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Abstract

Over the last decades, there has been numerous efforts in wearable computing research
to enable interactive textiles. Most work focuses, however, on integrating sensors for
planar touch gestures, and thus do not fully take advantage of the flexible, deformable
and tangible material properties of textile. This work introduces SmartSleeve, a de-
formable textile sensor, which can sense both surface gestures and deformation gestures
in real-time. It expands the gesture vocabulary with a range of expressive interaction
techniques, which highlight new unprecedented opportunities of advanced deformation
gestures, such as, Twirl, Twist, Fold, Push and Stretch. The interaction design process,
hardware implementation, and a novel non-rigid connector architecture are explained.
A description is further provided about the hybrid gesture detection pipeline that uses
learning-based algorithms and heuristics to enable real-time gesture detection and track-
ing. This presented modular architecture derives new gestures through the combination
with continuous properties like pressure, location, and direction. Finally, promising re-
sults from multiple evaluations that demonstrate the real-time classification of 9 gestures
with 89.5% accuracy are reported.
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Kurzfassung

In den letzten Jahrzehnten gab es zahlreiche Anstrengungen, um interaktive Textilien für
den Einsatz in tragbaren Computersystemen zu entwickeln. Die meisten Arbeiten kon-
zentrieren sich jedoch auf die Integration von Sensoren zur Erkennung von klassischen
Berührungsgesten und vernachlässigen somit die flexiblen, verformbaren und haptischen
Eigenschaften von Textilien. Diese Arbeit präsentiert SmartSleeve, einen verformbaren,
textil-basierten Sensor, der sowohl klassische Berührungsgesten als auch komplexe De-
formationsgesten in Echtzeit erkennen kann. Dieser Sensor erweitert das herkömmliche
Gestenvokabular um eine Reihe von neuartigen, ausdrucksvollen Interaktionen, welche
durch das Erkennen komplexer Deformationen des Textils, wie zum Beispiel Verdrehen,
Falten, Ziehen oder Strecken, möglich werden. In dieser Arbeit werden das Interaktions-
design, die Implementierung der Ausleseelektronik sowie ein neuartiges Verfahren für
flexible Konnektoren beschrieben. Darüber hinaus wird die hybride Gestenerkennung
vorgestellt, die maschinelle Lernverfahren und Heuristiken nutzt, um das Erkennen von
Gesten in Echtzeit zu ermöglichen. Der modulare Aufbau dieser Gestenerkennung er-
möglicht die Ableitung neuer Gesten durch Kombination von kontinuierlichen Parame-
tern wie Druck, Position oder Richtung. Schließlich werden vielversprechende Ergebnisse
aus mehreren Evaluierungen präsentiert, die die Echtzeit-Klassifizierung von neun Ges-
ten bei einer Genauigkeit von 89.5% zeigen.
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Chapter 1

Introduction

This work emphasizes the potential of deformation-based gestures for varied forms of
interaction on everyday clothing to enable an expressive connection with the digital
world. Furthermore, this greatly overcomes the input space constraint on current mobile
devices through an eye-free and non-intrusive access.

1.1 Motivation
"Ultimately, computers would vanish into the background, weaving themselves into the
fabric of everyday life until they are indistinguishable from it." Mark Weiser [74]

This quote is reflective of a vision to create a world where digital technologies are em-
bedded within our real-world environment, thus making interfaces ‘transparent’. Today,
a growing interest in wearable computing have overcome the key limitations inherent in
traditional bulky equipments, while retaining the functionality and even with the combi-
nation of disparate features. For example, smart glasses, similar to that of Google Glass
can click a picture with the wink of an eye. This evolution brings numerous explorations
with unprecedented opportunities.

In this thesis, we highlight and explore the unique benefits wearable computing
affords. We have focused on non-intrusive access and reducing the current state of myriad
number of input devices. We close this work by speculating on how the transition to
clothing-based interactions can help escape the user trapped in digital boundaries.

1.2 Research Challenges
With a variety of human-computer interfaces available today that brings input sur-
face closer to the users than ever before — from traditional keyboard or mouse to
miniaturized body-worn devices, including smart watches and head mounted displays.
Furthermore, augmenting everyday objects and spaces (e.g., tabletops, walls, or entire
floors), as well as the human body itself with interactive capabilities. Despite the ubiq-
uitous presence such systems provide, they impose significant constraints related to size,
precision, speed, and usability. Therefore, providing a single approach for eyes-free con-
trol in order to effectively and efficiently support multi-fidelity interaction is still a key
challenge in an era of ubiquitous computing.
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1. Introduction 2

However, following this approach to enable easy-to-access and always-available in-
put leads to the integration of technology into everyday clothing, which employs and
explores new capabilities beyond smart accessories. Within the past decade, several re-
searchers have explored and advanced various techniques on integrating sensors into
textiles [5, 7, 45, 57]. Although with substantial improvements in the hardware, most
of the existing work in the design space of interactive clothing still focuses on surface
gestures limited to only tap and swipe techniques, and thus does not fully take ad-
vantage of the flexible, deformable and tangible material properties of textile. In other
words, these unexplored physical properties of fabric for interaction design space can
offer tremendous new opportunities to expand and enrich the user experiences.

1.3 Summary of Contributions

1.3.1 Formulating Textile-Based Interactions
The goal of the work described in this thesis is to explore wearable-specific interactions,
specifically driven by personal and social considerations to support varying contexts
and scenarios. Unlike conventional rigid input surfaces, textiles offers an extraordinary
flexibility and strength for expressive interaction techniques. As such, the basic physical
properties of textiles opens a space to consider a set of advanced 2.5D deformation ges-
tures (Twirl, Twist, Fold, Push, Bend, Grasp, Stretch, and Shake). This unique paradigm
of shape deformation can enhance the existing digital interaction experience by ‘retro-
fitting’ with metaphors known from the real world. Therefore, significantly expanding
the design space to go beyond the current state of limited touchscreen emulation using
2D surface gestures (Tap and Swipe).

Another advantageous aspect of deformation-based interactions is to improve us-
ability. It evokes nostalgic memories of vintage products, especially among the elderly
users who mostly struggle to interact with modern interfaces. For instance, ‘twisting’ the
textile affords rotational control, the analogy here is to a physical knob in radio which
makes it suitable for actions with clockwise/counterclockwise motion, and can be used
for applications like volume increase/decrease in virtual player. While ‘stretching’ allows
the analogy of elastic input that can control the playback speed. Particularly functional,
combining the pressure information with deformation provides versatile input modality
to enable more degrees of freedom with expressiveness, for example, controlling fast for-
ward speed during video streaming. Currently, such different operations are controlled
by homogeneous actions, often limited to just sliding. In contrast, the proposed method-
ology of 2.5D gestures provides a wide range of ergonomic interactions in congruence
with the end users’ mental models.

1.3.2 SmartSleeve Hardware and Hybrid Gesture Detection Algorithm
This work introduces SmartSleeve, a textile-based sensor, which responds to both touches
and deformations with pressure measurements. SmartSleeve is sewn in a sleeve of a shirt
form-factor that is explicitly designed for comfortable fit and can be directly worn on
the skin. It is constructed using a three-layer smart-textile composition which forms
a pressure-sensing matrix. In practice, this enables both isotonic and isometric/elastic
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input, as well as, state-changing interaction with integrated passive haptic feedback.
SmartSleeve can be seen as an generic input sensor which is not limited to only one
specific clothing.

To detect the large bandwidth of proposed interaction techniques and their feasibil-
ity, a hybrid gesture detection algorithm is designed and built through a combination of
learning-based algorithm and heuristics. Foremost, this approach alleviates the tedious
problem of training process for each gesture. The algorithm can derive 13 untrained
gestures from 3 trained classes in a real-time environment.

Summarizing, the main contributions of this thesis in each of the three areas related
to wearable-specific interactions, sensing and gesture recognition are:

1. A set of novel interaction techniques, which arise from the combination of surface
gestures, deformation gestures, and continuous parameters (pressure, location, and
direction).

2. A flexible, resistive-pressure textile sensor, with a novel non-rigid connector archi-
tecture using hand-sewn connection between the textile sensor and the electronics.

3. A hybrid gesture detection pipeline that uses learning-based algorithms and heuris-
tics to enable real-time gesture detection and tracking for flexible textile sensors.

4. Two user studies that show how we recognize 9 types of gestures with approx.
89.5% recognition rate, at 30 fps.

5. A series of example applications to illustrate the immediate feasibility and poten-
tial of the proposed approach.

1.4 Thesis Organization
This document will firstly present a brief overview to wearable-based interactions, the
challenges in creating deformable based interactions, and a summary of the contribu-
tions. Chapter 2 describes related work in 5 areas that are crucial: social acceptance,
limited gestures, deformation based input, always-available micro interactions, and ges-
ture recognition techniques. Further, the design rationales for responsive clothing are
explained thoroughly in Chapter 3. The details about the hardware architecture for
SmartSleeve, and the implementation of gesture detection algorithms are mentioned in
Chapters 4 and 5 respectively. A quick overview of the example applications are demon-
strated in Chapter 6. Subsequently, the evaluations are provided in Chapters 7. Chapter
8 describes the discussion and limitations. The thesis concludes with some exciting fu-
ture work, followed by closing remarks in Chapter 9.



Chapter 2

Related Work

This chapter presents an overview that describes existing techniques on wearable in-
terfaces. A comprehensive review that focuses on social acceptance, deformation based
interactions, and techniques for gesture recognition are mentioned.

2.1 Social Acceptance
Social norms play a significant role towards one’s willingness to try new things, and
how readily such systems are accepted in the real world situations. Clothing choices
reflects personal style and influences the interpersonal behaviors. Several designers and
researchers have explored the user’s perception, cultural factors and social acceptability
towards the position and placement of on-body interfaces [15, 21, 40, 46, 71, 72]. The
results indicate that the forearm is the most preferred region for the interaction on the
arm, due to its ease of use and its comfort as shown in Figure 2.1.

Figure 2.1: Crowdsourced heatmap models for appropriateness in touching and looking
using on-body interfaces [21].

4



2. Literature 5

2.2 Limited Input Gestures on Textiles
Several empirical studies investigated how skin or textiles can serve as gestural input
surfaces. More than touch [72] (Figure 2.2 (a)) reported an elicitation study in a non-
technological environment that shows a set of gestures including touch, grab, pull, press,
scratch, shear, squeeze, and twist are preferably performed on the forearm or the hand.
Lee et al. [32] explores deformation-based user gestures by using various materials like
plastic, paper and elastic cloth. Bending, folding, rolling, crumpling and stretching were
suggested as possible deformations. Troiano et al. [67] investigated how depth and elas-
ticity of a display can be used to simulate deformation and provided a set of gestures
including grabbing, pulling, pushing, twisting, pinching or moving.

a b

Figure 2.2: (a) More Than Touch: input modalities on skin [72]. (b) Pinstripe: pinch
and roll a fold of garment between fingers [30].

While previous work presented diverse gesture sets appropriate for textile input
spaces, several solutions focused on specific input gestures on textiles. Touch sensitive
fabrics were used for a range of gestural input on trousers [25], pockets [54] or sleeves
[61]. Stitch-based solutions detect bends and folds [16, 30] by sensing interconnections
between seams (Figure 2.2 (b)). Grabbing a fold at a specific angle is detected similar
by using embroidered pads [19]. GestureSleeve [61] has an interesting approach for
extending the input space of a smart watch to the sleeve, but only support tap and
stroke gestures.

We choose to focus on a rich set of 2D touch and 2.5D deformation-based gestures
on a single sleeve, which tries to combine the recent advances in the empirical studies
with the current technological possibilities. Sleeve-based interfaces extends the Input
Space in contrast to skin-based solutions [22, 72] by having an opening at the wrist,
goes beyond conventional touch-based solutions [25, 54], and has a much large variety
of interactions using the wrist [14, 69].

This work combines directional and pressure sensing that can deliver a wide range
of novel interactions supporting additional degrees of freedom with expressiveness.
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2.3 Facilitating Deformation-Based Input with 2.5D
Pressure-sensitive input has been a topic of interest in the HCI community for several
years now, with research efforts ranging from explorations of pressure as alternative
input metaphor [26, 37, 64] to the development of pressure-sensitive input devices [8,
37, 39]. To date, pressure has been used for a variety of applications such as zooming,
scrolling, text entry, or widget control [38, 47, 49, 50]. A comprehensive overview of
existing work in the field, can be found in [75]. However, these existing solutions are
limited to a rigid form factor. In contrast, research in the domain of bendable inter-
faces (e.g., [17, 31, 62]) has demonstrated novel interaction techniques based on flexible
sensing or input and output capabilities. Addressing this arising potential, SmartSleeve
combines pressure-sensitive input with bending and stretching capabilities into a flex-
ible input sensor that can form the basis for the design of more scalable, flexible, and
transformable user interfaces [27].

Optical solutions presented the use of overhead cameras such as Photoelastic Touch
[29] or structured light scanners as for deForm [12]. While these solutions were able to
sense deformations of a flexible surface or even clay deformations on the surface, they
need space for the optical tracking system. Actuated solutions such as Relief [33] are
constructed of actuators such as electric slide potentiometers and DC motors. These
approaches are more applicable for a stationary contexts instead of using them in a
mobile contexts due to the fact, that these solutions need space. Ferromagnetic input
solutions [56] sense on base of a matrix of sensor coils (copper wire and permanent
magnets). However, the form factor is limited, the sensor coils add some weight and are
more applicable for above-the-surface sensing.

Resistive solutions offer the potential of sensing deformations with a very thin form
factor. UnMousepad [53] (Figure 2.3 (a)) is constructed of several layers (FSR surface,
resistive layer, conductor, clear substrate). FlexSense [52] (Figure 2.3 (b)) is a thin-film
sensing surface based on printed piezoelectric sensors. These solutions are already very
thin by providing the ability of sensing deformations, but have a need for rigid backing.

a b

Figure 2.3: (a) UnMousepad: multi-touch force-sensing input pad [53]. (b) FlexSense:
transparent deformable surface [52].

SmartSleeve is designed to be worn directly on body, and thus needs to be fully
flexible and soft, while having the capability to recognize a wide range of deformations.
This is achieved by its thin textile form factor.
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2.4 Enabling Always-Available Micro-Interactions
In order to help users to perform micro-interactions, which are short-time interruptions
[1], researchers have proposed a variety of ways to enable easy and fast access to mo-
bile devices and overcome the limited interaction space on small form factor devices.
Muscle input tracks the muscle tension to sense gestures [55]. Body-projected interfaces
(Figure 2.4) provide visual output, which is also used for the interaction [20, 23]. Other
approaches enlarge the interaction space by using sticky touch sensors [73], artificial
skin [28] or enhancing the interaction space of existing devices [2, 14, 43].While all these
approaches are very diverse, they are all location variant and comes in bulky packaging
of the hardware.

Figure 2.4: Shoulder-worn OmniTouch System [20].

In contrast, SmartSleeve support changes in signal at every point of sleeve, and can
be worn in everyday contexts for interactions without any intrusion.
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2.5 Recognizing Gestures Seamlessly in Real-Time
A number of pressure based sensing have explored sport and activity tracking. Most
closely related to our resistive textile hardware and nature of the signal are [65, 77, 78].
Although these techniques achieve good results, recognizing various types of gestures
in a single classifier requires large amounts of training which is a laborious task, and
also requires extensive handcrafted features especially for temporal information which
is computationally expensive as well.

The learning based gesture recognition approach only detects the trained gestures.
In this paper, we propose a hybrid algorithm of combining learning-based method with
heuristics that are experimentally derived. This combination enables recognition of wide
variety of untrained classes with high accuracy at low computation cost, which is robust
across different users and sessions. More related is the Pose Recognition mechanism in
GravitySpace [3] that distinguishes five body poses on the floor as seen in Figure 2.5. We
demonstrate how to extend a similar approach on clothing to derive 13 motion gestures
from only three trained classes of static ones.

a b

Figure 2.5: GravitySpace: (a) recognizes users and tracks their location and poses, (b)
using the pressure imprints on the floor [3].

In this work, the motivation is to embrace the challenge of designing an algorithm
that requires minimum training and can seamlessly run in real-time on the limited
computational resources available in wearables.



Chapter 3

Interaction Techniques

In order to probe the design space for gestures on the sleeve, we conducted several
brainstorming sessions with 9 external participants and two pilot studies (4P), including
an elicitation study. Social-acceptance and preventing false positives are the essential
factors considered while compiling the set of gestures. According to related work, the
interaction of the dominant hand on the non-dominant upper limb is mostly preferred
[72] and therefore we chosen the non-dominant hand as an input surface.

3.1 Taxonomy
In order to better understand the set of preliminary gestures, we manually classified
each gesture along four distinct categories based on previous work [6, 76]: Form, Flow,
Property Sensed, Dimensionality. Additionally, the pressure level applied while perform-
ing the gesture can add richer expressiveness. A detailed analysis about each of these
categories is given in the following section:

• Form concerns the hand, not wearing the sleeve, which performs the gestures.
Contrarily to Surface-Gestures [76], textiles provide one more dimension in the 𝑧
direction. Therefore, a gesture can lead to a deformation of the textile. The hand
pose can be held like Push or Stretch or can be changed Fold / Unfold while the
deformation happens.

• Flow differentiates between discrete and continuous gestures. For discrete gestures
like Touch, the response is given after completing the interaction, also continuous
gestures can initiate a direct response. A few gestures can be classified as discrete
or continuous depending on the use case (e.g. Stretch, Twist).

• Property Sensed describes the property used to sense a gesture: position -
static position on the textile, motion - movement between positions, deforma-
tion - change of the shape of the sleeve, pressure - deformation into 𝑧 direction,
stretch - elastic change of the textile.

• Dimensionality represents the topological space of the gesture. This concerns ei-
ther simple touch detection or movements on the planar surface (2D) or non-planar
transformations (2.5D) changing the shape of the sleeve. A sub-categorization can
be done as on-textile, and with-textile gestures. This can be used to elaborate one
dimension 1D or any combination of two dimensions 2D or three dimensions 3D.

9
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Taxonomy of Sleeve-based Interactions

Fo
rm

static pose Hand pose is held in one location.

static pose and path Hand pose is held as hand moves.

dynamic pose and path Hand pose changes as hand moves.

static pose and deformation Hand pose is held as hand deforms the textile.

dynamic pose and deformation Hand pose changes as hand deforms the textile.

Fl
ow

discrete Response occurs after the user acts.

continuous Response occurs while the user acts.

Pr
op

er
ty

Se
ns

ed

position Hand / Finger touches the sleeve.

motion Hand / Finger moves along the sleeve.

deformation Hand / Finger deforms the textile.

pressure Hand / Finger presses down on the textile.

stretch Hand / Finger stretches the textile along one
or multiple dimensions.

D
im

en
si

on
al

ity

1D Hand / Finger moves on / deforms the textile
in one direction.

2D Hand / Finger moves on / deforms the textile
within two directions.

3D Hand / Finger moves on / deforms the textile
within three directions.

Table 3.1: We initially categorized interactions according to form, flow, property sensed
and dimensionality.

Based on these categories, we composed a range of gestures and later classified them
under two broad groups: (i) Surface Gestures that are planar gestures and performed
on the textile, similar to conventional touch gestures, and (ii) Deformation Gestures
(e.g., Fold, Bend, Grasp) that are based on deforming the textile in more dimensions.

3.2 Gesture Design

Concurrent with the previous research [14, 24], we initially focused on the interaction
with wearables like smartwatch, smartphone, smartglasses, and earphones, since clothing
is also "always-on" and provides a promising input space. On the basis of different usage
scenarios (e.g., mute ringing phone, control audio volume, dismiss message, etc.) and
related work about interactions with textiles [19, 30, 32, 67], we further sketched 22
types of interaction techniques after refining them with an iterative approach to create
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a final set of both conventional 2D Surface Gestures and advanced 2.5D Deformation
Gestures (cf. Figure 3.1 and 7.4).

Surface Gestures Deformation Gestures

P
L
D

P
L
D

P
L

P
L

P P

P
L
D

P
L

P

Finger

Hand

Twist Bend

Stretch

FoldPush

Grasp Twirl

P L DPressure Location Direction

Figure 3.1: Design space contains Surface and Deformation gesture sets (total: 22).

In contrast to rectangular loose fabrics [32] or completely fixed fabrics [67], with
sleeve form factor we have one opening, which can be beneficially used for the interac-
tion. Gestures like stretching, twirling, pushing, or folding were only made feasible due
to the sleeve form factor, because in these interaction techniques the textile needs to be
fixed at some sides as well as to be loose on one side. We will now discuss the Surface
Gestures and Deformation Gestures in more detail.

Surface Gestures

The most basic class we found during our early investigations are surface gestures that
are performed on-textile. These are comparable to touch gestures on conventional in-
teractive surfaces [76] and can be used for simple navigation tasks such as scrolling or
swiping. Furthermore, the body shape provides a completely new property. For example,
detecting a movement across the upper arm could mean a rotation around the y-axis,
while the same movement across the lower arm could be recognized as a rotation around
the x-axis for 3D modeling.

Deformation Gestures

Physical deformations of the textile combined with pressure control enables novel inter-
actions, allowing for more rich and position-independent gestures like grasping, shaking
or twisting. Our participants expressed value for stretching and twisting, and related
them to control zoom levels in a map application or go up/down in a navigation hierar-
chy. Shaking is more interesting for shuffling or can be used for swiping through images.
Twisting let users scroll through lists or undo and redo actions. Therefore, a short twist
returns to the last action performed in contrast to a twist, which is continuously held
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scrolls back to any action performed earlier. We could also imagine combinations of
these gestures or specific positions for critical commands, like twisting at the elbow
for deleting a document. Additionally, gestures can occur at the end of the sleeve like
pushing, stretching, folding or rolling around the finger. Pushing can be used for peek-
ing information or zooming in. Folding requires more time and attention and is more
interesting for mode switches. Twirling is very specific and can be used to fix dates like
turning a knob.

Mapping uncomfortable actions like twirling can be used to perform commands, such
as deleting a photo or authorizing a transaction, which require high level of consciousness
[72]. Quick and rough gestures similar to rubbing or shaking offer eyes-free interaction in
mobile scenarios (eg. jogging) to control applications like music player. Besides the given
categories, as worn on body, the textile allows to track body movements like arm bend-
ing. Body-based gestures like arm bending are suitable for situations when the user’s
hands are occupied with another task, for instance, carrying shopping bags or people
with impairments in their hands [70]. While twisting enables retrofitting of modern user
interfaces [48], folding offers mode switching (or long-range interactions). Furthermore,
combining these interaction techniques with directional and pressure sensing can de-
liver a wide range of novel interactions supporting additional degrees of freedom with
expressiveness. Inspired by existing work, pressing and grabbing as well as twisting are
most frequently performed gestures on skin-specific modalities [72].

3.3 Input Space and Modality
Besides the attributes described in the taxonomy, we also investigated the input spaces
for each gesture as well as the input modalities. We differentiate between the upper arm
or the lower arm for gestures like touch and move or deformation-based gestures such
as rubbing, twisting, shaking, the elbow for body movements like bending and the wrist
for interactions techniques, which require the end of the sleeve, e.g. folding, rolling up
or stretching. Nevertheless, the initial focus was on the lower arm and the wrist, as an
above the elbow location is closer to focus and worse from a comfort and ergonomics
perspective [21]. We found four different input modalities single finger, multiple finger,
full hand or body part. While the first three modalities are on the other hand, which is
not wearing the sleeve, the body part is directly underneath the sleeve like the elbow.

The input space and modality are visually illustrated based on the participants
feedback in Figure 3.2. Many gestures can be recognized at different sensor locations
(e.g. forearm, elbow, upper arm). Our participants always performed Fold, Twirl and
Stretch at the edge of a sleeve. This location offers the additional benefit of being fast to
reach and easy to grasp. Gestures like Bend or Twist are limited to the physical abilities
of a human.
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Figure 3.2: Input space and input modality for deformation gestures.

As mentioned previously, we believe that this set of gestures has tremendous poten-
tial for the Sleeve-based interactions, also combining the Surface-Gestures ‘on-textile’
with deformation-based gestures ‘with-textile’ could further expand the design space.
The gestures shown explore the sensor classification and the sensor characteristics in
the later chapters, demonstrating the flexibility and the high variety of interactions that
can be detected in the real world.



Chapter 4

Implementation

4.1 SmartSleeve
SmartSleeve is a fully wearable and highly deformable textile sensor that covers a large
surface, features a high amount of sensors, and offers a high pressure resolution. In this
section, we present the design of the sensor and demonstrate how it can be rapidly
fabricated. Table 4.1 provides an overview of the characteristics of the SmartSleeve
sensor.

Parameter Value
Force detected 50-500 g
Sample rate 100 Hz
Sensor resolution 1.66 sensor/inch
Sensor count 360 sensors
Weight in total 124 g
Length of the sleeve 40 cm
Upper arm perimeter 26.5 cm
Elbow perimeter 26.0 cm
Wrist perimeter 16 cm

Table 4.1: Sensor characteristics.

4.1.1 Sensor Design
The SmartSleeve sensor builds on top of prior work [34, 42], that has introduced
pressure-sensitive textile sensors that consist of three layers of fabric. We will outline
how this technology can be used as clothing to enhance a wearer’s input possibilities
without feeling rigid connection wires or other components added to the fabric.

All layers of SmartSleeve are equally bidirectionally stretchable and deformable. The
top and bottom layers are made of Narrow Stripe Zebra fabric distributed by HITEK1,
characterized by alternating strips of conductive and non-conductive fabric, see Figure

1https://www.hitek-ltd.co.uk/
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4.1. The strips are 9 mm wide each. The zebra-fabric layers are orthogonally aligned ,
to form a matrix. The middle layer consists of a pressure sensitive fabric (EeonTexTM2

LTT-SLPA 20 k). It has a slightly larger size to prevent the two conductive layers from
shorting. Sandwiching all three layers creates a deformable and stretchable pressure-
sensing matrix, which can be used to envelop complex 3D geometries. The three loose
layers were stitched together along one side of the sensor to prevent the sensor grid from
shifting. The sleeve constrict at the lower arm part of the sleeve, therefore an additional
stretchable non-conductive fabric has been sewn lengthwise on the conductive layer,
which conducts lengthwise (cf. Figure 4.1 (b)), to prevent adjacent connection lines
from shorting when the layer is sewn into the sleeve.

a b c d

Figure 4.1: The sandwich architecture of the SmartSleeve sensor (a) the bottom layer
(b) and top layer (d) have conductive and non-conductive threads. In-between is the
pressure-sensitive layer (c).

SmartSleeve is designed to cover the complete underarm and half of the upper arm.
Even though this sensor technology can be easily scaled up to detect other body regions,
prior work has shown that this region is most comfortable for interactions. The sleeve
is designed to fit a human with a wrist perimeter size of 16 cm, elbow perimeter of 26
cm and an upper arm perimeter size of 26.5 cm. Early tests have shown that the sleeve
has to fit tightly to reduce failure of short cutting adjacent wires, but not too tightly,
in order to support deformation gestures. The sensor itself consists of 24 rows (around
the arm) and 15 columns (lengthwise), resulting in a total of 360 pressure sensor spots
with a sensor density of 1.66 sensors/square inch. SmartSleeve can be worn directly on
the skin. To prevent errors from the influence of skin moisture, it was usually worn over
a long-sleeved tight-fitting running shirt.

4.1.2 Initial Prototype
For the first version, we followed the approach of [34, 42] that has used rigid snap
buttons to connect textile with electronics (pictured in Figure 4.2) and 600 (20 × 30)
sensing intersections. It is designed for the sleeve form factor. However, after initial

2http://eeonyx.com



4. Implementation 16

trials we found out that rigid connections negatively affects the comfort of the sleeve
and its robustness. Therefore we explored different possibilities to connect textiles with
electronics hardware.

Figure 4.2: The initial prototype of the SmartSleeve with metal snap buttons soldered
to the ribbon cables.

4.1.3 Unobtrusive and Robust Sewn-Based Connection
In this section, we contribute an unobtrusive and robust method to connect not-rigid,
stretchable textiles with the rigid electronics. After several experiments with various
materials, we learned that yarn would be the favourable connection due to its surface
and shape behavior. Although many companies produce and sell conductive yarns3, very
few of these yarns withstand the soldering temperature, which is required to connect
the yarns with the PCB board. The main reason for that is the way how these yarns are
fabricated: they either consist of multifilament yarn wrapped with metal fiber or they
consist of a multifilament core yarn coated with with metal. Only the multifilament
yarns wrapped with metal fibers would withstand the soldering at higher temperature
properly.

A possible alternative is solderable yarn4. Although these yarns are highly conduc-
tive, they are not insulated, which makes them unsuitable for our design as they would

3www.schoeller-wool.com, www.bekaert.com, www.statex.biz, www.araconfiber.com
4High Flex 3981 7X1 Silver, or High Flex 3981 Flat Braid Karl Grimm (www.karl-grimm.com)
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Figure 4.3: Hand-sewn connection between textile sensor and the electronics allow for
flexible connections.

cause shortcuts. Previous research has also shown several ways to insulate conductive
yarns by ‘couching’, iron-on techniques or fabric paint [4]. However, the tight sleeve
needed a solution which preserves the look and feel as well as the comfort of use as
much as possible.

Therefore, we opted for basing the connector on a wire with a small diameter which
is conductive and insulated. During our experiments with different wires, we found the
Road Runner / Verowire wire to be the most promising one. These copper wires are
normally used for repairing or correcting printed circuit boards. The wire has a small
diameter of 0.15 mm, which makes it very deformable. It is coated in solderable enamel
or self fluxing polyurethane, which acts as an insulator. The coating can be removed
when a high temperature is applied (400–430 ∘C). Hence, before sewing, we use the
solder iron to remove 3 cm of the insulation.

A first method consists of handsewing the connections. A close-up of one connection
is depicted in Figure 4.3. It consists of 3 cm of non-insulated wire that is affixed using
a stitch to a row or a column strip of the zebra fabric. Although this stitch itself is not
stretchable, it requires little area and is therefore straightforward to be sewn by hand.

In addition to the manual fabrication, we also performed initial tests with a sewing
machine using different stitching modalities usable for elastic materials, including Zig
Zag, Double Overlock, and Super Stretch, see Figure 4.4. Straight stitches or stitches
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which are not adapted for elastic materials would either tear the fabric or reduce its
elasticity. We found that the wire resists enough tension to be sewn with a Zig Zag stitch.
Therefore, a non-conductive yarn was used as top thread and the wire as bobbin thread
[11]. In this way, the bobbin thread can easily float on the back side of the stitch without
passing through the fabric substrate when using the machine at maximum speed.

Zig Zag Double 
Overlock

Super 
Stretch

Figure 4.4: Fabricating the connector using a sewing machine, with Zig Zag, Double
Overlock, or Super Stretch stitch.

These different stitching modalities have different benefits and limitations. As the
wire is stiff, the equal stitch distances and the little use of yarn of the Zig Zag stitch
preserve the comfort of use as much as possible. For the Super Stretch stitch, the yarn
tension was raised to maintain the elasticity of the stitch. Otherwise, the wire would
float in a straight line, which means that the stitch would no longer be elastic. This is
due to the differences in the yarn elasticity between usual yarn (top) and wire (bobbin).
Because of that, the top yarn can tear more easily. The Double Overlock keeps its typical
pattern without making any changes regarding yarn tension. Nevertheless, we would not
recommend to use this stitch for that purpose as the stitch needs much more yarn, which
makes the fabric stiffer and thus reduces the comfort of use. In conclusion, we would
suggest to use the typical Zig Zag stitch, as the pattern maintains the comfort of use,
due to the simplicity of the pattern it is easily adjustable in its width and it is sewable
with the predefined yarn tension and thus less vulnerable for tearing.

4.1.4 Driver Electronics
SmartSleeve is based on a resistive tactile sensor. This type of sensor is subject to vari-
ous sources of errors, such as crosstalk, which affect the accuracy of measurements and
the gesture recognition. We evaluated different measurement principles and algorithms
to determine the best solution to yield high accuracy and reduced crosstalk. First we
analyzed how our system behaves with a solution without crosstalk reduction [59]. Fur-
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ther, we evaluated the effects of grounding for crosstalk reduction [9], the zero potential
method [63] and virtual grounding [60], the multiplexer op-amp assist approach [58],
and the resistive matrix approach [35].

Measurement Principle Average Error
Without reduction 34.5%
Grounding [9] 32.1%
Virtual Grounding [60] 42.0%
Multiplexer and Op-Amp assisted approach [58] 10.5%
Resistive Matrix Approach [35] 0.93%

Table 4.2: Overview of the measurement principles.

As depicted in Table 4.2, the resistive matrix approach yielded the best results and
was therefore implemented in our system. The measurement electronics consist of a
microcontroller, one SPDT switch, four multiplexers and four shift registers. The shift
registers are daisy-chained so that they work as one big shift register. The shift register
applies ground potential to the measured column while all other columns are connected
to high potential. Whenever the shift register is triggered, the low level jumps to the
next column. Multiplexers are connected to the row electrodes to forward single lines
to the ADC. Each single sensor spot is measured separately, which means starting from
the constant resistors which are mounted on the PCB to the first cells in the row and
first column to all others. Then all other sensors are getting measured row by row.



Chapter 5

Gesture Recognition

The raw sensor data matrix from SmartSleeve is sent via a serial connection to the
computer that performs various validation checks for suppression of cross-talk within
the hardware measurements. To accelerate the development process without reinventing
the wheel for correctness of raw input values and visualizing them from the SmartSleeve
hardware, we modified the FlexTiles[42] visualization software as per the needs of our
gesture recognition algorithms. However, this approach gave rise to a technical challenge
of cross-language interoperability, since the serial connection is written in C#, and the
gesture recognition is implemented in Python with an aim to reduce the complexity.

5.1 Communication between C# and Python
In order to bridge the gap between C# and Python for sensor data transmission, we
developed two separate strategies as discussed below.

5.1.1 Strategy 1: ZeroMQ Messaging System

The first strategy uses ZeroMQ, also known as ØMQ, 0MQ, or zmq 1, which is an open
source library that provides sockets to carry whole (atomic) messages asynchronously
across several transports, such as in-process, inter-process, TCP, and multicast. It
uses four messaging patterns for simplifying multithreading - Pipeline, Request-reply,
Publish-Subscribe, and Exclusive Pair.

To receive sensor values in the Python, we implemented the Publish-Subscribe pat-
tern (as described in Figure 5.1) where senders of messages, called publishers, and re-
ceivers as subscribers. This pattern is aimed at scalability. In other words, large amounts
of data can be transmitted simultaneously to multiple subscribers, even if they exist on
different devices.

With all the advantages influencing our choice for Pub-Sub pattern, there are two
downsides worth mentioning in this pattern:

1. Firstly, the subscriber cannot control the rate of messages sent by the publisher,
hence the messages will queue up at the end of publisher, if the subscriber cannot
handle the rate of transmission.

1www.zeromq.org

20
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Publisher

Subscriber Subscriber Subscriber

Bind at tcp://127.0.0.1:5555

Figure 5.1: ZMQ Publish-Subscribe (Pub-Sub) Pattern.

2. And secondly, the publisher does not have any status of connection from the
subscriber, both on initial setup as well as during re-connections.

C# Publisher

The following program (Listing 1) shows that the sensor_data collects data and
transmits it to local publishers.

1 using NetMQ; //NetMQ is a native C# port of ZeroMQ
2 string[] sensor_data = new string[args.RawSensorData.Length];
3 int i = 0;
4 foreach (var item in args.RawSensorData)
5 {
6 sensor_data[i++] = item.ToString();
7 }
8 // Create a new context
9 using (var context = NetMQContext.Create())

10 using (var publisher = context.CreatePublisherSocket())
11 {
12 const string pub_address = "tcp://*:5555";
13 publisher.Bind(pub_address);
14 string message = string.Join(",", sensor_data);
15 while (true)
16 {
17 publisher.SendFrame(message); //raw sensor values as message
18 break;
19 }
20 }

Listing 1: Program.cs: C# Publisher code.
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Python Subscriber

Listing 2 script subscribes to the subscriber and prints received messages.

1 import zmq
2 context = zmq.Context()
3 #subscribers are created with ZMQ.SUB socket types
4 socket = context.socket(zmq.SUB)
5 socket.setsockopt(zmq.SUBSCRIBE, "")
6 socket.connect("tcp://127.0.0.1:5555")
7

8 while True:
9 sensor_data = socket.recv_string()

10 print sensor_data

Listing 2: recv_data.py: Python Subscriber code.

5.1.2 Strategy 2: Pipe Process
A simple yet ultra-fast method for interprocess communication can be attained using
pipes or standard data stream. Pipes connect the output from one process as an input to
the another one, without writing to a file. Such a chain of processes can be sequentially
combined for more complex actions. One of the major applications of pipe is in Linux and
other Unices operating systems for passing information from one program to another.
There are three types of pipes: a) stdin allows to take input values, b) stdout writes
the output messages, and c) stderr to output error messages.

To transmit data from C# app (.exe), we print the sensor data to the standard
output stream (as shown in Figure 5.2). In Python, the Popen constructor takes a list
of arguments to setup the new process for reading the sensor data stream.

python_input.py SmartSleeve.exe

stdout C#

Figure 5.2: Pipe process sending the standard output from one program to another.
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Program.cs: C# app prints the sensor data to the standard output stream (shown in
Listing 3).

1 using System;
2 foreach (var item in args.RawSensorData)
3 {
4 //standard output
5 Console.Write(item.ToString()+",");
6 }
7 //new line
8 Console.Write(Environment.NewLine);

Listing 3: C# code for SmartSleeve.exe.

python_input.py: The following Python script (written in Listing 4) starts the whole
process, and gets the console output of the C# application line by line as it is generated.

1 from subprocess import STDOUT, Popen, PIPE
2 #create subprocess with pipes
3 connect = Popen('SmartSleeve.exe', stdout = PIPE, stderr = STDOUT, shell = True)
4 while True:
5 message = connect.stdout.readline() #readline() finds \n for end of message.
6 print message #received sensor values

Listing 4: Python code for reading output from C#.

1 using (StreamWriter file = new StreamWriter("FileName.csv",true))
2 {
3 foreach (var item in args.RawSensorData){
4 file.Write(item + ",");} // comma as channel-value separator
5 file.Write("2"+Environment.NewLine); //gesture label
6 }

Listing 5: C# code to save raw sensor values as CSV for offline analysis.

Since, strategy 2 offers almost-zero-latency period, which is a huge advantage over
the first strategy. Also, this has a lower computation cost and does not require any
third-party library in contrast to the first one. Therefore, we decided to use the second
strategy to implement our realtime gesture recognition pipeline.

For offline data analysis and early evaluation of models, the raw sensor values are
stored in CSV (comma-separated values) files using the C# script with corresponding
manually-labeled gesture names for supervised learning as described in Listing 5 . Once
these data files are generated, further computation is performed in Python.
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5.2 Machine Learning Models
Concurrent with the previous approach for C# and Python communication with dif-
ferent perspectives to find that one best choice amongst an array of alternatives, we
built three distinct machine learning models, namely (1) Sensor Fusion, (2) High Di-
mensionality Input, and (3) Hybrid using Learning-based and Heuristics. The goal is
to maximize the classification accuracy with minimal-training of gestures described in
Figure 3.1.

We performed most of the analytical computations using SciPy, NumPy, Pandas,
scikit-learn, Jupyter / IPython Python libraries. For plotting, we heavily used Mat-
plotlib and t-SNE. Anaconda Python distribution reduced all the hustle of installing
individual packages. The whole development was done on a 2015 MacBook Pro with
2.8GHz Intel Core i7 processor and 16GB RAM, running OSX and Windows (installed
using Boot Camp Assistant). For Model 1 and 2 evaluation, we took a subset of 19
gesture sets from our early design space, namely no pressure, tap, touch, slide, swipe,
spread, rub, bend, shake, roll up, pinch, grasp, twirl, fold, hold light, hold strong, stretch,
twist left and twist right.

5.2.1 Model 1: Sensor Fusion
This first model is the most straightforward - we calculated the magnitude on raw
sample points by combining the data from all the channels using root mean square
(rms), resulting into a single vector. On a 1 second window, statistical features are com-
puted, including mean, median, and standard deviation. Additionally, we performed fast
Fourier transform (FFT) and then added a band-pass filter (5 Hz to 15 Hz) to identify
the frequency domain features: power and dominant frequency. All these features are
used to train a kNN classifier (𝑘 = 5). While this approach works fairly well for classi-
fication with low-dimensional data, it almost certainly eliminates the unique property
of SmartSleeve which consists high number of sensors for versatile input. As a result,
this model achieved an extremely low accuracy in our early tests and takes significant
amount of time and resources for pre-processing and generating predictions. Therefore,
this approach seems unlikely to fulfill our need to classify all the gestures in real-time
trained on a single machine-learning model, and hence caution should be taken before
using this approach in actual situations.

5.2.2 Model 2: High-Dimensionality Input
In another implementation, we composed is based on a widely used technique with
minimal pre-processing and classifier ensemble for faster classification on a very high
dimensional dataset such as multi-sensor EEG signal [36]. We attempt to dodge the
curse of dimensionality that arises due to the large number of channel inputs through a
series of assessments as described later in this section.

Visualizing High-Dimensional Data

A lack of efficacy and problems with representing high dimensional data is a well known
issue, since a paper or screen is only a two-dimensional space. Perspective methods
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can be used for a three-dimensional space, but visualizing for higher dimensional space
is an unsolved challenge. Currently, there are two widely used approaches to support
high-dimensional data visualization: (1) Parallel Coordinates: The loss of information is
very low in this method, but perceiving information is extremely hard for viewers due
to the level of clutter caused by the mass of overlapping lines, and (2) Dimensionality
Reduction: As the name suggests, this is an approximate representation of original high
dimensional data into any lower dimensional space that makes it very readable while
preserving most of the information.

Figure 5.3: Dimensionality Reduction using t-Sne with 600 channels.

To describe the primary relationship amongst different gesture clusters, we adopted
the dimensionality reduction technique using the raw channel data. We analysed re-
sults from several dimensionality reduction algorithms, including Principal Components
Analysis (PCA), Linear Discriminant Analysis (LDA), and the recent t-distributed
Stochastic Neighbor Embedding (t-SNE) to draw clear inferences. In the end, we se-
lected t-SNE as it clearly shows the relationship between different gestures, combined
with clustering (Figure 5.3).
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Preprocessing and Feature Extraction

As almost all channels gets affected for some or the other gestures like, swipe acti-
vates more channels than a finger touch. Therefore, information from each channel is
required, hence we treat each channel as an independent information source. Features
are extracted from all the channels individually by applying a second-order Butterworth
IIR low-pass filter, and a 101 sample length Hanning window that suppresses noise and
smoothen the signal. Finally, we perform feature scaling by translating the obtained
values between 0 and 1 in order to optimize the classification accuracy. These features
are then used as an input to our model.

Ensemble Learning

Given that our data is discretely clustered to some extent and we also do not apply
any sophisticated filtering in order to effectively reduce the computational workload, we
experimented with ensemble of classifiers with different combinations of classifiers for
improving prediction performance. Although, ensemble learning have been empirically
proven to improve accuracy in the field of Machine Learning with large class sets and
noisy input [10], they are rarely applied in the field of HCI.
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Figure 5.4: Stacking Cross-Validation algorithm.

Typically, there are three main ensemble methods: (1) Bagging: Training base clas-
sifiers on random instances of the overall training dataset, and then combine (voting or
averaging) their individual predictions to form a final prediction, (2) Boosting: Creates
a series of classifiers on the training set for which the mis-classification is reported by the
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previous classifiers, and (3) Stacking: Also termed as Blending, combines the prediction
from several models through a meta-classifier.

In order to use diverse set of base classifiers for a large number of classes, we selected
Stacking technique. The standard stacking procedure is susceptible to overfitting as the
same training set, which is used in first-level classifier is also an input for the second-
level. Adding Cross-Validation (CV) with stacking can resolve this problem, since CV
splits the dataset into N equal folds and uses N-1 for training, and calculates accuracy
on the remaining one. These predictions are then used as an input for the latter-level
classifier. Figure 5.4 illustrates the steps involved in stacking ensemble with CV.

We use a StackingCVClassifier implementation provided by the Mlxtend (machine
learning extensions) library [51] with random forest as first-level and logistic regression
as a meta-classifier. We experimented with a number of classifiers on the basis of noise-
tolerant behavior and operability with very high dimensional data, namely Logistic
Regression (LR), Support Vector Machine (SVM), Linear Discriminant Analysis (LDA)
and Random Forest (RF) (see Listing 6).

1 from sklearn.linear_model import LogisticRegression
2 from sklearn.ensemble import RandomForestClassifier
3 from mlxtend.classifier import StackingCVClassifier
4 #more classifiers can be added
5 clf1 = RandomForestClassifier(random_state=42)
6 clf2 = LogisticRegression()
7 stack = StackingCVClassifier(classifiers=[clf1],
8 meta_classifier=clf2, random_state=42)
9 #similar to standard scikit-learn classifier

10 stack.fit(X_train, y_train)
11 y_test = stack.predict(X_test)

Listing 6: Python code for StackingCVClassifier.

The high resolution of the textile requires fast and easy methods to distinguish
between the many classes of the gestures. To provide a high accuracy, all dimensions
(2D position, pressure, time) were used for the recognition of all the gestures. Besides
that, we were also interested in getting the location, the direction and the pressure
information of a gesture as this supports to differentiate between even more gesture
possibilities and shows how the input space can be used beneficially.

Resolution Downscaling

Our objective here is to estimate a distribution over sensor values that can be used
to compute the likelihood of a gesture. As mentioned earlier, the original dimensional-
ity of sensor data can be seen as large matrices, which is used as a training data for
our machine learning model. Although, reducing the size of big-data matrices can be
performed through a variety of sophisticated statistical approaches, we used a simple
matrix elements summation technique to minimze the matrix size (as shown in Fig-
ure 5.5). To evaluate the classification accuracy with the new scaling, we reused the
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Figure 5.5: Resolution Downscaling.

data and machine learning architecture from second model.
Although this strategy generates good accuracy, it requires laborious training for

each gesture and also does not support space invariance, i.e. gesture trained at one loca-
tion cannot be tested at any arbitrary location without training at that position. This
model highlights an unseen constraint of machine learning in wearable technology, since
building generic models is a difficult task due to the personalization factor (anatomical
structure varies from one person to the other). Also, in our initial studies, we found
asymmetry in the inference of gestures by individuals, we suspect that it is due to the
influence of different mental models.

To overcome these challenges, we built a modular approach which allow location,
direction or pressure variance or invariance whenever it is needed. This reduces the
training trials as well as allows the user to use the same gestures to express different
meanings, for example a slide gesture on the under arm can be used for the next song,
while a slide on the upper arm play the next play list. Further, the locations variance
allows the user to map most recent gestures on the lower arm while less recent gestures
are placed on the upper arm [21]. Additional to the location variance, pressure can be
used to gain or change the interpretation of the gesture. As an example, a low pressure
slide be used for moving over the an interactive map while applying more pressure allow
the user to move slower with more precession.
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5.2.3 Model 3: Hybrid Approach
The realization from first two strategies underscores the key advantage of the third
strategy - Our novel algorithm addresses the challenges of learning-based methods that
need extensive training, as well as the extraction of hand-crafted features which re-
quire domain-specific knowledge, for class-label prediction. To alleviate these issues, we
combine the results from the trained model with a heuristic-based approach that relies
on a set of rules. Often used for applications, such as spam detection, filtering, and
rule-based assessment, Heuristic-based models provide a unique capability to react to
untrained classes. So, we can train a much smaller set of trained gestures and achieve a
wide variety of different interactions. Furthermore, our method can detect the position
of the gesture, the direction of the path for directional gestures, and the pressure level,
which could be mapped for applications like controlling the scrolling speed.
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Figure 5.6: SmartSleeve gesture detection pipeline. Receive raw sensor data (a) prepro-
cess through foreground and background separation, as well as Gaussian filtering (b) blob
detection (c) feature extraction from contours. (d) input features to classifier (e), and add
the heuristic rules (f).

Figure 5.6 presents the entire SmartSleeve gesture detection pipeline. Our approach
has some similarities with the method used in GravitySpace [3]. Similarly, we reduce a
3D problem to a 2D problem by constructing a force image using the raw sensor matrix
data. Next, we construct a force image with a size of 15 × 24 px with an overall fram-
erate of 30 fps. Our algorithm is training a classifier on a per-frame-basis without any
sliding window for temporal dynamics. Similar to the approach Type-Hover-Swipe [66],
we have developed a simple filter, which averages the current sample with the previous
ten samples to handle the false deformations on the SmartSleeve. Consequently, we can
stabilize the natural tremor of hands and obtain temporal information. In addition, we
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leverage our continuous gesture tracking mechanism for directional information. Par-
ticularly, we incorporate the results from learning-based algorithm and heuristic-based
approach to reduce the training of gestures by half as well as decrease computationally
expensive feature extraction.

Preprocessing and Feature Extraction

Initially, we convert the raw sensor data to a grayscale force image. By applying a
threshold we remove the noise. Further, we specify the foreground and background on
an individual pixel to search for points of interest, which in turn results in the loss of
the pressure information. However, this information is later recovered by calculating the
average force from the raw sensor data, once the Region of Interest (RoI) is located. In
the next step, we apply bilinear upscaling and a Gaussian filtering for smoothing the
raw force image. The RoI is selected as a mask inside the bounding box using the blob
detection model. We use the contour detection algorithm [13], which makes the gesture
classification space invariant.

The removal of the pressure information from the force image yielded significant
improvements in terms of classification accuracy during an informal pre-study with
different users. Additionally, it helps us reducing the number of training trials, as the
processed images for feature extraction appear similar even when the applied force
changes up to a certain limit for a particular gesture during the training phase.

Finger

Hand Stretch Grasp Twirl

BendFoldPushTwist

Figure 5.7: Training input frames after preprocessing.

As all the regions are highly discriminative (see Figure 5.7), we only compute a simple
histogram and a set of properties of the contour’s bounding box, including height, width,
area, and perimeter, as features for the classification without any further processing.
Since multiple contours can appear forming one gesture, we merge them into one result.
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Classifying Gestures Based on Image Analysis

In order to identify the gestures, we took a subset from Figure 3.1 based on their
variances, namely Finger, Hand, Bend, Twist, Push, Grasp, Stretch, Twirl, and Fold. We
experimented using the image features which we extracted above for these nine gestures
as input to different classifiers and found that a Support Vector Machine (SVM) yields
the most promising results, with parameters 𝐶 = 1.0 and kernel = RBF, optimized
using a grid search with cross-validation implementation provided by the scikit-learn
[44], mentioned in Listing 7. The model assigns probabilities for each type of trained
gesture.

1 from sklearn.model_selection import GridSearchCV
2 from sklearn import svm
3 parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
4 clf = svm.SVC(probability=True)
5 classifier = GridSearchCV(clf, parameters)
6 prdiction = classifier.fit(X_train, y_train).predict(X_test)

Listing 7: Python code for Tuning the hyper-parameters of a classifier using GridSearch.

Detecting Untrained Gestures Using Heuristics

We extend our frame-by-frame learning-based algorithm for recognizing dynamic (un-
trained) gestures by adding a set of rules based on the classifier generated probability
distribution. This idea is inspired by the Pose Recognition technique used in Gravi-
tySpace [3]. In our implementation, we combine the highest probability with net force
and properties of the blob (position and size) to produce more gestures (finger swipe
up, down, left, right, and rub; hand swipe up, down, left, right, and rub; spread; pinch;
shake). As mentioned earlier, we deduce the normalized force from the raw sensor data
within a blob and our frame averaging helps us to track the blob within successive image
frames.

Specifically, to identify the direction (up, down, left, or right) of the gesture, we
simply store the consecutive blob’s centroid coordinates in a buffer and compute the
slope through each pair of points. Additionally, we implemented a consistency check
algorithm to overcome the accidental deviations in slope values since a user might not
be able to draw a straight line (e.g., left to right gesture) and the slope might have
some unintended motions, which can be interpreted as an up- or down-gesture. We fix
this problem by splitting the whole gesture into overlapping regions and further ignore
small deviations.

Probability distributions of grasp and hand from the classifier help determine shake
and rub respectively, the blob’s centroid coordinates change significantly during rub
and shake, cf. Figure 5.8, (a) and (b) compared to other gestures, we use the concept of
first order derivative from calculus to compute this rate of change, since the obtained
value is scalar, we make it absolute and take an average on a finite size to avoid false
positives. Gestures including spread and pinch exploit the classification probability of
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Figure 5.8: (a, b): Change in contour’s centroid during rub and shake, and (c,d): Change
in area of the bounding box while performing spread and pinch over time.

finger combined with the linear change in area of contour (see Figure 5.8 (c) and (d),
we measure the trend of increment or decrement with simple subtraction between pairs
of consecutive area values. Afterwards, we assess the average to determine the action
robustly wherein a positive value signifies expansion, and vice versa.

Our system supports 2.5D input based on 2D touch input and an additional pres-
sure sensing level comparable with other systems [29, 53, 56]. Using the 2.5D depth
map SmartSleeve supports touch gestures, such as touching or moving. Besides that,
SmartSleeve detects gestures on base of the deformation of the fabric. When the user
presses down, the sensor value changes. For example, when the users grabs, the fabric is
pulled together and thus the pressure on specific points changes. SmartSleeve provides
continuous pressure information as additional property to the gesture classification. This
alleviate the issue of inconsistent pressure sensation in different contexts (also reducing
training trials), and can be further used to detect the magnitude of stretch and other
gestures.

Summarizing, our real-time recognition pipeline provides continuous gesture detec-
tion. In particular, if we attempt a swipe gesture, we have an additional component of
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changing pressure along the line. This feature allows us an additional input modality
and could be used for controlling speed in activities like fast forward in a video player.
Our system also detects a few multi-touch gestures. Most typically, we recognize spread-
ing for zooming into a map application or into a three-dimensional model. Therefore
the position can be used to set the zooming position or the camera and the pressure
sensing level indicates the speed. Additionally, as typically performed with the thumb
and the index finger, this gesture can be also performed with the thumb and all other
fingers, which can be used for a rough zooming.

Saving and Restoring the Model

Once the model is trained, it is useful to save it on a disk for further predictions without
training it again. We use the joblib module to save and load the model. This saves
computation by making predictions on the new dataset without retraining every time.
Also, the saved model can be easily transported to another device. Listing 8 represents
how to persist and load a model.

1 from sklearn.externals import joblib
2 #saving
3 joblib.dump(classifier, 'model.pkl')
4 #restoring
5 clf_saved = joblib.load('model.pkl')

Listing 8: Python code for Model Persistence.

In addition to classifying a gesture, SmartSleeve detects three properties: The Loca-
tion (L) where the gesture is performed on the sleeve, its Direction (D) and its Pressure
(P) intensity. Note that not all gestures can use all properties: the Bend gesture, for
example, can detect the pressure intensity, but its location is fixed at the user’s elbow
joint. Overall, these properties improve the quality of the gesture recognition, but they
can also be used as design parameters. Using a property like Direction considerably
expands the possible gesture set. To make use of these properties for certain gestures,
we use our hybrid gesture detection approach, which takes advantage of the properties
where appropriate.

As mentioned before, our hybrid algorithm can recognize all 22 gestures (7 Defor-
mation Gestures + 2 Surface Gestures + 1 derived Deformation Gesture + 12 derived
Surface Gestures) in real-time.



Chapter 6

Example Applications

These examples illustrate how 2D surface gestures, 2.5D deformation gestures, and
the three continuous properties (location, direction, pressure) have the opportunity to
greatly expand the opportunities for linking and mapping information while taking into
account nuanced properties, such as, recency and importance [24, 72]. The proposed
gestures can significantly increase the contextual appropriateness in various scenarios
(as seen in figure 6.1).

Figure 6.1: SmartSleeve envisions seamless integration of interactivity in remote, social
and private scenarios.

6.1 Surface Gestures: 2D Finger and Hand motion
Previous work has shown that users tend to transfer conventional multi-touch gestures
to other modalities—especially for standard commands [32, 67, 72]. Therefore, we find
it important to support a broad set of Surface Gestures, as depicted earlier in Chapter 3
(Figure 3.1). By making use of location, direction, and pressure properties, we are able
to derive even more gestures, as shown later in Figure 7.4. In the case of the derivatives,
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we distinguish between the following:

Swipe

2D motion with the finger or hand on the sleeve affords relative or absolute positioning.
The system can thus support traditional touch interactions, where surface interactions
are mapped to, e.g., navigation, scrolling and panning. The ability to distinguish between
finger and hand makes it possible to differentiate between coarse and fine control. In
addition, spatial differentiation between input regions can extend the interaction space.
For example, in a 3D modelling application, a movement across the upper arm could
mean a rotation around the y-axis, while the same movement across the lower arm could
be recognized as a rotation around the x-axis. Our eyes-free media player uses finger
left/right swipes to skip forward/backward in a track, while a left/right swipes with the
hand changes track. When our media player is used with visual feedback, finger motion
can be used for cursor control, and swiped for menu option navigation.

Rub

1D back-and-forth motion with the finger or hand matches the metaphor of scratching
something out with a pen. We thus found it attractive to map it to deletion. It could be
used for deletion of an element, like dismissing a message or deleting a calendar entry
[76]. In addition, the pressure intensity can be used to delete one or a whole set of items
at once. In our media player, rubbing removes the current track from the playlist.

Spread/Pinch

These gestures are widely used in ‘pinch-to-zoom’ interactions on multi-touch devices.
They are derived from the Finger gesture and make use of location and direction (see
Figure 7.4). While these gestures use multiple fingers, the algorithm is the same. This
interaction is applicable to scalable interfaces with visual feedback, such as, for map
navigation, and image manipulation.]

These commands except spreading and closing can be performed by one, multiple
fingers or the full hand depending on the gesture. Single or multiple fingers can be used
for high-level commands, while full hand would be used for low-level commands.

a cb

Figure 6.2: Gestures can be used to operate remote devices. In (a) and (b) the user
starts media and changes the volume by performing bend and twist gestures, (c) spread
can be used for controlling zoom level in map application.
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6.2 2.5D Deformation Gestures
In addition to Surface Gestures, SmartSleeve enables a wide range of deformable ges-
tures. The thin and elastic textile sensor material affords freeform manipulation and
deformation, while our sensing technique detects gestures, state changes, and continu-
ous manipulation.

Twist

Pinching the textile and twisting it affords rotational control. The analogy to a physical
knob makes it suitable for actions that map to clockwise or counterclockwise motion.
In our media player, we use this gesture to increase/decrease the volume. The ability
to sense location, also allows multiple virtual knobs along the textile—for example, to
control an equalizer or left/right balance. Pressure might be used to control the rate
(light touch would change the value more slowly). The physical constraints that prevent
the gesture to be rotated infinitely match the physical affordances of control knobs that
map to a value range. Our sensor currently does not support infinite rotation, which
can be found in scroll wheels, or continuous rotary encoders.

Push

Pushing the sleeve up can be treated as a state change, e.g., to hide information [41].
The compressed sleeve provides implicit visual and tactile feedback about the state.
Our media player uses this state to toggle mute, or to hide the UI or media if used with
visual feedback.

Fold

Folding the sleeve is another way to change state. Here, we rely on the difference in
operation to distinguish it from Push. While the end result may look similar, this oper-
ation requires careful effort to perform. With our media player, we map this operation
to entering recording mode.

Twirl

Twirling the textile around the finger requires intentional coordination. It uses the
metaphor of the "reminder knot" around a finger. We use it to assign importance to
the current item in the interface. The media player lets users rate a track by assigning
a "star" or "like" with the gesture. When used with an audio book, podcast or radio
show, it sets a bookmark. One could also imagine saving the currently playing voice
mail message, or using it to record a voice memo. Location for the Twirl can be used to
later enable retrieval with random access.

Grasp

Grasping consists of the user grabbing the textile and pulling it together into the fist.
We use it as a metaphor for retrieval. This, for example, allows us to complement Twirl
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with a mechanism for activating a saved item. The location can be mapped to specify
which saved item to retrieve.

Shake

Shake is a derived gesture from Grasping (cf. Figure 7.4). The metaphor is based on
grabbing a container with objects and shaking it. We map it to shuffling the tracks in
our media player. Another considered mapping would be to clear the list or to close the
application [32].

Stretch

Stretching consists of pulling on the textile at a specific location. It affords elastic input
as the textile retracts when released. We use the metaphor of turntable control, where
stretching controls playback speed in our media player. Stretching it towards the user
increases the speed, while pulling it away decreases the speed.

Bend

Bending of the elbow is an example of the implicit sensing that is possible with our
technique. As this motion is part of the user’s natural movement, we would need to
use a disambiguating mechanism, e.g., pressure or combination with another gesture, to
activate it if used as an explicit command. Another opportunity is to use it as implicit
input. For our media player, we have explored using the bending that occurs from arm
swinging while running as a way to detect the appropriate tempo for the music playlist.



Chapter 7

Evaluation

Two emprical studies were conducted to evaluate our hybrid gesture detection algorithm.
In the first experiment, we evaluated the learning based algorithm and we were primarly
interested in finding out if the trained gesture set would also be position-invariant. On
the other side, in the second experiment, we were focusing on the evaluation of the
heuristic approach, where we wanted to find out if the heurisitcs we implemented will
help to enrich the set of gestures while training only a subset of gestures.

7.1 Participants

Six unpaid volunteers (4 female), 23–36 years old (𝑥̄ = 30, 𝜎 = 3.8 ), all right-handed
were recruited from the local university. All participants used 2D touch interfaces on a
daily base, but none of them had experiences with smart clothing interfaces.

7.2 Apparatus
The study was conducted in a quiet room, where the participants were wearing the
SmartSleeve clothing as depicted in Figure 7.1. The instructions were displayed on LG
24′′ 1920 × 1200 pixel IPS LCD screen.

7.3 Experiment 1: Position-Invariant Gesture Recognition
In the first experiment, we performed a gesture recognition experiment, where we wanted
to find out if our approach also provides good accuracy results even if the gestures have
to be performed on different locations of the textile.

7.3.1 Design
At the beginning of the experiment, the nine different gesture types (i.e., Finger, Hand,
Twist, Bend, Stretch, Fold, Push, Grasp, Twirl) were demonstrated to participants for
clarity. Thereafter, participants were instructed to perform four trials of each gesture
type in randomized order to train the gesture recognition engine.
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Figure 7.1: Apparatus for both experiments. All the gestures have been displayed on
the screen and the participants performed the gestures using the SmartSleeve hardware
accordingly.

All these four trials had to be performed on the same location, which has been
marked accordingly with a red-sewn thread. The training phase took approx. 15 minutes.
Next, participants were asked again to perform eight trials of each gesture type on the (a)
same location (red-sewn thread position) as well as on (b) an arbitrary. The order of the
gesture type was randomized and presented accordingly on the on-screen prompts (see
Figure 7.1). The on-screen prompt further showed whether the gesture was recognized
correctly or wrongly. The testing phase took about 35 minutes per participant. Collected
measurements included error rate.

7.3.2 Results
Our approached reached an average accuracy of 92.0 % when the system is trained
and tested by the same participant on the same location, cf. Figure 7.2. Similar results
have been achieved when the system is trained and tested by the same participant on
different location with an average of 86.9 %, cf. Figure 7.3.

In more detail, the finger gesture achieved an average recognition rate of 96.4%
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Figure 7.2: The standard confusion matrix for the SmartSleeve hardware on the same
training and testing location.
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Figure 7.3: The standard confusion matrix for the SmartSleeve hardware using an ar-
bitrary location on the arm chosen by the participants.
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(𝜎 = .05), 100% (𝜎 = 0.0) for the bend gestures, and 83.6% (𝜎 = .167) for the twirl
gestures. Using different locations, an average recognition rate of 92.6% (𝜎 = .121) for
the finger gestures, 98.0 % (𝜎 = .05) for the bend gestures, and 80.0% (𝜎 = .244) for
the twirl gestures was achieved.

A repeated measures ANOVA was carried out and revealed a significant effect for
the location (𝐹1,35 = 6.019; 𝑝 < .05) as well as gestures (𝐹8,35 = 5.865; 𝑝 < .001).
Furthermore, a post-hoc analysis did not show any significant effects.

7.4 Experiment 2: Testing the Heursitics Approach
In the second experiment, we evaluated the performance of the heuristics of the gestures
using the parameters pressure, location and direction. We therefore wanted to find out
if we are able to recognize more complex gestures, which are based on simple ones.

Finger

Hand 

Swipe Right Swipe Left Swipe Up Swipe 
Down

Rub

Swipe Left Swipe Up Swipe Down

Rub Spread Pinch

Swipe Right

Grasp Shake

Trained Gesture Derived Gesture

Figure 7.4: 3 trained classes are augmented to derive 13 new gestures using our heuristic
approach.
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7.4.1 Design
We evaluated the recognition implementation with the same participants. As all the used
gestures were based on the gestures described before, no training data was required for
this evaluation. Again, we showed each new gesture on a screen and the participant
performed it accordingly.

For the second experiment, we chose a subset of the gesture classes (i.e., Finger,
Hand, and Grasp), as all of them are making use of all the used parameters (pressure,
location and direction), cf. Figure 7.4. Every participant performed each gesture 5 times
in total, resulting in an overall of 80 trials per participant.

For the gesture class Finger, for instance, participants had to perform the gestures
Swipe right, swipe left, swipe up, swipe down, tab, rub, spead, and pinch with the index
finger on an arbitrary location of the SmartSleeve. The same gestures were performed
using the Hand gesture class. Finally, participants also grasped and shaked the sleeve.
All the gestures were counterbalanced to avoid training effects.

7.4.2 Results
Figure 7.5 shows robust results with 84% (𝜎 = 0.11) of all gestures that were correctly
identified. In more detail, the simple gesture detection ( Swipe right, swipe left, swipe
up, swipe down, tab, rub, spead) using the finger achieved an average recognition rate
of 83% (𝜎 = .06), while we achieved 97% for the pinch gesture. Only very complex
deformation gestures, like the shake achieved an average recognition rate of 74%.

84%

0% 20% 40% 60% 80% 100%

CORRECT

84%

0% 20% 40% 60% 80% 100%

CORRECT

Figure 7.5: Results of 13 gestures detected by heuristic approach.
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7.5 Technical Evaluation
To evaluate the pressure sensing behaviour of the sensor we conducted a technical study,
where we applied mechanical stress onto the surface of the SmartSleeve sensor.

7.5.1 Apparatus
The sensor got stationary mounted onto a flat deformable Styrofoam surface. A hemi-
spherical thrust plate with a 4 mm diameter applied mechanical stress onto the surface
of the sensor. The resistance change of the sensor was measured 10 times with a force
of 25 g, 50 g, 75 g, 100 g, 250 g, 500 g, 1000 g.

7.5.2 Results
As seen in Figure 7.6 the sensor shows promising sensing behaviors from 50 g to 500
g. Below 50 g the sensor demonstrates high resistance changes as expected, however
according to the loose stacking of the sensor the standard deviation is high. Beyond
500 g the resistance of the sensor shows slight changes, therefore disregard this area in
SmartSleeve as well.
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Figure 7.6: Pressure Sensing under different stress levels.
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Discussion and Limitations

The SmartSleeve was trained and tested for a period of four months in total. During
that time, the sensor was used approximately 120 times by several persons who provided
early feedback.

8.1 Durability
We observed that the sensor signal did not change significantly even under different
pressure conditions. Regarding the connections, we implemented two versions. The first
version of our sensor had a rough rigid connection using flat ribbon cables (2.54 mm
pitch) connecting the sensor PCB board with the textile. The connections of this pro-
totype broke relatively easily, as the cable were very stiff and heavy and the soldering
spots were comparably small. Further, having this rigid soldered connection directly on
the sleeve leads to breaks, while performing a highly deformable gesture activity. The
second version of SmartSleeve with the new wire cables (as introduced in this paper)
was then tested for approximately three months. During that time, the sleeve was used
more than 100 times by different participants. Only three smaller issues had to be fixed.
Nevertheless, we think that this is the most challenging point that has to be further
addressed.

8.2 Pressure Input
As the results of the evaluation show, SmartSleeve accurately recognizes 2D gestures
(surface gestures) as well as 2.5D deformation-based gestures (deformation gestures)
that are performed on the textile. Even though our algorithm takes advantage of pres-
sure to detect 2.5D gestures, we have not evaluated the pressure itself for surface ges-
tures. The high pressure resolution of the sensor could be used for enhancing surface
gestures. Yet, as noted by Rendl et al. [52], pressure is a very subjective property and
its perception differs from person to person. Therefore, we did not formally evaluate
this aspect in this paper.

44



8. Discussion and Limitations 45

8.3 Three-layer Approach
While the three-layer approach currently is the only possible solution for a tactile sensor
that measures signals via a resistive approach, it was problematic in a few instances when
the user grasped only the top layer for performing a gesture. Moreover, a three-layer
sandwich is thicker, decreases the comfort of use and needs more implementation effort.
Therefore we strongly push for a one-layer solution which we are currently developing.

8.4 Use Inside Clothing
Early tests have shown that SmartSleeve can also be used as an inner layer in clothing,
protected by an additional layer on top. Therefore it is also possible to wear the sensor
under jackets, pullovers or other clothing. The stiffness and deformability of the outer
textile defines which gestures are still possible to perform with SmartSleeve. In addition
to use on or inside clothing, SmartSleeve can act as a textile input sensor for interaction
with a wide range of interactive objects and devices.

8.5 Tailored Clothing
SmartSleeve is tailored for a person having a wrist perimeter of approx. 16 cm, an elbow
perimeter of 26 cm and an upper arm perimeter of approx. 26 cm. Although all three
layers are bidirectionally stretchable, observations with other participants have shown
that the sleeve itself has to fit tightly, as it has to follow the rotation of the arm. If only
the upper arm and elbow are fitting well, but the sleeve itself is loose on the lower arm,
people can rotate the underarm inside the sleeve, which could lead to reduced accuracy.
Generally, as SmartSleeve is a personal wearable, it should be tailored for a person to
enable rich input on clothes.

8.6 Personalized Device
As the user tests with different users have shown, people interpret and perform gestures
differently. SmartSleeve enables a rich set of gestures, but it also requires consciousness
of the person performing the gesture. Some gestures (e.g., Push and Fold) have to be
trained and defined precisely, because they can interfere with other gestures, which is
not supported by the algorithm so far. In this paper, we defined the gesture class Bend
as discrete gesture modality, but it can also detect several levels of bending, which can
further be combined with other gestures. As an example the sleeve could detect bending
with 90∘ angle of the elbow with a Twist gesture. Generally, we have seen that a large
set of gestures also requires a precise definition of gesture and conciseness performing
the gesture.
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Conclusions and Future Work

We introduced SmartSleeve, a flexible textile sensor that senses both surface gestures
and deformation gestures in real-time. Previous work has focused on conceptualizing
new gestures [32, 67, 76], and on implementing one or a few gestures in a working
system [19, 30, 41, 61]. SmartSleeve, however, provides a unified sensing framework
which allows us to detect all of them within a single pipeline, as shown in Table 9.1.
Furthermore, most of the gestures can be done at any location on the sleeve, in contrast
to previous work, which restricts gestures to smaller, dedicated, instrumented areas.

Surface Gestures Deformation Gestures
Wrist to upper arm Forearm to upper arm Wrist

Related work Input space

Surface Gestures [76] Tabletop o o o o o
On-Body Interaction [22] Skin ×
More than Touch [72] Skin o o o o
PrintSense [18] Film × × × ×
Flexy [68] Film ×
iSkin [73] Film × × × × ×
Pinstripe [30] Textile ×
GestureSleeve [61] Textile × ×
Deformable displays [32] Textile o o o o o o
Elastic displays [67] Textile o o
Grabbing at an angle [19] Textile ×
AugmentedForearm [41] Textile ×
SmartSleeve Textile × × × × × × × × × × × × ×

Table 9.1: The SmartSleeve gesture set compared with previous work (o = conceptional,
× = functional).

We provided a detailed description of our hybrid gesture detection pipeline that
uses learning-based algorithms and heuristics to enable real-time gesture detection and
tracking. Its modular architecture, combined with a large sensor size, a high spatial
resolution and a high pressure resolution, allowed us to derive new gestures through the
combination with continuous properties like pressure, location, and direction.

Finally, we reported on the promising results from our evaluations which demon-
strated real-time classification of 9 gestures with 89.5% accuracy.
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In future work, we plan improvements to our SmartSleeve hardware, as the current
proof-of-concept implementation relies on a wired PC connection for data transmission
and power supply. Given the current hardware’s dimensions (102 × 53 × 25𝑚𝑚), minia-
turization of the electronics would allow us to embed it in the textile. Therefore, we
are developing a version, which is completely mobile with wireless connectivity (e.g.,
Bluetooth/WiFi). Additionally, we are working on a single-layer textile sensor imple-
mentation and implementing the algorithm on a hardware level.

We also want to explore how SmartSleeve performs in everyday scenarios and how
environmental influences, like humidity, affect the sensor. Our initial experiments show
that the sensor withstands machine washing at low temperature and slow spin, however,
more formal evaluations should be performed to assess the durability of the sensor.
Another goal is to replace the three layer approach, with a novel single layer textile,
where the yarn itself is pressure sensitive.
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Study Questionnaire
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Welcome! 

 

First of all, thanks for your interest in our study. Before we can start, we want to give you a brief 
introduction about the goal of the study and what role you play. The duration of our study is 
one hour. 
 
Goal of the study 

As you might know, the object of our study is to get a deeper understanding of our interactive 
textile sleeve. 
 
At this point, we want to emphasize that we do not test YOU, we test the performance of the 
device. 
 
For the evaluation, it would be very helpful to record your training and test data as well as to 
archive the questionnaire. For sure, we will process the data anonymously. However, we need 
your consent, which we undertake in return to use the material only for evaluation and internal 
presentation purposes. We will draw attention that summary information and / or single 
citations could be presented in an upcoming publication. 
 
In the unlikely case that something goes wrong in this study we advise you to contact us. 
 
We wish you a lot of fun and we would like to thank you again for your participation! 
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Consent Form 
 

Please read the following lines carefully. 

 

In order to allow a better evaluation of the data obtained, we will record your gesture trials and 

the questionnaire. In turn, we commit ourselves to an anonymous recording and to use the 

material only for evaluation purposes. Furthermore, we would like to ask to preserve silence 

about the exact conduct of the study so as not to influence other potential participants. 

 

So as to be able to perform the diary study, you will get a textile sleeve from us. Please take care 

of the sleeve. 

 

At this point we would like to inform you about your rights during the investigation: 

 

- You can abort the study at ANY TIME without negative consequences 

- In the unlikely case that something goes wrong in this study do not hesitate to contact us. 

However, please understand that we can respond to device-specific questions only after the test 

to prevent corruption of the data. 

 

I have read and understood all of the above. I agree with all the points. 

Name    ____________________________________________ 

Signature   ____________________________________________ 

Date    _____________________________________________________ 

 

The study team undertakes, with its signature, to anonymize all data of this investigation and to 

use it only for evaluation and internal presentation purposes:  

Name    ____________________________________________ 

Signature of the 

study leader     ____________________________________________ 

Date    _____________________________________________________ 
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Study 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Bend 

Fold 

Grasp 

Finger 

Hand 

Twist 

Stretch 

Push 

Twirl 
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How easy / simple was the gesture to perform? (1 = Not easy / simple, 7 = Very easy / simple) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finger 

Hand 

Bend 

Fold 

Grasp 
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Stretch 

Push 

Twirl 

Twist 
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Study 2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Swipe Right Swipe Left Swipe Up Swipe Down 

Rub 

Swipe Left Swipe Up Swipe Down 

Rub Spread Pinch 

Swipe Right 
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How easy / simple was the gesture to perform? (1 = Not easy / simple, 7 = Very easy / simple) 

 

 

 

 

 

 

 

 

 

 

 

Swipe 

Spread 

Move 

Rub 

Pinch 

Rub 
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DVD Content

Format: DVD-ROM, 4.7 GB

B.1 PDF Data

AS: /
Sharma_Adwait_2017.pdf Master’s thesis as PDF file.

B.2 Video

AS: /
SmartSleeve-1080p.mp4 SmartSleeve Video
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