
Advanced Interaction Techniques for
Remote Collaboration Systems Using

an RGBD Camera

Barbara J. Schwankl

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2015

© Copyright 2015 Barbara J. Schwankl

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, September 18, 2015

Barbara J. Schwankl

iii

Contents

Declaration iii

Vorwort vi

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 3

2 Related work 4
2.1 State of the art . 4
2.2 Analysis of existing work . 9

3 Methodology 11
3.1 Concept . 11
3.2 Setup . 12

3.2.1 User caption with the MS Kinect v2 sensor 13
3.3 Remote visualization . 16

4 Prototype implementation 18
4.1 Data acquisition . 19

4.1.1 Determination of the camera position 20
4.2 Frame transformation . 21

4.2.1 Input parameters . 21
4.2.2 Frame access . 22
4.2.3 Background elimination 24
4.2.4 Scenario 1: Symbol pointer 25
4.2.5 Scenario 2: Hand duplication 26
4.2.6 Scenario 3: Arm transformation 27
4.2.7 Determination of accurate boundary vectors 33
4.2.8 Overlapping body parts 34

iv

Contents v

4.3 Rendering . 35
4.4 Performance enhancement . 36

4.4.1 Improved body detection using flood fill algorithms . . 36
4.4.2 Unmanaged code . 41

4.5 Limitations . 41

5 Conclusion and Future Work 42

A System requirements 44

B CD Content 45
B.1 PDF files . 45
B.2 Source Code . 45
B.3 Images . 45

References 46
Literature . 46
Online sources . 48

Vorwort

Fortschreitende Technologie ermöglicht es uns, länder- und kontinentüber-
greifend miteinander zu kommunizieren. Jedoch hat sich gezeigt, dass die
Kommunikation via Email und Smartphone auch den persönlichen Kon-
takt vernachlässigen kann. Diese Arbeit fokussiert daher Videokonferenzen,
welche persönliche Besprechungen imitieren und somit die persönliche Note
mit einfließen lassen. Großen Dank an meinen Betreuer Dr. Michael Haller,
welcher mir mit Expertise zur Seite stand und mich mit seiner konstruk-
tiven Kritik ständig forderte, meine Arbeit noch zu verbessern. Danke auch
an Dr. Wilhelm Burger für seine Hilfe bei der Leistungsverbesserung meiner
Algorithmen.

Mit dieser Arbeit endet ein langjähriger, erfahrungsreicher Abschnitt
in meinem Leben - das Studium. Ich freue mich schon darauf, mit all den
gewonnenen wertvollen Erfahrungen mit voller Kraft voraus in den nächsten
Abschnitt zu starten. Die Zeit des Studiums war nicht immer leicht, und
ohne die Unterstützung einiger Personen wäre ein erfolgreicher Abschluss
nicht möglich gewesen. Aus tiefstem Herzen danke ich Martin für seine
endlose Liebe, seinen immerwährenden Rückhalt und nicht zuletzt seinem
unermüdlichen Korrekturlesen dieser Arbeit. Besonderer Dank gilt meinen
Eltern, die mir dieses Studium ermöglicht und über all die Jahre an mich
geglaubt haben. Lieben Dank an meine Großeltern, Schwiegereltern und
Geschwister für euer Mitfiebern und eure offenen Ohren. Danke David für
deine sorgfältige Korrekturlesung. Danke auch an meine Freunde und Stu-
dienkollegen, für gesellige Stunden, hitzige Diskussionen und nächtelange,
intensive Treffen zum Ausarbeiten gemeinsamer Übungen. In manchen von
ihnen habe ich Freunde fürs Leben gefunden.

vi

Abstract

This work presents an enhanced system supporting remote collaboration us-
ing a digital whiteboard and an RGBD camera. Showing the remote partner
behind the transparent collaboration surface imitates a face-to-face meeting,
revealing significant mimics, gestures and interactivity of the partner. Thus,
a personalized feeling for the users is created. Three different gesture visual-
ization scenarios are introduced in order to compensate for the perspective
distortion that is due to the camera positioning. Several seed fill algorithms
are compared to increase the performance of the system, considering the
amount of data that has to be processed to render the motion images. A
prototype has been developed to investigate the relevance and adaptability
of the system within a workaday life.

vii

Kurzfassung

Diese Arbeit beschäftigt sich mit einem Kollaborationssystem zur Ergänzung
von Videokonferenzsystemen, bei welchem ein digitales Whiteboard zur In-
teraktion und eine RGBD Kamera als Sensor verwendet werden. Ziel ist
es, ein System zur Verfügung zu stellen, bei welchem der Gesprächspartner
scheinbar hinter dem transparenten Whiteboard steht. Dadurch kann di-
rekt und persönlich mit dem Gesprächspartner kommuniziert werden, wobei
zusätzlich zur Sprache auch Mimik und Gestik zu besserer Zusammenar-
beit und einer erfolgreichen Kommunikation beitragen. Diese zusätzlichen
Eindrücke auf der Meta-Ebene ermöglichen den Aufbau einer tieferen Ver-
bundenheit zum Kommunikationspartner, als es über eine reine auf Ton
basierende Kommunikation möglich wäre. In einem Prototypen wurden drei
verschiedene Varianten für die Visualisierung des Gesprächspartners ver-
wirklicht, um die perspektivischen Verzerrungen, welche durch die Position-
ierung der Kamera verursacht werden, zu kompensieren. Zusätzlich wurden
effiziente Algorithmen verwendet, um das System in einem herkömmlichen
Büro ohne zusätzliche Aufwände einsetzen zu können.

viii

Chapter 1

Introduction

Teleconferencing technologies enable users to work collaboratively without
the need to share the same room. Collaborators may come from different
cities or different countries, have a different mother-language and a different
cultural background. Therefore, it is important that remote collaboration
concepts set an increased focus on communication and interaction. Video
supported collaboration offers multiple advantages as the user can transport
information through gestures and mimics without interrupting the currently
talking user [7]. Previous studies showed that in video conferencing systems,
body language availability and the field-of-view of the transmitted data in-
fluences the users’ communicative attitude [16, 17]. The subjective feeling
of dominance within a conversation depends on the users’ gender. Men feel
more dominant using body language while women feel more dominant with
their body language not being transmitted. Furthermore, eye-contact and
gaze awareness are essential to conceive meta-information [2]. The conceived
distance to the communication partner influences how comfortable the par-
ticipants feel. Hall [3] describes these so-called proxemics in his work. Digital
collaboration tools, such as interactive whiteboards, can break the barriers
of proxemics [21].

The main aim of this thesis is to find a way to imitate face-to-face col-
laboration for remote participants and enhance gesture visualizations with
a simple hardware setup.

1.1 Motivation
The ideal scenario for a remote collaboration tool is a digital screen on which
the collaborative content is shared and edited by all users simultaneously
(cf. Fig. 1.1a). On the screen and behind the shared content, the remote
collaborator is seen like through a transparent surface. Figure 1.1b shows a
setup that endorses this vision. However, there are several drawbacks linked
to that approach. The camera that is placed behind the screen captures the

1

1. Introduction 2

user and the shared content. Similar as described by Ishii et al. [8], written
content appears mirrored, therefore it would have to be excluded from the
video stream first, then mirrored, and subsequently combined with the re-
mote user’s image again. Furthermore, this setup requires an unreasonable

(a) Remote collaboration

A

DISPLAY

(b) Ideal camera position

Figure 1.1: The remote collaboration scenario. The user writes on a collab-
orative surface and sees the collaborator behind the shared content (a). The
ideal camera placement would be behind a transparent collaborative wall that
captures the user from the front. In this way, a face-to-face communication
is imitated (b).

amount of space for conventional offices. The screen has to be set up in
the middle of the room to leave enough space to place the camera behind.
Thereby, a suitable distance from the camera to the screen is required to be
able to capture the user when standing still as well as on moving. A proto-
type was created that surpasses the weaknesses of the approaches presented
in Chapter 2. The demands for the system are as follows:

• Global availability and affordability. A fundamental idea behind
elaborated remote collaboration is availability of the system for all
participating users, disregarding their business site location and their
financial capabilities. Remote collaboration often includes people from
foreign countries, who may encounter difficulties to access the latest
technology.

• Maximum visible user representation. A maximum of the re-
mote user’s body with a focus on the mimics and gestures should be
perceived without occluding the collaborative content.

• Transferability to other users. The system should be applicable to
different people, not being customized for one person, but rather be

1. Introduction 3

suitable for multiple users with different profiles, habits and different
body heights.

Multiuser support is an essential requirement for collaborative environments.
The prospective system requires support for multiple users within a confer-
ence, one user per system setup. All collaborators should use a common
surface to sketch, draw and write down their desired content. Indicating
each user with a personalized mouse cursor is often not sufficient to quickly
link the writing user with the written content, especially if several users pro-
duce content at the same time. Therefore, a focus shall be put on the linkage
between user and content. Transmitting the whole body of a user including
the writing hand helps to understand the relation between user and writ-
ing. Opposed to mouse cursors, projecting users behind the collaborative
surface imitates a face-to-face communication and creates an interpersonal
relationship. Furthermore, using human body parts to point helps observing
the remote collaborator and the shared content simultaneously. Addition-
ally, the content may be emphasized through the remote user’s mimics and
gestures.

In order to to allow the usage in conventional offices, it is required that
the camera is placed next to the interactive wall. However, this camera
placement implicates a problem – the user is not captured from the front.
Therefore, the users’ remote representation has to be manipulated in a way
that natural interaction with the other collaborators is enabled. This thesis
presents several approaches to solve this problem.

1.2 Outline
This thesis covers all stages within a remote collaboration pipeline and
presents the used algorithms in detail. Chapter 2 discusses related work
and state of the art technology. Chapter 3 introduces the concept and the
setup for a prototype aiming to enhances remote collaboration, and all com-
ponents of the used RGBD sensor and their limitations are explained. The
remote collaboration pipeline is covered in Chapter 4. The data acquisition,
frame transformation and rendering stages are described in all its detail and
the used algorithms for the prototype are elaborated. Furthermore, prob-
lems and limitations within the pipeline are discussed. Finally, future work
and prospective enhancements on the prototype are outlined in Chapter 5.

Chapter 2

Related work

2.1 State of the art
Tan et al. [15] present ConnectBoard, a see-through display with a camera
and a projector mounted behind the screen respectively. The screen shows
the shared media and the remote user in the background while the camera
captures the local user (cf. Fig. 2.1). Subsequently, the image of the local
user is transmitted to the remote user. Genuine eye-contact is achieved using
face detectors by automatically shifting the image of the remote user onto
the path between the local user and the camera. In this way, eye-contact is
always given between two users even in case of movement.

Figure 2.1: The setup of ConnectBoard [15]. The projector (green) projects
the assembled image of the remote user with the shared content onto the
screen. The camera (red) captures the local user and transmits the image
back to the remote user. The transmitted image is mirrored for correct pre-
sentation.

This approach is similar to the work of Ishii and Kobayashi [8] who
introduced ClearBoard They also used a transparent screen with a projector
and a camera in the back to provide gaze awareness.

4

2. Related work 5

Izadi et al. [9] introduced a collaborative system that enables users to
share and exchange information in public spaces. Their approach requires
large displays and commonly accessible mice and keyboards to interact with
the system. Data is transferred via USB flash drives. Each flash drive is
mapped to a user that gains an individual space on the public surface.
Users exchange data by simply dragging a file onto the other users’ avatar
(cf. Fig. 2.2).

Figure 2.2: Dynamo offers the users a platform to share and exchange
content [9]. Furthermore, users can decide themselves what kind of content
to share with whom.

IllumiRoom and RoomAlive are proof-of-concept prototypes developed
by Jones et al. [11, 12] that augment parts of rooms. An ultra-wide field
of view projector is used to display content and a depth camera is used to
recognize object structures. According to the different structures, content
is rendered differently (cf. Fig. 2.3). RoomAlive tracks the bodies of the
participants and dynamically adapts the content according to their behavior.
Intentionally designed for gaming, these systems can also be adopted to
virtual conferences.

Similar to these approaches, Kasahara et al. [13] present Second surface,
an environment that allows users to create augmented collaborative content
mapped to real places with mobile devices.

The ViiBoard [23] is a remote collaboration tool with a simple setup,
using only a large touch display and an RGBD camera that is mounted next
to it. The 2D mode shows the shared content next to the captured remote
user. Whenever the remote user modifies the shared content, the writing
hand gets scaled on the display (cf. Fig. 2.4). In this way, occlusion of the

2. Related work 6

(a) Before transformation (b) After transformation

Figure 2.3: The scene before activation of the IllumiRoom system [11] (a).
The IllumiRoom system increases the contrast of the scene through project-
ing color on the objects of the environment (b) .

content by the remote user is avoided while information about the current
writing activities of the remote user is preserved.

Figure 2.4: The ViiBoard transmits a simple RGB-image of the remote
user [23]. On editing the content, the writing hand of the remote user gets
scaled and follows the writing. This technique facilitates following the context
and avoids interference of the collaborators.

ImmerseBoard [5] is the successor of the ViiBoard. It is a system for
remote collaborate work based on a simple HW setup. All that is required
is a Kinect v2 camera and a big touch display. The camera for the first
participant is positioned on the right-hand-side of the screen; the camera of
the second participant is positioned on the left-hand-side of the screen. This
setup is required for a more realistic visualization of the remote participant.

2. Related work 7

The system allows the user to choose between four different modes. The
video mode shows the remote participant in the side of the screen where the
camera is positioned. So the participants almost have eye contact when they
look into the camera. On the video the background is removed the remote
participant is cropped and positioned. The hybrid mode is an enhancement
of the video mode. The arm which is used for the interaction with the digital
whiteboard is stretched if it is within a certain distance to the board. When
the board is touched the hand points exactly to the touch point. This makes
it easier to follow the remote collaborator when he is interacting with the
whiteboard. The tilt board mode shows the full sized remote collaborator.
This requires more space on the display compared to the “hybrid” mode and
that’s why the virtual board needs to be tilted. Apart from that the concept
is the same as for the “hybrid” mode. The computation of the arm stretch
has to consider the tilt of the board. The remote collaborator is more present
but the content of the virtual board has a perspective distortion caused by
the tilt. The ImmerseBoard allows better expressions through pointing, gaze
direction and other gestures, and provides additional information through
body posture, proxemics and eye contact. Furthermore, its setup integrates
easily in existing offices.

The mirror mode simulates the real-world mirror. It seems as the remote
collaborator stand next to the local collaborator and he can be seen trough
the collaborative board which behaves mirror. The remote collaborator is
transparent and blended over the content of the board. Because the par-
ticipants look straight at the board, parts of the face cannot be recorded
by the camera. The bodies themselves are reconstructed using the 3d point
cloud from the Kinect camera. The quality could only be improved by using
additional camera.

Valadares et. al. [18] analyze the IBM collaboration tool Sametime 3D.
The tool allows a user to control a 3D avatar within a virtual world. Col-
laboration entirely takes place in the virtual environment, all users having
avatars representing themselves. Documents, videos or flip charts can be
shared in virtual meeting places (cf. Fig. 2.5). Additionally, the system sup-
ports spatial voice and highlights the currently talking user’ avatar. Similar
to real world scenarios, users can express their interest by spatial proximity
to the speaker. The only relation to the real person is the avatars’ voice.
Natural gestures and movement such as walking, hand gestures and head
movement can be achieved via mouse and keyboard inputs.

A vision-based system introduced by Izadi et al. [10] provides a com-
bination of bi-manual and tangible interaction. It uses a tablet computer
as a shared collaboration interface and a separate chat screen to display
the remote user (cf. Fig. 2.6). A simple webcam captures the user while a
top-down stereo camera captures the tablet surface. Virtual hands provide
information about the remote users’ actions and intentions. The system
uses machine learning algorithms to recognize fingertips and touch interac-

2. Related work 8

Figure 2.5: Users represented by avatars move within the Sametime 3D
virtual environment [18]. Additionally, the system supports shared contant,
spatial voice and avatar gestures.

tion with the tablet surface. Additionally, physical objects such as pocket
cameras are recognized and prompt a predefined action.

Figure 2.6: The C-Slate system setup [10]. The top-down stereo camera
captures the tablet surface while the webcam captures the face. The tablet
display shows shared and remote content, such as the hands of the remote
user. Gaze awareness is provided through the chat display.

Zhang et al. [20] developed a teleconference system which imitates a
face-to-face conversation. The system supports life-size 3D video, spatial
audio and provides a virtual environment that covers furniture, lighting
and wall colors. In this way, the illusion of sitting on the same table is
created. The virtual conference room is rendered from each users’ view-port

2. Related work 9

separately for correct motion parallax. Therefore, an eye-tracking algorithm
is implemented (cf. Fig. 2.7). Spatial audio maps the voice of the currently
talking user to its location within the virtual space.

Figure 2.7: The figure shows Viewport by Microsoft Research [20]. Each
participant A, B and C has a computer monitor as well as three cameras in
front. Through eye-tracking, the system recognizes eye-contact between user
A and C. Consequently, user B sees only a side view of user A and C.

2.2 Analysis of existing work
Recent work on collaborative systems differ in

• the remote collaboration ability,
• camera position (behind, on top, in front of, or next to the display),
• the environment (background removed or artificially created),
• proxemics (distance to the remote collaborator),
• content-user-relation (where is the user located in relation to the con-

tent),
• gaze awareness or eye-contact,
• gestures,
• number of users supported (one-to-one or multiuser),
• the dimension of the environment (2D or 3D), or
• setup and hardware requirements.
As previously stated, gestures and mimics can influence communica-

tion strongly. However, not all presented systems offer access to this meta-
information. Dynamo has a simple and intuitive setup and presents inventive
approaches about information sharing. It does not provide meta-information
of the collaborators and does not support remote collaboration.

2. Related work 10

Likewise, IllumiRoom and RoomAlive also provide no functionality for
remote collaboration. They offer unique techniques that could be used for
remote collaboration, such as body tracking, object recognition and touch
detection.

ConnectBoard and ClearBoard offer sound solutions for remote collab-
oration. Gestures and gaze awareness are provided. The systems require
special hardware for setup and only support one-to-one collaboration. As
RGB images are used, the quality of the user segmentation heavily depends
on lighting conditions.

ViiBoard, its successor ImmerseBoard and Viewport segment the users
using depth information respectively. They provide both gestures and mim-
ics. Gestures in the ViiBoard system are co-linear to the produced content as
the hand follows the writing in real-time. Touch screen and RGBD camera
are the only hardware requirements. The communication is based on one-to-
one collaboration. Proxemics are invalidated through the close distance to
the screen, and therefore the remote user. Viewport is not concerned about
shared content but supports multiuser interaction. The collaborators and
the environment are represented in a virtual 3D world. This enables view-
port dependent rendering of the environment. The system uses commonly
available hardware components.

Sametime 3D imitates real-life conferences in a completely virtual en-
vironment. It supports 3D collaboration and gestures. However, the social
presence in the environment is very abstract and communication does not
feel natural to the users.

C-Slate needs multiple commonly available components for setup and
offers only one-to-one communication. Mimics are supported whereas ges-
tures are not available as meta-information. However, actions and intentions
of the remote user can easily be retraced on the tablet surface. Additional
intelligent computer vision algorithms provide various possibilities for col-
laboration.

Although the presented approaches offer interesting solutions to collabo-
rative work, non of them provides a system that meets all criteria mentioned
above. Most importantly, eye-contact, gestures and multiuser support for re-
mote collaborative work.

Chapter 3

Methodology

A prototype to enhance remote collaboration was developed. This chapter
describes the concept, the setup and the components of the prototype in
detail.

3.1 Concept
Many video conferencing tools that support remote collaboration lack a
linkage between the gestures of the participants and the content that is
shared. For this reason, a prototype has been developed that allows the
user a visually enhanced video conference experience by directly connecting
the interacting hand to the produced content. In applications with multiple
users, this approach allows the participants to quickly associate writings
with the correct person. The perspective parallax is compensated for. In
this way, the participants do not need to watch for moving mouse cursors
and are able to quickly associate the writing with its owner.

A remote collaboration tool with enhanced user visualization was cre-
ated. The system is targeted at conventional offices, adapting to the envi-
ronmental conditions. The required components are

• a large collaboration screen (wall surface, touch display screen, or sim-
ilar) that is able to detect touch input (such as the Microsoft Surface
Hub [27]) or a projection screen with pen pairing (such as the CASIOr

interactive whiteboard [22] or the w’inspirer systems [24]),
• an input device (such as bluetooth pen) or direct touch input (depend-

ing on the type of screen),
• a video conferencing tool (such as Skyper), and
• an RGBD sensor to capture the collaborator (such as the Microsoftr

Kinectr v2 sensor).
The touch displays or projection screens with pen pairing deliver reliable
information about the touch coordinates on the wall. The Kinect sensor

11

3. Methodology 12

meets all desired requirements for the system, such as
• a given software development kit (SDK),
• a depth sensor to recognize the collaborator,
• fully developed hardware,
• maintained framework,
• global availability, and
• a manageable size.

The system needs to be available for all participating collaborators. Fig-
ure 3.1 shows an example for the setup of the system.

Remote User

RGBD Camera

Touch Input

Shared Content

Interactive

Whiteboard

Local User

Figure 3.1: The remote collaboration scenario with the an RGBD camera
placed next to the wall surface. The user and the remote conference partici-
pants work together on a collaborative surface.

3.2 Setup
It is assumed that the user participates in a video conference. All confer-
ence participants are connected to an application that allows them to write
and draw together on one screen. Each user is captured by a sensor that
is placed next to the display wall, facing the user from the right front, the
side of the writing hand. The wall recognizes inputs via touch or bluetooth
pen (cf. Fig. 3.1) and passes the touch input coordinates on to the applica-
tion.

3. Methodology 13

3.2.1 User caption with the MS Kinect v2 sensor

The Microsoft Kinect v2 sensor (cf. Fig. 3.2a) offers several image cap-
turing hardware components as well as a SDK for the implementation of
custom applications. The RGBD camera has a field of view (FoV) of 70∘

horizontally and 60∘ vertically (cf. Fig. 3.2b) [28]. All specifications and the
functionality described in this section origin from the Microsoft Developer
Network [25], [26].

(a) Kinect v2 sensor

70°

60°

FoV

(b) Kinect FoV

Figure 3.2: The Microsoft Kinect for Windows v2 sensor (a) has a field of
view of 70∘ horizontally and 60∘ vertically (b).

The sensor provides the following image streams (cf. Figure 3.3).
• Color source.
• Infrared source.
• Depth source.
• Body index source.
• Body source.
• Audio source.

Color source

The color source (cf. Fig. 3.3a) delivers a high-definition video stream with
a resolution of 1920 × 1080 pixel. Based on the lighting condition, 30 or
15 frames per second (fps) are provided. The pixel values are able to store
different color formats such as RGB, RGBA or YUV that are all saved as
8 bit unsigned integer per color channel.

Infrared source

The infrared (IR) source (cf. Fig. 3.3b) provides a grayscale image with a
resolution of 512× 424 pixel at 30 fps. The pixel values store the IR inten-
sity values as 16 bit unsigned integer. To illuminate the image consistently,

3. Methodology 14

(a) Color source (16 : 9) (b) Infrared source (4 : 3)

(c) Depth source (4 : 3) (d) Body index source (4 : 3)

(e) Body source (4 : 3)

Figure 3.3: The sources provided by the Microsoft Kinect v2 sensor.

the ambient light has been removed. As the common light frequencies are
removed, only the high frequencies pass. This guarantees the same base illu-
mination for all lighting conditions. The procedure emphasizes the texture
of the image and is therefore suited for facial recognition algorithms, reflec-

3. Methodology 15

tive markers tracking and others. Depth frames and IR frames are perfectly
aligned as the image data is derived from the same sensor and therefore has
the same resolution. The sensor ranges from 0.5 meters to 8 meters, outside
that scope no data is delivered.

Depth source

The depth source (cf. Fig. 3.3c) offers the same resolution (512 × 424) and
range (0.5–8 meters) as the IR source, and a framerate of 30 fps. The pixel
values are stored as 16 bit unsigned integer and represent the depth data,
which is the distance in millimeters from the sensor’s focal plane. The dif-
ferent shades of gray within the depth image indicate different depth values.
All regions with the same gray level have the same distance from the sensor.

Body source

The body source (cf. Fig. 3.3e) reveals information about the skeleton of a
body (cf. Fig. 3.4) at a framerate of 30 fps. One body consists of 25 known
joints, each of them storing information about its position in the 3D space
and its orientation. The scope ranges from 0.5 meters to 4.5 meters. The
sensor can recognize up to six bodies simultaneously and the hand states
(such as closed or open) of two bodies at the same time.

(a) Body joints (b) Skeleton with joints

Figure 3.4: The joints provided by the body source (source: [26])

3. Methodology 16

Body index source

The body index source (cf. Fig. 3.3d) indicates a recognized body within
the sensor’s field of view and is computed based on the depth image. A
recognized body’s contour is filled with a unique index value to distinguish
between body and background pixel. The maximum number of bodies to
be recognized is six. The indices dedicated for the bodies range from zero
to five, a value greater than five indicates a background pixel. The index is
stored as 8 bit unsigned integer in the body index frame.

Audio source

The Kinect v2 sensor includes a microphone array with a steerable cone
of focus for audio. However, the audio source has not been used for the
prototype, as it focuses on enhanced gesture visualizations.

3.3 Remote visualization
In an ideal environment, the camera would be placed behind the screen to
capture the user from the front, but state of the art wall surfaces are not
lucent. With the camera positioned at the right front of the collaborative
wall (cf. Fig. 3.1), the captured images shows a perspective parallax: All
lines meet at one point at infinite depth. As a result, a point on the display
screen from the camera’s perspective does not match the same point on the
display screen. That means when the display receives a touch input, the
input coordinates do not match the coordinates from the video stream. In
order to match the touch input coordinates with the finger tip coordinates
from the sensor, the user’s arm in the video frame has to be translated to
the exact position of the touch input.

All modes accompany the users writing and replace the conventional
mouse cursor with a video or an image. The symbol mode (cf. Fig. 3.5a)
replaces the cursor with an image of choice and does not require any addi-
tional camera setup. The hand mode (cf. Fig. 3.5b) and the arm extension
mode (cf. Fig. 3.5c) need a sensor to track and capture the user respectively.
In this way, the captured image is manipulated by the application and shown
to the remote user.

The manipulated frame is linked to the user and the user’s gestures are
visible at all time. In this way, it is easier for the collaborator to perceive
at what point in time and on what region the remote user starts writing or
drawing onto the collaboration surface.

The remote user is blended with the shared content and rendered onto
the display. Additionally, the user can adjust the transparency of the remote
users’ representation in the GUI (cf. Fig. 3.6).

3. Methodology 17

(a) Symbol mode (b) Hand mode

(c) Arm extension mode

Figure 3.5: The different modes to emphasize the cursor of the remote user.
The symbol mode (a) replaces the cursor with an image of choice. The hand
mode (b) duplicates the right hand of the user and copies it to the touch
input position. The arm extension mode (c) provides a manipulated arm
that is scaled and rotated to the exact touch input position.

Content

User (100 % alpha)

Result

+

User (50 % alpha)

Apply

alpha

Blending

Figure 3.6: The opaqueness of the remote user is defined in the GUI and
blended with the shared content.

Chapter 4

Prototype implementation

A prototype has been created to investigate the adaptability of transformed
motion images in video conferencing software. A Microsoft Kinect v2 sen-
sor was used to capture the image data. This chapter gives an overview of
the computation pipeline and explains the implemented scenarios and used
algorithms in detail. The user can choose between

• a symbol pointer that follows the input device (cf. Fig. 3.5a),
• a representation of the hand that is used as a cursor and follows the

pointing device (cf. Fig. 3.5b), and
• a mode to scale and rotate the lower arm to the input point (cf. Fig. 3.5c).

For the prototype implementation, it is assumed that the user writes with
the right hand. Different algorithms have been implemented to examine
the performance on high-resolution images (1920 × 1080) as well as on low
resolution (512× 424) images. An image 𝐼 is defined by

𝐼 = {𝑝 = (𝑥, 𝑦) ∈ N | 1 ≤ 𝑥 ≤ 𝑚, 1 ≤ 𝑦 ≤ 𝑛}, (4.1)

with 𝑚 and 𝑛 stating the image width and height respectively, depending
on the chosen image resolution.

The application aims to transform the video source in a way that the
background is eliminated and the collaborator is extracted. The user’s ges-
tures accompany the writing on the collaborative surface. Therefore, the
data passes different stages of computation (cf. Figure 4.1):

1. Acquisition of data
2. Transformation of the frame regarding the selected scenario
3. Rendering the transformed frame on the collaborative surface

These stages are explained in detail below.

18

4. Prototype implementation 19

Figure 4.1: The image manipulation pipeline.

4.1 Data acquisition
A video stream that is acquired directly from the sensors shows the user
and its entire environment within the camera’s viewport (cf. Fig. 3.3a).
To manipulate the image, all sources described in Chapter 3 are used for
the computation, except for the audio source that is not required for the
prototype implementation, and the IR source as the depth source that is
derived from IR delivers all required information. The following sources are
needed for further processing:

• Color source. All video manipulation scenarios defined above require
a colored output, therefore the color source is needed.

• Depth source. Information about the silhouette of the user is stored
in the body index source, which is useful for extracting the background
from the user within the color image.

• Body index source. The color source and the body index source have
different resolutions and origins – a coordinate mapper is required for
mapping the points of one space into another. The mapper requires
the depth source for operating.

• Body source. The body source is required for transforming particular
parts of the body. The sensor offers access to so called body joints that
indicate 25 different body parts (cf. Sec. 3.2.1).

The system requirements for using the Kinect v2 sensor are identified in
Appendix A.

4. Prototype implementation 20

4.1.1 Determination of the camera position

In order to find the ideal camera position, several setups have been examined.
Figure 4.2 shows the sensor positioned in various angles to the display in
order to compare the different camera views of the user.

B/C

G

E

DISPLAY

F

D
0.5 m

DISPLAY

C

B

NP C

NP B

Side view of cameras B and CA

Figure 4.2: In order to capture the user from the ideal angle, different
camera setups have been evaluated.

The camera positions are compared as follows:
• Camera A captures the user and the shared content respectively,

assumed that the display is transparent. Drawbacks of this setup are
the required space, the combined capture of user and content that
needs to be further processed to be able to transform the user, and the
display itself, as transparent interactive displays are not yet available
globally.

• Camera B and camera C are positioned above the display in front of
the user. Camera C, that is placed on the upper edge of the display, has
a good view of the user and captures gestures and mimics respectively.
However, the near plane of the camera has to be considered when the
user interacts with the upper region of the display. In this case, all body
parts that are closer to the camera than the near plane are discarded.
In contrast, camera B does not interfere with the user. Due to the
increased distance, the user’s face and mimics are hardly visible and
the view of the user is perspectively distorted.

• Camera D shows the user from front right. Most of the gestures and
mimics are visible, and the skeleton is correctly detected. In addition,
this position shows much of the environment. According to the shift

4. Prototype implementation 21

to the display, perspective distortions occur compared to a view from
camera A (cf. Fig. 1.1b) or camera G.

• Camera E and camera F show a side and rear side view of the user.
The sensor is not able to identify all limbs of the body correctly as
they are occluded.

• Camera G shows the user from the rear, opposite to the display. It
correctly detects the skeleton, but it looses track of the hands and
arms when the user is writing on the display. Opposed to camera C
and camera E, no perspective distortions occur. However, this setup
does not allow the camera to capture the user’s mimics.

Considering the advantages and disadvantages of the camera positions de-
scribed above, the scenario of camera D is considered for the prototype
implementation as it shows the most natural view of the user. In order to
adjust the perspective distortion, algorithmic solutions are examined in the
following section.

4.2 Frame transformation
This stage prepares the incoming data from the sensor for the remote trans-
mission. The user can set the preferred parameters in the GUI.

4.2.1 Input parameters

The user can choose between two video qualities and three different repre-
sentations of the virtual conference partner. Concerning the quality, the user
can choose between

• full high-definition resolution (1920× 1080), and
• low resolution (512× 424).

One of the following three scenarios can be chosen to represent the remote
partner:

1. Symbol mode. The point where the user touches the collaborative
surface is marked with a symbol that follows the movements of the
input.

2. Hand translation mode. Similar to the symbol mode, but instead
of a symbol, the input movement is followed by a duplication of the
users’ own hand.

3. Arm extension mode. Similar to the the approach of Higuchi et
al. [5], the lower arm of the user is extended to where the user draws
on the collaborative surface.

4. Prototype implementation 22

4.2.2 Frame access

The frame sources can be addressed individually via a dedicated frame reader
or all sources combined via a multi source frame reader. Individually ad-
dressed frames need to be synchronized manually while the multi source
frame reader synchronizes the frames automatically and allows the applica-
tion access to all chosen frames on a single event. Each frame has a descriptor
which stores metadata information such as the width and the height of the
image stream. The content of the frames is stored in 1-dimensional buffers.
Therefore, rows and columns of the images have to be calculated manually
from the index.

The coordinate mapper, provided by the Kinect SDK, is required for
mapping the points of one coordinate system to another. The points of the
different coordinate systems are

• color space points (originate from color source),
• depth space points (originate from depth, IR or body index source),

and
• camera space points (originate from body source).

The conversion from one coordinate system to another is fundamental, as
body joints are provided in depth space and the color frames are provided
in color space. To find out what color pixel belongs to a body joint, the
coordinate mapper delivers the respective pixel to look up.

As the coordinate systems provide frames with different resolutions, the
coordinate mapper contains a look-up table to find the equivalent pixel
positions of one coordinate systems within another. A manual calibration
of the sources is redundant, as the mapper stores information about the
sensor’s intrinsic and extrinsic parameters.

Not every pixel of one coordinate system has an equivalent within an-
other. The RGB camera delivers wide angle picture streams in a ratio of
16:9, therefore the other streams that have a ration of 4:3 do not have cor-
responding pixel at the left and the right boundary of the color image. Fig-
ure 4.3 demonstrates the matching and non-matching regions between the
color space stream and the streams containing depth space points (depth,
IR and body index source). Several boundary pixel cannot be matched and
thus store an infinity value. Therefore it is important to check if the pixel
have valid values when traversing the image.

In order to get the corresponding depth space pixel positions to a color
frame, the mapper is used by

1 //depth data stream
2 private ushort[] depthDataSource;
3
4 //number of pixel in HD color stream
5 int colorImageLength = 1920 * 1080;
6

4. Prototype implementation 23

 Depth Image (4:3)
Color Image (16:9)

Coordinate

Mapping

Figure 4.3: The depth space points do not have an equivalent within the
color space source for each pixel and vice versa. The colored area shows the
boundary regions that cannot be matched.

7 //coordinate mapper for mapping color space points to depth space points
8 private DepthSpacePoint[] colorToDepthSpaceMapper;
9 colorToDepthSpaceMapper = new DepthSpacePoint[colorImageLength];

10
11 //the colorToDepthSpaceMapper-array is filled up with look-up position values
12 coordinateMapper.MapColorFrameToDepthSpace(depthDataSource,

colorToDepthSpaceMapper);

Subsequently, when traversing the color frame, the corresponding pixel po-
sitions for depth, IR or body index can be obtained as following:

1 int colorSensorBufferWidth = 1920;
2 //determine the index position of the color buffer
3 int idxCurrColorPixel = yCurrent * colorSensorBufferWidth + xCurrent;
4
5 //obtain depth pixel via coordinate mapper
6 float xDepthPixel = colorToDepthSpaceMapper[idxCurrColorPixel].X;
7 float yDepthPixel = colorToDepthSpaceMapper[idxCurrColorPixel].Y;

The corresponding color space pixel positions to a depth frame can be ob-
tained similarly using

1 //depth data stream
2 private ushort[] colorDataSource;
3
4 //number of pixel in HD color stream
5 int depthImageLength = 512 * 424;
6
7 //coordinate mapper for mapping depth space points to color space points
8 private ColorSpacePoint[] depthToColorSpaceMapper;
9 depthToColorSpaceMapper = new ColorSpacePoint[depthImageLength];

10
11 //the depthToColorSpaceMapper-array is filled up with look-up position values
12 coordinateMapper.MapDepthFrameToColorSpace(depthDataSource,

depthToColorSpaceMapper);

4. Prototype implementation 24

4.2.3 Background elimination

The user’s body is detected to eliminate unnecessary information such as the
background, and to ease the selection of user body parts for manipulation. In
order to extract the body from the background, the information in the body
index frame (cf. Fig. 3.3d) is used. The color of each pixel 𝑝 that belongs
to a body 𝑏 is written directly into the back buffer. A coordinate mapper
(cf. Sec. 4.2.2) is used to check if 𝑝 has a corresponding body index that
indicates a body. As the information about the body is stored in the body
index space as depth space points, the pixel position in color space has to be
mapped to the depth space. The resulting image shows a person in RGBA
color while the background is discarded.

The sensor’s SDK offers an interface to read the video stream frame
by frame. Each valid frame is manipulated according to the mode chosen
(cf. Figure 4.6). Independent of the chosen scenario, a background elimina-
tion is performed to extract the user from the environment. Subsequently,
the sensor detects the body, as the body index source does not contain color
information, the body index frame and the color frame have to be mapped to
each other. The coordinate mapper contains information about what pixel of
the body index belongs to what pixel in the color source (cf. Chapter 4.2.2).
By matching the pixel of the body index with the color source pixel, all
color pixel that do not match a body index are discarded. Consequently, the
target image shows the user in color without background (cf. Figure 4.4).

(a) With background (b) Background eliminated

Figure 4.4: The color image from the Kinect sensor before (a) and after
background elimination (b).

Figure 4.5 shows the look-up procedure that has to be performed for each
pixel. The color target buffer is traversed sequentially pixel by pixel. For
each pixel, the following steps have to be performed:

1. Body index look-up. It is checked if the current pixel is part of a
body. If this pixel does not belong to a body it is discarded.

2. Depth space to color space mapping. The color of the pixel
is looked-up in the color frame using the coordinate mapper. If the

4. Prototype implementation 25

mapped pixel is invalid, it is discarded.
3. Write back color. The color of the pixel in the color source buffer is

written in the corresponding pixel of the target color buffer.

Body Index Source Buffer Color Source Buffer

Color Target Buffer

1) Traverse Target Buffer

2) Lookup Body Index

3) Map Depth to Color Space

4) Assign Color

Figure 4.5: The three buffers that are required for the image manipulation
process.

Subsequently, the colored body is transformed according to the chosen trans-
formation mode (cf. Fig. 4.6). The wrist body joint is required to determine
the position of the wrist, as well as the elbow joint that is required to de-
termine the vector of the lower arm. The arm extension mode (cf. Fig. 4.6c)
scales the lower arm to the input point. Therefore, the body is rendered
without manipulation up to the right elbow.

In the prototype, the algorithm used to traverse the body index buffer
can be chosen in the GUI. The different algorithms are compared and de-
scribed in detail below. The performance of the presented algorithm depends
on the number of pixel visited and on the number of checks if the pixel be-
longs to a body.

4.2.4 Scenario 1: Symbol pointer

The first scenario the user can choose is the symbol mode (cf. Fig. 4.6a).
An adequate symbol is chosen in advance. The position where the symbol
is rendered is updated simultaneously with the touch input coordinates on

4. Prototype implementation 26

(a) Symbol mode (b) Hand translation mode

(c) Arm extension mode

Figure 4.6: One of the following modes replaces the mouse cursor: An arbi-
trary symbol can be chosen, eg. a pencil (a). The writing hand is duplicated
and translated (b), or the writing arm is scaled to the input device’s posi-
tion (c).

each render cycle of the frame. Consequently, the symbol image follows the
touch input movement. The body of the user is visible next to it.

4.2.5 Scenario 2: Hand duplication

As a second option, the user can choose the hand scenario (cf. Fig. 4.6b). In
this mode, the user’s hand is duplicated to the position of the touch point
coordinates. The user’s body is rendered next to it. Given the lower arm
vector

a =
(︂

𝑥𝑤𝑟𝑖𝑠𝑡 − 𝑥𝑒𝑙𝑏𝑜𝑤

𝑦𝑤𝑟𝑖𝑠𝑡 − 𝑦𝑒𝑙𝑏𝑜𝑤

)︂
(4.2)

from the elbow to the wrist, and the vector of current pixel 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to 𝑝𝑤𝑟𝑖𝑠𝑡

c =
(︂

𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑥𝑤𝑟𝑖𝑠𝑡

𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑦𝑤𝑟𝑖𝑠𝑡

)︂
, (4.3)

the dot product between the two vectors a · c indicates if 𝑝𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is above
or below the normal of a (cf. Fig. 4.7). The algorithm is explained in more
detail in Section 4.2.7.

4. Prototype implementation 27

â
a

α0

α1

c1

c0

Figure 4.7: The dot product a · c indicates if the current pixel belongs to
the hand or not.

In order to determine the distance the hand has to be moved, the trans-
lation vector t is calculated by

t = p𝑡𝑜𝑢𝑐ℎ − pℎ𝑎𝑛𝑑𝑇 𝑖𝑝. (4.4)

Subsequently, all color pixel that belong to the hand are looked up in 𝐶 and
translated by t.

4.2.6 Scenario 3: Arm transformation

The third scenario the user can choose is an arm extension mode (cf. 4.6c).
If the user is not writing, the video recording of the body is transmitted
without manipulations. If the remote user is interacting with the screen, the
hand scales to the touch input point. The advantage of this scenario is that
the association between hand and user is given at all times.

Due to the perspective distortion, the hand of the user is not in alignment
with the touch input. This is corrected by scaling and rotating the arm to
the touch input coordinates. In the prototype, two different approaches for
the arm manipulation have been implemented:

• a pixel based approach, and
• a vector based approach.

These approaches are discussed below.

Pixel based arm transformation

In order to point to the touch coordinates, the arm of the user is first scaled,
then rotated.

4. Prototype implementation 28

1. Scale First, the arm is scaled to the proper length in order to reach
the touch point (cf. Fig. 4.9). The rotation is handled in a next step. The
algorithm is scaling a sub-region of the color stream to the target buffer. The
example describes the scaling of the right lower arm 𝐴. As a precondition it
is assumed that all pixel on the right side of the elbow joint

∀𝑝 /∈ 𝐴 | 𝑝𝑥𝑖 < 𝑝𝑥𝑒𝑙𝑏𝑜𝑤
(4.5)

are scaled. When scaling the arm it has to be considered that the prolonged
arm has to have the same length at all time. Using the same scale factor for
all angles of the arm would result in an unproportional scale in one of the
directions.

First, a scaling factor has to be determined for the x and y direction
respectively. Therefore, the slope is taken into account. To get the slope
parameters, the angle 𝛼 between a horizontal line h starting from 𝑝𝑒𝑙𝑏𝑜𝑤 and
the arm vector a is calculated using the dot product [6]

a · h = |a||h| cos (𝛼) ⇒ 𝛼 = arccos
(︂

a · h
|a||h|

)︂
(4.6)

The angle is used for the calculation of the scale factors

factor𝑥 = 𝑠 * cos 𝛼 + 1 (4.7)

and
factor𝑦 = 𝑠 * sin 𝛼 + 1, (4.8)

𝑠 indicating a scalar scaling factor that is dependent on the distance to the
touch point. A lookup position and color for scaled regions is calculated
subsequently. The distance of the current pixel to the elbow calculated by

Δ𝑥 = 𝑥𝑖 − 𝑥𝑒𝑙𝑏𝑜𝑤 (4.9)

and
Δ𝑦 = 𝑦𝑖 − 𝑦𝑒𝑙𝑏𝑜𝑤. (4.10)

p

p’

pelbow

pwrist

∆x

∆y
∆y / factory

∆x / factorx

Figure 4.8: The scale factor is calculated using the sine for step size in
the y-direction (𝑓𝑎𝑐𝑡𝑜𝑟𝑦) and the cosine for the step size in the x-direction
(𝑓𝑎𝑐𝑡𝑜𝑟𝑥).

4. Prototype implementation 29

This offset is used to determine the lookup position (cf. Fig. 4.8)

𝑥′
𝑖 = 𝑥𝑒𝑙𝑏𝑜𝑤 + Δ𝑥

factor𝑥
(4.11)

and
𝑦′

𝑖 = 𝑦𝑒𝑙𝑏𝑜𝑤 + Δ𝑦

factor𝑦
. (4.12)

𝑥′
𝑖 and 𝑦′

𝑖 are only used for the color look-up if the original pixel belongs to
the arm. Otherwise, a standard color look-up with 𝑥 and 𝑦 is performed.
Consequently, the arm is scaled to an appropriate length to reach the touch
input. Subsequently, a rotation of the scaled arm has to be performed to
exactly match the touch point.

(a) No manipulation (b) Scaled arm

Figure 4.9: (a) The body before transformation and (b) after the scale
operation has been applied to the lower arm.

2. Rotation In the resulting target image, the arm has to point exactly to
the touchpoint. Therefore, after the arm has been scaled, it has to be rotated
to the touch coordinates additionally. The pivot point of the rotation is the
elbow joint 𝑝𝑒𝑙𝑏𝑜𝑤 to ensure that the lower arm is connected to the upper
arm. Figure 4.10 shows the images before and after the rotation.

Hearn and Baker [4] define a 2D-rotation matrix for the angle 𝜃 by

𝑅 =
(︂

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃.

)︂
(4.13)

In order to rotate the right arm 𝐴 that belongs to the body of the remote
collaborator, each pixel

𝑝𝑖 ∈ 𝐴, 𝑖 = 0, 1, . . . , 𝑛, 𝐴 ⊂ 𝐼 (4.14)

has to be rotated. The rotation angle 𝜃 is determined by the angle between
the arm vector a and the rotated target arm vector

a𝑟𝑜𝑡𝑎𝑡𝑒𝑑 =
(︂

𝑥𝑡𝑜𝑢𝑐ℎ − 𝑥𝑒𝑙𝑏𝑜𝑤

𝑦𝑡𝑜𝑢𝑐ℎ − 𝑦𝑒𝑙𝑏𝑜𝑤

)︂
, 𝑎𝑟𝑜𝑡𝑎𝑡𝑒𝑑0 , . . . , 𝑎𝑟𝑜𝑡𝑎𝑡𝑒𝑑𝑛 ∈ 𝐼 (4.15)

4. Prototype implementation 30

(a) No manipulation (b) Rotated arm

Figure 4.10: The image before (a) and after (b) the applied rotation of the
right lower arm.

that is identified by the touch point of the input device (cf. Fig. 3.1). Based
on these vectors, the angle from a to a𝑟𝑜𝑡𝑎𝑡𝑒𝑑 is calculated by the dot prod-
uct [6]

a · a𝑟𝑜𝑡𝑎𝑡𝑒𝑑 = |a||a𝑟𝑜𝑡𝑎𝑡𝑒𝑑| cos (𝜃) ⇒ 𝜃 = arccos
(︂

a · a𝑟𝑜𝑡𝑎𝑡𝑒𝑑

|a||a𝑟𝑜𝑡𝑎𝑡𝑒𝑑|

)︂
, (4.16)

with |a| being the magnitude of a. Subsequently, the rotation 𝑅 is applied
to a by

a𝑅 (𝜃) = a𝑟𝑜𝑡𝑎𝑡𝑒𝑑. (4.17)

The arm is correctly transformed within the resulting image but a regular
pattern of white noise occurs (cf. Fig. 4.10b). This noise is caused by the
inevitable translation of floating point positions resulting from the rotation
𝑅 to fixed point positions that are required to draw the final pixel to the
image.

To summarize, the pixel based arm transformation has the disadvantage
that floating point operations cause noise due to rounding errors.

Vector based arm transformation

To overcome the errors of the pixel based arm transformation, a vector based
arm transformation has been examined. The advantages are the following:

• Rotation and scale are combined in one operation.
• The region checks for each pixel are omitted. Instead, only the infor-

mation of the start and end point of the real arm and the start and
end point of the target arm are relevant for the calculations.

In order to calculate the virtually rotated and scaled target arm a𝑡𝑎𝑟𝑔𝑒𝑡 out
of the real arm a that is visible in the color stream, the vectors have to be

4. Prototype implementation 31

determined respectively. The vector for a is determined by

a =
(︂

𝑥𝑤𝑟𝑖𝑠𝑡 − 𝑥𝑒𝑙𝑏𝑜𝑤

𝑦𝑤𝑟𝑖𝑠𝑡 − 𝑦𝑒𝑙𝑏𝑜𝑤

)︂
, (4.18)

the vector for a𝑡𝑎𝑟𝑔𝑒𝑡 is determined by

a𝑡𝑎𝑟𝑔𝑒𝑡 =
(︂

𝑥𝑡𝑜𝑢𝑐ℎ − 𝑥𝑒𝑙𝑏𝑜𝑤

𝑦𝑡𝑜𝑢𝑐ℎ − 𝑦𝑒𝑙𝑏𝑜𝑤

)︂
. (4.19)

Figure 4.11 shows the real arm as it is retrieved from the color source and
the target vector where the real arm is transferred to.

Figure 4.11: The values of the original vector a (red line) are subsequently
applied to the virtual vector a𝑡𝑎𝑟𝑔𝑒𝑡 (blue line).

The vector based algorithm consists of the following steps:
• Determination of the vectors a and a𝑡𝑎𝑟𝑔𝑒𝑡.
• Reading color from a and writing it to a𝑡𝑎𝑟𝑔𝑒𝑡. Therefore, the vectors

are traversed simultaneously. Depending on the scale factor, the step
width for a is increased (target arm shorter) or decreased (target arm
longer).

• For each pixel on a𝑡𝑎𝑟𝑔𝑒𝑡, the normals are used to fill up the rest of the
arm.

• Definition of appropriate boundaries. The start and the end point of
the transformation are set.

4. Prototype implementation 32

The adequate step size or sampling size that is used for stepping along a is
determined by the magnitude of a and a𝑡𝑎𝑟𝑔𝑒𝑡 – the longer vector determines
the step width by

1 float totalSteps;
2 if (vArmLength < vTargetArmLength)
3 totalSteps = (float)(vTargetArmLength);
4 else
5 totalSteps = (float)(vArmLength);
6 float stepSizeArm = vArmLength / totalSteps;
7 float stepSizeTargetArm = vTargetArmLength / totalSteps;

To guarantee a noise free result, the total step size can be oversampled by
multiplying totalSteps with the factor 2 according to the Nyquist sampling
interval described by Hearn and Baker [4].

The normals of a are defined by the left normal

â𝑙𝑒𝑓𝑡 =
(︂

𝑦
−𝑥

)︂
, (4.20)

and the right normal

â𝑟𝑖𝑔ℎ𝑡 =
(︂
−𝑦
𝑥

)︂
, (4.21)

considering that the origin of the coordinate system is the upper left corner
of the image. Figure 4.12 shows the normals â𝑙𝑒𝑓𝑡 and â𝑟𝑖𝑔ℎ𝑡 result of the
applied algorithm depictively.

Figure 4.12: When the target arm vector is fully traversed, the arm is
stretched and rotated, and points to the touch point. The original arm a is
indicated by the short red line, the target arm a𝑡𝑎𝑟𝑔𝑒𝑡 is indicated by the
long blue line.

In case the normal â𝑙𝑒𝑓𝑡 points into the body, a suitable boundary has
to be set as explained in detail below (cf. Fig. 4.13). Compared to the pixel
based arm transformation, the floating point errors do not occur, as each
pixel of a𝑡𝑎𝑟𝑔𝑒𝑡 gets a corresponding color value assigned.

4. Prototype implementation 33

Figure 4.13: In the region of the elbow, the normal vector points into the
body. Without an appropriate termination criteria, parts of the upper arm
are transformed along with the lower arm.

4.2.7 Determination of accurate boundary vectors

In case the normal â𝑙𝑒𝑓𝑡 points into the body (cf. Fig. 4.13), a suitable
boundary has to be set. Furthermore, the region of the hand has to be
separated from the region of the lower arm in order to prevent the hand
from the transformations that are applied to the lower arm. Two boundary
vectors have to be evaluated:

1. The lower boundary located at the elbow (cf. Fig. 4.14a), and
2. the upper boundary located at the wrist (cf. Fig. 4.14b).

The lower boundary b𝑙𝑜𝑤𝑒𝑟 is most likely to interfere with the body as â𝑙𝑒𝑓𝑡

points into the upper arm in the region of the elbow point. The standard
algorithm steps along â𝑙𝑒𝑓𝑡 until it reaches a background pixel. In this case,
without a limiting boundary for b𝑙𝑜𝑤𝑒𝑟, the algorithm continues reading pixel
of the upper arm. Those pixel would also enter the next step of transfor-
mation and would get scaled and rotated. In the rendered image artefacts
would occur. An improved termination criteria is the half vector between
the shoulder vector

s =
(︂

𝑥𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 − 𝑥𝑒𝑙𝑏𝑜𝑤

𝑦𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 − 𝑦𝑒𝑙𝑏𝑜𝑤

)︂
(4.22)

and the lower arm vector a. It is calculated as follows:

b𝑙𝑜𝑤𝑒𝑟 = s + a
|s + a| . (4.23)

4. Prototype implementation 34

The upper boundary b𝑢𝑝𝑝𝑒𝑟 is set to the vector normal

b𝑢𝑝𝑝𝑒𝑟 = â𝑙𝑒𝑓𝑡. (4.24)

As b𝑢𝑝𝑝𝑒𝑟 does not interfere with other body parts, the boundary is natu-
rally limited by the wrist joint and does not have to be checked explicitly.
However, the boundary criteria would not hold if the wrist touches other
parts of the body or if it is placed in front of the body. A possible solution
to this problem is presented in Section 4.2.8.

(a) Lower boundary (b) Upper boundary

Figure 4.14: (a) The lower boundary is defined by the half vector b𝑙𝑜𝑤𝑒𝑟

of the shoulder vector s and the arm vector a. (b) The upper boundary is
defined by the normals of the arm vector â𝑙𝑒𝑓𝑡 and â𝑟𝑖𝑔ℎ𝑡.

4.2.8 Overlapping body parts

When writing on the interactive whiteboard, the writing hand often occurs
to be in front of the body (cf. Fig. 4.15a). This occurs to be a problem in
case a flood fill algorithm is used to determine the body regions within the
hand extraction mode as well as the arm extension mode respectively, as
both use the background pixel as a termination criteria. When the hand
is in front of the body, the hand is not sourrounded by background pixel.
The only criteria that differs is the depth. a to determine the hand section.
Furthermore, the termination criteria within the arm extension mode are no
longer valid if the user places the arm parallel to the body, closing the gap
between arm and body (cf. Fig. 4.15b). Consequently, the algorithm would
not terminate as no background pixel is visited. The solution is to extend
the abort criterion by the depth value. The sensor delivers the depth value
in millimeters from its focal plane (cf. Sec. 3.2.1) and that value is used in
combination with a predefined threshold 𝑡 in order to determine if the point

4. Prototype implementation 35

(a) (b)

Figure 4.15: Areas colored in red show the conflicting regions that require
an adapted algorithm. In order to be able to differentiate between hand and
body region, the adapted algorithm uses the depth value (a). In case the
depth values of hand and body are equal and no background pixel occurs
in between them, the algorithm cannot distinguish between hand and body
region (b).

belongs to the writing hand a or the body 𝑏. The difference of the depth
values

Δ𝑑 = 𝐼(𝑝𝑖)− 𝐼(𝑝𝑖+1) (4.25)

is compared with the threshold and if the absolute value

||Δ𝑑|| > 𝑡, (4.26)

the algorithm terminates. In this way an overflow of the hand fill is pre-
vented, and the arm is extracted, scaled, and positioned correctly. However,
if the hand has a contact to the body, the depth values of the arm cannot
be distinguished from the rest of the body.

4.3 Rendering
The transformed image of the user is projected onto the collaborative sur-
face. To guarantee a minimum occlusion of the collaborative content, each
client is able to adapt the opacity of the remote user with a slider in the
GUI. Displaying the remote user on the collaborative surface creates the
effect of facing each other.

4. Prototype implementation 36

4.4 Performance enhancement
As high definition images are used within the prototype, the algorithm per-
forms background checks and coordinate mappings for 1920 × 1080 pixel
in the worst case. In order to increase the performance of the application,
several considerations have to be taken, such as

• body detection is executed faster when using flood fill algorithms
(cf. Sec. 4.4.1),

• recursive flood fill operations are started in their own thread to avoid
a stack overflow,

• unmanaged code is preferred over managed code (cf. Sec. 4.4.2),
• color values are written directly into the back buffer,
• operations within a loop are to be kept to a minimum,
• primitive types are preferred over structures, and
• operations such as modulo and division are to be kept to a minimum.

4.4.1 Improved body detection using flood fill algorithms

In contrast to the sequential approach described in Section 4.2.3, flood fill
algorithms do not have to visit each pixel of the body index buffer. Instead,
they start at a given seed point 𝑠 that lies inside the body, visit all neighbor-
ing pixel of 𝑠 and terminate if a background pixel is hit. A seed point takes
the value of a valid body joint. In case no body is detected, the sequential
approach is executed and shows the unaltered color stream. Several flood
fill algorithms have been examined that differ in the order the neighboring
pixel are visited. The search patterns are

• recursive (cf. Alg. 4.1),
• breadth-first search (BFS, cf. Alg. 4.2), and
• depth-first search (DFS, cf. Alg. 4.3).

Recursive flood fill algorithm

The recursive flood fill algorithm (cf. Alg. 4.1) traverses the region by using
the calculated parameters in a new call of the function itself [1]. A drawback
of this algorithm is that the number of elements pushed onto the stack
memory grows with each recursion, which could cause a stack overflow.

Breadth-first search

The iterative BFS algorithm (cf. Alg. 4.2) uses a queue to store the pixel
to visit. Compared to the recursive approach, the risk of a memory overflow
is exiguous as the object is stored in the heap memory. The pixel enqueued
first are visited first (first-in first-out principle). The performance is slower

4. Prototype implementation 37

Algorithm 4.1: The recursive flood fill algorithm.
𝐼 =bodyIndexBuffer and backgroundPixel = 255
FloodFill(𝑥, 𝑦)

if coordinate (𝑥, 𝑦) is within image boundaries
and 𝐼(𝑥, 𝑦) < maxNumberOfBodies then

GetColorAndDrawIntoBackbuffer(𝑥, 𝑦)
FloodFill(𝑥 + 1, 𝑦)
FloodFill(𝑥− 1, 𝑦)
FloodFill(𝑥, 𝑦 + 1)
FloodFill(𝑥, 𝑦 − 1)

else
return

end if
end

as many elements are queued until a termination criteria comes true [1, 14].

Algorithm 4.2: The BFS flood fill algorithm using a queue.
𝐼 =bodyIndexBuffer and backgroundPixel = 255
FloodFill(x, y)

Create an empty queue 𝑄
Insert the seed point into 𝑄: ENQUEUE(𝑄, (𝑥)), ENQUEUE(𝑄, (𝑦))
while 𝑄 is not empty do

Get next point 𝑝𝑛𝑒𝑥𝑡 by dequeuing the first
coordinate of 𝑄: 𝑥← DEQUEUE(𝑄), 𝑦 ← DEQUEUE(𝑄)

if 𝑝𝑛𝑒𝑥𝑡 is within image boundaries
and 𝐼(𝑥, 𝑦) != backgroundPixel then

GetColorAndDrawIntoBackbuffer(𝑥, 𝑦)
SetPixelVisited(𝑝𝑛𝑒𝑥𝑡)
ENQUEUE(𝑄, 𝑥 + 1)
ENQUEUE(𝑄, 𝑦)s
ENQUEUE(𝑄, 𝑥− 1)
ENQUEUE(𝑄, 𝑦)
ENQUEUE(𝑄, 𝑥)
ENQUEUE(𝑄, 𝑦 + 1)
ENQUEUE(𝑄, 𝑥)
ENQUEUE(𝑄, 𝑦 − 1)

end if
end while

end

4. Prototype implementation 38

Depth-first search

The iterative DFS algorithm (cf. Alg. 4.3) uses a stack to store the pixel
to visit. Like the BFS algorithm, the object is stored in the heap memory.
The pixel on top of the stack are visited first (last-in first-out principle).
Therefore, all pixel are successively processed in one direction and therefore
reaches the termination criteria at an earlier point in time than the BFS [1,
14].

Algorithm 4.3: The DFS flood fill algorithm using a stack.
𝐼 =bodyIndexBuffer and backgroundPixel = 255
FloodFill(x, y)

Create an empty stack 𝑆
Push the seed point onto 𝑆: PUSH(𝑆, 𝑥), PUSH(𝑆, 𝑦)
while 𝑆 is not empty do do

Get next point 𝑝𝑛𝑒𝑥𝑡 by pulling the first
coordinate of 𝑆: 𝑥← POP(𝑆), 𝑦 ← POP(𝑆)

if 𝑝𝑛𝑒𝑥𝑡 is within image boundaries
and 𝐼(𝑥, 𝑦) != backgroundPixel then

GetColorAndDrawIntoBackbuffer(𝑥, 𝑦)
SetPixelVisited(𝑝𝑛𝑒𝑥𝑡)
PUSH(𝑆, 𝑥 + 1)
PUSH(𝑆, 𝑦)
PUSH(𝑆, 𝑥− 1)
PUSH(𝑆, 𝑦)
PUSH(𝑆, 𝑥)
PUSH(𝑆, 𝑦 + 1)
PUSH(𝑆, 𝑥)
PUSH(𝑆, 𝑦 − 1)

end if
end while

end

Benchmark

The sequential, recursive flood fill, BFS and DFS algorithms have been
benchmarked to find the best algorithm in terms of performance. The mea-
surement criteria is the arithmetic mean of frames per second based on the
frame duration 𝑓𝑑

𝑓𝑝𝑠 = 1
𝑛

𝑛∑︁
𝑖=1

1
𝑓𝑑𝑖

, (4.27)

4. Prototype implementation 39

𝑛 stating the number of samples taken, and the standard deviation from the
mean [19]

𝑠𝑛 =

⎯⎸⎸⎷ 1
𝑛− 1

𝑛∑︁
𝑖=1

(︀
𝑓𝑝𝑠𝑖 − 𝑓𝑝𝑠

)︀2
. (4.28)

Note that the sensor cannot process more than 30 fps with good lighting
conditions (cf. Sec. 3.1). The performance of the different flood fill algorithms
for a high resolution target buffer (1920× 1080) is shown in Table 4.1, and
for a low resolution target buffer (512× 424) is shown in Table 4.2.

Algorithm sequential recursive DFS BFS
Frame duration (s) 0.09 0.05 0.06 93.46
𝑓𝑝𝑠 11.10 20.88 18.05 0.01
𝑠𝑁 1.20 3.57 1.29 0.01

Table 4.1: The performance of the different flood fill algorithms when ren-
dering into a low resolution target buffer (1920×1080). The best performance
is achieved by the recursive flood fill, followed by the DFS and the sequential
algorithm. The BFS cannot process the large amount of data with reasonable
speed.

Algorithm sequential recursive DFS BFS
Frame duration (s) 0.03 0.03 0.03 4.91
𝑓𝑝𝑠 30.04 30.09 30.12 0.20
𝑠𝑁 0.40 2.80 2.36 0.04

Table 4.2: The analysis of the different flood fill algorithms when rendering
into a low resolution target buffer (512 × 424). The results show that the
sequential, recursive and DFS algorithm are almost equal regarding their
frame rate compared to the BFS that is comparatively slow.

A benchmark indicates that the recursive algorithm performs best when
rendering into a high-definition target buffer 𝑇𝐻𝐷 and into a low resolution
target buffer 𝑇𝐿𝑅 respectively. However, in high definition mode sufficient
stack memory is required. The standard stack size of .NET applications is
1 MByte. The performance test with high resolution buffers required about
20 - 40 MByte of stack size, depending on the distance of the the body. A
maximum stack size of 30 MByte has proven to be sufficient for the tests.
A severe drawback is the risk of a stack overflow if the body area gets too
big. This occurs if the user approaches the sensor and thus, the body area
gets bigger.

The sequential algorithm achieves a good performance in the low res-
olution mode, but its frame rate drops significantly in the high definition

4. Prototype implementation 40

mode. This performance decrease is due to the increased number of pixel
that need to be processed. The algorithm processes all pixels in the buffer,
disregarding the size of the captured body.

The DFS algorithm shows a good performance in the low resolution
mode and in the high definition mode respectively. The elements pushed onto
the stack are written in the heap memory, which solves the stack overflow
problem. Due to its robustness, this algorithm is the preferred choice for all
target buffer sizes.

Implementations using the BFS algorithm show severe performance prob-
lems. The output video stream results in stutter and long intervals of no
rendering at all.

Figure 4.16 shows how the different algorithms traverse an object.

(a) Recursive 01 (b) Recursive 02 (c) Recursive 03

(d) BFS 01 (e) BFS 02 (f) BFS 03

(g) DFS 01 (h) DFS 02 (i) DFS 03

Figure 4.16: The recursive and the DFS algorithm proceed in different
directions successively while the BFS algorithm grows circular from the seed
point. In all cases, the seed point is placed in the middle of the object.

4. Prototype implementation 41

4.4.2 Unmanaged code

Unmanaged code in C# applications allows the usage of pointers. Pointer
operations are faster than array operations, because not boundary checks
are performed.

The usage of pointers has to be declared with the keyword unsafe. Ad-
ditionally, the keyword volatile is used to declare that a variable can be
modified by multiple threads simultaneously and suppresses compiler opti-
mizations [29]. The following code shows the usage for functions and vari-
ables respectively. When using pointers within methods, the fixed statement
prevents the variable from being shifted within the memory by the garbage
collector [29].

1 private unsafe volatile void myVariable; // pointer variable
2
3 // usage of pointers within functions
4 public unsafe void process() {
5 fixed (byte* ptrBuffer = <value>) {
6 //pointer variable ptrBuffer can be used within this block
7 }
8 }

4.5 Limitations of the prototype implementation
For the prototype it is assumed that the user is right handed. To generalize
the writing hand, the depth frame may be used to determine which hand is
closer to the collaborative surface.

The output of the manipulated images strongly depends on the sensor.
There are two cases to consider:

1. the sensor looses track of all body joints, and
2. the sensor looses track of the right arm joints.

If the sensor looses track of all body joints, there is no body index assigned.
Accordingly, all pixel are background pixel and therefore not processed. The
result is either a blank screen or jitter in the video stream, depending on
the stability of the sensor signal.

In case the sensor looses track of the right arm joints, the frame is pro-
cessed, but without a manipulation of the user’s arm. The resultant frame
shows the user without background. If the sensor signal changes steadily
from tracked to non-tracked, the output stream is disturbed by alternating
manipulated frames.

Furthermore, the performance depends on the used computing machine.
The less memory and the less powerful the CPU is, the longer the rendering
of the frames take. In this case, the output stream would have a noticeable
low frame rate.

Chapter 5

Conclusion and Future Work

Multiple collaboration methods have been examined and analyzed according
to several criteria. As stated in Chapter 2, communicative meta-information
such as gestures and mimics are important to enhance conversations. The
aspect of multiuser support is difficult as multiple objects have to be tracked
while eye-contact has to be maintained. The requirements to a remote collab-
oration system are global availability and affordability, a maximum visibility
of the remote user representation, and the transferability to other users. For
tracking the user, RGBD cameras such as the Microsoft Kinect v2 sensor are
used that fulfill these requirements and offer a broad palette of functionality.

A prototypical setup has been implemented to enhance interaction ges-
tures of the user. The main aim was to imitate a face-to-face meeting to
preserve the personal touch even in a remote collaboration system. As a
transparent whiteboard with the camera capturing the user from the front
is difficult to obtain and to set up, an alternative system has been chosen
which uses a videoconferencing system, an interactive whiteboard and an
RGBD camera. A setup where the camera is located at the front right of the
user, next to the whiteboard, shows perspective disturbances when it is over-
laid with the collaborative content. Therefore, the user’s extremities have to
be manipulated to balance them out. This enhanced gesture visualizations
are achieved by showing the whole body of the user and by additionally
replacing the user’s cursor by either a selectable symbol, a duplicate of the
user’s own hand or scaling and rotating the arm to the correct position. In
all those scenarios, the personal touch of the communication is perceived
as the user’s body is transmitted as a whole. However, the symbol mode
and the hand mode have shown to distract user. As no direct link between
the remote user’s body and the interaction point exists, users have a hard
time to focus on the current interaction and the user’s mimics and gestures
at the same time. In contrast, the arm extension mode provides a natural
representation of the user. The visual attention is drawn to the interaction
point if a touch event occurs, and to the visual representation of the remote

42

5. Conclusion and Future Work 43

user if no interaction event occurs.
Using a flood fill algorithm facilitates the extraction of specific regions of

the body. The body joints serve as sound seed points. Especially for detecting
overlapping regions (cf. Sec. 4.2.8), a flood fill algorithm is useful.

As a future work, eye-contact could be realized by positioning the camera
on the same side of the screen where the remote user is rendered. In this
way, the user looks into the direction of the camera and of the remote user
at the same time.

Further improvements on the prototype would include support of hard-
ware acceleration by using the GPU for the computation and the rendering
stage, to balance the load between CPU and GPU. This could lead to a
significant acceleration of the transmitted video frames, especially when ren-
dering the remote user’s representation in high-definition. A limiting factor
of transmitting high-definition video frames is the bandwidth. Client based
transformation approaches could be examined where the CPU intensive im-
age transformations are rendered on the local machine, and only the most
important information is transmitted over the internet.

At the moment, the prototype supports the transformation of the right
arm of a user. To support both left-handed and right-handed users, the
hand that is closer to the screen could be automatically recognized as the
interactive hand by its depth value. of writing hand to support both left-
handed and right-handed users. The distance of the hand to the collaborative
surface could also be used to predict the touch point and therefore start the
transformation of the arm earlier.

Multiple users are generally supported in the prototypical application,
but the proper positioning of the different remote user representations and
the interferences between them due to overlapping images could be subject
of further research.

Furthermore, a user study could help to fully explore the potentials and
drawbacks of the prototype.

This thesis examined advanced interaction techniques for remote collab-
oration. It presents possible scenarios for enhanced gesture visualization and
provides a basis for further improvements. However, the prototypical imple-
mentation already achieves an increased personal connection to the remote
collaborator.

Appendix A

System requirements

Microsoft [25, 26] recommends appropriate system components when work-
ing with a Kinect v2 sensor as following.

The personal computer should possess
• Windows 8.1 or later as an operating system,
• a built-in USB 3.0 host controller (PCIe 2.0 with IntelRenesas Chipsets),
• a 64 bit processor (x64),
• at least 4 GB memory,
• at least an i7 processor with 3.1 GHz (physical dual-core with 2 logical

cores per physical core).
Furthermore, the sensor requires a DirectX 11.0 capable graphics adapter,

such as
• Intel HD 4400 integrated display adapter, or
• ATI Radeon HD 5400 series, or
• ATI Radeon HD 6570, or
• ATI Radeon HD 7800 (256-bit GDDR5 2GB1000Mhz), or
• NVidia Quadro 600, or
• NVidia GeForce GT 640, or
• NVidia GeForce GTX 660, or
• NVidia Quadro K1000M.
Concerning the software and libraries, the following components are rec-

ommended:
• Visual Studio 2012 Windows Desktop,
• C# .NET WPF Project, and
• Kinect v2 SDK.

44

Appendix B

CD Content

Format: CD-ROM, Single Layer, ISO9660-Format

B.1 PDF files
Path: /

RemoteCollaboration.pdf Master thesis

B.2 Source Code
Path: /sourceCode/

MILBoard/ source code of prototype

B.3 Images
Path: /images/

*.jpg, *.png original raster image
*.pdf original Adobe pdf

45

References

Literature
[1] Wilhelm Burger and Mark J. Burge. Digitale Bildverarbeitung. 1st ed.

Springer-Verlag, 2005 (cit. on pp. 36–38).
[2] Teresa Farroni et al. “Eye contact detection in humans from birth”.

In: Proceedings of the National Academy of Sciences 99.14 (2002),
pp. 9602–9605 (cit. on p. 1).

[3] Edward T. Hall. The Hidden Dimension. Doubleday, 1966 (cit. on
p. 1).

[4] Donald Hearn and M. Pauline Baker. Computer Graphics: C Version.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1997 (cit. on pp. 29,
32).

[5] Keita Higuchi et al. “ImmerseBoard: Immersive Telepresence Experi-
ence Using a Digital Whiteboard”. In: Proceedings of the CHI Con-
ference on Human Factors in Computing Systems. Seoul, Republic of
Korea: ACM, 2015, pp. 2383–2392 (cit. on pp. 6, 21).

[6] Francis S. Hill Jr. and Stephen M Kelley. Computer Graphics Using
OpenGL. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006 (cit.
on pp. 28, 30).

[7] Ellen A. Isaacs and John C. Tang. “What Video Can and Can’T Do
for Collaboration: A Case Study”. In: Proceedings of the International
Conference on Multimedia. Anaheim, California, USA: ACM Press,
1993, pp. 199–206 (cit. on p. 1).

[8] Hiroshi Ishii and Minoru Kobayashi. “ClearBoard: A Seamless Medium
for Shared Drawing and Conversation with Eye Contact”. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems. Monterey, California, USA: ACM Press, 1992, pp. 525–532
(cit. on pp. 2, 4).

46

References 47

[9] Shahram Izadi et al. “Dynamo: A Public Interactive Surface Support-
ing the Cooperative Sharing and Exchange of Media”. In: Proceedings
of the UIST Symposium on User Interface Software and Technology.
Vancouver, Canada: ACM Press, 2003, pp. 159–168 (cit. on p. 5).

[10] S. Izadi et al. “C-Slate: A Multi-Touch and Object Recognition Sys-
tem for Remote Collaboration using Horizontal Surfaces”. In: Proceed-
ings of the Tabletop International Workshop on Horizontal Interactive
Human-Computer Systems. IEEE Computer Society, 2007, pp. 3–10
(cit. on pp. 7, 8).

[11] Brett R. Jones et al. “IllumiRoom: Peripheral Projected Illusions for
Interactive Experiences”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. Paris, France: ACM Press,
2013, pp. 869–878 (cit. on pp. 5, 6).

[12] Brett Jones et al. “RoomAlive: Magical Experiences Enabled by Scal-
able, Adaptive Projector-camera Units”. In: Proceedings of the UIST
Symposium on User Interface Software and Technology. Honolulu,
Hawaii, USA: ACM Press, 2014, pp. 637–644 (cit. on p. 5).

[13] Shunichi Kasahara et al. “Second surface: Multi-user Spatial Collab-
oration System Based on Augmented Reality”. In: Proceedings of the
SIGGRAPH Conference and exhibition on computer graphics and in-
teractive techniques in Asia. ACM Press, 2012, 20:1–20:4 (cit. on p. 5).

[14] Robert Sedgewick. Algorithms in C, Part 5: Graph Algorithms.
Addison-Wesley Longman Publishing Co., Inc., 2002 (cit. on pp. 37,
38).

[15] Kar-Han Tan et al. “ConnectBoard: Enabling Genuine Eye Contact
and Accurate Gaze in Remote Collaboration”. In: IEEE Transactions
on Multimedia 13.3 (2011), pp. 466–473 (cit. on p. 4).

[16] Cameron Teoh, Holger Regenbrecht, and David O’Hare. “How the
Other Sees Us: Perceptions and Control in Videoconferencing”. In:
Proceedings of the OzCHI Australasian Conference on Computer-
Human Interaction. Melbourne, Australia: ACM Press, 2012, pp. 572–
578 (cit. on p. 1).

[17] Cameron Teoh, Holger Regenbrecht, and David O’Hare. “Investigat-
ing Factors Influencing Trust in Video-mediated Communication”.
In: Proceedings of the OzCHI Australasian Conference on Computer-
Human Interaction. Brisbane, Australia: ACM Press, 2010, pp. 312–
319 (cit. on p. 1).

[18] A. Valadares and Cristina V Lopes. “Virtually Centralized, Glob-
ally Dispersed: A Sametime 3D Analysis”. In: Workshop on Location
Awareness for Mixed and Dual Reality (LAMDa’11). 2011 (cit. on
pp. 7, 8).

References 48

[19] Reinhard Viertl. Einführung in die Stochastik. Springer-Verlag, 2003
(cit. on p. 39).

[20] Cha Zhang et al. “Viewport: A Distributed, Immersive Teleconfer-
encing System with Infrared Dot Pattern”. In: IEEE Transactions on
Multimedia 20.1 (2013), pp. 17–27 (cit. on pp. 8, 9).

[21] Jakob Zillner. “3D-Board: A Remote Collaborative Workspace Fea-
turing Virtual 3D Embodiments”. MA thesis. Hagenberg, Austria: FH
Oberösterreich – Fakultät für Informatik, Kommunikation und Me-
dien, 2014 (cit. on p. 1).

Online sources
[22] Inc. CASIO America. 2015 (accessed August 3, 2015). url: http://

www.casio- intl .com/asia- mea/en/projector/whiteboard/ya_w72m/
(cit. on p. 11).

[23] Yinpeng Chen et al. ViiBoard: Vision-enhanced Immersive Interaction
with Touch Board. 2015 (accessed June 22, 2015). url: http://research.
microsoft.com/en-us/projects/mic_viiboard/ (cit. on pp. 5, 6).

[24] w’inspire GmbH. 2015 (accessed August 3, 2015). url: https://we-
inspire.com/technology (cit. on p. 11).

[25] Microsoft. 2014 (accessed July 3, 2015). url: https://msdn.microsoft.
com/en-us/library/dn799271.aspx (cit. on pp. 13, 44).

[26] Microsoft. 2014 (accessed July 3, 2015). url: https : / / www .
microsoftvirtualacademy. com / en - us / training - courses / programming -
kinect-for-windows-v2-jump-start-9088 (cit. on pp. 13, 15, 44).

[27] Microsoft. 2015 (accessed August 3, 2015). url: https : / / www .
microsoft.com/microsoft-surface-hub/ (cit. on p. 11).

[28] Microsoft. 2015 (accessed August 4, 2015). url: http : / / download .
microsoft . com / download / 6 / 7 / 6 / 676611B4 - 1982 - 47A4 - A42E -
4CF84E1095A8/KinectHIG.2.0.pdf (cit. on p. 13).

[29] Microsoft. C#-Referenz. 2015 (accessed August 21, 2015). url: https:
//msdn.microsoft.com/de-de/library/x53a06bb.aspx (cit. on p. 41).

http://www.casio-intl.com/asia-mea/en/projector/whiteboard/ya_w72m/
http://www.casio-intl.com/asia-mea/en/projector/whiteboard/ya_w72m/
http://research.microsoft.com/en-us/projects/mic_viiboard/
http://research.microsoft.com/en-us/projects/mic_viiboard/
https://we-inspire.com/technology
https://we-inspire.com/technology
https://msdn.microsoft.com/en-us/library/dn799271.aspx
https://msdn.microsoft.com/en-us/library/dn799271.aspx
https://www.microsoftvirtualacademy.com/en-us/training-courses/programming-kinect-for-windows-v2-jump-start-9088
https://www.microsoftvirtualacademy.com/en-us/training-courses/programming-kinect-for-windows-v2-jump-start-9088
https://www.microsoftvirtualacademy.com/en-us/training-courses/programming-kinect-for-windows-v2-jump-start-9088
https://www.microsoft.com/microsoft-surface-hub/
https://www.microsoft.com/microsoft-surface-hub/
http://download.microsoft.com/download/6/7/6/676611B4-1982-47A4-A42E-4CF84E1095A8/KinectHIG.2.0.pdf
http://download.microsoft.com/download/6/7/6/676611B4-1982-47A4-A42E-4CF84E1095A8/KinectHIG.2.0.pdf
http://download.microsoft.com/download/6/7/6/676611B4-1982-47A4-A42E-4CF84E1095A8/KinectHIG.2.0.pdf
https://msdn.microsoft.com/de-de/library/x53a06bb.aspx
https://msdn.microsoft.com/de-de/library/x53a06bb.aspx

Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

Breite = 100 mm
Höhe = 50 mm

— Diese Seite nach dem Druck entfernen! —

49

	Declaration
	Vorwort
	Abstract
	Kurzfassung
	Introduction
	Motivation
	Outline

	Related work
	State of the art
	Analysis of existing work

	Methodology
	Concept
	Setup
	User caption with the MS Kinect v2 sensor

	Remote visualization

	Prototype implementation
	Data acquisition
	Determination of the camera position

	Frame transformation
	Input parameters
	Frame access
	Background elimination
	Scenario 1: Symbol pointer
	Scenario 2: Hand duplication
	Scenario 3: Arm transformation
	Determination of accurate boundary vectors
	Overlapping body parts

	Rendering
	Performance enhancement
	Improved body detection using flood fill algorithms
	Unmanaged code

	Limitations

	Conclusion and Future Work
	System requirements
	CD Content
	PDF files
	Source Code
	Images

	References
	Literature
	Online sources

