Feature Selection in Aggressive Comment Detection

Tina Schuh

MASTERARBEIT
eingereicht am
Fachhochschul-Masterstudiengang
Interactive Media
in Hagenberg
im September 2017
© Copyright 2017 Tina Schuh

This work is published under the conditions of the Creative Commons License Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)-see https:// creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original work. Where other sources of information have been used, they have been indicated as such and properly acknowledged. I further declare that this or similar work has not been submitted for credit elsewhere.

Hagenberg, September 18, 2017

Tina Schuh

Contents

Declaration iii
Preface vii
Abstract viii
Kurzfassung ix
1 Introduction 1
1.1 Motivation 1
1.2 Research Question 2
1.3 Structure 3
2 Technical Background 4
2.1 Natural Language Processing 4
2.2 Machine Learning 4
2.3 Terminology 5
3 State of the Art 7
3.1 Definitions 7
3.2 Offensive Language Detection 8
3.3 Challenges 9
3.3.1 Informal Text 10
3.3.2 Lexical Ambiguity 11
3.3.3 Data 11
4 Methodology 12
4.1 Concept and Architecture 12
4.1.1 Feature Extraction 12
4.1.2 Development Set and Validation Set 13
4.1.3 Generating Feature Subsets 14
4.1.4 Building and Testing Models 15
4.1.5 Model Evaluation 15
4.2 Datasets 16
4.2.1 Wikipedia Talk Corpus: Personal Attacks 16
4.2.2 Martin Corpus 16
4.3 Features 19
4.3.1 Basic Statistical Features 20
4.3.2 Lexical Features 21
4.3.3 Grammar Features 22
4.3.4 Punctuation Features 23
4.3.5 Noise and Style Features 24
4.3.6 Diversity Features 25
4.4 Feature Selection 26
4.4.1 Univariate Feature Selection 26
4.4.2 Wrapper and Embedded Methods 27
4.5 Models 28
4.5.1 Logistic Regression 28
4.5.2 Support Vector Machines 28
4.6 Performance Metrics 30
5 Implementation 32
5.1 Resources [32
5.1.1 Libraries 32
5.1.2 Lexical Resources 32
5.1.3 Corpora 33
5.2 Natural Language Processing 33
5.2.1 Word Segmentation 34
5.2.2 Text Normalization 35
5.2.3 Imperative Detection 36
5.3 Machine Learning 37
5.3.1 Feature Selection 38
5.3.2 Models 38
6 Evaluation 40
6.1 Results Wiki Dataset 40
6.1.1 Feature Selections 40
6.1.2 Subset Models Results 43
6.2 Results Martin Dataset 48
6.2.1 Feature Selections 48
6.2.2 Subset Models Results 51
7 Discussion and Conclusion 59
7.1 Common Thread 60
7.2 Implications 61
7.3 Outlook 61
A Feature Vectors, Additional Results 62
A. 1 Feature Vector Samples 62
A. 2 Feature Rankings and Selections 62
A. 3 Additional Results per Classifier 62
A. 4 Feature Indices and Names 62
Contentsvi
References 76
Literature 76
Online sources 77

Preface

Ernest Hemingway once said,
The first draft of anything is shit.
His words, with regards to the implemented aggressive language model, are a perfect example of a false positive. On a more personal level, this prominent quote stuck with me as my mantra throughout the process of writing and completing my thesis. Thanks to the valuable and consistently constructive feedback of my advisor, Stephan Dreiseitl, this work has moved beyond the dreadful first draft.

I am also deeply grateful to my family. First and foremost, to my husband, Martin Schuh, for his unwavering support, through thick and thin. To my daughter, Marlene Schuh, for her daily pep talk as I dropped her off at daycare: "Off you go to work, Mom." To my parents(-in-law), Eva and Ernst Schwaiger, Helga and Alois Schuh, for pitching in, whenever balancing work and family failed-as it often did.

Abstract

Offensive comments or hate speech pose an increasing problem in the online world. In order to address these uncivil comments in online discussions, it is necessary to identify them first. However, this identification process is a time consuming and arduous task if handled manually.

Therefore we develop an aggressive language model for text classification that can be used as a means to automatically detect hostile user comments. While most automated approaches rely on n-grams of some kind, this work aims to find linguistic patterns that are independent of the exact vocabulary of a given corpus: A variety of 68 features-based on vocabulary, grammar, punctuation, style, diversity, and basic statistical observations - are extracted from annotated user-comments; in order to gain an accurate and compact model, the features are then ranked by their singular statistical relevance or evaluated together using a learning algorithm to search for optimal subsets. We employ the T-test, the Wilcoxon-ranksum-test and Mutual Information as feature rankers and two learners, Recursive Feature Elimination and the Lasso, to find favorable subsets. The learners' subsets and the subsets derived from the rankings are evaluated using three different machine learning models: Logistic Regression, Linear SVM, and Gaussian SVM. Each model is trained on three-quarters of the data and evaluated against the held-out quarter; the hyperparameters of the SVMs are tuned using 5-fold cross-validation.

We independently apply the feature selection and model evaluation process to two unrelated datasets, both with a balanced distribution of aggressive and non-aggressive user comments. The results show that depending on the dataset and model type, between 3 and 19 features are enough to outperform the full set of 68 features. The overall best F_{1}-scores per dataset are 89.4% (with a precision of 93% and recall of 86.1%), using 40 features with a Gaussian SVM and 82.7% (with a precision of 85.1% and recall of 80.5%), using 17 features with a linear SVM.

By comparing the top models from both datasets, we derive a core set of features that are most useful in predicting whether a comment is aggressive or not; the most informative features are the number of blacklisted words, the number of long words and the ratio of negative subjective words.

Kurzfassung

Beleidigende, hasserfüllte Kommentare zerstören zunehmend das Gesprächsklima in den Diskussionräumen des Internets. Das manuelle Moderieren von Benutzerkommentaren ist mit viel Mühe und Zeitaufwand verbunden; in Zukunft könnten Moderatoren durch eine automatische Klassifizierung unterstützt werden.

Während die meisten Lösungsansätze, die sich des maschinellen Lernens bedienen, auf N-Gramme in verschiedenen Ausprägungen zurückgreifen, widmet sich diese Arbeit sprachlichen Mustern die unabhängig vom spezifischen Vokabular eines gegebenen Textkorpus sind: Auf der Suche nach einem möglichst korrekten und kompakten Modell für aggressive Sprache werden 68 vielfältige Merkmale (Features) - basierend auf Vokabular, Grammatik, Punktuation, Stil, Sprachdiversität und einfachen Statistiken - von annotierten User-Kommentaren extrahiert und nach statistischer Relevanz gereiht oder mittels Lernalgorithmen möglichst effektiv kombiniert. Auf Basis des T-Tests, des Wilcoxon-Rangsummentests und der gegenseitigen Information (engl. Mutual Information) werden Feature-Ranglisten erstellt; mittels zweier Lernalgorithmen, Recursive Feature Elimination und Lasso, werden verschiedene Feature-Teilmengen generiert. Sowohl diese Teilmengen, als auch Teilmengen, die anhand der Ranglisten hergeleitet sind, werden mithilfe folgender Algorithmen aus dem maschinellen Lernen evaluiert: Logistische Regression, lineare SVM und nicht-lineare SVM (mit radialer Basisfunktion als Kern-Funktion). Drei Viertel des Datensatzes werden verwendet um die einzelnen Modelle zu trainieren, das restlichen Viertel dient zur Evaluierung; die Ermittlung der Hyperparamter je SVM erfolgt durch fünffache, stratifizierte Kreuzvalidierung.

Anhand zweier unabhängiger Korpora von Benutzerkommentaren werden effektive Featurekombinationen ermittelt und die daraus abgeleiteten Modelle evaluiert. Die Resultate zeigen, dass Teilmengen von 3 bis 19 Features ausreichend sind, um ein besseres Ergebnis zu erzielen als mit allen 68 Features - in Abhängigkeit von Datensatz und Modelltyp. Die insgesamt besten Modelle je Datensatz erzielen einen F_{1}-Score von 89.4% (Precision: 93%, Recall: 86.1%), unter Verwendung von 40 Features mit nicht-linearer SVM und 82.7% (Precision: 85.1%, Recall: 80.5%), unter Verwendung von 17 Features und linearer SVM.

Auf Basis der Spitzenmodelle beider Datensätze werden schlussendlich die einflussreichsten Features zur Unterscheidung von sachlichen und aggressiven Kommentaren hergeleitet: Die Anzahl der Wörter, die auf der schwarzen Liste stehen, die Anzahl der langen Wörter und der Anteil negativer, subjektiver Wörter.

Chapter 1

Introduction

Do not read the comments.
-unknown

This quote, a piece of contemporary wisdom, addresses the human reflex of scrolling beyond an online article, into an all too often hostile abyss of aggression, disrespect, and harassment-the comment section. What makes it hard to resist the urge to peek anyway-besides morbid curiosity - is that, on the other hand, reader comments can be a valuable source of additional information, entertainment, and discussion; they enable readers to voice concerns or ask questions. Moreover, if you are a moderator in an online community team, a journalist, a blog author or just generally interested in other people's thoughts on a topic, ignoring the comments is not a viable option.

1.1 Motivation

According to a recent Pew Report on online harassment 【16], 62% of American internet users consider online harassment a major problem. The survey shows that
[...] 41% of Americans have been personally subjected to harassing behavior online, and an even larger share (66%) has witnessed these behaviors directed at others.

Besides the emotional stress and damage, the conversations' aggressive tone silences possibly more reasonable and valuable voices. 27% of users who had witnessed harassment of others subsequently decided not to post something online. One participant of the survey stated:

Like an adult, I turned off the computer and walked away. No one is forcing me to be online.

Withdrawal might be a positive resolution for an individual, but for society at large this is a considerable loss; it entails a distortion of public debate and empowers the hateful voices. This is indeed a matter of far-reaching concern: As the issues of our time are increasingly discussed and negotiated online, the prevailing sentiments influence political proceedings [2]. Anderson et al. (1] show that uncivil comments have a polarizing
effect on the readers; in effect, readers become less open to different views. The researchers call this phenomenon the Nasty Effect, and Brodnig [2, pp. 76-80] illustrates how trolls ${ }^{1}$ strategically use it as a means to sabotage and prevent any factual, productive discussion. Pointing out how these attacks on public debates have the potential to erode our democracy, she emphasizes the need for online spaces that do not tolerate abusive language.

Taking Action

While 60% of Americans feel that those who witness others being harassed should step in, 79% assign the responsibility of handling harassment to the online platform where the issue occurs [16]. In June 2017, Germany passed a law that forces social media platforms to remove illegal, defamatory or racist posts within 24 hours and handle content which has been flagged as offensive within seven days. Earlier this year, Facebook announced it would increase the number of employees worldwide, to 7500 , to deal with flagged postings [17].

The task of manually moderating these disruptive, and often extremely hateful comments is time-consuming and not applicable in real-time especially given the sheer amount of content that is being posted perpetually. Besides, the job is often frustrating and demoralizing and may have harmful consequences on the moderators' health 8].

Behind the scenes, major tech firms are already working on a more efficient approach; in the future, automated classification might curb the problem: Early in 2017, Google introduced Perspective, a machine learning tool that automatically identifies abusive comments [18]; The New York Times already uses the software to assist moderators in the comment approval process [26]. Twitter, which has been criticized for years for consistently failing to deal with hate speech, has decided to take more action shortly after the US presidential election of 2016 [15] and has since added an automated classification system to block abusive tweets and user accounts to their tool belt 20. Instagram has recently launched a language filter that automatically blocks offensive comments [27]: The filter is based on Facebooks DeepText, a tool for text classification tasks that utilizes deep neural networks. ${ }^{2}$ While Facebook still relies on human moderators, Instagram's tool is likely a test case for Facebook's future moderation approach 25].

1.2 Research Question

This thesis investigates the properties of aggressive language in online comments and user discussions. Its aim is to identify the most characteristic patterns in aggressive language that set it apart from non-inflammatory, factual language. Using a data-driven approach, we first collect aggressive and non-aggressive user comments, and then, we extract a wide range of statistical and linguistic properties - so called features-from each comment. Examples of such features are the length of the comment in words,

[^0]sentences, and paragraphs; the number of imperative sentences; lexical and grammatical diversity; repetition of punctuation; the number of blacklisted words; and the use of subjective words. We use these features to build a model of aggressive language by letting a machine learning algorithm learn the patterns in the data. The trained model enables us to classify new data as either aggressive or not aggressive; however, the accuracy of the model depends on the kind of features the model uses. This leads to the key question of our research:

What are the most effective features in creating a model for automated detection of aggressive language in online user comments?

We employ feature selection techniques to gain insights into which features are best suited to separate the two comment categories. Likewise, feature selection guides us in finding favorable feature subsets, also showing that more features do not guarantee better results.

1.3 Structure

Chapter 2 summarizes the concepts of natural language processing and machine learning and provides a short definition of the technical terms needed to understand this thesis. Chapter 3 dives into the history of offensive behavior online, presents a selection of research that has been undertaken so far to automatically detect offensive language (section 3.2) and describes what makes this task so difficult (section 3.3). Chapter 4 starts out with an overview of the classification process and technical design and continues with a detailed description of the data used for training and testing (section 4.2), the full set of extracted features (section 4.3), how feature selection is performed (section 4.4), the utilized machine learning algorithms (section 4.5) and the metrics that were used to measure the models' performance (section 4.6). The implementation details are to be found in chapter 5, which includes, among others, the use-case-specific approach to word tokenization and text normalization, as well as the developed imperative detection algorithm (section 5.2). The feature selection results and classification scores are depicted in chapter 6. Finally, in chapter 7, we summarize the results of our work, highlighting the most discriminatory properties of aggressive user comments.

Chapter 2

Technical Background

2.1 Natural Language Processing

Natural Language Processing (NLP) is a multidisciplinary field that overlaps with Artificial Intelligence, Computer Science, and Computational Linguistics. In recent years it has been driven by advances in Machine Learning, shifting the paradigm from hand coded rules to automatically learning rules through the statistical analysis of corpora.

NLP is concerned with translating human language - written or spoken - into a representation that can be understood and handled by a computer. Though today's systems are still struggling with major challenges such as ambiguity or the conceptual dimension of human speech, the application of NLP is already ubiquitous, ranging from spam filtering, topic based email classification (e.g., Gmail) and predictive typing (e.g., SwiftKey) to sophisticated grammar-correction (e.g., Grammarly) and smart assistants (e.g., Siri, Alexa).

In general, NLP tasks deal with syntax (e.g., part-of-speech tagging, grammatical parsing), semantics (e.g., word sense disambiguation, named entity recognition), discourse (e.g., coreference resolution) and speech (e.g., speech recognition and segmentation).

2.2 Machine Learning

Machine Learning (ML) is a particular approach within the field of Artificial Intelligence. It is closely connected to data mining and statistics. Learning from data is the core idea of Machine Learning; making predictions or decisions based on training data is its main application.

In supervised learning, the learning of a prediction model is guided by input data with known outcomes. If the output variables are categories, such as healthy or sick, the task is called classification. Real valued output, such as centimeters or euros, is the result of a regression task.

Unsupervised learning has no pre-defined outcomes. Instead, the algorithm tries to cluster the input samples into differents groups. It is a means to detect underlying patterns and associations in the input data.

2.3 Terminology

The following glossary briefly summarizes concepts of natural language processing and machine learning that are relevant to this work.

Corpus

A corpus is a large collection of texts that find use in linguistic analysis. A corpus can consist of books, news articles, speech transcription, product reviews, etc. Annotated corpora provide additional linguistic information besides the raw text.

Dataset

In general the term dataset refers to a collection of any kind of related data. In this thesis, a dataset either refers to a corpus, or data that is used to train or test a machine learning model. In machine learning, the dataset consists of a 2-dimensional matrix, where the rows are the samples (feature vectors) and the columns represent the features. In supervised learning, the term also encompasses the target array containing the outputs per sample.

Tokenization

Tokenization is the task of chopping a character sequence into words, numbers and punctuation, so called tokens. The tokenized version of the statement "Don't panic." is ['Do', "n't", 'panic', '.']. The task of separating an input text into its sentences is refered to as sentence tokenization.

Bag-of-Words

In the bag-of-words model, a text document is viewed as a bag containing an unordered collection of words. In this bag, grammar, word order and semantic relationships do not matter. The only information of interest are the words themselves and their frequency of occurrence. These frequencies are the features used for training a classifier. The words in the bag are not necessarily unigrams; the same concept can be applied to n-grams of any type.

\boldsymbol{n}-grams

In computational lingustics, n-grams usually refer to a sequence of n words (or tokens). Unigrams contain only one word; sequences of two tokens are called bigrams and sequences with three tokens are trigrams. The text 'not all those who wander are lost' converted to trigrams is ['not all those', 'all those who', 'those who wander', 'who wander are', 'wander are lost']

Character \boldsymbol{n}-grams

Character n-grams are n-grams at the character level. The slogan 'Yes, we can!' as a 5 -gram sequence is ['Yes,_', 'es,_w', 's,_we', ',_we_', '_we_c', 'we_ca', 'e_can', '_can!'] (here _ denotes a space).
Part-of-Speech Tags (POS-Tags)
POS-tags are labels that refer to grammatical categories; each token of a sentence is assigned such a tag. A tagged version of the line "In the end, it doesn't even matter." looks like In/IN the/DT end/NN ,/, it/PRP does/VBZ n't/RB even/RB matter/VB ./., where IN stands for preposition, DT for determiner, NN for singular noun, PRP for personal pronoun, VB* for various verb forms and RB for adverb ${ }^{1}$

[^1]
Stemming

Stemming is the task of normalizing a word to its common base form, the stem (or root), by removing the words affixes. For instance, the words rains, raining, rained will be trimmed to rain; the word rainbow, however, remains the same.

Stop Words

The term stop words refers to a list of highly frequent words that carry little meaning. Typically, in the bag-of-words approach these words are filtered out before the text data is processed. A, and, at, in, it, that and the are examples of English stop words.

Feature

A feature (also: predictor, attribute, variable) is the value measured (or derived) from a characteristic of the raw input. E.g., for the input comment 'Shit happens.', a feature representing the number of blacklisted words would have the value 1 because that comment contains exactly one blacklisted word. Features are either discrete (e.g., counts), continuous (e.g., ratios) or categorical (limited, fixed values; e.g., blood types).

Feature Vector

A feature vector (also: observation, sample) is a collection of numeric features that were extracted from one single sample. It appears in the form of a one dimensional matrix.

Feature Extraction

A machine learning model expects input data in the form of a matrix containing numeric values. When the original raw data cannot be directly fed into a model (e.g., a text or an image), characteristics of the raw data are translated into numeric form, this process is called feature extraction.

Feature Engineering

Feature engineering is the process of transforming features into more meaningful representations to improve the model. This task requires domain knowledge and manual effort.

Feature Selection

The aim of feature selection is to find an appropriate subset of features that approximates or surpasses the results of the full set of features. In automatic feature selection, the features are either evaluated individually (using feature rankings) or in combination with others (using a learning algorithm).

Target

The target (also: label, response, outcome) represents the class of a sample. It is encoded in numeric form (e.g., 0 represents $O K, 1$ represents aggressive).

Evaluation Metrics

To measure the performance of a classification model, predictions are made for a held out test set. The comparison of the predicted labels versus the actual labels can be expressed in four categories: True Negatives (e.g., the number of OK comments that were labeled as OK), False Negatives (e.g., the number of aggressive comments that were labeled as OK), False Positives (e.g., the number of OK comments that were labeled as aggressive) and True Positives (e.g., the number of aggressive comments that were labeled as aggressive).

Chapter 3

State of the Art

Offensive behavior in online discussions is not a new phenomenon. Initially referred to as flaming ${ }^{1}$, it was observed as early as the 1970s in e-mail communication and its rise continued with the birth of Usenet in the early 1980s [19. As the entry barriers to owning and using the necessary technology to communicate online are continuously lowered, the number of users-and consequently the amount of user-generated content, both legitimate and inflammatory,-is rapidly growing.

Similar to spam-filtering, a first automated approach to detect these disruptive interactions was a simple keyword spotting task using a blacklist. While blacklists are popular due to their simplicity and effectiveness, they often have a high false positive rate and fail to detect more subtle forms of offensive content [5]. Newer attempts rely on machine learning techniques for more accurate classification. The Naive Bayes classifier is regarded a classic approach, borrowed again from spam filtering: It typically employs bag-of-words features to calculate the likelihood of a comment being offensive.

After a short description of the scope of offensive language this chapter outlines past research on automated detection of offensive language, and closes with the challenges that arise when developing such a system.

3.1 Definitions

Aggressive language falls into the category of highly subjective language as it expresses emotions (e.g., hate, anger), judgments or opinions (10). Definitions for the spectrum of offensive language range from

- hate speech, profanity, derogatory language [9],
- abusive speech targeting specific group characteristics (such as ethnic origin, gender or religion) 4, 5, 10, 12, 13,
- harassment, personal attacks, toxic behaviour [13,
- the main intent being to attack [10] to
- content that is hateful, threatening, pornographic, vulgar, incites violence [5, 12].

[^2]
3.2 Offensive Language Detection

Most research prototypes make use of a lexicon [5, 9,12 in which the entries are labeled for polarity and often have weights attached to grade the level of offensiveness. Another popular predictor are word-dependencies, with the simplest form being n-grams ($n>1$); more elaborate methods employ phrase patterns with wildcards, identify words as intensifiers for other offensive words (e.g., 'fucking stupid') or capture long-range dependencies by making use of POS-Tags and a dependency parser [4, 5, 9-12].

The earliest work on automated classification of offensive text is mailbox filter Smokey [11], which addressed private flame messages sent to a few selected political websites. The features are derived from rules that check for hostile as well as polite language. Detection rate of hostile messages is 64%. From the tested okay messages 98% were labeled correctly (ratio okay to flames: $4,5: 1$). The rule for epithets ${ }^{2}$ proved to be one of the most useful. Spertus used a C4.5 decision-tree generator (Quinlain) to generate a classifier. Linear regression was tested too but turned out less successful.

Razavi et al. [10] implemented a flame detection system (accuracy 91\%) including their own Insulting or Abusive Language Dictionary (IALD). Phrases could contain wild cards (e.g., 'Ball [Somebody] up' where [Somebody] is the wild card) to catch different variations of a phrase. Their system utilizes a three-level classification on the preprocessed data: Complement Naive Bayes classifier, Multinomial Updatable Naive Bayes classifier and a rules based classifier ("Decision Table/Naive Bayes hybrid classifier") based on the IALD. The system works on the document level as well as on the sentence level.

Chen et al. [5] propose a user-level offensiveness system (as opposed to most solutions that operate on message- or sentence-level only) additionally to sentence offensiveness prediction. Their Lexical Syntactical Feature (LSF) approach uses a two-level offensive word lexicon, grammatical parsing to find dependencies between words, evaluates punctuation, all uppercase letters, and checks whether a sentence is in the imperative form. For better results, the data is preprocessed with automatic spelling and grammatical correction. Their system achieves a precision of 98.24% and recall of 94.34% in detecting offensive sentences. According to their test results, style features (punctuation, all uppercase letters) and cyberbullying-related content features (e.g., occurrence of words relating to religion, race, intelligence) yielded the most valuable improvements. Naive Bayes (NB) and Support Vector Machines (SVM) were used for classification, noting that NB was much faster than SVM, whereas SVM proved to be more accurate.

Burnap and Williams [4] wrote a classifier for hate speech in tweets, achieving an overall F_{1}-score of 0.95 , using Bayesian Logistic Regression, a Random Forest Decision Tree and SVM in combination. They use a bag-of-words model with n-grams ranging from 1 to 5 tokens. They also use syntactic features that capture the dependencies between words, with the addition of the dependency type (e.g., dobj (burn-6 korans-9), where dobj stands for Direct Object and the numbers relate to words' index within the sentence).

Warner and Hirschberg [12] are targeting anti-semitic speech by using a combination of n-grams, a mix of POS-Tags and n-grams (e.g., the chunk DT (determiner) +

[^3]'jewish' + NN (noun), which was the strongest indicator for a positive, non-abusive message). They achieved a precision of 68%, recall of 60% and F_{1}-score of 0.64 using SVM.

Nobata et al. [9] point out that past research on abusive language detection spreads several fields and lacks a unified approach as well as a common testing set for comparison. One of their main contributions is a corpus annotated by Yahoo employees for evaluation purposes for the research community (though the data has yet to be released by Yahoo Labs). The team also conducted an annotation experiment: They let workers from Amazon Mechanical Turk annotate the user comments; Unfortunately, the results turned out to be less than ideal. Their classifier, which is built upon Vowpal Wabbit's regression model (standard settings, bitrate of 28), achieves recall of 79%, precision of 77% and an F_{1}-score of 0.78 . They use a wide selection of different features (n-grams, linguistic features such as punctuation, the number of noise tokens, syntactic features to catch dependencies and distributional semantics). Character n-grams are the single most successful predictor for their reportedly noisy data sets.

In a research collaboration between Wikimedia and Jigsaw, a Google-affiliated technology incubator that tackles global challenges such as extremism and cyber-attacks, Wulczyn et al. 13 took up the idea of using character n-grams and were able to confirm and build upon the findings of Nobota et al. [9]. Their massive corpus of over 100 k comments (and an additional 63M machine-labeled comments), stemming from "talk pages" of English Wikipedia and labeled by crowd-workers, is publicly available 28] and a major contribution to the research community. Each comment was labeled by at least ten Crowdflower annotators. The features of their model consist of bag-of-words representations of either word unigrams and bigrams or character n-grams in the range of 1 to 5. The tested models are Logistic Regression and Multi-Layer Perceptrons (MLP). Character n-grams consistently delivered the best results. Also, the team managed to boost performance by an unusual labeling-approach: Instead of using clear-cut labels determined by the judgement of the majority, the labels are empirical distributions (ED); this means that a comment that was considered an attack by 7 out of 10 annotators has the label $[0.3,0.7]$. Their best evaluation score is an AUC of 96.59 using the MLP model, character n-grams, and ED labels. While the authors openly point out the need for further research, as well as current shortcomings of their system, the technology has already been launched under the name Perspective API.3 Its partners include major news platforms such as The New York Times and The Guardian.

Table 3.1 offers a summary of the features used across the cited research literature.

3.3 Challenges

Challenges in offensive text classification span from obtaining a suitable corpus and the limitations of natural language processing tools to the informal nature of user-generated content.

[^4]Table 3.1: Overview of features mentioned in the researched literature.

3.3.1 Informal Text

Spelling
Informal text written by users often contains one or more of the following properties: Accidental misspellings or grammar-related errors (e.g., your / you're; should have / should of), misuse of punctuation, intentional misspellings used to evade blacklist filters (e.g., noise words, characterized by a mix of alphabetical and non-alphabetical characters (e.g., 'Sh1t', ' $\$ \#^{*} T$ ') or spaced words (e.g., 'S H I T')). Since natural language processing tools are trained on formal and correct text corpora-which in turn is also the type of input these tools expect - they generally are not prepared for handling informal, noisy text.

Simple errors could be fixed by running a spell- and grammar correction as a preprocessing step 4, 5, 22, 12], or text normalization to correct lengthened words (e.g., 'niiiiice'). On the other hand, for offensive language detection, some of these errors might prove to be valuable indicators.

Evolving Internet Slang

A blacklist will catch many offensive terms and yet it would need to be continuously updated due to the ever changing vocabulary of the internet community [9] which often gives birth to new word creations (e.g., 'covfefe'-a cryptic but popular invention of a prolific twitter user; 'Hitlery'-a disparaging reference to presidential candidate Hillary Clinton).

Sarcasm

Automated sarcasm-detection is an ongoing research field on its own. Even for humans, it is very hard to detect sarcasm in written text, especially if the context is not known.

3.3.2 Lexical Ambiguity

The offensiveness of a word may depend on the context (e.g., 'bitch' is a common insult, though it is not an offensive term when it refers to a female dog) and there may be many subtle cases where natural language processing tools will fail. For instance, Spertus 11] observed that the statement "Cool page... ", which was supposed to be a compliment for a website, was misidentified as an imperative statement since 'cool' can be interpreted as a verb too.

3.3.3 Data

Despite the upsurge in offensive language detection in the recent years, scarcity of data is still an issue. Likely due to the sensitive nature of the material only very few datasets relating to offensive language have been published so far; most researchers have relied on in-house annotators. Apart from the technical issues, the quality, amount, and ratio of the training data play a critical role. Also, the label of a comment depends on the personal interpretations of the annotators 14]:

Even following detailed discussion, human analysts would often still disagree on meaning, intent and purpose. Even where analysts discussed disagreements over how to classify specific texts (for example, whether it was 'nonderogatory' or 'casual use of slur') there remained continued disagreement. Two analysts working on the same data set were able to agree 69 per cent of the time when classifying the data. There were several reasons for this, including cultural biases.

Wulczyn et al. 13 also point out that even though their crowd-annotators had reasonable levels agreement on the labels, their judgement might not align with that of the target community.

Chapter 4

Methodology

4.1 Concept and Architecture

The ingredients for building an aggressive language classifier that draws accurate predictions from an effective combination of features are:

- A corpus of text documents, each labeled in terms of aggressiveness (section 4.2),
- a wide range of features that can be extracted per text document (section 4.3),
- filters, wrappers and embedded methods to perform feature selection (section 4.4),
- machine learning models for training and testing (section 4.5), and
- a performance metric for model evaluation (section 4.6).

This section generally explores when and how these elements come into effect; the subsequent sections offer a more detailed description per item.

4.1.1 Feature Extraction

First, we translate each text document of a corpus into a feature vector that contains numeric values (figure 4.1(a)). We undertake the following steps to extract the features.

Text Preprocessing

For each comment of the corpus, different representations are created using natural language processing (table 4.1). Part of an initial set of attributes is extracted during the processing of the text, others are extracted from one of the text's representations.

Feature Engineering

We skip this step during the first iteration of the classifier building process. Once we have a better understanding of the underlying data (e.g., after analyzing feature distributions or instances where our classifier fails), we start to experiment with the initial set of features.

One approach in feature engineering is to combine features and thereby create additional ones. As an example, the comments in our corpora vary notably in the number of words and sentences. Dividing a feature (e.g., the count of imperative sentences) by

Figure 4.1: (a) Each raw comment text is preprocessed into different variations that serve as a basis for feature extraction. The result is a feature vector per text document. (b) The dataset consists of two parts: The data, an array of feature vectors (a 2D matrix), and the target, an array of the corresponding labels. Part of the dataset is used to train the model. The other part is called out-of-sample data. We use the trained model to predict labels for the out-of-sample data. The performance of the model is measured by comparing the predicted labels and the actual labels.
another attribute, such as the total count of sentences, creates a new, possibly better predictor. The opposite path-creating independent features from a single one - is a possibility too (e.g., separating individual periods and ellipses). Another approach is to redefine a characteristic itself (e.g., changing the definition of what counts as a noise word); this entails returning to the feature extraction phase.

4.1.2 Development Set and Validation Set

A methodologically crucial step to avoid bias and overfitting is the partitioning of the dataset into two parts: The development set (dev set) is used for feature selection, hyperparameter tuning and fitting the models; the validation set (val set) is exclusively used in the final step: to measure a models performance. Each dataset is shuffled prior to being split with a ratio of $3: 1(\mathrm{dev}$ set : val set), yet maintaining the balance between the classes.

Table 4.1: An input text is transformed into different representations that serve as a basis feature extraction.

Representation Type	Output
raw text	"I've seeeeeeeen th!ngs you people wouldn't believe. Attack \$hips on fire......."
stripped word tokens	```[['I', 've', 'seeeeeeeen', 'th!ngs', 'you', 'people', 'wouldn', 't', 'believe'], ['Attack', '$hips', 'on', 'fire']]```
normalized sentences	[["I've seen things you people wouldn't believe."], ["Attack ships on fire..."]]
normalized and POStagged sentences	$\begin{aligned} & \text { [[('I', 'PRP'), ("'ve", 'VBP'), ('seen', } \\ & \text { 'VBN'), ('things', 'NNS'), ('you', 'PRP'), } \\ & \text { ('people', 'NNS'), ('would', 'MD'), ("n't', 'RB'), } \\ & \text { ('believe', 'VB'), ('.', '.')], [('Attack', 'NN'), } \\ & \text { ('ships', 'NNS'), ('on', 'IN'), ('fire', 'NN'), } \\ & \text { ('...', ':')]] } \end{aligned}$

Data Scaling

Data scaling (also: feature scaling, data normalization) is a preprocessing step that standardizes the range of the independent features. Most machine learning models require a standardized input in order to function properly; ${ }^{1}$ another benefit of scaling is an increase in speed, that is especially significant in Support Vector Machines.

In practice, we scale the development set to the $[0,1]$ range (which reflects the fact that all features contain non-negative values). Most importantly, we must retain the scaling values: It is essential to apply the same scaling transformation to the validation set (and respectively to any other prospective out-of-sample data).

4.1.3 Generating Feature Subsets

Finally, feature selection comes into play:

1. We use common statistical tests (T-test, Wilcoxon-ranksum-test and Mutual Information) to get scores for each feature type individually.
2. For each test, we sort the full set of n features in descending order by score and thereby translate the results into a feature ranking list consisting of the features' column indices.
3. A fourth—artificial—ranking is generated by the combination of the three statistical rankings. The combined ranking is based on the sum of the statistical ranks

[^5]per feature; the feature with the smallest rank-sum is deemed the best in the combined ranking.
4. From each ranking, we create $n-1$ feature selections (in the following context a feature selection denotes a list of feature-column indices), simply by starting with the full list of feature indices-sorted by rank-and recursively slicing the current sub-list without the last element until the sub-list size is down to one.
5. We apply the same sub-list-slicing technique to the ranking derived from Recursive Feature Elimination 2^{2}
6. The Lasso, like the RFE, generates a list of favorable features without an internal ranking. However, it does not support a custom selection size. By systematically experimenting with different input parameters (the alpha value and a threshold to cut off less important features) we gain selections of different size.
7. Lastly, the actual subsets are created by applying each feature selection like a mask to the full dataset (in effect: the development set as well as the validation set); in other words, a subset is created by using only the feature columns of the current selection. This results in $5 \cdot(n-1)$ feature subsets derived from the rankings, plus an individual number (dependent on the dataset) based on the Lasso selections.

4.1.4 Building and Testing Models

At this point, it is time to test each of the feature subsets using three different machine learning algorithms: Logistic Regression, linear SVM and Gaussian SVM.

In general, the process per algorithm and per subset is as follows (figure 4.1(b)): The model is trained, using the development subset. Next, predictions are made for the validation subset; what follows is a comparison of the predicted labels and the actual labels to derive the confusion matrix consisting of the number of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN).

In practice, the process is as simple as described for Logistic Regression (using default parameters). For the SVMs, the tuning parameter(s) per subset need to be determined beforehand: An F_{1}-score guided grid-search (using 5 -fold cross-validation) is performed on each development subset; finally, each SVM model is trained using its individual tuning parameters per subset.

4.1.5 Model Evaluation

The F_{1}-score is our primary means to determine the most favorable models for separating the aggressive comments from the non-inflammatory ones. The aim is to arrive at the most predictive core subset. Therefore we incorporate additional heuristics to select the most compact subset among the top ranked: For each of the three machine learning algorithms we narrow its list down to the top 10 models and then pick the model with the minimum number of features. Out of these three top choices, we select the one with the highest F_{1}-score as the final model.

[^6]
4.2 Datasets

Two different corpora were used independently of each other in this research, the Wiki Dataset and the Martin Dataset.

4.2.1 Wikipedia Talk Corpus: Personal Attacks

The Wikipedia Talk Corpus [28] is a corpus of over 100k human-labeled comments from discussion pages of English Wikipedia. Each comment was labeled by at least 10 crowd-workers on whether it has aggressive tone.

For our research, the focus is set on clear-cut separation of labels from the human perspective. Therefore we apply a threshold of 25% from both ends of a comments aggression-mean ${ }^{3}$ analog to an inversion of a typical band-pass filter-to filter out ambiguous comments. From the remaining comments, the first 3500 aggressive respectively non-aggressive samples form an inital dataset of roughly 7 k samples.4 To remove extreme outliers, the selection is further narrowed down on basis of the following criteria:

- A comment must contain at least 3 words and no more than 250 words,
- the maximum allowed number of sentences per comment is 25 and
- the maximum allowed length of a word is 100 characters.

Comments that violate any of these criteria are dropped. The final number of samples is 6647 in total, which splits into 3363 aggressive and 3284 OK samples. We refer to this specific compilation as the Wiki Dataset. Comment samples are listed in table 4.2.

4.2.2 Martin Corpus

The Martin Corpus consists of just over 1 k comments and is well balanced with 520 labeled as aggressive and 514 labeled as OK. The corpus was developed by a single volunteer during the early phase of this research project.5 Aside from collecting and annotating the comments, the volunteer was not involved in the research. The corpus is named in his honor. Comment samples are listed in table 4.3 .

Annotation Guidelines

- OK (not aggressive): Author uses neutral, factual, polite language. Opinions or statements are shared to inform or encourage a healthy, fair discussion.
- Aggressive: Content that is derogatory, hateful, threatening, pornographic, incites violence, makes use of stereotypes to express an ideology of hate.
- Source: Comment section of reputable news media (e.g., The New York Times) and extremists (e.g., Infowars, Breitbart, Fox News).
- Language: English (United States)

[^7]| Label | rev_id | Comment |
| :---: | :---: | :---: |
| OK | 103624 | I removed the following: $\backslash n \backslash n A l l$ names of early Polish rulers are ficticious and therefore this index naming Oda von Haldensleben and her husband Dagome records for the first time rulers of the Polanen tribe. Therefore it is indicated as being the first document of the later developing land named Poland. $\backslash n \backslash n T h i s ~ i s$ quite a comment. All names are fictitious? It deserves at least some backing. |
| OK | 297866 | $\backslash n \backslash n \backslash n \backslash n U m m m$. The article uses imperial measurements, not SI ones. Some translation is apparently in order. -) Anders Törlind |
| OK | 93890 | This page will need disambiguation. |
| OK | 360594 | $\backslash \mathrm{n} \backslash \mathrm{n}:$:I disagree. I would leave it out of the introductory part, since its population (which changes every census) is not nearly as fundamental as the fact that it is in a particular state, its county seat is whatever it is, andstuff like that. Also, if Wikipedia survives till 2010, someone will have to be careful to change it in both places! BRG\n\n |
| aggressive | 24464221 | stop editing this, you dumbass. why do you have to be such a bitch? the ghosts of bill maas' past will haunt you forever!!! MWAHAHHAHAA |
| aggressive | 24777589 | $==$ "Goofs" Goof $==\backslash \mathrm{n} \backslash$ nSpeaking of goofs, who the fuck had the, uh, initiative, to do this? What kind of sick person watches the Simpsons, and checks how many buttons they've got on their coats, or how often they shave, etc.? And especially, on that last comment... What is your problem?! You were measuring the breast size of a cartoon character?! Why can't you just buy a magazine, or something (or possibly consider how close the shot was to her), you poor, lonely bastard?! |
| aggressive | 24509777 | $\backslash \mathrm{n} \backslash \mathrm{nUp}$ yours, you authoritarian little Hitlers. |
| aggressive | 10144987 | $\backslash \mathrm{n} \backslash \mathrm{n}$:: First of all, who the fuck died and made you the god on what is and what is not plagiarism? It seems like a pretty clear cut case to me. If text from the article matches text found in another source word for word, then it seems fairly clear cut that it is plagiarized. I would also point out, again, for like the umpteenth fucking time, that this user has been using plagiarized material repeatedly and only takes it out after being beaten over the head with it. Secondly, don't you fucking dare try and threaten me with what might and might not be said in arbitration. Finally, in case you were not aware or just did not care, an AOL IP cannot be blocked, so that is not any threat for the anon. |

Table 4.2: Wikipedia Talk Corpus example comments; the feature vectors derived from these samples are located in appendix A.4.

Label	Filename	Comment
OK	$0 _$113.txt	Me too. I really feel he will get a lot done. He is a man of urgency and justice. I believe he wants to see us get back to being great again. He will have a hard road ahead of him though, but he can handle it.
OK	$0 _116$. txt	OK. We can disagree. No problem.
OK	$0 _140$. txt	I am deeply troubled by the Democrats laissez-faire attitude toward both Trump's election and the confirmation hear- ings. There was no push-back on a president-elect who lost by about three million votes and yet claimed a stunning vic- tory. Today, there is no push-back on a man whose values are a throw-back to the pre-Civil Rights era South. Democrats behave as though there is no way to stop the GOP propa- ganda machine. Really? Clinton won by three million.
OK	$0 _$I06.txtI can do that, I can get more involved locally, but I can't clean our air or water, I can't prevent climate change weather related catastrophic events, I can't prevent oil spills from pipelines or in our parks and oceans. This is not funny.	
aggressive $1 _$My plumber today told me that Donald Trump is full of		

Table 4.3: Martin Dataset example comments; the feature vectors derived from these samples are located in appendix A. 4 .

4.3 Features

A portion of the engineered features are adopted from prior research, others are variations thereof or original ideas. Opposed to the majority of research projects, my approach does not include n-grams of any kind. Instead, the idea here is to look for more subtle predictors of aggressive language that ideally prove to be independent of a given corpus. Nonetheless, vocabulary still plays a significant role in the form of specific dictionaries and pre-defined word lists.

One of the strategies is to embrace the challenges of informal text (outlined in section 3.3.1 by detecting occurences like word spacing or leetspeak, transforming them into a more useful, proper form where applicable and incorporating their properties into the feature vector. Also, the amount of change the raw text has undergone during this transformation, expressed by the total edit distance, is an observed characteristic.

In a novel approach, even the dynamic changes in the language of internet communities can be leveraged. Internet users are as creative in making up new terms as they are diligent in defining these terms in the Urban Dictionary..6 With regard to the features, this allows a differentiation between internet slang words and actual unknown words.

Curiosity rather than a challenge or expectation has fueled some grammar-related features: Are aggressive users more likely to write in the present, or in the past verb form? Do they compare more or use superlatives more frequently? Who uses interrogative pronouns more often?

The effect of punctuation-style has been researched before, though not extensively. This work introduces new groupings for punctuation-highlighters and connectors-, investigates whether ellipses or em dashes are useful predictors and experiments with variations of classic punctuation features.

To capture the richness of a comments vocabulary, we measure the lexical diversity ${ }^{7}$ (as suggested in a blog-article on text moderation [22]). Based on that concept, the range of individual POS-tags has been formulated as a new measure of diversity.

Finally, we extract an assortment of low-level statistical characteristics. Among them are a ratio of whitespaces or non-alphanumerical characters, as well as simple word- and sentence-length statistics, most notably of which is a count of words that exceed a given length-threshold.

In total, there are 68 features - all of them purely non-negative, either discrete (e.g., counts) or continuous (e.g., ratios); none of them are of categorical nature. We group the features into six categories: Basic statistical, lexical, grammar-related, punctuation, noise and style, and diversity.

In the following listing, a number in a parenthesis refers to the column index of a feature. For instance, (1) is the index of the feature that represents the count of long words; the feature with index 62 is a variation of (1) and together they are summarized under the title Long Words (1, 62).

[^8]
4.3.1 Basic Statistical Features

All basic statistical features are extracted before text normalization. A few are extracted directly from the raw text (features 6,8 and 35), all other basic features are extracted after simple preprocessing, such as tokenization and stripping of punctuation at word boundaries.

Words (10, 12, 13, 14, 50)
For the total word count (10), we take into account only tokens that contain alphanumeric characters. Words connected by a hyphen (e.g., 'muddle-headed') are considered as one single word. Contractions, such as "you're", "it's", and words separated by a slash or em dash are regarded as separate words. The total word count is also used in other features - as a divisor-to establish a reference between the respective feature and the length of the comment in words. The next set of features excludes solely numeric tokens: Punctuation and other non-alphabetical characters, that appear at a words boundaries, are removed, before finding the length of the longest word (12), the average word length (13) and the median word length (14). The shortest possible word length is 1 , and even though one character words are not an uncommon phenomenon in the English language, an increased frequency may be regarded as an anomaly. The total number of one character words is divided by the number of sentences (50).

Long Words (1, 62)

Words that surpass a specified length-threshold are considered long words. We use a length-threshold of 7 characters, which was initially an intuitive, experimental choice that remains unchanged due to its obvious effectiveness. The first representation of this feature is the count of all long words (1), the second is the count of long words divided by the total word count (62).

Numbers (64)

This feature represents the amount of numeric values (plain numbers or monetary values, e.g., '1982', ' $\$ 1.000$ ') that appear in a comment.

Paragraphs $(8,54)$

The paragraph count (8) simply represents the number of occurrences of the newline character \square^{8} A second feature is the ratio of the paragraph count and the number of sentences (54).

Sentences ($9,18,19,20,21$)
A sentence is a sequence of words that ends in a period, question mark or exclamation mark followed by a whitespace or end of line. We expand this common conception by defining also a linebreak as a sentence terminator, to account for not existing or

[^9]extremely minimal punctuation style. The total number of sentences (9) is a feature on its own, as well as a divisor in other features to establish a reference between the respective feature and the comment length in sentences. Before the next set of features is extracted, each sentence is tokenized into a list of words, punctuation stripped. The number of words in a sentence list defines the length of that sentence. Extracted features are length of the longest sentence (18), average sentence length (19), median sentence length (20) and shortest sentence length (21).

Whitespaces (6)

Here we set the number of whitespaces (e.g., blanks, newline characters, tabs) in relation to the total length of the comment in characters:

$$
\begin{equation*}
\text { Whitespace-Ratio }=\frac{\text { count }(\text { whitespaces })}{\text { length of comment in characters }} . \tag{4.1}
\end{equation*}
$$

Non-Alphanumeric-Ratio (35)

To calculate this feature, the total count of non-alphanumerical characters (whitespaces excluded) must be divided by the length of the comment in characters (whitespaces excluded).

4.3.2 Lexical Features

All lexical features are extracted from normalized text, split into word tokens and ignore punctuation.

Regular Dictionary (43)

Each word in a comment that also exist in a regular US-English dictionary contributes to the regular dictionary word count.

Blacklist (36, 40, 56, 60)
Each occurence of a blacklisted word increments the total blacklist count (40). The total blacklist count is used after being divided by the number of sentences (56) and also by the length of the comment in words (60). The count of blacklisted words written in all capital letters (36) is a more specific blacklist feature.

Politeness (44, 67)
Each word in the comment that also appears in a list of polite words-like please, thank, sorry - contributes to the total count of polite words feature (44). An imperative is considered polite, if it contains the words please or thank, or if it uses the Empathic Do (e.g., 'Do sit down.'). The number of polite imperatives is divided by the total number of imperatives (67).

Subjectivity (22, 23, 24)
For the overall Subjectivity-Ratio (22) the total number of all words of the comment that also appear in the subjectivity lexicon-regardless of polarity (positive, negative, both, neutral) and strength (weak, strong) -are divided by the total number of words (excluding numbers) of the comment.

Weakly subjective words are assigned the value 0.5 , strongly subjective words are assigned the value 1.0. The Positive-Subjectivity-Ratio (23) is the summation of strength values of positive subjective words divided by the total number of subjective words. Similarly, the Negative-Subjectivity-Ratio (24) is the summation of values of subjective words with negative polarity divided by the total number of subjective words found in the comment.

Urban Dictionary (39, 55, 59)
Words that do not appear in a regular English dictionary, such as proper names or popular internet slang words (e.g., 'dafuq'), are often to be found in the Urban Dictionary. The number of words that are only to be found in the Urban dictionary is used in total (39), divided by the number of sentences (55) and divided by the total word count (59).

Unkown Words $(41,57,58)$
Words that appear neither in a regular English dictionary nor in the Urban Dictionary are represented in the unknown words count (41). This number is also used after being divided by the total number of sentences (57) and divided by the total word count (58).

4.3.3 Grammar Features

All grammar features are extracted from normalized, POS-tagged text.

Imperative (45, 49, 65, 66, 67)
First, all sentences that are found to be in imperative form contribute to the total imperative count (45), then this number is also divided by the number of sentences (49). The number of indirect (65) or polite (67) imperative sentences is divided by the total imperative count. An imperative is considered indirect if it ends with a question mark (e.g., "Everybody be quiet, will you?", "Would you help me, please?"). An imperative ending in a period or a single question mark has strength 0 , an exclamation mark or two question marks or a combination of one exclamation mark and a question mark has strength 1 , any other sequence of exclamation marks or question marks is considered quite strong and has strength 3 respectively 7 if the punctuation sequence is longer than 3 characters. Feature $\# 66$ represents the combined strength of all imperative sentences divided by the number of imperative sentences.

Present, Past and Modal Verbs (31, 32, 33, 48)
The Modal-Verbs-Ratio (31), the Present-Verbs-Ratio (32) and the Past-Verbs-Ratio (33) differ only in the denominator. Each of the specific verb counts is divided by the
total number of verbs. The total number of modal verbs is also divided by the number of sentences (48).

Comparatives and Superlatives (27, 28, 29, 30)
These features are very similar. The first two are about adjectives only, the last two concern adverbs and they are both grouped into comparative and superlative ratios. Comparative adjectives (27), respectively superlative adjectives (28), are divided by the total adjective count. Comparative adverbs (29), respectively superlative adverbs (30), are divided by the total adverb count.

WH-Pronouns $(2,52)$
Why, Where, When, How, What, Who, Whoever, Which, Whatever are so-called WHPronouns. The total count of WH-Pronouns (2) is one feature. It is also divided by the number of sentences (52).

4.3.4 Punctuation Features

Most punctuation features are extracted from the raw, unprocessed comment. The only exceptions are ellipses and em dashes, which are normalized beforehand.

Punctuation Ratios (0, 4, 5)

These three features are almost identical, the only difference being the denominator. It is a ratio between a single punctuation type (exclamation mark / period / question mark) and the sum over the counts of all exclamation mark, period, question mark: Exclamation-Mark-Ratio (0), Period-Ratiq ${ }^{9}$ (4) and Question-Mark-Ratio (5).

Ellipses $(3,47)$

An ellipsis (...) is used to indicate omission or, more informally, a pause, hesitation, etc. First, all ellipses are count and used in total (3), then the ellipsis count is divided by the number of sentences (47).

Highlighters (7)
Quotation marks, parenthesis and asterisks make up the 'highlighters' category. They visually separate content from the rest of the text, which may be interpreted as a form of 'highlighting'. All occurrences of these highlighters (regardless of whether they are being used syntactically correct) contribute to the total count of highlighters.

Connectors (51)
Commas, semicolons, colons, and dashes fall into the 'connectors' category. They can be seen as connecting elements between otherwise separate parts of a single sentence. The count of all these connectors is divided by the number of sentences.

[^10]
Em Dashes (25)

The number of all occurrences of the em dash ${ }^{10}$ make up this feature. Before feature extraction, em dashes are being normalized, so they only appear as double hyphensinstead of triple hyphens or even more.

Repeated Punctuation $(34,53)$
Any sequence of two or more exclamation marks, question marks or commas counts as repeated punctuation (e.g., '!!', '?!?', ',,,,,'). Feature $\# 53$ is the total count of repeated punctuations (regardless of their individual length) divided by the number of sentences. Feature $\# 34$ is the average length of all repeated punctuations. Sequences of periods are a valid concept known as ellipsis and therefore excluded from this feature.

Regular Sentence Endings (46)

The common way to end a sentence is by use of a period, question mark or an exclamation mark. In this particular feature, there is no distinction between multiple singular periods and a sequence of periods, meaning that ellipsis are not recognized as such:

$$
\begin{equation*}
\text { Regular Sentence Endings }=\frac{\operatorname{count}([. ?!])}{\operatorname{count}(\text { sentences })} \tag{4.2}
\end{equation*}
$$

4.3.5 Noise and Style Features

The majority of these features are extracted during the text normalization process.

Noise Words (38)

Often asterisks or similar special characters are used to replace vowels in curse words (e.g., ' $f^{*} c k$ ', ' $q u^{* *} r^{\prime}$). Consequently, words that contain at least one non-alphabetical character (slashes and dashes excluded), are being registered as noise words and contribute towards the count of noise words (38).

Corrected Words $(16,42,63)$
Lengthened words and Leetspeak $\sqrt{11}$ will be corrected during the normalization process. The count of each corrected word is used in total (42) and divided by the total word count (63). The sum of all edit distances ${ }^{12}$ denotes the amount of modification per comment (16).

[^11]
Spaced Words (15)

Word spacing, either by separating the single letters of a word by a blank or a special character (e.g., ' H a w k e $y e^{\prime}$, or ' $M^{*} A^{*} S^{*} H^{\prime}$) is an aesthetic effect of putting emphasis on a word. Spaced words are usually not automatically recognized during tokenization and therefore falsely regarded as single one character tokens. Therefore, we develop a method to detect and collapse spaced words, which also keeps track of the number of spaced words it encountered. The total count of all spaced word makes up this feature.

Word Lengthening (17)

Word lengthening (e.g., 'cuuute') is another form of emphasis or accentuation, mimicking prosodic characteristics which would otherwise be lost in written text. It is often used for words that have a strong indication of sentiment [3]. Lengthened words are being normalized during preprocessing. The extracted feature is the count of lengthened words.

All Caps $(36,61)$

Writing words or even the whole comment in ALL CAPS is a stylistic choice that is often perceived as yelling. Feature $\# 36$ is the count of all words that are blacklisted and written in capital letters, feature $\# 61$ is the ratio of the count of all words written in capital letters and the total word count.

Mixed Case (37)

Words that display an informal mix of upper case and lower case letters (e.g., 'YiKeS' or 'yIKES'; but not 'Yikes') increment the count of mixed case words.

4.3.6 Diversity Features

The Type-to-Token-Ratio is extracted from the unnormalized text, while the POS-Type-to-Word-Ratio is based on the normalized, POS-tagged version of the text.

Type-to-Token-Ratio (TTR) (11)

The TTR is a simple measure of lexical diversity. Its value is low for comments where tokens are repeated frequently, and only reaches the maximum value, 1 , if all tokens are unique. Before the calculation, punctuation is removed, all words are set to lowercase and stemmed (e.g., 'Stop!' and 'stopped' are considered the same, 'stop'):

$$
\begin{equation*}
\mathrm{TTR}=\frac{\operatorname{count}(\text { unique tokens })}{\operatorname{count}(\text { tokens })} \tag{4.3}
\end{equation*}
$$

POS-Type-to-Word-Ratio (26)

This feature, inspired by the TTR, aims to capture the grammatical diversity by juxtaposing the number of unique POS-tags with the number of total words. Note, however,
that POS-tags include punctuation too, while words strictly refer to words and numbers:

$$
\begin{equation*}
\text { POS-Type-to-Word-Ratio }=\frac{\text { count (unique POS-tags) }}{\operatorname{count}(\text { words })} \tag{4.4}
\end{equation*}
$$

4.4 Feature Selection

The goal of feature selection is to remove meaningless, noisy or redundant features in order to gain a model that generalizes well, needs less time and resources, and performs well on out-of-sample data. Another benefit is the knowledge and deeper understanding of the data that might be derived from the results [6]. Feature selection techniques are commonly split into three different categories: Filters, Wrappers and Embedded methods. The following approaches to finding the best feature subsets have been undertaken.

4.4.1 Univariate Feature Selection

Univariate feature selection is a fast method, independent of the learning algorithm, to gain insight about the features' individual statistical significance (figure 4.2). It is a filter method, that is often used as a preprocessing step to reduce dimensionality and handle overfitting. Filter methods assign a score to each feature and use the the derived ranking to keep or remove features from the dataset. With this approach, feature interactions are not taken into account, which may lead to a selection of redundant features. The following statistical tests were used to rank the features by relevance according to the obtained test scores.

T-Test

The T-test compares the means of feature values (e.g., the mean of the number of blacklisted words) per class ($O K$ or aggressive). Its score - the ratio of the difference between the two classes and the difference within the two classes - indicates how different the classes are. A large score signals that the classes are different, which means it is likely a valuable feature to separate the classes by.

Wilcoxon-Ranksum-Test

Unlike the T-test, the Wilcoxon-ranksum-test does not assume a normal distribution of the data. It treats the feature values as ordinal data: The feature values from both classes together are assigned magnitude based ranks, and afterward reseparated into their corresponding classes. The test score is based on the sum of the ranks per class. A large score indicates that the ranks of the classes are separate enough - if one class contributes significantly more to the higher ranked values.

Mutual Information

The concept of Mutual Information is the reduction of uncertainty by measuring how much is known about a random variable when another variable is given. The Mutual Information score is computed by a combination of probabilities (e.g., the probability

Figure 4.2: The plot shows the per-class distribution of a single feature. The red and the green histogram denote the aggressive and non-aggressive frequencies respectively; the brown area is where they overlap.
of there being X blacklisted words in a comment of class Y; the probability of there being X blacklisted words in any class; the probability of a comment being of class $Y)$. Mutual Information is zero if feature values and classes do not provide information about one another, in other words, if they are independent.

4.4.2 Wrapper and Embedded Methods

Both, wrapper and embedded methods involve a learning algorithm and evaluate the usefulness of feature subsets - hence feature interactions are taken into account. Wrapper methods search the space of all feature subsets and use the learning algorithm only to score these subsets [6]. Embedded methods are less computationally expensive and less prone to overfitting than wrappers. The search for optimal feature subsets is guided by the learning process; feature selection and model tuning are carried out at the same time. The following methods were employed to find favorable feature subsets:

Recursive Feature Elimination (RFE)

Recursive Feature Elimination, a wrapper technique, is a greedy algorithm that starts with the full set of features. The least promising features-determined by current subset results of a classifier of choice (here: Logistic Regression) - are dropped step by step, until the remaining subset reaches a predefined size. Making use of the ability to predefine the final selection size, we also generate a feature ranking based on the RFE results.

Lasso

The Lasso is an embedded method that fits the model to the data by imposing a penalty to the coefficients. The penalty will shrink the least useful features to zero and therefore takes them out of the equation. The remaining, nonzero coefficients stem from the features that were deemed useful, they are the selected ones. The size of the Lasso selections cannot be predefined to an exact number, instead it is influenced via the alpha parameter, which regulates the strength of the penalty: The higher the alpha, the fewer features will be selected.

4.5 Models

We use three different learning algorithms, Logistic Regression and Support Vector Machines (linear and Gaussian), to train and test the datasets.

4.5.1 Logistic Regression

Logistic Regression is a common machine learning approach for binary classification problems. It is a generalized linear model that squashes the result into a range between zero and one by use of the standard logistic function, so it can be interpreted as a probability. The coefficients that serve as weights for the features are values that fit best to the training data and are determined by an optimization procedure, such as the maximum likelihood estimation.

The probability of an out-of-sample observation $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ being 1 is predicted by the exponentiation of the summation of the dot products of the feature vector \boldsymbol{x} and the weight vector $\boldsymbol{\beta}$ (containing n coefficients) and the intercept $\boldsymbol{\beta}_{\mathbf{0}}$ (a value that is computed alongside with the coefficients when the model is fitted) and divided by the same term plus 1 (to ensure the value is in the zero to one range):

$$
\begin{equation*}
P(y=1 \mid \boldsymbol{x})=\frac{e^{\beta_{0}+\beta^{T} \boldsymbol{x}}}{1+e^{\beta_{0}+\beta^{T} x}}=\frac{e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{n} x_{n}}}{1+e^{\beta_{0}+\beta_{1} x_{1}+\ldots+\beta_{n} x_{n}}} \tag{4.5}
\end{equation*}
$$

Logistic regression can be prone to overfitting, especially when there are a lot of features. By introducing a regularization term - either Lasso (L1 regularization) or Ridge Regression (L2 regularization) -to penalize the coefficients overfitting can be avoided. While both regularization methods shrink large coefficients, the L1 penalized logistic regression returns a sparse model; the L2 penalty, on the other hand, does not set coefficients to zero, it only shrinks them in size.

In order to get an accurate evaluation for each selected feature subset-explicitly without potential further subset reduction-we choose the L2 constraint over the L1.

4.5.2 Support Vector Machines

Another widely used, robust approach for classification tasks are Support Vector Machines (SVM). In comparison to Logistic Regression, which is a probabilistic classifier, the idea behind Support Vector Machines is inspired by geometry (figure 4.3 (a)). The SVM constructs a hyperplane in (often high dimensional) space to separate the data
points with the maximum possible margin. It focusses on the points that are most difficult to differentiate and chooses a hyperplane that maximizes the distance to the nearest data points on both sides.

Kernels

Two common kernels were tested: the linear and the Gaussian (also: radial basis function $(\mathrm{RBF}))$ kernel. The Gaussian kernel is the recommended first choice [7]. It is best suited for data that is initially not linearly separable; here linear separability is achieved by transforming the data points into higher dimensional space which is effectively done by the kernel function (figure 4.4).

SVM Hyperparameters

To account for outliers, it is essential to regulate the complexity of the model (figure $4.3(\mathrm{~b}))$. After choosing a kernel, this is the most crucial step.

The Gaussian SVM requires two hyperparameters ${ }^{13}$ that control the trade-off between the complexity of the model and the correctness of the training samples' classification: The penalty parameter C of the error term-in short, the C parameter-and the gamma, which are sometimes less formally called slack parameters. The C parameter influences the simplicity of the decision surface: A low C results in a larger margin, leading to misclassified training samples (which is useful if these samples are outliers); a high C, on the other hand, means more complexity and the danger of overfitting. The gamma parameter defines the spread of influence of a single training sample: The higher the gamma, the less far its influence reaches [24]. For the linear kernel, there is only the C to be tuned; it is also computationally faster than the RBF.

Hyperparameter tuning is best approached systematically with a grid-search and using cross-validation. The former is an exhaustive search for a good combination of C and gamma (or a search for the best C by itself, given a linear kernel); the latter is performed for each grid-search combination to measure its stability. The search was performed on a logarithmic grid ranging in $[0.01,1.0,0.1,1.0,10.0,100.0$, 1000.0] for both values, C and gamma.
k-fold cross-validation divides the training set into k subsets (folds) of equal size. Each fold is once used as the validation set while the remaining folds were used beforehand to train the classifier.

In practice, we split the shuffled training set into 5 folds, noting that the classes' balance closely resembles the balance of the whole dataset. Hyperparameter tuning per kernel is executed for each feature selection subset separately.

For the final evaluation of the feature selections, the models are trained on the development set and validated against the validation set, using the selected feature columns, as well as the specific parameters per kernel.

[^12]

Figure 4.3: (a) The geometric idea behind the SVM: Hyperplane separating the two classes, visualized as red squares and blue circles (image source: [23]). (b) Avoid overfitting: A model that admits training errors might generalize better.

Figure 4.4: Visualization of the kernel-trick (image source: 21]).

4.6 Performance Metrics

We use the F_{1}-score to measure and compare each models performance. The F_{1}-score is the harmonic mean of precision and recall. Precision expresses what proportion of the comments that were predicted to be aggressive are in fact aggressive:

$$
\begin{equation*}
\text { Precision }=\frac{\text { True Positives }}{\text { True Positives }+ \text { False Positives }} \tag{4.6}
\end{equation*}
$$

Precision is high if most of the comments that were predicted to be aggressive are actually aggressive. It does not take into account the number of aggressive comments
that were predicted to be OK (False Negatives). Recall expresses how many of the aggressive comments were correctly identified:

$$
\begin{equation*}
\text { Recall }=\frac{\text { True Positives }}{\text { True Positives }+ \text { False Negatives }} \tag{4.7}
\end{equation*}
$$

Recall is high if most of the comments that are in fact aggressive were predicted as such. Recall by itself is however blind to the number of False Positives. Aiming to maximize both, precision and recall, the F_{1}-score comes into play:

$$
\begin{equation*}
F_{1}=2 \cdot \frac{\text { Precision } \cdot \text { Recall }}{\text { Precision }+ \text { Recall }} \tag{4.8}
\end{equation*}
$$

Chapter 5

Implementation

5.1 Resources

5.1.1 Libraries

The system for automated classification of aggressive user comments is implemented in Python version 2.7.5. and utilizes the following libraries:

- NLTK version 3.2.2,
- pandas version 0.19.2
- NumPy version 1.13.0rc2,
- SciPy version 0.19.0,
- scikit-learn version 0.18.1,
- Matplotlib version 2.0.2,
- editdistance version 0.3.1,
- PyEnchant version 1.6.8,
- urbandictionary version 1.1 and
- Stanford POS Tagger version 3.7.0.

5.1.2 Lexical Resources

Blacklist
An inofficial compilation of commonly blacklisted words, the "Full List of Bad Words and Top Swear Words Banned by Google, ${ }^{1}$, serves as a dictionary for all blacklist related features. The blacklist dictionary contains 550 single terms that have no additional information attached.

Polite Terms

The count of polite words feature draws from a small dictionary of 30 polite terms scraped from blog posts about polite communication with business clients.

[^13]
Subjectivity

The $M P Q A$ Subjectivity Lexicon ${ }^{2}$ created by Wiebe et al. in 2005 contains information like polarity, strength, POS-tag and stemming-status per word. It is important to note that within this lexicon a word can appear multiple times with differing POS-tags, and linked to the tag a different strength and even polarity. The lexicon lists well over 8000 entries, all in lowercase letters.

Regular Dictionary

The US-English dictionary that is part of PyEnchant, a spell-checking library for Python, is used as a means to detect whether a word is part of the regular US-English vocabulary. The spell-checker is case sensitive.

Urban Dictionary

The Urban Dictionary API \square^{3} enables developers to check if a given term is part of the Urban Dictionary. The API call expects an UTF-8 encoded string; also an internet connection is required.

5.1.3 Corpora

Martin Corpus

Analogous to the Movie Reviews corpus that is part of the Natural Language Toolkit (NLTK), the Martin corpus consists of text files, where each file represents a single comment. The files are separated by label into corresponding folders. The raw text samples are accessible via the CategorizedPlaintextCorpusReader from the nltk. corpus package.

Wikipedia Talk Corpus

The Wikipedia Talk Corpus ${ }^{4}$ is accessible in the form of a DataFrame via the Python Data Analysis Library (pandas). Each comment has been rated by multiple crowdworkers. The label of a comment can be derived by thresholding the mean of the ratings.

5.2 Natural Language Processing

This section describes how the text is processed and transformed into different representations for feature extraction, using a custom word tokenizer, custom text normalization, POS-tagging, and chunking.

[^14]
5.2.1 Word Segmentation

In order to extract features that relate to plain word statistics, such as the total word count, the length of the longest word, or the count of noise words, the raw text must be converted into a list of words without punctuation. The ideal output list for the (deliberately noisy) text "What's. . your f@vour!te colour?" is as follows:
['What', 's', 'your', 'f@vour!te', 'colour']
A most basic, first approach to word segmentation is to split the raw text by whitespaces, though this would entail that the contraction "What's" (short for "What is") is regarded as a single word. More sophisticated tokenizers, that are part of the standard repertoire of NLP tools, handle contractions correctly, though they are not suited well for very informal, user-generated texts; in general, tokenizers tend to split noise words into multiple tokens:

```
>>> nltk.word_tokenize("What's... your f@vour!te colour?")
['What', "'s", '...', 'your', 'f', '@', 'vour', '!', 'te', 'colour', '?']
```

For our particular use case, these standard solutions do not deliver satisfactory results. However, a more applicable segmentation of words, where removal of punctuation is already part of the solution, can be implemented in a few straightforward steps:

1. Any occurrence of an em dash is replaced by a blank.
2. Hyphens are removed (e.g., 'e-mail' becomes 'email') in order to keep joined words as a single entity and prevent the term from being registered as a noise word.
3. Commas and slashes are replaced by blanks.
4. Apostrophes are replaced by a blank if the whole term follows the pattern of a commonly used contraction; a valid contraction ${ }^{5}$ refers to a sequence of alphabetic characters, followed by an apostrophe, followed by either ' 1 l ', ' d ', 've', 're', or ' t ', trailed by an end of line, punctuation mark or whitespace. It is denoted by the following regular expression (compiled with the case insensitive option):
```
r'([a-z]{1,}\'(ll|d|ve|s|re|t)($|[\.!? ]))'
```

5. Now, the processed string is split into tokens by whitespaces, with some punctuation still attached.
6. The remaining punctuation is discarded-without destruction of noise wordsby stripping the leading (lstrip()) and trailing (rstrip()) punctuation from each item in the list. The example below shows the temporary word tokens of the raw string "It's blue!... No; --YELLOOO@AAHH!!!" and its final word tokens, after the removal of the outer punctuation:
```
>>> temp = ['It', 's', 'blue!...', 'No;', 'YELLOOO@AAHH!!!']
>>> punct = '\'"`[]{}()<>?.,;!'
>>> [t.lstrip(punct).rstrip(punct) for t in temp]
['It', 's', 'blue', 'No', 'YELLOOO@AAHH']
```

[^15]
5.2.2 Text Normalization

The correctness of grammatical features, such as the Past-Verbs-Ratio or the count of imperatives, depends strongly on the accuracy of the output of the employed part-of-speech tagger. Besides the choice of the tagger itself, it is the form of the input that greatly influences the quality of the tagger's output. Text normalization, in this context, means to 'correct' informal words and to improve the formal structure of the text. The main intention is to optimize the output of the tagger. As a byproduct, we can extract features that capture informal use of language, such as the counts of spaced words, lengthened words or 'fixed' (modified) words. Moreover, all lexical features are extracted from the normalized text for improved precision (e.g., the word '\$hiiiiiit' is not part of a blacklist, but the normalized version-'shit'-is.)

The normalization process performs the following operations on the raw text:

1. Any spaced punctuation sequence is deflated, by removal of the blanks inbetween the punctuation marks (e.g., '!?!!' becomes '!?!!')
2. Any sequence of two or more periods is converted into a standard ellipsis consisting of three periods with a trailing blank.
3. Em dashes are standardized into two dashes with a leading and a trailing blank.
4. Any sequence of more than one comma is replaced by a single comma.
5. Any non-textual elements (e.g., ${ }^{\prime}===>^{\prime}$)—excluding punctuation-are removed.
6. Inflated words are deflated into a single word (e.g., ' D o nald M.i.c.k.e.y $G^{*} O^{*} O^{*} F^{*} Y^{\prime}$ becomes 'Donald Mickey GOOFY')
7. At this point, the preprocessed text is temporarily split into tokens (using blanks). An inspection and possible modification per individual word follows:
(a) If the word contains an at sign (@) and is not an e-mail address, the '@' is replaced by an 'a'.
(b) If the word contains an exclamation mark that is not discernible as a punctuation mark, the '!' will be replaced by an 'i'.
(c) If the word contains a dollar symbol (\$), it is identified as either a monetary value with a missing blank between the ' $\$$ ' and the value, or the ' $\$$ ' is assumed to be an 's' in disguise. Thus, '\$3.5' becomes ' $\$ 3.5$ ', '\$wi\$\$' becomes 'swiss'.
(d) If a word appears to be a mix of alphabetic and numeric characters, it is assumed that the numeric characters stand for visually similar alphabetic letters. Each numeral is replaced by a letter according to the 1337 alphabet, e.g., '9234t' becomes 'great':
```
basic_leet_nums = {'0': 'o', '1': 'i', '2': 'r', '3': 'e', '4': 'a',
    '5': 's', '6': 'b', '7': 't', '8': 'B', '9': 'g'}
```

(e) If a word contains three or more sequential repetitions of the same character, it is assumed that the underlying word has been artificially lengthened and its actual form can be retrieved by shortening of the lengthened sequence. By a check against an US-English dictionary, the most likely form of the underlying word is refined furthermore - though, given two or more lengthened sequences, the search for the correct spelling is not exhaustive. E.g., 'coooool' becomes 'cool', 'niiiice' becomes 'nice', 'hellllooo' becomes 'hello'.

The corrections $\sqrt{6}$ are applied word by word; each modification is applied on top of any previous modifications. Also, all capital letter noise words remain in all upper case style even after modification. Now, the text is rebuilt by joining the (possibly modified) tokens. Finally, it is ready to be segmented into sentences, tokenized with NLTK's word_tokenize() and tagged using the Stanford POS Tagger.
The following text normalization example demonstrates the transformation of an especially noisy text to showcase most of the corrections.

```
>>> normalize_text("YOu know what they say? ? ? some things in life are bad---they
    can reaaaallllly make you m@d----- Other things just make you $W34R (and
    cur$$$e). When you're chewing on l!fe's gristle...... don't g r u m b l e -->
    give aaaaaaaaaaaaaaaaaaaaaaaaa wh!stle!!")
"You know what they say??? some things in life are bad -- they can reaally make you
    mad -- Other things just make you SWEAR (and curse). When you're chewing on
    life's gristle... don't grumble -- give a whistle!!"
```


5.2.3 Imperative Detection

Typically, an imperative consists of a verb in base form at or close to the beginning of a sentence. An imperative can appear in the form of a statement (e.g., "Dave, stop.", "Just take a stress pill and think things over.") or disguised as a question (e.g., "Stop, will you? ", "Stop it, please?"). The POS-tag <VB> refers to a verb in base form, though its use is not limited to imperatives: For instance, the verb ' $d o$ ' in the sentence "I'm afraid I can't do that.", is in the base form too. Furthermore, in rare cases, an imperative might start with a modal verb (e.g., "Will you stop, please?"); modal verbs are always tagged as <MD>, regardless of form and tense of the modal verb.

Therefore, we define an imperative by its possible grammatical structures. We develop an algorithm (listing 5.1) that uses the position of the <VB>-tag (or the <MD>-tag) and shallow parsing - also known as chunking - to extract specific POS patterns, in order to determine if a sentence is an imperative or not. We define VB-Phrase (verb phrase) and Q-Tag (question-tag) patterns that are exclusive to imperatives (listing 5.2). Also, it is practical to split imperatives into two categories: commands (sentences with any type of final punctuation mark-including none at all-but with the exception of a question mark) and requests (sentences ending in a question mark). As an example, let's consider these imperative sentences and their POS-tagged ${ }^{7}$ versions:

A sentence starting with the VB-Phrase pattern $\langle\mathrm{UH}\rangle\langle\rangle,\langle\mathrm{VB}\rangle$ is a definite imperative: "Please, open the pod bay doors, HAL."
[('Please', 'UH'), (',', ','), ('open', 'VB'), ('the', 'DT'), ('pod', 'NN'), ('bay', 'NN'), ('doors', 'NNS'), (',', ','), ('HAL', 'NNP'), ('.', '.')]

A question that ends with the Q-Tag pattern <, ><MD><RB><PRP><.> and starts with a <VB>-tag and indicates an imperative: "Stop, will you?"
[('Stop', 'VB'), (',', ','), ('will', 'MD'), ('you', 'PRP'), ('?', '.')]

[^16]```
from nltk.tree import Tree
def is_imperative(tagged_sent):
 :param tagged_sent: Expects a normalized, POS-tagged sentence--a list of tuples.
 :return: True if the given sentence is an imperative, otherwise False.
 >>> is_imperative([('Stop', 'VB'),('it ', 'PRP'),('!', '.')])
 True
 " " "
 # if the sentence is not a question...
 # (checks the last POS-tag tuple and whether the token it holds is not a '?')
 if tagged_sent[-1][0] != "?":
 # catches simple imperatives, e.g., "Open the pod bay doors, HAL!"
 # (checks the first POS-tag tuple and whether its tag is 'VB' or 'MD')
 if tagged_sent[0][1] == "VB" or tagged_sent[0][1] == "MD":
 return True
 # catches imperative sentences starting with words like 'please ', 'just ', 'you', etc.
 # E.g., "Dave, stop.", "Just take a stress pill and think things over."
 else:
 chunk = get_chunks(tagged_sent)
 # check if the first chunk of the sentence is a VB-Phrase
 if type(chunk[0]) is Tree and chunk[0].label() == "VB-Phrase":
 return True
 # Questions can be imperatives too, let's check if this one is
 else:
 # check if sentence contains the word 'please'
 pls = len([w for w in tagged_sent if w[0].lower() == "please"]) > 0
 # catches requests disguised as questions, e.g., "Open the doors, HAL, please?"
 if pls and (tagged_sent[0][1] == "VB" or tagged_sent[0][1] == "MD"):
 return True
 chunk = get_chunks(tagged_sent)
 # catches imperatives ending with a Question tag
 # and starting with a verb in base form, e.g., "Stop it, will you?"
 elif type(chunk[-1]) is Tree and chunk[-1].label() == "Q-Tag":
 if (chunk[0][1] == "VB" or
 (type(chunk[0]) is Tree and chunk[0].label() == "VB-Phrase")):
 return True
 return False
```

Listing 5.1: Imperative Detection program.

### 5.3 Machine Learning

The machine learning related tasks make use of numpy, scipy and the sklearn package. The results for each model are stored alongside the associated feature selections and tuning parameters (where applicable) using a DataFrame per learning algorithm.

```
from nltk import RegexpParser
def get_chunks(tagged_sent):
 """
 : param tagged__sent: Expects a POS-tagged sentence--a list of tuples.
 :return: nltk. tree.Tree
 >>> get__chunks([('Please','UH'), ('stop', 'VB'),('it ', 'PRP')])
 Tree('S', [Tree('VB-Phrase', [('Please', 'UH'), ('stop ', 'VB')]), (' it ', 'PRP')])
 chunkgram = r"""VB-Phrase: {<DT><,>*<VB>}
 VB-Phrase: {<RB><VB>}
 VB-Phrase: {<UH><<,>*<VB>}
 VB-Phrase: {<UH><,><VBP>}
 VB-Phrase: {<PRP><VB>}
 VB-Phrase: {<NN.?>+<<,>*<VB>}
 Q-Tag: {<,><MD><RB>*<PRP><.>*}"""
 chunkparser = RegexpParser(chunkgram)
 return chunkparser.parse(tagged_sent)
```

Listing 5.2: Method to chunk a sentence into verb phrases and question-tags.

### 5.3.1 Feature Selection

## Univariate Ranking

The sklearn.feature_selection package is employed for the ANOVA implementation of the T-test (the F-test, function f_classif()) and for the Mutual Information ranking (mutual_info_classif()). The scipy.stats package provides the implementation of the Wilcoxon-ranksum-test (ranksums()).

## Lasso

Feature Selection via the Lasso is executed with the help of the LassoCV class in the sklearn.linear_model package. It selects the best model using 5 -fold cross-validation. Selections are searched for within a threshold range of [0.000005-0.25], with a stepsize of 0.005 and 250 alphas per step.

## Recursive Feature Elimination

Feature Selection via Recursive Feature Elimination is performed using class RFE which, in turn, uses LogisticRegression (L2 regularization, default settings) as an estimator to internally score the selections.

### 5.3.2 Models

## Logistic Regression

All Logistic Regression models use scikit-learn's LogisticRegression class from the sklearn.linear_model package with standard parameters, with the explicit use of the L 2 regularization and a fixed random state to achieve reproducibility.

## SVM

The linear SVM models (class LinearSVC) and the Gaussian SVM models (class SVC), both from the sklearn.svm package, use standard settings, except for a fixed random state to achieve reproducibility and the hyperparameters, which vary per subset and are determined via a grid-search.

The grid-searches are performed using GridSearchCV with 5 -fold cross-validation and the f 1 _score from the sklearn.metrics package as the scoring function. The range of the hyperparameter search for both kernels (gamma only for the Gaussian) is:

```
C_range = [0.01, 1.0, 0.1, 1.0, 10.0, 100.0, 1000.0]
gamma_range = [0.01, 1.0, 0.1, 1.0, 10.0, 100.0, 1000.0]
```


## Chapter 6

## Evaluation

This chapter presents the results for both datasets separately. The exploration of the feature selections per selection method is followed by a performance analysis of the generated models-across classifiers and selection methods.

### 6.1 Results Wiki Dataset

The Wikipedia Talk Corpus contains user comments collected from discussions found on the Talk Pages of English Wikipedia. The comments were posted within a timeframe of 14 years-between 2001 and 2015; the primary languages used are American English and British English. The average comment of the Wiki Corpus consists of 44 words (median 27, minimum 3, maximum 250 words) contained in 3.8 sentences (median 3, minimum 1, maximum 25 sentences). We hold out a set of 1661 samples for the final validation (table 6.1). The remainder of 4986 samples is what we generate our feature selections out of.

### 6.1.1 Feature Selections

Appendix A. 3 shows the complete feature rankings for the univariate methods and Recursive Feature Elimination. The whole set of Lasso selections is listed in appendix A.4. Looking at figure 6.1, we can see that the univariate methods start out with good agreement on the first few features and then continue with increasing variance in ranks. A somewhat similar trend can be observed by juxtaposing the combined univariate methods and the RFE ranking (figure 6.2), though there the level of disagreement is much

Table 6.1: Wiki Dataset, 3:1 separation in development set and validation set.

|  | OK | aggressive | total |
| :--- | ---: | ---: | ---: |
| dev set | 2463 | 2523 | 4986 |
| val set | 821 | 840 | 1661 |
| total | 3284 | 3363 | 6647 |

higher. Since the Lasso selections are not based on rankings, we use a Venn diagram (figure 6.3) to show where the univariate, the RFE and the Lasso selections intersect and which feature preferences are unique to a particular method. Here are the top ten features per selection method:

## Filter Method: T-Test

1. Blacklisted words count divided by the total word count (60)
2. Blacklisted words count (40)
3. Blacklisted words count divided by the number of sentences (56)
4. Long words count (1)
5. Long words count divided by the total word count (62)
6. Ratio of negative subjective words and the total count of subjective words (24)
7. Period ratio (4)
8. Highlighters (*'()") count (7)
9. Count of ALL-CAPS words divided by the total word count (61)
10. Connectors (,,:-) ratio (51)

## Filter Method: Wilcoxon Ranksum Test

1. Blacklisted words count divided by the total word count (60)
2. Blacklisted words count divided by the number of sentences (56)
3. Blacklisted words count (40)
4. Long words count (1)
5. Maximum wordlength (12)
6. Connectors (,,:-) ratio (51)
7. Long words count divided by the total word count (62)
8. Average wordlength (13)
9. Maximum sentence length in words (18)
10. Average sentence length in words (19)

## Filter Method: Mutual Information

1. Blacklisted words count divided by the number of sentences (56)
2. Blacklisted words count divided by the total word count (60)
3. Blacklisted words count (40)
4. Long words count divided by the total word count (62)
5. Ratio of negative subjective words and the total count of subjective words (24)
6. Connectors (,,::-) ratio (51)
7. Count of ALL-CAPS words divided by the total word count (61)
8. Long words count (1)
9. Average wordlength (13)
10. Highlighters ( ${ }^{*}$ ()") count (7)

## Wrapper Method: Recursive Feature Elimination

1. Blacklisted words count divided by the total word count (60)
2. Blacklisted words count (40)
3. Ratio of negative subjective words and the total count of subjective words (24)
4. Blacklisted words count divided by the number of sentences (56)
5. Highlighters ( $\left.{ }^{*}()^{\prime \prime}\right)$ count (7)
6. Connectors (,,$:-$ ) ratio (51)
7. Polite words count (44)
8. Count of imperative sentences (45)
9. Long words count divided by the total word count (62)
10. Count of ALL-CAPS words divided by the total word count (61)

## Embedded Method: Lasso

The following Lasso selection is the smallest of its kind; it contains 20 items sorted by index:

- Long words count (1)
- WH-Pronouns count (2)
- Highlighters $\left({ }^{*}{ }^{\prime}()^{\prime}\right)$ count (7)
- Paragraph count (8)
- Sentence count (9)
- Edit distance of 'fixed' words (16)
- Median sentence length (20)
- Count of subjective words divided by the total number of words (22)
- Ratio of negative subjective words and the total count of subjective words (24)
- Count of blacklisted words written in ALL-CAPS (36)
- Noise count (38)
- Blacklisted words count (40)
- Polite words count (44)
- Ellipsis count divided by the number of sentences (47)
- Connectors (,,$:-$ ) ratio (51)
- Blacklisted words count divided by the number of sentences (56)
- Blacklisted words count divided by the total word count (60)
- Count of ALL-CAPS words divided by the total word count (61)
- Long words count divided by the total word count (62)
- Count of numeric values divided by the total word count (64)


## Rejected Features

Figure 6.3 shows the most relevant features determined by the intersection of prefered features across selection methods. Computing the intersections from the reverse end results in the least informative features across the six selections methods: The count of


Figure 6.1: Wiki Dataset. The plot shows the level of (dis)agreement within the univarate feature ranking for the combined top 15 features. The $x$-axis refers the features in the order of their combined ranks. The bars per feature relate to the ranking ( $y$-axis) of the feature according to the corresponding ranking method.
spaced words (15), the length of the shortest sentence (21), the count of em dashes (25), the ratio of superlative adverbs (30), the count of 'fixed' words (42), the per-word-ratio of 'fixed' words (63) and the ratio of indirect imperatives (65).

### 6.1.2 Subset Models Results

Training and testing of the models, based on each of the selections, produces 359 results per classifier - or 1077 results in total - which are pictured in the following line graphs (please note that the $y$-axis is truncated). The three plots reveal that the full selection of features performs comparatively well. Even so, only a third of the full set is required to achieve an improved classification result. The baselines range from $85.2 \%$ to $88.4 \%$, and the overall best result accomplishes an $F_{1}$-score of $89.4 \%$ using 40 features (table 6.2). The RFE method consistently produces the smallest, most useful subsets that are the first to surpass the baseline. The ranksum method also sets itself apart from the rest... by its initial stagnation. At the 18 features mark, the ranksum score reliably rockets up, powered by the Negative-Subjectivity-Ratio (24), which happens to be a steadfast booster across selection types and classifiers. Other features that typically lead to an increase are the per-word-ratio of all capitalized words (61), blacklisted words features $(40,60)$, the connectors ratio ( 51 ), and - among the linear classifiers - the

[^17]

Figure 6.2: Wiki Dataset. A comparison of the RFE and combined univariate ranking shows a low level of general agreement on the importance of the single features. The scatterplot encompasses the ranked top 25 combined univariate features on the $x$-axis and the RFE ranking (top 63 features) on the $y$-axis. A diagonal scatter would indicate a perfect agreement. A correlation coefficient of -0.08 confirms the impression that there is no linear relationship between the RFE and univariate selections.


Figure 6.3: Wiki Dataset. Venn diagram of the top 20 features per selection type. The univariate selection, based on the combined ranking, and the Lasso selection agree on 10 features, which is also the same amount the univariate selection and the RFE selection have in common. The RFE and the Lasso share 15 out of 20 features. The 9 features all selections have in common relate to specific punctuation-types-the highlighters- (7) and the connectors-category (51) - and to word frequencies and ratios: longs words (1, 62 ), negative subjective words (24), blacklisted words $(40,56,60)$ and words written in ALL-CAPS (61).

Exclamation-Mark-Ratio (0). Interestingly, the Present-Verbs-Ratio (32) frequently has a positive impact in the SVM models, whereas it is rather associated with a drop in the LR models. In any case, we must keep in mind that the features in the model are not isolated: the jumps or drops in performance are not necessarily based on the predictive power of a single feature, but rather on feature interactions. In the words of machine learning researcher and co-inventor of the SVM kernel-trick, Isabelle Guyon [6]:
[...] a variable that is completely useless by itself can provide a significant performance improvement when taken with others.

It is, nevertheless, most likely that the single most useful feature of the Wiki Dataset is related to blacklisted words, as agreed upon by 5 out of 5 ranking methods: For instance, the Gaussian SVM model consisting of only the per-words-ratio of blacklisted


Figure 6.4: Feature selection results for the Wiki Dataset using Logistic Regression. The isolated markers that hover steadily, centered at the top immediately suggest, that the Lasso selection method is a class of its own: The best subset outperforms the baseline by almost 3 percent, using less than 30 features. However, the first to clearly outperform the full set is an RFE subset of 10 features. The least useful subsets belong to the ranksum selections.
words (60) accomplishes an impressive $F_{1}$-score of $81.4 \%$, with a precision of $96.7 \%$ and recall of $70.2 \%$. Looking at the smallest RFE subsets, we can see that the addition of the Negative-Subjectivity-Ratio (24) results in a steep rise to an $F_{1}$-score of $86 \%$ (where $n=3$ ), while behind the scenes there is a shift in balance: Recall increases significantly from $70.2 \%$ to $82.1 \%$, at the same time precision drops by $6.4 \%$ to $90.2 \%$.

According to the additional criteria that aims to find a compact, yet high-quality subset (tables 6.2 and 6.3), we single out the final model; it consists of the leading 23 features of the combined ranking:

1. Blacklisted words count divided by the total word count (60)
2. Blacklisted words count divided by the number of sentences (56)
3. Blacklisted words count (40)
4. Long words count (1)
5. Long words count divided by the total word count (62)
6. Connectors (,,$:-$ ) ratio (51)
7. Ratio of negative subjective words and the total count of subjective words (24)
8. Highlighters (*) ${ }^{*}$ ") count (7)


Figure 6.5: Feature Selection results for the Wiki Dataset using linear SVM. Here, the significance of the Lasso subsets has diminished to slightly below average. Only the ranksum subsets generously undercut their performance. The first peak above the baseline, using 12 Features, is again an RFE subset. Though it is important to note, that the baseline here is at almost $88 \%$, surpassing the Logistic Regression baseline by $2.5 \%$ and performance, in general, has considerably improved in comparison to the Logistic Regression scores.
9. Maximum wordlength (12)
10. Maximum sentence length in words (18)
11. Average sentence length in words (19)
12. Period ratio (4)
13. Average wordlength (13)
14. Count of words that appear in an US English dictionary (43)
15. Total word count (10)
16. Present-Verbs-Ratio (32)
17. Past-Verbs-Ratio (33)
18. Whitespace ratio (6)
19. Median sentence length in words (20)
20. Count of ALL-CAPS words divided by the total word count (61)
21. Count of blacklist words written in ALL-CAPS (36)
22. Exclamation-Mark-Ratio (0)
23. Positive-Subjectivity-Ratio (23)


Figure 6.6: Feature selection results for the Wiki Dataset using Gaussian SVM. At first, the plot of the Linear SVM and the Gaussian SVM appear almost identical: The same pattern with the ranksum falling behind and the RFE cutting through the baseline first-here with a subset of 19 features. When examined more closely, we see that the overall performance has again shifted upward, with the baseline now at $88.4 \%$. Moreover, a significant amount of subsets scores above $89 \%$.

### 6.2 Results Martin Dataset

The Martin Corpus contains user comments collected from discussions below politial news articles. The timeframe in which these comments were posted is relatively short (4 months); the primary language used is American English. The average comment of the Martin Dataset consists of 47 words (median 42, minimum 3, maximum 182 words) contained in 3.5 sentences (median 3, minimum 1, maximum 17 sentences). We hold out a set of 258 samples for the final validation (table 6.4). The remainder of 776 samples is what we generate our feature selections out of.

### 6.2.1 Feature Selections

Appendix A.5 shows the complete feature rankings for the univariate methods and Recursive Feature Elimination. The entirety of the Lasso selections is listed in appendix A.6. Looking at figure 6.7, we can see that each univariate method arrives at a different ranking, though the differences seem moderate compared to the level of disagreement between the combined univariate methods and the RFE ranking (figure 6.8). Since the Lasso selections are not based on rankings, we use a Venn diagram (figure 6.9)

Table 6.2: Wiki Dataset. Comparison of the baseline results using the full set of 68 features, the best results in terms of the highest $F_{1}$-score and the top choices according to our additional heuristic that aims to minimize $n$.

|  | gamma | C | subset | $n$ | $F_{1}$-score | precision | recall |
| :--- | ---: | ---: | :--- | :---: | :---: | :---: | :---: |
| Logistic Regression |  | 1.0 | baseline | 68 | 0.852 | 0.8919 | 0.8155 |
|  |  | 1.0 | best | 28 | 0.8809 | 0.9417 | 0.8274 |
|  | 1.0 | top choice | 26 | 0.8797 | 0.9392 | 0.8274 |  |
| Linear SVM |  | 100.0 | baseline | 68 | 0.8772 | 0.9475 | 0.8167 |
|  |  | 100.0 | best | 60 | 0.8909 | 0.9234 | 0.8607 |
|  | 100.0 | top choice | 35 | 0.8871 | 0.9436 | 0.8369 |  |
| Gaussian SVM | 0.1 | 100.0 | baseline | 68 | 0.8844 | 0.9304 | 0.8429 |
|  | 0.1 | 1000.0 | best | 40 | 0.8942 | 0.9305 | 0.8607 |
|  | 1.0 | 100.0 | top choice | 23 | 0.8932 | 0.9338 | 0.856 |

Table 6.3: Wiki Dataset. Gaussian SVM, top 10 results sorted by feature subset size $n$.

| $\boldsymbol{n}$ | selection type | $F_{1}$-score | precision | recall | TN | FN | FP | TP | gamma | C |
| :--- | :--- | ---: | :---: | :---: | ---: | :---: | :---: | :---: | :---: | :---: |
| 23 | combined | 0.8932 | 0.9338 | 0.856 | 770 | 121 | 51 | 719 | 1.0 | 100.0 |
| 27 | Mutual Information | 0.8925 | 0.9395 | 0.85 | 775 | 126 | 46 | 714 | 0.1 | 1000.0 |
| 34 | T-test | 0.8932 | 0.9338 | 0.856 | 770 | 121 | 51 | 719 | 0.1 | 1000.0 |
| 35 | T-test | 0.8936 | 0.9304 | 0.8595 | 767 | 118 | 54 | 722 | 0.1 | 1000.0 |
| 39 | combined | 0.8926 | 0.9269 | 0.8607 | 764 | 117 | 57 | 723 | 0.1 | 1000.0 |
| 40 | combined | 0.8942 | 0.9305 | 0.8607 | 767 | 117 | 54 | 723 | 0.1 | 1000.0 |
| 43 | Mutual Information | 0.893 | 0.9237 | 0.8643 | 761 | 114 | 60 | 726 | 0.1 | 1000.0 |
| 43 | combined | 0.8926 | 0.9269 | 0.8607 | 764 | 117 | 57 | 723 | 0.1 | 1000.0 |
| 45 | combined | 0.8936 | 0.9304 | 0.8595 | 767 | 118 | 54 | 722 | 0.1 | 1000.0 |
| 57 | Mutual Information | 0.8932 | 0.9455 | 0.8464 | 780 | 129 | 41 | 711 | 0.1 | 100.0 |

Table 6.4: Martin Dataset, 3:1 separation in development set and validation set.

|  | OK | aggressive | total |
| :--- | ---: | ---: | ---: |
| dev set | 390 | 386 | 776 |
| val set | 130 | 128 | 258 |
| total | 520 | 514 | 1034 |

to show where the univariate, the RFE and the Lasso selections intersect and which feature preferences are unique to a particular method. Here are the top ten features per selection method:

## Filter Method: T-Test

1. Long words count (1)
2. Count of words that appear in an US English dictionary (43)
3. Total word count (10)
4. Lexical diversity or Type-to-Token Ratio (11)
5. Blacklisted words count (40)
6. Grammatical diversity or POS-Type-to-Word-Ratio (26)
7. Count of Urban-Dictionary-only words divided by the total word count (59)
8. Number of non-alphanumeric characters divided by the total character count (35)
9. Blacklisted words count divided by the number of sentences (56)
10. Ratio of negative subjective words and the total count of subjective words (24)

Filter Method: Wilcoxon-Ranksum-Test

1. Long words count (1)
2. Count of words that appear in an US English dictionary (43)
3. Total word count (10)
4. Lexical diversity or Type-to-Token Ratio (11)
5. POS-Type-to-Word-Ratio (26)
6. Count of Urban-Dictionary-only words divided by the total word count (59)
7. Number of non-alphanumeric characters divided by the total character count (35)
8. Average sentence length in words (19)
9. Maximum wordlength (12)
10. Maximum sentence length in words (18)

## Filter Method: Mutual Information

1. Total word count (10)
2. Count of words that appear in an US English dictionary (43)
3. Blacklisted words count divided by the number of sentences (56)
4. Long words count (1)
5. Blacklisted words count (40)
6. Long words count divided by the total word count (62)
7. Count ALL-CAPS words divided by the total word count (61)
8. Blacklisted words count divided by the total word count (60)
9. Ratio of negative subjective words and the total count of subjective words (24)
10. Number of non-alphanumeric characters divided by the total character count (35)

## Wrapper Method: Recursive Feature Elimination

1. Blacklisted words count (40)
2. Long words count (1)
3. Count of Urban-Dictionary-only words divided by the total word count (59)
4. Ratio of negative subjective words and the total count of subjective words (24)
5. Number of periods, question- and exclamation marks divided by the sentence count (46)
6. Average length of repeated punctuations (34)
7. Paragraph count divided by the sentence count (54)
8. Number of words modified ('fixed') during preprocessing (42)
9. Count ALL-CAPS words divided by the total word count (61)
10. Blacklisted words count divided by the number of sentences (56)

## Embedded Method: Lasso

The following Lasso selection is the smallest of its kind; it contains 11 items sorted by index:

- Long words count (1)
- Question-Mark-Ratio (5)
- Paragraph count (8)
- Lexical diversity or Type-to-Token Ratio (11)
- Ratio of negative subjective words and the total count of subjective words (24)
- Count of blacklisted words written in ALL-CAPS (36)
- Noise count (38)
- Count of Urban-Dictionary-only words (39)
- Blacklisted words count (40)
- Unknown words count (41)
- Number of periods, question- and exclamation marks divided by the sentence count (46)


## Rejected Features

Figure 6.9 shows the most relevant features determined by the intersection of prefered features across selection methods. Computing the intersections from the reverse end results in the least informative features across the six selections methods: The count of word lengthenings (17), the count of em dashes (25), the per-sentence-ratio of unknown words (57) and the ratio of indirect imperatives (65).

### 6.2.2 Subset Models Results

Training and testing of the models, based on each of the selections, produces 361 results per classifier -or 1083 results in tota ${ }^{2}$-which are pictured in the following line graphs (please note that the y -axis is truncated).

Looking at the plots, the positive impact of feature selection is immediately apparent. For all three classifiers, the baseline is an $F_{1}$-score of roughly $77 \%$. The best scores range from $81 \%$ up to almost $83 \%$. Analogous to the Wiki Dataset, the RFE consistently is the first to cross the baseline, while the ranksum method seems to be particularly inefficient in creating useful small subsets. The first marker of the RFE selection (belonging to the count of blacklisted words feature (40)) is cut off in the plots to increase their readability, noting that the $F_{1}$-score for this one-feature selection is an identical 45 percent across all three classifiers. This is suprisingly low at first, however, considering that the precision

[^18]

Figure 6.7: Martin Dataset. The plot shows the level of agreement within the univarate feature ranking for the combined top 15 features. While the T-test ranking and the ranksum ranking often correlate, the Mutual Information based ranking slightly tends towards being the outlier. Looking at the maximum rank on the $y$-axis, 21, it shows that the magnitude of disagreement in general is moderate, considering that the plot focusses on 15 out of 68 features.
rate for that same feature is almost $93 \%$, while recall is below $30 \%$, we can conclude that this feature may be in fact very useful if paired with complementary features. Also unexpectedly, the long words count (1) and the total word count (10) individually achieve an $F_{1}$-score of over $70 \%$; both with a clear imbalance in favor of the recall value (ranging from 78 to $88 \%$ ).

On close inspection of sharp jumps and drops a pattern emerges: The long words feature (1), as well as the Negative-Subjectivity-Ratio (24), individually lead to an upsurge once one of them is added to a model. The addition of the ratio of the Positive-Subjectivity-Ratio (23), on the other hand, more often than not is marked by a drop. Other features, such as the per-word-ratio of words found in the Urban Dictionary only (59) and the ratio of non-alphanumeric characters (35), tend to induce an upward trend, yet there is likely a dependence on the presence of one or more other features; the grammatical diversity feature (26), however, often leads to a decline in the linear classifiers, whereas its effect was more likely to be positive in the Gaussian models.

Ensuing this visual impression of the overall significance of feature selection on the Martin Dataset, table 6.5 outlines a direct comparison of the three learning algorithms. Interestingly, the results differ only marginally. More detailed listings of the results per classifier are enclosed in appendix A.3.

According to the additional criteria that aims to find a compact, yet high-quality

Table 6.5: Martin Dataset. Comparison of the baseline results using the full set of 68 features, the best results in terms of the highest $F_{1}$-score and the top choices according to our additional heuristic that aims to minimize $n$.

|  | gamma | C | subset | $\boldsymbol{n}$ | F1-score | precision | recall |
| :--- | :---: | ---: | :--- | :---: | :---: | :---: | :---: |
| Logistic Regression |  | 1.0 | baseline | 68 | 0.7711 | 0.7934 | 0.75 |
|  |  | 1.0 | best | 14 | 0.8189 | 0.8254 | 0.8125 |
|  | 1.0 | top choice | 4 | 0.8142 | 0.824 | 0.8047 |  |
| Linear SVM |  | 100.0 | baseline | 68 | 0.7661 | 0.7917 | 0.7422 |
|  |  | 100.0 | best | 17 | 0.8273 | 0.8512 | 0.8047 |
|  |  | 100.0 | top choice | 10 | 0.8178 | 0.8487 | 0.7891 |
| Gaussian SVM | 0.1 | 10.0 | baseline | 68 | 0.7711 | 0.7934 | 0.75 |
|  | 0.01 | 100.0 | best | 47 | 0.8207 | 0.8374 | 0.8047 |
|  | 1.0 | 10.0 | top choice | 6 | 0.813 | 0.8475 | 0.7813 |

Table 6.6: Martin Dataset. Linear SVM, top 10 results sorted by feature subset size $n$.

| $\boldsymbol{n}$ | selection type | $F_{1}$-score | precision | recall | TN | FN | FP | TP | C |
| :--- | :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | Mutual Information | 0.8178 | 0.8487 | 0.7891 | 112 | 27 | 18 | 101 | 100.0 |
| 15 | Mutual Information | 0.8211 | 0.8559 | 0.7891 | 113 | 27 | 17 | 101 | 100.0 |
| 17 | Mutual Information | 0.8273 | 0.8512 | 0.8047 | 112 | 25 | 18 | 103 | 100.0 |
| 21 | T-test | 0.8189 | 0.8254 | 0.8125 | 108 | 24 | 22 | 104 | 100.0 |
| 22 | T-test | 0.8171 | 0.814 | 0.8203 | 106 | 23 | 24 | 105 | 100.0 |
| 42 | combined | 0.8185 | 0.8092 | 0.8281 | 105 | 22 | 25 | 106 | 100.0 |
| 48 | combined | 0.8217 | 0.8154 | 0.8281 | 106 | 22 | 24 | 106 | 100.0 |
| 48 | T-test | 0.8185 | 0.8092 | 0.8281 | 105 | 22 | 25 | 106 | 100.0 |
| 59 | combined | 0.8178 | 0.8487 | 0.7891 | 112 | 27 | 18 | 101 | 10.0 |
| 59 | Ranksum | 0.8178 | 0.8487 | 0.7891 | 112 | 27 | 18 | 101 | 10.0 |

subset (tables 6.5 and 6.6), we single out the final model; it consists of the leading 10 features of the Mutual Information ranking. The selected core features are listed above in section 6.2.1. Considering the impressive result of the best RFE selections, we propose an alternative core selection consisting of slightly divergent 4-6 features (for instance, the per-word-ratio of Urban-Dictionary-only words (59) is a unique choice by the RFE; see also section 6.2.1.


Figure 6.8: Martin Dataset. A comparison of the RFE and combined univariate ranking shows a low level of general agreement on the importance of the single features. The scatterplot encompasses the ranked top 25 combined univariate features on the $x$-axis and the RFE ranking (top 60 features) on the $y$-axis. A correlation coefficient of 0.19 confirms the impression that there is no linear relationship between the RFE and univariate selections.


Figure 6.9: Martin Dataset. Venn diagram of the top 20 features per selection type. The univariate selection, based on the combined ranking, and the Lasso selection agree on 6 features only-which are in fact the core features shared by all. The RFE places itself in the center; it shares 10 features with the univariate selection and has 11 features in common with the Lasso selection. The 6 features all selections share relate to lexical diversity (11), longs words (1, 62), negative subjective words (24), blacklisted words (40) and words found in the Urban Dictionary only (59).


Figure 6.10: Feature subset results for the Martin Dataset using Logistic Regression. The RFE line is the first to surpass the baseline using only four features: The count of blacklisted words (40) and long words (1), the per-word-ratio of Urban-Dictionaryonly words (59), and the Negative-Subjectivity-Ratio (24). Strikingly, this small selection scored the second best result for this particular classifier and also keeps up remarkably well with the best scores of the other two classifiers. Also noteworthy: The 19 highest scoring selections use less than 20 features, the 48 top selections all use less than 30 features.


Figure 6.11: Feature subset results for the Martin Dataset using linear SVM. The RFE line is again the first to cross the baseline - here using only three features (blacklisted words (40), long words (1) and the ratio of Urban-Dictionary-only words (59))! Though with a few features more, the erratic Mutual Information markers accomplish the highest first three peaks among the top 10 selections.


Figure 6.12: Feature subset results for the Martin Dataset using Gaussian SVM. Again, the first peaks beyond the baseline belong to RFE subsets. The second peak is already a major one with only six features in total, pushing the RFE onto the second place overall once more: The count of blacklisted words (40) and long words (1), the per-word-ratio of Urban-Dictionary-only words (59), the Negative-Subjectivity-Ratio (24) and two punctuation features - the ratio of 'sentence endings' (46) and the average length of repeated punctuation (34). The Mutual Information scores for selections between 10 and 12 features perform almost as good.

## Chapter 7

## Discussion and Conclusion

This thesis explored the impact of multiple feature selection techniques on an aggressive language model with an initial set of 68 features. The features relate to grammar, diversity, basic text statistics, punctuation as well as lexical and stylistic properties.

We applied our feature selection approach to two different datasets: The Wiki Dataset - which is based on a publicly available corpus and amounts to roughly 6600 samples - and the Martin Dataset, which is based on a corpus that was specifically developed for this research and consists of more than 1 k samples in total.

## Best Feature Selection Techniques

We employed five different feature selection techniques-the T-test, the Wilcoxon-ranksum-test, Mutual Information, Recursive Feature Elimination and the Lasso. Two patterns that consistently emerged where the RFE's strength in small subsets and the humble results of the ranksum subsets.

## Best Models

The three learning algorithms that were tested in the process-Logistic Regression, linear SVM and Gaussian SVM - performed similarly well, though the SVMs fared slightly better in general. The best performing model overall has a precision of $93 \%$, recall of $86.1 \%$ and $F_{1}$-score of $89.4 \%$; it encompasses 40 features and was trained and tested on the Wiki Dataset, using a Gaussian SVM. The best performing model that was trained and tested on the much smaller Martin Dataset uses a linear SVM, has a precision of $85.1 \%$, recall of $80.5 \%$ and $F_{1}$-score of $82.7 \%$; it encompasses 17 features.

## Best Features

Altogether, the results show that less than a quarter of all the available features are needed to reach or surpass the performance of the full set. Lexical and basic text statistic features yield the biggest impact overall. The three most powerful predictors are the number of blacklisted words, the number (or per-word-ratio) of long words and the ratio of negative subjective words; yet it should be noted that their strength is to be seen with regard to their interaction in the model-in conjunction the features achieve a more balanced precision and recall.

### 7.1 Common Thread

The two corpora presumably differ noticeably given their unrelated origin, so the question of whether there is a common thread - and therefore a likely general trend in written aggressive language - is inevitable. Indeed, there is a significant overlap of core features. The top features both datasets have in common are

- the count, the per-sentence- and per-word-ratio of blacklisted words $(40,56,60)$,
- the count and per-word-ratio of long words $(1,62)$,
- the total word count (10),
- the count of words that exist in an US-English dictionary (43),
- the ratio of subjective words with negative polarity (24) and
- the per-word-ratio of words written in all capital letters (61).

An advantage of these core features is, that they are relatively simple to compute. Only the extraction of the Negative-Subjectivity-Ratio (24) requires POS tagged words, since the polarity of a word may in fact depend on the POS type (unfortunately, POS tagging is a major bottleneck of the system).

Beside these core features, other common influential predictors in both datasets are: the Exclamation-Mark-Ratio (0), the highlighters count (7), the maximum wordlength (12), the maximum sentence length (18), the average sentence length (19), the per-wordratio of words that are part of the Urban Dictionary (but not a regular US-English dictionary), the ratio of non-alphanumeric characters (35), the grammatical diversity (26), and the Past-Verbs-Ratio (33).


Figure 7.1: Common influential predictors of both datasets. The most informative features are located in the center. Green means that a high value of the feature is linked with non-aggressive comments, red features on the other hand indicate aggression if the feature's value is high.

### 7.2 Implications

New insights and deeper understanding are a main benefit of data analysis. Here is what we can learn from the data:

In order to compose a perfectly aggressive comment, the distributions of the most informative features suggest a liberal use of blacklisted words-at least one offensive term per every other sentence, preferably more. Fewer words in total are better suited in communicating the emotion. Sentences may, on average, amount to up to 10 words and contain plenty of negative, subjective words at best. Positive subjective words are to be used sparingly if at all; the same applies to words that consist of more than 7 letters-avoid! Writing about past events may convey consideration, thus it is advisable to stick to the present. There is little use for elitist punctuation style: Quotation marks, parenthesis, commas, colons or dashes might accidentally soften the tone. Ideally, all punctuation is reduced to exclamation marks. Lastly, a consistently activated caps lock key goes a long way.

### 7.3 Outlook

The analysis of the two different datasets using new ideas (e.g., count of long words, sub-categorization of punctuation, Urban Dictionary integration) has provided relevant insights, though there remains plenty of room for future exploration.

In terms of the underlying data, using samples with more subtle aggression (e.g., absence of blacklisted words) would be a consequential next step.

The surprisingly predictive long words feature offers itself for further research: Experiments with varying length-thresholds (the current threshold of seven letters is an intuitive choice that has not been systematically optimized), analysis of type or semantic information captured specifically from long words, limitation of the long words feature to proper words (according to a regular dictionary).

Finally, new feature ideas suited for user comments that directly relate to a specific article: The words of the article may serve as an encapsulated dictionary on its own. The article-dictionary could prevent named entities ${ }^{1}$ from being misinterpreted as unknown words. It could also be utilized to measure if a comment bears an obvious reference to the article.

[^19]
## Appendix A

## Feature Vectors, Additional Results

## A. 1 Feature Vector Samples

This section demonstrates what a feature vector looks like. Note, however, that the representation of the subsequent feature vectors is a transposed view of the actual datasets (in order to fit the content onto the page): The rows represent the independent features and the columns are the feature vectors where each belongs to its own sample comment; in general, we look at the columns as the independent features and the rows as the samples.

## A. 2 Feature Rankings and Selections

The two tables per dataset show the complete feature rankings for the univariate methods, their combined ranking and Recursive Feature Elimination.

## A. 3 Additional Results per Classifier

The following tables offer more details on the performance per dataset and classifier. Each table contains the 50 best results, ranked by the $F_{1}$-score.

## A. 4 Feature Indices and Names

Table A. 13 pairs feature indices with short, descriptive names. It serves as a helpful look up table when manually analyzing the results.

Table A.1: Wikipedia Talk Corpus, feature vectors based on sample comments (tab. 4.2).

| rev_id | 103624 | 297866 | 93890 | 360594 | 24464221 | 24777589 | 24509777 | 10144987 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.0 | 0.0 | 0.0 | 0.333 | 0.6 | 0.25 | 0.0 | 0.0 |
| 1 | 10.0 | 4.0 | 1.0 | 9.0 | 1.0 | 10.0 | 1.0 | 9.0 |
| 2 | 0.0 | 0.0 | 0.0 | 2.0 | 4.0 | 14.0 | 0.0 | 8.0 |
| 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
| 4 | 0.8 | 1.0 | 1.0 | 0.667 | 0.2 | 0.333 | 1.0 | 0.833 |
| 5 | 0.2 | 0.0 | 0.0 | 0.0 | 0.2 | 0.417 | 0.0 | 0.167 |
| 6 | 0.17 | 0.174 | 0.114 | 0.189 | 0.178 | 0.177 | 0.156 | 0.194 |
| 7 | 0.0 | 1.0 | 0.0 | 2.0 | 0.0 | 4.0 | 0.0 | 0.0 |
| 8 | 4.0 | 4.0 | 0.0 | 4.0 | 0.0 | 2.0 | 2.0 | 2.0 |
| 9 | 6.0 | 4.0 | 1.0 | 4.0 | 4.0 | 6.0 | 1.0 | 6.0 |
| 10 | 65.0 | 17.0 | 5.0 | 62.0 | 25.0 | 86.0 | 6.0 | 136.0 |
| 11 | 0.723 | 1.0 | 1.0 | 0.774 | 0.92 | 0.756 | 1.0 | 0.654 |
| 12 | 12.0 | 12.0 | 14.0 | 12.0 | 11.0 | 10.0 | 13.0 | 11.0 |
| 13 | 4.892 | 5.529 | 6.0 | 4.41 | 4.16 | 4.198 | 6.0 | 4.037 |
| 14 | 5.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 5.5 | 4.0 |
| 15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 16 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 17 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 18 | 30.0 | 8.0 | 5.0 | 41.0 | 10.0 | 25.0 | 6.0 | 34.0 |
| 19 | 10.833 | 4.25 | 5.0 | 15.5 | 6.25 | 14.333 | 6.0 | 22.667 |
| 20 | 5.5 | 4.0 | 5.0 | 10.0 | 7.0 | 11.5 | 6.0 | 22.5 |
| 21 | 4.0 | 1.0 | 5.0 | 1.0 | 1.0 | 4.0 | 6.0 | 10.0 |
| 22 | 0.123 | 0.118 | 0.4 | 0.167 | 0.16 | 0.195 | 0.333 | 0.199 |
| 23 | 0.023 | 0.029 | 0.2 | 0.033 | 0.04 | 0.037 | 0.0 | 0.037 |
| 24 | 0.031 | 0.0 | 0.0 | 0.025 | 0.06 | 0.091 | 0.25 | 0.044 |
| 25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 26 | 0.277 | 0.647 | 1.0 | 0.306 | 0.64 | 0.326 | 1.167 | 0.154 |
| 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 28 | 0.125 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 31 | 0.0 | 0.0 | 0.5 | 0.154 | 0.143 | 0.071 | 0.0 | 0.139 |
| 32 | 0.727 | 1.0 | 0.5 | 0.846 | 0.857 | 0.643 | 0.0 | 0.556 |
| 33 | 0.273 | 0.0 | 0.0 | 0.0 | 0.0 | 0.286 | 0.0 | 0.306 |
| 34 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 2.0 | 0.0 | 0.0 |
| 35 | 0.019 | 0.06 | 0.032 | 0.042 | 0.063 | 0.085 | 0.053 | 0.032 |
| 36 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 37 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 1.0 |
| 38 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 39 | 3.0 | 1.0 | 0.0 | 3.0 | 2.0 | 1.0 | 1.0 | 2.0 |
| 40 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 2.0 | 0.0 | 4.0 |
| 41 | 5.0 | 1.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 |
| 42 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 43 | 60.0 | 16.0 | 5.0 | 60.0 | 24.0 | 82.0 | 6.0 | 134.0 |
| 44 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
| 45 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
| 46 | 0.833 | 0.75 | 1.0 | 0.75 | 1.25 | 2.0 | 1.0 | 1.0 |
| 47 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.167 | 0.0 | 0.0 |
| 48 | 0.0 | 0.0 | 1.0 | 0.5 | 0.25 | 0.167 | 0.0 | 0.833 |
| 49 | 0.0 | 0.0 | 0.0 | 0.0 | 0.25 | 0.0 | 0.0 | 0.0 |
| 50 | 0.333 | 0.0 | 0.0 | 0.5 | 0.25 | 0.5 | 0.0 | 0.5 |
| 51 | 0.167 | 0.5 | 0.0 | 1.75 | 0.25 | 1.833 | 1.0 | 1.833 |
| 52 | 0.0 | 0.0 | 0.0 | 0.5 | 1.0 | 2.333 | 0.0 | 1.333 |
| 53 | 0.0 | 0.0 | 0.0 | 0.0 | 0.25 | 0.5 | 0.0 | 0.0 |
| 54 | 0.667 | 1.0 | 0.0 | 1.0 | 0.0 | 0.333 | 2.0 | 0.333 |
| 55 | 0.5 | 0.25 | 0.0 | 0.75 | 0.5 | 0.167 | 1.0 | 0.333 |
| 56 | 0.0 | 0.0 | 0.0 | 0.0 | 0.25 | 0.333 | 0.0 | 0.667 |
| 57 | 0.833 | 0.25 | 0.0 | 0.25 | 0.25 | 0.0 | 0.0 | 0.0 |
| 58 | 0.077 | 0.059 | 0.0 | 0.016 | 0.04 | 0.0 | 0.0 | 0.0 |
| 59 | 0.046 | 0.059 | 0.0 | 0.048 | 0.08 | 0.012 | 0.167 | 0.015 |
| 60 | 0.0 | 0.0 | 0.0 | 0.0 | 0.04 | 0.023 | 0.0 | 0.029 |
| 61 | 0.0 | 0.059 | 0.0 | 0.032 | 0.04 | 0.0 | 0.0 | 0.015 |
| 62 | 0.154 | 0.235 | 0.2 | 0.145 | 0.04 | 0.116 | 0.167 | 0.066 |
| 63 | 0.0 | 0.059 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 64 | 0.0 | 0.0 | 0.0 | 0.016 | 0.0 | 0.0 | 0.0 | 0.0 |
| 65 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 66 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 67 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

Table A.2: Martin Corpus, feature vectors based on sample comments (table 4.3).

| *.txt | $0 \_\quad 113$ | $0 \_116$ | 0__140 | 0__406 | $1 \_$_ 067 | $1 \_191$ | 1__644.txt | $1 \_$694.txt |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.333 | 0.0 | 0.0 | 0.0 |
| 1 | 0.0 | 1.0 | 15.0 | 3.0 | 1.0 | 6.0 | 4.0 | 2.0 |
| 2 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 4.0 | 0.0 | 1.0 |
| 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 4 | 1.0 | 1.0 | 0.833 | 1.0 | 0.667 | 1.0 | 0.0 | 1.0 |
| 5 | 0.0 | 0.0 | 0.167 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 6 | 0.22 | 0.156 | 0.164 | 0.179 | 0.2 | 0.173 | 0.179 | 0.198 |
| 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 9 | 5.0 | 2.0 | 6.0 | 2.0 | 2.0 | 3.0 | 1.0 | 3.0 |
| 10 | 47.0 | 6.0 | 77.0 | 47.0 | 26.0 | 73.0 | 29.0 | 26.0 |
| 11 | 0.766 | 1.0 | 0.74 | 0.723 | 0.923 | 0.753 | 0.897 | 0.808 |
| 12 | 7.0 | 8.0 | 14.0 | 12.0 | 8.0 | 10.0 | 10.0 | 9.0 |
| 13 | 3.34 | 4.0 | 4.792 | 4.0 | 3.731 | 4.384 | 4.345 | 3.769 |
| 14 | 3.0 | 2.5 | 5.0 | 3.0 | 4.0 | 4.0 | 4.0 | 3.0 |
| 15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 16 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
| 17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 18 | 15.0 | 4.0 | 20.0 | 43.0 | 21.0 | 37.0 | 29.0 | 9.0 |
| 19 | 9.4 | 3.0 | 12.833 | 23.5 | 13.0 | 24.333 | 29.0 | 8.667 |
| 20 | 9.0 | 3.0 | 16.0 | 23.5 | 13.0 | 19.0 | 29.0 | 9.0 |
| 21 | 2.0 | 2.0 | 1.0 | 4.0 | 5.0 | 17.0 | 29.0 | 8.0 |
| 22 | 0.277 | 0.4 | 0.186 | 0.091 | 0.269 | 0.271 | 0.179 | 0.154 |
| 23 | 0.106 | 0.0 | 0.05 | 0.034 | 0.115 | 0.043 | 0.071 | 0.038 |
| 24 | 0.043 | 0.3 | 0.029 | 0.023 | 0.0 | 0.057 | 0.054 | 0.019 |
| 25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 26 | 0.34 | 1.167 | 0.312 | 0.34 | 0.577 | 0.288 | 0.483 | 0.5 |
| 27 | 0.0 | 0.0 | 0.0 | 0.25 | 0.0 | 0.0 | 0.0 | 0.0 |
| 28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 |
| 29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 31 | 0.214 | 0.5 | 0.0 | 0.417 | 0.0 | 0.167 | 0.286 | 0.0 |
| 32 | 0.714 | 0.5 | 0.545 | 0.5 | 0.667 | 0.611 | 0.714 | 0.8 |
| 33 | 0.071 | 0.0 | 0.455 | 0.083 | 0.333 | 0.222 | 0.0 | 0.2 |
| 34 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 |
| 35 | 0.037 | 0.111 | 0.037 | 0.046 | 0.04 | 0.027 | 0.053 | 0.03 |
| 36 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 37 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 38 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 39 | 0.0 | 1.0 | 7.0 | 0.0 | 1.0 | 2.0 | 5.0 | 0.0 |
| 40 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 |
| 41 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 |
| 42 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
| 43 | 47.0 | 6.0 | 75.0 | 44.0 | 26.0 | 70.0 | 28.0 | 24.0 |
| 44 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 45 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 46 | 1.0 | 1.5 | 1.0 | 1.0 | 1.5 | 1.0 | 0.0 | 1.0 |
| 47 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 48 | 0.6 | 0.5 | 0.0 | 2.5 | 0.0 | 1.0 | 2.0 | 0.0 |
| 49 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 50 | 1.0 | 0.0 | 1.0 | 4.0 | 0.5 | 1.667 | 3.0 | 0.0 |
| 51 | 0.2 | 0.0 | 1.167 | 2.0 | 0.5 | 1.0 | 6.0 | 0.0 |
| 52 | 0.0 | 0.0 | 0.333 | 0.0 | 0.0 | 1.333 | 0.0 | 0.333 |
| 53 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 |
| 54 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 55 | 0.0 | 0.5 | 1.167 | 0.0 | 0.5 | 0.667 | 5.0 | 0.0 |
| 56 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 1.0 | 0.0 |
| 57 | 0.0 | 0.0 | 0.167 | 0.0 | 0.0 | 0.0 | 0.0 | 0.667 |
| 58 | 0.0 | 0.0 | 0.013 | 0.0 | 0.0 | 0.0 | 0.0 | 0.077 |
| 59 | 0.0 | 0.167 | 0.091 | 0.0 | 0.038 | 0.027 | 0.172 | 0.0 |
| 60 | 0.0 | 0.0 | 0.0 | 0.0 | 0.038 | 0.0 | 0.034 | 0.0 |
| 61 | 0.0 | 0.167 | 0.013 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 |
| 62 | 0.0 | 0.167 | 0.195 | 0.064 | 0.038 | 0.082 | 0.138 | 0.077 |
| 63 | 0.0 | 0.0 | 0.0 | 0.0 | 0.038 | 0.0 | 0.0 | 0.0 |
| 64 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 65 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 66 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 67 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

Table A.3: Wiki Dataset, feature rankings.

| rank | t-test | ranksum | MI | combined | RFE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 60 | 60 | 56 | 60 | 60 |
| 2 | 40 | 56 | 60 | 56 | 40 |
| 3 | 56 | 40 | 40 | 40 | 24 |
| 4 | 1 | 1 | 62 | 1 | 56 |
| 5 | 62 | 12 | 24 | 62 | 7 |
| 6 | 24 | 51 | 51 | 51 | 51 |
| 7 | 4 | 62 | 61 | 24 | 44 |
| 8 | 7 | 13 | 1 | 7 | 45 |
| 9 | 61 | 18 | 13 | 12 | 62 |
| 10 | 51 | 19 | 7 | 18 | 61 |
| 11 | 10 | 7 | 19 | 19 | 64 |
| 12 | 0 | 33 | 36 | 4 | 23 |
| 13 | 18 | 10 | 12 | 13 | 35 |
| 14 | 43 | 20 | 18 | 43 | 16 |
| 15 | 33 | 32 | 32 | 10 | 47 |
| 16 | 6 | 43 | 20 | 32 | 1 |
| 17 | 12 | 6 | 4 | 33 | 9 |
| 18 | 41 | 24 | 43 | 6 | 38 |
| 19 | 19 | 41 | 6 | 20 | 32 |
| 20 | 36 | 4 | 59 | 61 | 3 |
| 21 | 32 | 23 | 58 | 36 | 5 |
| 22 | 20 | 57 | 0 | 0 | 4 |
| 23 | 44 | 54 | 23 | 23 | 8 |
| 24 | 23 | 48 | 35 | 41 | 49 |
| 25 | 53 | 14 | 33 | 44 | 67 |
| 26 | 48 | 31 | 44 | 54 | 37 |
| 27 | 54 | 26 | 10 | 57 | 20 |
| 28 | 49 | 0 | 14 | 48 | 26 |
| 29 | 13 | 58 | 26 | 26 | 36 |
| 30 | 57 | 36 | 37 | 35 | 10 |
| 31 | 64 | 44 | 54 | 31 | 54 |
| 32 | 35 | 9 | 46 | 14 | 39 |
| 33 | 26 | 11 | 55 | 58 | 2 |
| 34 | 9 | 64 | 31 | 11 | 19 |
| 35 | 37 | 39 | 57 | 64 | 28 |
| 36 | 11 | 49 | 41 | 59 | 29 |
| 37 | 31 | 35 | 11 | 37 | 17 |
| 38 | 67 | 50 | 22 | 53 | 12 |
| 39 | 45 | 2 | 48 | 9 | 53 |
| 40 | 59 | 45 | 45 | 45 | 33 |
| 41 | 29 | 34 | 64 | 49 | 43 |
| 42 | 2 | 61 | 53 | 39 | 52 |
| 43 | 66 | 53 | 52 | 50 | 59 |
| 44 | 39 | 37 | 67 | 67 | 55 |
| 45 | 14 | 52 | 50 | 29 | 41 |
| 46 | 28 | 8 | 29 | 52 | 50 |
| 47 | 47 | 59 | 39 | 46 | 48 |
| 48 | 58 | 27 | 9 | 28 | 18 |
| 49 | 5 | 29 | 8 | 2 | 42 |
| 50 | 50 | 46 | 65 | 66 | 58 |
| 51 | 27 | 28 | 28 | 55 | 0 |
| 52 | 52 | 67 | 66 | 22 | 30 |
| 53 | 65 | 5 | 17 | 8 | 15 |
| 54 | 16 | 55 | 16 | 34 | 27 |
| 55 | 21 | 21 | 21 | 27 | 65 |
| 56 | 17 | 66 | 38 | 21 | 66 |
| 57 | 3 | 22 | 42 | 65 | 11 |
| 58 | 42 | 42 | 30 | 16 | 21 |
| 59 | 30 | 30 | 3 | 5 | 31 |
| 60 | 22 | 16 | 34 | 17 | 22 |
| 61 | 46 | 17 | 63 | 42 | 14 |
| 62 | 34 | 63 | 49 | 30 | 63 |
| 63 | 38 | 47 | 15 | 47 | 6 |
| 64 | 63 | 3 | 25 | 3 | 13 |
| 65 | 55 | 65 | 27 | 38 | 57 |
| 66 | 15 | 38 | 47 | 63 | 46 |
| 67 | 8 | 15 | 5 | 15 | 34 |
| 68 | 25 | 25 | 2 | 25 | 25 |

Table A.4: Wiki Dataset, 23 Lasso selections ranging from 20 to 46 features.

| $n$ | Selected Features |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 |  | 1 | 2 |  |  | 7 | 8 | 9 |  |  |  | 16 |  | 20 | 22 |  | 24 |  |  |  |  |  |  |  | 36 |  | 38 | 40 |  | 44 | 47 |  |  |  | 51 |  |  | 56 |  |  | 60 | 61 | 62 | 64 |  |  |
| 21 |  | 1 | 2 |  |  | 7 | 8 | 9 |  |  |  | 16 |  | 20 | 22 |  | 24 |  |  |  |  |  |  | 35 | 36 |  | 38 | 40 |  | 44 | 47 |  |  |  | 51 |  |  | 56 |  |  | 60 | 61 | 62 | 64 |  |  |
| 22 |  | 1 | 2 |  |  | 7 | 8 | 9 |  | 11 |  | 16 |  | 20 | 22 |  | 24 |  |  |  |  |  |  | 35 | 36 |  | 38 | 40 |  | 44 | 47 |  |  |  | 51 |  |  | 56 |  |  | 60 | 61 | 62 | 64 |  |  |
| 23 |  | 1 | 2 |  |  | 7 | 8 | 9 |  | 11 |  | 16 |  | 20 | 22 | 23 | 24 |  |  |  |  |  |  | 35 | 36 |  | 38 | 40 |  | 44 | 47 |  |  |  | 51 |  |  | 56 |  |  | 60 | 61 | 62 | 64 |  |  |
| 24 |  | 1 | 2 |  | 5 | 7 | 8 | 9 |  | 11 |  | 16 |  | 20 | 22 | 23 | 24 |  |  |  |  |  |  | 35 | 36 |  | 38 | 40 |  | 44 | 47 |  |  |  | 51 |  |  | 56 |  |  | 60 | 61 | 62 | 64 |  |  |
| 26 |  | 1 | 2 |  | 5 | 7 | 8 | 9 |  | 11 |  | 16 |  | 20 | 22 | 23 | 24 |  |  |  | 29 |  |  | 35 | 36 |  | 38 | 40 |  | 44 | 47 |  | 49 |  | 51 |  |  | 56 |  |  | 60 | 61 | 62 | 64 |  |  |
| 27 |  | 1 | 2 |  | 5 | 7 | 8 | 9 |  | 11 |  | 16 |  | 20 | 22 | 23 | 24 |  |  | 28 | 29 |  |  | 35 | 36 |  | 38 | 40 |  | 44 | 47 |  | 49 |  | 51 |  |  | 56 |  |  | 60 | 61 | 62 | 64 |  |  |
| 28 |  | 1 | 2 |  | 5 | 7 | 8 | 9 |  | 11 |  | 16 |  | 20 | 22 | 23 | 24 | 26 |  | 28 | 29 |  |  | 35 | 36 |  | 38 | 40 |  | 44 | 47 |  | 49 |  | 51 |  |  | 56 |  |  | 60 | 61 | 62 | 64 |  |  |
| 29 |  | 1 | 2 |  | 5 | 7 | 8 | 9 |  | 11 |  | 16 |  | 20 | 22 | 23 | 24 | 26 |  | 28 | 29 |  |  | 35 | 36 |  | 38 | 40 |  | 44 | 47 |  | 49 |  | 51 |  |  | 56 |  |  | 60 | 61 | 62 | 64 |  | 67 |
| 30 |  | 1 | 2 |  | 5 | 7 | 8 | 9 |  | 11 |  | 16 |  | 20 | 22 | 23 | 24 | 26 |  | 28 | 29 | 32 |  | 35 | 36 |  | 38 | 40 |  | 44 | 47 |  | 49 |  | 51 |  |  | 56 |  |  | 60 | 61 | 62 | 64 |  | 67 |
| 32 |  | 1 | 2 | 4 | 5 | 7 | 8 | 9 |  | 11 |  | 16 |  | 20 | 22 | 23 | 24 | 26 |  | 28 | 29 | 32 | 33 | 35 | 36 |  | 38 | 40 |  | 44 | 47 |  | 49 |  | 51 |  |  | 56 |  |  | 60 | 61 | 62 | 64 |  | 67 |
| 33 |  | 1 | 2 | 4 | 5 | 7 | 8 | 9 |  | 11 |  | 16 |  | 20 | 22 | 23 | 24 | 26 |  | 28 | 29 | 32 | 33 | 35 | 36 | 37 | 38 | 40 |  | 44 | 47 |  | 49 |  | 51 |  |  | 56 |  |  | 60 | 61 | 62 | 64 |  | 67 |
| 34 |  | 1 | 2 | 4 | 5 | 7 | 8 | 9 |  | 11 | 12 | 16 |  | 20 | 22 | 23 | 24 | 26 |  | 28 | 29 | 32 | 33 | 35 | 36 | 37 | 38 | 40 |  | 44 | 47 |  | 49 |  | 51 |  |  | 56 |  |  | 60 | 61 | 62 | 64 |  | 67 |
| 35 |  | 1 | 2 | 4 | 5 | 7 | 8 | 9 |  | 11 | 12 | 16 |  | 20 | 22 | 23 | 24 | 26 |  | 28 | 29 | 32 | 33 | 35 | 36 | 37 | 38 | 40 | 43 | 44 | 47 |  | 49 |  | 51 |  |  | 56 |  |  | 60 | 61 | 62 | 64 |  | 67 |
| 36 |  | 1 | 2 | 4 | 5 | 7 | 8 | 9 |  | 11 | 12 | 16 |  | 20 | 22 | 23 | 24 | 26 |  | 28 | 29 | 32 | 33 | 35 | 36 | 37 | 38 | 40 | 43 | 44 | 47 |  | 49 |  | 51 |  |  | 56 |  | 59 | 60 | 61 | 62 | 64 |  | 67 |
| 37 |  | 1 | 2 | 4 | 5 | 7 | 8 | 9 |  | 11 | 12 | 16 | 17 | 20 | 22 | 23 | 24 | 26 |  | 28 | 29 | 32 | 33 | 35 | 36 | 37 | 38 | 40 | 43 | 44 | 47 |  | 49 |  | 51 |  |  | 56 |  | 59 | 60 | 61 | 62 | 64 |  | 67 |
| 38 |  | 1 | 2 | 4 | 5 | 7 | 8 | 9 |  | 11 | 12 | 16 | 17 | 20 | 22 | 23 | 24 | 26 |  | 28 | 29 | 32 | 33 | 35 | 36 | 37 | 38 | 40 | 43 | 44 | 47 | 48 | 49 |  | 51 |  |  | 56 |  | 59 | 60 | 61 | 62 | 64 |  | 67 |
| 39 |  | 1 | 2 | 4 | 5 | 7 | 8 | 9 |  | 11 | 12 | 16 | 17 | 20 | 22 | 23 | 24 | 26 |  | 28 | 29 | 32 | 33 | 35 | 36 | 37 | 38 | 40 | 43 | 44 | 47 | 48 | 49 |  | 51 | 52 |  | 56 |  | 59 | 60 | 61 | 62 | 64 |  | 67 |
| 41 | 0 | 1 | 2 | 4 | 5 | 7 | 8 | 9 | 10 | 11 | 12 | 16 | 17 | 20 | 22 | 23 | 24 | 26 |  | 28 | 29 | 32 | 33 | 35 | 36 | 37 | 38 | 40 | 43 | 44 | 47 | 48 | 49 |  | 51 | 52 |  | 56 |  | 59 | 60 | 61 | 62 | 64 |  | 67 |
| 42 | 0 | 1 | 2 | 4 | 5 | 7 | 8 | 9 | 10 | 11 | 12 | 16 | 17 | 20 | 22 | 23 | 24 | 26 |  | 28 | 29 | 32 | 33 | 35 | 36 | 37 | 38 | 40 | 43 | 44 | 47 | 48 | 49 |  | 51 | 52 |  | 56 | 58 | 59 | 60 | 61 | 62 | 64 |  | 67 |
| 43 | 0 | 1 | 2 | 4 | 5 | 7 | 8 | 9 | 10 | 11 | 12 | 16 | 17 | 20 | 22 | 23 | 24 | 26 | 27 | 28 | 29 | 32 | 33 | 35 | 36 | 37 | 38 | 40 | 43 | 44 | 47 | 48 | 49 |  | 51 | 52 |  | 56 | 58 | 59 | 60 | 61 | 62 | 64 |  | 67 |
| 44 | 0 | 1 | 2 | 4 | 5 | 7 | 8 | 9 | 10 | 11 | 12 | 16 | 17 | 20 | 22 | 23 | 24 | 26 | 27 | 28 | 29 | 32 | 33 | 35 | 36 | 37 | 38 | 40 | 43 | 44 | 47 | 48 | 49 | 50 | 51 | 52 |  | 56 | 58 | 59 | 60 | 61 | 62 | 64 |  | 67 |
| 46 | 0 | 1 | 2 | 4 | 5 | 7 | 8 | 9 | 10 | 11 | 12 | 16 | 17 | 20 | 22 | 23 | 24 | 26 | 27 | 28 | 29 | 32 | 33 | 35 | 36 | 37 | 38 | 40 | 43 | 44 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 56 | 58 | 59 | 60 | 61 | 62 | 64 | 66 | 67 |

Table A.5: Martin Dataset, feature rankings.

| rank | t-test | ranksum | MI | combined | RFE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 10 | 1 | 40 |
| 2 | 43 | 43 | 43 | 43 | 1 |
| 3 | 10 | 10 | 56 | 10 | 59 |
| 4 | 11 | 11 | 1 | 35 | 24 |
| 5 | 40 | 26 | 40 | 40 | 46 |
| 6 | 26 | 59 | 62 | 11 | 34 |
| 7 | 59 | 35 | 61 | 26 | 54 |
| 8 | 35 | 19 | 60 | 56 | 42 |
| 9 | 56 | 12 | 24 | 24 | 61 |
| 10 | 24 | 18 | 35 | 62 | 56 |
| 11 | 60 | 20 | 63 | 60 | 58 |
| 12 | 62 | 24 | 12 | 59 | 11 |
| 13 | 0 | 62 | 46 | 12 | 62 |
| 14 | 61 | 60 | 19 | 61 | 38 |
| 15 | 18 | 40 | 7 | 19 | 60 |
| 16 | 2 | 56 | 26 | 0 | 52 |
| 17 | 12 | 2 | 33 | 18 | 47 |
| 18 | 54 | 23 | 11 | 2 | 8 |
| 19 | 63 | 52 | 8 | 63 | 23 |
| 20 | 19 | 9 | 59 | 23 | 5 |
| 21 | 42 | 61 | 47 | 20 | 4 |
| 22 | 34 | 55 | 23 | 54 | 45 |
| 23 | 46 | 0 | 0 | 9 | 14 |
| 24 | 20 | 21 | 32 | 46 | 35 |
| 25 | 23 | 51 | 54 | 7 | 7 |
| 26 | 53 | 50 | 9 | 33 | 39 |
| 27 | 58 | 33 | 48 | 55 | 43 |
| 28 | 4 | 32 | 22 | 8 | 37 |
| 29 | 49 | 48 | 2 | 32 | 64 |
| 30 | 47 | 13 | 55 | 47 | 28 |
| 31 | 52 | 7 | 39 | 49 | 33 |
| 32 | 8 | 54 | 13 | 42 | 53 |
| 33 | 3 | 4 | 44 | 52 | 44 |
| 34 | 38 | 49 | 45 | 48 | 41 |
| 35 | 45 | 63 | 49 | 4 | 0 |
| 36 | 55 | 42 | 50 | 13 | 3 |
| 37 | 9 | 16 | 18 | 45 | 12 |
| 38 | 16 | 45 | 51 | 50 | 9 |
| 39 | 32 | 8 | 20 | 53 | 21 |
| 40 | 7 | 6 | 3 | 3 | 15 |
| 41 | 66 | 31 | 53 | 58 | 10 |
| 42 | 36 | 53 | 42 | 34 | 27 |
| 43 | 33 | 34 | 58 | 44 | 30 |
| 44 | 13 | 47 | 4 | 51 | 22 |
| 45 | 17 | 3 | 67 | 39 | 2 |
| 46 | 48 | 5 | 6 | 38 | 55 |
| 47 | 50 | 39 | 31 | 16 | 26 |
| 48 | 44 | 44 | 27 | 6 | 67 |
| 49 | 28 | 28 | 38 | 21 | 13 |
| 50 | 5 | 46 | 29 | 31 | 63 |
| 51 | 57 | 27 | 37 | 66 | 51 |
| 52 | 37 | 37 | 52 | 22 | 29 |
| 53 | 39 | 58 | 28 | 28 | 50 |
| 54 | 27 | 66 | 66 | 5 | 20 |
| 55 | 30 | 29 | 41 | 27 | 16 |
| 56 | 41 | 38 | 65 | 37 | 17 |
| 57 | 6 | 17 | 5 | 36 | 57 |
| 58 | 14 | 36 | 64 | 29 | 18 |
| 59 | 21 | 22 | 34 | 17 | 36 |
| 60 | 31 | 14 | 57 | 57 | 65 |
| 61 | 29 | 30 | 36 | 41 | 19 |
| 62 | 22 | 57 | 14 | 67 | 49 |
| 63 | 15 | 41 | 15 | 14 | 32 |
| 64 | 67 | 64 | 16 | 30 | 31 |
| 65 | 25 | 25 | 21 | 64 | 66 |
| 66 | 51 | 15 | 25 | 65 | 48 |
| 67 | 64 | 67 | 30 | 15 | 6 |
| 68 | 65 | 65 | 17 | 25 | 25 |

Table A.6: Martin Dataset, 25 Lasso selections ranging from 11 to 43 features.

| $n$ | Selected Features |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 1 |  |  | 5 |  | 8 |  | 11 |  |  |  |  | 24 |  |  |  |  |  |  |  |  | 36 |  | 38 | 39 | 40 | 41 |  |  |  | 46 |  |  |  |  |  |  |  |  |  |  |  |  |
| 12 | 1 |  |  | 5 |  | 8 |  | 11 |  |  |  |  | 24 |  |  |  |  |  |  |  |  | 36 |  | 38 | 39 | 40 | 41 |  |  |  | 46 |  |  |  |  |  |  |  |  |  | 62 |  |  |
| 13 | 1 |  |  | 5 |  | 8 |  | 11 |  | 14 |  |  | 24 |  |  |  |  |  |  |  |  | 36 |  | 38 | 39 | 40 | 41 |  |  |  | 46 |  |  |  |  |  |  |  |  |  | 62 |  |  |
| 14 | 1 |  |  | 5 | 7 | 8 |  | 11 |  | 14 |  |  | 24 |  |  |  |  |  |  |  |  | 36 |  | 38 | 39 | 40 | 41 |  |  |  | 46 |  |  |  |  |  |  |  |  |  | 62 |  |  |
| 16 | 1 |  |  | 5 | 7 | 8 |  | 11 |  | 14 |  |  | 24 |  |  |  |  |  |  |  |  | 36 | 37 | 38 | 39 | 40 | 41 |  |  |  | 46 |  |  |  |  | 54 |  |  |  |  | 62 |  |  |
| 17 | 1 |  | 4 | 5 | 7 | 8 |  | 11 |  | 14 |  |  | 24 |  |  |  |  |  |  |  |  | 36 | 37 | 38 | 39 | 40 | 41 |  |  |  | 46 |  |  |  |  | 54 |  |  |  |  | 62 |  |  |
| 18 | 1 |  | 4 | 5 | 7 | 8 |  | 11 |  | 14 |  |  | 24 |  |  |  |  |  |  |  |  | 36 | 37 | 38 | 39 | 40 | 41 |  |  |  | 46 |  |  |  |  | 54 |  | 59 |  |  | 62 |  |  |
| 19 | 1 |  | 4 | 5 | 7 | 8 |  | 11 |  | 14 |  |  | 24 |  |  |  |  |  |  |  |  | 36 | 37 | 38 | 39 | 40 | 41 |  |  | 45 | 46 |  |  |  |  | 54 |  | 59 |  |  | 62 |  |  |
| 20 | 1 |  | 4 | 5 | 7 | 8 |  | 11 |  | 14 |  |  | 24 |  |  | 28 |  |  |  |  |  | 36 | 37 | 38 | 39 | 40 | 41 |  |  | 45 | 46 |  |  |  |  | 54 |  | 59 |  |  | 62 |  |  |
| 23 | 1 |  | 4 | 5 | 7 | 8 |  | 11 |  | 14 |  | 23 | 24 |  |  | 28 |  |  |  |  |  | 36 | 37 | 38 | 39 | 40 | 41 |  |  | 45 | 46 | 47 |  |  |  | 54 |  | 59 |  | 61 | 62 |  |  |
| 25 | 1 |  | 4 | 5 | 7 | 8 |  | 11 |  | 14 |  | 23 | 24 |  |  | 28 |  |  |  |  |  | 36 | 37 | 38 | 39 | 40 | 41 |  |  | 45 | 46 | 47 |  | 52 |  | 54 |  | 59 |  | 61 | 62 | 64 |  |
| 26 | 1 |  | 4 | 5 | 7 | 8 |  | 11 |  | 14 |  | 23 | 24 |  |  | 28 |  |  |  |  | 34 | 36 | 37 | 38 | 39 | 40 | 41 |  |  | 45 | 46 | 47 |  | 52 |  | 54 |  | 59 |  | 61 | 62 | 64 |  |
| 27 | 1 |  | 4 | 5 | 7 | 8 |  | 11 |  | 14 |  | 23 | 24 |  |  | 28 |  |  |  |  | 34 | 36 | 37 | 38 | 39 | 40 | 41 | 42 |  | 45 | 46 | 47 |  | 52 |  | 54 |  | 59 |  | 61 | 62 | 64 |  |
| 29 | 1 |  | 4 | 5 | 7 | 8 | 9 | 11 |  | 14 |  | 23 | 24 |  |  | 28 |  |  |  | 33 | 34 | 36 | 37 | 38 | 39 | 40 | 41 | 42 |  | 45 | 46 | 47 |  | 52 |  | 54 |  | 59 |  | 61 | 62 | 64 |  |
| 30 | 1 |  | 4 | 5 | 7 | 8 | 9 | 11 |  | 14 |  | 23 | 24 |  |  | 28 |  |  |  | 33 | 34 | 36 | 37 | 38 | 39 | 40 | 41 | 42 |  | 45 | 46 | 47 |  | 52 |  | 54 |  | 59 | 60 | 61 | 62 | 64 |  |
| 32 | 1 |  | 4 | 5 | 7 | 8 | 9 | 11 |  | 14 |  | 23 | 24 |  | 27 | 28 |  | 30 |  | 33 | 34 | 36 | 37 | 38 | 39 | 40 | 41 | 42 |  | 45 | 46 | 47 |  | 52 |  | 54 |  | 59 | 60 | 61 | 62 | 64 |  |
| 33 | 1 |  | 4 | 5 | 7 | 8 | 9 | 11 |  | 14 |  | 23 | 24 |  | 27 | 28 |  | 30 |  | 33 | 34 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 44 | 45 | 46 | 47 |  | 52 |  | 54 |  | 59 | 60 | 61 | 62 | 64 |  |
| 35 | 1 |  | 4 | 5 | 7 | 8 | 9 | 11 |  | 14 |  | 23 | 24 | 26 | 27 | 28 |  | 30 |  | 33 | 34 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 44 | 45 | 46 | 47 |  | 52 |  | 54 | 58 | 59 | 60 | 61 | 62 | 64 |  |
| 36 | 1 |  | 4 | 5 | 7 | 8 | 9 | 11 |  | 14 |  | 23 | 24 | 26 | 27 | 28 |  | 30 |  | 33 | 34 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 44 | 45 | 46 | 47 | 51 | 52 |  | 54 | 58 | 59 | 60 | 61 | 62 | 64 |  |
| 38 | 1 |  | 4 | 5 | 7 | 8 | 9 | 11 |  | 14 | 21 | 23 | 24 | 26 | 27 | 28 | 29 | 30 |  | 33 | 34 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 44 | 45 | 46 | 47 | 51 | 52 |  | 54 | 58 | 59 | 60 | 61 | 62 | 64 |  |
| 39 | 1 |  | 4 | 5 | 7 | 8 | 9 | 11 |  | 14 | 21 | 23 | 24 | 26 | 27 | 28 | 29 | 30 |  | 33 | 34 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 44 | 45 | 46 | 47 | 51 | 52 |  | 54 | 58 | 59 | 60 | 61 | 62 | 64 | 67 |
| 40 | 1 |  | 4 | 5 | 7 | 8 | 9 | 11 |  | 14 | 21 | 23 | 24 | 26 | 27 | 28 | 29 | 30 |  | 33 | 34 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 44 | 45 | 46 | 47 | 51 | 52 | 53 | 54 | 58 | 59 | 60 | 61 | 62 | 64 | 67 |
| 41 | 1 | 2 | 4 | 5 | 7 | 8 | 9 | 11 |  | 14 | 21 | 23 | 24 | 26 | 27 | 28 | 29 | 30 |  | 33 | 34 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 44 | 45 | 46 | 47 | 51 | 52 | 53 | 54 | 58 | 59 | 60 | 61 | 62 | 64 | 67 |
| 42 | 1 | 2 | 4 | 5 | 7 | 8 | 9 | 11 | 13 | 14 | 21 | 23 | 24 | 26 | 27 | 28 | 29 | 30 |  | 33 | 34 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 44 | 45 | 46 | 47 | 51 | 52 | 53 | 54 | 58 | 59 | 60 | 61 | 62 | 64 | 67 |
| 43 | 1 | 2 | 4 | 5 | 7 | 8 | 9 | 11 | 13 | 14 | 21 | 23 | 24 | 26 | 27 | 28 | 29 | 30 | 31 | 33 | 34 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 44 | 45 | 46 | 47 | 51 | 52 | 53 | 54 | 58 | 59 | 60 | 61 | 62 | 64 | 67 |

Table A.7: Wiki Dataset, Logistic Regression, top 50 results sorted by $F_{1}$-score.

| $n$ | selection type | $F_{1}$-score | precision | recall | TN | FN | FP | TP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28 | Lasso | 0.8809 | 0.9417 | 0.8274 | 778 | 145 | 43 | 695 |
| 41 | Lasso | 0.8798 | 0.9229 | 0.8405 | 762 | 134 | 59 | 706 |
| 46 | Lasso | 0.8798 | 0.9229 | 0.8405 | 762 | 134 | 59 | 706 |
| 26 | Lasso | 0.8797 | 0.9392 | 0.8274 | 776 | 145 | 45 | 695 |
| 42 | Lasso | 0.8791 | 0.9228 | 0.8393 | 762 | 135 | 59 | 705 |
| 43 | Lasso | 0.8791 | 0.9228 | 0.8393 | 762 | 135 | 59 | 705 |
| 44 | Lasso | 0.8791 | 0.9228 | 0.8393 | 762 | 135 | 59 | 705 |
| 27 | Lasso | 0.879 | 0.9391 | 0.8262 | 776 | 146 | 45 | 694 |
| 29 | Lasso | 0.879 | 0.9391 | 0.8262 | 776 | 146 | 45 | 694 |
| 34 | Lasso | 0.8789 | 0.9239 | 0.8381 | 763 | 136 | 58 | 704 |
| 33 | Lasso | 0.8784 | 0.9227 | 0.8381 | 762 | 136 | 59 | 704 |
| 32 | Lasso | 0.8782 | 0.9238 | 0.8369 | 763 | 137 | 58 | 703 |
| 35 | Lasso | 0.878 | 0.9204 | 0.8393 | 760 | 135 | 61 | 705 |
| 36 | Lasso | 0.8773 | 0.9203 | 0.8381 | 760 | 136 | 61 | 704 |
| 37 | Lasso | 0.8773 | 0.9203 | 0.8381 | 760 | 136 | 61 | 704 |
| 38 | Lasso | 0.8773 | 0.9203 | 0.8381 | 760 | 136 | 61 | 704 |
| 39 | Lasso | 0.8773 | 0.9203 | 0.8381 | 760 | 136 | 61 | 704 |
| 21 | Lasso | 0.8751 | 0.9473 | 0.8131 | 783 | 157 | 38 | 683 |
| 22 | Lasso | 0.8751 | 0.9473 | 0.8131 | 783 | 157 | 38 | 683 |
| 23 | Lasso | 0.8747 | 0.9448 | 0.8143 | 781 | 156 | 40 | 684 |
| 30 | Lasso | 0.8742 | 0.9267 | 0.8274 | 766 | 145 | 55 | 695 |
| 24 | Lasso | 0.8737 | 0.9409 | 0.8155 | 778 | 155 | 43 | 685 |
| 20 | Lasso | 0.8728 | 0.9421 | 0.8131 | 779 | 157 | 42 | 683 |
| 17 | RFE | 0.8625 | 0.9372 | 0.7988 | 776 | 169 | 45 | 671 |
| 18 | RFE | 0.8625 | 0.9372 | 0.7988 | 776 | 169 | 45 | 671 |
| 11 | RFE | 0.8607 | 0.9445 | 0.7905 | 782 | 176 | 39 | 664 |
| 10 | RFE | 0.8605 | 0.9458 | 0.7893 | 783 | 177 | 38 | 663 |
| 15 | RFE | 0.8605 | 0.9407 | 0.7929 | 779 | 174 | 42 | 666 |
| 19 | RFE | 0.859 | 0.9163 | 0.8083 | 759 | 161 | 62 | 679 |
| 16 | RFE | 0.8588 | 0.9318 | 0.7964 | 772 | 171 | 49 | 669 |
| 11 | Mutual Information | 0.8586 | 0.943 | 0.7881 | 781 | 178 | 40 | 662 |
| 12 | Mutual Information | 0.8586 | 0.943 | 0.7881 | 781 | 178 | 40 | 662 |
| 13 | RFE | 0.8581 | 0.9366 | 0.7917 | 776 | 175 | 45 | 665 |
| 14 | RFE | 0.8581 | 0.9366 | 0.7917 | 776 | 175 | 45 | 665 |
| 20 | RFE | 0.8579 | 0.9139 | 0.8083 | 757 | 161 | 64 | 679 |
| 13 | Mutual Information | 0.8577 | 0.9442 | 0.7857 | 782 | 180 | 39 | 660 |
| 21 | RFE | 0.8577 | 0.906 | 0.8143 | 750 | 156 | 71 | 684 |
| 14 | Mutual Information | 0.8571 | 0.9429 | 0.7857 | 781 | 180 | 40 | 660 |
| 12 | RFE | 0.8566 | 0.9415 | 0.7857 | 780 | 180 | 41 | 660 |
| 10 | Mutual Information | 0.8558 | 0.9414 | 0.7845 | 780 | 181 | 41 | 659 |
| 45 | Ranksum | 0.8557 | 0.9045 | 0.8119 | 749 | 158 | 72 | 682 |
| 22 | RFE | 0.8555 | 0.9056 | 0.8107 | 750 | 159 | 71 | 681 |
| 24 | RFE | 0.8555 | 0.9056 | 0.8107 | 750 | 159 | 71 | 681 |
| 35 | T-test | 0.8555 | 0.9101 | 0.8071 | 754 | 162 | 67 | 678 |
| 39 | combined | 0.8555 | 0.9101 | 0.8071 | 754 | 162 | 67 | 678 |
| 51 | Ranksum | 0.855 | 0.9 | 0.8143 | 745 | 156 | 76 | 684 |
| 49 | Ranksum | 0.8548 | 0.9011 | 0.8131 | 746 | 157 | 75 | 683 |

Table A.8: Wiki Dataset, Linear SVM, top 50 results sorted by $F_{1}$-score.

| $n$ | selection type | $F_{1}$-score | precision | recall | TN | FN | FP | TP | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60 | Mutual Information | 0.8909 | 0.9234 | 0.8607 | 761 | 117 | 60 | 723 | 100.0 |
| 61 | Mutual Information | 0.89 | 0.9254 | 0.8571 | 763 | 120 | 58 | 720 | 100.0 |
| 62 | Mutual Information | 0.889 | 0.9276 | 0.8536 | 765 | 123 | 56 | 717 | 100.0 |
| 43 | RFE | 0.889 | 0.9166 | 0.8631 | 755 | 115 | 66 | 725 | 100.0 |
| 58 | combined | 0.8883 | 0.9511 | 0.8333 | 785 | 140 | 36 | 700 | 100.0 |
| 67 | Mutual Information | 0.8879 | 0.9196 | 0.8583 | 758 | 119 | 63 | 721 | 100.0 |
| 48 | T-test | 0.8879 | 0.9252 | 0.8536 | 763 | 123 | 58 | 717 | 100.0 |
| 65 | Mutual Information | 0.8874 | 0.9296 | 0.8488 | 767 | 127 | 54 | 713 | 100.0 |
| 35 | combined | 0.8871 | 0.9436 | 0.8369 | 779 | 137 | 42 | 703 | 100.0 |
| 39 | RFE | 0.887 | 0.9273 | 0.85 | 765 | 126 | 56 | 714 | 100.0 |
| 25 | RFE | 0.8869 | 0.9388 | 0.8405 | 775 | 134 | 46 | 706 | 100.0 |
| 62 | T-test | 0.8866 | 0.914 | 0.8607 | 753 | 117 | 68 | 723 | 100.0 |
| 22 | RFE | 0.8865 | 0.925 | 0.8512 | 763 | 125 | 58 | 715 | 100.0 |
| 29 | T-test | 0.8864 | 0.9318 | 0.8452 | 769 | 130 | 52 | 710 | 100.0 |
| 23 | combined | 0.8861 | 0.9459 | 0.8333 | 781 | 140 | 40 | 700 | 100.0 |
| 55 | combined | 0.886 | 0.9183 | 0.856 | 757 | 121 | 64 | 719 | 100.0 |
| 24 | RFE | 0.886 | 0.9352 | 0.8417 | 772 | 133 | 49 | 707 | 100.0 |
| 40 | Mutual Information | 0.886 | 0.9352 | 0.8417 | 772 | 133 | 49 | 707 | 100.0 |
| 54 | Mutual Information | 0.8859 | 0.9411 | 0.8369 | 777 | 137 | 44 | 703 | 100.0 |
| 47 | combined | 0.8857 | 0.926 | 0.8488 | 764 | 127 | 57 | 713 | 100.0 |
| 37 | Lasso | 0.8856 | 0.9215 | 0.8524 | 760 | 124 | 61 | 716 | 100.0 |
| 44 | Mutual Information | 0.8853 | 0.9584 | 0.8226 | 791 | 149 | 30 | 691 | 100.0 |
| 50 | combined | 0.8853 | 0.9351 | 0.8405 | 772 | 134 | 49 | 706 | 100.0 |
| 25 | Mutual Information | 0.8852 | 0.941 | 0.8357 | 777 | 138 | 44 | 702 | 100.0 |
| 51 | Ranksum | 0.8851 | 0.9363 | 0.8393 | 773 | 135 | 48 | 705 | 100.0 |
| 55 | Mutual Information | 0.8851 | 0.9363 | 0.8393 | 773 | 135 | 48 | 705 | 100.0 |
| 39 | Lasso | 0.885 | 0.9203 | 0.8524 | 759 | 124 | 62 | 716 | 100.0 |
| 66 | RFE | 0.8849 | 0.927 | 0.8464 | 765 | 129 | 56 | 711 | 100.0 |
| 56 | RFE | 0.8844 | 0.9148 | 0.856 | 754 | 121 | 67 | 719 | 100.0 |
| 24 | T-test | 0.8843 | 0.9545 | 0.8238 | 788 | 148 | 33 | 692 | 100.0 |
| 52 | Mutual Information | 0.8843 | 0.9315 | 0.8417 | 769 | 133 | 52 | 707 | 100.0 |
| 12 | RFE | 0.8842 | 0.9213 | 0.85 | 760 | 126 | 61 | 714 | 1000.0 |
| 60 | Ranksum | 0.8841 | 0.9169 | 0.8536 | 756 | 123 | 65 | 717 | 100.0 |
| 25 | combined | 0.8841 | 0.9507 | 0.8262 | 785 | 146 | 36 | 694 | 100.0 |
| 33 | combined | 0.884 | 0.9635 | 0.8167 | 795 | 154 | 26 | 686 | 100.0 |
| 44 | combined | 0.884 | 0.9397 | 0.8345 | 776 | 139 | 45 | 701 | 100.0 |
| 26 | T-test | 0.884 | 0.9457 | 0.8298 | 781 | 143 | 40 | 697 | 100.0 |
| 42 | Lasso | 0.8839 | 0.9235 | 0.8476 | 762 | 128 | 59 | 712 | 100.0 |
| 59 | Mutual Information | 0.8839 | 0.9349 | 0.8381 | 772 | 136 | 49 | 704 | 100.0 |
| 42 | T-test | 0.8838 | 0.9409 | 0.8333 | 777 | 140 | 44 | 700 | 100.0 |
| 66 | Mutual Information | 0.8837 | 0.942 | 0.8321 | 778 | 141 | 43 | 699 | 100.0 |
| 47 | T-test | 0.8835 | 0.9432 | 0.831 | 779 | 142 | 42 | 698 | 10.0 |
| 57 | Mutual Information | 0.8835 | 0.9432 | 0.831 | 779 | 142 | 42 | 698 | 10.0 |
| 32 | RFE | 0.8835 | 0.9325 | 0.8393 | 770 | 135 | 51 | 705 | 100.0 |
| 44 | T-test | 0.8835 | 0.9325 | 0.8393 | 770 | 135 | 51 | 705 | 100.0 |
| 56 | Mutual Information | 0.8834 | 0.9506 | 0.825 | 785 | 147 | 36 | 693 | 100.0 |
| 41 | T-test | 0.8833 | 0.9337 | 0.8381 | 771 | 136 | 50 | 704 | 100.0 |
| 26 | Mutual Information | 0.8832 | 0.9582 | 0.819 | 791 | 152 | 30 | 688 | 100.0 |
| 26 | RFE | 0.8832 | 0.9348 | 0.8369 | 772 | 137 | 49 | 703 | 10.0 |
| 62 | combined | 0.8831 | 0.9135 | 0.8548 | 753 | 122 | 68 | 718 | 100.0 |

Table A.9: Wiki Dataset, Gaussian SVM, top 50 results sorted by $F_{1}$-score.

| $n$ | selection type | $F_{1}$-score | precision | recall | TN | FN | FP | TP | gamma | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | combined | 0.8942 | 0.9305 | 0.8607 | 767 | 117 | 54 | 723 | 0.1 | 1000.0 |
| 35 | T-test | 0.8936 | 0.9304 | 0.8595 | 767 | 118 | 54 | 722 | 0.1 | 1000.0 |
| 45 | combined | 0.8936 | 0.9304 | 0.8595 | 767 | 118 | 54 | 722 | 0.1 | 1000.0 |
| 57 | Mutual Information | 0.8932 | 0.9455 | 0.8464 | 780 | 129 | 41 | 711 | 0.1 | 100.0 |
| 23 | combined | 0.8932 | 0.9338 | 0.856 | 770 | 121 | 51 | 719 | 1.0 | 100.0 |
| 34 | T-test | 0.8932 | 0.9338 | 0.856 | 770 | 121 | 51 | 719 | 0.1 | 1000.0 |
| 43 | Mutual Information | 0.893 | 0.9237 | 0.8643 | 761 | 114 | 60 | 726 | 0.1 | 1000.0 |
| 39 | combined | 0.8926 | 0.9269 | 0.8607 | 764 | 117 | 57 | 723 | 0.1 | 1000.0 |
| 43 | combined | 0.8926 | 0.9269 | 0.8607 | 764 | 117 | 57 | 723 | 0.1 | 1000.0 |
| 27 | Mutual Information | 0.8925 | 0.9395 | 0.85 | 775 | 126 | 46 | 714 | 0.1 | 1000.0 |
| 41 | combined | 0.8925 | 0.928 | 0.8595 | 765 | 118 | 56 | 722 | 0.1 | 1000.0 |
| 43 | Ranksum | 0.8925 | 0.928 | 0.8595 | 765 | 118 | 56 | 722 | 0.1 | 1000.0 |
| 36 | T-test | 0.8919 | 0.9325 | 0.8548 | 769 | 122 | 52 | 718 | 0.1 | 1000.0 |
| 37 | T-test | 0.8919 | 0.9325 | 0.8548 | 769 | 122 | 52 | 718 | 0.1 | 1000.0 |
| 42 | combined | 0.8919 | 0.9268 | 0.8595 | 764 | 118 | 57 | 722 | 0.1 | 1000.0 |
| 44 | Ranksum | 0.8919 | 0.9268 | 0.8595 | 764 | 118 | 57 | 722 | 0.1 | 1000.0 |
| 28 | Mutual Information | 0.8918 | 0.9394 | 0.8488 | 775 | 127 | 46 | 713 | 0.1 | 1000.0 |
| 58 | combined | 0.8918 | 0.9394 | 0.8488 | 775 | 127 | 46 | 713 | 0.1 | 100.0 |
| 41 | T-test | 0.8918 | 0.9279 | 0.8583 | 765 | 119 | 56 | 721 | 0.1 | 1000.0 |
| 55 | combined | 0.8917 | 0.9406 | 0.8476 | 776 | 128 | 45 | 712 | 0.1 | 100.0 |
| 29 | T-test | 0.8915 | 0.9359 | 0.8512 | 772 | 125 | 49 | 715 | 0.1 | 1000.0 |
| 46 | Ranksum | 0.8915 | 0.9246 | 0.8607 | 762 | 117 | 59 | 723 | 0.1 | 1000.0 |
| 57 | combined | 0.8914 | 0.9429 | 0.8452 | 778 | 130 | 43 | 710 | 0.1 | 100.0 |
| 61 | Mutual Information | 0.8914 | 0.9429 | 0.8452 | 778 | 130 | 43 | 710 | 0.1 | 100.0 |
| 30 | Mutual Information | 0.8914 | 0.937 | 0.85 | 773 | 126 | 48 | 714 | 0.1 | 1000.0 |
| 41 | Mutual Information | 0.8914 | 0.9256 | 0.8595 | 763 | 118 | 58 | 722 | 0.1 | 1000.0 |
| 44 | Mutual Information | 0.8914 | 0.9256 | 0.8595 | 763 | 118 | 58 | 722 | 0.1 | 1000.0 |
| 50 | Mutual Information | 0.8914 | 0.9256 | 0.8595 | 763 | 118 | 58 | 722 | 0.1 | 1000.0 |
| 27 | combined | 0.8913 | 0.9441 | 0.844 | 779 | 131 | 42 | 709 | 0.1 | 1000.0 |
| 53 | Mutual Information | 0.8913 | 0.9441 | 0.844 | 779 | 131 | 42 | 709 | 0.1 | 100.0 |
| 29 | Mutual Information | 0.8912 | 0.9382 | 0.8488 | 774 | 127 | 47 | 713 | 0.1 | 1000.0 |
| 56 | combined | 0.8911 | 0.9393 | 0.8476 | 775 | 128 | 46 | 712 | 0.1 | 100.0 |
| 55 | Mutual Information | 0.8908 | 0.9416 | 0.8452 | 777 | 130 | 44 | 710 | 0.1 | 100.0 |
| 58 | Mutual Information | 0.8908 | 0.9416 | 0.8452 | 777 | 130 | 44 | 710 | 0.1 | 100.0 |
| 36 | Ranksum | 0.8908 | 0.9245 | 0.8595 | 762 | 118 | 59 | 722 | 0.1 | 1000.0 |
| 40 | Mutual Information | 0.8907 | 0.9255 | 0.8583 | 763 | 119 | 58 | 721 | 0.1 | 1000.0 |
| 19 | RFE | 0.8906 | 0.9501 | 0.8381 | 784 | 136 | 37 | 704 | 0.1 | 1000.0 |
| 65 | Mutual Information | 0.8906 | 0.9381 | 0.8476 | 774 | 128 | 47 | 712 | 0.1 | 100.0 |
| 33 | RFE | 0.8905 | 0.9323 | 0.8524 | 769 | 124 | 52 | 716 | 0.1 | 1000.0 |
| 66 | Mutual Information | 0.8904 | 0.9392 | 0.8464 | 775 | 129 | 46 | 711 | 0.1 | 100.0 |
| 30 | T-test | 0.8904 | 0.9334 | 0.8512 | 770 | 125 | 51 | 715 | 0.1 | 1000.0 |
| 34 | RFE | 0.8904 | 0.9334 | 0.8512 | 770 | 125 | 51 | 715 | 0.1 | 1000.0 |
| 42 | Ranksum | 0.8904 | 0.9277 | 0.856 | 765 | 121 | 56 | 719 | 0.1 | 1000.0 |
| 35 | Mutual Information | 0.8903 | 0.9288 | 0.8548 | 766 | 122 | 55 | 718 | 0.1 | 1000.0 |
| 48 | Mutual Information | 0.8901 | 0.9416 | 0.844 | 777 | 131 | 44 | 709 | 0.1 | 100.0 |
| 45 | Ranksum | 0.8901 | 0.9244 | 0.8583 | 762 | 119 | 59 | 721 | 0.1 | 1000.0 |
| 48 | combined | 0.8901 | 0.9244 | 0.8583 | 762 | 119 | 59 | 721 | 0.1 | 1000.0 |

Table A.10: Martin Dataset, Logistic Regression, top 50 results sorted by $F_{1}$-score.

| $n$ | selection type | $F_{1}$-score | precision | recall | TN | FN | FP | TP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | Mutual Information | 0.8189 | 0.8254 | 0.8125 | 108 | 24 | 22 | 104 |
| 14 | combined | 0.8189 | 0.8254 | 0.8125 | 108 | 24 | 22 | 104 |
| 15 | combined | 0.8189 | 0.8254 | 0.8125 | 108 | 24 | 22 | 104 |
| 4 | RFE | 0.8142 | 0.824 | 0.8047 | 108 | 25 | 22 | 103 |
| 6 | RFE | 0.8142 | 0.824 | 0.8047 | 108 | 25 | 22 | 103 |
| 15 | T-test | 0.8142 | 0.824 | 0.8047 | 108 | 25 | 22 | 103 |
| 13 | T-test | 0.8127 | 0.8293 | 0.7969 | 109 | 26 | 21 | 102 |
| 18 | Mutual Information | 0.8127 | 0.8293 | 0.7969 | 109 | 26 | 21 | 102 |
| 18 | RFE | 0.8127 | 0.8293 | 0.7969 | 109 | 26 | 21 | 102 |
| 16 | Mutual Information | 0.8125 | 0.8125 | 0.8125 | 106 | 24 | 24 | 104 |
| 13 | Mutual Information | 0.811 | 0.8175 | 0.8047 | 107 | 25 | 23 | 103 |
| 15 | Mutual Information | 0.811 | 0.8175 | 0.8047 | 107 | 25 | 23 | 103 |
| 18 | combined | 0.811 | 0.8175 | 0.8047 | 107 | 25 | 23 | 103 |
| 19 | Mutual Information | 0.811 | 0.8175 | 0.8047 | 107 | 25 | 23 | 103 |
| 14 | T-test | 0.8095 | 0.8226 | 0.7969 | 108 | 26 | 22 | 102 |
| 16 | combined | 0.8095 | 0.8226 | 0.7969 | 108 | 26 | 22 | 102 |
| 16 | RFE | 0.8095 | 0.8226 | 0.7969 | 108 | 26 | 22 | 102 |
| 17 | combined | 0.8095 | 0.8226 | 0.7969 | 108 | 26 | 22 | 102 |
| 17 | RFE | 0.8095 | 0.8226 | 0.7969 | 108 | 26 | 22 | 102 |
| 23 | T-test | 0.8095 | 0.8226 | 0.7969 | 108 | 26 | 22 | 102 |
| 22 | T-test | 0.8078 | 0.811 | 0.8047 | 106 | 25 | 24 | 103 |
| 16 | T-test | 0.8063 | 0.816 | 0.7969 | 107 | 26 | 23 | 102 |
| 17 | T-test | 0.8063 | 0.816 | 0.7969 | 107 | 26 | 23 | 102 |
| 19 | combined | 0.8063 | 0.816 | 0.7969 | 107 | 26 | 23 | 102 |
| 20 | Mutual Information | 0.8063 | 0.816 | 0.7969 | 107 | 26 | 23 | 102 |
| 17 | Mutual Information | 0.8062 | 0.8 | 0.8125 | 104 | 24 | 26 | 104 |
| 21 | Mutual Information | 0.8048 | 0.8211 | 0.7891 | 108 | 27 | 22 | 101 |
| 24 | T-test | 0.8048 | 0.8211 | 0.7891 | 108 | 27 | 22 | 101 |
| 10 | RFE | 0.8031 | 0.8095 | 0.7969 | 106 | 26 | 24 | 102 |
| 5 | RFE | 0.8016 | 0.8145 | 0.7891 | 107 | 27 | 23 | 101 |
| 11 | Mutual Information | 0.8016 | 0.8145 | 0.7891 | 107 | 27 | 23 | 101 |
| 12 | Mutual Information | 0.8016 | 0.8145 | 0.7891 | 107 | 27 | 23 | 101 |
| 11 | Lasso | 0.8016 | 0.7984 | 0.8047 | 104 | 25 | 26 | 103 |
| 12 | Lasso | 0.8016 | 0.7984 | 0.8047 | 104 | 25 | 26 | 103 |
| 9 | RFE | 0.8 | 0.8031 | 0.7969 | 105 | 26 | 25 | 102 |
| 21 | T-test | 0.8 | 0.8031 | 0.7969 | 105 | 26 | 25 | 102 |
| 29 | Mutual Information | 0.8 | 0.8197 | 0.7813 | 108 | 28 | 22 | 100 |
| 10 | Mutual Information | 0.7984 | 0.808 | 0.7891 | 106 | 27 | 24 | 101 |
| 19 | T-test | 0.7969 | 0.7969 | 0.7969 | 104 | 26 | 26 | 102 |
| 20 | T-test | 0.7969 | 0.7969 | 0.7969 | 104 | 26 | 26 | 102 |
| 23 | combined | 0.7968 | 0.813 | 0.7813 | 107 | 28 | 23 | 100 |
| 24 | Ranksum | 0.7968 | 0.813 | 0.7813 | 107 | 28 | 23 | 100 |
| 25 | Ranksum | 0.7968 | 0.813 | 0.7813 | 107 | 28 | 23 | 100 |
| 26 | combined | 0.7968 | 0.813 | 0.7813 | 107 | 28 | 23 | 100 |
| 35 | Lasso | 0.7953 | 0.8016 | 0.7891 | 105 | 27 | 25 | 101 |
| 36 | Lasso | 0.7953 | 0.8016 | 0.7891 | 105 | 27 | 25 | 101 |

Table A.11: Martin Dataset, Linear SVM, top 50 results sorted by $F_{1}$-score.

| $n$ | selection type | $F_{1}$-score | precision | recall | TN | FN | FP | TP | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | Mutual Information | 0.8273 | 0.8512 | 0.8047 | 112 | 25 | 18 | 103 | 100.0 |
| 48 | combined | 0.8217 | 0.8154 | 0.8281 | 106 | 22 | 24 | 106 | 100.0 |
| 15 | Mutual Information | 0.8211 | 0.8559 | 0.7891 | 113 | 27 | 17 | 101 | 100.0 |
| 21 | T-test | 0.8189 | 0.8254 | 0.8125 | 108 | 24 | 22 | 104 | 100.0 |
| 48 | T-test | 0.8185 | 0.8092 | 0.8281 | 105 | 22 | 25 | 106 | 100.0 |
| 42 | combined | 0.8185 | 0.8092 | 0.8281 | 105 | 22 | 25 | 106 | 100.0 |
| 10 | Mutual Information | 0.8178 | 0.8487 | 0.7891 | 112 | 27 | 18 | 101 | 100.0 |
| 59 | combined | 0.8178 | 0.8487 | 0.7891 | 112 | 27 | 18 | 101 | 10.0 |
| 59 | Ranksum | 0.8178 | 0.8487 | 0.7891 | 112 | 27 | 18 | 101 | 10.0 |
| 22 | T-test | 0.8171 | 0.814 | 0.8203 | 106 | 23 | 24 | 105 | 100.0 |
| 16 | T-test | 0.8145 | 0.8417 | 0.7891 | 111 | 27 | 19 | 101 | 10.0 |
| 17 | T-test | 0.8145 | 0.8417 | 0.7891 | 111 | 27 | 19 | 101 | 10.0 |
| 47 | combined | 0.8145 | 0.8417 | 0.7891 | 111 | 27 | 19 | 101 | 100.0 |
| 57 | combined | 0.8145 | 0.8417 | 0.7891 | 111 | 27 | 19 | 101 | 10.0 |
| 20 | T-test | 0.8142 | 0.824 | 0.8047 | 108 | 25 | 22 | 103 | 10.0 |
| 44 | combined | 0.814 | 0.8077 | 0.8203 | 105 | 23 | 25 | 105 | 100.0 |
| 45 | Mutual Information | 0.8123 | 0.797 | 0.8281 | 103 | 22 | 27 | 106 | 100.0 |
| 16 | combined | 0.8115 | 0.8534 | 0.7734 | 113 | 29 | 17 | 99 | 10.0 |
| 18 | combined | 0.8115 | 0.8534 | 0.7734 | 113 | 29 | 17 | 99 | 10.0 |
| 24 | T-test | 0.8097 | 0.8403 | 0.7813 | 111 | 28 | 19 | 100 | 100.0 |
| 15 | combined | 0.8097 | 0.8403 | 0.7813 | 111 | 28 | 19 | 100 | 10.0 |
| 15 | T-test | 0.8097 | 0.8403 | 0.7813 | 111 | 28 | 19 | 100 | 10.0 |
| 60 | Ranksum | 0.8097 | 0.8403 | 0.7813 | 111 | 28 | 19 | 100 | 10.0 |
| 52 | combined | 0.8095 | 0.8226 | 0.7969 | 108 | 26 | 22 | 102 | 10.0 |
| 14 | T-test | 0.8082 | 0.8462 | 0.7734 | 112 | 29 | 18 | 99 | 10.0 |
| 19 | combined | 0.8082 | 0.8462 | 0.7734 | 112 | 29 | 18 | 99 | 10.0 |
| 52 | T-test | 0.8078 | 0.811 | 0.8047 | 106 | 25 | 24 | 103 | 10.0 |
| 37 | combined | 0.8077 | 0.7955 | 0.8203 | 103 | 23 | 27 | 105 | 100.0 |
| 33 | RFE | 0.8065 | 0.8333 | 0.7813 | 110 | 28 | 20 | 100 | 100.0 |
| 34 | RFE | 0.8065 | 0.8333 | 0.7813 | 110 | 28 | 20 | 100 | 10.0 |
| 36 | RFE | 0.8065 | 0.8333 | 0.7813 | 110 | 28 | 20 | 100 | 10.0 |
| 56 | combined | 0.8065 | 0.8333 | 0.7813 | 110 | 28 | 20 | 100 | 10.0 |
| 54 | T-test | 0.8063 | 0.816 | 0.7969 | 107 | 26 | 23 | 102 | 10.0 |
| 51 | combined | 0.8063 | 0.816 | 0.7969 | 107 | 26 | 23 | 102 | 100.0 |
| 24 | Ranksum | 0.8049 | 0.839 | 0.7734 | 111 | 29 | 19 | 99 | 10.0 |
| 14 | combined | 0.8049 | 0.839 | 0.7734 | 111 | 29 | 19 | 99 | 100.0 |
| 22 | RFE | 0.8048 | 0.8211 | 0.7891 | 108 | 27 | 22 | 101 | 10.0 |
| 33 | Lasso | 0.8048 | 0.8211 | 0.7891 | 108 | 27 | 22 | 101 | 100.0 |
| 37 | Mutual Information | 0.8048 | 0.8211 | 0.7891 | 108 | 27 | 22 | 101 | 100.0 |
| 39 | combined | 0.8048 | 0.8211 | 0.7891 | 108 | 27 | 22 | 101 | 100.0 |
| 23 | T-test | 0.8032 | 0.8264 | 0.7813 | 109 | 28 | 21 | 100 | 100.0 |
| 39 | Mutual Information | 0.8032 | 0.8264 | 0.7813 | 109 | 28 | 21 | 100 | 100.0 |
| 43 | Mutual Information | 0.8031 | 0.8095 | 0.7969 | 106 | 26 | 24 | 102 | 100.0 |
| 45 | Ranksum | 0.8031 | 0.8095 | 0.7969 | 106 | 26 | 24 | 102 | 100.0 |
| 48 | Mutual Information | 0.8031 | 0.8095 | 0.7969 | 106 | 26 | 24 | 102 | 10.0 |
| 50 | Ranksum | 0.8031 | 0.8095 | 0.7969 | 106 | 26 | 24 | 102 | 10.0 |
| 28 | Mutual Information | 0.8031 | 0.7939 | 0.8125 | 103 | 24 | 27 | 104 | 100.0 |
| 44 | Mutual Information | 0.803 | 0.766 | 0.8438 | 97 | 20 | 33 | 108 | 100.0 |
| 18 | Mutual Information | 0.8017 | 0.8509 | 0.7578 | 113 | 31 | 17 | 97 | 1.0 |
| 11 | Mutual Information | 0.8016 | 0.8319 | 0.7734 | 110 | 29 | 20 | 99 | 100.0 |

Table A.12: Martin Dataset, Gaussian SVM, top 50 results sorted by $F_{1}$-score.

| $n$ | selection type | $F_{1}$-score | precision | recall | TN | FN | FP | TP | gamma | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 47 | Ranksum | 0.8207 | 0.8374 | 0.8047 | 110 | 25 | 20 | 103 | 0.01 | 100.0 |
| 6 | RFE | 0.813 | 0.8475 | 0.7813 | 112 | 28 | 18 | 100 | 1.0 | 10.0 |
| 21 | T-test | 0.811 | 0.8175 | 0.8047 | 107 | 25 | 23 | 103 | 0.1 | 10.0 |
| 47 | Mutual Information | 0.811 | 0.8175 | 0.8047 | 107 | 25 | 23 | 103 | 0.01 | 1000.0 |
| 10 | RFE | 0.8093 | 0.8062 | 0.8125 | 105 | 24 | 25 | 104 | 1.0 | 10.0 |
| 10 | Mutual Information | 0.8092 | 0.791 | 0.8281 | 102 | 22 | 28 | 106 | 0.1 | 1000.0 |
| 49 | Mutual Information | 0.8048 | 0.8211 | 0.7891 | 108 | 27 | 22 | 101 | 0.01 | 1000.0 |
| 12 | Mutual Information | 0.8047 | 0.8047 | 0.8047 | 105 | 25 | 25 | 103 | 0.1 | 1000.0 |
| 7 | RFE | 0.8045 | 0.7754 | 0.8359 | 99 | 21 | 31 | 107 | 10.0 | 1.0 |
| 22 | RFE | 0.8032 | 0.8264 | 0.7813 | 109 | 28 | 21 | 100 | 0.1 | 10.0 |
| 50 | Mutual Information | 0.8032 | 0.8264 | 0.7813 | 109 | 28 | 21 | 100 | 0.01 | 1000.0 |
| 54 | combined | 0.8032 | 0.8264 | 0.7813 | 109 | 28 | 21 | 100 | 0.01 | 1000.0 |
| 17 | RFE | 0.8031 | 0.8095 | 0.7969 | 106 | 26 | 24 | 102 | 0.01 | 1000.0 |
| 24 | T-test | 0.8031 | 0.8095 | 0.7969 | 106 | 26 | 24 | 102 | 0.1 | 10.0 |
| 46 | Mutual Information | 0.8031 | 0.8095 | 0.7969 | 106 | 26 | 24 | 102 | 0.01 | 1000.0 |
| 48 | Mutual Information | 0.8031 | 0.8095 | 0.7969 | 106 | 26 | 24 | 102 | 0.01 | 1000.0 |
| 11 | Mutual Information | 0.8031 | 0.7939 | 0.8125 | 103 | 24 | 27 | 104 | 0.1 | 1000.0 |
| 55 | combined | 0.8016 | 0.8319 | 0.7734 | 110 | 29 | 20 | 99 | 0.01 | 1000.0 |
| 20 | T-test | 0.8 | 0.7879 | 0.8125 | 102 | 24 | 28 | 104 | 1.0 | 1.0 |
| 23 | T-test | 0.8 | 0.7879 | 0.8125 | 102 | 24 | 28 | 104 | 1.0 | 1.0 |
| 27 | Ranksum | 0.8 | 0.8197 | 0.7813 | 108 | 28 | 22 | 100 | 0.1 | 100.0 |
| 49 | T-test | 0.8 | 0.8197 | 0.7813 | 108 | 28 | 22 | 100 | 0.01 | 1000.0 |
| 9 | Mutual Information | 0.7984 | 0.7923 | 0.8047 | 103 | 25 | 27 | 103 | 0.1 | 1000.0 |
| 53 | combined | 0.7984 | 0.7923 | 0.8047 | 103 | 25 | 27 | 103 | 0.01 | 100.0 |
| 43 | Mutual Information | 0.7984 | 0.808 | 0.7891 | 106 | 27 | 24 | 101 | 0.01 | 1000.0 |
| 25 | Ranksum | 0.7984 | 0.825 | 0.7734 | 109 | 29 | 21 | 99 | 0.01 | 1000.0 |
| 28 | Ranksum | 0.7984 | 0.825 | 0.7734 | 109 | 29 | 21 | 99 | 0.01 | 1000.0 |
| 22 | T-test | 0.7969 | 0.782 | 0.8125 | 101 | 24 | 29 | 104 | 1.0 | 1.0 |
| 14 | T-test | 0.7968 | 0.813 | 0.7813 | 107 | 28 | 23 | 100 | 0.1 | 100.0 |
| 45 | combined | 0.7968 | 0.813 | 0.7813 | 107 | 28 | 23 | 100 | 0.01 | 1000.0 |
| 24 | Ranksum | 0.7967 | 0.8305 | 0.7656 | 110 | 30 | 20 | 98 | 0.01 | 1000.0 |
| 4 | RFE | 0.7956 | 0.7466 | 0.8516 | 93 | 19 | 37 | 109 | 100.0 | 0.1 |
| 41 | Mutual Information | 0.7953 | 0.8016 | 0.7891 | 105 | 27 | 25 | 101 | 0.01 | 1000.0 |
| 24 | combined | 0.7952 | 0.8182 | 0.7734 | 108 | 29 | 22 | 99 | 0.01 | 1000.0 |
| 31 | RFE | 0.7952 | 0.8182 | 0.7734 | 108 | 29 | 22 | 99 | 0.01 | 1000.0 |
| 16 | RFE | 0.7937 | 0.8065 | 0.7813 | 106 | 28 | 24 | 100 | 0.01 | 1000.0 |
| 18 | T-test | 0.7937 | 0.8065 | 0.7813 | 106 | 28 | 24 | 100 | 0.1 | 100.0 |
| 34 | Ranksum | 0.7937 | 0.8065 | 0.7813 | 106 | 28 | 24 | 100 | 0.01 | 1000.0 |
| 48 | T-test | 0.7937 | 0.8065 | 0.7813 | 106 | 28 | 24 | 100 | 0.01 | 1000.0 |
| 52 | combined | 0.7937 | 0.8065 | 0.7813 | 106 | 28 | 24 | 100 | 0.01 | 1000.0 |
| 5 | RFE | 0.7935 | 0.8235 | 0.7656 | 109 | 30 | 21 | 98 | 0.1 | 1000.0 |
| 59 | Mutual Information | 0.7935 | 0.8235 | 0.7656 | 109 | 30 | 21 | 98 | 0.1 | 10.0 |
| 19 | T-test | 0.7922 | 0.7953 | 0.7891 | 104 | 27 | 26 | 101 | 0.1 | 100.0 |
| 20 | Mutual Information | 0.7922 | 0.7953 | 0.7891 | 104 | 27 | 26 | 101 | 0.01 | 1000.0 |
| 21 | Mutual Information | 0.7922 | 0.7953 | 0.7891 | 104 | 27 | 26 | 101 | 0.01 | 1000.0 |
| 28 | Mutual Information | 0.7922 | 0.7953 | 0.7891 | 104 | 27 | 26 | 101 | 0.1 | 100.0 |
| 13 | RFE | 0.792 | 0.8115 | 0.7734 | 107 | 29 | 23 | 99 | 0.01 | 1000.0 |

Table A.13: Feature indices and short names.

| index | feature name | index | feature name |
| :---: | :---: | :---: | :---: |
| 0 | exclamation_ratio | 40 | blacklisted_words_count |
| 1 | long_words_count | 41 | unkown__word_count |
| 2 | wh_pronouns | 42 | modified_words_count |
| 3 | ellipsis_count | 43 | in_dictionary |
| 4 | period_ratio | 44 | polite_words_count |
| 5 | questionmark_ratio | 45 | imperative_count |
| 6 | whitespace_ratio | 46 | per_sent___sent__endings |
| 7 | highlighters_count | 47 | per_sent__ellipses |
| 8 | paragraph_count | 48 | per_sent___modal__verbs |
| 9 | sentence_count | 49 | per_sent___imperatives |
| 10 | word_count | 50 | per_sent___one_char_word |
| 11 | type_to_token_ratio | 51 | per_sent___connectors |
| 12 | max_wordlength | 52 | per_sent___wh_pronouns |
| 13 | average__wordlength | 53 | per_sent__rep_punc |
| 14 | median_wordlength | 54 | per_sent___paragraphs |
| 15 | spaced_words_count | 55 | per_sent___urbanDict_only |
| 16 | edit_distance | 56 | per_sent___blacklisted_words |
| 17 | lengthening_counts | 57 | per_sent__unknown_words |
| 18 | longest__sent_len | 58 | per_words__unknown_words |
| 19 | avg_sent_len | 59 | per_words__urbanDict_only |
| 20 | median_sent_len | 60 | per_words___blacklisted_words |
| 21 | shortest_sent_len | 61 | per__words__all_caps |
| 22 | subj_ratio | 62 | per_words___long_words |
| 23 | subj_pos_ratio | 63 | per__words__modified_words |
| 24 | subj_neg_ratio | 64 | per__words___numbers |
| 25 | mdash_count | 65 | per_imperatives__imperative_indirect |
| 26 | pos_type_ratio | 66 | per_imperatives___imperative_strength |
| 27 | JJR_ratio | 67 | per_imperatives__imperative_polite |
| 28 | JJS_ratio |  |  |
| 29 | RBR_ratio |  |  |
| 30 | RBS_ratio |  |  |
| 31 | modal_ratio |  |  |
| 32 | present_ratio |  |  |
| 33 | past_ratio |  |  |
| 34 | rep_punc_len_avg |  |  |
| 35 | non_alphanum_ratio |  |  |
| 36 | blacklist_CAPS |  |  |
| 37 | mixed_case_word_count |  |  |
| 38 | noise_count |  |  |
| 39 | urbanDict_only |  |  |

## References

## Literature

[1] Ashley Anderson et al. "The "Nasty Effect:" Online Incivility and Risk Perceptions of Emerging Technologies". Journal of Computer-Mediated Communication 19.3 (2014), pp. 373-387 (cit. on p. 1).
[2] Ingrid Brodnig. Hass im Netz. Was wir gegen Hetze, Mobbing und Lügen tun können. Wien: Christian Brandstätter Verlag, 2016 (cit. on pp. 1, 2).
[3] Samuel Brody and Nicholas Diakopoulos. "Coooooooooooooooll111111111111!!!!!!!!!!!!!! Using Word Lengthening to Detect Sentiment in Microblogs". In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Edinburgh, UK: Association for Computational Linguistics, 2011, pp. 562-570 (cit. on p. 25).
[4] Pete Burnap and Matthew Williams. "Hate speech, machine classification and statistical modelling of information flows on Twitter: Interpretation and communication for policy decision making". In: Proceedings of Internet, Policy \& Politics 2014. Oxford, UK, 2014, pp. 1-18. URL: http://orca.cf.ac.uk/65227/(cit. on pp. 7 . 8, 10).
[5] Ying Chen et al. "Detecting Offensive Language in Social Media to Protect Adolescent Online Safety". In: Proceedings of the 2012 ASE/IEEE International Conference on Social Computing and 2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust. SOCIALCOM-PASSAT '12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 71-80 (cit. on pp. 7. 8, 10).
[6] Isabelle Guyon and André Elisseeff. "An Introduction to Variable and Feature Selection". Journal of Machine Learning 3 (Mar. 2003), pp. 1157-1182 (cit. on pp. 26, 27, (45).
[7] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A Practical Guide to Support Vector Classification. Tech. rep. Taipei 106, Taiwan: Department of Computer Science, National Taiwan University, 2003. URL: http://www.csie.ntu.edu.tw/~cjli n/papers.html (cit. on p. 29).
[8] Till Krause and Hannes Grassegger. "Inside Facebook". Süddeutsche Zeitung (Dec. 2016). URL: http://www.sueddeutsche.de/digital/exklusive-sz-magazin-recherche-in side-facebook-1.3297138 (cit. on p. 2).
[9] Chikashi Nobata et al. "Abusive Language Detection in Online User Content". In: Proceedings of the 25th International Conference on World Wide Web. WWW '16. Montreal, Quebec, Canada: International World Wide Web Conferences Steering Committee, 2016, pp. 145-153 (cit. on pp. 7-10).
[10] Amir H. Razavi et al. "Offensive Language Detection Using Multi-level Classification". In: Proceedings of the 23rd Canadian Conference on Advances in Artificial Intelligence. AI'10. Ottawa, Canada: Springer-Verlag, 2010, pp. 16-27 (cit. on pp. 7, 8, 10).
[11] Ellen Spertus. "Smokey: Automatic Recognition of Hostile Messages". In: Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Conference on Innovative Applications of Artificial Intelligence. AAAI'97/IAAI'97. Providence, Rhode Island: AAAI Press, 1997, pp. 1058-1065 (cit. on pp. 8, 10, 11).
[12] William Warner and Julia Hirschberg. "Detecting Hate Speech on the World Wide Web". In: Proceedings of the Second Workshop on Language in Social Media. LSM '12. Montreal, Canada: Association for Computational Linguistics, 2012, pp. 1926 (cit. on pp. 7, 8, 10).
[13] Ellery Wulczyn, Nithum Thain, and Lucas Dixon. "Ex Machina: Personal Attacks Seen at Scale". In: Proceedings of the 26th International Conference on World Wide Web. WWW '17. Perth, Australia: International World Wide Web Conferences Steering Committee, 2017, pp. 1391-1399 (cit. on pp. 7. 9-11).

## Online sources

[14] Jamie Bartlett et al. Anti-Social Media. 2014. URL: https://www.demos.co.uk/file s/DEMOS_Anti-social_Media.pdf (cit. on p. 11).
[15] Katie Benner. Twitter Adds New Ways to Curb Abuse and Hate Speech. Nov. 2016. URL: https://www.nytimes.com/2016/11/16/technology/twitter-adds-new-ways-to -curb-abuse-and-hate-speech.html (cit. on p. 2).
[16] Maeve Duggan. Online Harassment 2017. July 2017. URL: http://www.pewintern et.org/2017/07/11/online-harassment-2017/ (cit. on pp. 1. 2).
[17] Melissa Eddy and Mark Scott. Delete Hate Speech or Pay Up, Germany Tells Social Media Companies. June 2017. URL: https://www.nytimes.com/2017/06/30 /business/germany-facebook-google-twitter.html (cit. on p. 2).
[18] Andy Greenberg. Now Anyone Can Deploy Google's Troll-Fighting AI. 2017. URL: https://www.wired.com/2017/02/googles-troll- fighting-ai-now-belongs-world/ (cit. on p. 2).
[19] Boris Hänßler. Am Anfang war das Pöbeln - Geschichte des Shitstorms. Jan. 2014. URL: http://www.spiegel.de/einestages/vom-flamewar-zum-shitstorm-geschichte-d es-internet-gepoebels-a-953266.html (cit. on p. 7).
[20] Ed Ho. Our Latest Update on Safety. 2017. URL: https://blog.twitter.com/official /en_us/topics/product/2017/our-latest-update-on-safety.html (cit. on p. 2).
[21] Rashmi Jain. SVM and Parameter Tuning in Python and R. URL: http://blog.ha ckerearth.com/simple-tutorial-svm-parameter-tuning-python-r (cit. on p. 30).
[22] Ankur Lal. Text Moderation - A Use Case on Detecting Offensive Text Using NLP. Nov. 2015. URL: http://www.hcltech.com/blogs/engineering-and-rd-services /text-moderation-use-case-detecting-offensive-text-using-nlp (cit. on pp. 10, 19).
[23] OpenCV. Introduction to Support Vector Machines. URL: http://docs.opencv.org /2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html (cit. on p. 30 .
[24] RBF SVM parameters. URL: http://scikit-learn.org/stable/auto_examples/svm/pl ot_rbf_parameters.html (cit. on p. 29).
[25] Janko Roettgers. Instagram Starts Using Artificial Intelligence to Moderate Comments. Is Facebook Up Next? June 2017. URL: http://variety.com/2017/digital/ne ws/instagram-ai-machine-learning-facebook-filters-1202482031/(cit. on p. 2d.
[26] Gerry Smith and Jeremy Kahn. Comments Welcome at N.Y. Times, With TrollBlocking Tech Tool. 2017. urL: https://www.bloomberg.com/news/articles/2017-0 6-13/comments-welcome- at-n-y-times-with-troll-blocking-tech-tool (cit. on p. 2).
[27] Nicholas Thompson. Instagram Unleashes an AI System to Blast Away Nasty Comments. June 2017. URL: https://www.wired.com/story/instagram-launches-ai -system-to-blast-nasty-comments (cit. on p. 22).
[28] Ellery Wulczyn, Nithum Thain, and Lucas Dixon. Wikipedia Talk Labels: Personal Attacks. Feb. 2017. URL: https://figshare.com/articles/Wikipedia_Talk_Labels_Pe rsonal_Attacks/4054689 (cit. on pp. 9, 16).

# Check Final Print Size 

- Check final print size! -

- Remove this page after printing! -


[^0]:    ${ }^{1}$ The top definition of the term troll, in the Urban Dictionary, is: "One who posts a deliberately provocative message to a newsgroup or message board with the intention of causing maximum disruption and argument."
    ${ }^{2}$ Artificial Neural Networks are inspired by biological brains; they use artificial neurons which mimic how a brain processes information.

[^1]:    ${ }^{1}$ For the full list of tags visit http://web.mit.edu/6.863/www/PennTreebankTags.html.

[^2]:    ${ }^{1}$ flame: to send an angry, hostile, or abusive electronic message

[^3]:    ${ }^{2}$ epithets: short insulting phrases (e.g., 'get a life')

[^4]:    ${ }^{3}$ https://www.perspectiveapi.com/

[^5]:    ${ }^{1}$ Unstandardized features might lead to unexpected behavior, such as sensitivity of the model towards the order of the feature columns in the data matrix (an observation made with Scikit-learn's LogisticRegression).

[^6]:    ${ }^{2}$ The RFE does, in fact, return selections of predefined size without an explicit ranking; the ranking was created specifically, to enable a comparison.

[^7]:    ${ }^{3}$ An aggression value is 0 if the comment is considered neutral or friendly by a worker, respectively 1 if considered aggressive. The aggression-mean per comment is based on all available aggression values for the given comment.
    ${ }^{4}$ The groups are deliberately balanced and do not reflect the actual distribution of the corpus.
    ${ }^{5}$ The comments were collected between 2016-12-15 and 2017-04-13 from comment sections of US online News media like The New York Times and Breitbart News. The source articles revolve around the US presidential election of 2016 and its aftermath.

[^8]:    ${ }^{6}$ The Urban Dictionary (http://www.urbandictionary.com/) is an open online dictionary of slang words and phrases where users may submit their own definitions.
    ${ }^{7}$ Lexical diversity measures the spectrum of indivual words used in a text.

[^9]:    ${ }^{8}$ In an initial preprocessing step divergent forms of newline characters (' $\backslash r$ ', ' $\backslash r \backslash n$ ') were standardized into ' $\backslash n$ '.

[^10]:    ${ }^{9}$ In this case there is no distinction between a single period and ellipses: A sequence of three periods contributes a count of 3 to the total period count.

[^11]:    ${ }^{10}$ A long dash which—instead of an actual long dash—often appears as a pair (or triplet) of hyphens.
    ${ }^{11}$ Leetspeak is a form of writing where single letters of a word are replaced by similarly looking numerals or special characters. It is often used as a means to evade blacklist filters (e.g., 'd1ckh34d', meaning 'dickhead').
    ${ }^{12}$ The Levenshtein distance, commonly referred to as edit distance, is used to measure the difference between two strings. E.g., the edit distance from leetspeak word ' $\$ w 33 t$ ' to its corrected version 'sweet' amounts to 3 since three letters were exchanged.

[^12]:    ${ }^{13}$ Hyperparameters are parameters that need to be predefined befor the model training process. These parameters cannot be learned directly from the data.

[^13]:    ${ }^{1}$ https://www.freewebheaders.com/full-list-of-bad-words-banned-by-google/

[^14]:    ${ }^{2}$ http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
    ${ }^{3}$ https://pypi.python.org/pypi/urbandictionary/
    ${ }^{4}$ https://figshare.com/articles/Wikipedia__Talk_Labels_Aggression/4267550

[^15]:    ${ }^{5}$ Note: This is not an exhaustive list of valid contractions. In fact, it is missing the ' $m$ ' (e.g., " $I$ ' $m$ "). It also does not cover common informal contractions, such as " $y$ 'all".

[^16]:    ${ }^{6}$ Automatic spellcorrection, on the other hand, is not applied as the tested spellcheckers failed some simple, random autocorrection tests and the original sentences would become distorted too much.
    ${ }^{7}$ UH refers to an interjection, RB is the tag for adverbs and PRP is short for personal pronoun.

[^17]:    ${ }^{1}(5 \cdot(68-1)$ ranking selections +23 Lasso selections +1 full set $) \cdot 3$ classifiers $=1077$ models

[^18]:    ${ }^{2}(5 \cdot(68-1)$ ranked selections +25 Lasso selections +1 full set $) \cdot 3$ classifiers $=1083$ models

[^19]:    ${ }^{1}$ The term Named Entity refers to specific people, locations, products, etc.

