
Methods for implementing improved

privacy and security in iOS messaging

applications

Sarah Michaela Sauseng

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Juni 2018

© Copyright 2018 Sarah Michaela Sauseng

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, June 25, 2018

Sarah Michaela Sauseng

iii

Contents

Declaration iii

Kurzfassung viii

Abstract ix

1 Introduction 1
1.1 Motivation . 1
1.2 Goal of the thesis . 2
1.3 Overview . 2

2 Background 3
2.1 Security challenges in mobile messaging 3

2.1.1 Trust establishment problem . 3
2.1.2 Conversation security problem 3
2.1.3 Transport privacy problem . 4

2.2 Verifiability of users . 4
2.2.1 Access control . 4
2.2.2 Personal privacy . 4

2.3 Traceability of data . 5
2.3.1 Sender-receiver relation information 5
2.3.2 Persistence of data . 5

2.4 Threats in mobile messaging . 6
2.4.1 Possible issues . 6
2.4.2 Possible adversaries . 7

2.5 App architectures . 7
2.5.1 MVC . 8
2.5.2 MVP . 8
2.5.3 MVVM . 9

3 Related Work 10
3.1 Techniques and standards . 10

3.1.1 CIA triad . 10
3.1.2 Cryptography . 11
3.1.3 Authentication . 13
3.1.4 Network transport security . 13

iv

Contents v

3.2 Overview of related messaging applications 14
3.2.1 WhatsApp . 14
3.2.2 Telegram . 15
3.2.3 Viber . 15
3.2.4 Snapchat . 16
3.2.5 Dust . 16
3.2.6 Confide . 16

3.3 Summary of common concepts . 17
3.3.1 User authentication . 17
3.3.2 End-to-end encryption . 17
3.3.3 Deletion and time limitation of messages 17
3.3.4 Screenshot detection/protection 17

4 Conception 18
4.1 Preliminary considerations . 18

4.1.1 Research results . 18
4.1.2 Traceability of users . 19
4.1.3 Exchange of contact data . 20
4.1.4 Data transience . 20
4.1.5 Prevention of persistence threats 21

4.2 Requirements . 21
4.2.1 Frontend . 21
4.2.2 Backend . 21
4.2.3 Encryption/decryption of messages 22
4.2.4 Verifying/signing of messages . 22
4.2.5 Exchange of contact data . 22
4.2.6 Data transience . 23
4.2.7 Prevention of persistence threats 23

4.3 Backend architecture . 23
4.3.1 Models . 24
4.3.2 Controllers . 24
4.3.3 Middleware . 25
4.3.4 Database . 25

4.4 Frontend architecture . 25
4.4.1 VIPER . 25
4.4.2 Provider . 26
4.4.3 DTOs . 27
4.4.4 VIPER modules . 28

5 Implementation 30
5.1 Backend . 30

5.1.1 Vapor . 30
5.1.2 Models . 31
5.1.3 Controllers, routes and middlewares 32

5.2 Frontend . 34
5.2.1 Module structure . 34

Contents vi

5.2.2 Onboarding module . 36
5.2.3 Messages module . 37
5.2.4 Contacts module . 38
5.2.5 WriteMessage module . 39
5.2.6 ReadMessage module . 39
5.2.7 AddContact module . 40
5.2.8 UserProfile module . 40
5.2.9 Application entry point . 41
5.2.10 Crypto provider . 41
5.2.11 Backend provider . 42
5.2.12 Storage provider . 44
5.2.13 Push notifications . 45
5.2.14 QR-code scanner . 45
5.2.15 Animations . 46

5.3 Application flow . 47
5.3.1 Onboarding module . 47
5.3.2 Messages module . 47
5.3.3 WriteMessage module . 48
5.3.4 ReadMessage module . 49
5.3.5 AddContact module . 49

5.4 Reflection on design decisions . 50
5.4.1 General . 50
5.4.2 Backend . 51
5.4.3 Frontend . 52

6 Evaluation 54
6.1 Evaluation conditions . 54

6.1.1 General . 54
6.1.2 Black-box testing . 55

6.2 Comparison . 55
6.2.1 Traceability of users . 56
6.2.2 Data security . 57
6.2.3 Exchange of contact data . 58
6.2.4 Data transience . 59
6.2.5 Prevention of persistence threats 59
6.2.6 Discussion . 61

6.3 Limitations . 63
6.3.1 Unintended access to device . 63
6.3.2 Unintended access to server data 63
6.3.3 Contact exchange . 63
6.3.4 Additional persistence threats . 63
6.3.5 File type handling . 64
6.3.6 Group chats . 64

6.4 Possible improvements . 64
6.4.1 Authentication process . 64
6.4.2 Key creation/storage . 64

Contents vii

6.4.3 Screenshot prevention . 64
6.4.4 Additional features . 65

7 Conclusion 66
7.1 Further research . 67

A CD-ROM/DVD Contents 69
A.1 Project . 69
A.2 Thesis . 69

References 70
Literature . 70
Software . 70
Online sources . 71

Kurzfassung

Heutzutage ist die Kommunikation durch mobile Geräte zu einem wesentlichen Be-
standteil unseres Lebens geworden. Insbesondere die Verwendung von Messaging-Apps
für unsere täglichen Unterhaltungen hilft uns leicht mit anderen in Kontakt zu bleiben.
Dabei darf jedoch nicht auf die Sicherheit und Privatsphäre der Nutzer und ihrer Daten
vergessen werden, die gerade beim Austausch von digitalen Nachrichten eine wichtige
Rolle spielen. Dies stellt auch ernstzunehmende Probleme im Bezug darauf dar, wie
persönlich und intim die Nachrichten sind, die gesendet werden. Niemand möchte es
riskieren, dass Fremde auf den Inhalt einer Nachricht zugreifen können oder dass die
eigenen gesendeten und persönlichen Daten unkontrolliert verbreitet werden. Dies ist
speziell dann möglich, wenn diese Inhalte auf dem Client oder Server persistiert werden
und jederzeit abrufbar sind. Der Schwerpunkt dieser Arbeit liegt daher in der Konzep-
tion und Umsetzung einer iOS Anwendung, die anonyme Kommunikation ermöglicht
und für Transienz der verwendeten Daten sorgt, wodurch weder am Client noch am
Server Informationen erhalten bleiben. Dazu werden insbesondere die Methoden der
Verschlüsselung von Daten, der Beibehaltung von Anonymität durch Verwendung aus-
schließlich generierter Benutzeridentifikation, und der Transienz der Nachrichten durch
automatisiertes Löschen auf Client und Server eingesetzt. Gerade clientseitig stellt dies
eine zusätzliche Herausforderung dar, da auch die Möglichkeit in Betracht gezogen wer-
den muss, dass die Nachricht mit Mitteln ausserhalb der Applikation (Screenshot) per-
sistiert werden kann. Durch Umsetzung dieser Massnahmen wird gewährleistet, dass
mobile Kommunikation unter maximaler Beibehaltung von Privatsphäre und Sicherheit
durchgeführt werden kann und die Rückverfolgbarkeit von Benutzern und deren Daten
auf ein Minimum reduziert wird.

viii

Abstract

Nowadays the communication through mobile devices has become a substantial part of
our everyday life. In particular, the use of messaging apps for our daily conversations
helps us easily stay in touch with others. Nevertheless, one should not forget the secu-
rity and privacy of users and their data, which play an essential role in the exchange of
digital data. This also poses severe problems concerning how personal and intimate the
messages being sent are. Nobody wants to risk strangers being able to access the content
of a message, or that personal data gets distributed uncontrolled. This is particularly
possible if these contents are persisted on the client or server and are retrievable at any
time. Therefore, the focus of this work is the conception and implementation of an iOS
application that enables anonymous communication and ensures the transience of the
data used, whereby information is not preserved either at the client or the server. In
particular, the methods of data encryption, the retention of anonymity by using exclu-
sively generated user identification, and the transience of the messages by an automated
deletion on client and server are used. Especially on the client side, this poses an addi-
tional challenge, since the possibility must also be considered that the message can be
persisted with means outside the application (screenshot). The implementation of these
measures will ensure that mobile communications can be conducted with maximum
privacy and security while minimizing the traceability of users and their data.

ix

Chapter 1

Introduction

1.1 Motivation
Today the importance of privacy and data security in digital communication is becoming
an increasingly significant topic. Nowadays almost every company contributing services
that operate with user-related data has to implement methods to preserve and protect
the customer’s data. Especially with mobile messaging applications, it is of high value
concerning how personal the type of messages sent are and how precisely someone can get
traced back. In general, one can assume that personal privacy is essential for everyone,
but when it comes to using messaging applications for exchanging our private thoughts,
feelings, images and so on we like to forget about the impact on it. Nearly all messaging
platforms store chat data to provide specific functionalities or for statistical analyses.
Therefore it can be considered that the ownership of a message gets lost somehow when
a person sends it through mobile communication.

Another remarkable aspect regarding the privacy of users is the traceability of data.
Even if most of the applications already provide end-to-end encryption techniques, it
is always possible to find out who is behind a message or to persist the data sent.
Every messaging application requests personal information at the registration. Thus
users are always verifiable by their mobile number, email address or other additional
information. In addition to this, relations between users are possible to be traced back
by their contact book data and by the sender-receiver data sent with a message.

Therefore new methods for mobile communication that solve these issues or even lead
to the full anonymity of users combined with common, strong security aspects should
be developed. These include the assurance of privacy by establishing full messaging
functionality without using any personal user information and the guarantee that the
content of a message does not get stored on any server or gets persisted in another
possible way. Moreover, it is essential to ensure that relations between users are not
traceable and that only the targeted receiver is able to uncover the data of a message.
These methods should then get combined with all further security aspects necessary to
support the protection of application functionalities.

1

1. Introduction 2

1.2 Goal of the thesis
Concerning the above-described motivation, this thesis aims to find new methods for
implementing higher privacy and security in mobile communication. Therefore the chal-
lenge will be figuring out which technologies and methods improve the privacy and
security of a user and how they can be implemented to even guarantee anonymity for a
person that uses a messaging application for private communication. A new approach
for mobile conversation should be developed where data can be exchanged entirely pri-
vate, but still in a secure way. Users themselves should be able to verify who is behind
a message, even if the information that is stored and transferred is kept anonymous.
Furthermore, it is essential that all options that would make it possible to persist the
message data and would lead again to the traceability of a user, get eliminated as far
as possible. Therefore several techniques that prevent the data persistence of messages
have to be implemented. By combining all these aspects, it should be possible to find a
new approach for a more secure and private mobile communication.

1.3 Overview
First, in chapter 2 the current state of the art and the critical concerns regarding privacy
and security of today’s digital communication and their relation to mobile environments
are briefly described. Then chapter 3 refers to related work of already existing tech-
niques and methods for implementing higher security and privacy in mobile messaging.
Furthermore, the most popular messaging applications and their concepts to provide
improved privacy protection get demonstrated. In chapter 4 the requirements, the con-
ception of building a secure messaging application and the architecture get derived from
the research results. Next, in chapter 5 a detailed description of the implementation and
the technical design of the frontend and backend application is presented. After that,
an evaluation of the developed methods is described in chapter 6 by comparing them
with an already existing application from the predefined requirements. Finally, chapter
7 draws a conclusion of the outcome of the thesis and the implemented methods, and a
brief perspective into further research is provided.

Chapter 2

Background

In this chapter, the current state of the art regarding privacy and security in mobile
communication gets described briefly. Since the primary focus of this thesis lies on
developing new secure patterns for messaging applications in iOS, all the parts that get
explained are related to this platform. This part is about the main concerns in mobile
security and their importance for ensuring confidentiality of users. In the following
pages some of the critical concerns of today’s digital communication and their relation
to mobile environments get demonstrated.

2.1 Security challenges in mobile messaging
Before developing a new concept to establish secure and private messaging, it is nec-
essary to be informed about the main challenges that appear in current mobile com-
munication. There exist several problem areas that have to be considered when dealing
with the security aspects of messaging applications. They can be divided into three
major parts: the trust establishment problem, the conversation security problem and the
transport privacy problem [7], and get individually disclosed hereafter.

2.1.1 Trust establishment problem
This problem is about the verification of users assuring that they are communicating
with the parties they intend. That includes the guarantee of cryptographic long-term
key distribution, divided into the parts of long-term key exchange and long-term key
authentication. Long-term key exchange refers to the process where users send cryp-
tographic key material to each other. Long-term key authentication is the mechanism
allowing users to ensure that long-term keys get associated with the correct real-world
entities.

2.1.2 Conversation security problem
The second problem area includes the terms of conversation security and is about en-
suring the protection of exchanged messages during conversations. Therefore a conver-
sation security protocol should be used to protect the security and privacy of exchanged

3

2. Background 4

messages. That includes how messages are encrypted, the attached data and which
cryptographic protocols are performed.

2.1.3 Transport privacy problem
The last problem a�ects the transport privacy that is responsible for hiding the commu-
nication metadata. The goal is to hide message metadata such as the sender, receiver,
and conversation to which the message belongs. By using transport privacy layers and
schemes, the exchange of the messages gets defined and may also get used for privacy-
preserving contact discovery.

2.2 Verifiability of users
As already mentioned in section 2.1.1, the verifiability of users is an essential concern
regarding trust establishment when exchanging mobile messages.

2.2.1 Access control
When sending messages between recipients, access control is a necessary part for ensur-
ing that only users that are authorized can retrieve the information sent. It is essential
to set access restrictions to protected data for all other stranger parties so that only the
meant end users receive the information. In general, this concept is divided into three
main parts: identification, authentication, and authorization.

Identification

Identification is the first step of the process for gaining access to specific data. The term
refers to providing a subject that the entity claims to be. In most cases, this means
some username, email or mobile number.

Authentication

The next step is about proving that the identity of the subject belongs to it. Usually,
this is implemented by making use of a password, an authentication phrase, a pin or
cryptographic keys.

Authorization

The last step is then about controlling access of the given identity. Only intended entities
should be able to gather specific data.

2.2.2 Personal privacy
Another issue that is specifically related to this master thesis is the personal privacy of
users. Therefore a di�erent perspective about user verification in regards to the relation
of providing personal registration/verification data and the permanent persistence of
this data on a server. So it is not only about the importance of protecting access to
specific data or the identity proof of entities, but it can also be considered as a concern

2. Background 5

for personal privacy since the digital identification data is always persisted and leads
to the real person behind it. A typical example would be using the mobile number or
email address for user registration.

So another approach for user verification would be to stay anonymous as a person
behind the sent messages as far as possible, but still enabling an access control process
to guarantee that only authorized persons can use the messaging application for their
purposes. Therefore no personal registration data has to be provided or refers to a
specific person and also does not get persisted on some remote server or database.
Nevertheless, all functionality of the application should be protected by giving only
access to verified entities.

2.3 Traceability of data
Nearly every messaging application provides some chat history for users to read earlier
messages at a later time. In addition to this, the data gets saved either on a server or
locally on the smartphone of both communication participants, the sender, and receiver.
In the majority of cases, this is done intentionally to provide a feature for the user
allowing him to retrace a conversation at any later time. However, often it appears that
people send very personal data and are not aware of the fact that it gets persisted
somewhere and can not be deleted that quickly. Also, messages can be distributed
very fast by forwarding it to other users and as a result get again stored on other
additional smartphones. There exist several possibilities to retrace data in messaging
applications, they can be divided into the following parts: the sender-receiver relation
and the persistence of the data.

2.3.1 Sender-receiver relation information
When sending messages between two or more communication parties, there is always
a relation between the sender and the receiver(s). Even if the chats are end-to-end
encrypted and the content of the messages cannot be detected so quickly, there always
exists some possibility to check which users communicate with each other. By using their
destination-addresses (mobile number, email address or username) with the metadata
of sent messages, it is possible to discover that these entities communicate with each
other.

2.3.2 Persistence of data
Any data that is related to the communication process of messaging applications get on
some point of data transmission persisted on either a server, a database or on smart-
phones. By doing a backup of the chat history or saving sent images/videos to the
photo library, the content gets stored. Also by the distribution of messages, each recip-
ient might persist them on their smartphones or likewise in their chat history. Another
place where the chat data gets stored is on the server of the messaging applications,
even if this is often only for a short time until the receiver reads the message.

In addition to this there exist potential other methods to save chat data. When
exchanging messages with other users, the receiver(s) can also persist the content by

2. Background 6

taking a screenshot, recording a video clip or sound recording with either, the receiver’s
smartphone, or by any other third party media device. So, there are several ways where
messages get persisted and thus every content that gets sent via digital communication
potentially leaves behind tracks.

2.4 Threats in mobile messaging
The last point worth noting is about possible threats in mobile messaging applications.
These are significant issues that, when paid to little attention to them, could potentially
lead to disclosing sensitive information. Especially in messaging applications there exist
several entry points on the whole communication process that are vulnerable to possible
attackers. Regarding the kind of implementation, the possible threats di�erentiate in
how they have to be prevented. It can be distinguished between mobile web applica-
tions and native applications. Moreover latter can be divided into the primary platforms
iOS, Android, and some additional ones. Since this work focuses on privacy and secu-
rity for native iOS messaging applications, only topics that are related to this kind of
implementation get mentioned.

2.4.1 Possible issues
When counteracting to possible threats that can occur in mobile messaging applications,
as a first step, it is essential to define the issues that lead to them. One central issue
found during the research is about jailbreaked devices [2, p. 14]. Furthermore, the topics
of weak server implementation, insecure data handling, insu�cient transport-layer pro-
tection, non-validated user input and broken cryptography are also of primary concern
[3]. Each of them gets described in more detail hereafter.

Jailbreaked devices

Jailbreaking an iOS smartphone leads to higher control of the device, more access to
system files and therefore enables higher functionality to personalize features. However,
they also come with the disadvantage that jailbreaking smartphones are more accessible
to exploit for hackers.

Weak server implementation

A necessary part, when using client-server communication, is that the server-side part
gets also protected against potential attacks. Poor authorization and authentication
would be one issue that would support attackers gaining access to sensitive data.

Insecure data handling

When sensitive data that is not encrypted, is stored on a device or when data is long-
term cached, but not intended for it, can lead to the exposure of sensitive information
and privacy violations. This issue also appears when generally failing to leverage best
practices for a particular platform. In addition to this sensitive information, disclosure

2. Background 7

can appear as result of hardcoding such data as login credentials, shared secret keys,
access tokens or other business logic that an attacker might be able to access.

Insu�cient transport-layer protection

For client-server communication, it is necessary to use secure transport-layer protocols.
Otherwise, the data sent could get revealed by man-in-the-middle attacks.1

Non-validated user input

Every user-related input has to be validated and examined on possible code injections
that would otherwise lead to the exfiltration of data or the escalation of privileges.

Broken cryptography

Particular attention should get paid to cryptography and the issues that can appear
with it. When using custom instead of standard cryptographic algorithms or hardcod-
ing cryptographic keys into the application code itself, it can result in a loss of data
confidentiality or privilege escalation.

2.4.2 Possible adversaries
In addition to the definition of potential issues, it is also of importance to know about
possible adversaries in secure messaging. When considering a variety of opponents, the
following entities can be determined [7, p. 233].

Local adversaries

That would be attackers controlling local networks like open wireless access points.

Global adversaries

These include attackers controlling large segments of the internet, such as powerful
nation-states or large internet service providers.

Service provider

For messaging systems that require a centralized infrastructure (e.g., public-key direc-
tories) the service operators can also be considered as potential adversaries.

2.5 App architectures
Another mentionable point for developing an iOS messaging application is the range
of architectures that can be implemented. The most popular are the MVC, MVP and
MVVM for structuring such applications. These architectures also exist for data-driven

1
A man-in-the-middle attack occurs when an attacker secretly relays and alters the communication

between two parties.

2. Background 8

Notifies Model

Sends user actions

View Updates

UpdatesController

Figure 2.1: Structure of the MVC architecture.

Notifies Model

Owns and updates

Passive View Updates

Owns and updatesPresenter

Figure 2.2: Structure of the MVP architecture.

web applications, but partially with minimal adjustments. All of them facilitate a sep-
aration of development of the graphical user interface from the development of the
business logic. Hereafter a brief overview of them should be given. See for more detailed
explanation about these patterns for iOS under [26].

2.5.1 MVC
The MVC (model-view-controller) architecture splits the responsibilities into the model,
the view and the controller. In figure 2.1 the structure is shown. The model is responsible
for the data or a data access layer which manipulates the data. The view has the function
to display and send user actions to the controller. The controller is the mediator between
the model and the view. It updates the view with changes from the model and vice versa.
In iOS reality the view and controller are so tightly coupled through the lifecycle of the
view that they are not really separated anymore.

2.5.2 MVP
In MVP (model-view-presenter) the responsibilities are divided into the model, the view
and the presenter (see figure 2.2). Again the model is responsible for the data or data ac-
cess layer. The view is also called “passive view”, it owns the presenter and gets updated
by it. The presenter owns the model and gets notified of changes in it, subsequently it
updates the view.

2. Background 9

Notifies Model

Owns

View Data and user action

binding

Owns and updatesView Model

Figure 2.3: Structure of the MVVM architecture.

2.5.3 MVVM
The MVVM (model-view-viewmodel) includes the model, the view and the viewmodel.
The structure is shown in figure 2.3. Here as well, the model contains the data and logic
for the data access layer and the view is only displaying content. So there is no tight
coupling between the view and the model. The huge di�erence to the MVP architecture
is that it does data and event binding between the view and the viewmodel. Therefore
the view is automatically updated when the viewmodel changes.

Chapter 3

Related Work

The research about privacy protection and data security in mobile communication has
been growing a lot over the last years. Nearly every messaging application supplies
several techniques to protect user data and has implemented secure communication
processes. This section provides a short overview of the techniques, methods and related
applications that were found during the research.

3.1 Techniques and standards
In this section, the techniques and standards that are relevant for developing a secure
mobile messaging concept and for understanding the following chapters get described.

3.1.1 CIA triad
The CIA triad [25] is one of the fundamental concepts in information security and
combines the three terms of confidentiality, integrity and availability, each standing for
a principle that supports higher security for users in organizations when being well
maintained.

Confidentiality

Confidentiality is about the principle of “least privilege”. This principle states that access
to information, assets, and so on, should be granted only on a need to know basis, so
that information is only available to specific users. Concerning this, the principles of
identification, authentication, and authorization support confidentiality and are related
to it through their multiple access and privacy controls.

Integrity

The sender and receiver of a message may have a need for confidence that the message
has not been altered during transmission, integrity ensures this. Information stored in
underlying systems, databases, and so on, must be protected through access controls,
and there should be an accepted procedure only to change the stored/transit data.

10

3. Related Work 11

Availability

The availability concept is about making sure that the services of an organization are
available. For any information system to serve its purpose, the information must be
available when it is needed. By this the computing systems used to store and process
the information, the security controls used to protect it, and the communication channels
used to access it must be operating correctly.

3.1.2 Cryptography
Cryptography aims to store and transmit data in a form that only the authorized par-
ties can interpret it. Nearly all messaging applications use some cryptography standard
to prevent third parties from having plaintext access to messages. Only the users that
are communicating with each other should be able to read the content. Cryptography
includes techniques and standards that are essential for privacy and secure communica-
tion on the internet. It is divided into several field areas, the main cryptography types
that are related to secure messaging and this thesis are the following: symmetric-key
cryptography and public-key cryptography. See [19, 5] for a more detailed description.

Symmetric-key cryptography

In symmetric-key cryptography sender and receiver share both the same key for encryp-
tion and decryption of messages. An algorithm is used for key creation, encryption, and
decryption. The sender and receiver must both keep a copy of the secret key in a secure
place. It is a very e�ective and fast approach. The key only has to be generated, sent
over to the receiver and the decryption can take place immediately. One drawback of
symmetric-key cryptography is that if someone can get hold of the key, they can also
encrypt and decrypt the data.

Public-key cryptography

In contrast to symmetric-key cryptography, an asymmetric key pair gets used for en-
cryption and decryption. This pair is split up in a private key and a public key. Whereas
the private key must be kept secret and is only used for decryption of the received data,
the public key can be exchanged for possible communication entities. So anybody can
encrypt plain text with the public key, but only the holder of the private key can de-
crypt the ciphertext1 back to plain text. This method is more secure than symmetric-key
cryptography, but it consumes more power and hardware processing time.

Encryption algorithms

These get used for generation, the modification, and transportation of the keys. An
encryption algorithm is also used to turn plain text into ciphertext and vice versa.
Below some of the main and most popular algorithms get explained briefly. In [19, 1]
these algorithms get specified in more detail. Additional an overview can be found in
table 3.1. However, before going through the algorithms, a small recap on a couple of
terms related to these algorithms is given.

1
The ciphertext is the result of encryption that was performed on plain text.

3. Related Work 12

Parameters DES AES RSA ECC

Type Symmetric Symmetric Asymmetric Asymmetric
Key Length
(Bits)

64 (56 usable) 128,192,
256

Key length
depends on
number of bits
in the module

Smaller but
e�ective key

Block Size
(Bits)

64 18 Variable
block size

Stream size
is variable

Level of
Security

Adequate
security

Excellent
security

Good level
of security

Highly secure

Encryption
Speed

Very slow Faster Average Very Fast

Table 3.1: Comparison of encryption standards [1, p. 304].

Encryption key size: The number of bits in a key used by a cryptographic algorithm.
Block size: Fixed length groups of bits used for data encryption of block cipher.
Stream cipher: Plaintext digits get combined with a random cipher digit stream.
Block cipher: Encryption of a specific block size (known as rounds) and then padding

the plain text so that it is a multiple of a block size.

DES: DES (Data encryption standard) is one of the most well-known symmetric-key
data algorithms. It uses 56 bits key for encryption and decryption. It completes the 16
rounds of encryption on each 64 bits block of data. Now it is an old algorithm and is
widely considered insecure. The algorithm was fortified with new updates called 2DES
and 3DES, merely layering the cipher so that it would have to decrypt three times to
each data block.

AES: The AES (Advanced encryption standard) was selected as a replacement to 3DES
and is a symmetric block cipher. In more detail, it consists even of three block ciphers.
Each cipher encrypts and decrypts data in blocks of 128 bits using cryptographic keys of
128 bits, 192 bits, and 256 bits. AES is considered as very safe and low power consuming
algorithm.

RSA: The RSA (Rivest-Shamir-Adleman) is the most important, best known and
widely used asymmetric-key algorithm. It uses an asymmetric block cipher and large
integers like 1,024 bits in size. The main disadvantage is its algorithm speed, but it
provides a reasonable level of security.

ECC: The ECC (Elliptic curve cryptography) provides an alternative mechanism for
implementing asymmetric-key cryptography. It creates faster, smaller and more e�cient

3. Related Work 13

keys compared to other encryption algorithms. It uses an approach based on elliptic
curves over finite fields and can o�er the same level of cryptographic strength at much
smaller key sizes. Some disadvantages would be that it increases the size of encrypted
text and that it is dependent on very complex equations which lead to increase the
complexity of encryption algorithm.

Other mentionable algorithms would be the Di�e-Hellman (asymmetric), PGP (asym-
metric), IDEA (symmetric), MARS (symmetric), RC5 (symmetric), Blowfish (symmet-
ric), Twofish (symmetric) and Threefish (symmetric). More information see at [4, 5].

Digital signature

Another essential part when exchanging encrypted text via digital communication is
the signature of messages. A signature is used to verify the sender and validates if the
expected entity indeed created the message. Another advantage of using a signature is
the guarantee that the message was not altered in transit and that the sender cannot
deny having it sent. Digital signatures can only be applied together with asymmetric-key
algorithms for the reason that the private key is needed to generate the signature.

3.1.3 Authentication
To ensure that not everyone can send messages, spam a server with requests and that
not everyone can get access to specific data, a proper authorization process has to be
provided. There exist several options for this, some of them get shortly demonstrated
afterward. Also mentionable is the digital signature scheme as explained before in section
3.1.2, because it also refers to authenticating the real sender behind a message.

Bearer token authentication

The bearer token authentication is an HTTP authentication scheme that involves se-
curity tokens called bearer tokens. The token is a secret string that gets generated by
the server and has to be provided by the client in the authorization header each time
sending a request.

Basic user-password authentication

The basic user-password authentication is a simple authentication scheme built into
the HTTP protocol. When transmitting a request to the server, the client sends his
username and his password with the authorization header.

Digest authentication

The digest authentication works similar to the basic authentication scheme, but it ap-
plies a hash function to the username and password before sending them.

3.1.4 Network transport security
Another point worth noting is the establishment of a secure client-server communication
to prevent man-in-the-middle attacks. Therefore it should be ensured that a proper

3. Related Work 14

network transport security gets implemented. Usually, the following protocols get used
to providing higher security in network communication.

TLS

TLS (Transport layer security), former known as SSL, is a cryptographic protocol that
provides communication security over a computer network. It is composed of two layers:
the TLS record protocol and the TLS handshake protocol. The record protocol provides
connection security, while the handshake protocol allows the server and client to au-
thenticate each other and to negotiate encryption algorithms and cryptographic keys
before data gets exchanged [29].

HTTPS

HTTPS (Hypertext transfer protocol secure) is a protocol for accessing a secure web
server when authentication and encrypted communication is possible. It directs the
message to a secure port number, and then the session is managed by a security protocol.
HTTPS is used together with TLS to encrypt the session data. In addition to this, the
use of digital certificates gets supported so that a user can authenticate the sender [28].

3.2 Overview of related messaging applications
The following part gives an overview of common most frequently used messaging ap-
plications and implement approaches for security and privacy protection. In table 3.2
a summary of the most important properties is portrayed. In addition to this, each
application and its functionality gets explained shortly. WhatsApp, Telegram, and Viber
are the most popular and a more detailed comparison of them is published in [6]. Other
applications that provide similar approaches to communication security, but do not get
described, are Signal, Wickr, Whisper, and Blind.

3.2.1 WhatsApp

WhatsApp2 is one of the worldwide most known messaging applications and o�ers text
and audio messaging, free voice calling or sharing di�erent document types. It allows
reaching all contacts in the address book on the smartphone who have installed the
same application. Messages, files, and even phone calls are end-to-end encrypted so
that neither WhatsApp or any third-party can access it [34]. Data that gets collected
are account information (mobile number, mobile address book, other account data).
Messages get persisted until they get delivered to the recipient or for 30 days, rather
than media content which gets stored for a longer time on the server. WhatsApp uses no
kind of screenshot protection or time limitation of messages, but there exists the option
to delete messages afterward [33].

2https://www.whatsapp.com/

https://www.whatsapp.com/

3. Related Work 15

Parameters WhatsApp Telegram Viber Snapchat Dust Confide

Saves data
on server

X X X X X X

Mobile number as
registration data

X X X X X X

End-to-End
Encryption

X X X - X X

Screenshot
detection

- - - - X X

Screenshot
protection

- - - - - X

Time-limited
messages

- - - X X X

Option to
delete messages

X X X X X X

Table 3.2: Overview of related messaging applications.

3.2.2 Telegram

Telegram3 is a cloud-based mobile and desktop messaging application with a focus on
security and speed. It has many similarities to WhatsApp. Again the phone number is
used as primary user identification, contacts in the smartphone that use the same appli-
cation get found, and messages are end-to-end encrypted. In addition to this Telegram
provides functionality that users can also create a username as a unique id to use it
for conversation. Thus privacy protection gets enhanced. Also, a higher variety of file
types gets provided and are possible to share without size limit. Chats can be created
as general or as secure conversations. For general chats, the data sent gets stored on the
server. Also, the registration data (mobile number) and contact book data get persisted.
When using secret chats, nothing except media files gets saved. There is no screenshot
protection or time limitation of messages given, but again the option to delete a message
is provided [31].

3.2.3 Viber

Viber4 is a mobile messaging application that provides some further features in addi-
tion to the standard functionality of the other applications. That would be high-quality
video- and voice call, a calling service that can dial to any mobile number, even if
the dialed number is not using Viber and so-called public chats that allow users to

3https://telegram.org/
4https://www.viber.com/

https://telegram.org/
https://www.viber.com/

3. Related Work 16

communicate openly. The mobile number gets used for registration, conversations are
end-to-end encrypted, and messages can be deleted. As for the other applications, ac-
count information gets stored permanently and chat data gets saved temporarily until
the recipient reads it. Viber also does not o�er some screenshot protection algorithm or
the time-limitation of messages [32].

3.2.4 Snapchat

Snapchat5 is a mobile image and multimedia messaging application. Therefore it provides
more functionalities than a simple messaging application. One of the principal concepts
of Snapchat is that users can share text, pictures, and videos that are only available for a
short time before they get automatically deleted. Meanwhile, there exists the possibility
to save messages in so-called memories. Also, the option of creating a Snapchat story
exists. These consist of “snaps”6 and are posted for 24 hours, though they can be deleted
at any time, but can also be saved by other users. The name and mobile number get used
for registration and all additional account data (username, email, birthday) provided
gets stored on the server. There can be found no further information if chats are end-
to-end encrypted and in iOS, there is no screenshot detection functionality provided
[30].

3.2.5 Dust

Dust7 is another messaging application that combines the time-limitation of messages,
a screenshot detection method and end-to-end encrypted chats to provide secure com-
munication. Users have to provide their mobile number, email address and a username
to use it. These account information also gets stored on the server, in addition to the
user’s contact book and photo rolls that get sent. Messages get deleted automatically
after the receiver read it or after an amount of time that can be set by the sender.
Screenshots are detected, and the sender gets informed if a user has taken a screenshot
[24].

3.2.6 Confide

Confide8 is a messaging application that is available for various platforms and ensures
private communication. It uses end-to-end encryption of chats and allows to send text,
photos, videos, documents, and voice messages. One feature is the self-destruction of
data after it gets read. This messenger has a highly developed secure screenshot protec-
tion technology which is called Screenshield-Kit.9 In the premium version of Confide, the
users can retract messages after they were sent. The application also stores the regis-
tration data (phone number, email address and name) on the server, whereas messages
only get saved temporarily [23].

5https://www.snapchat.com/
6
“Snap” is the shortcut for snapshot.

7https://www.usedust.com/
8https://getconfide.com
9https://screenshieldkit.com

https://www.snapchat.com/
https://www.usedust.com/
https://getconfide.com
https://screenshieldkit.com

3. Related Work 17

3.3 Summary of common concepts
After all the related applications got investigated, the following concepts turned out to
establish increased security and privacy protection in mobile communication.

3.3.1 User authentication
When using any messaging application, a necessary part is user authentication. It has to
be ensured that only valid users have access to the full functionality of the application
and that the communication parties can be identified. By this, the data gets protected,
and users always know with whom they are communicating.

3.3.2 End-to-end encryption
The most used technique for secure communication is cryptography, of course. Nearly
every messaging application provides end-to-end encryption to ensure that only the
recipients can read the plain message text. When using asymmetric key pairs, the data
transmission gets even more secure, because only the holder of the private key can
decrypt the content of a message. In addition to this, by using protocols like TLS,
possible communication attacks get prevented, and an extra layer of security and privacy
is established. By using cryptographic keys to sign and verify messages, it can also be
detected if the message was altered on the network transport and the identity of the
sender can be guaranteed.

3.3.3 Deletion and time limitation of messages
The option to delete messages or that they get removed automatically from a server when
the recipient reads it is a further method to gain higher data security. Another technique
used to avoid data recording is to work with time-limited messages. By removing the
messages from the server and smartphone after the user has read them, it gets ensured
that the data stays in a transient stage and therefore is not verifiable any longer. There
is no possibility to gain access to any message that has been sent at a later time point.
A disadvantage of this concept would be that the users have to remember every part of
the conversation. However, when finding new methods to establish higher privacy and
data protection, this seems like a right approach.

3.3.4 Screenshot detection/protection
Another point to consider is the possibility for users to screenshot the content and
therefore to risk that it gets stored once again. By this, the potential of making the
impermanent permanent is given and thereby the previously stated time limitation
technique would be revoked. Therefore an additional concept to prevent users from per-
sisting messages and keeping the data transient is to implement methods for screenshot
detection and screenshot prevention.

Chapter 4

Conception

In this chapter, the concept of building a secure and anonymous messaging application
gets explained. First, the preliminary considerations that are necessary for planning the
further implementation get explained. After that, the requirements get described and
resulting from there the concept is determined. Finally, an application architecture gets
planned from the previous considerations.

4.1 Preliminary considerations
Before thinking about any further implementation plan, it is necessary to elaborate on
all topics and concepts that establish higher privacy and security in mobile messaging
applications. Correlated to this it must be questioned what the main related goals are
and furthermore which points have to be considered for the implementation to realize
all these objectives.

4.1.1 Research results
Hereafter the principal results of research get described briefly and afterward get dis-
cussed in more detail. Each of them is highly relevant for providing improved privacy
and security in a messaging application, and build the basis for the further conception
and implementation.

Registration

A significant topic concerning the privacy of users is about the kind of data used for
registration, how personal it is and which parts get saved for later authentication. Re-
garding the personal privacy and to provide anonymity, registration should be possible
without any personal data.

Exchange of contact data

If there exists no personal registration data that can be used as an address for sending
the messages to, some way of exchanging the contact data has to be found. This part
should not demand much e�ort for the user. It should be kept simple, and the necessary

18

4. Conception 19

steps to add new contacts should be straightforward. Therefore two di�erent options,
one for exchanging the contact remotely and one for exchanging it locally has to be
found.

Data security

In general, the correct performed implementation of data security is also highly relevant.
By this, all data that gets used at some point in the application flow is protected.
Therefore one of the main issues is the encryption of messages and additional content
of the communication process.

Data transience

This part is strongly related to data security. By providing a short lifespan for all
messages, the content sent keeps in a transient state, and it gets ensured that it is not
traceable. It leads to automatic data maintenance, and therefore no extraordinary user
input is needed. The data gets deleted automatically after reading it and disappears
forever.

Prevention of persistence threats

The last requirement for building a secure messaging application is to eliminate other
possibilities where the data gets persisted. That would be for example taking screen-
shots, filming, and taking audio records of the messages. Therefore some solution should
be found to prevent users from persisting the data through these activities.

4.1.2 Traceability of users
Regarding the traceability of users, all implementation options that support privacy
protection have to be prioritized. Anonymity should be a significant part to ensure that
no personal data is retraceable to its origin. In particular, the topics of registration and
data security, as described in section 4.1.1, refer to this concern.

There should be no particular prerequisites for the registration, and the user should
not have to provide any personal details for the registration process. Therefore no mo-
bile numbers, email addresses, names or other data should be required. The registration
process should be automated at the first launch of the application and run in the back-
ground. This problem could be solved by generating a random id. This id can then be
utilized as an address for sending messages to.

In addition to this, the encryption of the messages is also a relevant topic. All
parts of the communication process should be secured and must not be accessible or
readable by any third party. Therefore the chats should not only be symmetric end-to-
end encrypted but deal rather with a lot more reliable procedures like using asymmetric
keys for encryption and signing the data. Thus just the intended endpoints can access
the plain text or content of a message. Another significant consideration is the protection
of the private key against unauthorized access. Therefore it has to be stored in a highly
secure part on the smartphone.

When no personal data is used for the registration process, another secure authen-
tication method has to be found. This process is necessary for protecting the access to

4. Conception 20

specific application functionalities and for verifying the sender behind a message. Only
registered users should be able to use the full function range of the messaging appli-
cation. Thus some authentication process that works automatically in the background
and again uses no personal data should be implemented. The verification procedure for
finding out the real sender of a message can be performed by using the asymmetric keys
for signing the message data.

4.1.3 Exchange of contact data
A decisive factor for ensuring anonymity is the part of exchanging contact data, as briefly
described in section 4.1.1. When only a randomly generated id is used as verification
address of a user, there has to be provided a way how it still can be exchanged.

There occur several challenges for providing privacy protection while swapping the
respective digital user addresses to start communication. In particular, these include the
detection and implementation of a local and a remote option for the exchange. Irrelevant
if this happens via a local or remote communication channel, it has to be as secure as
possible. This is highly relevant due to the kind of data that is required for adding a
contact. As fundamental elements, this data contains the id as address endpoint and
the public key for the encryption of messages. At least these are necessary to facilitate
the basic messaging functionality.

Concerning usability, it is also of high importance that the contact exchange is easily
executable for the user and that no extraordinary e�ort is necessary. Possible options
for locally exchanging the contacts would be scanning a QR-code and transferring it
via NFC or Bluetooth connection. For transmitting the data on a remote channel, it is
unavoidable to use another digital communication medium. Therefore this part has to
be implemented to be as safely as possible.

4.1.4 Data transience
Another critical point is the transience of data in the whole communication process, as
explained in section 4.1.1. Messages should only exist until the receiver read them and
should not get persisted on any server, database nor on the smartphone.

By implementing a functionality which tracks when a user has obtained a message,
the right time point to delete it can be recognized. So it does not get persisted too long
but also does not get deleted too fast. Each content should automatically self-destruct
and erased from every storage medium included in the communication process. With
the step of removing the data from the smartphone and the database after it has been
read, the data stays in a transient stage and is not verifiable afterward.

Concerning usability, there should be no extra e�ort for the user to care about the
deletion of the messages manually. Therefore everything should happen automated in
the background. On the contrary of general messaging applications, the only significant
change by using transient data is that there exists no chat history and the user has
to remember the last messages. By this, a new communicational aspect is added to
every conversation, because it has to be memorized and therefore seems like a usual
face-to-face talk.

4. Conception 21

4.1.5 Prevention of persistence threats
As shortly characterized in section 4.1.1, the last point worth noticing regards to oc-
curing persistence threats, even if the data gets automatically deleted from client and
server. For providing higher privacy protection, attention must also be paid in prevent-
ing these additional persistence threats.

By this, all activities a user or other person can undertake to persist the messages
are meant. Primarily associated with this is to take screenshots with the smartphone.
Therefore some functionalities should be implemented that either detect and prevent
a user from taking a screenshot or at least making them unusable by automatically
destroying them through image processing.

One major problem concerns all further persistence methods that include additional
recording mediums. By these, taking pictures or videos of the messages with other
devices is possible. It will become di�cult to prevent all these specific threats in the
messaging application. Therefore it is essential to research and try out several methods
of protecting the data nevertheless.

4.2 Requirements
After the several challenges appearing in secure messaging were determined, the next
step is to find out how the goals can be achieved. According to the issues described be-
fore, following topics have been emphasized to be the primary requirements for building
a secure messaging application.

4.2.1 Frontend
The basis for all further steps of the project implementation is to develop an application
that provides full fundamental functionality for messaging. These include the part for
registration, the management of contacts and the underlying messaging functionality.
The onboarding should be automated. Thus the account gets created without any further
user input and gets stored on the server database in the background.

Furthermore, the application has to include functionalities for the management of
contacts. Basic options like adding, editing and removing the contacts should be given.
Therefore the data should be stored locally on the smartphone database and should be
manageable at any desired time point. The last fundamental requirement is to enable
the basic messaging functionality. Hence an e�ective client-server communication has
to be implemented. In addition to this, it should be possible to send several data types
like text, images, and so on.

4.2.2 Backend
In addition to the frontend, the backend has to be implemented to provide the client-
server communication functionality. The responsibilities of the server include the fol-
lowing topics: communication with the application, the registration and authentication
process, providing a working database connection, preliminary file storage and sending
push-notifications if a user has received a message.

4. Conception 22

One of the primary purposes is to establish a fully functioning communication to the
application and the connection to the database to manage the data. All other processes
depend on these basic methods. In addition to this, it should be possible to store files
on the server for sending images and other data temporarily.

At the registration, a new user should be created automatically by sending a request
to the backend. By this, an id and a token for the authentication process get generated.
A basic token authentication will protect the access to all other functionalities. So a
user has to be a member to get access to the full features of the application. Through
this, the unintended spamming of third-party entities should be prevented.

Another task would be the automated sending of push-notifications when a user
received a message. This function has to be done by the backend when a request for
adding a new message data record to the database has been received.

4.2.3 Encryption/decryption of messages
For the encryption of messages, a suitable encryption method and algorithm has to be
found. As already defined before, the method used should be asymmetric. The creation
of the keys should happen at the onboarding without any further user input. In addition
to this, the private key has to be stored for performing encryption and decryption of
the messages. The memory point where the key gets stored has to be highly secure. In
iOS, this is possible by saving it on the secure enclave1 of the smartphone. Only the
private key gets stored because the public can always be generated from it.

After this step, the key pair can be used at any later time point. For example, when
exchanging the public key with other users, so that they can encrypt data with it or for
decrypting received messages with the private key.

4.2.4 Verifying/signing of messages
The asymmetric key pair is also very suitable for signing data, so that a simple verifi-
cation process can be executed at the decryption of messages. For this, an appropriate
signing algorithm and process has to be found and implemented. It should work together
seamlessly with the chosen encryption algorithm and key pair. By signing a message
with the own private key and sending the signature hash additionally to the encrypted
data, the receiver can use these contents for verifying the sender. Both contents get
decrypted, and the values get compared. If they are the same, the sender is verified, and
it is ensured that the data did not get manipulated.

4.2.5 Exchange of contact data
For exchanging the contact data, a proper implementation has to be developed. There-
fore two separate options have to be designed, a local and remote functionality. For the
local variant, a QR-code scanner should be deployed. If a contact is added, the QR-code
of the person can be scanned, and the related id gets stored to the application database.
If a user wants to add a contact remotely, the idea is to send the public id via a third
channel. In the application should be an option where the own id can be copied to the

1
The secure enclave is a hardware processor that uses encrypted memory and provides cryptographic

operations for data protection [21, p. 7].

4. Conception 23

clipboard and then can be reused in any other communication channel to transmit it.
For adding a new contact, an input field should be provided. In this field, the id can be
filled in and gets saved to the application. Additionally, a local database storage should
be implemented. By this, it gets ensured that contacts only are saved to the smartphone,
and no relations between users can be determined server-side.

4.2.6 Data transience
A mechanism for ensuring that all data stays in a transitory stage should be developed
and implemented. The idea is to fetch all received messages from the server, where they
should be immediately deleted afterward. Concurrently the messages should be saved
to the application database. When a user opens a message to read it, it also has to be
removed locally from the smartphone. To provide these functionalities the server has
to allocate an endpoint for sending a request to, that allows fetching the messages and
simultaneously deleting them from the remote database. For the application, the local
storage, display, and removal of the messages should be implemented.

4.2.7 Prevention of persistence threats
The last goal for the application is to develop the part to prevent users from any further
possibility to persist the messages. Several opportunities that would threaten the privacy
and data security of the users have to be considered and disabled. In particular, these
include taking screenshots, pictures or any further recording to persist the content of
the message. For this, a possible solution would be to use animations in combination
with image processing. The text of the messages should be animated repeatedly in a
reading direction. So it gets ensured that the user did not miss something and read
the whole text. For the display of images and other files, a likewise method should be
used, with the addition of implementing blurriness for hiding specific areas. Therefore
the content of the image should be covered with an extra layer that obfuscates nearly
everything, except a small stripe that gets displayed. Furthermore, this layer should then
be animated in a certain speed, so that the user can see the whole picture. However, only
a small area will be visible if someone tries to persist the content by taking a screenshot
or photo of it.

4.3 Backend architecture
Based on the preceding considerations an architecture for the frontend and the related
backend functionality should be determined. The first steps for the project are the
planning and structuring of the development process. Furthermore, the architectural
conception used for the implementation should be selected.

For the backend implementation, the architecture mainly depends on the required
functionalities and the chosen framework for building the server-side part. Another point
to consider is the kind of database that should be implemented. It should conform to
the structural requirements of the data objects and relations needed for the application.
Due to the consideration that the frontend and backend part should be implemented

4. Conception 24

as a full-stack application, the framework chosen is Vapor2 which is also based on the
language Swift. It will be explained in more detail in section 5.1, but for now, it is only
mentioned to explain the further architecture plan. The pattern that it is based on is
MVC, and all components are built upon this structure. In the following subsections,
each component needed for the application gets described in its mean and functionality.

4.3.1 Models
A model is the representation of the related object in the database. Each property
of a model is mapped to its belonging attribute in the database table. For managing
the entities, some basic methods are provided. These include the CRUD3 operations
which enable functionalities for maintaining the data resources. Each model has its own
lifecycle and can be manipulated at each di�erent stage of the cycle. For the messaging
application, the following models are planned to be implemented.

User model

The user model should be created at the registration and should exist for authentication
and an address to send messages to. It should consist of properties used for identification
and further metadata.

Message model

The message model has to be created each time a message is sent to a user and should
then be saved in the database. It should consist of the message content(s), sender-
receiver information and additional metadata. A one-to-many relation between user
and messages should exist so that a user can receive multiple messages.

Token model

The token model should be created simultaneously with the user model at the registra-
tion and should exist for establishing a simple token authentication. Typically it consists
of a token string and has a one-to-one relation to the belonging user object.

4.3.2 Controllers
A controller is used to create RESTful resources and organizing related functionalities
in a single place. It contains the logic for managing incoming requests, sending responses
and working with the data models. Each method of a controller can be mapped as an
action on a specific route. These routes can be executed by sending a request to it.

User controller

The user controller should manage the related user model and therefore is responsible
for the registration, editing, and deletion of the models. In addition to this, the controller
should provide a function for loading and deleting the messages of a specific user.

2https://vapor.codes/
3
CRUD (Create-Read-Update-Delete) are the basic functions for persistent storage editing.

https://vapor.codes/

4. Conception 25

Message controller

The message controller includes all tasks for working with the related message model.
These include the creation of the messages, but also loading attached files from the
server.

4.3.3 Middleware
A middleware allows modifying incoming requests or outgoing responses so that further
functionality can be added before forwarding the request to the controller action or
the response to the client. In general, middlewares are suitable for catching errors or
interacting with requests. It is also possible to chain several middlewares before passing it
to the controller action. For the backend part of the messaging application, the following
middleware should be implemented.

Authentication middleware

A middleware for authenticating users should be implemented. By this, all functionalities
that should not be able to access by unregistered users get protected. It should use a
basic token authentication to verify user permissions and to protect specific routes from
being executed.

4.3.4 Database
An essential part of the backend implementation is the database. It will be the storage
location for all the data used by the messaging application. It should be ensured that
the kind of database chosen, meets all the requirements needed and can be smoothly
integrated. The idea for this application is to implement a document-oriented database,
which means that the data for each model gets stored in one single document instance
instead of fixed tables. Each document can have a dynamic scheme, can be retrieved
by an id and relations between objects can be set. Using this database type better
scalability, high availability and performance can be established.

4.4 Frontend architecture
For the application, the decision was to implement an iOS application using Swift as
the programming language. Again MVC or MVVM, as described in section 2.5, exist
as common concepts for building such application architectures. These are usually used
patterns for developing mobile applications, but they also bring some disadvantages
with them. Therefore the VIPER architecture that provides new concepts and other
approaches for iOS development has been chosen.

4.4.1 VIPER
VIPER [27] is a modern architecture for iOS application development and a backronym
for view, interactor, presenter, entity, and router. It implements the single responsibility

4. Conception 26

principle4 to create a cleaner and more modular structure for iOS projects. The idea
behind this pattern is to isolate the application’s dependencies and therefore to balance
the delegation of responsibilities among the entities.

Therefore this architecture is characterized by more reusable and extensible code.
Adding new features is easy, and it is highly testable. Each application responsibility
is based on an use case, and then the architecture gets split up into modules based
on these use cases. In figure 4.1 the architectural structure of one module is displayed.
In the following pages the structure for building the messaging application based on
VIPER gets described.

Router: The router contains the navigation logic for switching between the modules.
It receives input commands from the presenter to what screen it should route to. In
addition to this, it is responsible for passing data from one module to the other.

Entity: The entity encapsulates di�erent types of data and is usually treated as a
payload among the other components. One important thing to notice is that the entity
is di�erent from the other data objects that get used in the data access layer, which
should be handled by the interactor.

Presenter: The presenter contains the view logic for preparing the data for display and
for reacting to user input. The presenter receives input events coming from the view
and reacts to them by requesting data from the interactor. Another function of it is
receiving the data structures coming from the interactor, applying view logic over this
data for preparing the content and finally telling the view what to display.

Interactor: The interactor contains the business logic related to the entities and is
responsible for sending the correct data to the presenter. It should be implemented
entirely independent of the user interface.

View: The view sends the user actions to the presenter and shows whatever the pre-
senter tells. When the user triggers an event that requires processing, the view delegates
it to the presenter and waits for its response what should be displayed.

For now, only the underlying architecture for one module in the application has
been illustrated. Every module should be built upon this structure, and there have to
be added some modifications for the final structure that will get described hereafter.

4.4.2 Provider
All the parts that provide a specific service should be accessible throughout the several
modules. Therefore some protocols and components have been added and contain the
general business logic that is needed on various points in the application. Each com-
ponent should be handled as a singleton and reachable via a shared property. For the
moment the following providers should be added to the architecture.

4
SRP (Single-Responsibility-Principle) is an architectural pattern that separates di�erent responsi-

bilities of an module into their own parts.

4. Conception 27

Notifies

Knows about

Interactor

Owns and sends

user actions

View Updates

Owns and asks

for updatesPresenter

Entity

Router

Figure 4.1: Structure of one module in the VIPER architecture.

Backend provider

The backend provider should establish all the functionality for the communication with
the backend and fetch the needed data from the database. It has to include all features
for sending REST calls to the backend and handling the responses. Also, some specific
models used to send and receive the data are needed for exchanging the data.

Crypto provider

The crypto provider should be responsible for creating the asymmetric key pair and
saving it to the secure enclave. Moreover, the functionality for encryption and sign-
ing/verifying of the messages has to be provided.

Storage provider

The storage provider should include the methods for storing all the needed data to the
application database. That would be saving the own authentication values and storing
the contacts and messages received. Here again, some models used for storing the data
correctly in the database have to be implemented.

4.4.3 DTOs

The DTOs5 should be basic model objects used on several points through the applica-
tion. In the architecture the DTOs defined, are one for managing the contacts, one for
displaying the message-info in the overview and one for showing the full message. They
have to be considered di�erentiated from the entities of a VIPER module for the reason
that they get used globally throughout the application.

5
DTO (Data-Transfer-Object) is an object that carries data between processes.

4. Conception 28

Onboarding
Module

< BP | CP | SP >

Messages
Module

< BP | SP >

Contacts
Module

< SP >

AddContact
Module

< BP | SP >

WriteMessage
Module

< BP | CP | SP >

ReadMessage
Module

< BP | CP | SP >

UserProfile
Module

< SP >

Figure 4.2: Architecture plan of the individual modules.

4.4.4 VIPER modules
For the application the following modules have been specified. They are split up by their
use cases and can easily be modified. Therefore the whole architecture can be extended
simple. In figure 4.2 all relations between the modules are displayed. Furthermore their
relations to the providers are presented in the figure, by using the shortcut BP for
backend provider, CP for crypto provider and SP for storage provider.

Onboarding module

The Onboarding module is responsible for the registration of the user and the generation
of the asymmetric key pair for encryption. Furthermore storing the keys in the secure
enclave and saving the account data into the application storage are tasks of this module.

Messages module

The Messages module serves as the main entry point of the application after the registra-
tion and provides the functionality for fetching the messages from the server database.
In addition to this, it is responsible for the presentation of the messages and operates
as navigation view that leads to all the other modules and features.

Contacts module

The Contacts module serves as a presentational overview of all the contacts that have
been saved to the local application storage. It also gets used for choosing the intended
receiver when a user wants to write a new message. Therefore it is responsible for loading
all stored contacts from the database and passing the selected data to the next module
where it can be processed.

4. Conception 29

WriteMessage module

The WriteMessage module is responsible for providing an input area for writing and fur-
thermore sending the messages via a request to the backend. Before that, each message
gets encrypted and signed with the public key of the receiver. To make this possible,
another functionality for loading the user data from the application storage should be
maintained.

ReadMessage module

The ReadMessage module provides the functionality for decryption and verification of
the message chosen to be displayed. Another responsibility is the animation of the text
and the image processing of files for the prevention of persistence threats. Also, the
deletion of a message from the local application storage after it has been opened is
related to this module.

AddContact module

The AddContact module provides the option to add a new contact. It includes two
di�erent features for storing a contact, one that works locally and one that can be used
remotely. The first one is a barcode scanner where the user can scan the QR-code that
includes the contact data of another user. The second option is to enter an id to an
input field received via a third channel.

UserProfile module

The UserProfile module is indispensable for the contact exchange part because it displays
the generated QR-code and provides a button for copying the id for the remote exchange.
Thus the responsibilities are loading the own authentication values and the generation
of the id-based QR-code.

Chapter 5

Implementation

In this chapter, a more detailed description of the implementation and the technical
design of the frontend and backend gets declared. First, the deployed technologies and
methods are shown, then the actual application flow and all the corresponding processes
will be illustrated. Finally, the design decisions that have been taken throughout the
development process get described briefly.

5.1 Backend
For the backend part, the implementation is mainly based on the chosen framework.
As shortly mentioned before in section 4.3, Vapor has been used for the serverside
application. Therefore all methods and technologies are built upon it. Hereafter the
framework gets described briefly to give an understanding of how the remaining parts
have been developed.

5.1.1 Vapor
Vapor [17] is a modular framework used for building web applications and follows the
MVC principle. In addition to the provided base structure, the code is split up into
modules which are grouped in packages. Each module provides some particular func-
tionality needed for a specific part of the server implementation. Therefore applications
that use this framework can be individually adjusted to specific needs. It uses Swift as
the programming language and thus supports a full stack development of the project.

Droplet

The droplet is a service container which is the basis for every application and gives
access to all further functionalities provided. It is the main entry point and therefore
includes all the configuration and setup to ensure everything works together. Here all the
provider with specific functionalities or third-party libraries get added to the application.
In addition to this, the connection to the database gets established, and the routes to the
RESTful services of the controller and middlewares get configured. For the messaging
application, the provider and frameworks used get explained in the following paragraphs.

30

5. Implementation 31

Figure 5.1: The UserModel in the database.

Fluent-Provider: The Fluent-Provider [12] adds the Fluent module [11] to the project
and gives the functionalities to work with it. Fluent provides ORM1 functionality for
working with the database. It gets inherited by the models and provides CRUD func-
tionalities to work with the database objects.

Mongo-Provider: The Mongo-Provider [14] itself is a module that combines the func-
tionalities of the MongoKitten [15] framework and the Mongo-Driver module [13] to
support the usage of Fluent models together with the MongoDB2 database.

Auth: Auth [10] is another module that provides functionality for authentication and
authorization. In the project, it is used to allocate the simple bearer token authentication
to prevent stranger parties from spamming the server.

Vapor-APNS: Vapor-APNS [18] is a simple Swift library that provides methods for
configuring the APNs-service3 for sending push-notifications together with Vapor. It has
been implemented due to the essentiality of today’s messaging applications to deliver
notifications in real-time.

5.1.2 Models
As defined in section 4.3, only three models have been implemented. All of them inherit
the Fluent module to enable the ORM functionality for working with the database.
There exists one model for the messages, one for the users and one for the tokens
to provide the authentication. Each model is easily convertible into JSON, so that it
e�ortlessly can be used, either for sending responses to the application or storing data
directly in the database.

User model

The UserModel represents a user in the database. As illustrated in figure 5.1, it consists
of an id, a device-info, a push-token and a public key. The id is used as an address to send
messages to. The device-info helps with managing di�erent versions of the application.
The push-token is needed as an endpoint for sending the push-notifications to. The last
property is the public key that has to be provided for other users so that they can
encrypt messages with it.

1
ORM (Object-Relational-Mapping) is a technique for converting data between incompatible type

systems using object-oriented programming languages.
2https://www.mongodb.com/
3
APNs (Apple-Push-Notification service) [20] is a service provided from Apple for sending automated

push notifications.

https://www.mongodb.com/

5. Implementation 32

Figure 5.2: The TokenModel in the database.

Figure 5.3: The MessageModel in the database.

Token model

The TokenModel gets used for the authentication of a user. The properties defined can
be looked up in figure 5.2. It includes a unique id, a token, and a user id as the foreign
key that leads to the related user.

Message model

The MessageModel is used for the messages in the database. In figure 5.3 each attribute
gets displayed. In the content property, the encrypted text of the message gets saved.
Additionally, the signature hash for the verification process is stored in the signature.
If a file gets sent, an id that is representative for the location of the related file on the
server gets added in the attachment property. The receiver id is a foreign key that leads
to the user that the message belongs to. The last parameters are one for the sender id
and one for the date when the message has been sent.

5.1.3 Controllers, routes and middlewares
As described in section 4.3.2, the main functionality for the communication between the
application and the backend is maintained by the controllers. Each action is mapped
to a specific route used for sending requests to the backend. As explained in section
4.3.3 an additional middleware has been implemented for the messaging application. Its
purpose is to protect selected routes from unauthenticated access. Hereafter only the
implementation of the controllers and their actions get described.

User controller

The UserController includes the functionality for creating, updating and deleting a
user, but also for retrieving and deleting the messages of the user. In addition to this,
another option to load the public key of a particular user is implemented. An overview
of all actions that are related to this controller is shown in table 5.1, and the essential
actions get described in more detail hereafter.

5. Implementation 33

Action Method Path Auth

createUser POST api/user X
getUserKey GET api/user/:user_id X
updateUser PUT api/user/:id X
deleteUser DELETE api/user/:id X
getUserMessages GET api/user/:id/messages X

Table 5.1: Overview of the UserController actions.

Action Method Path Auth

createMessage POST api/message X
getMessageAttachment GET api/files/:name X

Table 5.2: Overview of the MessageController actions.

createUser: When a user gets created, also the related authentication token is gen-
erated, and their relation gets stored in the database.

getUserKey: This action is provided for adding a user as a new contact. It loads the
related public key of the specific user and returns it in the response.

getUserMessages: By calling this action, all messages related to the specified user get
loaded and sent back as a response. Immediately after it, all messages get deleted from
the database.

Message controller

The MessageController provides all the methods for creating a message, sending a
push notification to the receiver when a new message was created and setting the correct
relation to the user in the database. In table 5.2 an overview of the actions that are
implemented can be looked up. Hereafter they get clarified more precisely.

createMessage: This action is for creating a new message in the database. If a file
gets uploaded, its name gets changed to a random id and gets stored in the public
folder on the server. In addition to this, another functionality is the automated sending
of a push-notification to the receiver of the message.

getMessageAttachment: When a file was sent with the message, the related path has
been saved in the attachment property of the message object. By this action, the file
can be loaded from the server and sent back as a response. In addition to this, the file
gets immediately deleted afterward.

5. Implementation 34

5.2 Frontend
For the frontend application, the implementation has been realized as described in sec-
tion 4.4, where the application architecture is explained. In the following pages each
module, its structure, and functionalities get illustrated. After that, the details and
technologies of the individual requirements characterized in section 4.2 that are impor-
tant for the outcome get outlined.

5.2.1 Module structure
Before the individual modules get described, the exact structure of the implementation
of each component gets emphasized briefly. Therefore the classes and interfaces men-
tioned, are signed in the text with the prefix <Module>. An overview of the architecture
is displayed in figure 5.4. As can be seen, the entity component of the VIPER architec-
ture is missing. This is due to the reason that all entities needed in the application are
either adopted by the providers, created as individual models for the view display or
get used by several modules and therefore are implemented as DTOs.

Storyboard

Every module has its <Module>Storyboard4 where the layout of an individual screen
is defined. It consists of all UI elements required for the specific use case that it should
display. Furthermore, it contains connections (IBOutlets5, IBActions6) to the UI ele-
ments in the code.

View

Each view component consists of a <Module>View which is an interface, including
the functionalities called by the <Module>Presenter. Furthermore, a <Module>View-
Controller7 implementing this interface and connected to the related storyboard is
established. All event handler (IBActions) that listen to specific user actions on the UI
elements are carried out in the view controller. In addition to these, the <Module>View
owns the event handler interface of the <Module>Presenter for passing the specific
user action events to it. For some of the views, an extra <Module>ViewModel has been
implemented.

Interactor

The <Module>Interactor is responsible for managing all the use cases related to the
module. Therefore a <Module>UseCases interface, consisting of the methods for the
several use cases, is implemented by it. It also contains relations to the specific providers
needed for executing the use cases.

4
A UIStoryboard is used to build the user interface.

5
A IBOutlet references an element of the user interface.

6
A IBAction exposes a method as a connection point with a certain element of the user interface.

7
A UIViewController manages the views and user interface elements.

5. Implementation 35

Presenter

The <Module>Presenter contains relations to the router, the interactor, and the view
and implements a <Module>EventHandler interface. It invokes methods of the interactor
for requesting specific data, forwards commands for the display to the view and passes
navigation calls to the router. The functionalities of the event handler get called by the
connected view when a particular event should be executed.

Router

The router is separated into a <Module>Router interface implemented by the <Module>-
Wireframe. The <Module>Router contains methods for navigating between the modules,
and the wireframe has a relation to the <Module>ViewController for displaying it. By
providing a static class function named show, the wireframe gives the functionality to
instantiate and connect all the other components from the outside. Due to the reason
that this method is responsible for connecting all the components, the following lines of
code display the basic structure of the call hierarchy:

1 class func show() -> UIViewController {
2 let viewController = UIStoryboard(name: Constants.storyboardName,
3 bundle: Bundle.main).instantiateInitialViewController() as! ModuleViewController
4
5 let useCase = ModuleInteractor(backendProvider: Provider.backendProvider,

storageProvider: Provider.storageProvider,
6 cryptoProvider: Provider.cryptoProvider)
7
8 let router = ModuleWireframe(viewController: viewController)
9

10 let eventHandler = ModulePresenter(view: viewController, router: router,
useCase: useCase)

11
12 viewController.eventHandler = eventHandler
13
14 return viewController
15 }

By enforcing the show method, the following steps get executed:
• The <Module>ViewController gets instantiated by connecting it with the related

storyboard and setting the view controller for the display (line 2).
• After that, the <Module>Interactor with references to the needed providers and

the use case(s) of the module gets constructed (line 4).
• The next step is to create the <Module>Wireframe and apply the generated view

controller to it to pass it later to the display (line 6).
• Then the <Module>Presenter is set up and its relation to the view controller,

wireframe and interactor are established (line 8).
• The last procedure is then to attach the presenter to the view controller so that it

can access the event handler methods for invoking them at the specific user action
events (line 10).

• Finally, the method returns the view controller with all set properties, to display it
in the window’s root view controller which handles the presentation on the screen
(line 12).

5. Implementation 36

«interface»
<Module>View

«interface»
<Module>UseCases

«interface»
<Module>EventHandler

«interface»
<Module>Router

<Module>ViewController

<Module>Interactor<Module>Presenter

<Module>Wireframe

Use

Use Use

Use

Use

Figure 5.4: Overview of the structure of one module in the application.

For each module this procedure stays the same, if another module should be loaded by
the router, the wireframe’s interface method for executing the needed show method of
the module that has to be shown as next, gets called and manages the further process.
Therefore the interface including methods for navigating between the modules, is also
implemented by the wireframe.

5.2.2 Onboarding module
In the Onboarding module, the use case is the registration of the user. This module only
gets called at the first invoking of the application.

The OnboardingWireframe gets called by its show method and sets up all rela-
tions. Furthermore, its interface provides the showMessages method for routing to the
Messages module when the onboarding is finished.

The OnboardingViewController is responsible for displaying the OnboardingStory-
board. It shows kind of a loading screen as can be seen in figure 5.5.

The OnboardingInteractor has references to all three providers because all of them
are needed for the use case of this module. The use case is the registration of the user.
Therefore the CryptoProvider is used to generate the asymmetric key pair. If this
has been successful, a request is sent to the BackendProvider for creating a new user
account on the server. A response that includes the public id and the authentication
token generated on the server is received, and these values get stored as authentication
model by the StorageProvider in the application database.

The OnboardingPresenter listens to an event if the notification center has success-
fully received a push token. When this is the case, the OnboardingInteractor use case
for the registration is called. If the registration was successful, the presenter calls the
router to switch to the Messages module.

5. Implementation 37

(a) (b) (c)

Figure 5.5: Screens of the Onboarding module (a), the Messages module (b) and the
Contacts module (c).

5.2.3 Messages module
When a user has been onboarded, the Messages module is the entry point of the appli-
cation. Its use case is the management of the messages that have been received.

The MessagesWireframe gets invoked by its show method when the onboarding
has finished, as the entry point when the application launches and the user has been
registered already or as central navigation view after returning from the other modules to
the main screen. The router contains methods for navigating to the UserProfile module,
the Contacts module when either a contact should be added or chosen to send a message
too or to the ReadMessage module when a message should be opened.

The MessagesViewController displays a table for the messages, a menu for navi-
gation and a button for writing a new message, as can be looked up in figure 5.5. When
the view is loaded the first time, the user gets asked for permission to access the media
library of the smartphone. Furthermore, the controller has implemented all event han-
dler methods for responding to received actions on the UI elements and the methods
that get called by the presenter to configure the data that should be displayed.

The MessagesInteractor contains the use cases for fetching the messages from
the server and for loading the stored messages from the application database. When
the messages should be loaded from the server, first the own authentication values get
obtained by the application database. Then the BackendProvider is used for sending a
request to the server and returning the responded messages. These get then stored by
the StorageProvider in the application database. The other use case is then to load

5. Implementation 38

(a) (b) (c) (d)

Figure 5.6: Screens of the WriteMessage module (a), the ReadMessage module (b), the
AddContact module (c) and the UserProfile module (d).

the stored messages from the application database and preparing them for the display.
The MessagesPresenter contains the event handler methods for triggering the navi-

gation to other modules which are received by view controller actions and for refreshing
the messages. Both call the related use case methods of the interactor and pass the
received values to the view controller to display them.

5.2.4 Contacts module
The Contacts module is responsible for the use case of managing the contact data stored
in the application database.

The ContactsWireframe can either get invoked with an editing mode or without
this option by the show method. Depending on which mode has been chosen, the avail-
able functionalities di�er. Either a contact can be selected for writing a message to or
for being edited. The router interface methods provide actions for navigating to the
AddContact module, the WriteMessage module or for returning to the Messages module.

The ContactsViewController includes a table that displays all stored contacts and
a button for adding a new contact, as can be seen in figure 5.5. Depending on the mode
that has been chosen, the appropriate event handler gets called when any user action
happens on a UI element.

The ContactsInteractor contains the StorageProvider for the use cases of either
loading, deleting or editing the name of a contact.

The ContactsPresenter handles the received user inputs for working with the con-
tacts and loads all needed data by calling the interactor. It also calls the wireframe for
routing to the other modules when it is required.

5. Implementation 39

5.2.5 WriteMessage module
This module conforms to the use case for writing and sending a new message to a user.

The WriteMessageWireframe is invoked by its show method when, either the user
wants to write a new message or for writing back. It implements the router interface
that provides the navigation back to the Messages module.

The WriteMessageViewController displays an input field, a keyboard and a button
to upload files, as can be seen in figure 5.6. It contains the event handlers for reacting
on actions like pressing the send button or for the file upload. When an image should
be sent, an image picker is used to display the media library selection.

The WriteMessageInteractor handles the use case for sending the written message
to the receiver. Therefore all three providers are needed. If the contact has already been
stored to the application database, it gets loaded with the StorageProvider, and the
message gets encrypted with the public key by the CryptoProvider. Afterward, the
BackendProvider is used to send the message to the server. For the case that the contact
is unknown, one additional step has to be taken before the message gets encrypted. This
step is fetching the related public key from the server with the BackendProvider.

The WriteMessagePresenter is responsible for reacting on the view actions like
pressing the button for sending a message and for telling the view which name for
the contact should be displayed. Furthermore, it invokes the interactor for sending the
message and uses the wireframe to route back when this has been successful.

5.2.6 ReadMessage module
The use case of the ReadMessage module is the presentation of the received message in
clean text or clear view of the picture.

The ReadMessageWireframe gets called by its show method when the user presses
on a message to read it. The methods implemented by the related router interface are
for routing to the WriteMessage module if the user wants to write back or navigating
back to the Messages module if the user dismisses the message.

The ReadMessageViewController shows the clear message and image that have
been received, a button for writing back and if the contact is unknown, a button for
adding as a new contact as is shown in figure 5.6. For all these UI elements the proper
event handler actions are implemented and react on specific user input. In addition to
this, the animations for screenshot prevention are also built in the view controller and
get invoked by pressing the finger on the screen.

The ReadMessageInteractor contains three use cases. One for loading and remov-
ing the message, another for adding the contact if it is unknown and the last for loading
the attachment. For these, all providers get used with their functionalities. The sim-
plest use case is loading the message attachment. For this, a request to the server is
sent by the BackendProvider, and the encrypted data gets returned for further us-
age. When a message should be loaded and displayed, first the StorageProvider loads
the specific contents of the message and the related contact data from the application
database. After that, the CryptoProvider gets used for the verification process. If ev-
erything succeeded, the message gets encrypted. Then it gets checked if an attachment
has been sent, it gets loaded and subsequently decrypted by the CryptoProvider. If
everything worked fine, the message content is stored temporarily in a DTO, and the

5. Implementation 40

StorageProvider removes the connected data from the application database. The last
use case is adding the contact to the database. For this, the BackendProvider is used
to fetch the related public key, and then the StorageProvider stores the new contact.

The ReadMessagePresenter handles specific events that are obtained by either the
view controller or the interactor. In particular, these include reacting on the view actions
for storing the contact or for writing back. Also, the part for requesting the message
content from the interactor for delegating the data back to the view controller is in-
cluded.

5.2.7 AddContact module
The AddContact module provides the use case of adding a new contact to the application.

The AddContactWireframe gets called by its show method and sets up all rela-
tions. The AddContactRouter contains the method for dismissing the action of adding
a contact and returning to the previous module.

The AddContactViewController opens the QR-code scanner. It includes a menu
with an option for navigating back and an option for adding the new contact as shown
in figure 5.6. It is possible to add a contact by entering the id or by scanning the QR-
code. Therefore the functionality for scanning a QR-code and passing the recognized id
to the presenter is implemented. Also, some methods for displaying error messages or
requesting a name for the added contact are provided.

The AddContactInteractor has references to the StorageProvider and Backend-
Provider and implements the use case to store a new contact in the application database.
When the related id of a contact has been successfully scanned, the BackendProvider
is used to load the connected public key. When the response values are received, the
StorageProvider saves the collected contact data into the database.

The AddContactPresenter has relations to all other components and implements
the event handler methods that get called, when either the view controller has scanned
the id or when a name should be added to the new contact which has been entered in
the related view element. Furthermore, it takes care of storing the new user by invoking
the interactor.

5.2.8 UserProfile module
The last module facilitates the display of the own user profile that includes the QR-code
and the id for exchanging the contact data.

The UserProfileWireframe gets called by its show method when the user presses
the related button in the Messages module and sets up all relations. The router provides
the action for navigating back to the Messages module if the user wants to dismiss it.

The UserProfileViewController displays the QR-code that is generated from the id
and additionally, the id in plain text with an accordingly button for copying it, as can
be seen in figure 5.6. It includes the actions for pressing the button for returning to the
Messages module and for copying the id to the clipboard. Furthermore, it delegates all
needed requests for display to the presenter.

The UserProfileInteractor confirms to the use case for loading the own contact
data to further processing it. Therefore it keeps a reference to the StorageProvider. It
gets used when the data should get loaded from the application database.

5. Implementation 41

The UserProfilePresenter is responsible for requesting the own contact data from
the interactor and passing it on to the view controller for display. It also receives actions
from the view for routing back to the Messages module.

5.2.9 Application entry point

The main entry point for every iOS application is called the AppDelegate.8 In the
messaging application, it is used for setting some general configurations like the nav-
igation bar and window appearance. Furthermore, it gets checked, if the application
launches for the first time or if it has already been opened. This is observed by using
the CryptoProvider for verifying the asymmetric key pair. When it exists, the on-
boarding has happened before, and the related user credentials can get loaded from the
application database. If there is no key pair, it still has to be created, and the user reg-
istration has to be performed. Depending on these facts, either the Onboarding module
or the Messages module gets invoked by applying their view controller to the root view
controller, through a call to their wireframes show method. The other responsibility of
the AppDelegate in the application is the registration for push notifications and the
setup of the notification center for handling incoming notifications. Due to the reason,
that the user has to give permission allowing the application to send these notifications,
the configuration part should happen at the beginning of the application flow.

5.2.10 Crypto provider
The CryptoProvider is responsible for managing the asymmetric key pair, the encryp-
tion/decryption and verifying/signing of message data. To accomplish all these func-
tionalities, Apple’s Security Framework9 has been used to develop all the necessary
features. Since the keys get stored in the secure enclave of the smartphone, the used
algorithm and key size had to be adapted to fit the conditions of which kind of private
key is allowed to be saved. These guidelines are defined by Apple and must be met to
ensure that the keys are correctly stored in the secure enclave, though some restrictions
get explained in the following lines.

The secure enclave stores only 256-bit elliptic curve private keys. Therefore the
encryption algorithm had to be an ECC algorithm. The exact algorithm used is based
on the ECIES (Elliptic Curve Integrated Encryption Scheme) scheme which uses a
hybrid encryption procedure. This means that it combines an asymmetric method for
sending a key, with a symmetric process which then operates the encryption of the
messages. More specific, this implies that an asymmetric key pair gets generated, the
private key is then stored in the secure enclave, and the public key gets always created
by it on later time points. When a communication exchange with another party should
begin, a symmetric key used for sending messages between users is constructed and gets
encrypted with the public key of the other communication entity. Thus only the creator
of the symmetric key and the holder of the private key that can decrypt the symmetric
key and the data that has been encrypted with it.

8
The AppDelegate contains methods that respond to certain lifetime events of the application and

are called by the singleton UIApplication that manages the application [22].
9
The Security framework provides functionality to secure the data and access of an application [9].

5. Implementation 42

In specific, the symmetric AES algorithm with a key size of 256-bit is implemented.
For the signing of the messages, an appropriate algorithm that also uses the ECC scheme
and matches the encryption algorithm had to be found. Therefore the ECDSA (Elliptic
Curve Digital Signature Algorithm) has been chosen. Now that the fundamental topics
have been explained, the implementation and functionality of the CryptoProvider get
described briefly. An overview of these methods is shown in table 5.3.

loadKeyPair: When this method gets called, an attempt to load the private key from
the secure enclave is executed. If the key exists, the related public key gets generated
from it and returned. If there is no key saved, it implies that this is the first launch of the
application and therefore the key pair has to be generated. This is done by creating a pri-
vate key, storing it in the secure enclave and again generating and returning the related
public key from it. Here is an example of how such a generated public key looks like:
BLJ17WvMRvSQsZOKL+URXZXbKQIqygXsU9zUOko7aFrfYHhJbYQi8LQakI7wUpzo9NZ5Lg1UqNxpfg8nZM6/6I=.

encrypt: The encryption of messages works by applying the used algorithm, in combi-
nation with the public key of the intended receiver, on the text or image that has been
transformed into a data hash before. This generates a cipher that can be reused in the
further process. This is how a part of such a cipher looks like: BFf31B8FbttcNAzv8pQQcxC
cCNjexKhKhXmD3kIFzJA7tgvjcvl3WO4tZYSilYlV13T/UIkSX9jfqKybx4gG00EIvSojiyik+/HOea4otfvA==.

decrypt: The decryption process operates the other way round. First, the private key
gets loaded from the secure enclave. Then the received cipher gets decrypted by applying
the same algorithm used for encryption, in combination with the private key on it. This
procedure leads to a data hash can either be transformed into text or the image that
has been received.

sign: When a message is signed, the operation is transposed on the already encrypted
cipher. As an initial step, the private key is loaded from the secure enclave and gets
then applied by the signing algorithm on the cipher. By this, the signature has been
created and can be further processed.

verify: For the verification, to prove that a message has not been altered on the
communication exchange, the mechanism is to compare the encrypted message hash
with the signature hash by utilizing the signing algorithm in combination with the public
key of the sender on both data values. If the results are equal, the verification process
has been successful, and the sender has been confirmed in its identity confidentiality.

5.2.11 Backend provider
For enabling the communication between the application and the server, the Backend-
Provider has been implemented. It provides all functionalities for performing requests
to the server and handling the incoming responses. For enabling the exchange via HTTP,
some data models that can be transformed into JSON and back have been implemented.
In table 5.4 an overview of all the methods and related data models is displayed, and
they get outlined hereafter.

5. Implementation 43

Method/Action Parameters Return value

loadKeyPair - public key
encrypt message, key encrypted message
decrypt decrypted message encrypted message
sign message cipher signature
verify encrypted message, signature, sender key success

Table 5.3: Overview of the CryptoProvider methods.

createAccount: When an account is created, this method sends the needed input
values for registration and handles the result values from the response. The Backend-
RegisterInputValue model includes the device info, the push token and the public
key that should get stored on the database. In return, the public id and authentica-
tion token values are received and get further processed by mapping them into the
BackendRegisterResultValue model.

sendMessage: For sending a message to a user, the BackendSendMessageInputValues
model is used for handling the content, the attachment, the signature, the sender id and
the receiver id. Additionally, the authentication token gets sent with the request to
allow access to the server functionality. Otherwise, the authentication would fail and
the message would not arrive. If everything worked fine, a response transformed into the
BackendSendMessageResultValues model and which includes a success message gets
received.

getMessages: Every time, when a refresh for loading the new messages is triggered in
the application, this method gets called. A request with the own public id and authenti-
cation token gets sent to the server, and the incoming response is mapped into an array
containing the BackendMessagesResultValues for each message. These consist of the
content, the attachment, the signature, the sender id and the date sent.

getPublicKey: When a new contact should be added to the messaging application,
a request to the server has to be executed for loading the related contact data. The
input values consist of the public id of the new contact, the own public id and the
authentication token for enabling access to the action on the server. In return, the value
for the public key arrives and is mapped to the BackendPublicKeyResultValue for
being able to further processing it.

getMessageAttachment: If a message includes an attachment, an extra request for
loading the data from the server is implemented by this method. By sending the filename
and the authentication token in the request, the related data gets loaded from the server
and returned as response mapped into the BackendMessageAttachmentResultValue.

5. Implementation 44

Method/Action
Data models

Input values Result values

createAccount device info, push token,
public key

public id,
authentication token

sendMessage content, attachment,
signature, sender id,
receiver id

success

getMessages public id,
authentication token

content, attachment,
signature, sender id,
date sent

getPublicKey receiver id, sender id,
authentication token

public key

getMessageAttachment filename,
authentication token

file data

Table 5.4: Overview of the BackendProvider methods.

5.2.12 Storage provider
To assure anonymity, it was of high importance that all contact data (and additional
data) gets saved only on the smartphone. Therefore a database had to be implemented
for managing the application storage. For this Realm10 has been used as the framework.
In the StorageProvider, all functionalities for managing the database are implemented.
These include methods for storing, retrieving and deleting the data. In addition to this,
several data models that are necessary for enabling the transformation of the data to be
exchangeable with the database have been included. In the following, each model gets
illustrated briefly.

StorageAuthenticationModel: This model consists of the public id and an authen-
tication token that both get returned after registration from the server.

StorageMessageModel: It includes the content, the attachment, the signature, the
sender id and the date sent and is used to save all messages.

StorageContactModel: The contact is stored by using this model and includes the
information of the public id, the public key and a name that gets chosen for the user.

10
The Realm platform provides two parts, a database and an object server for developing mobile

applications [16].

5. Implementation 45

Figure 5.7: The text animation for the screenshot prevention that has been implemented
in the ReadMessage module as described in section 5.2.15.

5.2.13 Push notifications
Every messaging application should provide some way of sending and receiving push
notifications to inform the user about received messages, even if the application is closed
or running in the background. To achieve this, the APNs-service of Apple has been
used to implement the needed functionalities. Therefore a unique certificate for the
application had to be generated and added. After that, the push notification service had
to be enabled and implemented in the project. The registration for push notifications is
separated into two steps. First, the user permission must be obtained, and if that was
successful, a push token gets automatically generated from the system as an address
to send messages to. In addition to this, all functionalities for handling the incoming
notifications have been implemented, as already got described in section 5.2.9.

5.2.14 QR-code scanner
Another essential functionality is the QR-code scanner implementation which is used
by the AddContact module. This has been realized by using Apple’s AVFoundation11

framework. Therefore a video capturing with the back camera of the device gets started,
and by scanning the QR-code and transforming the captured metadata into a barcode
object and furthermore into a string, the QR-code can be read out.

11
The AVFoundation framework provides functionality for working with time-based and audiovisual

media [8].

5. Implementation 46

Figure 5.8: The image animation for the screenshot prevention that has been imple-
mented in the ReadMessage module as described in section 5.2.15.

5.2.15 Animations
For the prevention of message persistence, the methods implemented are built upon
animations. There are two variants which are adopted either for the text or the image
sent in a message. Both of them are implemented by the ReadMessage module and are
part of the ReadMessageViewController display. The animation of the text repeatedly
visualizes one word after another and can be controlled by touching the screen. If the
finger leaves the screen, the animation stops. Thus the information of the message can
be assimilated in a natural reading flow, but only one word gets visible if a screenshot
is taken, as is displayed in figure 5.7.

A quite similar approach has been implemented for the images sent. By using blurred
layers and animating them over the whole picture, it gets ensured that always only
a small stripe of the picture is visible. An example of taken screenshots is shown in
figure 5.8. Again the animation can be controlled, by touching the screen it starts
moving the blurred parts, and by leaving the screen, it stops. Therefore the possibility
is given to observe also details of the transparent part of the image. The blurred layers
are transferred at such a speed that the display of the picture keeps recognizable and
comfortable for the user to view. Additionally, the animation is stoppable by pressing
with the finger on the photograph and continuing it by re-releasing the screen. Thus
the possibility of observing parts of the picture in more detail is established.

5. Implementation 47

1.

7.

5.

Public Key

Private Key

Server

Secure
Enclave

2.

3.

6. ID | Token

ID | Token

ID | Public KeyApplication
Database

Server
Database

4.

Figure 5.9: The Onboarding module application flow as described in section 5.3.1.

5.3 Application flow
In this section, the application flow for each module gets described and illustrated.
Each step taken is demonstrated and gets explained so that the exact procedure can
be comprehended. The UserProfile module and Contacts module are not mentioned,
because of their simplicity and self-explanation.

5.3.1 Onboarding module
The application flow for the Onboarding module gets described hereafter and is displayed
in figure 5.9.

1. The view of the Onboarding module gets displayed and shows a loading symbol to
demonstrate the account creation.

2. Meanwhile, in the background, the asymmetric key pair gets generated.
3. After that, the private key gets saved to the secure enclave of the application.
4. The public key then gets sent via a request to the backend server.
5. On the server, a new user and an additional authentication token get generated

and saved to the database. The automatic created primary key of the user serves
from now on as public id.

6. The public id with the related authentication token gets sent back via response
to the application.

7. After receiving the account data, it gets saved to the application database.

5.3.2 Messages module
In figure 5.10 the Messages module flow can be looked up and is structured as follows.

1. After the registration or as the main entry point, when the user has already been
boarded, the Messages module gets displayed.

2. A request for fetching the messages gets sent to the server.

5. Implementation 48

1.

6.

3.

Server

Messages

Messages

5.

2. 4.

Server
Database

Application
Database

Figure 5.10: The Messages module application flow as described in section 5.3.2.

3. On the server, all messages referring to the user get loaded from the database.
4. All messages get sent back via response to the application and get immediately

deleted from the server database.
5. The fetched messages get displayed in the table ordered by the date sent.
6. To persist the messages for the moment, they get saved to the local database.

Additionally, the user can pull down in the overview to send a request for fetching
the messages manually. However, it is also possible to receive push notifications when a
new message arrives. This happens when the application runs in the background, when
it is closed or when the user has opened the Messages module. In each of these cases,
the messages get updated automatically.

5.3.3 WriteMessage module
The WriteMessage module flow describes the process when a message is written and is
displayed in figure 5.11. Each process step gets described hereafter.

1. First, a contact has to be chosen for sending the message to. For this purpose, the
Contacts module gets displayed. There is also the option to add a new contact.

2. When a contact is selected, the related data gets loaded from the local database.
3. Then the WriteMessage module gets displayed, and the contact data get prepared

for it. For the case that a user writes back on a received message, this is the entry
point in the module flow, and step 1 and 2 get skipped.

4. The user can input a message and/or upload a file that should be sent.
5. In the background, the message gets encrypted with the public key of the receiver.

In addition to this, a signature of the encrypted message gets also generated. The
same process is executed for the message attachment.

6. Then a request with the whole message content gets sent to the server.
7. On the server, the message gets created and saved to the related user. If a file has

been sent with the request, it gets stored in a folder on the server.
8. Subsequently, a push-notification gets sent by the server to the message receiver.

5. Implementation 49

1.

Contacts

4.

UIkSX9jfqKy
G00EIvS1zSfoj8O

iyik+/HOea4
otfvA==

Application
Database

2.

3.

Contact

Message
Attachment

Messages

Contact

Server
Database

Server

7.

8.

5.

6.

Figure 5.11: The WriteMessage module application flow as described in section 5.3.3.

1.

Message

5.

UIkSX9jfqKy
G00EIvS1zSfoj8O

iyik+/HO==

Contact

Application
Database

2. 6.

Contact? Message
Attachment

4.3.

Figure 5.12: The ReadMessage module application flow as described in section 5.3.4.

5.3.4 ReadMessage module
The application flow for reading a message is implemented as shown in the figure 5.12
and is described in the following lines.

1. In the Messages module, all messages are displayed in a table.
2. They are loaded from the local storage of the application.
3. If a related contact exists, it gets passed further to the ReadMessage module.
4. Then the message and attachment get decrypted.
5. After that, the decrypted message and attachment get displayed in the view, and

the animations for the screenshot prevention are applied.
6. The last step is the deletion of the message from the application database.

5.3.5 AddContact module
When a new contact is added, the application flow works as following and can be looked
up in figure 5.13.

5. Implementation 50

1.

5.

Server

Contact

Public Key

3.

2.

4. Public Key

Server
Database

Application
Database

Figure 5.13: The AddContact module application flow as described in section 5.3.5.

1. When the module for adding a new contact has been invoked, the barcode-scanner
gets displayed and additional, a navigation bar including a button for the option
to manually enter an id is shown.

2. After scanning the QR-code or entering the id, a request with the id for the
requested contact gets sent to the server.

3. The contact data referring to the public id gets loaded from the database.
4. The public key gets sent back in response to the application.
5. Finally, a new contact gets created with the key and id. Additionally, an username

can be specified and then all data gets saved to the application database.

5.4 Reflection on design decisions
In this section, the design decisions taken in the implementation process get described,
and the decision-making gets explained. It should get clear why the several parts have
been developed in this kind of way. For this, the backend and frontend are again split
up and declared hereafter, but first, the choices that are related to both implementation
parts get clarified.

5.4.1 General
Hereafter all decisions that influence both implementation parts get described briefly
by their aspects that are interesting to comprehend.

Message transience

By message transience, the procedure of deleting the messages after they have been
read is meant. There exist two execution tasks lead to the deletion of the messages.
One handles the elimination of all received messages from the server database after
each request from the application. The other task removes a single message from the
application database if it has been opened for reading it.

5. Implementation 51

The reason why the messages get entirely removed from the server after every fetch
is to guarantee that the data will persist just as long as necessary on a remote place.
By storing them subsequently in the application database, they still get persisted, but
only on the own trusted local device. Therefore the threat of other parties gathering
the messages is decreased to a minimum level. In addition to this, the second task of
deleting a message after it has been opened is included. It is implemented for the case to
prevent any other person from still figuring out the chat history or with whom messages
have been exchanged if the smartphone falls into the wrong hands.

File handling

Another interesting decision is, what file types and how they are handled in the whole
application flow. The file type for the attachments sent with each message has been
restricted to send only images. Theoretically, it is possible to send any other type of
file, but this choice is related to the additional persistence threats that can occur. For
this application, the focus lied on finding techniques for the prevention of screenshots or
pictures taken with another device. Video or audio files can hypothetically always get
persisted by filming or recording them via a third device or screen recording technique.
It is also challenging to find an option for these files to always show only a small part
because they have to be viewed as a whole. Other types like text files or PDFs would also
have the requirement to open and scroll throughout them. Here an animation, which
always blurs much of the text, would be experienced as annoying by the user. Therefore
the file types have been limited for sending only images.

5.4.2 Backend
For the backend implementation, the following parts include some interesting choices
that have been made for the overall application flow.

Model design

In this part, the design of the several data models for the server database should be
explained shortly. Each model is listed and declared in its structure hereafter.

User: As displayed in figure 5.1, a user consists of the id, the device info, the public
key and the push token. These pieces of information are all stored together in one
document, so that contacts can easily be added by retrieving them through their id.
The push token is included for enabling the server to quickly gather the token and then
send notifications to the specific device. Although it is theoretically possible to use the
id in combination with the key, to furthermore encrypt and send messages to a specific
user, the real person behind it stays anonymous and can not be investigated.

Token: The model for a token includes an id of the related user model and the token
used for the authentication. In figure 5.2 this structure is presented. These models can
not be accessed or manipulated and are entirely served for authentication purposes.

5. Implementation 52

Message: A message contains the text content, the attachment, the signature, the
receiver id, the sender id and the date sent, as shown in figure 5.3. The attachment
includes the name of the related file stored on the server. To avoid the traceability of
files, the real name gets exchanged with a randomly generated id, so it is kept more
secret. The receiver id gets saved to be able to associate to whom the messages belong.
The sender id is needed for the verification process to allow loading the related public
key for verifying the signature from the application database.

Token authentication

Another interesting point is how the authentication on the server has been implemented
and why it is kept so simple. The primary demand is to prevent any other entity from
spamming the server or getting access to specific functionalities for manipulating the
data. Although it is a basic token authentication, it provides the advantages that no
further login data is required, which is a primary requirement for keeping the anonymity
of the users. In addition to this, there is no additional e�ort for the user to authenticate
because everything works seamlessly in the background.

Storing files

When image file gets uploaded as attachment of a message, it gets stored in the public/-
files folder. Only the receiver of the message has the information which file is meant
because the file becomes a new random id as a name when it is uploaded. For the reason
that each file is any way encrypted before it is sent to the server, its data is protected
from external accesses. Even if somebody would gather the files, it would never be
possible to convert them to the real content.

5.4.3 Frontend
Hereafter the taken decisions for the frontend application implementation get explained.

VIPER architecture

The VIPER architecture has been chosen for several reasons. A significant advantage is
the separation of the use cases into their modules. Therefore the implementation has its
clear arrangement and is easily extendable. Also, a big part of the code is reusable by
this structuring. Another benefit is that the code is highly testable and error handling
is kept simple. Thus locating an error is done fast and debugging is accomplished with
less e�ort than in other application architectures.

Encryption methods

The finally used encryption method depends on the decision that the private key should
be stored in the secure enclave. Therefore, as described in section 5.2.10, only 256-bit
elliptic-curve keys are allowed to be used, which is a guideline from the Apple Security
framework. Furthermore, this also implied that the algorithm used, supports a hybrid
encryption scheme and combines the advantages of both the symmetric and asymmetric
methods. Also associated with this topic was the establishment of higher security for

5. Implementation 53

the file management. Therefore each file is encrypted and then transformed into plain
text. On the server, every attachment is stored in a text file including the encrypted file
data. Thus no relations or options to access the original data are given.

Contact exchange

For the contact exchange, it turned out very fast that two separate implementation
options have to be provided. Therefore the QR-code scanner has been chosen for the
local variant, because of its simplicity. The user does not have high e�ort to add a new
contact. Only the QR-code in the user profile has to be scanned with the camera, and
then the new contact gets generated from it. Also, the generation of the QR-code was
possible to implement very uncomplicatedly. For the remote variant, it was the most
straightforward decision to give the option to show and copy the own contact id and
exchanging it via a third communication channel. By using these two methods, the swap
of the contact data stays secure and is kept very simple. Every additional data needed
can be fetched via the id from the server.

Screenshot prevention

For the animations used for screenshot prevention, the decision making has been made
from the idea that always only a small part of the text or image should be able to be
persisted. By this, the rest of the data is not recognizable. Therefore both animations are
based on the principle always to show only a tiny hint of the content. By animating in
the correct speed, the user should still be able to recognize the full meaning of the data,
and it should also be comfortable to watch. Also, the option to control the animation
helps to get a clear understanding of the message content. The advantage of this is that
the user can recognize everything, but it is not possible to persist the whole content at
once by taking a screenshot.

Chapter 6

Evaluation

In this chapter, the developed methods for implementing higher privacy and data se-
curity of the messaging application—called Atomize—get compared with an already
existing application, which is the Confide messenger that already has been illustrated
shortly in section 3.2. Both get evaluated based on the terms related to privacy and se-
curity in mobile communication and have been defined in section 4.1. First, the overall
evaluation conditions get determined. Then the comparison is drawn, and the further
outcome and findings get discussed. After that, the limitations for private and secure
messaging applications and the possible improvements that arose during the develop-
ment of the thesis get characterized.

6.1 Evaluation conditions
Before the actual comparison can be drawn, the conditions for testing and evaluating
the applications get discussed beforehand.

6.1.1 General
By the terms that have been worked out in section 4.1, the topics for the comparison
can be determined as the following:

• Traceability of users,
• Data security,
• Exchange of contact data,
• Data transience,
• Prevention of persistence threats.

All of them are important for increasing higher privacy and security in messaging ap-
plications. By traceability of users, all aspects regarding the identification of the real
person are meant. A central goal was to preserve the anonymity of a person as far as
possible. The term data security is also related to the traceability and all methods that
keep the data secure, e.g., the encryption of messages. The exchange of contact data
includes the techniques used for transferring the information between the application
endpoints. Data transience indicates the usage of ephemeral messages and how this is

54

6. Evaluation 55

Test specifications

Operating System iOS 11

Device(s) iPhone X, iPhone 7, iPhone 6

App version Standard (Confide), Standard (Atomize)

Technical
requirements

Apple A7 or later A-series processor with secure enclave,
Back camera

Table 6.1: Overview of the general test specifications.

carried out. Finally, the prevention of persistence threats represents all functions that
prevent users from storing the message content.

In addition to this, the overall specification values for the evaluation get declared
hereafter. In table 6.1 an overview of these terms is displayed. The name of the developed
application has been decided to be Atomize. The operating system supported is iOS, and
the lowest compatible version is version 10. For the testing, the applications an iPhone
X, iPhone 7 and iPhone 6 were used. The technical requirements for the smartphones
were that the device contains a secure enclave, which is a hardware feature of Apple A7
or later A-series processor, and of course, a back camera.

Confide has been tested by the aspects of its Standard version. There also exists a
Plus version where further functionalities are given, but the users have to pay for it.
For this evaluation, the free version has been chosen for the comparison, but also the
features of the extended version will be mentioned briefly. All these just named terms
should provide a better understandability and clarity when the specific applications get
reviewed in their characteristics.

6.1.2 Black-box testing
The method used for the evaluation is called black-box testing. With this approach, the
functionality of an application is examined without peering into its internal structure.
By defining test cases built around specific specifications and requirements, the software
is evaluated. These cases are primarily functional and can be derived from descriptions
of the application, including the specifications and design parameters.

For the reason that there exists no possibility to access the internal application code
of Confide, the comparison and evaluation will be done by black-box testing. The test
cases applied are related to the before mentioned topics for the comparison.

6.2 Comparison
In this section, the comparison of both applications is accomplished. The test environ-
ment terms are based on the evaluation conditions that have been specified previously
in section 6.1. The evaluation is based on the requirements for building a secure and
private messaging application in sections 4.1 and 4.2. After analyzing each application
in its functionalities, the several specifications get discussed and evaluated.

6. Evaluation 56

(a) (b)

Figure 6.1: Comparison of the onboarding in the applications, the Confide onboarding—
Enter personal data (a) and Atomize onboarding—No personal data is required (b).

6.2.1 Traceability of users
Regarding the traceability of users, the components are tested to conform to the privacy
and anonymity of a person in the application.

Confide

For the registration, the user has to provide the following personal data: first name, last
name, email or mobile number and a password for authentication. This can be observed
in the onboarding part of the application, as shown in figure 6.1. Furthermore, in the
privacy policy, it is stated that this personal information is collected to identify a person
and gets retained over a longer time-period. Therefore this information is also used for
finding users in the application and for the sender identification of a message. Moreover,
it is also indicated that the data is processed only for the application functionality,
additional statistics and is protected by the terms of the privacy policy. More about
this can be looked up at [23] in “Retention of personal information”.

6. Evaluation 57

Atomize

As described in section 5.2.2, where the onboarding implementation of the application
is described, the user has not to share any personal data for the registration. The
automatically generated id is the only reference to a user and is stored on the server
and the smartphone. In addition to this, the id gets also used for the sender identification
in the messaging process. The onboarding screen of Atomize is shown in figure 6.1.

6.2.2 Data security
The topic of data security is related to the before analyzed traceability of users, but
now get reviewed by their safety aspects.

Confide

In Confide the communication process with another user is end-to-end encrypted. Here
also asymmetric encryption is applied, the key-pair is generated on the device, and the
private key stays local in the smartphone storage. The data stored and collected by the
application contains the following parts: contact information, address book information,
message information and billing information. For the contact information, the previously
described personal data is saved. The address book information stores the contacts in
the address book on the device. The user is asked for permission to give access to this
data. If this is agreed on, Confide stores the information in an anonymized/hashed form
on their servers. The message information contains the encrypted message content, log
and contact data and additional information. The last data about the billing information
is only needed when the user wants to upgrade to the Plus version. It contains general
billing info, which is furthermore processed by a third-party service. In addition to this,
it gets declared that third-party services get used and collect data of the device and
network specifications. Again it is stated that this information is anonymized. Regarding
the authentication security of the application, the functionalities and access are secured
by the login data that has been provided at the registration [23].

Atomize

The developed application aimed to keep the user anonymous as far as possible, but
still keep the data secure from unauthorized access. Thus the messaging process is also
asymmetric end-to-end encrypted, as explained in section 5.2.10. The data stored on
the server consists of the messages, the users and the related token for authentication.
There is no personal information used, and the messages are stored encrypted. When an
attachment is sent with a message, it gets saved in the public/files folder on the server.
However, this data is a pure text file and consists only of the encrypted image data.
Contact data is only stored locally on the device in the application database. For the
authentication process, a simple bearer token authentication is established to protect
the access to specific server functionalities. In section 5.1.3 this part is described in more
detail.

6. Evaluation 58

(a) (b)

Figure 6.2: Comparison of the contact exchange in the applications, the Confide contact
exchange (a) and the Atomize contact exchange (b).

6.2.3 Exchange of contact data
This evaluation topic refers to which methods are provided for exchanging the contact
data, how they are implemented and how the access to the other contacts is handled.

Confide

There exist three di�erent options for adding a new contact in Confide. An overview
of them is shown in figure 6.2. When access to the local contact book of the device
is granted, it can either be searched for specific persons to add them or for already
registered contacts in Confide. Additionally, in the settings of the application, it can be
activated to connect with Facebook and allow other users to find oneself through this
service. Another option is to search by email or mobile number for a specific person.
The last alternative is to add a contact locally, which also is implemented by using a
generated QR-code and barcode-scanner.

Atomize

In Atomize, two options are implemented for the contact exchange as described in the
application flow in section 5.3.5. The local variant is the QR-code scanner that can be

6. Evaluation 59

used within the application. The remote option is copying the id to the clipboard and
then exchanging it via a remote channel.

6.2.4 Data transience
Concerning the data transience, each application is evaluated by its functionality for
sending ephemeral messages and additional provided options for keeping the data tran-
sient.

Confide

Confide also provides higher privacy by establishing ephemeral messages. In the appli-
cation, every message gets deleted from the server after the receiver has read it. If a
message stays unread for at least seven days, it gets removed automatically from the
server. In addition to this, there is a default setting in the application that keeps the
chat history of the own sent messages stored locally on the device. Therefore they can
be read afterwards. This option only works for text messages, and the history is also
removed automatically when the user receives and reads a new message or after 48
hours. Additionally, this option can also be deactivated in the configuration settings. In
the Plus version, there exists the extra option to retract a message, if the receiver has
not read it.

Atomize

As described in section 5.3.2, the messages get removed from the server after each re-
quest for fetching the messages and get stored locally on the device. Then, as illustrated
in section 5.3.4, when a message is opened, its content gets loaded, and it gets immedi-
ately removed from the application database. On the server, there is an extra cron job
implemented that removes messages from the remote database, if they have not been
fetched in the last seven days.

6.2.5 Prevention of persistence threats
Hereafter the methods implemented by the several applications that correlate to the
prevention of additional persistence threats are evaluated.

Confide

For the screenshot detection, Confide developed an own Screenshield Kit1 technology.
Its purpose is to recognize if a screenshot is taken and then manipulating the picture
with image processing to cover the sensitive parts. In addition to this, the sender of
the message automatically receives a notification when the receiver has tried to take
a screenshot. This technology has been introduced in Jan. 2018 and is only supported
by the newest version of the application. As extra protection of the sent messages, two
methods that use a di�erent kind of reading experience are implemented. One is for the
text, where a colored block covers each word. When wiping on the screen from the top

1https://screenshieldkit.com/

https://screenshieldkit.com/

6. Evaluation 60

(a) (b)

Figure 6.3: Comparison of the screenshot prevention methods in the applications, the
Confide screenshot prevention (a) and the Atomize screenshot prevention (b).

to the bottom of a message, each line gets revealed one by another. The other procedure
is for images sent, where the full picture is blurred and again by wiping over the screen
always a small stripe gets disclosed. An example of how a screenshot that has been
taken looks like, can be viewed in figure 6.3. File types like videos get blurred and have
to be pressed on when the content should be revealed. If the finger leaves the screen, it
is blurred again.

Atomize

In the application, the screenshot prevention is realized by changing the reading experi-
ence through two di�erent animations, as described in section 5.2.15. For the text, each
word is revealed one by another while the other words stay invisible. The images are
screenshot-protected by moving blurred layers in a certain speed over the picture so that
always only a small stripe of the image gets visible. Both animations can be started by
touching the screen or stopped if the user wants the specific part to stay longer visible.

6. Evaluation 61

Atomize Confide

Registration data - Name, email or
mobile number

Full anonymity X -
Data stored Registration data Contact,

address book,
message data

Third party services - X
Authentication Bearer token

authentication
Username password
authentication

Contact exchange options QR-Code (local),
id exchange (remote)

QR-Code (local),
contact exchange
via address book or
manual input
(remote)

Ephemeral messages X X
Attachment limitation - X (Standard version)
Attachment types Images only Images, videos,

documents,
voice messages

Screenshot detection - X
Screenshot prevention technique Animations

controlled by user
Image processing
controlled by user

Table 6.2: Overview of the application comparison.

6.2.6 Discussion
After the several aspects have been reviewed and compared, it gets discussed which
application has its advantages and disadvantages in the specific cases. In table 6.2 an
overview of the comparison, separated in the most significant parts, is displayed.

Traceability of users

Regarding the traceability of users, it is noticeable that in Confide anonymity is not
provided, because of the personal information that has to be entered from the user
at the registration. Moreover, the privacy of users is not highly guarded, by phone
number or email address a person can be found. The contact data is accessible from
any external person who knows at least one of these two things. If the user connects the
Facebook account with the application, it is also possible to find a person through his
profile. Therefore it can be stated that Atomize has better established this part since no
connection to the real person is obtainable.

6. Evaluation 62

In addition to this, Confide saves such personal contact data so that all relations
between users are traceable to its origin. Even if the messages are encrypted, there is
always a sender-receiver relation, and the sender is revealed. On the one hand, this is
an advantage, and it is always clear who the real person behind a sent message is. On
the other hand, the privacy gets decreased, and also no possibility exists to send or
receive messages to/from anonymous users. In Atomize the sender-receiver information
also gets stored in the message information to associate the related users, though again
there is no relation to the real persons.

Data security

In both applications, the messages are asymmetric end-to-end encrypted. Therefore the
communication is kept secure and can only be read by the meant receiver. Regarding
the verification of the sender, it is not evident if Confide uses digital signatures too.

Confide stores many di�erent pieces of information on their servers for analytical re-
search and provides this data to third-party services. Even if most of the data gets stored
in a hashed or anonymized form, again the personal contact information is processed
and transmitted transparently and therefore can be easily inspected.

Regarding the authentication security, it is clear that Confide has a safer approach by
protecting the application functionality and user data with a login process that adopts
a username and password authentication.

Contact exchange

The method for locally adding a new contact is implemented quite similar in both ap-
plications. When the exchange should be processed remotely, Confide has the advantage
that it is executable within the application without any further e�ort. However, this is
also only possible, if access to the contact book of the device is granted or if the mobile
number/email address is known beforehand. In Atomize, the only method to exchange
the own contact remotely is to copy and send the id via a third channel. This process
causes further e�ort but also establishes a more anonymized and untraceable approach.
Moreover, if a new user should be added to Confide without knowing the email/mobile
number, the exchange also has to take place on a third channel.

Since Confide uses personal data, the address book contacts on the smartphone, if
access was granted, or also other Facebook users, if the Facebook account is connected,
each user is visible to the outside and can be found immediately. This also somehow
represents a risk for personal privacy.

Data transience

Each application has similar approaches for keeping the message data in a transitory
stage. In both applications the messages get deleted, either if a user reads the last
received one, or if the message persisted for too long on the server.

Confide provides additionally some chat history, where the by oneself last sent mes-
sages can be read afterward, to be able to keep some context of the conversation. Con-
cerning security, it can be discussed that this concept is not very safe, because if any
person gets access to the smartphone, it is possible to reproduce parts of the conver-

6. Evaluation 63

sation. Otherwise, it brings benefits with it because it makes it easier for the user to
understand the new messages. Also, this feature is enabled by default and has to be
deactivated conscious, which would be better if this was reversed.

Prevention of persistence threats

The methods implemented to prevent the users from persisting the data by screenshot-
ting it are quite similar in both applications. Still, it can be argued that Confide uses a
better approach by providing a better solution for controlling the reading experience. In
addition to this, the Screenshield Kit implements an improved technique for recognizing
a taken screenshot and deleting the content within it by adding a gray layer over the
image.

6.3 Limitations
From the further illustrated parts, the several limitations that have been found for
implementing higher privacy and security in messaging applications get explained.

6.3.1 Unintended access to device
The one not avoidable threat is that another person somehow gets access to the device.
This can happen either when the device is stolen or lent to somebody. When this hap-
pens, it is still possible to read the last received messages and retrieve the contact data.
In the worst case, the application could be misused for pretending to be the person that
owns the device. Thankfully this option is improbable for the reason that nowadays
every smartphone provides some very secure authentication technology like three-factor
authentication, fingerprint or code input to protect the access to it.

6.3.2 Unintended access to server data
There exists the possibility that attackers might get access to the database of the server.
By collecting the contact data and therefore the public ids and keys, it is theoretically
possible to fetch the messages of the users on their behalf or sending data to them.

6.3.3 Contact exchange
When the exchange of the public id is performed via a third channel, the chance that a
user could be traced back to the real person behind is increased. This always depends
on the technology or system that has been used for the exchange and how secure it is.

6.3.4 Additional persistence threats
Although some methods for preventing the users from persisting the messages have been
implemented, there exist still some other persistence threats. In particular, these include
each possibility of taking videos or screen recording the messages.

6. Evaluation 64

6.3.5 File type handling
Another limitation can be found in the persistence prevention of several file types sent
in messaging applications. There is no possibility to implement a proper screenshot
protection method for videos and also voice calls can be recorded by other devices.
When documents like PDFs are sent, there needs to be a functionality that enables the
user to open the file and scroll through it. Therefore no useful persistence prevention
has been found to enable this.

6.3.6 Group chats
This topic is not directly a limitation, but also should be mentioned, because it poses a
potential security risk. In group chats, several persons share the same key for encryption
and decryption of the messages. Therefore it is less complicated for an attacker to get
the key data. Also adding a new user to the group chat contains its threats. It is possible
by appending the new person into the chat group on the server or by manipulating this
data on the way. So it becomes easier for an attacker to gain access to the chat and
read out the messages.

6.4 Possible improvements
Now that the comparison has been drawn and the limitations have been clarified some
possible improvements for the application can be determined.

6.4.1 Authentication process
In the progress of this work, it has become clear that the authentication used for the
application is not secure enough. Therefore it would have been better to adopt another
user verification process that at least requires some password protection.

6.4.2 Key creation/storage
Another improvement lies in the creation and storing of the asymmetric key pair. At the
moment, there exists one private key that the public key gets created from. Furthermore,
this pair is used to retrieve the symmetric key for the communication with an individual
user. The new idea is to add an extra layer of security, by implementing another private
key stored on the device and is then encrypted by the key from the secure enclave.
Therefore the messaging process will be only asymmetric encrypted, and the advantage
is given that the connection between two users is even more secure, because it is not
comprehensible any longer, even if the device falls into the false hands.

6.4.3 Screenshot prevention
For the screenshot prevention, some improvements that would have supported a better
reading experience have been found. That would be for example to give the user more
control over the animations. Another approach could be to work with gray colors, for
displaying the message content and is technically not possible to be captured by other
cameras.

6. Evaluation 65

6.4.4 Additional features
In addition to the improvement of the screenshot prevention, another security upgrade
would be to implement a method for detecting if a screenshot has been taken. By this
the possibility would be given, to notify the sender of a message that the receiver tried
to persist the content.

Chapter 7

Conclusion

The purpose of this thesis was to resolve new methods for implementing improved pri-
vacy and security in messaging applications, especially regarding the topics of anonymity
and user traceability. The idea behind is related to the evidence that nowadays every
person uses messaging applications for their very personal conversations, but one quickly
forgets about the tremendous impact on our privacy by sending our data via digital com-
munication channels. Thus, more secure approaches for mobile messaging fulfilling the
demand of complete privacy for a person using such a service had to be found.

First of all, comprehensive research has been carried out on general techniques that
support higher privacy and security in digital communication. Thus the most reliable
methods should be clarified and adapted for the further work. Additionally, other mes-
saging applications have been analyzed and tested on their security features to obtain
an idea of how their approaches for safer conversations look like. After that, a concept
including all the necessary parts for protecting the privacy of a user has been defined. In
consideration of the research result, these parts were mainly related to the anonymity
and traceability of a user. Thus it became clear that the main topics for implementing a
private and secure messaging application concern the traceability of users, the exchange
of contact data, the transience of messages and the data persistence threats. Further-
more, an architecture plan including a structure that serves the purpose of the defined
requirements has been developed, and the methodology for building the messaging appli-
cation has been determined. After that, the implementation of the client and the server
has been realized and thoroughly tested. Thereby it turned out that the combination
of several methods that either keep the privacy of a person or make the communication
more secure lead to the optimum results. Finally, an evaluation of the implementation
has been performed by comparing it to another already existing messaging application
which implements quite similar approaches. The comparison was based on the criteria
points determined in the conception. In addition to this, the several limitations that
occurred when developing the application and some possible improvements have been
outlined to inspire other persons for doing further research in this area.

The significant findings of this thesis were the new methods leading to the anonymity
of persons when using messaging applications for their conversations. Furthermore, the
findings are related to how data is secured, even when exchanged via digital communi-
cation channels. Especially the part for the registration of a user leads to high privacy
because no personal data is required. Corresponding to this a huge advantage is also

66

7. Conclusion 67

given by using only generated ids for identifying a user. Therefore no connection to
the real person is obtainable, and relations between persons are not verifiable. Even if
someone gets unintentional access to the server database, there is no possibility to find
out any personal information about the users. Moreover by the highly secure encryption
of the messages and the private keys stored only on the secure enclave of the device, the
content of a message can only be revealed by the intended receiver. In addition to this, a
secure verification of the sender of a message is possible by sending an extra signature.
Therefore the option is given to find out if a message has been altered, which again
makes the communication more secure. Also, the transience of the message data has a
significant influence on the privacy by ensuring that nothing sent is saved. Therefore
again no relation between users can be obtained, nor the danger exists that confiden-
tial data gets persisted. This aspect is further supported by the screenshot prevention
methods preventing users from saving the message content on their devices.

By combining all these approaches, the traceability of users and their data is min-
imized to a small level, and the demand for complete privacy for a person using such
a messaging application is fulfilled. It is highly recommendable to adopt these methods
for making conversations via messaging more private, secure and even anonymous.

7.1 Further research
Based on the topics in the sections 6.3 and 6.4, there exist some problems for which
further research has to be performed. These include primarily the remaining security
issues that have not been implemented or were not possible to realize in the scope of
this thesis. They consist of the further development of the user data models stored on
the server, the contact exchange, the screenshot prevention/detection, the handling of
dynamic files and group messaging.

Regarding the data model stored in the server database for identifying a user, an
improvement could be made by not saving the public key directly with the identifier.
Due to the direct relation between the key and the id, any person that gets unintentional
access to the data has the opportunity to transmit messages to the specific user. By
implementing a method that separates the key from the other data, the possibility for
attackers to encrypt and send unintended messages to a user would be minimized.

For the remote contact exchange, a more straightforward approach has to be found.
The solution to exchange the id via another channel is cumbersome for the user and
brings some security risks with it. This would be for example the arising danger when
the id gets persisted while it is sent via another not secured communication way. Thus
a relation to the real person can be drawn. Therefore another more secure option that
can be invoked in the application and works in the distance would be a useful feature.

The topic of screenshot prevention is also highly remarkable for doing further re-
search. So far, there exist some already very stable techniques that make the screenshots
of messages unusable, but there are still some possibilities to persist small parts of the
content. By developing further methods that refine the already existing approaches,
improved data security could be provided.

Related to the additional data persistence threats new ways should be discovered
to handle and protect dynamic files sent through the application. This topic is critical
and one of the most di�cult to find better solutions and improvements. Until now the

7. Conclusion 68

possibility is still given to persist the message content through recording it with a second
device. Perhaps there could be found some solutions that use advanced image processing
so that the cameras of other devices cannot recognize the screen display and thus make
the recording useless.

Finally, a necessary part to investigate concerns the group messaging option. Every
person benefits from the advantages to quickly send the same message simultaneously
to various persons without any further e�ort. Therefore it is of high importance to find
new solutions to eliminate the threats that come with group messaging. These include
implementing new methods for the encryption of the data and securing a higher level
of access to the group.

Appendix A

CD-ROM/DVD Contents

A.1 Project

• Project/src: Project files for Atomize
– /backend: Project files for the backend (XCode Version 9.4, macOS 10.10)
– /frontend: Project files for the frontend (XCode Version 9.4, iOS 11.3)

A.2 Thesis

• /Thesis.pdf: Thesis (this document)
• /images: Original raster and vector images
• /literature: Copies of the online literature resources

69

References

Literature

[1] Rajdeep Bhanot and Rahul Hans. “A Review and Comparative Analysis of Various
Encryption Algorithms”. International Journal of Security and Its Applications
9.4 (2015), pp. 289–306 (cit. on pp. 11, 12).

[2] Brian Duckering. “10 Years of (Hacking) iOS - Mobile Threat Intelligence Report”.
Skycure 2017 (2017) (cit. on p. 6).

[3] A. K. Jain and D. Shanbhag. “Addressing Security and Privacy Risks in Mobile
Applications”. IT Professional 14.5 (Sept. 2012), pp. 28–33 (cit. on p. 6).

[4] Burt Kaliski. “A Survey of Encryption Standards”. IEEE Micro 13.6 (1993),
pp. 74–81 (cit. on p. 13).

[5] Soheila Omer AL Faroog Mohammed Koko and Dr.Amin Babiker A/Nabi
Mustafa. “Comparison of Various Encryption Algorithms and Techniques for im-
proving secured data Communication”. IOSR Journal of Computer Engineering
(IOSR-JCE) 17.3 (Jan. 2015), pp. 62–69 (cit. on pp. 11, 13).

[6] Tole Sutikno et al. “WhatsApp, viber and telegram: Which is the best for instant
messaging?” International Journal of Electrical and Computer Engineering 6.3
(2016), pp. 909–914 (cit. on p. 14).

[7] N. Unger et al. “SoK: Secure Messaging”. In: 2015 IEEE Symposium on Security
and Privacy. May 2015, pp. 232–249 (cit. on pp. 3, 7).

Software

[8] Apple AVFoundation Framework. 2018. url: https://developer.apple.com/av-foun
dation/ (cit. on p. 45).

[9] Apple Security Framework. 2018. url: https://developer.apple.com/documentatio
n/security (cit. on p. 41).

[10] Auth Module. 2018. url: https://github.com/vapor/auth (cit. on p. 31).
[11] Fluent Module. 2018. url: https://github.com/vapor/fluent (cit. on p. 31).
[12] Fluent Provider. 2018. url: https://github.com/vapor-community/fluent-provider

(cit. on p. 31).

70

https://developer.apple.com/av-foundation/
https://developer.apple.com/av-foundation/
https://developer.apple.com/documentation/security
https://developer.apple.com/documentation/security
https://github.com/vapor/auth
https://github.com/vapor/fluent
https://github.com/vapor-community/fluent-provider

References 71

[13] Mongo Driver. 2018. url: https://github.com/vapor- community/mongo-driver
(cit. on p. 31).

[14] Mongo Provider. 2018. url: https://github.com/vapor-community/mongo-provide
r (cit. on p. 31).

[15] MongoKitten Framework. 2018. url: https://github.com/OpenKitten/MongoKitte
n (cit. on p. 31).

[16] Realm Framework. 2018. url: https://realm.io (cit. on p. 44).
[17] Vapor Framework. 2018. url: https://github.com/vapor/vapor (cit. on p. 30).
[18] Vapor-APNS. 2018. url: https://github.com/matthijs2704/vapor- apns (cit. on

p. 31).

Online sources

[19] Natasha Aidinyantz. A Glossary of Cryptographic Algorithms. Nov. 2017. url: h
ttps://www.globalsign.com/en/blog/glossary-of-cryptographic-algorithms/ (cit. on
p. 11).

[20] Apple Inc. APNs Overview. 2018. url: https://developer.apple.com/library/archiv
e/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSO
verview.html (cit. on p. 31).

[21] Apple Inc. iOS Security. 2018. url: https://www.apple.com/business/docs/iOS_S
ecurity_Guide.pdf (cit. on p. 22).

[22] Apple Inc. UIApplicationDelegate. 2018. url: https://developer.apple.com/docum
entation/uikit/uiapplicationdelegate?hl=et (cit. on p. 41).

[23] Confide. Privacy Policy. May 2018. url: https://getconfide.com/privacy (cit. on
pp. 16, 56, 57).

[24] Dust. Privacy Policy. June 2016. url: https://www.usedust.com/privacy-policy
(cit. on p. 16).

[25] Infosec Institute. CIA Triad. Feb. 2015. url: http://resources.infosecinstitute.com
/cia-triad/#gref (cit. on p. 10).

[26] Bordan Orlov. iOS Architecture Patterns. 2015. url: https://medium.com/ios-os
-x-development/ios-architecture-patterns-ecba4c38de52 (cit. on p. 8).

[27] Pedro Henrique Peralta. iOS Project Architecture: Using VIPER. Apr. 2016. url:
https ://cheesecakelabs .com/blog/ ios - project - architecture - using - viper/ (cit. on
p. 25).

[28] Margaret Rouse. HTTPS (HTTP over SSL or HTTP Secure). url: https://searc
hsoftwarequality.techtarget.com/definition/HTTPS (cit. on p. 14).

[29] Margaret Rouse. Transport Layer Security. url: https://searchsecurity.techtarget
.com/definition/Transport-Layer-Security-TLS (cit. on p. 14).

[30] Snapchat. Privacy Policy. May 2018. url: https://www.snap.com/en-US/privacy
/privacy-policy/ (cit. on p. 16).

https://github.com/vapor-community/mongo-driver
https://github.com/vapor-community/mongo-provider
https://github.com/vapor-community/mongo-provider
https://github.com/OpenKitten/MongoKitten
https://github.com/OpenKitten/MongoKitten
https://realm.io
https://github.com/vapor/vapor
https://github.com/matthijs2704/vapor-apns
https://www.globalsign.com/en/blog/glossary-of-cryptographic-algorithms/
https://www.globalsign.com/en/blog/glossary-of-cryptographic-algorithms/
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://developer.apple.com/library/archive/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/APNSOverview.html
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://developer.apple.com/documentation/uikit/uiapplicationdelegate?hl=et
https://developer.apple.com/documentation/uikit/uiapplicationdelegate?hl=et
https://getconfide.com/privacy
https://www.usedust.com/privacy-policy
http://resources.infosecinstitute.com/cia-triad/#gref
http://resources.infosecinstitute.com/cia-triad/#gref
https://medium.com/ios-os-x-development/ios-architecture-patterns-ecba4c38de52
https://medium.com/ios-os-x-development/ios-architecture-patterns-ecba4c38de52
https://cheesecakelabs.com/blog/ios-project-architecture-using-viper/
https://searchsoftwarequality.techtarget.com/definition/HTTPS
https://searchsoftwarequality.techtarget.com/definition/HTTPS
https://searchsecurity.techtarget.com/definition/Transport-Layer-Security-TLS
https://searchsecurity.techtarget.com/definition/Transport-Layer-Security-TLS
https://www.snap.com/en-US/privacy/privacy-policy/
https://www.snap.com/en-US/privacy/privacy-policy/

References 72

[31] Telegram. Privacy Policy. Apr. 2018. url: https://telegram.org/privacy (cit. on
p. 15).

[32] Viber. Privacy Policy. May 2018. url: https://www.viber.com/terms/viber-privac
y-policy/ (cit. on p. 16).

[33] WhatsApp. Privacy Policy. Apr. 2018. url: https://www.whatsapp.com/legal/#p
rivacy-policy (cit. on p. 14).

[34] WhatsApp. WhatsApp Security-Whitepaper. Dec. 2017. url: https://www.whatsa
pp.com/security/WhatsApp-Security-Whitepaper.pdf (cit. on p. 14).

https://telegram.org/privacy
https://www.viber.com/terms/viber-privacy-policy/
https://www.viber.com/terms/viber-privacy-policy/
https://www.whatsapp.com/legal/#privacy-policy
https://www.whatsapp.com/legal/#privacy-policy
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

	Declaration
	Kurzfassung
	Abstract
	Introduction
	Motivation
	Goal of the thesis
	Overview

	Background
	Security challenges in mobile messaging
	Trust establishment problem
	Conversation security problem
	Transport privacy problem

	Verifiability of users
	Access control
	Personal privacy

	Traceability of data
	Sender-receiver relation information
	Persistence of data

	Threats in mobile messaging
	Possible issues
	Possible adversaries

	App architectures
	MVC
	MVP
	MVVM

	Related Work
	Techniques and standards
	CIA triad
	Cryptography
	Authentication
	Network transport security

	Overview of related messaging applications
	WhatsApp
	Telegram
	Viber
	Snapchat
	Dust
	Confide

	Summary of common concepts
	User authentication
	End-to-end encryption
	Deletion and time limitation of messages
	Screenshot detection/protection

	Conception
	Preliminary considerations
	Research results
	Traceability of users
	Exchange of contact data
	Data transience
	Prevention of persistence threats

	Requirements
	Frontend
	Backend
	Encryption/decryption of messages
	Verifying/signing of messages
	Exchange of contact data
	Data transience
	Prevention of persistence threats

	Backend architecture
	Models
	Controllers
	Middleware
	Database

	Frontend architecture
	VIPER
	Provider
	DTOs
	VIPER modules

	Implementation
	Backend
	Vapor
	Models
	Controllers, routes and middlewares

	Frontend
	Module structure
	Onboarding module
	Messages module
	Contacts module
	WriteMessage module
	ReadMessage module
	AddContact module
	UserProfile module
	Application entry point
	Crypto provider
	Backend provider
	Storage provider
	Push notifications
	QR-code scanner
	Animations

	Application flow
	Onboarding module
	Messages module
	WriteMessage module
	ReadMessage module
	AddContact module

	Reflection on design decisions
	General
	Backend
	Frontend

	Evaluation
	Evaluation conditions
	General
	Black-box testing

	Comparison
	Traceability of users
	Data security
	Exchange of contact data
	Data transience
	Prevention of persistence threats
	Discussion

	Limitations
	Unintended access to device
	Unintended access to server data
	Contact exchange
	Additional persistence threats
	File type handling
	Group chats

	Possible improvements
	Authentication process
	Key creation/storage
	Screenshot prevention
	Additional features

	Conclusion
	Further research

	CD-ROM/DVD Contents
	Project
	Thesis

	References
	Literature
	Software
	Online sources

