
Detection and Handling of Frustrating
Conversation Situations in a Text-Based

Chatbot System

Michael Primetshofer

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Juni 2019

© Copyright 2019 Michael Primetshofer

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, June 25, 2019

Michael Primetshofer

iii

Contents

Declaration iii

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Motivation . 1
1.2 Idea . 1
1.3 Goals . 2
1.4 Outline . 2

2 Basic Concepts of Chatbot Systems 3
2.1 Conversational Agent . 3

2.1.1 History . 3
2.2 Components of a Conversational Agent 5

2.2.1 Language Identification . 5
2.2.2 Intent Classification . 5
2.2.3 Knowledge Management . 6
2.2.4 Response Generation . 7
2.2.5 Chatbot Categories . 8
2.2.6 Use-Cases . 9

2.3 Sentiment Analysis . 10
2.3.1 Definition . 10
2.3.2 Algorithms . 10
2.3.3 Mode of Operation . 11
2.3.4 Challenges . 11

3 State of the Art 13
3.1 Chatbot Frameworks . 13

3.1.1 Dialogflow . 13
3.1.2 Amazon Lex . 13
3.1.3 Wit.ai . 14
3.1.4 Watson Assistant . 14
3.1.5 LUIS.ai . 14
3.1.6 Comparison . 14

iv

Contents v

3.2 Related Work . 15
3.2.1 Kommunicate . 16
3.2.2 Botsify . 16
3.2.3 Flow XO . 16
3.2.4 ActiveChat . 16
3.2.5 Intercom . 17

4 Conceptual Project Design 18
4.1 Requirements . 18

4.1.1 Web-Application . 18
4.1.2 Communication . 19

4.2 Use-Case . 19
4.3 Handover Detection . 20
4.4 Handover Reaction . 21

4.4.1 Pre-Handover Phase . 21
4.4.2 Wait-Handover Phase . 21
4.4.3 Post-Handover Phase . 21

4.5 Technical Design . 23
4.5.1 Web-Application . 23
4.5.2 Chatbot Agent . 25
4.5.3 Dialogflow API . 25
4.5.4 Aylien API . 28
4.5.5 Dandelion API . 28

4.6 System Design . 28

5 Technical Implementation 32
5.1 Technology Stack . 32
5.2 System Architecture . 33

5.2.1 Client . 33
5.2.2 Server . 36
5.2.3 Handover Detection . 38
5.2.4 Handover Reaction . 42

5.3 Result . 43

6 Evaluation 45
6.1 Accomplishment of the Requirements . 45

6.1.1 Web-Application and Chat Interface 45
6.1.2 Communication of the Web-Application and Dialogflow 45
6.1.3 Handover Detection . 45
6.1.4 Handover Reaction . 46
6.1.5 Human Agent Live Chat . 46

6.2 Usability Testing . 46
6.2.1 Scenarios . 46
6.2.2 Task Completion . 47

6.3 Performance Analysis . 49
6.4 Possible Extensions . 49

Contents vi

7 Conclusion 51

A Content of the CD-ROM 53
A.1 PDF-Files . 53
A.2 Project Data . 53
A.3 Dialogflow Agent . 53
A.4 Literature . 53
A.5 Online Literature . 54
A.6 Miscellaneous . 54

References 55
Literature . 55
Online sources . 56

Abstract

Consider the accelerate digitalization and the growth of new technologies; the way peo-
ple communicate with each other has significantly changed. That is the point where
artificial intelligence (AI) comes into play. Chatbots gain more and more popularity,
especially in customer support and sale areas. In this aspect, companies focus on con-
sumers and customer services. Also, customer service scaling is costly and ineffective,
as most customer requests are repetitive and do not require intensive manual handling
by a service agent. Businesses use chatbots to automate routine work and minimize
the associated workload. These systems provide useful information and can increase the
working speed considerably.

However, the chatbot technology is far from perfect, and there are also some signif-
icant problems. Chatbots can also misunderstand text-based input, do not follow the
context of a conversation, or provide the wrong answer in frustrating situations. These
issues can negatively impact the user experience and pose a high risk to companies and
their brand value. Even AI-based chatbots still need human support today if the knowl-
edge base is exceeded. So, the real added value lies in a hybrid solution that combines
the best of a human employee with artificial intelligence to offer an improved service at
a lower cost.

This thesis provides an overview of current technologies and methods to handle
and detect the problem of a frustrating situation. It also serves the challenges and
complications that will be tackled when integrating a text-based hybrid chatbot in a
customer support system. The focus of this thesis is to develop a system that recognizes
and reacts to frustrating dialogue situations and provide the possibility to transfer the
conversation to a human agent.

vii

Kurzfassung

Angesichts der beschleunigten Digitalisierung und des Wachstums neuer Technologien
hat sich die Art und Weise, wie Menschen miteinander kommunizieren, erheblich verän-
dert. Dies ist der Punkt, an dem künstliche Intelligenz (KI) ins Spiel kommt. In diesem
Aspekt konzentrieren sich Unternehmen immer mehr auf den Kunden Support sowie die
Kundendienstleistungen. Darüber hinaus kann die Skalierung eines Kunden Supports
sehr schnell kostspielig und ineffektiv werden, da sich die meisten Kundenanforderungen
wiederholen und keine intensive manuelle Bearbeitung durch einen Servicemitarbeiter
erforderlich ist. Unternehmen verwenden Chatbots, um Routinearbeiten zu automatisie-
ren und den damit verbundenen Arbeitsaufwand zu minimieren. Diese Systeme liefern
nützliche Informationen und können die Arbeitsgeschwindigkeit erheblich erhöhen.

Die Chatbot-Technologie ist jedoch alles andere als perfekt, denn es gibt auch einige
erhebliche Probleme. Denn Chatbots können auch textbasierte Eingaben missverste-
hen, den Kontext einer Unterhaltung nicht verfolgen oder in frustrierenden Situationen
nicht die richtige Antwort liefern. Diese Probleme können sich negativ auf die Kunden-
zufriedenheit auswirken und ein hohes Risiko für Unternehmen und deren Markenwert
darstellen. Selbst KI-basierte Chatbots benötigen heute noch menschliche Unterstüt-
zung, wenn die Wissensbasis überschritten wird. Der eigentliche Mehrwert liegt also
in einer Hybridlösung, die das Beste eines menschlichen Mitarbeiters mit der künstli-
cher Intelligenz kombiniert um daraus einen verbesserten Service zu geringeren Kosten
anzubieten.

Diese Arbeit bietet einen Überblick über die heutigen Technologien und Methoden,
um das Problem einer frustrierenden Situation zu behandeln und zu erkennen. Zusätz-
liche werden Herausforderungen und Schwierigkeiten bei der Erstellung eines textba-
siertes Kundensupport-System, welches diese Situationen erkennen soll, erläutert. Der
Schwerpunkt dieser Arbeit liegt in der Entwicklung eines Systems, welches frustrierende
Dialogsituationen erkennt und darauf reagiert und zusätzlich die Möglichkeit bietet, das
Gespräch auf einen menschlichen Agenten zu übertragen.

viii

Chapter 1

Introduction

1.1 Motivation
In times of fiercely competitive markets, customer satisfaction and customer service be-
comes more and more important. As a result, many businesses today face the problem of
maintaining high-quality customer service with a growing number of customer inquiries.
Besides, customer service scaling is costly and ineffective, as most customer requests are
repetitive and do not require intensive manual handling by a service agent. At this point,
artificial intelligence (AI) comes into play. Because AI-supported customer service re-
duces customer latency, and chatbots provide a convenient consumer communication
channel instead of emailing or calling the hotline. To get a better solution, combining
the intelligence of a human agent and AI technology to a hybrid solution is a promis-
ing way to success. The AI can handle the repetitive customer requests, allowing the
human support agent to focus on more demanding requests. However, all these systems
have their limitations, particularly in terms of emotional recognition and following the
context of a conversation.

1.2 Idea
The idea behind this thesis is to use a hybrid model that makes it possible to combine the
best of human agent and artificial intelligence to offer a more comprehensive service at a
lower cost. In a hybrid solution, if the knowledge base of the chatbot is exceeded and the
system does not have an automatic answer to the question a human agent can intervene
at any time in the conversation. Another advantage of hybrid solutions is operational
readiness. Chatbots can handle customer requests in the absence of human agents. In
contrast to employees, a product request that otherwise remains in the mailbox for days
can be answered immediately and personalized via a chatbot. The idea behind the thesis
project is to create a hybrid chatbot for a web-based ticketing system to offer customer
support. The system should provide handover management that prevents frustrating
conversations between chatbot and users. The system detects, during the conversation,
whether the user wants to communicate with a human agent. When such a situation is
detected, the information that had been collected during the conversation is passed to
a human support employee, and the human agent can continue the conversation.

1

1. Introduction 2

1.3 Goals
The goal of this master theses is to give an understanding of how chatbots can be
developed to provide a hybrid solution and combine the best of human and artificial
intelligence, to offer an improved service at a lower cost. Therefore, the meaning of each
part of this system and concept behind it is crucial to the work and is covered by it.
During the conversation, the hybrid solution should recognize whether the user likes to
communicate with the chatbot or whether he would rather talk to a human employee.
The chatbot provides a modular recognition system that provides different modules
for detecting a frustrating situation. When the system detects a possible situation, a
handover process is triggered, and the user can then continue the conversation with a
human agent.

The result is a web application which provides a customer support hybrid chatbot
solution. Additionally, the application provides a support management tool for the hu-
man agent. Therefore, the web application consists of three different components, the
authentication page, the user page, and the administration page. The web application
uses the authentication page to verify user identities. The user page allows the user to
communicate with the chatbot, and after the handover process, the human agent can use
the management tool at any time to participate in the conversation. The administration
page illustrates the management tool for the human agent.

1.4 Outline
The following chapter 2 illustrates the fundamental parts of the text-based chatbot
concept. In the beginning, the chapter covers a short history of chatbots and their basic
functionalities. After that, the thesis describes the overall view of a conversation agent
and a short explanation of all components inside a chatbot. Additionally, the chapter
illustrates the different kinds of chatbot systems and their possible use-cases. The next
chapter 3 describes the state of the art for a chatbot framework, which is used to develop
a conversational agent. The chapter compares the frameworks and provides information
about which one was used to create this thesis. The second part of the chapter covers
current related hybrid chatbot systems. After that, the thesis dives deeper into the
thesis project part, with chapter 4. This chapter presents the concept behind the thesis
project. It covers the implemented requirements of the system, the use-cases, the system
architecture, and the concept of how to detect and react to frustrating conversational
situations. After the concept the technical implementation chapter 5 follows. In this
chapter, the focus is on the implemented result and provides class diagrams as well as
small code snippets. The evaluation of the created hybrid chatbot is given in chapter
6. The last chapter 7 describes the results, the conclusion, and summarizes this master
thesis.

Chapter 2

Basic Concepts of Chatbot Systems

This chapter describes the fundamentals of the human-computer interaction model for
a text-based chatbot system. The first section is a brief introduction in the history and
the terminology of chatbots and gives an overview of already existing chatbots. The
second part of the chapter explains the basic concepts of sentiment analysis.

2.1 Conversational Agent
Based on the scientific literature, a chatbot is a conversational agent that can simulate a
conversation or a chat with a human user in natural language. A Chatbot is a software
that is powered by a rule-driven engine or artificial intelligence (AI) that processes
natural language input from the user and produces responses. The user interacts with
the system via a text message or voice interface. In every conversation, the user wants
to achieve a particular information goal, and this influences the communication flow
between the chatbot and the user. Accordingly, a chatbot is a computer program that
communicates with a human user humanly to achieve a predefined goal. As reported
by [1] a chatbot’ s determination is: “A Chatbot is a computer program that have the
ability to hold a conversation with human using Natural Language Speech”.

2.1.1 History
The history and development of artificial intelligence and chatbots dated back to the
1950s and was a component of early computer science.

1950

Alan Turing developed a simple communication test known as the Turing-Test [16]. The
test is used to determine the intelligence of a program. Therefore a person communicates
via text inputs with two endpoints. One of the endpoints is a human agent the other one
is a machine. Afterwards, a human judge had to determine if the endpoint of text-based
communication is a computer program or a human agent Researchers use the test as a
method for determining the ability to imitate a person not to measure the intelligence
of a machine. Imitation is a testimony of intelligence, but only in a certain area, hence
the naming of the Turing test: The Imitation Game [16].

3

2. Basic Concepts of Chatbot Systems 4

1966

The computer scientist Joseph Weizenbaum is one of the pioneers in the research field
of artificial intelligence. From 1964 to 1966 he developed a program that enabled a
linguistic dialogue via a telegraph console. ELIZA, the computer program that simulated
a psychiatrist. The system checked the keywords in the user input and used rules of
transformation for the output. The system of ELIZA works without concrete context
processing. No personal data is stored or used. The phrases are changed grammatically
correct and replaced certain keywords to achieve dynamics. The program handled a
relatively simple conversation but gave the illusion of understanding the user’s problem
and fooled many people [17].

1995–1998

The program Artificial Linguistic Internet Computer Entity (ALICE) was originally
composed by Richard Wallace and 1998 rewritten in Java. The idea behind ALICE con-
sists of so-called categories, which consist of a specified input, output and optional con-
text pattern. The pattern language consists only of letters, numbers, wildcards, scratches
and tags. The system stores the pattern in a tree structure. There are three tags avail-
able for contextual processing. The keyword this refers to the last output of the program.
Thus, the program selects the following category with the condition that matches the
last output. With the think tag the system can store variables, e.g., name, age or gender
from the user and use them in the conversation [3].

2001

ActiveBuddy, Inc. (now Colloquis) followed ELIZA’s path with some additions, espe-
cially in the topics of speech synthesis and emotion detection. The outcome was Smarter-
Child, a dialog agent that was integrated on AOL Instant Messenger and MSN Mes-
senger. SmarterChild is the forerunner of Siri by Apple1 and S Voice by Samsung2 and
was later taken over by Microsoft3 in 2007.

2010-2016

The smartphone era was the beginning of virtual assistants integrated in smartphones
such as Apple’s Siri or Google’s Google Assistant4. With the launch of Siri in 2010, a
voice-driven bot from Apple, the chatbot technology was embedded in the daily routine
of people. With the help of Siri the user can not only talk about different subjects but
also control functions via the smartphone.

There are also voice-controlled assistants like Amazon Alexa5 and Google Home6,
which represent another concept of chatbots. With the development of the software

1https://www.apple.com/siri/
2https://www.samsung.com
3https://www.microsoft.com
4https://assistant.google.com
5https://alexa.amazon.com/
6https://store.google.com/de/product/google_home

https://www.apple.com/siri/
https://www.samsung.com
https://www.microsoft.com
https://assistant.google.com
https://alexa.amazon.com/
https://store.google.com/de/product/google_home

2. Basic Concepts of Chatbot Systems 5

Alexa and the combination with the hardware Amazon Echo7, Amazon offers the pos-
sibility of controlling smart home elements by voice.

2016 was another significant year in the history of chatbots since Facebook8 re-
leased the Messenger Platform and allowed developers the integration of conversational
agents in the Facebook Messenger9. However, this does not imply, however, that current
solutions are without flaw as will be highlighted in the next sections.

2.2 Components of a Conversational Agent
A chatbot is build of multiple components working to achieve a common goal. Figure 2.1
gives an overall summary and visualizes the relationship between each part of the agent.
At first, the new message will be processed by the language identification module, which
can be a simple tag retrieval or a more complex statistical method. Afterwards, the
new message, the language and the potential previous conversation message from the
backend are handed over to the intent classifier module. There the intent matching will
infer the classification for the user input. This information will be used to determine an
appropriate action or sequence of actions. For instance, if the intent is still not clear the
chatbot can decide to reply with a question, or it could perform a specific action, for
instance, visualize a map or image. Afterwards, the action handler executes the input
action and replies to the user with a response message [4].

2.2.1 Language Identification
Language identification is the term to automatically detect the language in a document
or text based on the content of the text. The chatbot uses the language identification
if the system should provide more than one language. A typical language identifica-
tion technique assumes that each form writes in a final set of known languages for
which training data is available. Afterwards, the most expected language from the set
of training languages will be selected. This functionality is a necessary task for creating
a conversation agent. Identifying the correct language for the given text is a necessary
task. Some algorithms tackle the problem by involving multiple language detection in
one single piece of text, but in this work, the focus will be only on a single language [9].

2.2.2 Intent Classification
An intent represents the intention of the user by interacting with the conversational
agent. The system has to classify the goal of the user’s request. The intent classification
has different labels, which represent possible user intentions. The solution for this prob-
lem can vary from keyword extraction methods to Bayesian interference and resolve the
user’s intention based on multiple messages. The dialogue system must fulfil the intent
analysis in order to find out the user’s assertion during the conversation [10].

7https://www.amazon.com/echo
8https://www.facebook.com
9https://www.messenger.com/

https://www.amazon.com/echo
https://www.facebook.com
https://www.messenger.com/

2. Basic Concepts of Chatbot Systems 6

Figure 2.1: Schematic representation of all chatbot components.

2.2.3 Knowledge Management
The knowledge base is fundamental when developing a conversational agent because
intent classification and language identification are not sufficient for understanding the
user’s intention. New techniques usually involve an inference engine in manipulating
facts and collecting new knowledge. An intelligent chatbot can only be as good as

2. Basic Concepts of Chatbot Systems 7

its knowledge base, so knowledge engineering is highly recommended for answering
questions about general facts. Current knowledge management techniques are often
used with API requests and advanced database calls. For example, a chatbot could use
the knowledge inference method to generate answers from the knowledge base on facts
from the web and other sources [6].

2.2.4 Response Generation
The last component of a conversational agent is the ability to produce a reply in order to
communicate with the user. The response has to be consistent according to the context.
For this problem, there are two different solutions: retrieval-based and generative-based
methods [11].

Retrieval-Based Technique

Figure 2.2 illustrates a retrieval-based technique which uses a repository of predefined
responses. Afterwards, a particular heuristic chooses a reasonable response based on the
user input and the context of the conversation. The heuristic can be a regular expression
that checks for an appropriate sentence structure, or a machine learning model generates
the output. This approach has the benefit that the supervisor can control the answers
from the conversational agent and avoid unreasonable responses [15].

Figure 2.2: Retrieval-based model example.

Generative-Based Technique

The second approach is the generative-based technique that rely on a generative model
and generate new responses without the need of predefined responses, seen in Figure 2.3.
This technique takes more time than the first one because the model needs to be trained
in order to learn how to generate usable responses [15].

2. Basic Concepts of Chatbot Systems 8

Figure 2.3: Generative-based model example.

2.2.5 Chatbot Categories
The correct identification and planning of the required chatbot type for the system and
the selection of the most suitable platform for it are essential for the successful use.
Each chatbot has a different task to fulfill, so these systems differ in some functions.
The following categories are based on [13].

Personal vs Team Chatbots

A personal chatbot is a system that communicates with the user through direct mes-
sages, such as a personal assistant. The conversation is only between user and chatbot,
e.g., a shopping assistant or a ticketing system. In contrast, the team chatbot communi-
cates with a single or a group of users. For example, the Lunch-Train10 chatbot, where
teams can choose where they want to have lunch together. A team bot can communi-
cate with multiple users either directly or publicly in a channel setting. The difficulty in
developing a team-based chatbot lies in the optimal organization and synchronization of
the entered data from all different users. A personal chatbot is much more comfortable
to design, but has limitations in some use cases. So, a system can use a personal bot
in a team conversation, but the communication focuses only on one user context at a
time. The problem is that the chatbot can no longer follow the conversation context
when another user joins the conversation.

Super vs Domain-Specific Chatbots

The representation of one specific product, brand or company is a typical use case for a
domain-specific chatbot. The bot represents that service and the user interaction will be
only about that task, e.g., the chatbot’s only service is the representation of a website or
a booking application. The advantage of the domain-specific chatbot is that the system
specializes a specific type of problem and content. Therefore the user does not need
to navigate through different services and tasks. This category is good if the developer
only needs the chatbot for one purpose alone.

In contrast to a domain-specific chatbot is the super chatbot, which focuses on
multiple services. So, this chatbot can connect different services, for example, a super
chatbot can provide weather information in combination with the current traffic status.
One example of such a super chatbot would be the Google Assistant, which is a single
bot but provides access to different Google services. The significant advantage of a
super chatbot is that the system combines different services, and the user only has to
communicate with one big bot instead of different smaller ones.

10https://lunchtrain.builtbyslack.com/

https://lunchtrain.builtbyslack.com/

2. Basic Concepts of Chatbot Systems 9

Super bots and domain-specific have different integration aspects. Super bots give
the developer a small overview of the actual user experience, while domain-specific bots
can control the user experience much better. Integrating a service into a super-bot is
equivalent to providing a service to a third-party library, while a domain-specific bot is
similar to building its library.

Business vs Consumer Chatbots

Businesses can use chatbots to automate routine work and minimize the associated
workload. Likewise, it can serve as a bridge between the employees. A Business bot
aims to require the user with as many as possible support instructions. Consumers
Bots, on the other hand, are designed to entertain the user, provide news about or
assist in private projects. The conversation is less goal-oriented and focuses on dynamic
interactions.

The risk of frustrating user experience, in terms of context, is lower in business
chatbots. These programs focus on the demarcation of routine work. If the developer
implements these scenarios, there is little danger that the conversation will be frustrat-
ing.

Voice vs Speech chatbots

Systems designed for written conversation can be published on platforms such as Face-
book Messenger or Slack. Voice-controlled chatbot like Amazon Alexa, Microsoft Cor-
tana or Apple Siri are activated by a button or a specific voice command for the elec-
tronic device. The interaction usually consists of a request or question and the con-
firmation or answer. Voice chatbots usually build for hands-off experience or mobile
environment, while text chatbots are good for desktop environment.

2.2.6 Use-Cases
The following use-cases are based on [5] and illustrate an overview of the possible sce-
narios where a chatbot system can be integrated.

Trade and Advertising

Chatbots are an optimal contribution to the existing communication plan and companies
use it for advertising material and e-commerce. For example, the system can place an
order during the conversation. Not only a rating can be obtained, but also future offers
for the company can be transmitted in order to strengthen customer loyalty.

Entertainment

In addition to using a chatbot with a specific goal, there are also systems which serve
as an entertainment platform. There are systems which a user can talk freely about a
topic of his choice, or it is also possible to play small games over a chatbot.

2. Basic Concepts of Chatbot Systems 10

FAQ

Many chatbots take over the function as customer service. These systems benefit from
their large number of communication partners and permanent accessibility. The frus-
tration free processing is usually guaranteed since the typical question-answer principle
takes place, and the user questions can be ideally covered by frequent repetition.

Communication Link

The last use case for a conversational agent could be the communication link between
two different humans. Therefore the chatbot can serve as a connection bridge, as the
principle of a telephone call with prior forwarding, or the functionally of a handover
process from the machine to a human agent.

2.3 Sentiment Analysis
In this thesis the sentiment analysis is used for the detection of frustrating conversation
situations. The system should use the sentiment of the user’s input message and clarify
the current situation.

2.3.1 Definition
Sentiment Analysis describes the extraction of opinions within a text and is a field
within Natural Language Processing (NLP). It’s also knows as Opinion Mining and
beside identifying the opinion, the system also extract aspects of the expression e.g:

• Polarity: Positive or negative opinion.
• Subject: The thing that is being talked about.
• Opinion holder: The person, or entity that expresses the opinion.
Generally there are two major types of text information: facts and opinions. A Fact

describes objective expressions about something and opinions are subjective expressions
that characterize people’s sentiments or feelings against a subject. The system’s struc-
ture is as a classification problem where the sentence is classified in two classifications —
first the subjectivity classification if the sentence is subjective or objective. The second
one is the polarity classification, the positive, negative or neutral opinion [14].

2.3.2 Algorithms
Every method or algorithm to implement an opinion mining system can be classified in
one of the following categories:

• Rule-based systems which achieve sentiment analysis based on a set of predefined
rules.

• Automatic systems learn from data generated by machine learning techniques.
• Hybrid systems combine rule-based and automatic systems.

The rule-based system is a predefined set of rules which identify subjectivity, polarity,
or the subject of opinion. The system takes some types of inputs for classification the
opinion, for example, some classic NLP techniques like stemming, tokenization, part of

2. Basic Concepts of Chatbot Systems 11

speech tagging and parsing or other references such as a list of words and expressions
(lexicons). The disadvantage of this method is the straightforward and naive word de-
tection because it does not include how words are combined in a sequence. Automatic
approaches use a machine learning technique for analysing the opinion. Usually, the
sentiment analysis task models a classification problem where the system is filled with
the text and returns the comparable category. In a polarity analysis system, the re-
turn value would be positive, negative or neutral. The first step is the training process,
where the model is trained with test patterns and learns to connect the input text to
the comparable outputs. The text input will be transferred into a feature vector and
paired with the tags, for example, the polarity. The machine learning algorithm and
these pairs generate the model. Before the algorithm can classify the text input, it has
to transform the text into a simple numerical structure. Commonly a vector represen-
tation is used. Every component of the vector describes the frequency of a word or the
definition in a predefined lexicon. This procedure is called feature extraction or text vec-
torization. For evaluating the performance of a classifier precision, recall, and accuracy
are standard metrics. The metrics measures how many texts were predicted correctly.
Hybrid approaches are very intuitive, which combines the best of both methods, the
rule-based and the automatic. The combination of both methods can improve accuracy
and precision[2, 8, 23].

2.3.3 Mode of Operation
Nowadays a large amount of research has been done in the field of sentiment analysis and
opinion mining. Opinion mining uses natural language analysis to capture the mood or
attitudes to a particular sentence. After the opinion classification, the sentiment analyses
evaluate the input sentence. The Process, for example, helps to determine if a review
or text is more likely to be positive or negative [7, 12, 18].

There are many practical approaches to detect annoying human responses in in
text-based chatbot systems. This thesis will focus on the following input scenarios:

• Keywords: The user types “Human Agent” or “Human Assistance”.
• No response: The user gives no response on a request message.
• Emotional sentence: Emotional detection of the user’s input.
• Same phrase or sentence: User repeats sentence or phrase several times during the

conversation.
Sentiment analysis is used for example in the “Google Cloud Natural Language API11”
form Google or the “Watson Tone Analyzer12” from IBM to generate reasonable re-
sponses. This requires sufficient complexity in interaction, and it is hard to achieve good
results without hardcoded rules. Intelligent chatbots are essential in building successful
customer service applications.

2.3.4 Challenges
This section gives an overview of some challenges that will generally be encountered
during the completion of a text-based communication system with sentiment analysis

11https://cloud.google.com/natural-language/
12https://www.ibm.com/watson/services/tone-analyzer/

https://cloud.google.com/natural-language/
https://www.ibm.com/watson/services/tone-analyzer/

2. Basic Concepts of Chatbot Systems 12

and opinion mining [23]. The following situations should be considered:
• Word definition: The word vocabulary and every word has to be clearly defined

because words can have different meanings.
• Reasonable Response: How to generate reasonable response after detecting the

user’s sentiment without hardcoded rules.
• Sarcasm: This is because sarcasm is extremely contextual and to understand sar-

casm, the analyzer needs to understand contextual clues.
• Polarity definition: The polarity of every word has to be categorized.
• Context scope: Words can be considered as being positive in one situation and

negative in another situation.

Chapter 3

State of the Art

There is a variety of related work dealing with human-computer interaction technologies
and also in combination with sentiment analysis. In this chapter, some examples of these
frameworks will be discussed and compared. It also presents the different development
platforms for creating a chatbot interface for a web application.

3.1 Chatbot Frameworks
A chatbot framework is a digital workspace for developing conversational agents with
predefined functions and classes. These frameworks can help to create a customized
natural language chatbot system and integrate it into a wide variety of publishing
platforms.

3.1.1 Dialogflow

Dialogflow (previously called API.AI)1, 2014 released and bought in 2016 by Google, is
a platform which offers the developer the possibility to develop of chatbot system for
free. The developer can configure the framework via a web-based development environ-
ment. The system supports over fifteen different languages, and the developer can easily
integrate the framework into different messaging services (e.g., Facebook Messenger or
Slack2). Dialogflow also offers documentation, a forum for users, enables and uses ma-
chine learning as well as natural language processing technologies. The framework also
provides speech recognition, sentiment analysis and a moderate amount of predefined
entities (e.g., weather information, time or date). One of the significant advantages is
the unrestricted use of the API calls so the user has no restriction for messaging with
the chatbot.

3.1.2 Amazon Lex

Amazon has announced the launch of Amazon Lex3 a service built on the Amazon Alexa
Skill Kit. Amazon Lex is a service for creating conversational interfaces for speech and

1https://dialogflow.com
2https://slack.com
3https://aws.amazon.com/de/lex/

13

https://dialogflow.com
https://slack.com
https://aws.amazon.com/de/lex/

3. State of the Art 14

text in any application. Amazon Lex also offers the possibility of speech recognition, sen-
timent analysis and an advanced amount of predefined entities for text or voice inputs.
Amazon Lex provides standard integration with AWS Lambda, AWS MobileHub, and
Amazon CloudWatch, and integrates easily with other services on the AWS platform.
The system takes advantage of the power of the AWS platform in terms of security,
monitoring or storage. The significant disadvantage of the framework is the limited lan-
guage support, currently only English, the pricing of 0.00075$/text or a one-year trial
plan with a limitation of 10k API calls per month.

3.1.3 Wit.ai

Wit.ai4 is another NLP engine for developers, which provides a framework where de-
velopers can build conversational applications. The system acquired by Facebook has
a web-based interface, and it is used to understand natural language. Wit.at is free to
use and offers unlimited API calls. The framework supports over 100 languages for the
conversation and additional speech recognition, sentiment analysis, a training module
and a basic set of prebuilt entities.

3.1.4 Watson Assistant

The Watson Assistant5, developed by IBM, is a machine learning and natural language
understanding system, which offers a cloud-based interface for building conversational
interfaces into applications or devices. The Assistant allows the developer to create
an application, with the virtual assistant developer toolkit, that understands human
language and responds in human-like conversations. The Watson Assistant offers a free
to use trial plan but with a limitation of 10k API calls per month. The Assistant has ten
supported languages and also text and speech recognition. It also provides the possibility
for sentiment analysis, training modules and a basic set of prebuilt entities.

3.1.5 LUIS.ai

Luis.ai6 or Language Understanding (LUIS) is a cloud-based API service that applies
custom machine learning intelligence to a user’s natural conversation. The system was
introduced by Microsoft in 2016 and offered an interface for developing a machine to a
human conversational bot. The service has a trial model, where the developer can use
up to 10k API Calls per month. The amount of supported languages is thirteen, with
also text and speech recognition. Like the other mentioned system, Luis.ai also offers a
sentient analysis API, a training module and a basic set of predefined entities.

3.1.6 Comparison
Table 3.1 compares for this thesis relevant chatbot frameworks and gives an overview
of functionality and pricing. Relating to Table 3.1 Dialogflow and Wit.ai have the most
relevant functionalities for the favoured chatbot system that must be developed within

4https://wit.ai
5https://www.ibm.com/cloud/watson-assistant/
6https://www.luis.ai

https://wit.ai
https://www.ibm.com/cloud/watson-assistant/
https://www.luis.ai

3. State of the Art 15

Dialogflow Lex Wit.ai Watson
Assistant LUIS.ai

Organization Google Amazon Facebook IBM Microsoft

Pricing Free
Trial: 1

year Paid:
0.00075$/text

Free
Trial: Free

Paid:
0.0025$/text

Trial: Free
Paid:

0.75$/1k
calls

API calls Unlimited

Trial:
10k/month

Paid:
Unlimited

Unlimited

Trial:
10k/month

Paid:
Unlimited

Trial:
10k/month

Paid:
Unlimited

Supported
languages
(German)

15 (X) 1 (-) 100+ (X) 10 (X) 13 (X)

Speech
recognition X X X X X

Sentiment
analysis X X X X X

Training
module X X X X X

Prebuild
entities intermediate advanced basic basic basic

Cloud based X X X X X

Table 3.1: Overview and comparison of chatbot frameworks (2019) [24].

the scope of the thesis. In summary, it can be argued that there are a variety of chatbot
frameworks on the market right now. In this thesis, only the most appropriate frame-
works for developing the implementation part were selected. Finally, there is no overall
best framework, because every chatbot system has a different implementation criteria.

When selecting the application for the development described in this thesis, Ta-
ble 3.1 shows the criteria that have been taken into account. In term of pricing and
the required supported language (German) only two (Dialogflow, Wit.ai) of the listed
frameworks fulfilled the functional scope. After a thorough research and review of the
various features, the Dialogflow framework was used to develop the chatbot system.

3.2 Related Work
This section illustrates some examples of chatbot systems. The focus will be on web-
based conversational agents in combination with hybrid human bot solution. Another
criterion is the combination with sentiment analysis for detecting emotion in conver-
sational situations, the limit of chat message and the maximum user interaction. For
the comparison, the focus was on B2C (Bussiness to Customer) Support chatbots, FAQ
(Frequently Asked Questions) feature and third-party integration (e.g., Dialogflow). Ta-
ble 3.2 visualizes the comparison and overview of the matching systems. The following
sections discuss the five evaluated systems in detail.

3. State of the Art 16

3.2.1 Kommunicate

The Kommunicate7 software is a real-time chat system in combination with an efficient
customer support chatbot. The plugin offers a native mobile SDK for integrating the
chatbot in different platforms and provides the integration of a third-party chatbot
framework (e.g., Dialogflow). Kommunicate offers a wide range of functions, e.g., visitor
analysis, FAQ support for general customer queries or human fallback. For the human
fallback Kommunicate, offers different handover triggers. The first one is with an user-
driven menu there the system provides a predefined option after every message (e.g.,
Human Handover). The second trigger uses sentiment analysis for detecting the user’s
frustration level.

3.2.2 Botsify

Botsify8 is another chatbot builder software where the developer can create a chatbot for
messenger platforms or web applications. Botsify uses a drag and drop template to create
the chatbot. The system also offers integration via plugins (e.g., Slack or Dialogflow),
Smart AI, Machine learning and analytics integration, collect data like email, address
or user name and provides a human takeover function for a smooth transition from a
bot to a human agent. The handover process will be triggered via a generic keyword
(e.g., human help) at any point in the chat-human conversation. After that, an email
notifies the agent, and the conversation is handed over to him.

3.2.3 Flow XO

Flow XO9 is also for building, hosting and managing chatbots on a messaging platform or
web applications. With the visual editor and prebuilt templates, the developer can create
a chatbot interface without coding experience. It also offers all other functionalities like
the two platforms discussed above. Human handover works similar to Botsify also only
via a generic keyword. Afterwards, the system sends the bot messages to a human agent
by email, and the agent can directly message, via the chat surface, with the user.

3.2.4 ActiveChat

ActiveChat10 is a chatbot builder, which provides an already created template for the
development of a conversational agent. The editor and the prebuilt template provides
a chatbot interface without coding experience. The chatbot platform uses natural lan-
guage and can be used for, e.g., customer support. ActiveChat can be integrated into
messenger platforms and can integrate third-party libraries like Dialogflow, or a cus-
tomer support template for integrating a FAQ. ActiveChat offers four different payment
models. Besides, the system does not have a handover fallback function with either
keyword or sentiment, and there is no way to communicate with a human agent.

7https://www.kommunicate.io
8https://botsify.com
9https://flowxo.com

10https://activechat.ai

https://www.kommunicate.io
https://botsify.com
https://flowxo.com
https://activechat.ai

3. State of the Art 17

Kommunicate Botsify Flow XO ActiveChat Intercom
Number of

interac-
tions per

month

Unlimited Unlimited Free: 500
20$: 5000 Unlimited Unlimited

Text-based
platform

Web
Messenger

Mobile

Web
Messenger

Web
Messenger Messenger

Web
Messenger

Mobile
FAQ

support X X X X X

German
language X X X - X

Third
party

integration
X X X X X

Mobile
SDK X - - - X

Handover
fallback

with
keyword

X X X - X

Handover
fallback

with
sentiment

X - - - -

Live-chat
after

handover
X X X - X

Pricing per
month Free 50$ | 300$ Free | 20$ Free | 19$ |

49$ | 249$ 87$ | 153$

Number of
users per

month
Unlimited 30k |

Unlimited Unlimited 500 1k 5k
50k 200

Table 3.2: Overview and comparison of chatbot builder (2019).

3.2.5 Intercom

The Intercom11 can be integrated into websites, messenger platforms or app services.
The software offers a real-time messaging approach. The chatbot can understand the
German language and offers a third-party library integration. Additionally, the chatbot
can transfer the conversation to a human agent by a handover fallback function based
on keywords. Therefore the conversation can be transferred to a human agent, and the
client can live chat after the handover process.

11https://www.intercom.com

https://www.intercom.com

Chapter 4

Conceptual Project Design

In this chapter the focus will be on the system design and the concept of the prototype,
which was developed during this thesis, and contains information about the requirements
and use cases. The chapter also explains the created Dialogflow Model to achieve the
handover process between the chatbot and the human agent.

4.1 Requirements
The goal for the final prototype is to create and integrate a text-based dialog system in
a web-based application for customer support. The chatbot should support employees
with customer favours and support requests. Additionally, the chatbot system should
provide handover management that prevent frustrating conversations between machine
and user. The system should detect, during the conversation, whether the user wants
to communicate with a human agent. When a handover process is detected, the chat-
bot passed, the collected information during the conversation, to a human agent, and
afterwards, the human agent can chat with the user. The next section lists the defined
requirements for this project. It should give an overview of the various features of the
project and clarify the required steps to realize the idea of for the thesis project. The
requirements for this project are the following:

1. The creation of a web application and a messaging chat interface.
2. The communication between the web application and Dialogflow.
3. The handover process detection (hanodver module).
4. The handover process reaction (handover phases).
5. The communication between human agent and user (live chat).

4.1.1 Web-Application
The project environment should be a web-based application and on top of it, the chat-
bot system for the user input. Therefore a web application with a dialog messenger
interface, for the human-machine communication, should be developed. The application
should also provide user authentication, and a managing tool for the handover provided
for the human agent. Every human agent should have the possibility to join the chatbot
conversation after the user wants to hand it over to a human agent. The managing

18

4. Conceptual Project Design 19

tool should display all available support tickets and the available transfer options. Ad-
ditionally, the application should provide the handover process detection, the handover
reaction, the data processing and the transfer of the conversation to a human agent.

4.1.2 Communication
The web application should also communicate with the chatbot framework for the nat-
ural language processing (NLP), the interaction between computer and the human lan-
guage. Therefore, the Dialogflow API should be integrated, and the two interfaces should
communicate via RESTful Web service to access and manipulate the conversational mes-
sages between chatbot and user. The communication messsages (user input messages
and chatbot output messages) should be transmited over a webhook.

4.2 Use-Case
Diagram 4.1 illustrates the workflow of the application. The use-case shows the process
where the chatbot hands over the conversation to a human agent after the handover
detection. Therefore the chatbot or the user can create messages, which the application
displays on the conversation stack. The system checks every user input for a possible
frustrating situation.

Figure 4.1: Use Case of how the chatbot hands over the conversation to a human agent.

4. Conceptual Project Design 20

If the system detects such a situation (explained in Section 4.3), it will initialize the
handover process. In this situation, the third actor, the human agent, can take over the
conversation and can use the managing tool to involve in the conversation and replace
the chatbot.

4.3 Handover Detection
There are moments where these systems will stumble and fail to answer the request. It
requires a human agent’s help and intelligence, in this situation. An alternative to a full
machine chatbot is a hybrid solution, which is essential for a good chatbot system.

For this solution, a transition from the machine to a human agent is one of the core
features. If the system is not getting the correct balance, it will frustrate the users and
might lead to ruin the support chatbot. The application should know when to trigger a
handover process and hand it over to an human agent.

This feature triggers the situations for the initialization of the handover process. It
should detect frustrating or annoying situations for the user. The following enumeration
explain the scenarios that should trigger the handover process in more detail.

User Preference

The simplest and safest approach for initializing a human handover is the hard-coded
method. The chatbot will be programmed to provide the user with a predefined option,
for communicating with a human agent, after every message. This approach of handing
over the conversation does not require any NLP or AI. In this scenario, the bot transfers
the conversation to a human agent, whenever one of the following or a similar option is
selected:

• Chat with a human agent,
• Human Agent,
• Help,
• Human Assistant,
• Support Employee.

User Sentiment

With the help of natural language processing and sentiment analysis, chatbots have
the possibility to conclude the mood of the user. In this scenario, this technique can
be beneficial in understanding whether the current conversation is satisfying for the
user. So whenever the system detects that the user is frustrated, it can simply provide
the option “Talk with Human agent”. For this approach, the integration of a sentiment
analysis API is necessary.

No Response

Another sequence for the human handover will be if the user gives no response for a
request. After a predefined timeout, the system will trigger the handoff process.

4. Conceptual Project Design 21

Repeated Phrase or Sentence

The last approach is the repeated phrase or sentence case, where the chatbot should
detect that the customer request repeats and the system could not respond to the
message and types in the same request over and over again. If the system detects one
of these four approaches, the handover process will be triggered, and the system will
continue with the preparation process.

4.4 Handover Reaction
In this step, the question is how the bot should handle the transition and what infor-
mation the system prepares for the human agent. For good user experience, the handoff
process should be as smooth as possible to minimise any additional frustration. The
process will be divided into three phases and discussed in the following section.

4.4.1 Pre-Handover Phase
In the pre-handover phase, one of the described scenarios from Section 4.3 triggers
the handover process, and the chatbot needs to pass control to the human agent. This
phase illustrates the possibilities of how the user can activate the handover process after
the system has understood that it has reached its limitations. For this prototype, the
preferred solution is that the chatbot asks the user if he would like to get connected to
a human agent and based on the user’s response initialize the handover process.

Another essential task is the transparency of the current transition while it is in
progress. In this case, the system should inform the user about the process status and
that the support ticket is currently unassigned. Additionally, the message from the user,
during that time, will only be answered when an human agent is assigned. Figure 4.2 (a)
illustrates the idea behind the pre-handover phase and the desired solution for the
conceptional prototype design.

4.4.2 Wait-Handover Phase
Immediately after the user initiates the handover process, the system queues the support
ticket and notifies the support human agent. During this phase, the application informs
the user about the estimated waiting time and that the wait time might be long. For a
good user experience to the system should also display the user’s position in the waiting
queue and provide the option to send the issue via an email when the user has no desire
in waiting any longer. The allocation of the tickets should depend on the availability of
the human agent’s. Figure 4.2 (b) shows the idea behind the wait-handover phase and
the prototype design.

4.4.3 Post-Handover Phase
The final step of the human handover process is when the human agent finally joins
the conversation between chatbot and user. In this phase, it is important to understand
that the human agent took over the conversation from the chatbot. Additionally, the

4. Conceptual Project Design 22

(a) (b)

Figure 4.2: Concept and design of the handover process reaction. The result (a) shows
the pre-handover phase and the result (b) illustrats the wait-handover phase.

system should display that the handover process was successful, and the human agent
joined the chat.

The second option is, as already mentioned that the system sends the issue via an
email to the employee if that is so the chatbot should additionally collect some user-
specific information and send this together with the issue to the human agent.

For a smooth handover flow, the system should also ensure that the chatbot provides
the entire previous conversation to the human agent. Therefore the text messages should
already be displayed in the human agent’s chat window.

After the post-handover phase, the last method to complete the system is to find
out the reason of the handover process. That is to trace back to the original question.
In this system, it is the message which triggers the handoff process and where the user
requested help from a human agent. So it can be beneficial to trace each human help
call back to the origin handover source message, and with the help of this method,
the system improves the conversation. Figure 4.3 illustrates the conceptional prototype
design for the post-handover phase.

4. Conceptual Project Design 23

Figure 4.3: Concept and design of the handover process reaction of the post-handover
phase.

4.5 Technical Design
This section focuses on the design and the required functionalities for the chatbot and
the web application. Therefore the workflow describes the functions and the concept
created concerning the requirements.

4.5.1 Web-Application
The web application should fulfil two major functionalities. At first, the integration and
visualization of the dialog messenger (chatbot) for the communication between the user
and the chatbot. Second, the administration of the handover tickets with the help of
the human agent. Therefore the web application has to provide user management and
a ticket management functionality. For administration tasks, the human agent can log
in (Figure 4.4) and can edit support request tickets or can enter a conversation that is
currently taking place. The conceptional design of the administration view is visualized
in Figure 4.6. The left table shows the support tickets where the human agent can send
the response for the problem by email. To the right, is the list which visualizes the live
chat conversations where the human agent can take over the conversation and join the
chat. Figure 4.5 illustrates the user page and the message box with the chatbot dialog.

4. Conceptual Project Design 24

Figure 4.4: Conceptional Design: Login page of the web application.

Figure 4.5: Conceptional Design: User page of the web application.

4. Conceptual Project Design 25

Figure 4.6: Conceptional Design: Human agent page of the web application.

4.5.2 Chatbot Agent
The chatbot should simulate an online ticketing system, where the bot can answer
support questions. For the initial conversation, there will be a rough overview of some
example requests, and the user can choose from the given examples or enter a sentence
or phrase. The user’s input message triggers the application Dialogflow backend.

The environment is built of a few different components. The user message is a dy-
namic input which the chatbot agent can receive at any given time. The representation
of the message consists of the original text message sent by the user and the time the
message was sent. The system transfers the message to the NLP, where the correspond-
ing response for the message will be generated. The chatbot reply, which also consists of
the answer text message from the system and the time the reply was sent, can add some
possible answering choices (e.g., Do you want to talk with a human agent? or Continue
conversation) for the user, but the chatbot can only read the user messages. A visual
representation of the chatbot agent’s environment is demonstrated in Figure 4.7.

4.5.3 Dialogflow API
Dialogflow uses a web-based developer environment to configure the chatbot environ-
ment. The framework is used for the human–computer interaction based on Natural
Language Processing, in particular the text analyzer for the user input. The system is
build with one agent and multiple intents as seen in Figure 4.8.

4. Conceptual Project Design 26

Figure 4.7: The chatbot agent’s environment.

Agent

The system uses the dialogflow agent for the text understanding and the categorising
of the user’s input message. It describes the Natural Language Understanding (NLU)
module, which translates the text from the request into actionable data. Therefore
intents represent possible user messages and the translation starts after the message
matches a specific intent from the dialogflow agent module.

Intent

Intents form the base of a chatbot system, which reflect each possible user input. In
Dialogflow these consist of the following parts:

• the intent name for identifying and matching the intent,
• the input and output context, which can be used to remember parameter values,

for passing the values between intents,
• events, which allow to call an intent without matching any user input,
• phrases, which will trigger the intent,
• action and parameters, define how the system extracts the user utterances from

the relevant information (parameters) (e.g., ticket category or date),
• response from the chatbot and
• the fulfillment, the integration of an external action for this intent.

If an intent matches the user request Dialogflow delivers a response back to the user.
This response can be a simple text or a fulfillment response that includes information
from the handover system. The answers that the chatbot should give are managed in the

4. Conceptual Project Design 27

Figure 4.8: Schematic example of how Dialogflow matches user input to an intent and
responds [19].

response section. Multiple responses can be created and sent as individual messages in
the chat. In each text response, several executions can be specified, which the developer
can select. The intent can be individually configured depending on the desired platform
(e.g., the chatbot should response with additionally suggestions (Yes or No) when it is
used for the Google Assistant). The default output is always used if no specific platform
is defined in the intent’s response section [22].

Entity

Entities simplify and improve the recognition of a suitable intent. An entity consists of
several entries that are named in Dialogflow synonyms. These entries determine which
input will trigger the entity. For example, using time is a common use of entities. With
the use of intents, for determining the motivation behind a particular user message,
entities should find out a piece of specific information in the user’s request. In this
manner, each corresponding entity reflects all the essential data that the system receives
from the user’s message [21].

In the case of this project, the ticket category is used for the support question
conversation. Additionally the entity named handover is the corresponding trigger for
the mentioned methods in Section 4.3 from every handover detection.

Webhook

A webhook is a process for communicating between server endpoints. An invocation
consists of an HTTP-Post request that sends data to the webhook. After this has pro-
cessed the data, it will be sent back via a response. In Dialogflow, the integration of a
webhook is possible to further process data entered by the user or to perform functions
that can not be mapped by Dialogflow. In Dialogflow, fulfilment is a code that repre-

4. Conceptual Project Design 28

sents a webhook that allows the system, with the extracted information, to generate
responses or trigger actions on the handover backend. The handover service returns a
response in JSON format [20].

4.5.4 Aylien API
For the user sentiment as described in Section 4.3, the system should detect the frustra-
tion level of the user messages. Therefore the Sentiment Analysis AYLIEN 1 API should
be integrated as an additional module into the system. The API provides a specific
Text Analysis API for detecting the sentiment from the textual content. The analyzer
categorizes the tone into positive, neutral or negative different polarities. Additionally,
the API can divide the text into subjective (the user’s opinion) or objective (meaning
a fact).

4.5.5 Dandelion API
Additionally, to the user sentiment (Section 4.3), the system should also provide the
handover repeated phrase functionality. Therefore, the chatbot system should add the
Text Similarity API from Dandelion2 as a module. With this API, it is possible to
compare two sentences and get a score of their semantic similarity. It works even if the
two sentences do not contain similar words.

4.6 System Design
This Section describes the overall abstract system architecture of the project with all
components, each solving one particular problem. The system design also includes an
interface description and the communication between each component. As can be seen
in Figure 4.9 the system consists of three main components: Client + Chatbot Interface,
Server, Database. The component labelled as Client is the generic client program which
makes use of the chatbot. It also provides an interface where the human agent can join
and take over the conversation. So, therefore the handover process has to be initialized
with the subcomponents of the Server backend.In particular the Server component has
three submodules to achieve the handover process. The first one is the NLP Dialogflow
module, which exchanges the data messages between the user and the chatbot with a
webhook. The second module is the AYLIEN interface, which uses the input message
to extract the user emotion. Moreover, the last submodule is the Dandelion interface,
which compares the similarity of the latest user messages. The last component, the
Database, is used for the storage of the handover data and authentication information
of the human agent.

Diagram 4.10 illustrates the abstract system architecture of the mentioned compo-
nents from Figure 4.9 in more detail. It shows the complete application and gives an
overview of all used components and how they are related to each other. The client
component consists of the chatbot, which is integrated into the web application. For
communication between the user and the chatbot, the system must be extended by a

1https://aylien.com/text-api/
2https://dandelion.eu/docs/api/datatxt/sim/v1/

https://aylien.com/text-api/
https://dandelion.eu/docs/api/datatxt/sim/v1/

4. Conceptual Project Design 29

Figure 4.9: Conceptional Project Components.

component, the Dialog Component, that exchanges messages with the Dialogflow API.
The component illustrates the dialog messenger, where the communication partners,
the user, the human agent or the chatbot, exchange messages. The User Input Service
creates the messages and will be structured in the Dialog Component as a chat dialog.

The User Input Service represents the input messages from the user and the Di-
alogflow Component represents the chatbot response messages created from the Di-
alogflow API. After the user types in a message the Dialogflow Component expects a
request message from the NLP. The system uses the FAQ Component to provide the
ticket information system (e.g., ticket price or ticket availability information).

Afterwards Dialogflow transfers the given user message via the webhook to the Di-
alogflow Service. There, the Handover Module tries to find out the frustration level of
the user’s message with the four approaches as described in Section 4.3. With the help
of the AYLIEN API, the system can detect the sentiment of the user’s input message.
Additionally, the system uses the Dandelion API for the similarity check of the chat
history. The communication between the system and both API’s is via REST. Each of
the four modules can trigger the handover process.

In the last step, the conversation is taken over by a human agent. For that the

4. Conceptual Project Design 30

Figure 4.10: Conceptional Project Relations.

4. Conceptual Project Design 31

Authentication Service allows the human agent to log in as already mentioned in Sec-
tion 4.5.1. After the human agent has chosen to join a conversation, the Websocket
Service connects the human agent with the frustrated user and the chatbot is excluded
from the conversation. The human agent can now solve the problem that the machine
could not solve.

Chapter 5

Technical Implementation

In this chapter, the used methods for implementing the given requirements will be
discussed. It focuses on how the system was technically implemented and describes
which methods were used for development.

5.1 Technology Stack
Attached are the technology used to implement the system.

• JHipster1: The JHipster framework is a free and open-source application generator
which was used for the project architecture.

• Angular: The TypeScript2-based open-source web application framework is used
for the frontend of the chatbot application.

• Spring: The project’s backend is built with the Spring framework, which is an
application framework and inversion of control container for the Java platform
and has extensions for building a web application’s backend.

• MySQL3 database is an open-source relational database management system It is
used for the authentication data from the support agent and the support tickets.

• Dialogflow API: The NLP based human-computer interaction technology is used
for the system’s conversational interface.

• AYLIEN Text Analysis API: The Natural Language Processing API is used for
the emotional detection of the handover module.

• Dandelion API: The last used technology is the Dandelion API, which is a Se-
mantic Text Analytics service. The analyzer is used for the similarity detection of
the handover module.

The server-side implementation of the project is written in Java because of the integra-
tion of the Spring Framework and the easy integration of the desired REST functional-
ity. Because of the use of the Angular framework, the client side component is mainly
written in TypeScript. Another reason why the client is written in TypeScript is the large
community, the open source libraries and the easy setup of the web service. MySQL is

1https://www.jhipster.tech
2https://www.typescriptlang.org
3https://www.mysql.com/: The MySQL

32

https://www.jhipster.tech
https://www.typescriptlang.org
https://www.mysql.com/

5. Technical Implementation 33

the preferred database management system because it can be easily integrated with the
JHipster framework. The AYLIEN and the Dandelion API’s provide a Java SDK and
allow the easy integration in the existing system.

5.2 System Architecture
Chapter 4 already mentioned that the handover module is the core and offers the user
the frustration-free transition to a human agent. The following chapter describes the
implementation of the user client with the chatbot, the human agent handover interface,
its communication with the handover detection modules, the server-side implementation
and the natural language processing integration with the Dialogflow API.

5.2.1 Client
Figure 5.1 shows the structure of the web application’s client classes of the project. The
ClientMainComponent class is the entry point of the user interface and consists of the
dialog messenger.

The messenger contains of two components the MessengeItemComponent and the
MessengeFormComponent. The MessengeItemComponent visualizes the messages be-
tween the chatbot and the users, whereas the MessengeFormComponent is used for
visualisation of the user input form. The DialogflowComponent is the interface between
the web application and Dialogflow:

@Injectable()
export class DialogflowComponent {

private baseURL = DIALOGFLOW_URL;
private token = DIALOGFLOW_TOKEN;
private resourceUrl = SERVER_API_URL + 'api';

constructor(private http: HttpClient) {
}

public getResponse(query: string): Observable<any> {
const data = { query, lang: 'de', sessionId: '12345' };
return this.http.post(`${this.baseURL}`, data, this.getHeaders());

}

private getHeaders(): { headers: HttpHeaders } {
return { headers: new HttpHeaders({

Authorization: `Bearer ${this.token}`})};
}

public getSupportTickets(): Observable<EntityArrayResponseType> {
return this.http.get<SupportTicket[]>(
`${this.resourceUrl}/supportTickets`, { observe: 'response' });

}
}

Therefore the DialogflowComponent posts the user message to Dialogflow and then Di-
alogflow responses with the chatbot message. When Dialogflow detects a frustrating
situation, and the user wants to talk to a human agent, the WebSocketService connects

5. Technical Implementation 34

the user with the human agent. Therefore the WebSocketService provides the configura-
tion possibilities, like setting ports for the websocket server or exchange messages with
the human agent.

Figure 5.1: UML diagram of the system’s client.

5. Technical Implementation 35

The sendMessage function generates a new message, with the user input string and adds
it to the message array:

public sendMessage(): void {
this.clearSuggestions();

if (this.message.content !== '') {
this.message.timestamp = new Date();
this.messages.push(this.message);

if (this.handover) {
this.sendMessageToHuman();

} else {
this.sendMessageToChatbot();

}
this.message = new Message('', 'user');

}
}

Afterwards the MessengeItemComponent lists the array messages on the chat messenger.
If no handover process is detected the sendMessageToChatbot function sends the user
input to the NLP:

private sendMessageToChatbot() {
this.dialogFlowService.getResponse(this.message.content).subscribe(res => {

this.messages.push(new Message(res.result.fulfillment.speech,
'bot', res.timestamp));

if (res.result.action === 'HandoverIntent.HandoverIntent-yes') {
this.handover = true;
this.connectToServer();

}
});

}

If the result action of the NLP request is HandoverIntent.HandoverIntent-yes the system
starts the handover process. Therefore the connectToServer function connects the user
with the websocket server:

private connectToServer() {
if (!this.webSocketService.connected) {

this.webSocketService.webSocketConnect(this.messages);
this.webSocketService.connected = true;

}
}

When the handover process has started, the user can communicate with the human
agent. Therefore, the sendMessageToHuman function sends the messages to the human
agent and not to the NLP any more:

private sendMessageToHuman() {
const websocketMessage = new WebSocketMessage(this.message.content, this.
websocketService.userSessionId);
this.websocketService.sendMessageToUser(websocketMessage, this.userSessionId);

}

This is where the chatbot system is no longer required and the successful handover
process is complete.

5. Technical Implementation 36

5.2.2 Server
For the system’s server-side implementation Figure 5.2 illustrates the structure of the
classes.

Figure 5.2: UML diagram of the system’s server.

5. Technical Implementation 37

The DialogflowController is the entry point for the NLP interface. The controller uses
the DialogflowService for the handover detection and the creation of the response mes-
sage for the Dialogflow API:

@RestController
@RequestMapping("/api")
public class DialogFlowController {

private DialogFlowService dialogFlowService;
private WebSocketService websocketService;

public DialogFlowController(TicketService service) {
dialogFlowService = new DialogFlowService();
dialogFlowService.initService(service);
websocketService = WebSocketService.getInstance();

}

@PostMapping(path = "/getDialogflowResponse")
@Timed
public HashMap<String, Object> getDialogflowResponse(@RequestBody
DialogFlowModel model) {

dialogFlowService.checkHandoverModules(model);
return dialogFlowService.getDialogFlowResponse();

}
}

The server provides a webhook interface for the corresponding handover detection result,
which the service transmits to the Dialogflow endpoint. The system communication is
based on RESTful Web services. Therefore, the system provides a communication service
the getDialogflowResponse. The JSON structure of each Dialogflow request to the server
webhook:.

{
"responseId": "4fcc3a3b-de64-4c67-83f5-b9a72b1430d2-e6604cc1",
"queryResult": {

"queryText": "Ich mag keine Chatbots",
"action": "HandoverIntent.HandoverIntent-yes",
"intent": {

"name": "3f61d509-7f75-4bfd-b41e-140ba057a5e1",
"displayName": "Handover Intent",

},
}

Important for the handover system is the user input message (queryText) the handover
trigger (action) and the triggered intent. With the Dialogflow information, the handover
server creates a response message. The JSON response message of the HTTP-post call
is based on the input message from the user:

{
"outputContexts": [

{
"name": "/handoverintent-followup",
"lifespanCount": 1,

}
],
"fulfillmentText": "Wollen Sie einen unserer Mitarbeiter kontaktieren?"

}

5. Technical Implementation 38

If the action attribute of the message is a Handover intent, the output message (fulfill-
mentText) questions the user if the system should begin the handover process also, the
server responses with the followed intent (outputContexts) after the handover process.
If the system detects a frustrating situation from the input message, the system de-
tects the handover situation and calls the HanodverModule. The application receives a
HTTP-post request from Dialogflow in the form of the response from the user message’s
request that matched the corresponding Intent.

The DialogflowService provides the checkHandoverModules function, which iterates
over all possible handover cases and triggers the handover module if the system detects
a frustrating user input:

public void checkHandoverModules(DialogFlowModel model) {
try {

if (!isHandoverModuleTriggered(model)) {
buildDefaultResponse(model);

}
} catch (Exception e) { e.printStackTrace(); }

}

private boolean isHandoverModuleTriggered(DialogFlowModel model){
for (HandoverModule module : handoverModules) {

if (module.checkHandover(model)) {
buildHandoverResponse(module);
return true;

}
}
return false;

}

Also the isHandoverModuleTriggered function iterates over all modules and builds the
specific handover response for the Dialogflow API. For the detection of a handover pro-
cess the handoverModule stores a list of HandoverModule, which illustrates all possible
handover scenarios.

5.2.3 Handover Detection
The HandoverModule class is the base class of all handover modules:

public abstract class HandoverModule {
private String name;

HandoverModule(String name) {
setName(name);

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public abstract boolean checkHandover(DialogFlowModel model);

5. Technical Implementation 39

public ArrayList<OutputContext> initHandoverProcess() {
System.out.println(name + " module was triggered!");
ArrayList<OutputContext> outputContexts = new ArrayList<>();
outputContexts.add(new OutputContext(DIALOGFLOW_FOLLOWED_INTENT));
return outputContexts;

}
}

So every module must extend from that abstract class this ensures that each mod-
ule implements the required functions. Every module implements two base functions
the checkHandover function and the initHandoverProcess function. The checkHandover
function checks if the defined conditions, for a handover process, are fulfilled.

Afterwards, the initHandoverProcess function initializes the output context (part
of the response for the Dialogflow NLP) and returns the Followed Intent, which is the
intent for the Dialogflow API to hand the conversation over to a human agent.

The next sections describes the different kinds of handover modules and there func-
tionaries.

Sentiment Module

Figure 5.3 illustrates the handover process detection with the sentiment analysis inte-
gration and gives an overview of the used components and how they are related to each
other. As seen in the figure, the initial situation is user input. So if the user types a
message the DialogMessageService will transfer it with an HTTP-post request to the
DialogFlow system. There the Hanodver Agent will classify which intent should respond
to the message. After the intent classification Dialogflow makes a request (webhook) to
the Project with an HTTP-post request. The DialogFlowRessource manages the given
request and send it to the SentimentService, which communicates with the Aylien API.
The API responses with a sentiment data structure:

{
"polarity" : "positive",
"subjectivity" : "subjective",
"text" : "I love chatbots",
"polarity_confidence" : "0.9886510372",
"subjectivity_confidence" : "1"

}
{

"polarity" : "negative",
"subjectivity" : "subjective",
"text" : "This chatbot is stupid",
"polarity_confidence" : "0.9997755885",
"subjectivity_confidence" : "1"

}
{

"polarity" : "neutral",
"subjectivity" : "subjective",
"text" : "Neutral message",
"polarity_confidence" : "0.5926589369",
"subjectivity_confidence" : "0.6941109833"

}

The SentimentService extracts the polarity (positive, negative or neutral) forms the
sentiment response and sends it back to the DialogFlowRessource. The DialogFlowRes-

5. Technical Implementation 40

Figure 5.3: Sentiment Analysis Hanodover Detection.

source builds the response with the emotional information and send it to the Handover
Agent. With the sentiment analysis, the agent can decide which intent should provide
the response message for the user input and sends it back to the DialogMessageService.
For the emotion detection/sentiment analysis, the Aylien API is used. The sendMessage
functions calls the API:

public void sendMessage(DialogFlowModel model) {
String message = model.getQueryResult().getQueryText();
try {

builder.setText(message);
setSentiment(client.sentiment(builder.build()));

} catch (TextAPIException e) { e.printStackTrace(); }
}

5. Technical Implementation 41

Therefore the function sets the sentiment based on the response from the API. Every
response has polarity information from the message. The polarity is calculated with the
checkHandover function with the use of the polarity confidence value:

@Override
public boolean checkHandover(DialogFlowModel model) {

return isSentimentNegative(model);
}

private boolean isSentimentNegative(DialogFlowModel model) {
String polarity = sentimentAnalyzer.getSentiment().getPolarity();
System.out.println("Polarity: " + polarity);
sentimentAnalyzer.sendMessage(model);
return polarity.equals("negative");

}

Is the absolute value closer to 1, the higher the probability is that the given message
is either positive (1) or negative (-1). Additionally, every message can categorize in
subjective (meaning it is reflecting the user’s opinion) or objective (without personal
opinion).

Similarity Module

The next handover module is the SimilarityModule. This module uses the Dandelion
API. The function uses the current and the previous user message and compares them:

private boolean similarityCheck(String curUserInput, String prevUserInput) {
HttpClient httpClient = HttpClientBuilder.create().build();
HttpPost httpPost = new HttpPost(baseUrl);
try {

addParameter(prevUserInput, curUserInput, httpPost);
HttpResponse response = httpClient.execute(httpPost);
similarityModel = generateSimilarityObject(response);
return true;

} catch (IOException e) { e.printStackTrace(); }
return false;

}

Therefore the HTTP call to the API endpoint responds with the similarity value:
{

"timestamp": "2019-05-21T16:29:37",
"lang": "en",
"langConfidence": 1,
"text1": "When is the next game?",
"text2": "When will the next game be played?",
"similarity": 0.7655

}

Is the similarity value greater than 0.5 the similarityCounter will be increased. The
SimilarityModule calls the similarityAnalyzer.getSimilarityCounter function, which cal-
culates the similarity with the similarityCheck function. The function checkHandover
triggers the handover module when the similarityCounter is greater or equals two as
shown in Program 5.1. So, if the user types in the same sentence or phrase three times
in a row the handover module will be triggered.

5. Technical Implementation 42

Program 5.1: SimilarityModule’s function to check the similarity handover module.

1 @Override
2 public boolean checkHandover(DialogFlowModel dialogFlowDTO) {
3 return isInputSimilar(dialogFlowDTO);
4 }
5
6 private boolean isInputSimilar(DialogFlowModel dialogFlowDTO) {
7 similarityAnalyzer.setDialogFlowModel(dialogFlowDTO);
8 similarityAnalyzer.calculateSimilarity();
9 int similarityCounter = similarityAnalyzer.getSimilarityCounter();

10 System.out.println("SimilarityCounter: " + similarityCounter);
11 return similarityCounter >= 3;
12 }

5.2.4 Handover Reaction
After the handover detection, the system responds and prepares the handover to a
human agent. Therefore, the chat dialog displays the current transition status and gives
the user a visual feedback on how long the process lasts. In this phase the system
connects the frustrated user with a human agent. After the agent joined the conversation
the chatbot will be disconnect and the human agent takes over the chat dialogue. For
the communication process between user and the human agent the system provides a
WebSocketController.

WebSocketController

The WebSocketController manages the connection between users and human agents and
the users can connect to the websocket with the connectListener function:

@EventListener(SessionConnectEvent.class)
@Timed
public void connectListener(SessionConnectEvent event) {

String dateString = simpleDateFormat.format(new Date());
MessageHeaders headers = event.getMessage().getHeaders();
String sessionId = SimpMessageHeaderAccessor.getSessionId(headers);
webSocketService.addSupportTicket(sessionId, dateString, dateString);

}

And can disconnect from the websocket with the disconnectListener function:
@EventListener(SessionDisconnectEvent.class)
public void disconnectListener(SessionDisconnectEvent event) {

String dateString = simpleDateFormat.format(new Date());
MessageHeaders headers = event.getMessage().getHeaders();
String sessionId = SimpMessageHeaderAccessor.getSessionId(headers);
webSocketService.removeSupportTicket(sessionId);

}

If a user connects to the websocket server the addSupportTicket function creates a new
support ticket, which the client displays on the human agent’s page. After the connection
is established the communication partner can exchange messages via the sendMessage
function:

5. Technical Implementation 43

@MessageMapping("/chat")
public void sendMessage(InputMessage inputMessage, SimpMessageHeaderAccessor

headerAccessor) throws Exception {
String timestamp = new SimpleDateFormat("HH:mm").format(new Date());
OutputMessage outputMessage = new OutputMessage(headerAccessor.getSessionId(),
inputMessage.getText(), timestamp);
simpMessagingTemplate.convertAndSend("/queue/chats-" + inputMessage.getReceiver
(), outputMessage);

}

The method creates an output message and forwards it to the stored user id. This
method guarantees that the human agent communicates with the correct user. Addi-
tionally the user can quit the session or logout from the system. Therefore, if a user
disconnects from the server the removeSupportTicket function clears the ticket with the
user’s session id and the human agent can choose the next support ticket.

5.3 Result
The implemented result of the system and how it looks like is seen in Figure 5.4, which
illustrates the user authentication page. Figure 5.5 shows the user page and Figure 5.6
represents the Human Agent Page. The human agent has the option to select a user
with the user table on the administration page. With this solution, the human agent
can choose which user he wants to communicate. The concept, which has been defined
at the planning state of the system in chapter 4, has been implemented in terms of
functionality and design. The design was developed based on the conceptional project
Design 4.5 template and hardly deviates from it.

Figure 5.4: Result of the thesis project: The User Authentication Page.

5. Technical Implementation 44

Figure 5.5: Result of the thesis project: The User Page.

Figure 5.6: Result of the thesis project: The Human Agent Page.

Chapter 6

Evaluation

This chapter focuses on the evaluation of the project. The evaluation consists of the
fulfilment of the requirements, the usability analysis and the performance analysis.

6.1 Accomplishment of the Requirements
The following Section give a more detailed description of the requirements defined in
chapter 4.1 and how these have been accomplished.

6.1.1 Web-Application and Chat Interface
The first requirement was the creation of the web application and the integration of a
chat messaging interface. As seen in Section 4.5, the project provides a web-based chat
messenger for the interaction with the chatbot and afterwards with the human agent.
Because of the separation of two different user roles, the system provides authentication,
and the chatbot can also be used if the user is not logged in. The chat interface provides
a list of messages as well as an input field for new messages. The system currently
processes responses immediately after receiving a message request from the user.

6.1.2 Communication of the Web-Application and Dialogflow
The next requirement was the integration and communication with a chatbot based
on Natural Language Processing. As seen in the Section 4.5.3, for this task Dialogflow
was integrated in the project. The communication between Dialogflow and the chatbot
was accomplished with a webhook, Section 4.5.3, and the messages are sent via REST.
Because the protocol is a simple HTTP request, it can easily be implemented and
integrated into any client technology.

6.1.3 Handover Detection
In the mentioned Section 4.3 scenarios have been implemented for handover detection.
This approaches define the triggers for a human handover and initiate the handover
process. To evaluate whether the system triggers the handover process correctly and
promptly, a Usability Test was performed seen in Section 6.2. Overall the detection

45

6. Evaluation 46

works for different users as long as the communication language is German, and the
user does not write sarcastic, in dialect or a word which has more than one meaning.
The handover detection has a modular structure so that besides a transfer module can
be easily integrated into the system. To achieve this feature, the HandoverModule class
represents the base class of all handover detection modules, as mentioned in the Section
5.2.3.

6.1.4 Handover Reaction
The handover reaction requirement was fulfilled by the handover reaction phases, as
illustrated in Section 4.4. The three phases were integrated into the project to provide
an easy and frustration-free handover process. For the requirement, the first step after
the system detects a frustrating situation was to inform the user that it is possible to
talk with a human agent. If the user no longer intends to talk to the chatbot, the system
then connects to the human agent. Therefore, the system should inform the user about
the current process as well as the steps for transferring the call to a human agent. Each
step gives the user a visual overview of the process and the estimated waiting time.

6.1.5 Human Agent Live Chat
The last project requirement was that the system should build a connection between
the user and the human agent. Therefore, a live chat feature was implemented, and
the connection was built with a websocket. Their advantage for a real-time capability
because of the bidirectional communication technology makes them a useful technology
for communication. With the websocket, the human agent can send messages to a specific
user at any time and offers a fast and reliable solution for the live chat interface.

6.2 Usability Testing
Good user experience is an important aspect when it comes to communicating with a
machine. Therefore a qualitative usability testing was necessary to get a useful evalua-
tion for this project. To do this testing there where different approaches (record every
communication with the chatbot, create a live stream session schedule all participants),
or do a usability test. For this evaluation method, the Usability Testing [25] was chosen
because it is a lean and agile approach and has good and simple steps to get the max-
imum result out of the system. Six volunteers (three female, three male) were picked
either from the local university or family.

6.2.1 Scenarios
At first, the task was to find a scenario which will trigger the handover process. Therefore
for every participant, two different scenarios are created.

Scenario I

Therefore the user had to ask for a FAQ Question, about how much a Ticket for the
category “Reduced” is. Because this kind of ticket category is not implemented in the

6. Evaluation 47

system, the chatbot could not provide the correct answer. That is the point where the
system should detect that the user is frustrated because it is an unsolvable scenario.
After that, the handover reaction process will be activated, and the system connects
the user with the human agent. For the final task, the Human Agent Chat, a agent
communicates with the participant after the handover process.

1. Login: The participant should open the user page using the login form.
2. Open Messenger: The participant should start the conversation with the chatbot.
3. Ticket Price: The participant should get the information about a specific ticket

price for the category “Reduced”.
4. Handover Trigger: The system should trigger the handover process and prepare

the connection with the human agent.
5. Human Agent Chat: The participant should chat with the human agent.

Scenario II

The second scenario was to reclaim the money from a lost ticket. Therefore, the user
should ask the system if it is possible to refund the money paid for the ticket. Since
the system can not reimburse the money and can not provide the correct answer, the
system should initiate the handover process and the system connects the user to the
human agent. Also, for this scenario, a agent communicates with the participant after
the handover process.

1. Login: The participant should open the user page using the login form.
2. Open Messenger: The participant should start the conversation with the chatbot.
3. Ticket Price: The participant should get the information about refund the money

for a lost ticket.
4. Handover Trigger: The system should trigger the handover process and prepare

the connection with the human agent.
5. Human Agent Chat: The participant should chat with the human agent.

6.2.2 Task Completion
The next step was to capture the task completion for each of the participants. The
evaluation uses the following designation:

• If a user can perform the task quickly and with no trouble, the task gets a mark
1.

• If a user can perform the task but has some problems, the task get a mark 2.
• If a user could not perform a task, the task gets a mark 3.
Table 6.1 shows that every participant could solve the first (login) and second task

(open messenger) without any problem. As expected nobody could solve the third task
(Ticket Price for the category “Reduced”), because the system does not provide this
category. After every participant tried to solve the task, the system started the handover
detection process. The handover trigger value indicates how long it took the system
to trigger the handover process after the chatbot was unable to answer the question.
Because every user triggered a different handover module, seen in Table 6.3, the result

6. Evaluation 48

value for the handover trigger differs. The last task was the handover reaction after
the system detects and initialises the handover process. Therefore every participant,
expected from Tester#2, answered the question if the system should connect the user
with a human agent with yes. As the Table 6.1 shows, Tester#2 could not solve the
usability test because the system could not trigger the handover process. The reason was
that the participant tried to communicate with the chatbot, and the handover trigger
could not detect the frustration of the conversation.

Login Open
Messenger

Ticket
Price

Handover
Trigger

Human
Agent Chat

Tester#1 1 1 3 2 2
Tester#2 1 1 3 3 3
Tester#3 1 1 3 2 2
Tester#4 1 1 3 1 2
Tester#5 1 1 3 2 2
Tester#6 1 1 3 1 2

Table 6.1: Result of the usability test for the Scenario I

Table 6.2 shows similar to the first scenario that every participant could solve the
first (login) and second task (open messenger) without any problem. The third task was
also an unsolvable challenge, and every participant failed to solve this talk in order to
trigger the handover process. The system starts with the handover detection after every
participant tries to solve the problem in vain. The last challenge for the participants
was similar to the first scenario. Therefore the handover reaction live chat connects the
user with the human agent. As Table 6.2 illustrates that up to Tester#6 everyone could
solve the last task. In this case, the reason was that the system failed because it did not
find the negative sentiment of the participant’s messages.

Login Open
Messenger Ticket Lost Handover

Trigger
Human

Agent Chat
Tester#1 1 1 3 1 2
Tester#2 1 1 3 1 2
Tester#3 1 1 3 2 2
Tester#4 1 1 3 1 2
Tester#5 1 1 3 1 2
Tester#6 1 1 3 3 3

Table 6.2: Result of the usability test for the Scenario II

Table 6.3 shows the used time for the handover detection and the triggered handover
module. Taken from the table the Sentiment Module was the most triggered handover
module, which suggests that the frustration level was highly correlated with the user’s
emotional input messages. On the other hand, the most time-consuming module was the
Keyword Module because the participants did not consider that there was the possibility
of this module. Except for one participant, every other one triggered a different module
as the Keyword Module. Finally, the tasks marked with X in the table failed to trigger

6. Evaluation 49

the handover process. Overall, two of the twelve processes fail to trigger a handover
module, and the overall usability test has an achievement rate of 83.34%.

Scenario I Scenario II Handover
Module I

Handover
Module II

Tester#1 44s 12s Sentiment Sentiment
Tester#2 X 35s X Sentiment
Tester#3 65s 44s Keyword Similarity
Tester#4 38s 20s Similarity Sentiment
Tester#5 51s 27s Sentiment Sentiment
Tester#6 34s X Sentiment X

Table 6.3: Time in [s] for the handover detection

6.3 Performance Analysis
The performance analysis has been done on a desktop computer with MacOS and Google
Chrome as a browser. The hardware of the computer can be considered average and the
server is running on the Java environment. The whole test was running locally. The
following Figure 6.1 shows the performance analysis of the system. The performance
has been measured by acquiring the timestamps at specific tasks of the usability test
from the Login to the Human Agent Chat. The total amount of time is also visible,
which gives an overview value of how long the whole process took. As seen in the chart,
the most time-consuming task was the handover reaction (Human agent chat). The
participant had to wait until the support agent had time. Therefore a default waiting
time of at least 60 seconds were integrated to the usability test.

6.4 Possible Extensions
Based on the requirements, the system is finished but it can be extended with addi-
tional handover modules for example a sarcasm detection. This is possible because of
the generic program structure of the handover module. Another possible extension can
be the expand of the FAQ, therefore the chatbot can be extended with additionally
functions e.g. ticket purchase. Apart from this, the chatbot could also support interna-
tionalization.

6. Evaluation 50

12

17

10

44

68

11

7

17

0 0

21

27

20

65

80

10

18

23

38

76

15

20

30

51

81

18

12

17

34

71

0

10

20

30

40

50

60

70

80

90

Login Open	Messenger Ticket	Price Handover	trigger Human	agent	chat

TI
M
E	
IN
	[S
]

Tester#1	(151) Tester#2 Tester#3	(213s) Tester#4	(165s) Tester#5	(197s) Tester#6	(152s)

(a) Scenario I

7

12

25

12

70

8
5

31

35

65

15
18

40

44

71

6

13

33

20

80

10

16

28 27

64

13
10

22

0 0
0

10

20

30

40

50

60

70

80

90

Login Open	Messenger Ticket	Lost Handover	trigger Human	agent	chat

TI
M
E	
IN
	[S
]

Tester#1	(126s) Tester#2	(144s) Tester#3	(188s) Tester#4	(152s) Tester#5	(145s) Tester#6

(b) Scenario II

Figure 6.1: Performance analysis of the system

Chapter 7

Conclusion

At a time where digitisation plays such a major role, and human interaction is becoming
ever more important, the further development and integration of a chatbot system is
becoming increasingly important. Meanwhile, there are a variety of chatbot systems,
as mentioned in Section 2.2.5, and each of this system is developed for a specific type
of use case, as illustrated in Section 2.2.6. One of this area is the customer support
with the FAQ service. Large companies pay a huge amount of money for customers
analysis, e-commerce, customer satisfaction and customer help services, that is because
customer satisfaction is more important than ever. The companies always want to offer
permanent support, where these chatbot systems come into play. Chatbots have gained
more and more popularity also because of their outstanding advantages compared to
human agents, e.g., provide 24/7 customer support.

Nevertheless, many of these systems still have problems when it comes to complex-
ity, context of the conversation or recognition of frustrating situations. To tackle this
problem, the hybrid chatbot was developed, which can hand the conversation over to
a human agent in case of an unsolvable problem. The human agent can then take over
the conversation and solve the task, which the machine could not solve. Therefore, the
system should recognize these situations and react accordingly to the problem. Addi-
tionally the system should offer the user the opportunity to explicitly hand over the
conversation to a human employee. An excellent chatbot should always be able to fall
back to a human agent in the case of an unsolvable problem.

This thesis tried to improve customer support as much as possible to increase cus-
tomer satisfaction. A hybrid version of a chatbot was developed in order to pass on
the task, which the machine could not solve, to a human agent. Therefore, the system
fulfilled the defined requirements.

During the evaluation process some challenges occurred. The system did not deliver
the desired result in two out of twelve cases. That is partly because of the used Sentiment
Analysis APIs, which has many problems with the German language and partly because
of the tester’s input message, especially a sarcasm message. The handover was not
triggered by the following words or sentences:

• ernüchtert (sobered),
• jämmerlich (miserable),
• ratlos (helpless).

51

7. Conclusion 52

• Nerviges Produkt hätte gerne eine Antwort (Annoying product would like an
answer).

• Dieses nervige Produkt, ist traumhaft schlecht. (This annoying product is fantas-
tically bad) (sarcasm).

• Dieses tolle Produkt, ist sehr frustrierend (This great product is very frustrating)
(sarcasm).

The system fulfills the defined requirements and Figure 5.3 illustrates that the de-
sired concept has been implemented. Based on the requirements the system is complete,
but in order to make a productive release, further FAQ functions would be needed to
expand the conversation between user and chatbot.

The knowledge gained during this work is that, at present, a hybrid chat bot offers
a perfect solution in terms of customer satisfaction and customer support. Altogether
chatbots are a very active field with new inventions especially in the ML (Machine
Learning), AI (Artificial Intelligent) and HCI (Human-Computer Interaction) areas,
which gets popularity since over 50 years. Every functional B2C (business to customer)
relation is a use case where a chatbot can be integrated, and for excellent customer
satisfaction, a hybrid chatbot solution can save much frustration. Therefore only the
future will show how important hybrid chatbots systems will become in the field of
customer support.

Appendix A

Content of the CD-ROM

Format: CD-ROM, Single Layer, ISO9660-Format

A.1 PDF-Files
Path: /

MasterThesis.pdf master thesis

A.2 Project Data
Path: /implementation/project/web_application

src/main/webapp/ . . . folder of the client
src/main/java/ folder of the server
src/main/webapp/**.ts TypeScript source files
src/main/webapp/**.html HTML files of the Web-Application
src/main/java/**.java . Java source files

A.3 Dialogflow Agent
Path: /implementation/project

dialogflow_agent/ . . . folder of the dialogflow agent

A.4 Literature
These are the files used as references. The file names are correspond to the reference
title in the literature.

Path: references
[reference_title].pdf . . file of the reference

53

A. Content of the CD-ROM 54

A.5 Online Literature
These files are copies of the webpages used as references. The file names are numbers
which correspond to the reference title in the literature.

Path: references/online_literature
[reference_title].pdf . . printout of the webpages

A.6 Miscellaneous
Path: /images

*.pdf vectorized images

References

Literature

[1] Sameera A. Abdul-Kader and John Woods. “Survey on Chatbot Design Tech-
niques in Speech Conversation Systems”. International Journal of Advanced Com-
puter Science and Applications (IARJSET) 5 (Nov. 2015), pp. 37–46 (cit. on p. 3).

[2] Charu C. Aggarwal and Cheng Xiang Zhai. Mining Text Data. Heidelberg:
Springer-Verlag, 2012 (cit. on p. 11).

[3] Robert Epstein, Gary Roberts, and Grace. Beber. Parsing the Turing Test: Philo-
sophical and Methodological Issues in the Quest for the Thinking Computer. Hei-
delberg: Springer-Verlag, 2008 (cit. on p. 4).

[4] Janarthanam, Srini. Hands on chatbots and conversational UI development. Birm-
ingham: Packt Publishing, Dec. 2017 (cit. on p. 5).

[5] Rashid Khan and Anik Das. Build Better Chatbots. Apress, 2018 (cit. on p. 9).
[6] Kyusong Lee et al. “Conversational Knowledge Teaching Agent that Uses a Knowl-

edge Base”. In: Proceedings of the SIGDIAL 2015 Conference. (Prague). Associa-
tion for Computational Linguistics (ACL), Sept. 2015, pp. 139–143 (cit. on p. 7).

[7] Bing Liu. “Sentiment Analysis and Subjectivity”. In: Handbook of Natural Lan-
guage Processing. Ed. by Nitin Indurkhya and Fred J Damerau. Chapman and
Hall Ltd, Jan. 2010, pp. 627–666 (cit. on p. 11).

[8] Bing Liu and Lei Zhang. “A Survey of Opinion Mining and Sentiment Analy-
sis”. In: Mining Text Data. Ed. by Charu C. Aggarwal and Cheng Xiang Zhai.
Heidelberg: Springer-Verlag, 2012, pp. 415–463 (cit. on p. 11).

[9] Marco Lui, Jey Han Lau, and Timothy Baldwin. “Automatic Detection and Lan-
guage Identification of Multilingual Documents”. Transactions of the Association
for Computational Linguistics 2 (Dec. 2018), pp. 27–40 (cit. on p. 5).

[10] Lian Meng and Minlie Huang. “Dialogue Intent Classification with Long Short-
Term Memory Networks”. In: Natural Language Processing and Chinese Comput-
ing. Springer International Publishing, 2018, pp. 42–50 (cit. on p. 5).

[11] Kiran Ramesh et al. “A Survey of Design Techniques for Conversational Agents”.
In: Communications in Computer and Information Science. Vol. 750. Springer
Verlag, 2017, pp. 336–350 (cit. on p. 7).

55

References 56

[12] Iulian V. Serban et al. “Building End-To-End Dialogue Systems Using Generative
Hierarchical Neural Network Models”. In: Proceeding of the Thirtieth AAAI Con-
ference on Artificial Intelligence. (Phoenix). Association for the Advancement of
Artificial Intelligence (AAAI), Apr. 2016, pp. 3776–3783 (cit. on p. 11).

[13] Amir Shevat. Designing Bots: Creating Conversational Experiences. O’Reilly UK
Ltd, 2017 (cit. on p. 8).

[14] Ion Smeureanu and Cristian Bucur. “Applying Supervised Opinion Mining Tech-
niques on Online User Reviews”. Informatica Economic Journal 16.2 (2012),
pp. 81–91 (cit. on p. 10).

[15] Dieu Thu Le, Cam-Tu Nguyen, and Kim Anh Nguyen. “Dave the Debater: A
Retrieval-Based and Generative Argumentative Dialogue Agent”. In: Proceedings
of the 5th Workshop on Argument Mining. (Brussels). Association for Computa-
tional Linguistics, Nov. 2018, pp. 121–130 (cit. on p. 7).

[16] Alan Mathison Turing. “Computing Machinery and Intelligence”. Mind 49 (1950),
pp. 433–460 (cit. on p. 3).

[17] J Weizenbaum. “ELIZA—A Computer Program For the Study of Natural Lan-
guage Communication Between Man And Machine”. Communications of the ACM
9 (1966), pp. 36–45 (cit. on p. 4).

[18] Hao Zhou et al. “Emotional Chatting Machine: Emotional Conversation Genera-
tion with Internal and External Memory”. In: The Thirty-Second AAAI Confer-
ence on Artificial Intelligence. AAAI, Feb. 2018, pp. 730–739 (cit. on p. 11).

Online sources

[19] Dialogflow Agents Overview. 2019. url: https : / / dialogflow . com / docs / agents
(visited on 04/12/2019) (cit. on p. 27).

[20] Dialogflow Create Fulfillment Using Webhook. 2019. url: https : //dialogflow . c
om/docs/tutorial - build - an- agent/create - fulfillment - using - webhook (visited on
04/12/2019) (cit. on p. 28).

[21] Dialogflow Entities Overview. 2019. url: https ://dialogflow.com/docs/entities
(visited on 04/11/2019) (cit. on p. 27).

[22] Dialogflow Entity Matching. 2019. url: https : / / dialogflow . com / docs / intents
(visited on 04/10/2019) (cit. on p. 27).

[23] MonkeyLearn. Sentiment Analysis nearly everything you need to know. 2018. url:
https ://monkeylearn . com/sentiment - analysis/ (visited on 04/10/2019) (cit. on
pp. 11, 12).

[24] Olga Davydova. 25 Chatbot Platforms: A Comparative Table. 2017. url: https
://chatbotsjournal.com/25- chatbot- platforms- a- comparative- table- aeefc932eaff
(visited on 03/12/2019) (cit. on p. 15).

[25] Tom Hall. How to choose a user research method. 2017. url: https://uxplanet.o
rg/how-to-choose-a-user-research-method-985112051d84 (visited on 06/02/2019)
(cit. on p. 46).

https://dialogflow.com/docs/agents
https://dialogflow.com/docs/tutorial-build-an-agent/create-fulfillment-using-webhook
https://dialogflow.com/docs/tutorial-build-an-agent/create-fulfillment-using-webhook
https://dialogflow.com/docs/entities
https://dialogflow.com/docs/intents
https://monkeylearn.com/sentiment-analysis/
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://uxplanet.org/how-to-choose-a-user-research-method-985112051d84
https://uxplanet.org/how-to-choose-a-user-research-method-985112051d84

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Motivation
	Idea
	Goals
	Outline

	Basic Concepts of Chatbot Systems
	Conversational Agent
	History

	Components of a Conversational Agent
	Language Identification
	Intent Classification
	Knowledge Management
	Response Generation
	Chatbot Categories
	Use-Cases

	Sentiment Analysis
	Definition
	Algorithms
	Mode of Operation
	Challenges

	State of the Art
	Chatbot Frameworks
	Dialogflow
	Amazon Lex
	Wit.ai
	Watson Assistant
	LUIS.ai
	Comparison

	Related Work
	Kommunicate
	Botsify
	Flow XO
	ActiveChat
	Intercom

	Conceptual Project Design
	Requirements
	Web-Application
	Communication

	Use-Case
	Handover Detection
	Handover Reaction
	Pre-Handover Phase
	Wait-Handover Phase
	Post-Handover Phase

	Technical Design
	Web-Application
	Chatbot Agent
	Dialogflow API
	Aylien API
	Dandelion API

	System Design

	Technical Implementation
	Technology Stack
	System Architecture
	Client
	Server
	Handover Detection
	Handover Reaction

	Result

	Evaluation
	Accomplishment of the Requirements
	Web-Application and Chat Interface
	Communication of the Web-Application and Dialogflow
	Handover Detection
	Handover Reaction
	Human Agent Live Chat

	Usability Testing
	Scenarios
	Task Completion

	Performance Analysis
	Possible Extensions

	Conclusion
	Content of the CD-ROM
	PDF-Files
	Project Data
	Dialogflow Agent
	Literature
	Online Literature
	Miscellaneous

	References
	Literature
	Online sources

