).

https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.typescriptlang.org/docs/handbook/decorators.html
https://www.ecma-international.org
https://nodejs.org/en/docs/es6/
http://www.ecma-international.org/ecma-262/5.1/Ecma-262.pdf
https://www.ecma-international.org/ecma-262/6.0/
https://www.ecma-international.org/ecma-262/7.0/
http://www.ecma-international.org/ecma-262/6.0/ECMA-262.pdf
https://www.ecma-international.org/ecma-262/5.1/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_Next_support_in_Mozilla
https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_Next_support_in_Mozilla
https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_Next_support_in_Mozilla
https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/enums.html
https://nodejs.org/api/events.html
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Expressions_and_Operators
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Expressions_and_Operators
https://hacks.mozilla.org/2015/05/es6-in-depth-destructuring/
https://code.facebook.com/projects/1524880081090726/flow/
https://code.facebook.com/projects/1524880081090726/flow/
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/functions.html
https://www.typescriptlang.org/docs/handbook/generics.html
https://www.typescriptlang.org/docs/handbook/generics.html

References 84

[61] GitHub Issue #3015. also emit type arguments with –emitDecoratorMetadata.
Aug. 2015. url: https://github.com/Microsoft/TypeScript/issues/3015 (visited
on 07/02/2017) (cit. on pp. 1, 25).

[62] GitHub Language Stats. 2016. url: https : //octoverse . github . com (visited on
04/21/2017) (cit. on p. 5).

[63] Mohamed Hegazy. GitHub Issue #3015. also emit type arguments with –
emitDecoratorMetadata. Comment #128149650. Aug. 2015. url: https ://gith
ub.com/Microsoft/TypeScript/issues/3015#issuecomment-128149650 (visited on
07/02/2017) (cit. on pp. 1, 25).

[64] Jiayi Hu. Pretty, common and useful algorithms with modern JS and beautiful
tests. url: https://github.com/bestiejs/benchmark. js (visited on 08/28/2017)
(cit. on p. 63).

[65] Installation - Flow. url: https : / / flow . org / en / docs / install/ (visited on
08/23/2017) (cit. on p. 24).

[66] instanceof - JavaScript. 2017. url: https://developer.mozilla.org/en-US/docs/W
eb/JavaScript/Reference/Operators/instanceof (visited on 07/03/2017) (cit. on
p. 25).

[67] Mike Jones and Saisang Cai. Variable Scope (JavaScript). Jan. 2017. url: https
://docs.microsoft.com/en-us/scripting/javascript/advanced/variable-scope-javascr
ipt (visited on 09/07/2017) (cit. on p. 12).

[68] JSX - TypeScript. url: https://www.typescriptlang.org/docs/handbook/jsx.html
(visited on 05/08/2017) (cit. on pp. 20, 25).

[69] Yehuda Katz and Brian Terlsonn. Class and Property Decorators. url: https://g
ithub.com/tc39/proposal-decorators (visited on 07/03/2017) (cit. on p. 26).

[70] Felix Kling. A web tool to explore the ASTs generated by various parsers. 2017.
url: https : / / github . com / fkling / astexplorer (visited on 05/08/2017) (cit. on
p. 16).

[71] List of languages that compile to JS. url: https://github.com/jashkenas/coffee
script/wiki/list-of -languages-that-compile-to-js (visited on 05/08/2017) (cit. on
p. 24).

[72] Jed Mao. GitHub Issue #1573. Runtime type checking. Dec. 2014. url: https
://github.com/Microsoft/TypeScript/issues/1573 (visited on 07/02/2017) (cit. on
pp. 1, 25).

[73] Modules - Node.js Documentation. url: https://nodejs .org/api/modules .html
(visited on 08/02/2017) (cit. on p. 59).

[74] Modules - TypeScript. url: https://www.typescriptlang.org/docs/handbook/mod
ules.html (visited on 08/02/2017) (cit. on p. 59).

[75] Namespaces - TypeScript. url: https://www.typescriptlang.org/docs/handbook
/namespaces.html (visited on 05/08/2017) (cit. on p. 22).

[76] Charles Pick. babel-plugin-flow-runtime. url: https://github.com/codemix/flow-r
untime/tree/master/packages/babel-plugin-flow-runtime (visited on 07/15/2017)
(cit. on pp. 28, 41).

https://github.com/Microsoft/TypeScript/issues/3015
https://octoverse.github.com
https://github.com/Microsoft/TypeScript/issues/3015#issuecomment-128149650
https://github.com/Microsoft/TypeScript/issues/3015#issuecomment-128149650
https://github.com/bestiejs/benchmark.js
https://flow.org/en/docs/install/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/instanceof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/instanceof
https://docs.microsoft.com/en-us/scripting/javascript/advanced/variable-scope-javascript
https://docs.microsoft.com/en-us/scripting/javascript/advanced/variable-scope-javascript
https://docs.microsoft.com/en-us/scripting/javascript/advanced/variable-scope-javascript
https://www.typescriptlang.org/docs/handbook/jsx.html
https://github.com/tc39/proposal-decorators
https://github.com/tc39/proposal-decorators
https://github.com/fkling/astexplorer
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js
https://github.com/Microsoft/TypeScript/issues/1573
https://github.com/Microsoft/TypeScript/issues/1573
https://nodejs.org/api/modules.html
https://www.typescriptlang.org/docs/handbook/modules.html
https://www.typescriptlang.org/docs/handbook/modules.html
https://www.typescriptlang.org/docs/handbook/namespaces.html
https://www.typescriptlang.org/docs/handbook/namespaces.html
https://github.com/codemix/flow-runtime/tree/master/packages/babel-plugin-flow-runtime
https://github.com/codemix/flow-runtime/tree/master/packages/babel-plugin-flow-runtime

References 85

[77] Charles Pick. flow-runtime - A runtime type system for JavaScript with full Flow
compatibility. url: https://github.com/codemix/flow-runtime/tree/master/packa
ges/flow-runtime (visited on 07/15/2017) (cit. on p. 41).

[78] Fabian Pirklbauer. GitHub Issue #15192. “Lexical environment is suspended”
when using visitEachChild from nightly transformer API (2.3.0-dev). Apr. 2017.
url: https : / / github . com / Microsoft / TypeScript / issues / 15192 (visited on
07/15/2017) (cit. on p. 39).

[79] Plugins - Babel. url: http://babeljs. io/docs/plugins/ (visited on 07/03/2017)
(cit. on p. 59).

[80] Sylvain Pollet-Villard. ObjectModel - Strong Dynamically Typed Object Modeling
for JavaScript. url: https://github.com/sylvainpolletvillard/ObjectModel (visited
on 07/15/2017) (cit. on p. 40).

[81] Axel Rauschmayer. Beyond typeof and instanceof: simplifying dynamic type
checks. Aug. 2017. url: http ://2ality .com/2017/08/type- right .html (visited
on 08/30/2017) (cit. on p. 27).

[82] Axel Rauschmayer. Customizing basic language operations via well-known sym-
bols. 2017. url: http://exploringjs.com/es6/ch_oop-besides-classes.html#_prope
rty-key-symbolhasinstance-method (visited on 08/30/2017) (cit. on p. 27).

[83] Sam Rijs. GitHub Issue #7607. Proposal: Run-time Type Checks. Mar. 2016. url:
https://github.com/Microsoft/TypeScript/issues/7607 (visited on 07/02/2017)
(cit. on pp. 1, 25).

[84] Victor Savkin. Runtime type checks for JavaScript and TypeScript. Nov. 2015.
url: https://github.com/vsavkin/RuntimeTypeChecks (visited on 07/03/2017)
(cit. on p. 26).

[85] Chris Smith. What to know before debating type systems. Oct. 2013. url: http
://2ality.com/2013/10/typeof-null.html (visited on 04/24/2017) (cit. on p. 7).

[86] Standard ECMA-262 Archive. url: https://www.ecma-international.org/publicat
ions/standards/Ecma-262-arch.htm (visited on 05/04/2017) (cit. on p. 15).

[87] Basarad Ali Syed. TypeScript Deep Dive. 2017. url: https://www.gitbook.com
/download/pdf/book/basarat/typescript (visited on 05/08/2017) (cit. on pp. 13,
18, 19, 21, 39).

[88] Brian Terlson and Sebastian Markbåge. Pattern matching syntax for EC-
MAScript. url: https ://github .com/tc39/proposal - pattern - matching (visited
on 08/30/2017) (cit. on p. 27).

[89] Brian Terlson and Sebastian Markbåge. TC-39 Proposal for additional is{Type}
APIs. url: https://github.com/jasnell/proposal-istypes (visited on 08/30/2017)
(cit. on p. 27).

[90] The repository for high quality TypeScript type definitions. 2017. url: https://git
hub.com/DefinitelyTyped/DefinitelyTyped (visited on 07/02/2017) (cit. on p. 31).

[91] The TC39 Process. url: https://tc39.github.io/process-document/ (visited on
07/03/2017) (cit. on p. 26).

https://github.com/codemix/flow-runtime/tree/master/packages/flow-runtime
https://github.com/codemix/flow-runtime/tree/master/packages/flow-runtime
https://github.com/Microsoft/TypeScript/issues/15192
http://babeljs.io/docs/plugins/
https://github.com/sylvainpolletvillard/ObjectModel
http://2ality.com/2017/08/type-right.html
http://exploringjs.com/es6/ch_oop-besides-classes.html#_property-key-symbolhasinstance-method
http://exploringjs.com/es6/ch_oop-besides-classes.html#_property-key-symbolhasinstance-method
https://github.com/Microsoft/TypeScript/issues/7607
https://github.com/vsavkin/RuntimeTypeChecks
http://2ality.com/2013/10/typeof-null.html
http://2ality.com/2013/10/typeof-null.html
https://www.ecma-international.org/publications/standards/Ecma-262-arch.htm
https://www.ecma-international.org/publications/standards/Ecma-262-arch.htm
https://www.gitbook.com/download/pdf/book/basarat/typescript
https://www.gitbook.com/download/pdf/book/basarat/typescript
https://github.com/tc39/proposal-pattern-matching
https://github.com/jasnell/proposal-istypes
https://github.com/DefinitelyTyped/DefinitelyTyped
https://github.com/DefinitelyTyped/DefinitelyTyped
https://tc39.github.io/process-document/

References 86

[92] Trending TypeScript repositories on GitHub on Aug. 24, 2017. url: https://we
b.archive.org/web/20170824162508/https://github.com/trending/typescript?since
=daily (visited on 08/24/2017) (cit. on p. 64).

[93] Type Annotations - Flow. url: https :// flow .org/en/docs/types/ (visited on
08/23/2017) (cit. on p. 24).

[94] Type Compatibility - TypeScript. url: https://www.typescriptlang.org/docs/han
dbook/type-compatibility.html (visited on 05/08/2017) (cit. on p. 21).

[95] typeof - JavaScript. 2017. url: https://developer.mozilla.org/en-US/docs/Web/J
avaScript/Reference/Operators/typeof (visited on 04/24/2017) (cit. on p. 7).

[96] Types & Expressions - Flow. url: https://flow.org/en/docs/lang/types-and-expr
essions/ (visited on 08/23/2017) (cit. on p. 24).

[97] TypeScript - JavaScript that scales. url: https://www.typescriptlang.org (visited
on 08/23/2017) (cit. on pp. 1, 23).

[98] TypeScript vs Flow. url: https : / / github . com / niieani / typescript - vs - flowtype
(visited on 08/23/2017) (cit. on p. 24).

[99] var - JavaScript. 2017. url: https://developer.mozilla.org/en-US/docs/Web/Jav
aScript/Reference/Statements/var (visited on 09/07/2017) (cit. on p. 12).

[100] void operator - JavaScript. 2017. url: https://developer.mozilla.org/en-US/do
cs/Web/JavaScript/Reference/Operators/void (visited on 08/23/2017) (cit. on
p. 23).

[101] Eric W. Weisstein. “Superset.” From MathWorld–A Wolfram Web Resource. url:
http://mathworld.wolfram.com/Superset.html (visited on 05/08/2017) (cit. on
p. 18).

[102] What is Continuous Integration? url: https://codeship.com/continuous-integrat
ion-essentials (visited on 08/23/2017) (cit. on p. 63).

https://web.archive.org/web/20170824162508/https://github.com/trending/typescript?since=daily
https://web.archive.org/web/20170824162508/https://github.com/trending/typescript?since=daily
https://web.archive.org/web/20170824162508/https://github.com/trending/typescript?since=daily
https://flow.org/en/docs/types/
https://www.typescriptlang.org/docs/handbook/type-compatibility.html
https://www.typescriptlang.org/docs/handbook/type-compatibility.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof
https://flow.org/en/docs/lang/types-and-expressions/
https://flow.org/en/docs/lang/types-and-expressions/
https://www.typescriptlang.org
https://github.com/niieani/typescript-vs-flowtype
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/void
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/void
http://mathworld.wolfram.com/Superset.html
https://codeship.com/continuous-integration-essentials
https://codeship.com/continuous-integration-essentials

Check Final Print Size

— Check final print size! —

width = 100mm
height = 50mm

— Remove this page after printing! —

87

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Problem Definition
	Solution Approach
	Thesis Structure

	Technical Foundation
	Type Systems
	Explicitly and Implicitly Typed
	Execution Errors
	Safety and Good Behavior
	Type Checking

	JavaScript
	Loose Typing
	Value Types
	Type Conversion
	Value Comparison
	Objects and Prototypal Inheritance
	Latest Improvements
	Further Reading

	Abstract Syntax Tree

	State of the Art
	JavaScript Supersets
	TypeScript
	Flow
	Others

	Runtime Type Checks
	Generated Runtime Type Checks

	Theoretical Approach
	Undetectable Errors
	Compiler Analysis Circumvention
	Polymorphism
	Untyped JavaScript Libraries
	Type Declaration Mistakes
	Erroneous API Responses

	Desired Result
	Definition of Cases
	Interfaces and Type Aliases
	Variable Declarations and Assignments
	Type Assertions
	Functions
	Enums
	Classes
	Type Queries
	Externals
	Ambient Declarations

	Required Steps
	Configuration
	Read Source Files
	Syntax Analyzation
	Abstraction
	Scan Abstraction
	Static Type Checks
	Transformations
	Target Code Emit

	Summary

	Implementation
	Technology
	TypeScript Compiler
	Runtime Type System

	Architecture
	Central Element
	Components
	Outline

	Application Structure
	Components
	Transformer
	Mutators
	Factory
	Context
	Utility
	Event Bus
	Scanner
	Options

	Transformation Procedure
	Usage
	Application Programming Interface
	Command Line Interface
	Playground

	Evaluation
	Automated Unit Tests
	Continuous Integration
	Operational Test
	Performance Analyzation
	Summary

	Summary and Outlook
	Evaluation Results
	Build Time
	Unit Tests Execution Time
	Benchmark Tests

	CD-ROM Contents
	References
	Literature
	Online sources

