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Abstract

Over the last years, valuable research was conducted in the area of smart pressure-
sensitive textiles. Many different prototypes for various research topics have been devel-
oped. Although these prototypes are often fundamentally different concerning the used
technology or the intended use case, they still share a lot of common functionality. How-
ever, every prototype has its own custom application and therefore similar software for
the same functionality is reimplemented multiple times by different people. This thesis
introduces a generic framework for rapid prototyping with different pressure sensors.
The main focus lies on sensors based on smart fabrics. The architecture of the imple-
mented, web-based and therefore platform independent system, is designed in a flexible,
module-based style, to enable developers to easily adapt and extend the application to
their specific needs. Additionally, a novel firmware approach for the sampling of the
sensor data of smart textiles is introduced. Due to the use of a quadtree structure the
sampling performance can be increased significantly and the length of the transmitted
data can be reduced. The sampling approach is described, implemented and evaluated
elaborately on different use cases.
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Kurzfassung

In den letzten Jahren konnte die Forschung an intelligenten, druckempfindlichen Tex-
tilien wertvolle Ergebnisse erzielen. Dafür wurden Prototypen mit den verschiedensten
Technologien und für diverse Anwendungsgebiete entwickelt. Trotz technischer Unter-
schiede zwischen den einzelnen Prototypen, gibt es zahlreiche Gemeinsamkeiten und
Funktionalitäten, die in der Entwicklung und der Datenverarbeitung immer wieder be-
nötigt werden. Daher kommt es vor, dass bei der Entwicklung von Software für intel-
ligente Textilien, die gleichen Funktionen mehrmals von verschiedene Forschungsteams
umgesetzt werden. Diese Arbeit beschäftigt sich mit der Ausarbeitung und Implemen-
tierung eines allgemeinen Frameworks, welches Entwicklern eine Grundlage für die ra-
sche Entwicklung von anwendungsbezogener Software bietet. Das entwickelte System
unterstützt Forscher, möglichst schnell mit dem Testen verschiedener Anwendungen
für ihre druckempfindlichen Sensoren beginnen zu können, ohne viel Aufwand in Soft-
wareentwicklung investieren zu müssen. Bei der Entwicklung der Softwarearchitektur
wurde auf einen flexiblen, Modul-basierten Aufbau geachtet, um Entwicklern die Ände-
rung oder das Hinzufügen von erweiterten Funktionalitäten zu erleichtern. Außerdem
wurde eine neuartige Methode zur Abtastung der Sensorwerte für die Software direkt
am Mikrocontroller von intelligenten Textilien entwickelt. Durch die Verwendung einer
Quadtree-Struktur kann die Geschwindigkeit des Abtastens erhöht und die übertragene
Datenlänge reduziert werden. Die Abtastmethode wurde ausführlich beschrieben, um-
gesetzt, getestet und die Anwendung des Verfahrens auf verschiedene Anwendungsfälle
wurde evaluiert.

ix



Chapter 1

Introduction

Research in the field of human computer interaction is often focused on developing
new techniques for user input. Since initial research in the late 90s [25], smart textiles
have been an active subject of research in this area until now [9, 21–23]. Many different
prototypes for different use cases have been developed. This thesis focuses on developing
a common software for smart textiles, including a novel sampling approach to increase
performance for large-scale textile sensors.

1.1 Problem Statement
There are many different projects using smart fabrics for different use cases including
but not limited to the interaction with mobile or IoT devices [10, 23, 31], posture or
joint monitoring [7, 26, 29] and tracking of vital signs [14, 26]. Many projects imple-
ment a user interface to visualize information [7] and provide the functionality to edit
different configurations to the user [23, 26, 29]. However, although similar functionality
is needed by many research projects, like the need for a user interface or functionality
like data sampling, signal processing or gesture recognition, no research has been found
attempting to provide a common ground for smart textile applications. Therefore, indi-
vidual software has to be written for every research project and the same functionality
is implemented multiple times by different research groups.

1.2 Research Objective
Schneegass and Amft write about “Current and Future Challenges for Smart Textiles” in
[25]. In their opinion, one major objective regarding research on smart fabrics represents
the development of a common technology for the fabrication of smart textiles, which
can then be customized with different software. While their book aims to present a
first step to developing a universal smart fabric, this thesis likewise focuses on the
creation of a common basis for smart fabric technology. However, on the contrary to the
approach of Schneegass and Amft, the focus lies on the software behind smart textiles.
The goal of the research is to build a universal software to be used with a variety of
different smart textile prototypes, providing base functionality for important repetitive
tasks like data sampling for the software running on the prototype’s microcontroller as

1



1. Introduction 2

well as functionality for signal processing or gesture recognition. The research aims at
addressing smart textile researchers, developers and user experience designers alike, by
considering the different needs of different groups of users.

1.3 Contributions
The contributions of this thesis can be divided in two main parts. First, a web-based
framework is developed which provides a common solution to repetitively needed prob-
lems, like signal processing and gesture recognition. Second, the software running on the
microcontroller of smart textile prototypes has been considered and a novel sampling
approach was developed.

1.3.1 Framework for Rapid Prototyping
A framework was developed implementing an extensible architecture and providing
generic implementations for common tasks when developing smart textile prototypes.
Thus, enabling researchers to build custom software for their prototypes on top of the
provided framework is saving them valuable time, because lots of the functionality
they need is already implemented and they can start prototyping different use cases
quickly, while focusing on the interaction design instead of the software development.
Summarized, the main advantages for user interactions researches, developers and user
interaction designers are:

1. Basic functionality for signal processing and gesture recognition as well as for
triggering different actions using REST API calls is provided. Custom code can
always be added to extend the given functionality.

2. The generic user interface enables user experience designers or researches without
programming skills to prototype different interactions and use cases for given
textile sensors and provides a basic data visualization. For specific needs, custom
visualizations can be added.

1.3.2 A Novel Sampling Approach
Furthermore, the software on the microcontroller of smart textiles is addressed. Due
to research on large textile prototypes [3, 14, 27] and on using industrial fabrications
methods for smart textiles which enable the fabrication of large textile sensors with a
high resolution [5], alternatives to sampling each single intersection of conductive lines
individually were researched and are presented in the course of this thesis. The following
list contains the major points of research that were conducted in this matter:

1. The possibility to combine multiple sensors together and therefore sample different
resolutions of a specified textile is discussed and the results of this methods are
evaluated.

2. The approach of using a quadtree structure to improve sampling performance and
decrease data length is presented. The performance and the limitations of this
approach are evaluated.



1. Introduction 3

3. Various use cases are evaluated in matters of performance and the length of the
transmitted data using the proposed quadtree method. The results are compared
to the standard sampling approach of sampling all single sensors sequentially.

1.4 Thesis Structure
This thesis starts with summarizing the fundamentals and important recent projects
in the field of smart textiles. Furthermore, an overview of different research projects
about the use of web technologies for sensor monitoring is as well given in Chapter 2.
Chapter 3 introduces the basic idea and the goals for the developed application. All
needed functionality and the architecture of the framework are also discussed in this
chapter. The next chapter illustrates details about the implementation of the described
system. The main focus of this chapter is to provide insights of the implementation and
facilitate the customization of the project for developers. In Chapter 5 the user interface
of the application is shown and described. Chapter 6 introduces a new approach of sam-
pling the sensor data using a quadtree method to increase sampling performance and
decrease the amount of data that needs to be transmitted to the application. The subse-
quent chapter presents the results of both the prototyping framework and the quadtree
approach and evaluates different aspects of the implementations. These evaluations as
well as possible limitations are then discussed in Chapter 8. The work concludes with
a final résumé of the achieved contributions and some interesting remarks about future
work.



Chapter 2

State of the Art & Related Work

This chapter outlines the current state of the art research on smart textiles and presents
an overview about related work in this area. First, the fundamentals of smart textiles are
described. Additionally, major recently developed projects are mentioned. Furthermore,
projects from other domains which are using similar technologies for data monitoring
are discussed.

2.1 Smart Textiles
This section presents a brief review of the fundamentals about smart textiles. The basic
theory behind smart textiles and possible techniques for an industrial production are
illustrated. Furthermore, different research projects in this area are outlined to establish
the context for the research project described in this thesis.

2.1.1 Fundamentals
As stated in [25] by Schneegass and Amft, smart textiles are not fundamentally differ-
ent to standard textiles with the difference that additional functionality is added, e.g.
gesture recognition or posture monitoring. They also mention that, in comparison to
different wearable technologies, conductive yarns sewn or woven into fabric are unob-
trusive and do not change the appearance of the clothes or other textiles, and therefore
a private usage of the functionality of smart textiles is possible.

The textile industry provides a variety of different textiles suitable for the creation
of smart fabrics, depending on the properties of the used raw material, smart fabrics
can be created using standard textile production methods like knitting or weaving, thus
enabeling large-area textile sensors with high accuracy [5].

2.1.2 Projects Using Smart Textiles
Some important recent smart textile projects are listed and shortly discussed to provide
an overview of current developments in the field. The goal is to show that a lot of
different prototypes were developed in recent years and providing a common solution
for rapid prototyping is a major contribution to the field of smart textile research.

4



2. State of the Art & Related Work 5

(a) (b)

(c) (d)

Figure 2.1: The yarns (a) developed in Project Jacquard can be used for weaving smart
textiles (b) and were for example woven into the sleeve of a jacket (c). The developed
mobile application is shown in (d). Images are taken from [23].

One of the most known projects concerning smart textiles is Project Jacquard by
Google described in [23], where conductive yarns (see Figure 2.1 (a)) were developed
and for example woven into the sleeve of a jacket, as shown in Figure 2.1 . The jacket is
connected to a smartphone, were basic gestures, like swipe, hold and tap, are detected
and actions, like dialing a certain number, picking up a call or ordering an Uber, are
triggered. Furthermore, the possibility of using smart textiles to control IoT devices was
explored in a user study that resulted in mainly positive feedback. The for the project
developed application (see Figure 2.1 (d)), provides functionality like data-logging, the
possibility of mapping specified gestures to the available functionality and a visualization
of the data. Similar functionality is provided by the user interface of the developed
system described in this thesis. However, in addition to mapping specified gestures to
defined actions, the provided framework also makes it possible to train new gestures
and define custom actions. Thus, more possibilities are provided for the user. Another
difference between the two approaches is the target group, while the mobile application
of Project Jacquard appears to be targeted at the end-user, the user interface described
in this thesis is developed mostly for research purposes.

Another project working with lines of conductive material that are integrated in
textiles is Pinstripe [10]. Pinstripe provides the user the possibility to use their clothing
for continuous input which the user can then use for example to scroll through a menu
or playlist on a mobile phone by pinching a piece of fabric together to create a fold and
rolling it back and forth to continuously change the input value (see Figure 2.2 (a)).
The granularity of the input change correlates to the size of the fold. Similar to the
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(a) (b)

Figure 2.2: The use of the Pinstripe prototype (a) is illustrated and the composition of
the Flextiles sensor (b) is shown. The illustration in (a) is taken from [10] and the image
in (b) is taken from [21].

provided implementation, the data produced by the performed fold was structured in a
matrix and transferred to a computer via a serial connection, where signal processing
was done to remove outliers. The described framework already provides functionality
like reading the data from the serial connection and data filtering, and therefore would
have speeded up the development of the prototype.

Further work with interactive textiles was done by the Media Interaction Lab1.
They developed FlexTiles, a flexible pressure-sensitive input sensor was implemented
using 3 layers of fabric (see Figure 2.2 (b)) presented in [21]. This sensor was then
used in a project to improve sensations in prosthetic limbs [13] and for a smart sleeve
with implemented gesture recognition with a combination of machine learning and a
heuristic approach [22], which inspired the distinction between machine learning and
heuristic approaches for the gesture recognition. Furthermore, this work was essential
for the development of the described system. The prototypes used for testing the system
were mostly created using the FlexTiles technology.

2.1.3 Large-Scale Textile Sensors
While the previously described textile prototypes mostly focus on sensors specifically
adapted for different parts of the body and provide rather small input areas for specific
use cases, this sections describes several projects implementing large, potentially scalable
textile sensors.

Cheng et al. from the German Research Center for Artificial Intelligence (DFKI)
for example created a pressure-sensitive carpet in [33], to be placed in front of specific
furniture to track user interactions and identify the person currently using the furniture.
Their underlying assumption is, that interactions with furniture can be tracked and the
position of the used doors or drawers correlates to different functionality or diverse
furniture content, and thus they enable to track exact actions of different people. While
the current prototype is a 60 × 60 cm big smart textile with a resolution of 32 × 32
sensors, they are now working on further increasing the size and resolution.

Sundholm et al., from the same institution, further evaluated the use of smart textile-
based resistive pressure sensors for the recognition of floor-based workout exercises in

1MI-Lab at the University of Applied Sciences Upper Austria in Hagenberg (http://mi-lab.org/)

http://mi-lab.org/
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a gym environment in [27]. They prototyped a mat with a physical size of 80 × 80 cm
and a resolution of 80× 80 sensors. Due to the use of three analog-to-digital converters
with 24 bits respectively, they are able to sample the whole sensor area in 25 ms.

Another use of smart textile sensors is discreet sleep monitoring, which was re-
searched by Li et al. in [14]. They developed a smart mat with 32 × 32 sensors which
they used to analyze the distribution of pressure and to monitor the respiratory rate
while sleeping.

These projects indicate, that there are various use cases for large-scale textile pro-
totypes. This research as well as research on high resolution textile sensors inspired this
research on speeding up the sampling of large smart textile sensors which led to the
development of the proposed quadtree sampling approach.

2.2 Sensor Monitoring using Web Technologies
The idea of using web technologies to monitor different sensors is not new. This section
describes different research projects where various data is monitored or sensor configu-
rations are changed using web-based technologies.

2.2.1 Monitoring and Controlling Home Appliance
Wang et al. in [28] designed and implemented AnyControl, a system based on IOT and
web technologies, to monitor and configure different home appliances with the goal of
enhancing the user experiences of using multiple devices. AnyControl enables users to
remotely monitor data about their homes, like room temperature or humidity, or define
different tasks for controlling various appliances and trigger them automatically accord-
ing to different conditions of their home environment. The implemented architecture
is very similar to the system architecture described in this thesis. Sensors deliver envi-
ronmental data to a Raspberry Pi, which is running a Python program implementing
data processing and a web server, offering a web API to the users. The processed data is
transmitted to a mobile application using a wireless WebSocket connection. A web-based
Android application provides functionality to monitor the configured sensors, directly
control different home appliances and define triggers to automate different tasks.

2.2.2 Sensor Data as a Service
Lee et al. used a Sensor Data as a Service (SDS) approach to build a RESTful web
service in [16], with the goal to share solar and water data as well as environmental
information from the Nevada Nexus project between researchers. The data was col-
lected using Arduino boards, sent to a web server using Representational State Transfer
(REST) calls and persisted to a database. A user interface provides access to the data,
offers search and analysis functionality and visualizes the sensor data.

2.2.3 Custom Sensor Designs
In [18] Nittala et al. developed a capacitive body-worn sensor, which is flexible and can
track multi-touch input on different parts of the body (see Figure 2.3 (a)). The sensor is
designed to be worn directly on the skin and the layout can have custom non-rectangular
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(a) (b)

Figure 2.3: The flexible sensor can be placed on various body parts (a). A web application
helps designers to create sensor layouts (b). The images are taken from [18].

shapes to fit different body parts. The sensor data is transmitted from an Raspberry
Pi Zero, via a wireless WebSocket connection, where their data processing pipeline is
implemented. While no indication about the technology of their data processing pipeline
is given, they additionally created a web interface (see Figure 2.3 (b)) to assist with
custom sensor designs, where the designer can upload an SVG file describing the form
and size sensor of the desired sensor and the application automatically constructs the
sensor layout.



Chapter 3

Application Design

The purpose of this chapter is to outline the goals and the defined range of functions that
is supported, and to discuss the architecture of the developed application. More details
about the concrete implementation of the single parts of the described architecture
follow in Chapter 4.

3.1 Objectives
The goal of the developed framework is to make prototyping with smart textiles easier
for researchers and developers as well as for user experience designers. To keep the
barriers for working with the framework to a minimum, four key principles have been
defined which were considered in the development of the prototyping application.

Simplicity: The first major goal is simplicity. The resulting application and architecture
should be easy to understand and use. Users are supposed to have basic programming
skills. They should also have a basic understanding of how machine learning works and
what a learning model is. However the developer or researcher should not have to have
any preliminary knowledge about smart fabrics or hardware in general. The data from
the smart fabric prototype should be provided for the user. Working with the data
should be possible without understanding the background behind the data sampling of
the device.

Universality: The developed system should work with any pressure-sensitive prototype
without any specific use case in mind and should allow for rapid prototyping of different
use cases. Therefore, the recognized gestures and triggered actions must be variable and
easy to configure.

Expandability: An important key requirement is expandability. Not only the possible
gestures, filters and triggered actions should be editable, also the learning models and
training algorithms as well as provided heuristics should be easily extensible for devel-
opers. Basic filters, learning functionality and the infrastructure to add heuristics are
provided. Developers can choose from the provided features or extend the system with
custom algorithms.

9
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Platform Independence: Another major objective is platform independence. Developers
should not be forced to work with a specific operating system or programming lan-
guage. Therefore, the developed system is web-based and is not based on a specific
operating system. The implementation is built using Node.js. However, the target ap-
plication, where the smart fabric prototype should be used in, does not rely on a specific
programming language, but should only be able to connect to a WebSocket server to
receive the sensor data as well as information about recognized gestures.

3.2 Scope of Functions
The implemented software should collect data from any connected textile prototype and
empower a researcher, developer or user experience designer to rapidly prototype differ-
ent gestures and dispatch action when specific gestures are performed. If the connected
prototype complies with the necessary data structure (see Section 4.2), no programming
should be necessary prior to prototyping. Filtering the raw data, defining new gestures
and adding requests that are triggered by specified gestures should all be configurable
via the user interface.

3.2.1 Data Filtering
Sometimes it can be useful to apply different filters on the raw data prior to the gesture
recognition algorithm. Filters can for example eliminate errors in the sensor data caused
by issues in the hardware implementation or they can be used to transform the data
into another range which might improve the gesture recognition or is necessary because
the values are mapped to request parameters for the triggered action. Predefined filters
are provided which can be applied on the data via the user interface. The ordering of the
filters is of importance since many filters are not commutative. Therefore, it is necessary
to provide a simple solution for reordering filters once they are added.

3.2.2 Gesture Recognition
To recognize gestures that are drawn on or performed with the smart textile, a machine
learning algorithm is provided. Defining gestures, capturing data for a specific gesture
and training the machine learning model should be possible via the user interface.
Programming should only be necessary for algorithmic gesture recognition or customized
learning models.

3.2.3 Triggering Actions
Once a gesture is recognized it should be attached to a specific action that is performed,
like for example answering a phone call, turning off the light or switching to the next
song while listening to music. This actions should be configurable via the user interface
and also the linking between the recognized gesture and the according action should be
manageable without any programming.
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3.2.4 Extended Functionality
No programming skills are required to prototype simple demonstrators. Nevertheless,
the functionality of the system can be extended by adding custom implementations.
Developers should be able to adapt the application to a different input data structure,
add custom filters, define recognized gestures based on algorithms instead of machine
learning or implement different learning models. All parts of the application should
be exchangeable separately without effecting other functionality. For example, adding
custom filters should not impact the gesture recognition functionality.

3.3 Architecture
A module-based application structure is necessary to provide the described functionality
and to ensure that the application is easily extendable and can be adjusted for various
use cases. The different modules and their functionality in the processing pipeline are
described in Section 3.3.2. For every module at least one implementation is provided.
Detailed information about the implementations is discussed in Chapter 4.

3.3.1 Application Setup
The application is split into three parts: a backend application, a web server and
a client application with the graphical user interface (UI). The backend application
is the core of the developed application. It handles the data analyzing and gesture
recognition and triggers requests to public APIs. The UI on the other hand, is not
required for the application to work, but provides a more convenient way to use the
application and furthermore enables more users to benefit from the developed tool
for prototyping, like for example user experience designers, which do not have a lot of
programming experience. The web server represents the connection between the backend
and the frontend and handles the communication between them. Some functionality of
the backend and the client application relies on the same information like for example
existing filter types and applied filters. To guarantee that both parts of the application
act based on the same data, shared information is stored in a database which can be
accessed from both the backend (directly) and the client application (via the provided
API from the web server) and is the single source of truth. The basic setup is shown in
Figure 3.1. When the server receives a request from the client, it either reads from the
database and sends back the result or the database is updated according to the request. If
entities (for example filters, triggers or gestures) are added or deleted from the database,
the server also communicates these changes to the backend application. The backend
application on the other hand sends the analyzed raw data and recognized gestures to
the server which are forwarded to the client and visualized in the user interface. When
the backend application is re-started all existing entities are read from the database and
used for initialization before the application starts reading and analyzing data from the
textile sensor.
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Figure 3.1: The application consists of a backend and a client part and a web server
which handles the communication between them. Additionally, data is stored in a database
to ensure consistency.
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Figure 3.2: Data from the smart textile sensor is transmitted via a serial port. The first
steps are to read the data from the serial port, analyze the input stream and transform
the data to flattened arrays and apply filtering.

3.3.2 Data Processing
The processing of the sensor data starts with reading the transmitted data from the
smart textile sensor and transforming it into a structure that the application under-
stands. This procedure is divided in three different modules, which are illustrated in
Figure 3.2. The first module handles the connection to the hardware of the prototype.
It receives the raw sensor data and forwards it to the analyzing module. The input data
from the textile sensor does not always have the necessary structure for the application.
For example, when data is read via a USB serial port, the data is transmitted via an
array buffer and not all the data is transmitted at once. The application however ex-
pects to get one array containing all data from one state of the sensor. Therefore, the
second module handles the analysis of the input stream and transforms the data into the
required structure. When the current state of all sensors is completed, the transformed
data can be passed to the next module. Before the data is ready to be visualized and
used for the different gesture recognition algorithms, filtering is applied on the data to
handle errors in the sensor data or achieve different effects that improve the gesture
recognition.

Once the data is complete and filtered, it is passed to the data capturing module,
which stores the data to a CSV file. The stored data can later be used to train a ma-
chine learning model. Furthermore, the data is also forwarded to the gesture recognition
algorithms to detect gestures performed on the smart textile. This part of the process-
ing pipeline is shown in Figure 3.3. If a gesture is detected by one of the algorithms,
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Figure 3.3: The input data is sent to the data capturing module and to the gesture
recognition algorithms. If a gesture is detected and an action trigger for this gesture is
defined, the corresponding HTTP request is dispatched.
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Figure 3.4: The sensor data and recognized gestures are sent to the user interface and
visualized there. For the transmission the WebSocket connection handled by the web
server is used. The user interface also communicates via the web API provided by the
same server to interact with the backend application (see also Figure 3.1).

a HTTP request to a public or custom API can be dispatched, if such an action has
been configured for the specific gesture. This allows for rapidly prototyping all use cases
that can be managed via HTTP requests. Examples include using different gestures
to handle music (for example Spotify1) and turning on the lights by using smart light
bulbs, e.g. Philips Hue.2

The sensor data as well as recognized gestures are all sent to the client application
via the WebSocket connection handled by the web server, as shown in Figure 3.4. The
same web server also provides a web API which is used by the client to make changes
to the processing pipeline of the backend application, like for example to add different
filters or train new gestures, which will be recognized by the SVM classifier.

1https://www.spotify.com/at/
2https://www2.meethue.com/en-us

https://www.spotify.com/at/
https://www2.meethue.com/en-us


Chapter 4

Implementation Details

This chapter provides more insights about the implementation. The sequence of the
discussed topics represents roughly the order they are executed in. First, the technology
that was used to implement the idea is mentioned. Second, the requirements on the
hardware prototypes and the reading of the serial data stream are discussed. After that,
there is some information given about filtering and gesture recognition. The end of this
chapter describes ways to communicate with the application and how data is sent to and
received from the user interface. While aiming to summarize the whole implementation,
a special focus has been given to details, that are important for others to work with,
which are explained more elaborately.

4.1 Technology Stack
The server-side application was developed using Node.js. The client relies on JavaScript,
HTML and CSS. This decision should facilitate the use of the software on different
platforms and the communication between the client and the server application. The
used technology stack of the implementation can be split into two parts. Although the
client application and the server-side implementation are based on the same technology,
they are separate applications and can be developed independently.

The user interface (UI) is built as a single page application using the React1 library.
Due to the use of the JSX2 syntax extension and ECMAScript 6 (ES6) language features,
which are not supported by all browsers yet, the source code has to be pre-processed
and transformed into standard ECMAScript 5 (ES5) [36, 37]. Thus, Babel3 is used to
compile JSX and ES6. It is configured as part of a webpack4 setup that also handles
script bundling and hot reloading during development. The basic project setup was done
using the create-react-app5 tool. Some additions have already been made. For example
the use of the CSS extension language SASS (Syntactically Awesome Style Sheets)6 has
been configured.

1https://reactjs.org/
2https://facebook.github.io/jsx/
3https://babeljs.io/
4https://webpack.js.org/
5https://github.com/facebook/create-react-app
6http://sass-lang.com/
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Figure 4.1: The first module handles reading the input data from the serial port.

The backend of the implementation is realized in Node.js. The main functionality
of the backend is to read out the sensor data from the USB serial port, analyze the
data and apply filters and gesture recognition algorithms. A HTTP server handles the
communication with the user interface via REST API calls and a WebSocket connection.
Shared information between the frontend and backend application, e.g. which filters are
applied or which gestures are trained, is stored in a MongoDB7 database for which
mongoose8 is used for object modeling. For the web server the Express9 framework is
used, together with the body-parser10 middleware for parsing the JSON body of the
requests. More details about the REST API and the WebSocket communication are
discussed in Section 4.6.

The backend and the client application both use yarn11 as the package manager of
choice. Like npm12 it relies on the large npm software registry. However yarn is used
over npm because it is faster, a lockfile is generated, which guarantees that the very
same version of all dependencies will be installed across multiple machines, and it has
a flat dependency tree which avoids duplicate dependencies [39].

4.2 Serial Data Input
Reading and analyzing the raw sensor data from the connected device describes the first
step of the application. First, the data has to be read from the input device. After that,
the data needs to be transformed into a structure the application can work with.

4.2.1 Reading Data from Serial Port
As shown in Figure 4.1, the first module of the backend application handles reading the
input data from the connected device. The implementation expects the textile proto-
type to be connected via an USB port. There are different Node.js libraries for reading
serial input from a COM-port. A fast and easy solution is using the Serial Port JSON
Server (SPJS)13. This tool starts a WebSocket server and distributes the sensor data

7https://www.mongodb.com/
8http://mongoosejs.com/
9https://expressjs.com/

10https://www.npmjs.com/package/body-parser
11https://yarnpkg.com/lang/en/
12https://www.npmjs.com/
13https://github.com/johnlauer/serial-port-json-server

https://www.mongodb.com/
http://mongoosejs.com/
https://expressjs.com/
https://www.npmjs.com/package/body-parser
https://yarnpkg.com/lang/en/
https://www.npmjs.com/
https://github.com/johnlauer/serial-port-json-server
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Figure 4.2: After the input data is read from the connected prototype, the data has to
be transformed in the required data structure.

to any open connection. However, it is not sufficient if the data needs to be altered
by the backend application before it is distributed to the client application. There-
fore, a custom implementation of the described module is necessary. In the provided
framework the module, handling the reading of the input data, correlates to the class
SerialInputReader, which uses the serialport14 library to read from the USB port.
SerialInputReader extends the EventEmitter class. Every time new data is read from
the serial port the incoming-data-event is emitted with the corresponding data.

4.2.2 Structuring Serial Data
The implemented application is designed to work with arrays of sensor values, that
contain all values for the current state of the sensor at once. The data from the serial
port does not always contain a complete iteration of all sensor values, but is returned
in form of an array buffer, where the number of the read bytes can differ depending on
the timing of the start of the connection and the performance of the USB port and the
connected device. Therefore, before the data can be passed to the filter pipeline, it has
to be analyzed. This step is handled by the second module (see Figure 4.2). The single
data chunks have to be connected to an array containing all values for one state of the
connected sensor in the right order.

Analyzing the Serial Data Stream

To combine and structure the raw data in the correct order the class DataAnalyzer
implements the second module of the backend application (see Figure 4.2). The im-
plementation depends on a specific structure of the input data. First, 6 header bytes
describing the data transmission are expected, followed be the values of all single sensors.
The exact data structure is described in detail in the next section.

Depending on this structure the analyze method of the DataAnalyzer class trans-
forms the incoming serial input stream into arrays containing one complete state of
the connected sensor, respectively. Therefore, the first step is to watch for the start of a
new message and use the header data to initialize all required information. Subsequently,
the sensor information is read and stored. Once the incoming data of the current state
is complete, an event is sent containing the transformed data. The basic algorithm is
defined in Algorithm 4.1.

14https://www.npmjs.com/package/serialport

https://www.npmjs.com/package/serialport
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Algorithm 4.1: The algorithm analyzes the input data from a serial port and stores
the data in a global list sensorValues. Once one entire state of the sensor is received,
an event with the resulting values is emitted.

1: global variables
2: isInitialized ← false
3: index ← 0
4: sensorValues ← ( )
5: rows, cols, dataLength ◁ undefined
6: end global variables

7: Analyze(data)
Analyzes and transforms the input data into one complete state of all sensors.

8: if isInitialized then
9: HandleData(data)

10: else
11: Initialize(data)
12: end if
13: end

14: HandleData(data)
15: if index = 0 then ◁ start of the sensor data transmission
16: remove the first 6 entries from the data array (header bytes)
17: end if
18: for 𝑖← 0, . . . , length of data − 1 do
19: sensorValues[index]← data[𝑖]
20: index ← index + 1
21: end for
22: if length of sensorValues = dataLength then ◁ sensorValues are complete
23: EmitEvent(sensorValues)
24: index ← 0
25: end if
26: end

27: Initialize(𝑑𝑎𝑡𝑎)
28: for 𝑖← 0, . . . , length of data − 1 do
29: if 𝑑𝑎𝑡𝑎 contains start byte 0xDF at index 𝑖 then
30: rows ← 𝑑𝑎𝑡𝑎[𝑖 + 1]
31: cols ← 𝑑𝑎𝑡𝑎[𝑖 + 2]
32: dataLength ← rows · cols
33: isInitialized ← true
34: restData ← all values from data starting from index 𝑖
35: Analyze(restData)
36: end if
37: end for
38: end
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The implementation of the algorithm must take into account that the start byte 0xDF
can also appear as part of the sensor values. Therefore, it is not sufficient to assume a
new transmission is starting when 0xDF is received. Furthermore, it must be considered
that the header bytes do not have to be located at the beginning of the read part of the
input stream and can even be received in multiple parts.

If a user wants to use a prototype with a different structured data stream, the
DataAnalyzer can be exchanged by a custom class implementing a method called
analyze which receives an incoming data from the stream and emits a data-array
event with the current values when a complete state of the sensor input is received.

Raw Data Structure

To comply with the developed application, the hardware has to send the data in a
specified way. All sensor values are sent sampled with 8 bits, which means every sensor
is represented by 1 byte. At the beginning of each transmission a 6 byte long header is
sent, containing a defined start value and information about the sensor size, the used
encoding and the length of the following data. The first byte always has the value 0xDF.
It is used to mark the start of the transmission header. The second and third byte
contain the resolution of the used sensor by specifying the number of rows and cols.
Byte number four is an indicator for the encoding used for the data and byte number
five and six store the length of the submitted data. An example header is shown in
Figure 4.3.

Figure 4.3: Every data transmission starts with six bytes of header information. The
connected hardware in this example has a resolution of 32 rows and 32 columns, no
encoding algorithm is used on the raw data and there are 1024 bytes following containing
the data.

4.3 Filtering
To account for errors and flickering in the raw sensor data, the next module is data
filtering, as shown in Figure 4.4. Different filters are provided which can be applied as a
preprocessing step on the sensor data prior to data capturing and gesture recognition.
Multiple filters can be combined to achieve the desired result. Since most filter combi-
nations are non-commutative, the order of the applied filters is of importance and has
to be considered carefully.

In this section, first, different filter implementations are explained and formalized.
In the end, the implementation structure of the filter pipeline and the possibility to
implement new filters are discussed.
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Figure 4.4: Once the analysis of the input data is complete, filtering is applied on the
data to account for errors in the raw data.

4.3.1 Filter Types
Ten different filters have been formalized and implemented. The input data 𝐷 for every
filter are the sensor values 𝐷(𝑖), where 𝑖 ∈ [0, 𝑁 − 1] and 𝑁 is the product of the
sensor resolution in 𝑥 and 𝑦 direction. 𝐷 can either be the raw sensor data from the
serial data stream discussed in Section 4.2 or result from an already applied filter.
Each filter iterates over all values 𝐷(𝑖) and transforms them according to the specific
implementation of the filter. Then the transformed values 𝐷′(𝑖) are returned, which are
then used as input for the next filter or directly as input for the data capturing and
gesture recognition as well as for the data visualization.

Scale Filter

The scale filter (see Figure 4.5) is a linear filter which applies the scale factor 𝑠 on every
value 𝐷(𝑖) of the input 𝐷 and can be formalized as

𝐷′(𝑖)← 𝐷(𝑖) · 𝑠. (4.1)

The scale factor 𝑠 is not constant, but can be specified by the user when adding the
filter. Scale filters can be used to amplify or decrease the signal intensity. In case they
are used to amplify a signal they will most likely be used in combination with another
filter that will filter out noise in the sensor data to prevent increasing the noise as well.

(a) 𝐷 (b) 𝐷′ (c) 𝐷′

Figure 4.5: The scale filter is used to multiply all values with a constant factor 𝑠. The
input data (a), the filter result where 𝑠 = 2 (b) and the result of the filter where 𝑠 = 10 (c)
are shown.
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(a) 𝐷 (b) 𝐷′ (c) 𝐷′

Figure 4.6: The clamping filter limits the range of the sensor values. The input data (a)
and the results of the filter with 𝑟min = 0 and 𝑟max = 5 (b) and 𝑟min = 1 and 𝑟max = 10 (c),
respectively, are shown.

Clamping Filter

To restrain the input values 𝐷 to a specified range [𝑟min, 𝑟max] the clamping filter can
be used. With an active clamping filter (see Figure 4.6) all values 𝐷 between 𝑟min and
𝑟max (including 𝑟min and 𝑟max) remain unchanged while values below 𝑟min become 𝑟min
and values above 𝑟max become 𝑟max, i.e.,

𝐷′(𝑖)←

⎧⎪⎨⎪⎩
𝑟min if 𝐷(𝑖) < 𝑟min,

𝐷(𝑖) if 𝑟min ≤ 𝐷(𝑖) ≤ 𝑟max,

𝑟max if 𝐷(𝑖) > 𝑟max.

(4.2)

The clamping filter is useful to set an upper bound on the sensor values or to eliminate
negative values (resulting from other filters).

Band-Pass Filter

Similar to the clamping filter, the band-pass filter (see Figure 4.7) also works with a range
[𝑟min, 𝑟max] and keeps values in this range (again including 𝑟min and 𝑟max) unaffected.
Values outside the specified range however are cleared and default to zero, i.e. (analog
of Equation 4.2),

𝐷′(𝑖)←
{︃

0 if 𝐷(𝑖) < 𝑟min or 𝐷(𝑖) > 𝑟max,

𝐷(𝑖) if 𝑟min ≤ 𝐷(𝑖) ≤ 𝑟max.
(4.3)

Highest Peak Filter

The highest peak filter (see Figure 4.8) sets all signal values 𝐷(𝑖) to zero except for
the highest occurring value. There can be be multiple occurrences of the same value if
multiple sensors share the same highest value:

𝐷′(𝑖)←
{︃

0 if 𝐷(𝑖) < max(𝐷),
𝐷(𝑖) if 𝐷(𝑖) = max(𝐷).

(4.4)
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(a) 𝐷 (b) 𝐷′ (c) 𝐷′

Figure 4.7: This figure shows the results of the band-pass filter. The input data is shown
in (a). The results for 𝑟min = 0 and 𝑟max = 5 as well as 𝑟min = 1 and 𝑟max = 10 are shown
in (b) and (c), respectively.

(a) 𝐷 (b) 𝐷′

Figure 4.8: The highest peak filter only keeps the highest value and sets all other values
to 0. The input data (a) and the result (b) are shown.

Rotation Filter

Like explained in Section 4.2, the alignment of a single value 𝐷(𝑖) of the sensor data
matrix 𝐷 is specified by the order the sensor values 𝐷(𝑖) are sent in by the micro-
controller of the device. The rotation filter performs a 90 degree clockwise rotation
on the sensor data (see Figure 4.9). This can be useful in case the sensor values are
aligned differently than someone would expect. Reasons therefore could be advantages
for the hardware implementation or later using a prototype in a different orientation
than initially planned.

The rotation of the sensor data 𝐷 is performed in three steps. The first step is to
expand the one-dimensional input data to a two-dimensional matrix 𝑀 by using the
width 𝑤 and height ℎ specified, when creating the filter. If 𝑤 and ℎ are not specified, the
default value is 32 respectively, because this is the standard sensor size of the devices
used for developing this filter. With the given width and height of the resulting matrix,
all values 𝑀(𝑖, 𝑗) with 𝑖, 𝑗 ∈ N can be calculated as

𝑀(𝑖, 𝑗)← 𝐷((𝑗 · 𝑤) + 𝑖), (4.5)

where 𝑖 = 0, . . . , 𝑤− 1 and 𝑗 = 0, . . . , ℎ− 1. The next step is to rotate the matrix 𝑀 by
90 degrees to get the rotated matrix

𝑀 ′(𝑖, 𝑗)←𝑀(𝑗, (𝑤 − 𝑖− 1)). (4.6)

Finally, the 2-dimensional data is flattened to one dimension, that is,

𝐷′((𝑗 · 𝑤′) + 𝑖))←𝑀 ′(𝑖, 𝑗), (4.7)
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(a) 𝐷 (b) 𝐷′

Figure 4.9: The result (b) of the rotation filter is a 90 degree clockwise rotation of the
input data (a).

(a) 𝐷 (b) 𝐷′ (c) 𝐷′

Figure 4.10: The remap filter maps the input values (a) from the given range 𝑟min to
𝑟max to a new range 𝑟′

min to 𝑟′
max. The results of two examples are shown in (b) (where

𝑟min = 0, 𝑟max = 255, 𝑟′
min = 0 and 𝑟′

max = 50) and (c) (where 𝑟min = 0, 𝑟max = 100,
𝑟′

min = 10 and 𝑟′
max = 200).

where 𝑤′ = ℎ, due to the rotation of the matrix in the previous step. While the rotation
filter always rotates 90 degrees, 180 and 270 degree rotations can be achieved by applying
the filter multiple times. Since the rotation filter is the only filter implementation that
is changing the location of 𝑑 in the input data 𝐷, the positioning of the rotation filter
in the filter pipeline is of no importance.

Remap Filter

If the sensor data 𝐷 should be mapped to another range the remap filter (see Figure 4.10)
can be used. It takes all sensors 𝐷(𝑖) with an original range 𝑟 = [𝑟min, 𝑟max] and maps
them to a specified range 𝑟′ = [𝑟′

min, 𝑟′
max] using linear interpolation, i.e.,

𝐷′(𝑖)← (𝐷(𝑖)− 𝑟min) · (𝑟′
max − 𝑟′

min)
(𝑟max − 𝑟min) + 𝑟′

min. (4.8)

Before the interpolation, the filter automatically sets all values below 𝑟min or above
𝑟max to 𝑟min and 𝑟max, respectively, to ensure a fixed lower and upper bound of the
input values. Therefore it is not necessary to use the remap filter in combination with
a clamping filter.

Individual Offset Filter

All previously discussed filters only depend on the current input data. The individual
offset filter (see Figure 4.11) is different. When it is added by the user or on server
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(a) 𝐷1 (b) 𝐷2 (c) 𝑂1...𝑛 (d) 𝐷 (e) 𝐷′

Figure 4.11: This figure shows an example of the individual offset filter where 𝑛 = 2.
The first two data inputs (a) and (b) that are received by the filter are used to calculate
the offset values (c). The result for the input data (d) after the initialization process is
shown in (e).

start-up, the first 𝑛 times that the filter receives data, this data 𝐷 is used to initialize
the filter’s offset values 𝑂. 𝑂(𝑖) for the current initialization step 𝑚 = 1, . . . , 𝑛 is de-
fined to contain the maximum value of 𝐷𝑚(𝑖) and the offset values from the previous
initialization step 𝑂𝑚−1(𝑖) which means after time 𝑛 the maximum value of all values
𝐷(𝑖) used for initialization is

𝑂𝑚(𝑖)←
{︃

𝐷𝑚(𝑖) if 𝑚 = 1,

max(𝐷𝑚(𝑖), 𝑂𝑚−1(𝑖)) if 1 < 𝑚 ≤ 𝑛.
(4.9)

This offset data 𝑂 is then subtracted from the individual offset filter ’s input data 𝐷 to
generate the filtered data

𝐷′(𝑖)← 𝐷(𝑖)−𝑂(𝑖). (4.10)

As the filter can result in negative values 𝐷′(𝑖), it should be combined with a clamping
filter or a band-pass filter with 𝑟min = 0. The individual offset filter is a good choice to
account for errors in the sensor data that are constant over time and most likely caused
by hardware problems like shortcuts in the used prototype.

Adaptive Offset Filter

Similar to the individual offset filter, the adaptive offset filter (see Figure 4.12) also
calculates offset values 𝑂(𝑖) and subtracts them from the input data values 𝐷(𝑖). The
difference is, that 𝑂 is not calculated just once when initializing the filter, but the filter
keeps a history of the last 𝑛 data frames and uses the average of this frames as an offset

𝑂𝑚(𝑖)← 1
𝑛
·

𝑛∑︁
𝑚=1

𝐷𝑚(𝑖). (4.11)

Like in the individual offset filter before, 𝑂 is then subtracted from 𝐷 to get the resulting
values

𝐷′(𝑖)← 𝐷(𝑖)−𝑂(𝑖), (4.12)

which are returned by the filter.
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15

15

(a) 𝐷𝑚−2 (b) 𝐷𝑚−1 (c) 𝑂𝑚 (d) 𝐷𝑚 (e) 𝐷′

Figure 4.12: This is the equivalent example of Figure 4.11 for the adaptive offset filter.
Instead of the first two frames, the last two inputs (a) and (b) are used to calculate the
offset values (c). Another difference is, that the average value is used to calculate the
offset values instead of the maximum value. Again (e) shows the result for the current
input data (d).

15

15

(a) 𝐷𝑚−1 (b) 𝐷𝑚 (c) 𝐷′

Figure 4.13: The sliding window filter returns the average of the last 𝑛 data frames (in
this example 𝑛 = 2). The result of the data inputs, which are shown in (a) and (b), is
shown in (c).

Sliding Window Filter

The sliding window filter (see Figure 4.13) uses the same underlying principal as the
adaptive offset filter. The last 𝑛 input frames are stored and averaged as well. The
difference is that the average of all stored frames is directly returned as the result of
the filter, i.e.,

𝐷′(𝑖)← 1
𝑛
·

𝑛∑︁
𝑚=1

𝐷𝑚(𝑖). (4.13)

Delta Filter

Another filter, which stores data from the previous state as well, is the delta filter (see
Figure 4.14), which always returns the difference of the current data values 𝐷𝑚(𝑖) and
the previous input values 𝐷𝑚−1(𝑖) by subtracting 𝐷𝑚 from 𝐷𝑚−1,

𝐷′(𝑖)← 𝐷𝑚−1(𝑖)−𝐷𝑚(𝑖). (4.14)

Due to the subtraction, negative values are possible in the resulting data 𝐷′ of the delta
filter.
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(a) 𝐷𝑚−1 (b) 𝐷𝑚 (c) 𝐷′

Figure 4.14: The delta filter always returns the difference of the last two data frames (a)
and (b). The result is shown in (c).

4.3.2 Implementation Structure
All described filters are implemented as single classes. They inherit from a base class
Filter, which ensures that the methods getName and filter are overwritten in the
subclasses and provides access to the filter’s id which has to be set at time of creation:

1 class Filter {
2
3 constructor(id) {
4 this.id = id;
5 }
6
7 getId() {
8 return this.id;
9 }

10
11 /∗∗ Implementation required ∗/
12 static getName() {
13 throw new Error('getName() method not implemented');
14 }
15
16 /∗∗ Implementation required ∗/
17 filter(data, rows, cols) {
18 throw new Error('filter() method not implemented');
19 }
20
21 reset() {}
22 }

The parameters rows and cols of the filter method are not used for all filters. They
are for example important for the rotation filter, because the dimensions of the sensor
are needed to convert the one-dimensional data array into a two-dimensional matrix
with the correct dimensions.

Filter Composites

The composite pattern has been used to ensure that different filters can be added and
combined dynamically to facilitate maximum flexibility. Developers can add single fil-
ters or build a whole filter pipeline. This was achieved by implementing another filter,
additionally to the ten previously discussed filter types. This filter is called filter com-
posite and behaves like a regular filter, but internally stores a list of multiple filters.
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By calling appendFilter(filter, options = {}) with either an object from a class
derived from Filter or a string containing the name of a filter type, a filter is added
to the collection. When the filter method of the filter composite is called, the filter
method of each filter from the list is called, respectively. removeFilter(filterId)
can be used to remove a filter from the collection again and moveFilter(startIndex,
endIndex) enables the user to move the filter to a different position in the list which
can be necessary because not all filters are commutative and so the order in which the
filters are called is important. Filter composite also implements the reset()-method,
which again iterates over all stored filters and resets each of them, respectively.

Filter Factory

Filters can either be created manually or by using the filter factory. The filter factory
allows to create a filter via a string containing the type of the filter. Additionally, options
can be forwarded to the filter if necessary:

1 const BandPassFilter = require('./filter/BandPassFilter');
2 const ClampingFilter = require('./filter/ClampingFilter');
3 const IndividualOffsetFilter = require('./filter/IndividualOffsetFilter');
4 ...
5
6 class FilterFactory {
7
8 getFilter(type, options = {}) {
9

10 switch(type.toLowerCase()) {
11
12 case BandPassFilter.getName().toLowerCase(): {
13 return new BandPassFilter(options.id, options.min, options.max);
14 }
15 case ClampingFilter.getName().toLowerCase(): {
16 return new ClampingFilter(options.id, options.min, options.max);
17 }
18 case IndividualOffsetFilter.getName().toLowerCase(): {
19 return new IndividualOffsetFilter(options.id,
20 options.initializationSteps);
21 }
22 ...
23
24 default: {
25 return null;
26 }
27
28 }
29 }
30 }

This is especially useful to enable the user to add new filters from the user interface
where the class definition of the various filter implementations is not known.

Adding New Filters

Due to the chosen structure, it is possible to implement new filters and extend the
possibilities the application can be used for. Every new filter should extend the discussed
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Figure 4.15: Two types of gesture recognition algorithms are performed on the input
data once it is analyzed and filtered.

base class Filter and at least overwrite the mandatory classes getName and filter.
While getName is only supposed to return a string with the filter’s name (used for the
filter factory), the filter method gets the current input data 𝐷, which can be either
the raw sensor data or the result of a previous filter, so that the user can perform custom
logic on 𝐷 before returning the transformed data 𝐷′ to be passed to the next filter or
the data capturing and gesture recognition algorithms.

4.4 Gesture Recognition
Once the input data has been analyzed and filtered, the data is ready to be processed
by different modules of the backend application. One task that is performed on the final
input data, is gesture recognition, as shown in Figure 4.15. Different approaches have
been implemented for the gesture recognition. The implemented application provides
two different ways how gesture recognition can be accomplished which are described
in this section. Furthermore, information about capturing data, which is for example
necessary for a variety of machine learning algorithms, is given.

4.4.1 Heuristic Approach
One simple but not very flexible approach for gesture recognition is to implement al-
gorithmic rules for specified gestures. For some gestures and use cases this might be
the way to go. An advantage of this approach is that additionally to the recognized
gesture properties like the position, length or direction of the gesture can be calculated
and used for various purposes. In the discussed implementation, a HeuristicDetector
class was implemented, where multiple custom heuristic rules can be added. A heuristic
is in this context a class implementing a method called analyze which implements a
rule to detect one or multiple different gestures. Every time new data is received, all
added heuristics are tested. If a gesture is detected, this gesture is returned with all data
that was implemented by the specific rule, which means when implementing a heuristic,
the developer has the opportunity to add custom properties to the gesture object. Ad-
ditionally to the gesture data the type heuristic is set to be able to distinguish between
recognized gestures from the heuristic approach and gestures detected by the machine
learning algorithm. A very simple heuristic could be implemented as follows:
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1 const THRESHOLD = 2;
2
3 class SimpleTouch {
4 analyze(data) {
5 // iterate data and look for elevated values
6 for(let i = 0; i < data.length; i++) {
7 if(data[i] > THRESHOLD) {
8 return { name: 'Touch', force: data[i] };
9 }

10 }
11 return undefined;
12 }
13 reset() { }
14 }
15 const simpleTouchInstance = new SimpleTouch();
16 module.exports = simpleTouchInstance;

After the SimpleTouch gesture is added to the HeuristicDetector, the gesture is
recognized anytime the smart fabric is touched anywhere. While this is a very simple
example, heuristics can be a powerful tool to implement the recognition of multi-tap
and slide gestures. Another use case would be for example to use heuristics to analyze
the direction of a movement and combine this direction with the result of the SVM
classification, like it was done in the SmartSleeve project [22].

4.4.2 SVM Classifiers
A common approach is to use a machine learning algorithm for the classification of dif-
ferent gestures. For the implementation the Support Vector Machines (SVM) algorithm
is used for the gesture recognition as the input features are the raw sensor values. There-
fore, there can be a high number of features and SVM is able to handle classification
problems with many features [12]. The npm registry offers a library called libsvm-js15,
which is a port of the c++ library libsvm from Chang and Lin [38]. This library is used
to perform the SVM classification.

Only if no pre-trained serialized SVM model exists, a new model is created. Before
the model can be used to classify gestures it has to be trained. For the training labeled
training data is necessary. Once the model is trained, it is serialized and stored in the
file /app/data/recources/svmModelData.txt and ready to classify the input data with
the sensor values into the trained gestures. Also a probability value of the correctness
of the classified gesture is given which can be used for example to decide if the value
is high enough that a corresponding action should be triggered. If the application is
restarted at a later time the serialized model is used and there is no need to train a new
classifier again except if gestures should be added or deleted.

Because the features used for the machine learning approach are the raw sensor
values and there is no feature extraction prior to the learning algorithm, the recognized
gestures are not location invariant. One way this could be implemented, is implementing
a blob tracking algorithm and using the blob properties as features for the SVM classifier.
This approach was used and tested in the SmartSleeve project [22].

15https://www.npmjs.com/package/libsvm-js

https://www.npmjs.com/package/libsvm-js
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Figure 4.16: The prepared input data is passed to a data capturing module which stores
the captured data to a specified CSV file.
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Figure 4.17: When a gesture is recognized, the configured action is dispatched which
triggers a HTTP request to a public or custom API.

4.4.3 Data Capturing
Also a system to capture labeled training data for the machine learning algorithm was
implemented. Every frame of incoming data is also passed to the DataCapturer af-
ter the raw data was analyzed and filtered (see Figure 4.16). If the instance variable
isCapturing is set to true, every incoming dataset is stored in an array. When the
capturing is finished, all stored data frames are saved in a CSV file. The methods
start(gestureName) and stop() are provided to handle the beginning and ending
of the capturing process. Also the possibility to just capture a single frame was im-
plemented with the captureSingleFrame(gestureName) method. The gestureName
passed when starting the data capturing is used as label for the captured data which is
used as feature input.

4.5 Triggering Actions
Once prototyping different use cases, the recognition of a specific gesture should most
likely result in a specified action that is triggered, as shown in Figure 4.17. Actions
are for example answering a phone call, controlling a music player or switching the
lights on or off. For this reason, the ActionDispatcher class was implemented. The
ActionDispatcher contains a list of all defined triggers. Every trigger has the following
format:
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{
_id: ..., // MongoDB ObjectId
request: {

method: ..., // HTTP method to use (GET, POST etc.)
url: ..., // URL for the request
data: { // parameters that should be sent

... // with the request (key−value pairs)
}

},
labels: [ ... ], // gesture labels that should trigger the request
name: ...

}

Whenever a gesture is recognized, the labels array of all defined triggers is checked for
an occurrence of the recognized gesture. If the gesture label is contained, the request of
the respective trigger is made using the axios16 library.

4.6 Communication
There are two types of communication between the backend and the client. As shown in
Figure 4.18 they are both handled by the same web server. On application startup the
local HTTP based web server is started on port 9000 using the Express17 framework.
This server provides a web API for various interactions between the front- and backend
application and is also used to start a WebSocket server.

Web API

WebSocket

1. Data
Preparation

2. Data
Processing

Backend
Application Web ServerTextile

Prototype
Client

Application

Database

Figure 4.18: The web server handles the communication between the client and the
backend application.

4.6.1 Web API
The web API was developed so the backend application can be managed from a user
interface. While not every detail of the backend can be changed via the web API the
most important tasks and actions that are reasonable to be executed via an user interface
are supported. If a user feels limited by the functional range of the provided web API
it can easily be extended.

One main functionality of the web API is handling which filters are applied on the
data, defining which gestures will be recognized and which actions will be triggered when
a specific gesture is identified. These actions depend heavily on create, read, update and

16https://www.npmjs.com/package/axios
17https://expressjs.com/

https://www.npmjs.com/package/axios
https://expressjs.com/
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Table 4.1: This table provides an overview about the provides REST API calls to create,
read, update and delete filters, gestures and action triggers.

Method Filters Gestures Triggers Description
GET /filter /gesture /trigger read all elements
POST create a new item
GET

/filter/:id /gesture/:id /trigger/:id
read element by id

PUT update specified element
DELETE delete item

Table 4.2: The API provides endpoints to get a list of all filter types, reset and reorder
filters and retrain the SVM classifier. Additionally, the data capturing can be triggered
and stopped. Also information about the serial port connections of the device can be
handled using the provided endpoints.

Method Route Description
GET /filter/types list all filter types
PUT /filter/reset reset the filter pipeline
PUT /filter/reorder change the ordering of the filter in the

filter pipeline with start and end index
POST /gesture/train train the SVM classifier
GET /data/ports list all serial port connections of the

current device (used for debugging)

POST

/data/device/:productId change product id of hardware device
/data/capture/start/:gestureId start capturing data
/data/capture/stop stop data capturing
/data/capture/:gestureId capture a single frame

delete (CRUD) actions of the particular entity and were therefore implemented using a
REST architectural style (see Table 4.1). In addition to this RESTful API there are a
view more specific endpoints available for the filter and the gesture entity, respectively.
They allow to retrieve a list of all existing filter types, to reset and reorder filters and to
train a new SVM classifier or retrain the existing SVM model. Another important task
available via the web API is controlling the data capturing. Existing endpoints enable
the user to start and stop capturing data for the machine learning algorithm used for the
gesture recognition. Additionally, there is the possibility to retrieve information about
all devices currently connected to the used computer. This feature is useful for debugging
if no data can be retrieved and is therefore part of the data controller. Also a route for
changing the product id of the hardware, which is used to identify the correct COM
port for receiving data input, exists. The exact routes are summarized in Table 4.2.
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4.6.2 Streaming of Raw Data and Recognized Gestures

The WebSocket server is implemented using the ws18 library and can also be accessed
on port 9000. Since the WebSocket Protocol is used instead of the Hypertext Transfer
Protocol (HTTP) this must be declared in the URL by using ws:// as a substitute for
http://. The server only allows clients to connect and receive messages and does not
listen to any messages sent by the client. Three different messages types are sent over
the WebSocket connection: the raw sensor data, gestures recognized by implemented
heuristic functions and gestures identified by the SVM classifier. While the messages
are structured differently, they all have a specified type property so they can be easily
distinguished by the client application.

Sensor Data Message

Messages of type raw are sent when there is new data from the serial input, which has
already been analyzed and filtered. The message has the following format:

{
type: 'raw',
timestamp: ..., // JavaScript Date object
serialData: [...],

}

Message for a Gesture Recognized by a Heuristic

If there is an implemented heuristic which detects a specific gesture, the following mes-
sage is sent including the name of the gesture and different custom properties:

{
type: 'heuristic',
name: ...,
gesture: {

... // properties of the gesture
},

}

The properties that are sent with the gesture are defined by the particular implemen-
tation of the heuristic function, respectively.

SVM classified gestures

When a gesture is recognized by the SVM algorithm, the following message is sent which
gives information about the recognized gesture:

{
type: 'gesture',
name: ...,
label: ...,
probability: ..., // predicted probability in %

}

The message specifies the type gesture and informs about the probability that the
gesture was classified correctly.

18https://www.npmjs.com/package/ws

https://www.npmjs.com/package/ws


Chapter 5

User Interface

For the most important configurations of the backend application a graphical web-based
user interface has been designed and implemented. Thus, also novice users with little or
no programming experience are able to prototype simple use cases, train gestures and
trigger actions when they are recognized by using the predefined interactions with the
backend application.

The user interface (UI) is divided in five components: Device Configuration, Filtering,
Gesture Recognition, SVM Classifiers and Action Triggers. They are all shown in the
order they should be configured in (see Figure 5.1).

Figure 5.1: The UI contains five steps. The first section contains basic settings concerning
the configuration of the hardware device.

33
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5.1 Device Configuration
The first step is the configuration of settings concerning the hardware prototype, which is
represented by the first section of the user interface shown in Figure 5.1. The application
needs to know how to identify the right USB port for reading the input data from a
smart fabric device. It is built to identify the correct port by scanning all available serial
ports for a specified device id which can be configured in the first section of the UI. If
the device id is not known to the user, there is the possibility to log all available ports
to the developer console of the browser to identify the correct port manually and look
for the device id there.

Furthermore, the IP address for the WebSocket connection can be configured in case
the UI is not opened on the same device that the server is running on. The connection
to the web socket server can be started and stopped. Only if the connection is open, raw
data for the visualization and information about recognized gestures is transmitted. For
the transmitted data the number of rows and cols can be configured which impacts the
visualization discussed in the next section.

5.2 Filtering
After the device has been configured, the next action is to define the filtering in the
second section of the user interface (see Figure 5.2). By using the ADD FILTER button
various different filters (see Section 4.3.1) can be added via a dialog that is shown
in Figure 5.3. The information about which options are necessary for a certain filter
type and which input fields have to be displayed, is stored in the database. Therefore,
if a developer implements a custom filter type which should be available in the user
interface, a data base entry has to be made describing the interface for the dialog
shown in Figure 5.3. Once multiple filters are added, the order of the filters can be
changed via a simple drag and drop gesture. This is crucial, because some filters are not
commutative and therefore having a simple solution to change the order of the applied
filters is fundamental.

The second important part of the filtering section is the visualization of the data. If
there is an open web socket connection, incoming data is displayed in matrix form on a
canvas element. The number of rows and columns of the visualization depends on the
settings configured in the Device Configuration section of the UI. The color of the single
entries of the data matrix depends on their value. The values 0 to 255 are interpolated
linearly between the hue values 240 (which corresponds to blue) and 0 (red) using the
HSL (Hue, Saturation, Lightness) color model.

5.3 Gesture Recognition
In the third section of the user interface recognized gestures specified via an algorithmic
description of a heuristic are shown (see Figure 5.4). The gray area on the left contains
the name of the recognized gesture. On the right side more information about the
recognized gesture, like directions or strength of the applied force, is shown. Which
information is shown for a specific gesture is defined when implementing the heuristic.
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Figure 5.2: The second section allows to define new filters, delete existing filters or
reorder the filters contained in the filter pipeline with a simple drag and drop mechanism.
It also contains the visualization of the sensor data.

Figure 5.3: A modal containing a form allows to add new filters to the filter pipeline.
The form fields change according to the selected filter type.
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Figure 5.4: A touch gesture was recognized with a value of 148.

Figure 5.5: Section 4 is concerned with the definition of gestures and training of the
machine learning algorithm. Gestures recognized by the SVM classifier are shown here.

5.4 SVM Classifiers
Gestures recognized be the machine learning algorithm can be configured and visualized
in Section 4 of the UI (see Figure 5.5). The left side contains a list of all stored gestures
(loaded from the database). Again it is possible to add new gestures by opening a dialog
comparable to the ADD FILTER dialog shown in Figure 5.3 or delete a gesture by clicking
on the trash can icon next to the gesture name. The small green or grey circle next to
the gesture indicates if the gesture has already been trained. If the circle is green the
SVM classifier is ready to recognize the gesture.

The right side again contains a grey area which shows the name of the last recognized
gesture, like in the previous section. Furthermore, it contains functionality to capture
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Figure 5.6: Section 5 is concerned with the definition of action triggers.

data and train the machine learning model. To capture data, the user first has to select
one of the defined gestures to specify for which gesture the data should be captured.
Then the gesture needs to be performed on the prototype and the button START DATA
CAPTURING is clicked. Only after clicking STOP DATA CAPTURING the gesture which
is performed on the smart textile should be released. If only one single frame of data is
needed, there is also the possibility to capture a single frame by using the corresponding
button. When all the necessary data has been captured, the TRAIN button can be used to
re-train the SVM classifier. After the training process, ideally all defined gestures should
be marked with a green circle. If this is not the case the most likely reason therefore
is, that there is was no data captured for some of the gestures and they therefore could
not be trained.

5.5 Action Triggers

The last section of the user interface (see Figure 5.6) is for defining which actions
should be triggered once a specified gesture has been recognized by either a programmed
heuristic or the machine learning model. The section is structured similar to the one for
specifying the gestures for the SVM classifier. On the left side there is a list of all defined
triggers and the possibility to add new triggers or delete them. As described in Section
4.5, an action can be an arbitrary HTTP request to any public or local API. When an
action trigger is selected from the list, all the information about the trigger (the HTTP
method, the URL and the data for the JSON body of the request) is listed on the right
side. In the right bottom area the user has the possibility to link the specified action to
a gesture, that should trigger the action when it is recognized.
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For specifying the JSON body that will be sent with a triggered request, a special
syntax has been developed to empower the user to not only use static values in the re-
quest body, but also to dynamically map information from the corresponding recognized
gesture or predefined values from the database to specified entries in the request body.
The developed syntax allows to specify placeholders for various values of interest. When
the action is triggered the strings are parsed and replaced with the desired values.

Gesture Parameters: When a developer implements a custom algorithm to recognize
gestures, custom properties can be specified that are stored in the object of the recog-
nized gesture. In the recognized Touch gesture from the example shown in Figure 5.4
there are three custom properties defined: position, force and duration. These param-
eters of the recognized gestures can be accessed in the request body specification by
using the $ symbol, e.g. $position$, $force$ or $duration$.

Variables: Another possibility is to map properties of the request body to predefined
values stored in the database. This can be accomplished with the use of the % symbol,
e.g. %brightness% or %hue%, to accessed values for brightness and hue that are stored
in the list of trigger variables in the database.

Iteration: For some use cases it might be necessary to iterate through a list of predefined
values. An example could be, that five colors are defined and every time a specified
gesture is performed the light should switch to the next defined color. For this use case
an additional syntax was developed: %colors[%colorIndex%++]%. Using this syntax
a defined array of multiple colors and the current index colorIndex are read from
the database. The value of colors at index colorIndex is then used for the request
body. Additionally, the value for colorIndex is updated so the next time the request is
triggered, the next value will be used. The direction, which is used for the iteration is
specified by using ++ or --. When the end or the beginning of the array is reached, the
iteration will start again with the first or last entry, respectively.



Chapter 6

A Dynamic Quadtree Approach for
Reading Sensor Data

In addition to the developed modular system for handling and interpreting sensor data
coming from smart fabrics and the user interface for facilitating rapid prototyping, also
a new method how the sensor data can be sampled more efficiently was developed and
evaluated. This chapter describes the basic idea and the motivation for this approach.
The evaluation is discussed in the subsequent chapter. The approach provides an al-
ternative, possibly faster method to read large-scale textile sensors. However, this idea
does not have to be implemented in order to be able to use the developed prototyping
framework with custom prototypes.

6.1 Motivation
The proposed approach is motivated by research on industrially woven or knitted tex-
tiles, which can be produced at large-scale and with high resolution. If the sensor data
of large textiles is read by iterating over all intersections of conducive yarns (which are
the measurable points of the fabric), the time complexity is 𝑂(𝑛2). Therefore, it can
be concluded that for large-scale or high resolution textile sensors, the performance of
sampling all sensors individually, rapidly decreases with increasing size and resolution
of the sensor. Table 6.1 shows an example of the sampling performance of smart fabrics
with different amounts of sensors. The example is based on an industrial manufactured
textile sensor with a resolution of 32 × 32 sensible values. The table shows, that for
large-scale and high resolution prototypes, the time needed for sampling all sensor val-
ues is not sufficient. Furthermore, the number of bytes that need to be transmitted to
the web platform is enormous for big sensors. The amount of transmitted data can be
decreased by using a lossless compression algorithm like run-length encoding. However,
data compression would not decrease the time of the sampling process. Therefore, an
optimized way of sampling the data, which in the best case also results in less data
that needs to be transmitted, is needed. One idea to achieve this is using a quadtree
structure, a technique often used for various purposes in different fields including image
processing [2, 4, 11, 17], computer graphics [6, 15, 19, 20, 32] and robotics [8, 30].

39
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Table 6.1: For large prototypes with high resolutions the time for sampling all sensors
individually and the number of transmitted bytes increases rapidly.

# of Sensors Sample Time Method Frames/Second Bytes
1 ≈ 28 𝜇s measured 35,714 7

100 2.8 ms calculated 357 106
1, 000 28 ms calculated 36 1,006
1, 024 27.54 ms measured 36 1,030

10, 000 280 ms calculated 3.6 10,006
100, 000 2.8 s calculated 0.4 100,006

6.2 Quadtrees
Before getting into more detail about the proposed quadtree approach, this section
establishes the basic theory about quadtrees and give a short overview about the use of
quadtrees in various research areas.

6.2.1 Definition
Samet gives a good overview about quadtrees in [24]. He defines quadtrees as “hierar-
chical data structures whose common property is that they are based on the principle
of recursive decomposition of space” and distinguishes between two types of quadtrees:
region quadtrees and point quadtrees. A comprehensible description of region and point
quadtrees can also be found in [1] by Aluru.

6.2.2 Region Quadtree
The implemented approach for reading smart textile sensors is categorized as a region
quadtree, which is therefore described briefly by using the example given by Samet
in [24]. The focus of the implemented region quadtree lies on organizing the content of
the given area. An example of a region quadtree structure is displayed in Figure 6.1.
The raw data, which in the example of Samet is a binary array describing a black and
white image, is shown in Figure 6.1 (a). In the implementation for the smart fabric, this
represents the sampled data from the textile sensor. The data is divided in four equally
sized parts. If the thereby created regions do not consist only of 1s or 0s, the region
is again divided in four quarters. This procedure is continued until all created regions
consist entirely of one value. The result is shown in Figure 6.1 (b) and the composed
tree structure is shown in Figure 6.1 (c).

6.2.3 Quadtrees in Different Research Areas
To establish some context, some examples for the use of quadtrees in different fields are
outlined. The examples provide an idea about typical use cases for quadtrees but do not
attempt to illustrate a complete list of all applications where quadtrees might be used.
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(a) (b) (c)

Figure 6.1: This figure shows an example for a region quadtree which was re-illustrated
from [24]. The raw data (a) and the structured data (b) as well as the corresponding tree
structure (c) are shown.

Computer Graphics: One common use case of quadtrees in the field of computer graphics
is for example the rendering of terrains in different levels-of-detail (LOD) depending on
the current view [15, 19, 20]. More recent research on the topic [6, 32] shows, that the
use of quadtrees in terrain LOD algorithms is still not outdated.

Robotics: Another use case for quadtrees in the area of robotics is pathfinding [8, 30].
In pathfinding, quadtree structures can be used to describe the world and its obstacles
in a more compact way, because areas without any obstruction can be combined and
treated as a single entry [8].

Image Processing: Also in image processing quadtrees play a viable role. Already in the
1980s, quadtrees have been used for shape analysis and shape matching [2]. Use cases
from recent years include image segmentation and image comparison [4, 11, 17]. Image
segmentation can for example be useful for image annotation [4] or as a preprocessing
step to image processing to specify regions of particular interest [17]. An example for
image comparison is the work from Kirichek and Kurai, who use quadtrees to segment
two similar images and then calculated a third images based on the differences [11].

6.3 Method Description
The described novel sampling technique focuses on improving the sensor sampling speed
of smart fabrics prototypes and reducing the length of the transmitted data at the same
time, by using the well established quadtree algorithm in a new context. The basic idea is
to use a region quadtree structure to divide the textile sensor area into regions, instead of
sampling all single sensor values individually. An example is shown in Figure 6.2. Instead
of sampling all the values (see Figure 6.2 (a)), the sensor is divided in four equally big
areas which are sampled as one single sensor, respectively (see Figure 6.2 (b)). If there
are values above a certain configurable threshold 𝑡, the corresponding area is again
divided in four smaller parts (see Figure 6.2 (c)) and this step is repeated until the
maximum resolution is reached (see Figure 6.2 (d)). All regions with a value below 𝑡
are not sampled in more detail. The subsequent sections first describe how the tree
structure is built and discuss the conditions for sampling a specific region with more
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(a) (b) (c) (d)

Figure 6.2: Instead of sampling all single sensors (a), the textile is divided in 4 parts (b)
and only areas with a value above the threshold 𝑡 are sampled in more detail (c). This
step is repeated until the maximum resolution is reached (d).

detail. Second, the serialization of the tree is outlined and the resulting data structure is
illustrated. Finally, reading different sensor values, sampling sensor regions and finding
an appropriate threshold 𝑡 is explained in detail.

6.4 Tree Structure
The focus of this section is the algorithm used to build the quadtree structure and the
conditions for deciding if a node should be further extended or remain a leaf node. The
serialization of the quadtree, once it is complete, is discussed in the next section.

6.4.1 Tree Composition
The first step to build the quadtree, is to sample the value for the whole sensor area
and use this value to initialize the root node of the tree structure. Next, the conditions
for expanding the current node and sampling the sensor region with more detail are
checked, and if necessary the node is expanded. Expanding a node means that the
area corresponding to the particular node is divided in 4 parts of equal size. Four child
nodes are added to the current node which correspond to one of these four new regions,
respectively. This step is repeated recursively until the tree structure is completed, like
shown in Figure 6.2. The approach is described algorithmically in Algorithm 6.1.

6.4.2 Conditions to Expand a Node
If a current node should remain a leaf node or needs to be expanded, to closer examine
the corresponding sensor region, depends on two conditions. First, it is important to
check if the sensor region 𝑗 associated with the node is bigger than one single sensor.
If the 𝑗 consists of only one sensor, the maximum depth of the tree is reached and the
corresponding node cannot be expanded further. If only this condition is applied when
generating the quadtree structure, the tree would already be built correctly. However,
all nodes would be expanded as often as possible until the maximum depth is reached,
which would result in sampling the whole sensor in as much detail as possible. This is
no improvement over sampling all sensors and would even worsen performance. Thus,
a second condition is necessary.
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Algorithm 6.1: This algorithm describes how the quadtree is built.
1: global variables
2: data, value of the current node
3: children, child nodes of current node
4: end global variables

5: Expand(𝑃 )
Samples the value for the current node and checks if the node must be expanded to
sample the values in more detail based on the condition 𝑃 .

6: 𝑑𝑎𝑡𝑎← SampleSensorRegion( ) ◁ read the value for the current node
7: children ← ( )
8: if 𝑃 is valid then
9: for 𝑖← 0,. . . , 3 do ◁ add 4 child nodes

10: child ← ⟨nil, ( )⟩
11: children ← children ∪ (child)
12: Expand(P) ◁ expand the child node
13: end for
14: end if
15: end

The second condition does not check if it is possible to divide a sensor region 𝑗,
but checks if the expansion of a node is necessary. The goal is to distinguish between
areas where no pressure is applied and regions or single sensors with touch input or
deformation, because these active areas should be sampled with maximum resolution in
order not to loose information. This is done by applying a specified threshold 𝑡 on the
sensor value 𝐷(𝑗). In case the sampled value 𝐷(𝑗) for the current node is above 𝑡 there
is activity in the current sensor region 𝑗 and the sensor should be sampled with a higher
resolution. If 𝐷(𝑗) < 𝑡, there is no detailed sampling necessary because no pressure is
applied anywhere on the corresponding region.

6.5 Serialization
When the sampling of the smart textile sensor is finished and the quadtree is complete,
the values of all leaf nodes are serialized before the data is transmitted from the micro-
controller of the smart textile prototype to the connected computer. The serialization
is done starting at the root node and traversing the tree in depth-first order. The depth
and the value of all leaf nodes of the tree are saved to a data array that is transmit-
ted. Additional the number of nodes added to the transmission data is counted to later
calculate the length of the data transmission. The algorithm used for the serialization
is shown in Algorithm 6.2. After the serialization of all nodes is complete, the 6 header
bytes are added at the beginning of the data array (see Section 4.2).

The described serialization results in a data structure where every value is submitted
in 2 bytes. The first bytes signifies the depth of the value in the quadtree structure and
the second byte specifies the value itself. In case all sensor have to be sampled with
the maximum depth, the resulting data that needs to be transmitted, is twice as long
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Algorithm 6.2: The quadtree is traversed and the length and the value of all leaf nodes
are stored in a list.

1: global variables
2: nodeCounter ← 0
3: data ← ( )
4: end global variables

5: RetrieveNodeValue(node)
Retrieve the depth and the data value of the given node.

6: if node is a leaf node then
7: nodeCounter ← nodeCounter + 1
8: data ← data ∪ (depth of node)
9: data ← data ∪ (value of node)

10: else
11: for all childNode ∈ children of node do
12: RetrieveNodeValue(childNode)
13: end for
14: end if
15: end

using the quadtree structure than with the regular sampling of all single sensors. On
the other hand, in case only few sensors differ from 0, less data needs to be transmitted
because big regions with the same value can be combined. An example of an 8×8 sensor,
the corresponding tree structure and the transmitted data with and without using the
proposed quadtree approach, is shown in Figure 6.3.

6.6 Reading Sensor Values and Finding the Optimal Threshold
This sections gives a detailed description on how the sampling of the single sensors
works and how multiple sensors can be combined to a sensor region 𝑗. Furthermore, two
different approaches for evaluating the optimum threshold 𝑡 are discussed.

6.6.1 Reading of Sensor Values
Every sensible point of the smart textile has to be the crosspoint of two lines of con-
ductive yarns. To read a specific sensor value of the prototype, one of the corresponding
lines has to be connected to reference voltage and the other line has to be connected to
the analog digital converter (ADC), while all other sensor lines are connected to ground
potential instead, as shown in Figure 6.4 (a). The same method can also be used to read
a region of multiple sensors at once by connecting multiple conductive lines to reference
voltage and their counterpart to the ADC (see Figure 6.4 (c)).

The analogRead() method from the Arduino API is used to sample the value 𝐷(𝑖)
of a single sensor 𝑖 or 𝐷(𝑗) for the currently configured sensor region 𝑗. It takes the
reference voltage of 3.3 Volts of the Arduino Due board and divides it by the number of
possible values which, with the default 10-bit analog to digital converter, is 210 = 1024
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(a) (b) (c)

(d)

(e)

Figure 6.3: An example of possible sensor data (a) is given and the corresponding
quadtree structure is shown in (b) and (c). The serialized data, that is transmitted to the
connected computer and used by the described prototyping application, is demonstrated
and compared between the transmission of the raw sensor data (d) and the transmission
resulting from the quadtree algorithm (e).

(a) (b) (c) (d)

Figure 6.4: By connecting one (a) or multiple (c) conductive lines to reference voltage
and the corresponding lines on the other side of the crosspoint to the ADC, while all other
lines are connected to ground potential, one single sensor (b) or a sensor region (d) can
be read.

[34, 35]. The resulting values range from 0 to 1023. For the implemented example the
method analogReadResolution() is utilized to use an 8-bit analog to digital converter
instead. Therefore, the results are values between 0 and 255, where a difference of 1
between two values corresponds to a change in voltage of 0.0129 Volts (12.9 mV). Thus,
it can be concluded that the sampled value 𝐷(𝑖) or 𝐷(𝑗) is a direct indicator for the
sampled voltage

𝑈𝑣 = 𝐷(𝑖) · 12.9 mV, (6.1)

which can be applied for 𝐷(𝑗) as well. However, the measured voltage is not actually
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Figure 6.5: While all resistors (crosspoints of conductive yarns) of a specified sensor
region 𝑅𝑗 = (𝑅1, 𝑅2, . . . , 𝑅𝑛) are connected in parallel, 𝑅𝑗 is connected serially to a
pull-down resistor 𝑅𝑣 = 5.65 kΩ (a). The equivalent for a single sensor is shown in (b).

the voltage at the specified crosspoint(s), but the voltage at a pull-down resistor 𝑅𝑣,
which is connected serially to the sensor values like shown in Figure 6.5.

For a single resistor (see Figure 6.5 (b)) this means if 𝑅𝑖 is high (which is the default
state if the sensor is not touched) the voltage 𝑈𝑖 is also high which results in 𝑈𝑣 being
low because

𝑈𝑣 = 𝑈 − 𝑈𝑖, (6.2)

where 𝑈 does not change. Therefore, the value 𝐷(𝑖) returned by the analogRead()
method is also low, which is the expected behaviour when no sensor is touched. If
pressure is applied on a crosspoint of two conductive lines, the corresponding resistor
𝑅𝑖 decreases, which results in a higher voltage 𝑈𝑣, which means a higher value 𝐷(𝑖).
The same logic can be applied on sensor regions 𝑗 and the corresponding value 𝐷(𝑗).

6.6.2 Hardware Requirements
To make it possible to either read single sensors or sensor regions of different sizes,
it is necessary to have a hardware that supports reading dynamic resolutions of the
sensor. One suggested approach is to use analog matrix switches (ADG1438BRUZ) to
control the single conductive lines. One analog matrix switch has 8 analog switches
which means it can connect 8 conductive lines respectively or multiple lines at once.
Multiple matrix switches can be daisy-chained to control bigger matrices. It is possible
to connect a single line to either reference voltage or ground potential. Therefore, two
matrix switches are needed for every 8 lines, one that handles the reference voltage and
one for ground potential. An example hardware, how this could be implemented for a
32× 32 sensor is shown in Figure 6.6. This setup allows to dynamically change the read
resolution of the sensor, because the software can define how many crosspoints should
be read at once. This is an important prerequisite for building the quadtree.

6.6.3 Choosing the Optimum Threshold
According to the initial sensor values when no pressure is applied, the threshold 𝑡 must
be specified. The threshold 𝑡 needs to be chosen carefully since it is the only criteria
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Figure 6.6: This is a prototype with an industrial woven smart fabric sensor with 32×32
conductive yarns (black) which are connected to two boards with 8 analog matrix switches,
respectively.

(a) 8× 8 (b) 4× 4 (c) 2× 2 (d) 1× 1

Figure 6.7: The sampled value increases with the number of combined sensors.

influencing the performance of the quadtree. As discussed in Section 6.6.1 the sampled
sensor value is 0 when no pressure is applied on the smart textile. Applying pressure
on the fabric results in higher values in the corresponding area. Therefore, a suitable
value for 𝑡 would be 0 or close to 0, depending on how much noise should be tolerated
before considering a value active input. However, considering the single resistors 𝑅𝑖 ∈
{𝑅1, 𝑅2, . . . , 𝑅𝑛} of a sensor region 𝑅𝑗 are all connected in parallel, 𝑅𝑗 is smaller than
the smallest resistor 𝑅𝑖 because

1
𝑅𝑗

= 1
𝑅1

+ 1
𝑅2

+ . . . + 1
𝑅𝑛

. (6.3)

Therefore, if multiple sensors are read at once, it is possible that their value 𝐷(𝑗) > 0,
even if all sensors of the region would be 0 if they were sampled individually. An example
is shown in Figure 6.7. While all single sensors have a value of 0, the values increase
with the size of the sampled region. This is a problem because a fixed threshold 𝑡 = 0
does not work anymore. Thus, another solution is needed to decide if the resolution
of the region should be increased. One possibility is to approximate the values of the
single sensors of a specified region and to apply 𝑡 on the single sensor value instead.
Another solution would be a dynamic threshold that is calculated based on the depth
of the sampled sensor region. Both options are discussed, implemented and evaluated.



6. A Dynamic Quadtree Approach for Reading Sensor Data 48

Approximation of Single Sensor Values

The first approach is to approximate the values of all single sensors. First, the total
resistance 𝑅𝑗 of the specified sensor region 𝑗 has to be determined. According to Ohm’s
law the relation between the voltage 𝑅, the current 𝐼 and a resistor 𝑅 is

𝑈 = 𝐼 ·𝑅. (6.4)

This means that
𝐼 = 𝑈

𝑅
, (6.5)

where 𝑈 has the constant value of 3.3 V. The total resistance 𝑅 equals the sum of 𝑅𝑗

and 𝑅𝑣 because they are connected serially, i.e. 𝑅 = 𝑅𝑗 +𝑅𝑣. Thus, it can be concluded
that

𝐼 = 3.3
𝑅𝑗 + 𝑅𝑣

. (6.6)

With this information Ohm’s law can be applied again, i.e.

𝑈𝑗 = 3.3
𝑅𝑗 + 𝑅𝑣

·𝑅𝑗 , (6.7)

which means
𝑅𝑗 =

𝑈𝑗 ·𝑅𝑣

3.3− 𝑈𝑗
, (6.8)

where 𝑈𝑗 can be calculated from the read sensor value 𝐷(𝑗) and 𝑅𝑣 = 5.65 kΩ. Once
𝑅𝑗 is known the next step is to calculate one single resistor 𝑅𝑖 under the assumption
all resistors 𝑅𝑖 of the current sensor region are the same. While this is not necessarily
true, it is the best possible approximation since no further information about the ratio
between the resistors is given. Nevertheless, this is a valid solution because if the values
derived by this calculation are close to 0 (defined by the threshold 𝑡), there is no force
input in this region and small differences in the resistors do not matter. If the resulting
values are above 𝑡, the discussed approach samples the corresponding region with a
higher resolution, which means the values are not directly used. Therefore, averaging
the values is valid and one single resistor

𝑅𝑖 = 𝑁 ·𝑅𝑗 , (6.9)

according to the behaviour of resistors connected in parallel which is formalized in
Equation 6.3, where 𝑁 is the number of sensible crosspoints 𝑅𝑖 in the selected sensor
region. The last step is to divide the total voltage 𝑈 of 3.3 V between the two resistors
𝑅𝑖 and 𝑅𝑣 = 5.65 kΩ which are connected serially (see Figure 6.5 (b)) to calculate

𝑈𝑣 = 𝑈 · 𝑅𝑣

𝑅𝑖 + 𝑅𝑣
, (6.10)

which is needed to calculate the new sensor value

𝐷(𝑖) = 𝑈𝑣

12.9 mV . (6.11)
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(a) 8× 8 (b) 4× 4 (c) 2× 2 (d) 1× 1

Figure 6.8: If the values of the single sensors are estimated and used as the value for the
whole region, the result for a sensor where no pressue is applied is always 0 independet
of the size of the sampled region.

(a) 8× 8 (b) 4× 4 (c) 2× 2 (d) 1× 1

Figure 6.9: With increasing size of the sampled regions, pressure on selected sensors (a)
has less input on the final value (b) and (c) until the pressure is not measurable any-
more (d).

This means that the specified sensor region with a value 𝐷(𝑗) consists of 𝑛 sensors
𝐷(𝑖) where 𝐷(𝑗) > 𝐷(𝑖). The single sensor value 𝐷(𝑖) can now be used to apply the
threshold 𝑡. The expected result is shown in the example in Figure 6.8.

However, the assumption that all resistors in the specified region are equal could
be a serious problem for this approach, because this results in an average value 𝑅𝑖.
The problem with averaging the values is, that pressure on one single sensor might be
eliminated with increasing size of the region, as shown in the example in Figure 6.9.
This behaviour is evaluated in Chapter 7.

Dynamic Thresholding

Another approach is to work with the original values 𝐷(𝑗) from the sensor region and
adjust the applied threshold instead. When the resistance 𝑅𝑖 of one crosspoint between
conductive lines without any pressure applied is known, the value for a specified region
can be calculated assuming no pressure is applied on the whole region 𝑗. The amount of
sensors in 𝑗 can be calculated according to the depth 𝑑 that is currently evaluated. 𝑅𝑗

can then be calculated using Equation 6.3. When the resistance 𝑅𝑗 for the whole region
is known, the corresponding sensor value 𝐷(𝑗) can be calculated using Equation 6.10
and 6.11, where 𝑅𝑖 and 𝐷(𝑖) are substituted by 𝑅𝑗 and 𝐷(𝑗), respectively. The result
is the sensor value for a given region where no pressure is applied. Alternatively, this
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(a) 8× 8 (b) 4× 4 (c) 2× 2 (d) 1× 1

Figure 6.10: Without estimating the single sensor values, applied pressure is measurable
in all resolutions.

value can also be evaluated empirically. The initial value of a region (see Figure 6.7) can
be compared to the measured value 𝐷(𝑗) of the current region (see Figure 6.10) and
used as a threshold to decide if a given region has to be sampled in more detail. If a
region is not sampled with maximum detail, there is no pressure applied on the region
and the value 0 can be returned instead of the sampled value. Otherwise the sampled
sensor value is returned. This approach has also been tested. The results are described
in Chapter 7.



Chapter 7

Evaluation

This chapter describes the results that were accomplished and evaluates the proposed
quadtree approach for reading sensor data as well as the developed prototyping frame-
work. First, the evaluation of the quadtree approach is discussed. The results of the
prototyping platform are presented in the subsequent section.

7.1 QuadTree Approach
The proposed quadtree method, for speeding up the sampling of the sensor data and
possibly reducing the transmitted data at the same time, has been tested. This sec-
tion focuses on the results of this approach. First, the outcome of sampling the sensor
with different resolutions is discussed. Second, the maximum number of active sensors,
which still results in a speed up or less transmitted data using the quadtree method, is
evaluated, respectively. Finally, the quadtree approach is tested on potential use cases.

7.1.1 Apparatus
The quadtree approach was developed due to current research on industrially woven
smart textiles which can be produced with high resolutions. One example of woven
textile sensor is shown in Figure 6.6. However, at the current state of the textile de-
velopment, the sensor data from the woven textile has too much noise to appropriately
apply and evaluate the proposed approach (see Figure 7.1 (b)). Therefore, a new pro-
totype has been implemented for the evaluations. The new prototype (see Figure 7.1)
has a resolution of 32× 32 sensors and is build out of two perpendicular layers of Zebra
Fabric with one pressure sensitive layer in between, like in [21]. For the sampling of the
sensor data, the same analog matrix switches were used, as described in Section 6.6.2.
Therefore, the sampling speed is comparable to the speed of the woven textile. However,
the resulting sensor data is much smoother (see Figure 7.1 (c)) and therefore provides
an excellent basis for the evaluation of the quadtree sampling approach.

7.1.2 Dynamic Resolution Sampling
The use of the analog matrix switches facilitates sampling a given textile with different
resolutions. This means for example, every 2× 2 = 4 or 4× 4 = 16 adjacent sensors of

51
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(a)

(b) (c)

Figure 7.1: For the evaluation of the quadtree sampling approach, a new prototype (a)
with a resolution of 32× 32 sensors was built using zebra fabric, because the sensor data
from the industrially woven textile (see Figure 6.6) has too much noise (b) for a proper
evaluation. The sensor data from the new prototype (c) is much smoother.

a 32× 32 sensor are sampled at once, like if they were one single sensor. The result is a
16×16 or 8×8 matrix, respectively. Due to the fact that less values need to be sampled,
the sampling time decreases and less data needs to be transmitted. The differences in
sampling speed and data length for a 32× 32 sensor are summarized in Table 7.1.

Dynamic Resolution without Averaging

As described in Section 6.4.2, the value of a sampled region increases according to the
number of sensors. The results of sampling a 32 × 32 sensor with different resolutions
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Table 7.1: This table summarizes the time needed for the sampling of the sensor data
and the length of the produced data for different resolutions of a 32× 32 sensor.

Resolution Sampling Time Transmitted Data Figure
32× 32 32 ms 1030 bytes Figure 7.2 (a)
16× 16 8 ms 262 bytes Figure 7.2 (b)
8× 8 2 ms 70 bytes Figure 7.2 (c)
4× 4 585 𝜇s 22 bytes Figure 7.2 (d)
2× 2 174 𝜇s 10 bytes Figure 7.2 (e)
1× 1 57 𝜇s 7 bytes Figure 7.2 (f)

is shown in Figure 7.2. The raw values 𝐷(𝑖) of the 32 × 32 sensor are all less or equal
to 2 (see Figure 7.2 (a)). This value increases when sampling the sensor with lower
resolutions. If sensor regions 𝑗 of 2× 2 = 4 sensors are sampled as one to get a resulting
matrix of 16× 16 values, the highest value 𝐷(𝑗) is still 2 (see Figure 7.2 (b)). However,
when sampling 4× 4 = 16, 8× 8 = 64 or 16× 16 = 265 at a time, the resulting matrices
of 8×8 (see Figure 7.2 (c)), 4×4 (see Figure 7.2 (d)) or 2×2 (see Figure 7.2 (e)) values,
already contain values 𝐷(𝑗) up to 4, 6 and 14, respectively. When all 32 × 32 sensors
are sampled like one single sensor, the resulting value is 36 (see Figure 7.2 (f)).

Dynamic Resolution with Averaging

One possible solution to handle this, is estimating the single sensor values 𝐷(𝑖) of a
sensor region 𝑗, like described in Section 6.6.3. The result is shown in Figure 7.3. In
comparison to the results discussed in the previous section, the value 𝐷(𝑗) for a specified
sensor region extending over multiple sensors is always 0 (see Figure 7.3 (b-f)), which is
the expected behaviour since no pressure was applied anywhere on the textile.

Dynamic Resolution with Averaging and Pressure

However, as expected, estimating the single sensor values also has a downside. Due to
the fact that no information about the single sensor values 𝐷(𝑖) of a sensor region 𝑗 is
known, the only way of estimating the single values 𝐷(𝑖) is averaging them. Calculating
the average has the drawback, that for big sensor regions, pressure on single sensors does
not make a difference (see Figure 7.4). While on the original resolution of 32× 32 input
sensors, applied pressure is clearly distinguishable (see Figure 7.4 (a)), the sensor value
𝐷(𝑗) for the region 𝑗 where the pressure is applied, decreases with lower resolutions
(see Figure 7.4 (b-d)). When 16× 16 (see Figure 7.4 (e)) or 32× 32 (see Figure 7.4 (f))
sensors are sampled together, applied pressure is not noticeable anymore.

Dynamic Resolution without Averaging and Pressure

Without the single value estimation, the applied pressure is noticeable in all resolutions
(see Figure 7.5). Therefore, this approach has been used for the quadtree implementa-
tion. A dynamic threshold, according to the current depth level of a sensor region, was
applied to account for the increasing values 𝐷(𝑗), even when no pressure is applied.
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(a) 32× 32 (b) 16× 16

(c) 8× 8 (d) 4× 4

(e) 2× 2 (f) 1× 1

Figure 7.2: Different resolutions of a 32×32 sensor with no pressure applied. The values
𝐷(𝑗) increase with the number of sensors that are sampled at once.
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(a) 32× 32 (b) 16× 16

(c) 8× 8 (d) 4× 4

(e) 2× 2 (f) 1× 1

Figure 7.3: The sampling of different resolutions with approximating the single sensors
𝐷(𝑖) of each region of a 32× 32 sensor, results in 𝐷(𝑗) = 0 when no pressure is applied.
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(a) 32× 32 (b) 16× 16

(c) 8× 8 (d) 4× 4

(e) 2× 2 (f) 1× 1

Figure 7.4: Due to the averaging of the sensor values, pressure on single sensors does
not make a difference for big sensor regions.
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(a) 32× 32 (b) 16× 16

(c) 8× 8 (d) 4× 4

(e) 2× 2 (f) 1× 1

Figure 7.5: Without estimating the single values 𝐷(𝑖) of a sensore region 𝑗, applied
pressure is measurable in all resolutions.
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7.1.3 Sampling Speed
The goal of the quadtree approach was to increase the sampling time of the sensor
values and decrease the amount of transmitted data at the same time. First, this section
evaluates the performance of the quadtree regarding sampling time.

Before the quadtree was implemented, the sampling of the sensor values was imple-
mented in a procedural style using C as a programming language. For the implementation
of the tree, an object orientation programming language was preferred and therefore C++
was used for the implementation of the quadtree approach. Before the quadtree was im-
plemented, the sampling of all sensor values was re-implemented using object orientation
to evaluate the speed difference between the procedural and the object oriented code.
The differences are summarized in the following table:

C (procedural) C++ (object oriented)
1 Single Sensor 28 𝜇s 32 𝜇s
32× 32 Sensor 28 ms 31 ms

The performance of the quadtree approach depends on the number of sensors that
have a value above 0. These sensors are henceforth be called active sensors, because
these are the sensors of interest where pressure is applied to. The relationship between
the number of active sensors and the sampling time is shown in Figure 7.6. However,
the sampling time of the quadtree approach not only depends on the number of active
sensors, but also on their location. If all active sensors are close together the performance
of the quadtree sampling approach is much better than with the same number of active
sensors spread across the whole sensor area. Therefore, the sampling time of the quadtree
approach with a specified number of active sensors has been measured in a best case
and a worst case approach. The best case approach is that all active sensors are close
together and as little sensor regions as possible need to sampled in more detail. With this
approach the quadtree outperforms the standard sampling method until the number of
280 active sensors is reached. If more than 280 sensors are active, the quadtree approach
is slower than the original sampling technique. In the worst case, all active sensors are as
far away from each other as possible, which means that multiple regions of the quadtree
need to be sampled with great detail. In this case the performance of the quadtree
approach is better up to a number of active sensors of 35. If 36 sensors are active, in
the worst case scenario, the quadtree approach is already slower.

7.1.4 Data Length
The same evaluation as with the speed of the quadtree approach was also conducted
according to the length of the transmitted data. The results are presented in Figure 7.7.
If all sensors need to be sampled with the maximum depth of the quadtree, twice as
much data needs to be transmitted (excluding the 6 header bytes). In the best case
scenario the quadtree approach results in less transmitted data until a number of 508
active sensors. However, if the active sensors are arranged in the worst possible case,
the point where the quadtree stops being an improvement and actually results in more
data, that needs to be transmitted, is between 85 and 86 active sensors.
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Figure 7.6: The performance of the quadtree approach depends on the number of active
sensors. Without using a quadtree, the sampling of a 32× 32 sensor always takes 28 ms.
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Figure 7.7: The transmitted quadtree data varies according to the number of active
sensors. Without the quadtree method 1030 bytes are transmitted constantly.

7.1.5 Use Cases
While Figures 7.6 and 7.7 show the performance of the quadtree in two theoretical
scenarios, several typical use cases have also been tested to evaluate the performance.
The results of this use cases are described in this section. Most use cases were performed
on a woven textile senor (with filtering applied to smooth the input data). The resulting
pressure image was replicated on the prototype with the zebra fabric to test the quadtree
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(a) (b)

(c) (d)

Figure 7.8: A fold gesture (b) was performed with the woven smart textile prototype,
which resulted in the pressure pattern shown in (a). The sensor data was replicated on
the new prototype (c) and resulted in the quadtree structure shown in (d).

approach and measure the sampling speed. The sensor values, the performed gesture
and the results of the quadtree approach are shown, respectively. Additionally, two use
cases for big textile sensors have been tested on the zebra fabric directly.

Fold

As shown in Figure 7.8, the fold gesture expands diagonally over one quarter of the
textile sensor. The replicated pressure pattern has 40 active sensors. However, only
one quarter of the sensor needs to be sampled in more detail. Therefore, the quadtree
approach is 268 % faster than the standard approach, because big parts of the sensor
can be combined to large sensor regions. The transmitted data is 158 bytes long, in
comparison to 1030 bytes without the quadtree method.



7. Evaluation 61

(a) (b)

(c) (d)

Figure 7.9: Pressure applied with the back of a pen on the woven smart textile proto-
type (b) results in the sensor data shown in (a). The replication on the new prototype
and the resulting quadtree structure are shown in (c) and (d), respectively.

Pen Input

Pressure with the back end of a pen resulted in the fewest active sensors from all tested
use cases (see Figure 7.9). While 4 sensors were actively pressed with the pen, some
neighboring sensors were affected too, as well as one outlier that was randomly picked
to simulate minimal noise in the sensor data. The total sum of active sensors was 20.
However, the input gesture is located between two quarters. Nevertheless, the quadtree
method results in a speed-up of 437 % and only 110 bytes need to be transmitted.
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(a) (b)

(c) (d)

Figure 7.10: This figure shows the pressure pattern (a) of touching the smart textile
with 1 finger (b). Again the sensor data was replicated on the prototype made out of
zebra fabric (c) and the corresponding quadtree structure (d) is shown.

Touch Input with One Finger

Furthermore, touch gestures with different fingers were examined. First, only one finger
was used to touch the smart textile (see Figure 7.10). The result were 36 active sensors.
Although this means more active sensor compared to the pen input, the sampling was
even 474 % faster using the quadtree approach. This can be explained due to the fact
that all active sensors from the finger input lie in one quarter of the sensor area (see
Figure 7.10 (c)). Thus, 3 quarters do not have to be sampled in more detail, in com-
parison to the example with the pen input, where only two quarters remained entirely
untouched.
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(a) (b)

(c) (d)

Figure 7.11: When the woven smart textile is touched with 2 fingers (b), two active
areas are recognizable in the pressure pattern (a). The replication on the zebra fabric and
the resulting quadtree structure are shown in (c) and (d), respectively.

Touch Input with Multiple Fingers

As expected, the number of active sensors increased with the number of fingers used to
touch the textile sensor. Two fingers for example resulted in 48 active sensors (see Figure
7.11). However, the quadtree approach still performed 188 % faster and needed only 200
bytes to be transmitted, instead of 1030 bytes (including header files). If four fingers
are used to apply pressure on the textile (92 active sensors), the quadtree approach still
outperforms the standard sampling technique by 85 %, although the fingers are spread
across the sensor and no quarter of the smart textile remains completely untouched
anymore (see Figure 7.12).
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(a) (b)

(c) (d)

Figure 7.12: The pressure pattern for touching the smart textile with 4 fingers (b)
is shown in (a). The pattern was then replicated on the prototype made out of zebra
fabric (c). The corresponding quadtree structure is shown in (d).

Shear

With 108 active sensors, the shear gesture (see Figure 7.13) was the biggest gesture
tested on the woven textile sensor. The sampling of the sensor using the quadtree ap-
proach took 14 ms in comparison to the sampling time of 28 ms without the use of a
quadtree. Therefore, the sampling was still 97 % faster. Also the length of the transmit-
ted data was 922 bytes shorter in comparison to sampling all sensors individually.

Tailor Seat

Additionally, two use cases for bigger sensors were tested on the new prototype made
out of zebra fabric directly. The first tested use case was sitting on the textile sensor
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(a) (b)

(c) (d)

Figure 7.13: The pressure pattern (a) of a performed shear gesture (b) was replicated
on the new prototype (c) and resulted in the quadtree structure shown in (d).

in tailor style (see Figure 7.14). The sitting position activated a total number of 168
sensors, which is the maximum number of active sensors during the evaluation of all
different use cases. The result of the speed evaluation shows, that the quadtree approach
still performs 24 % faster in comparison to the previous simple sampling method. The
length of the transmitted data decreased from 1030 bytes with the standard approach
to 458 bytes using the quadtree method.

Stand

Furthermore, standing on the textile sensor was tested (see Figure 7.15). The result
were 88 active sensors with a sample time of 14 ms, which corresponds to a speedup
of 105 %. The length of the transmitted data could be reduced form 1030 bytes to 266
bytes (including header bytes).
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(a)

(b) (c)

Figure 7.14: Sitting on the smart textile in tailor style (a) was tested directly on the
new prototype made out of zebra fabric. The resulting pressure pattern and the quadtree
structur are shown in (b) and (c), respectively.

7.2 Web-Based Prototyping Approach
Two different methods were used to evaluate the result of the developed framework.
One technique was to implement a new, completely different data visualization which is
needed to perform a study in a different project. The goal was to evaluate the difficulty of
adding custom visualizations and the possibilities for different visualizations for specific
use cases. Second, an interview with an expert in the area of sensing technologies was
conducted to evaluate how he could benefit from the application design and find out
about his thoughts about working with the framework and problems he experienced.

7.2.1 Custom Visualizations
The standard sensor visualization is a matrix with all input values of the sensor, which
are colored corresponding to their value. An example for a 32 × 32 sensor is shown in
Figure 5.2. For different use cases, there might be the need to add custom visualiza-
tions. Therefore, a custom visualization for a given concept was prototyped to evaluated
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(a)

(b) (c)

Figure 7.15: Standing on the smart textile prototype (a) was also evaluated. The re-
sulting sensor data (b) and the corresponding quadtree structure (c) are shown.

if custom visualizations are possible and what options a developer has for the imple-
mentation.

Use Case

The developed visualization was created for an already existing prototype. The proto-
type consists of the left handle of a bike covered with a smart textile, which contains 4
sensor columns. Additionally to the prototype, a study that should be conducted was
already drafted, but the concept needed to be implemented. The goal of the study is
to find out, if people are able to apply different levels of pressure with selected fingers
while riding a bicycle or motorcycle. The necessary visualization was implemented for
evaluation purposes. The study itself is conducted in a separate project.

Seven different pressure levels were defined corresponding to seven predefined colors.
A graphical visualization of a hand should be the center of the visualization which
indicates the pressure applied for each finger, by coloring the finger with the appropriate
color, respectively. The thumb was excluded from the study. Based on this setting,
different configured tasks should be completed by the subject. Each exercise defines a
specific color (i.e. pressure level) that should be reached and a selected finger which
should be used to apply the pressure. Once the level is reached, the pressure needs to
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be hold steady for a given number of seconds. The time remaining is visualized by a
clock animation.

Implementation

For the implementation a separate React component named HandVisualization was
created which contains the developed visualization. Therefore, the new visualization
can simply be switched with the default visualization by rendering the new component
instead. To switch between different visualizations in the user interface, a select field
exists, which defines which visualization to show.

Data Input: The information about the current sensor values is already available in
the global data storage of the client application. Therefore, the new visualization can
access the data and only implement custom logic if necessary. For example, in the
developed visualization the highest value of each column was used as the value for the
corresponding finger.

Hand Visualization: The visualization of the hand was implemented using a SVG image
that was illustrated in Adobe Illustrator and then exported to SVG. While the SVG file
could be included using the HTML img element, a better solution is to create a new
React component, copy and paste the source code of the create SVG file into that
component and then include this component instead. The advantage of this solution
is, that all parts of the created SVG visualization can be accessed and styled using
Cascading Style Sheets (CSS). This is for example necessary to dynamically change the
colors of the single fingers.

Study Settings: Different test sequences need to be defined for different subjects. The
easiest way to achieve this is creating a standard JavaScript file which exports the
sequences of configurations for different settings. This file is then imported by the visu-
alization. The following code illustrates how the configuration could look like:

1 export default {
2 Setting1: [
3 { fingerNumber: 3, matchNumber: 2, seconds: 1 },
4 { fingerNumber: 1, matchNumber: 6, seconds: 3 },
5 { fingerNumber: 1, matchNumber: 2, seconds: 2 },
6 ],
7 Setting2: [
8 ...
9 ]

10 };

Visualization Flow: Starting the study and handling the flow of the different study con-
figurations is done using standard JavaScript. The concept of React makes it easy to
listen to changes in any properties of the visualization and react accordingly. Switch-
ing to the next configuration when a task is completed successfully is done using the
setTimeout() method, once the correct pressure level is reached. When the timeout is
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complete, the visualization switches to the next configuration. If the required pressure
level cannot be held, clearTimeout() is used to stop the timer.

Timer Animation: The timer animation is implemented using CSS animations, which
are a powerful tool for quick and simple animations. If more complex animations are
needed, SVG animations can be used which can be exported from different animation
applications and then embeded and triggered via JavaScript.

Adding the Custom Visualization

The file client/src/components/Visualization/types.js defines which visualiza-
tions exist. Once the new visualization is implemented as a single React component
HandVisualization, the only step necessary to include the visualization to the user
interface of the developed framework, is to import the new component in this file and
configure the name and the needed properties of the new visualization according to the
example of the matrix visualization:

1 import React from 'react';
2 import MatrixVisualization from './MatrixVisualization';
3 import HandVisualization from './HandVisualization';
4
5 const types = [
6 { name: 'matrix', component: <MatrixVisualization width={500} height={500} /> },
7 { name: 'hand', component: <HandVisualization /> },
8 ];
9

10 export default types;

After including the component to the types configuration, the visualization is automati-
cally added to the view selection and can already be used. It is recommended to store all
visualizations in a separate folder located at client/src/components/Visualization,
to store them at one location and keep the import paths simple. However, this is not
necessary as long as the path in the import statement is set correctly.

Result

The resulting visualization is shown in Figure 7.16. The four fingers, from the index
finger to the little finger are colored according to their pressure level. The available
colors are shown on the left side of the visualization from bottom (low pressure) to top
(high pressure). On the left side of the visualization a select field allows to choose a
study setting and start a study process (see Figure 7.17 (b)). Once the study is started
(see Figure 7.17 (a)), only the finger which should be used to perform the current task is
colored. One of the color fields on the left is slightly enlarged and has a black frame. This
color should be matched by applying the appropriate pressure. The enlarged color field
without border signifies the current pressure level as well as the color of the highlighted
finger. The text on the right side of the visualization states the task that should be
accomplished and contains how long the defined pressure level should be held. As soon
as the correct pressure level is reached, a timer animation shows the remaining time
until the task is complete (see Figure 7.17 (c)). If the pressure level cannot be held for
the given number of seconds, the timer is reset and the countdown starts again when the
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Figure 7.16: A new visualization was developed to visualize the pressure applied with
different fingers, respectively.

correct pressure level is found again. Once the timer is complete (see Figure 7.17 (d)),
the visualization automatically switches to the next study configuration that should be
accomplished. Figure 7.17 (e) shows the screen indicating the end of the study. If the
reset button is clicked, the visualization returns to the start screen, which is shown in
Figure 7.16.

7.2.2 Expert Interview
To evaluate the developed prototyping tool also from the perspective of a researcher from
the field, an interview with an expert in the field of human computer interaction and
sensing technologies was conducted. The main points of interests that were evaluated
in the interview are, if the framework is simple to understand and which improvements
could be made to further enhance and simplify the prototyping experience.

About the Expert

The interviewed expert is a researcher and postdoc student at the Media Interaction
Lab1 of the University of Applied Sciences Upper Austria located in Hagenberg. He
has several years of experience with sensing technologies and worked with sensor foils,
i.e. piezoelectric sensors. For the signal processing and the visualization of the signal
data he works mostly with C#. Therefore, he has little experience with modern web
development, although he is currently working on an mobile app prototype, where React

1http://mi-lab.org/

http://mi-lab.org/
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(a)

(b) (c)

(d) (e)

Figure 7.17: When a study setup is chosen and started (b), different pressure levels
have to be reached with selected fingers (a), respectively. Once the correct pressure level
is reached, it needs to be held steady for the given number of seconds (c). When the task
is complete (d), the visualization switches to the next task automatically until all tasks
are done and the study is completed (e).
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Native2 is used. Thus, he is familiar with the basics of the React3 library, which is used
for the development of the user interface of the described application.

Use Case

For the publication of a resistive yarn he and his colleques implemented several textile
sensor prototypes to demonstrate different use cases of the developed yarn. For the
prototyping, the developed framework described in this thesis was used for the data
processing, the visualization and the triggering of the wanted actions. Although the
user interface was used to prototype, most of the changes and additions were made to
the backend application. The UI was hardly touch, however some small features like
custom buttons were added.

In the backend application several different filters and two simple algorithmic gesture
descriptions were added: one simple touch heuristic to recognize different tap and slide
gestures and a heuristic returning the current position of the finger when moving it in a
circle on the smart textile. Furthermore, blob detection has been implemented and the
features of the detected blob have been used for the SVM classification instead of the
raw sensor data.

Data Structure

The prototypes they developed for the publication were constructed in different ways.
While for some prototypes single lines of the resistive yarn were hand-stitched, other
prototypes used bigger woven textile sensors. However, for all prototypes the data struc-
ture was the same. The raw data was always a matrix of input values.

Experience with the Prototyping Framework

The participant mentioned that for him it was easy to start working with the framework
and he didn’t have difficulties understanding the application structure. The structure of
the backend application is easy to comprehend because the single modules, like custom
heuristics or SVM models, can be edited by the developer without touching the rest of
the application code. However, he imagines customizing the UI might be a little bit tricky
at first, if the developer has never used React or a similar frontend framework before.
He liked the concept of triggering API request when specified gestures are recognized,
because it is easy to connect to existing APIs, like the Philips HUE lights for example.

Ideas for Improvement

Working with the framework also revealed several aspects regarding work efficiency and
the user experience for the developer, which can be improved.

Adding Custom Filters: If a new custom filter is developed, there are multiple steps
necessary to include the filter in the application so it can be used by the backend
application and configured from the user interface:

2https://facebook.github.io/react-native/
3https://reactjs.org/

https://facebook.github.io/react-native/
https://reactjs.org/
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1. The filter class has to be implemented, where the behaviour of the filter is defined.
2. Then the filter has to be added to the FilterFactory (see Section 4.3.2).
3. To make the filter usable from the UI, a database entry has to be made, to define

the input fields for the necessary parameters.
Therefore, it can be tricky for the developer to implement a new filter and get it to
work. This process could be simplified, so that fewer steps are necessary to implement
a custom filter.

Settings for Multiple Prototypes: The framework is currently based on the work with
one prototype. All settings of the prototype, for example the defined filters or learned
gestures, are stored in a database. However, there is currently no way to switch to
another prototype without overriding the settings for the last prototype. While multiple
databases for the different prototypes can be used as a workaround, this is not an optimal
solution and there is room for improvement.

About the User Interface

The collapsible sections allow to focus on one particular section and save screen space by
closing sections, that are not needed at the moment. The training of different gestures
for the SVM model via the user interface worked fine. Nevertheless, also for the UI there
are some aspects that can be improved.

Data Visualization: The visualization of the data only shows the data after the filtering
pipeline, like it is used for the gesture recognition. However, for the developer it can
be interesting to also see the raw data next to the filtered data, so they can be easily
compared. This would for example help to find out if there are errors in the original
sensor signal or if a filter is not working correctly, when there is a problem with the
data.

Gesture Visualization: The user interface always shows the currently recognized gesture
or a placeholder if no gesture is recognized. This results in the phenomenon that short
touch gestures for example are only visualized briefly before they disappear again and
there is no possibility to access the gesture and the transmitted properties again. There-
fore, a systematic way of showing the last recognized gestures would improve the user
interface.

Manage Filters: Once a filter is added to the filter pipeline, it would be helpful for
developers to be able to activate and deactivate a filter without removing the filter
from the filter pipeline and later adding the filter again, because this can be quite
cumbersome. Also the possibility to edit filters would improve the user experience.

Sensor Settings: The UI provides functionality to start and stop the WebSocket con-
nection and to adjust the size of the visualization. This settings could be extended,
to provide more configuration of the prototyping device for example to really change
the size of the sensor area that is read and transmitted from the fabric and filtered
afterwards.
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Keyboard Shortcuts: While gathering data for the training of the SVM model, interact-
ing with the user interface and performing the gesture on the smart textile at the same
time can be difficult. Therefore, it would help to implement simple keyboard shortcuts
for the most important functionality, especially related to data capturing.

Advantages and Disadvantages of being Web-Based

In comparison to a C# application where the application can be built to a .exe file,
the setup of the application is more complex because all the dependencies have to
be installed and the database setup with the basic filter types has to be established.
An advantage on the other hand the is that the application is platform independent.
While the framework was developed on MacOS High Sierra, the participant installed the
system on a desktop machine running Windows 10. Furthermore, due to the use of state
of the art web development technologies, people with experience in web development
will have little difficulty understanding the application and adding additional features,
while they might have more trouble using C# or C++. As for the use of REST API
calls to trigger specific actions, the framework is future-proof and extendible because
REST APIs are widely used.

Conclusion

Although there are some details that can be improved and don’t have the optimal user
experience yet, the interviewed expert liked the implemented application. The overall
working experience was positive, although not always as efficient as it could be.



Chapter 8

Discussion & Limitations

This chapter focuses on the interpretation and discussion of the results described in
Chapter 7. First, the focus lies on the web-based framework for rapid prototyping.
Afterwords, the evaluation of the proposed quadtree approach is discussed.

8.1 Web-Based Prototyping Approach
The implementation of the web-based prototyping framework was evaluated by adding
a custom visualization and conducting an expert interview to find out about the experi-
ence of another developer who used the framework to implement real use cases. In this
section the results of this evaluation are discussed and the limitations of the framework
are summarized.

8.1.1 Custom Visualizations
A custom data visualization for conducting a study on applying different pressure levels
on a bike handle with different fingers respectively, was implemented to evaluate how
easy a developer can implement custom visualizations and which possibilities exist for
visualizing the data. As described in Section 7.2.1, new visualizations can be easily added
to the framework. The developed visualization only has to be included and configured
in one file. The complexity of developing a custom visualization depends on the concept
of the wanted visualization. Since the visualization is a part of the web user interface,
developers can make use of all tools used for modern web development. The React
framework facilitates building components with a lot of user interaction, although it
can also complicate working with the framework if no prior experience with React or
similar frontend libraries or frameworks is given.

The setup for the frontend development already enables the use of the CSS extension
language SASS1 which facilitates the styling of custom visualizations. Exporting SVG
files of vector illustrations and directly copying the SVG into a React component allows
to access and change all components of the SVG using CSS and JavaScript. Another
possibility to achieve great data visualizations is to use a library like D3.js2 to implement

1https://sass-lang.com/
2https://d3js.org/
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dynamically generated SVG code with endless possibilities. Due to the rapid evolution
of modern web development and the meanwhile good browser support of modern CSS
features, there are hardly any design limits and new visualization can be added quite
fast, depending on the experience of the developer in modern web development.

However, the implementation of the distinct visualization for a specific use case
showed, that the location of the visualization in the user interface might not be optimal.
If only the sensor data is shown, it makes sense to arrange the visualization as part of the
filtering section because the applied filters have an immediate affect on the visualization
and the visualization can be used to check if the applied filters deliver the correct result.
In case of the hand visualization which was implemented to conduct a user study, the
visualization should be better placed in a separate section.

8.1.2 Expert Interview
The expert interview proofed that the concept of the prototyping framework works
and the developed application can be used by developers with different prototypes for
different use cases. However, currently there are still some limitations which should be
further studied and will be improved in future work, such as simplifying the addition
of new filters and filter management in general, extended functionality for the user
interface as well as the visualization of unfiltered data.

8.1.3 Limitations
While the evaluation of the prototyping framework generated mostly positive results,
there are still some limitations which are to be studied and improved in future work.

User Interface: The user interface is currently limited to show one visualization at a
time, it is not designed to show multiple different visualizations of the data simultane-
ously. Although it is not hard for developers to change this fact, it is at this point in
time not part of the concept. Furthermore, only the filtered data is transmitted to the
user interface and therefore there is no possibility to also visualize the raw data before
the filter pipeline is applied.

User Management: Currently a big limitation is also that no system for user manage-
ment and multiple projects per user is implemented. Therefore, one instance of the
framework is only able to handle the configuration of a single prototype.

Shared Resources: A nice addition to the framework would be a concept where re-
searchers can share resources developed for the framework. For example, in the expert
interview the creation of custom filters was mentioned. The implementations of these
filters could also be helpful for research projects of other developers or research groups.
Therefore, a way of shearing resources between different people and projects would be
an improvement.
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8.2 QuadTree Approach
The developed quadtree method was evaluated as well in Chapter 7. This section first
discusses the results of sampling a sensor with different resolutions. Second, the results of
the quadtree performance are illustrated. Finally, the main limitations of this approach
are listed.

8.2.1 Dynamic Resolutions
If a sensor is sampled with different resolutions, the results of the two approaches de-
scribed in Section 6.4.2 were as expected. If multiple sensors are combined to one bigger
region 𝑟, the value 𝐷(𝑗) for this region is above 0 even if all single sensors have a value
𝐷(𝑖) = 0. When the described expression for estimation the single values 𝐷(𝑖) of a sensor
region 𝑟 is applied, the value of a region where no pressure is applied is 0. However, the
downside of this approach is, as expected, that for big sensor regions applied pressure on
single sensors does not make any difference and the value 𝐷(𝑗) is still 0. The size of the
region, where pressure on single sensors doesn’t have any influence anymore depends
on the amount of pressure which is applied. In the evaluated example medium pressure
was applied on 4 neighbouring sensors. The impact of this pressure was noticeable until
a region size of 8 × 8 sensors. Therefore, the approach of estimation the single sensor
values is not feasible and using a dynamic threshold is the better alternative.

8.2.2 Sampling using Quadtree Structure
The evaluation of sampling a 32 × 32 sensor with different amounts of active sensors
revealed, that in the worst case scenario, where all active sensors are as far spread as
possible, the performance of the quadtree approach is only better up to a number of 35
active sensors. If all active sensors are close together the quadtree approach outperforms
the standard sampling technique up to 280 active sensors. In total the tested prototype
has a number of 1024 single sensors. The same evaluation was made for the length of
the transmitted data. Up to a number of 85 active sensors in the worst case scenario
and 508 active sensors in an optimal case, the quadtree approach produces less data.
These results might not seem very promising because the number of active sensors in
the worst case scenario is very low and even in the best case scenario less then 50 % of all
sensors can be active, for the quadtree sampling approach to perform better in terms of
speed and data length. However, testing various possible use cases showed, the quadtree
sampling method outperforms the standard sampling technique in both sampling speed
and data length in all tested cases. The increase in sampling speed ranges from 24 % up
to 474 %. The maximum transmitted data length is 458 bytes, which equals 44 % of the
original 1030 bytes. This is due to the fact, that when performing real use cases, even if
sitting on the textile sensor, a high number of sensors remain untouched. The maximum
number of active sensors that was reached during the evaluation was 168. Therefore, it
can be concluded, even though the number of active sensors must be rather low for the
quadtree approach to succeed, the developed sampling method is still a success because
in real use cases this is typically the case.
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8.2.3 Limitations
Also the developed sampling approach using a quadtree structure is subject to various
limitations which need to be considered for the implementation.

Sensor Size: At the time being, the implemented quadtree sampling approach can only
handle quadratic sensors were the length of one side is a power of two. However, this
is due to the fact, that no edge handling for other sizes was implemented and does not
constitute a general limitation for the proposed quadtree sampling approach.

Region Size: The value 𝐷(𝑗) for a specified sensor region 𝑗 increases with the number
of sensors in 𝑗. Therefore, for regions from a certain size of 𝑛 of sensors, the sampled
value 𝐷(𝑗) is always be the maximum value 255. Thus, regions with and without pres-
sure can no longer be distinguished. The number of sensors varies according to exact
specifications of the used textile and can either be calculated or evaluated empirically.
The thresholds have to be set accordingly in a way that regions where the maximum
value is reached are always sampled in more detail up to a depth where regions with
and without applied pressure are still discriminable. Thus, this behaviour is not fatal for
the quadtree sampling approach, however, it decreases it’s performance for very large
sensors.

Signal Noise: The proposed sampling approach is only applicable for textiles with a
high signal to noise ratio and little noise in the signal. If the sensors produce too much
noise, all sensors are sampled with maximum detail which results in slowing performance
and increasing the length of the transmitted data instead of being an improvement.



Chapter 9

Conclusions and Future Work

An easy to use extensible framework for rapid prototyping was developed which is
tailored to the needs of working with smart textiles. This thesis provides a detailed de-
scription of the concept, architecture and implementation of the application. The major
advantage for researchers and developers in the field of smart textiles is, that once they
developed their prototype they can use the generic software and start prototyping use
cases without writing custom software. Basic functionality for signal processing, gesture
recognition and triggering of different actions once a specified gesture is recognized, is
provided out of the box. Due to the flexible module-based architecture, custom features
can easily be implemented.

Additionally, a novel approach for sampling the sensor data of a given textile sensor
was developed. The approach uses a quadtree structure to reduce the number of sensors
that need to be sampled. Only regions where pressure is applied are sampled in full
detail. This technique is a major improvement over the default approach of sampling all
sensors in every tested use case. Using the proposed quadtree technique, the sampling
of large textile sensors is significantly faster and less data needs to be transmitted. An
overview of the achieved results is summarized in Table 9.1.

Table 9.1: The evaluation of different uses cases shows significant performance improve-
ments due to the implemented quadtree approach. Furthermore, less data needs to be
transmitted. This table provides an overview of all tested use cases and summarizes the
number of sensors with applied pressure, the increase in sampling speed and the decrease
of the data that needs to be transmitted.

Use Case Active Sensors Speedup Data Length Figure
Fold 40 268 % 158 bytes Figure 7.8
Pen Input 20 437 % 110 bytes Figure 7.9
Touch (1 Finger) 36 474 % 104 bytes Figure 7.10
Touch (2 Fingers) 48 188 % 200 bytes Figure 7.11
Touch (4 Fingers) 92 85 % 308 bytes Figure 7.12
Shear 108 97 % 290 bytes Figure 7.13
Tailor Seat 168 24 % 458 bytes Figure 7.14
Stand 88 105 % 266 bytes Figure 7.15
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In future work it would be interesting to evaluate the WebSocket performance in
terms of speed. Since the streamed sensor data is fundamentally similar to video data,
the use of the WebRTC protocol for the streaming of the sensor data to the client
should be implemented and the performance could be compared to the WebSocket
connection. Furthermore, a usability study of the user interface can be conducted, to
increase usability of the UI and the user interface can be extended to account for showing
multiple visualizations simultaneously.

Additionally, the use of the developed prototyping application on an IoT device
can be interesting to evaluate. The goal thereby is to install the backend application
including the web server directly on the IoT device. Therefore, no further computer is
necessary. Due to the platform independence of the developed system this should be
possible without major problems. However, the reading of the input data has to be
updated since the sensor data is no longer transmitted via a serial connection.



Appendix A

Source Code of Quadtree Sampling

SensorQuadTree.ino:

1 #include <SPI.h> // library for the communication with SPI devices
2 #include "src/SensorReader/QuadTreeReader.h"
3 #include "src/DataSource/DefaultSource.h"
4 #include "src/Util/MuxBoardConfigurator.h"
5
6 namespace std {
7 void __throw_length_error( char const* e )
8 {
9 Serial.println("Length Error :");

10 Serial.println(e);
11 while(1);
12 }
13 }
14
15 // set up the speed , data order and data mode
16 // maximum speed: 10,5 MHz
17 // data order: least − significant bit first
18 // data mode: data sampled at falling edge
19 SPISettings settings(10500000, LSBFIRST, SPI_MODE1);
20
21 // pin for reading speed
22 const int timer = 11;
23
24 // resulting character array that is transmitted to an application
25 char* carray;
26
27 // set slave pins for the 2 PCBs
28 // one board is used for power and one board is used for reading
29 // which one does which job is not of importance
30 const int slaveSelectPin1 = 4; // left board
31 const int slaveSelectPin2 = 10; // top board
32
33 // analog pin used to read the data of the configured sensor (combination)
34 const int analogInPin = A0;
35
36 DataSource* dataSource = new DefaultSource(analogInPin);
37 MuxBoardConfigurator* muxBoardConfigurator = new MuxBoardConfigurator(settings,
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slaveSelectPin1, slaveSelectPin2);
38 const int rows = 32;
39 const int cols = 32;
40
41 SensorReader* sensorReader = new QuadTreeReader(dataSource, muxBoardConfigurator,

cols, rows);
42
43 void setup() {
44 // Both select pins are set to OUTPUT
45 // because they are only used to decide which of the 2 boards is currently active
46 // HIGH means they are not listening to signals
47 pinMode(slaveSelectPin1, OUTPUT);
48 pinMode(slaveSelectPin2, OUTPUT);
49 digitalWrite(slaveSelectPin1, HIGH);
50 digitalWrite(slaveSelectPin2, HIGH);
51
52 pinMode(timer, OUTPUT);
53 digitalWrite(timer, HIGH);
54
55 // Serial Port Initialization
56 Serial.begin(115200);
57
58 // initialize SPI
59 SPI.begin();
60 }
61
62 void loop() {
63 digitalWrite(timer, LOW);
64 carray = sensorReader->read();
65 digitalWrite(timer, HIGH);
66
67 // send array data with all values to Serial Port
68 Serial.write(carray, sensorReader->getDataLength() + 6);
69
70 delay(10);
71 }

SensorReader.h:

1 #ifndef SENSOR_READER_H
2 #define SENSOR_READER_H
3
4 /∗∗
5 ∗ INTERFACE for reading data from sensor
6 ∗/
7 class SensorReader {
8
9 public:

10 virtual char* read() = 0;
11 virtual unsigned short getDataLength() = 0;
12 };
13
14 #endif
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MuxSensorReader.h:

1 #ifndef MUX_SENSOR_READER_H
2 #define MUX_SENSOR_READER_H
3 #include "SensorReader.h"
4 #include "../DataSource/DataSource.h"
5 #include "../Util/MuxBoardConfigurator.h"
6
7 /∗∗
8 ∗ INTERFACE for reading data from sensor with mux boards
9 ∗/

10 class MuxSensorReader : public SensorReader {
11
12 protected:
13 DataSource* dataSource;
14 MuxBoardConfigurator* configurator;
15
16 public:
17 MuxSensorReader(DataSource* dataSource, MuxBoardConfigurator* configurator);
18 };
19
20 #endif

MuxSensorReader.cpp:

1 #include "MuxSensorReader.h"
2
3 MuxSensorReader::MuxSensorReader(DataSource* dataSource, MuxBoardConfigurator*

configurator) {
4 this->dataSource = dataSource;
5 this->configurator = configurator;
6 }

QuadTreeReader.h:

1 #ifndef QUADTREE_READER_H
2 #define QUADTREE_READER_H
3 #include <vector>
4 #include "MuxSensorReader.h"
5 #include "../DataSource/DataSource.h"
6 #include "../Util/MuxBoardConfigurator.h"
7 #include "../QuadTree/Node.h"
8 #include "../Util/Bounds.h"
9 #include "../QuadTree/Predicates/Predicate.h"

10
11 class QuadTreeReader : public MuxSensorReader {
12
13 private:
14 std::vector<char> carray;
15 char sensorValue;
16 char rows;
17 char cols;
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18 unsigned short leaveNodeCounter;
19 Node* rootNode;
20 Predicate* predicate;
21 void setDataHeader();
22 int calculateMuxValue(int value);
23 void readTreeAndFillArray();
24 void addNodeValue(Node* node);
25
26 public:
27 QuadTreeReader(DataSource* dataSource, MuxBoardConfigurator* configurator,

char cols, char rows);
28 ~QuadTreeReader();
29 virtual char* read();
30 virtual unsigned short getDataLength();
31 };
32
33 #endif

QuadTreeReader.cpp:

1 #include "QuadTreeReader.h"
2 #include "../QuadTree/Node.h"
3 #include "../QuadTree/Predicates/DefaultQuadTreePredicate.h"
4
5 QuadTreeReader::QuadTreeReader(DataSource* dataSource, MuxBoardConfigurator*

configurator, char cols, char rows) : MuxSensorReader(dataSource, configurator)
{

6 this->rows = rows;
7 this->cols = cols;
8 this->leaveNodeCounter = 0;
9 this->predicate = new DefaultQuadTreePredicate(15);

10 }
11
12 QuadTreeReader::~QuadTreeReader() {
13 delete predicate;
14 }
15
16 void QuadTreeReader::setDataHeader() {
17 // write Header for the array transmission
18
19 unsigned short dataSize = getDataLength();
20 char dataSizeByte1 = (dataSize & 0xFF00) >> 8;
21 char dataSizeByte2 = dataSize & 0x00FF;
22
23 char header[6] = {0xDF, rows, cols, 0x01, dataSizeByte1, dataSizeByte2};
24 carray.insert(carray.begin(), header, header+6);
25 }
26
27 char* QuadTreeReader::read() {
28
29 // build QuadTree
30 rootNode = new Node(new Bounds(0, 0, cols, rows), 0);
31 rootNode->expand(dataSource, configurator, predicate);
32
33 // read QuadTree
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34 carray.clear();
35 leaveNodeCounter = 0;
36 addNodeValue(rootNode);
37 setDataHeader();
38 delete rootNode;
39 return (&carray[0]);
40 }
41
42 void QuadTreeReader::addNodeValue(Node* node) {
43 if(node->isLeaf()) {
44 leaveNodeCounter++;
45 unsigned short depth = node->depth;
46 carray.push_back(depth);
47 if(depth == 5) {
48 carray.push_back(node->data);
49 } else {
50 carray.push_back(0);
51 }
52 } else {
53 for(Node* child : node->children) {
54 addNodeValue(child);
55 }
56 }
57 }
58
59 unsigned short QuadTreeReader::getDataLength() {
60 // node data + depth of all nodes = 2 Bytes per node
61 return leaveNodeCounter * 2;
62 };

Node.h:

1 #ifndef NODE_H
2 #define NODE_H
3 #include <vector>
4 #include "../DataSource/DataSource.h"
5 #include "../Util/MuxBoardConfigurator.h"
6 #include "../Util/Bounds.h"
7
8 class Predicate; // forward declaration because of circular references
9

10 class Node {
11
12 private:
13 void fill(DataSource* dataSource, MuxBoardConfigurator* configurator);
14 int calculateMuxValue(int value);
15
16 public:
17 std::vector<Node*> children;
18 char data;
19 unsigned short depth;
20 Bounds* bounds;
21 Node(Bounds* bounds, char depth);
22 ~Node();
23 bool isLeaf() { return children.empty(); };
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24 void expand(DataSource* dataSource, MuxBoardConfigurator* configurator,
Predicate* predicate);

25 };
26
27 #endif

Node.cpp:

1 #include "Node.h"
2 #include "Predicates/Predicate.h"
3
4 Node::Node(Bounds* bounds, char depth) {
5 this->bounds = bounds;
6 this->depth = depth;
7 }
8
9 Node::~Node() {

10 delete bounds;
11
12 for (std::vector<Node*>::iterator it = children.begin(); it != children.end();

++it)
13 {
14 delete (*it);
15 }
16 children.clear();
17 }
18
19 void Node::fill(DataSource* dataSource, MuxBoardConfigurator* configurator) {
20
21 int muxPowerValue = calculateMuxValue(bounds->endX - bounds->startX);
22 unsigned int muxPower = muxPowerValue << bounds->startX;
23 configurator->configureMuxBoard(muxPower, configurator->slaveSelectPin1);
24
25 int muxReadValue = calculateMuxValue(bounds->endY - bounds->startY);
26 unsigned int muxRead = muxReadValue << bounds->startY;
27 configurator->configureMuxBoard(muxRead, configurator->slaveSelectPin2);
28
29 this->data = dataSource->read();
30 }
31
32 void Node::expand(DataSource* dataSource, MuxBoardConfigurator* configurator,

Predicate* predicate) {
33
34 // read value for Node
35 fill(dataSource, configurator);
36
37 // check if Node shoud be split
38 if(predicate->test(this)) {
39
40 for(int i = 0; i < 4; i++) {
41 Bounds* currentBound = bounds->getQuarter(i);
42 Node* child = new Node(currentBound, depth + 1);
43 children.push_back(child);
44 child->expand(dataSource, configurator, predicate);
45 }
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46 }
47 }
48
49 int Node::calculateMuxValue(int value) {
50 const int base = 2;
51 int returnValue = 1;
52 for(int step = 0; step < value; step++) {
53 returnValue *= 2;
54 }
55 returnValue -= 1;
56 return returnValue;
57 }

Predicate.h:

1 #ifndef PREDICATE_H
2 #define PREDICATE_H
3 #include "../Node.h"
4
5 class Predicate {
6
7 public:
8 virtual bool test(Node* node) = 0;
9

10 };
11
12 #endif

DefaultQuadTreePredicate.h:

1 #ifndef DEFAULT_QUADTREE_PREDICATE_H
2 #define DEFAULT_QUADTREE_PREDICATE_H
3 #include "Predicate.h"
4
5 class DefaultQuadTreePredicate : public Predicate {
6
7 private:
8 char threshold;
9 bool isSingleSensor(Node* node);

10 bool isBelowThreshold(Node* node);
11
12 public:
13 DefaultQuadTreePredicate(char threshold);
14 bool test(Node* node);
15 char getValueForDepth(Node* node);
16
17 };
18
19 #endif
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DefaultQuadTreePredicate.cpp:

1 #include "DefaultQuadTreePredicate.h"
2
3 DefaultQuadTreePredicate::DefaultQuadTreePredicate(char threshold) {
4 this->threshold = threshold;
5 }
6
7 bool DefaultQuadTreePredicate::test(Node* node) {
8 return !isSingleSensor(node) && !isBelowThreshold(node);
9 }

10
11 bool DefaultQuadTreePredicate::isSingleSensor(Node* node) {
12 return node->bounds->isSingleEntry();
13 }
14
15 bool DefaultQuadTreePredicate::isBelowThreshold(Node* node) {
16 return node->data < (getValueForDepth(node) + threshold);
17 }
18
19 char DefaultQuadTreePredicate::getValueForDepth(Node* node) {
20 switch(node->depth) {
21 case 0: return 40;
22 case 1: return 13;
23 case 2: return 5;
24 case 3: return 3;
25 case 4: return 2;
26 case 5: return 0;
27 }
28 }

DataSource.h:

1 #ifndef DATA_SOURCE_H
2 #define DATA_SOURCE_H
3
4 /∗∗
5 ∗ INTERFACE for accessing sensor data
6 ∗/
7 class DataSource {
8
9 public:

10 virtual char read() = 0;
11 };
12
13 #endif

DefaultSource.h:

1 #ifndef DEFAULT_SOURCE_H
2 #define DEFAULT_SOURCE_H
3 #include "DataSource.h"
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4
5 class DefaultSource : public DataSource {
6
7 private:
8 int analogInPin;
9

10 public:
11 DefaultSource(int analogInPin);
12 char read();
13
14 };
15
16 #endif

DefaultSource.cpp:

1 #include "DefaultSource.h"
2 #include <spi.h>
3
4 DefaultSource::DefaultSource(int analogInPin) {
5 this->analogInPin = analogInPin;
6 }
7
8 char DefaultSource::read() {
9 analogReadResolution(8);

10 return analogRead(analogInPin);
11 }

Bounds.h:

1 #ifndef BOUNDS_H
2 #define BOUNDS_H
3 #include <spi.h>
4
5 class Bounds {
6
7 public:
8 unsigned short startX;
9 unsigned short startY;

10 unsigned short endX;
11 unsigned short endY;
12
13 Bounds();
14 Bounds(unsigned short startX, unsigned short startY, unsigned short endX,

unsigned short endY);
15 bool isSingleEntry();
16 void setBounds(unsigned short startX, unsigned short startY, unsigned short

endX, unsigned short endY);
17 Bounds* getQuarter(char index);
18 };
19
20 #endif
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Bounds.cpp:

1 #include "Bounds.h"
2
3 Bounds::Bounds() {
4 this->startX = 0;
5 this->startY = 0;
6 this->endX = 1;
7 this->endY = 1;
8 }
9

10 Bounds::Bounds(unsigned short startX, unsigned short startY, unsigned short endX,
unsigned short endY) {

11 this->startX = startX;
12 this->startY = startY;
13 this->endX = endX;
14 this->endY = endY;
15 }
16
17 bool Bounds::isSingleEntry() {
18 return (endX - startX) == 1 && (endY - startY) == 1;
19 }
20
21 void Bounds::setBounds(unsigned short startX, unsigned short startY, unsigned short

endX, unsigned short endY) {
22 this->startX = startX;
23 this->startY = startY;
24 this->endX = endX;
25 this->endY = endY;
26 }
27
28 Bounds* Bounds::getQuarter(char index) {
29 const int width = (endX - startX) / 2;
30 const int height = (endY - startY) / 2;
31 switch(index) {
32 case 0:
33 return new Bounds(startX, startY, startX + width, startY + height);
34 case 1:
35 return new Bounds(startX + width, startY, endX, startY + height);
36 case 2:
37 return new Bounds(startX, startY + height, startX + width, endY);
38 case 3:
39 return new Bounds(startX + width, startY + height, endX, endY);
40 }
41 }

MuxBoardConfigurator.h:

1 #ifndef MUX_BOARD_CONF_H
2 #define MUX_BOARD_CONF_H
3 #include <spi.h>
4
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5 class MuxBoardConfigurator {
6
7 private:
8 char maskingBytes(char value);
9 SPISettings settings;

10
11 public:
12 MuxBoardConfigurator(SPISettings settings, int slaveSelectPin1, int

slaveSelectPin2);
13 void configureMuxBoard(unsigned int value, int slavePin);
14 int slaveSelectPin1;
15 int slaveSelectPin2;
16 };
17
18 #endif

MuxBoardConfigurator.cpp:

1 #include "MuxBoardConfigurator.h"
2
3 MuxBoardConfigurator::MuxBoardConfigurator(SPISettings settings, int slaveSelectPin1

, int slaveSelectPin2) {
4 this->settings = settings;
5 this->slaveSelectPin1 = slaveSelectPin1;
6 this->slaveSelectPin2 = slaveSelectPin2;
7 }
8
9 void MuxBoardConfigurator::configureMuxBoard(unsigned int value, int slavePin) {

10 char mux1 = maskingBytes(value & 0x000000FF);
11 char mux2 = maskingBytes((value & 0x0000FF00) >> 8);
12 char mux3 = maskingBytes((value & 0x00FF0000) >> 16);
13 char mux4 = maskingBytes((value & 0xFF000000) >> 24);
14 char imux1 = ~mux1;
15 char imux2 = ~mux2;
16 char imux3 = ~mux3;
17 char imux4 = ~mux4;
18
19 SPI.beginTransaction(this->settings);
20 // start listenin with specified board (slavePin)
21 digitalWrite(slavePin, LOW);
22
23 // send mux configurations
24 SPI.transfer(imux4);
25 SPI.transfer(mux4);
26 SPI.transfer(imux3);
27 SPI.transfer(mux3);
28 SPI.transfer(imux2);
29 SPI.transfer(mux2);
30 SPI.transfer(imux1);
31 SPI.transfer(mux1);
32
33 // stop listenin with specified board (slavePin)
34 digitalWrite(slavePin, HIGH);
35 SPI.endTransaction();
36 }



A. Source Code of Quadtree Sampling 92

37
38 /∗∗
39 ∗ map to correct mux input on hardware level
40 ∗/
41 char MuxBoardConfigurator::maskingBytes(char value) {
42 char maskedValue = 0x00;
43
44 if ((value & 0x01) == 0x01) {
45 maskedValue = maskedValue | 0x08; }
46 if ((value & 0x02) == 0x02) {
47 maskedValue = maskedValue | 0x04; }
48 if ((value & 0x04) == 0x04) {
49 maskedValue = maskedValue | 0x02; }
50 if ((value & 0x08) == 0x08) {
51 maskedValue = maskedValue | 0x01; }
52 if ((value & 0x10) == 0x10) {
53 maskedValue = maskedValue | 0x10; }
54 if ((value & 0x20) == 0x20) {
55 maskedValue = maskedValue | 0x20; }
56 if ((value & 0x40) == 0x40) {
57 maskedValue = maskedValue | 0x40; }
58 if ((value & 0x80) == 0x80) {
59 maskedValue = maskedValue | 0x80; }
60
61 return maskedValue;
62 }



Appendix B

DVD Contents

Format: DVD+RW, Single Layer, 4.7 GB

B.1 PDF
Path: /

Schuetz2018.pdf . . . . Thesis

B.2 Source Code
Path: /ProjectSourceCode

Framework.zip . . . . . Source Code of Web-Based Prototyping Framework
Quadtree.zip . . . . . . Source Code of Quadtree Sampling Approach
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