
A Visual Node-Based Programming
Editor for Educational Purposes

Benjamin Stuntner

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2016

© Copyright 2016 Benjamin Stuntner

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, September 26, 2016

Benjamin Stuntner

iii

Contents

Declaration iii

Abstract vi

Kurzfassung vii

1 Introduction 1
1.1 Research Question . 1
1.2 Structure . 1

2 Visual Flow-Based Programming 3
2.1 Visual Programming . 3

2.1.1 Definition . 3
2.1.2 Common VPL Systems 5
2.1.3 Advantages . 10
2.1.4 Disadvantages . 11

2.2 Flow-Based Programming . 12
2.2.1 History . 12
2.2.2 Definition . 13
2.2.3 Terminology . 15

2.3 State of the Art . 16
2.3.1 NoFlo . 16
2.3.2 Unreal Engine 4 . 18
2.3.3 vvvv . 19

3 Prototype — NO:LE:AP 21
3.1 Early Concepts . 21
3.2 Current Version . 22

3.2.1 Network . 24
3.2.2 Nodes . 26
3.2.3 Game Entities . 31
3.2.4 Worlds and Tasks . 32
3.2.5 Persistency . 33
3.2.6 Metrics . 35

iv

Contents v

3.3 Early Playtest Results . 38

4 Implementation 41
4.1 Client . 41

4.1.1 Software Stack . 42
4.1.2 Node System . 43
4.1.3 Network Editor . 47
4.1.4 Worlds and Tasks . 49
4.1.5 Persistency and Metrics 50

4.2 Server . 51
4.2.1 Software Stack . 51
4.2.2 Implementation . 52

5 Evaluation 55
5.1 Results . 55

5.1.1 Demographic Data . 56
5.1.2 Played Worlds . 57

5.2 Interpretation . 58
5.2.1 Analysis of the Progression System 58
5.2.2 Supporting the Thesis’s Theory 59

6 Conclusion 63
6.1 Summary . 63
6.2 Problems . 63
6.3 Outlook . 64

A Contents of the CD-ROM 65
A.1 Thesis . 65
A.2 Online Sources . 65
A.3 Images . 66
A.4 NO:LE:AP . 66

References 67
Literature . 67
Online sources . 68

Abstract

Visual programming languages are mostly described as a two-edged sword.
Since a few centuries, this is a topic that regularly increases in interest,
leading to lots of discussions and several written works , but finally starts to
decline again. For a few people, visual programming is the future, making
textual programming languages obsolete for the majority, but most of the
studies about it are by far less positive. Nonetheless, there is a huge increase
in interest during the last few years. Specialized solutions for areas where
non-programmers have to work with it getting more and more attention.

This thesis addresses visual flow-based programming languages and de-
scribes a prototypical approach to a learning game incorporating a visual
node-based programming editor for educational purposes as its core feature.
There will be not only the theory and current examples to given topic pre-
sented, but also how they build the basis for the described approach, the
way its concepts are developed and how they get implemented. The goal of
this thesis is to find out if such an editor can help to lower the entry level
to areas like programming or math. There will be an in-depth description of
the implemented systems gathering valuable data and finally an evaluation
of first tests and their results.

vi

Kurzfassung

Visuelle Programmiersprachen gelten für Viele als zweischneidiges Schwert.
Seit mittlerweile einigen Jahrzehnten ist es ein Thema, das immer wieder an
Interesse aufnimmt, für viel Gesprächsstoff sorgt und einige Arbeiten dar-
über produziert werden, der ganze Rummel aber schließlich wieder abklingt.
Während einige Stimmen in visuellem Programmieren die Zukunft sehen, in
der textuelle Sprachen für die Allgemeinheit überflüssig werden, fallen die
meisten Studien eher ernüchternd aus. Trotzdem ist gerade in den letzten
Jahren das Interesse dafür drastisch angestiegen. Besonders als spezialisier-
te Lösungen für Bereiche, in denen Nicht-Programmierer damit produktiv
arbeiten, bekommt dieses Thema sehr viel Aufmerksamkeit.

Diese Arbeit beschäftigt sich mit flussbasierten visuellen Programmier-
sprachen und beschreibt einen prototypischen Ansatz eines Lernspiels, wel-
ches als Kernelement einen visuellen, knoten-basierten Editoren für Bil-
dungszwecke integriert hat. Es werden nicht nur die Theorie zu besagtem
Themengebiet und aktuelle Beispiele präsentiert, sondern auch wie sie als
Basis für den eigenen Ansatz dienen und wie dieser konzeptioniert und
schließlich auch implementiert wird. Das Ziel dieser Arbeit ist es, heraus-
zufinden, ob ein derartiger Editor helfen kann, die Einstiegshürde für Be-
reiche wie Programmieren oder Mathematik zu senken. Es wird außerdem
nicht nur erklärt, welche Technik realisiert wurde, um analysierbare Daten
zu sammeln, sondern auch die Ergebnisse erster Testläufe und was dabei
herausgefunden werden konnte.

vii

Chapter 1

Introduction

This thesis is the result of combining several major interests of the author
into one scientific project. First of all, game development is a very impor-
tant topic for him and multiple games where created by him successfully
in the past. Thus, it was one of the main goals to somehow incorporate it
into this thesis. Another one are visual tools as there where several projects
in the past he participated in and because these tools are getting lots of
attention nowadays with a multitude of popular software companies imple-
menting their own solutions. Finally, a topic he is very interested in too is
education, which is furthermore very fitting as the authors goal was to create
something with a certain kind of serious background. Combining these areas
resulted into the current title — a visual node-based programming editor
for educational purposes — and a confined enough topic for this thesis.

1.1 Research Question
By taking just stated thoughts into account, the following research question
was formulated:

Is a visual node-based editor capable of lowering the entry level to areas
like programming or math? Can it enable users with divergent knowledge in
these fields to perform roughly similar? Can such an editor thus be described
as a beginner-friendly tool?

1.2 Structure
After the thesis itself and the author’s reasons to choose this subject where
presented in chapter 1, chapter 2 introduces the reader to the core topics of
this paper, with an in-depth explanation of visual flow-based programming
on a term-by-term basis and an overview of relevant examples.

Chapter 3 introduces the prototypical approach of this thesis and gives
an overview over the conceptional stage early on. Furthermore, the most

1

1. Introduction 2

important parts and systems that actually made it into the current version
are explained.

In chapter 4, the focus lies on the technical aspect. It explains the imple-
mentation of the core mechanics and systems in place. This project includes
a client as well as a server software and both will be presented separately.

Chapter 5 is an evaluation, objectively summarizing existing data that
then gets analyzed and interpreted. This chapter will try to find out if this
prototypical approach had any success in finding valuable data to support
the theory of this thesis.

Chapter 6 concludes this thesis by highlighting eventual problems and
giving an outlook on the future of the project.

Chapter 2

Visual Flow-Based
Programming

Although this thesis is using the term node-based, a much broader and better
known one is flow-based — therefore, we are talking about flow-based in this
chapter. The reason to choose node-based for the thesis’s title is because the
visual representation in the prototype’s implementation resembles nodes and
lots of other projects in this field are also using this term whenever they have
similar visual elements.

Visual flow-based programming is a combination of two specific and
well-defined terms — visual programming and flow-based programming. This
chapter gives an in-depth explanation of the terminology and a brief overview
of current projects utilizing visual flow-based programming.

2.1 Visual Programming

Since the early 70s, when the first Visual Programming Languages (VPLs)
started to appear and research began in this area, there is a downright
rift dividing developers and scientists whether a VPL is a better and more
effective way of developing a computer program. Since then, a range of
arguments for and against VPLs emerged (see sections 2.1.3 and 2.1.4).

This section explains, what VPLs are, which types of visual systems exist
and further brings up some advantages and disadvantages of them.

2.1.1 Definition

While non-visual, i.e., textual programming languages are a one-dimensional
stream of characters, VPLs propose a two-dimensional (or more) computa-
tion model [3]. Although VPLs are defined as (generalized) icons from an
iconic system forming iconic sentences [5], these visual environments have
still some kind of logical functionality underneath, therefore visual program-

3

2. Visual Flow-Based Programming 4

ming is still considered as programming. Thus, VPL can also be classified
regarding their scope, namely general-purpose languages and domain-specific
languages.

Another way to distinguish VPLs is based on the amount the system
relies on the graphical representation [2, 12], with a multitude of variations
from which some remarkable examples are presented in this section.

Pure VPLs

There are some criteria a VPL has to fulfill to be a pure visual programming
system. First of all, the system is capable of executing its program. There
are lots of graphical tools supporting the software development process and
its multiple phases, but they neither produce real code nor execute — in a
pure VPL, everything can be done within the visual environment and even
rely on its graphical representation during the development process.

This does not mean, that a VPL can not be implemented with an already
existing programming language, but this system has to work on its own
and the user has to be able to create desired applications without leaving
the visual environment. If this is not the case and the visual system has
merely a supportive functionality, we are talking about hybrid systems (see
section 2.1.1).

Hybrid systems

Hybrid systems are textual languages with an additional layer of visualiza-
tion on top. Erwig et al. [8] stated, that visual and textual languages both
have their benefits and started to develop heterogeneous visual program-
ming languages (HVPLs) by integrating domain-specific visual systems into
existing general-purpose programming languages. They saw visual program-
ming especially superior in working with data structures and focused their
research towards this area.

An example they outlined is a visual environment to work with self-
balancing binary search trees which is fully integrated into the program-
ming language Pascal i.e., every interaction with the visual environment
gets parsed underneath and the final outcome is pure Pascal code.

Visually supported systems

This category has the least in common with the definition of real VPLs,
representing simple graphical aids or clues and mostly integrated into IDEs
rather than the language itself.

An example can be found within Microsoft’s IDE Visual Studio for C#
and Visual Basic called Class View which visualizes the project’s class hi-
erarchy as a graphical tree structure. This is even less than hybrid systems,
because they do not exist to manipulate or extend the textual language

2. Visual Flow-Based Programming 5

Figure 2.1: A screenshot from the prototype’s source code in Visual Studio
2015. On the right side you can see Visual Studio’s Class View, an example
for Visually supported systems.

through a graphical environment but rather visualize structures which are
easier to understand in a figurative way (see figure 2.1).

2.1.2 Common VPL Systems

As there are lots of different VPLs existing today with different purposes
and scopes, there are also different ways of how these VPLs are graphically
displayed. Brown [3] differentiates between the semantic and the syntactic
base of an VPL, where the semantic base defines, how the system works and
the syntactic base, how it is visualized. While one could theoretically try to
randomly mix up two bases, there are indeed naturally fitting combinations
and even constraints on which combinations do work together.

This section does not explain semantic and syntactic categories on their
own but rather presents a selection of combinations more commonly found
in existing VPLs.

Form-based

The idea behind form-based VPLs is to imitate typical spreadsheet appli-
cations as they are a popular tool for non-programmers. Although there
is no remarkable current VPL based on this visual system, Forms/3 was
fairly popular in the 90s, especially for scientific research and prototyping.
Forms/3 is a general-purpose, declarative VPL and incorporates typical as-
pects of spreadsheets like tables with a matrix of cells which in turn can

2. Visual Flow-Based Programming 6

Figure 2.2: This figure shows an example for a Forms/3 program, resembling
the look and feel of a typical spreadsheet environment [4].

hold alphanumeric data, images or complex formulas and functions (see fig-
ure 2.2). Tables are objects placed within forms — the equivalent to sheets —
which then can be placed in other forms again as subforms. Forms/3 is fur-
thermore capable of data abstraction, GUI/IO and animations as Forms/3
uses a three-dimensional computation model with time as third dimen-
sion [4]. Unfortunately, Forms/3 is not actively developed anymore since
the mid-2000s, but is still a very remarkable example for form-based VPLs.

2. Visual Flow-Based Programming 7

Figure 2.3: Construct 2 with its event-driven component-based drag and
drop system [17].

Event-driven Component systems

As the name already indicates, component-based VPLs incorporate the
component-based programming paradigm where components are defined as
independently developed, composable and reusable black-boxes to empha-
size the separation of concerns within computer programs [6, 16]. They are
gaining a lot of popularity nowadays thanks to a couple of modern game
engines like GameMaker: Studio or Construct 2. Both are based on event-
driven systems with large libraries of ready-made components that can be
simple added to game objects by drag and drop which in turn extends these
objects with additional behaviors (see figure 2.3). Both engines can be ex-
tended with additional components through custom markup languages.

Sequential Blocks

Programmers are used to read and write software on a line-by-line basis
and Block VPLs try to imitate this habit to feel more familiar to actual
developers and to teach non-developers this way of thinking, thus they are
often used for educational applications. One of the earliest examples utilizing
this system is LogoBlocks [1], a VPL based on Lego/Logo which is in turn
a MIT research project (and precursor of Lego Mindstorm) to program real
Lego robots (see figure 2.4).

Another example is Blockly, an open-source library written in JavaScript
by Google. It is a web-based visual editor outputting syntactically correct

2. Visual Flow-Based Programming 8

Figure 2.4: An example application created with LogoBlocks which enables
a real Lego robot to move around without crashing into walls [1].

code, thus it can be classified as a visual hybrid system (see section 2.1.1).
But since Blockly can be customized and fully integrated into web- and
android-applications very easily, there are lots of educational software and
games using this framework1.

A third example is the educational project Scratch, where people can
create small games and animations within their browser with a set of pre-
defined blocks (see figure 2.5 for an example program). It is interesting to
mention, that the developers of Blockly teamed up with Scratch’s develop-
ers for a side-project called Scratch Blocks to re-implement Scratch using
Blockly.

Directed Graphs

Directed graphs or digraphs are described in the mathematical studies called
graph theory as a set of vertices (or nodes) connected by directed edges
(or arrows) describing the relation of these vertices. While edges in regular
graphs allow both directions, directed edges can be constraint towards one
direction.

1There is even an acquirable early-access game on the gaming platform Steam called
CodeSpells which uses Blockly to create magical spells. The game can be found on http:
//store.steampowered.com/app/324190

http://store.steampowered.com/app/324190
http://store.steampowered.com/app/324190

2. Visual Flow-Based Programming 9

Figure 2.5: This figure shows an animation done with the web-based editor
of Scratch. On the left side is the animation and the used sprites and on the
right is the editor.

1

2

3

4

6 5

1

2

3

4

6 5

Figure 2.6: An example for a regular graph on the left side and a directed
graph on the right side with directed edges showing the direction they are
associated with.

Though graphs are indeed a mathematical representation of a set of
elements with matrices or lists as notation, they are often described with
graphical visualizations, because the relations between the vertices is more
recognizable for humans on this way (see figure 2.6).

Digraphs are currently the most popular VPL systems and a natural fit-
ting visual system for the flow-based programming paradigm (see section 2.2),
therefore it is often called visual flow-based programming. It is also used as
the basic system for the prototype. Furthermore they are often used for
various other real world data set visualizations like financial transactions or
transportation routes.

2. Visual Flow-Based Programming 10

2.1.3 Advantages

As already mentioned in section 2.1, there is a large variety of opinions
regarding VPLs, nevertheless they gained lots of popularity over the last
years and there is a large range of well-known and very mature projects
incorporating VPLs — a few advantages often mentioned are presented now.

Comprehensibility

An influential work regarding visual languages was written by Hirawaka and
Ichikawa in 1994 [10], stating:

Pictures are superior to texts in a sense that they are abstract,
instantly comprehensible and universal.

Although many authors argue against such a superlativist position of graph-
ics over text, VPLs can indeed be superior regarding readability whenever
they help to explain the inner workings of a system at a glance [12]. Larkin
and Simon [11] came to a similar conclusion when they compared diagram-
matic to sentential representations of information, stating that diagrams
indexed by location in a plane can help to group information together and
thus reduce the effort of searching.

Beginner-friendly

A huge appeal for VPLs is the low threshold to start working with and
although everything has some kind of learning curve, VPLs still maintain
a fairly low entry and its users are often capable to achieve first successes
very early. Furthermore, a few, including [9, 12], also mentioned that this
low entry level and the fast results of visual programming environments are
also very motivational for beginners which do not have to learn any syntax
or concept of regular programming language beforehand.

Beginner-friendly does not only point out an advantage to users new to
a certain environment but also to users regarding their general skill level
of textual programming. This is a huge advantage and a main reason for
its success nowadays especially for high-level domain-specific environments.
Hirawaka and Ichikawa concluded their work with a similar statement [10]:

When we use visual expressions as a means of communication,
there is no need to learn computer-specific concepts beforehand,
resulting in a friendly computing environment which enables im-
mediate access to computers even for computer non-specialists
who pursue application.

This is the main reason for a lot of projects to implement visual environments
for very specific purposes in a textual programming language by regular de-
velopers. These tools are then incorporated into the work-flow of co-workers

2. Visual Flow-Based Programming 11

without programming knowledge. This is a very common way to streamline
the working process of modern companies.

2.1.4 Disadvantages

While there is increasingly more work done in the field of VPL and a multi-
tude of scientific research shows lots of advantages (see section 2.1.3), there
are also very critical voices towards VPL, showing various disadvantages.

Low-Level Inefficiency

VPLs providing lots of components incorporating complex functionality in-
deed helps reducing the amount of work to reach a certain goal. But easy
tasks like simple calculations can take some time with visual programming
to set up all graphical elements, while this is often not more than a short
line for textual programming.

Boshernitsan et al. [2] distinguish between two levels of procedural ab-
straction, high-level and low-level visual programming languages, which we
can find in regular programming languages too. They mention, that general-
purpose VPLs are often found on the low-level side with features like condi-
tionals, iterations and atomic operations like additions and conclude. While
this enables these languages to be used within a larger scope, using text is a
more appropriate way of such low-level work. Furthermore they notice that
lots of low-level operations in VPLs lead to a cluttered display pretty fast,
which is also called Deutsch Limit (see section 2.1.4).

Deutsch Limit

L. Peter Deutsch, a Boston-born software developer and composer made
following assumption during the presentation of a newly developed visual
programming language by Scott Kim and Warren Robinett [1, 18]:

Well, this is all fine and well, but the problem with visual pro-
gramming languages is that you cannot have more than 50 visual
primitives on the screen at the same time. How are you going to
write an operating system?

While this limit is not scientifically proven, there is still an advantage of tex-
tual programming over visual programming regarding information density
— which Deutsch tried to make clear with his statement. Screen space can
get a limiting factor soon, especially when lots of visual primitives have to
be used for relatively less functionality, as described in section 2.1.4. There
is also a large study by Whitley and Blackwell [14] with three different sur-
veys they conducted and then compared. One of them is about LabVIEW, a

2. Visual Flow-Based Programming 12

Figure 2.7: This is an example for a Data Flow Diagram taken from a
lecture of John Azzolini [15].

visual programming environment for industrial automation and system de-
sign. The overall conclusion is fairly positive regarding VPLs but especially
the survey about LabVIEW showed that users often produced messy and
cluttered programs.

However, an argument against the Deutsch Limit is, that this limit could
also exist for the textual visualization [1]. Furthermore, in modern visual
programming language, this is often no problem anymore, because most of
them already have a way to hide blocks of visual primitives in sub-structures,
therefore the Deutsch Limit is never reached.

2.2 Flow-Based Programming
Flow-based programming is the core idea behind this thesis’s prototype,
therefore a more in-depth explanation will be given in this section start-
ing with a short overview of its history.

2.2.1 History

Flow-based programming (FBP) was invented in the early 70’s by John Paul
Morrison, while he was working at IBM as an engineer. They where working
with lots of Data Flow Diagrams (DFD), which was a popular way to plan
and visualize computer processes these days (see figure 2.7 for an exam-
ple). But Morrison really struggled to effectively work with them, because
DFD where based on very old Flowchart Planning Processes used by IBM

2. Visual Flow-Based Programming 13

since the late 19th century. IBM was called Computing-Tabulating-Recording
Company and was one of a few companies building Electric Accounting Ma-
chines (EAM), where lots of physical punch cards where processed through
various EAMs — it was the beginning of large-scale data processing. The
problem was that they where still working and planning large software ap-
plications with DFDs at IBM but had to translate these architectures into
ones that can be run on a computer based on the von Neumann paradigm.

Morrison really loved the idea of encapsulated blocks with a certain func-
tionality, running at the same time, processing incoming data and proceeding
them to the next block. With further influential work like Geoffrey Gordon’s
General Purpose Simulation System [20] or Conway’s Coroutines [7] in his
mind, he finally created FBP. It was used for a few projects at IBM in-
cluding a software for a Canadian bank, where parts of it are still running.
Unfortunately, it never took off, on the one hand because Morrison never
really actively promoted this new paradigm, on the other because most of
the other programmers did not really want to adopt to this new way of
thinking.

Now, forty years later, people start to get interested in FBP again. There
are some pure FBP implementations, for example in C++, Java and C#,
which can be found on Morrison’s website [25]. But most of the best known
projects are just FBP-like implementations, as Morrison himself calls them,
using only parts of the concepts of FBP and focusing more on the visual
node-based approach, like this prototype does.

2.2.2 Definition

FBP is defined as a Declarative Dataflow Programming Paradigm, which can
again be broken down into 3 well-defined terms:

Programming Paradigm

A fitting definition of the Programming Paradigm can be found on Wiki-
pedia [27]:

The notion of programming paradigms is a way to classify pro-
gramming languages according to the style of computer pro-
gramming. Features of various programming languages deter-
mine which paradigms they belong to; as a result, some lan-
guages fall into only one paradigm, while others fall into multiple
paradigms.

In other words, every programming language that exists is classified by the
features it provides. Nowadays, most of the programming languages have a
set of paradigms they incorporate and often provide native or third party
libraries to provide even more of them.

2. Visual Flow-Based Programming 14

Declarative Paradigm

Programming languages are declarative, whenever their users do not need to
write how something is done. The programmer defines what has to be done
but does not care how the programming language achieves that. Further-
more, the how of the implementation does not manipulate anything outside
of its scope, which means that declarative programming is referential trans-
parent2.

A very good example for this way of thinking is found in the object-
oriented language C# — which is actually the opposite of the declarative
paradigm. C# has its own declarative API3 though, namely LINQ. Iterating
over a list and picking certain elements by hand is the object-oriented way,
while LINQ exposes methods like Select, Join or Concat, which can be simply
implemented to do the same, while the user does not have to care about how
it is done by LINQ.

Dataflow Paradigm

The focus of Dataflow Programming lies on the data of an application. The
data is constantly passed around from one stateless instruction to another,
like water flowing through pipes. The instructions are seen as “black boxes”,
which can be interconnected and exchanged to form the functionality of an
application. As you may have noticed, we just talked about “black boxes”
and “stateless”, which indicates, that every programming language incorpo-
rating the Dataflow Paradigm also incorporates the Declarative Paradigm.

A well known language using this paradigm is the Unix Shell with its
often used pipes. Processes can be chained together by writing a vertical bar
between two of them, which means that the incoming data is handled by the
first process and the output is automatically processed by the second one.

The following example is a valid code snippet and perfectly shows the
idea of the dataflow principle:

ls -l | grep something | less

The first process ls -l gets all files in the current directory, grep something
goes through this given list and filters all files with a name containing the
given string “something” and less finally prints this filtered list to the console

While flow-based programming is very similar to dataflow programming,
there are also multiple differences, clarified by Morrison [13, 23]:

Flow-based programming is a particular form of dataflow pro-
gramming based on bounded buffers, information packets with

2An expression is said to be referentially transparent if it can be replaced with its value
without changing the behavior of a program.

3API means “Application Programming Interface”, a popular way of utilizing third
party libraries by implementing clearly defined and well documented functions, that are
exposed to the public by the developers.

2. Visual Flow-Based Programming 15

defined lifetimes, named ports, and separate definition of con-
nections.

2.2.3 Terminology

Morrison really cares about the right use of the terms within FBP. A brief
overview of the most important ones is given in this section, a lot more can
be found on the official Wiki, which is maintained on Github [19].

Graph

Graphs represent whole applications, that define their functionality through
networks of interconnected components. To reduce the complexity of large
projects, parts of the network can be combined to Subgraphs to make the
main graph more clean and to collapse certain blocks of functionality into
one to probably reuse it again elsewhere. Morrison also distinguishes between
a passive graph and an active one that is currently running, which he calls
a Net.

Component

Components are the heart of graphs, blocks of encapsulated functionality
that have no information about the rest of the graph. They are passive and
do nothing until they get activated by receiving Information Packets on one
of their Input Ports. As soon as they are running and processing incoming
data, they are called Processes.

Port

All components have a certain number of named Input- and Output Ports. A
component receives new data on input ports and as soon as all input ports
have some data, the component starts to process them. When its done,
it proceeds the data to the corresponding output ports and does not care
anymore about it.

There are some further special types, which can be found here [19]. One
important type should be mentioned though, namely External Ports, which
are used for embedded subgraphs. With external ports, the developer can
expose inputs and outputs for the whole subgraph, which then can be con-
nected to the rest of the graph.

Connection

Processed data that got moved to an output port by the component now
has to move on to the next component. To define, which components are
connected to each other, Connections are made between an output port

2. Visual Flow-Based Programming 16

from one component to a different component’s input port. Connections are
Bounded Buffer, as already mentioned in section 2.2.2 — in other words,
as soon as a connection is full, the process that sends the data blocks and
whenever the connection is empty, the process that receives the data blocks.

Information Packet (IP)

Information Packets carry the data that gets moved around between com-
ponents. They activate a component, when they arrive at an input port,
except a special type of IPs, Initial IPs, that simply carry some configura-
tion information with them without triggering components.

2.3 State of the Art
Morrison often mentions, that there is a difference between the way he de-
fines FBP, which he calls classic FBP and most of the modern implementa-
tions which are FBP-like according to him (see section 2.2.1).

In the following sections, some projects incorporating more or less ideas
of FBP are presented, but they are all FBP-like implementations, according
to Morrison. Most of them also use different terms, but they all mean the
same most of the time. A good way of categorizing them is by their purpose.
Like regular programming languages, there are General-purpose languages
that are suitable to produce programs for different purposes and of suitable
size and Domain-specific Languages that accommodate particular domains
and can not be used outside their scope.

One thing they all have in common is a visual interface though and there-
fore belong to the group of visual programming languages (see section 2.1).
Thus the following examples are Visual Flow-based Programming Languages
which where also used as references for the thesis’s project regarding func-
tionality, interface design and user interaction.

2.3.1 NoFlo

NoFlo is a free general-purpose programming language which was developed
in 2012 to fully incorporate the concepts of FBP in Javascript without com-
promises — Morrison [24] still calls it FBP-like and even wrote an article
about the reasons that NoFlo probably will never be a true classic FBP
implementation.

NoFlo itself is no visual editor — it was implemented in Node.js and
CoffeeScript and is a library to develop JavaScript web front- and back-end
applications4. The terminology is the same as Morrison’s, because the de-
velopers where heavily inspired by his books. They created an own domain-

4You can find the whole MIT-licensed source-code online on Github: https://github.
com/noflo/noflo

https://github.com/noflo/noflo
https://github.com/noflo/noflo

2. Visual Flow-Based Programming 17

Figure 2.8: The current NoFlo logo.

Figure 2.9: Full NoFlo version of the well-known library Jekyll [26].

specific language similar to JSON 5 to define the application’s graph outside
of the JavaScript files. Soon after they released the first version, it became
very popular and a large community started to develop lots of ready-made
components integrating a large set of different APIs commonly used for web-
development — everything managed and distributed over NPM, a package
manager for Node.js.

When the developers realized the popularity of NoFlo, they started a
Kickstarter campaign and successfully funded the development of a visual
web-based editor for NoFlo, called Flowhub6. Mobile touch-apps for iOS
and Android are also currently developed. Flowhub as full access to all com-

5JSON as described by Wikipedia [22]: “JavaScript Object Notation is an open-standard
format that uses human-readable text to transmit data objects consisting of attribute-value
pairs.”

6Flowhub can be found on www.flowhub.io

www.flowhub.io

2. Visual Flow-Based Programming 18

Figure 2.10: Unreal Engine 4 logo.

ponents developed by the community and own components can be easily
added with JavaScript. Complex graphs including sub-graphs can be made,
analyzed and saved in all current web-browsers. One popular example for
the effectiveness of NoFlo and Flowhub is a fully working implementation of
Jekyll, a “simple, blog-aware and static generator for small websites” with
just a few custom components (see figure 2.9).

2.3.2 Unreal Engine 4

Unreal Engine 4 (UE4) is a modern 3D game-engine for AAA games, indie
projects, real-time motion-capture pre-visualization in movie production,
real-time high-quality visualizations of cars or architecture and is one of
the front-runner in bringing Virtual Reality to the developer-masses. A wide
variety of successful games like Tekken 7, Kindom Hearts III, ARK: Survival
Evolved or Street Fighter 5 are made with UE4.

UE is written in C++ and you can use solely C++ to develop new
functionality but since it was rebuilt from ground up in version 4, they
implemented a new core system called Blueprints Visual Scripting System
which is a visual editor for nearly everything in the engine like general
gameplay scripting, complex AI behavior and even UI functionality. The
terminology is similar to classic FBP, but components are split up in Nodes,
Events and Vars and connections are called Wires.

The general game development work-flow with blueprints starts with the
implementation of new nodes with functionality not yet present and exposed
variables which can then be tweaked. New nodes can only be developed

2. Visual Flow-Based Programming 19

Figure 2.11: An AI behavior blueprint, which enables an entity to find out
its nearest cover point in a shooter game [21].

in C++. They can then be used be the rest of the team, especially non-
developers, to create new blueprints. Blueprints can be reused and also,
like sub-graphs, used within other blueprints. They are then added to game
entities to apply their functionality to them. Figure 2.11 shows a blueprint
for some AI behavior. With this blueprint, the entity it is applied to, tries
to find the nearest cover point in a shooter game.

2.3.3 vvvv

vvvv describes itself as a “general-purpose toolkit” and a “hybrid visual /
textual live-programming environment for easy prototyping and develop-
ment”. It is free for non-commercial use and written in Delphi. It is indeed
a general-purpose framework, but the focus is clearly on real-time multime-
dia manipulation and it is used for 2D/3D Animation, Data Visualization,
Multi-screen Systems or Projection Mapping.

Regarding the terminology, graphs are called Patches, components are
Nodes, ports are called Pins and connections Links. It has a feature called
runtime only mode, because everything is compiled on the fly the whole
time. New nodes are written in C# with the whole .NET-API accessible
and even shader programming can be done within vvvv by implementing
shader-nodes written in HLSL. Another feature is called boygrouping which
is a performant built-in client-server architecture which allows to control one
server-application to control multiple clients over the network for large-scale
multi-screen setups.

2. Visual Flow-Based Programming 20

Figure 2.12: The current vvvv logo.

Figure 2.13: An interactive kinect-controlled midi piano made with vvvv
by Kristian Peterson. You can see multiple patches and sub-patches and an
output window with a live video-feed.

The main reason for vvvv’s success is once again their very active com-
munity, because nodes and even whole patches can be easily shared on their
website which enables vvvv to utilize a huge community-driven library of
ready-made nodes and patches. Thus, nodes for nearly every microcontroller
or physical gadget exists which made vvvv very popular for developers in
the field of Physical Computing and interactive (artistic) installations. An
example is a project done by Kristian Peterson for the Oslo Maker Fair
2014. He created an interactive video-wall allowing people to play a digital
midi piano controlled by a Microsoft Kinect (see figure 2.13).

Other often used community-made nodes include wrapper for modern
2D / 3D physics engine which enables vvvv to visualize complex physical
simulations and wrapper for lots of different database systems.

Chapter 3

Prototype — NO:LE:AP

After a brief overview was given about the core topics of this thesis, this
chapter describes the concepts that made it into the prototype, the current
status of the prototype and a brief description of things that where added
to the prototype after a few tests made with a small group.

The current title is NO:LE:AP (Node-based Learning App) and from
now on we are referencing to it as prototype or NO:LE:AP.

There will be a few figures in this chapter, screenshots taken from the
current prototype, where the text is written in German. The decision to
release the game in German was made early on while the concepts for the
prototype’s evaluation where discussed. As there would be no international
test users, German was chosen as the prototype’s language to remove lan-
guage as a decisive factor regarding the user tests, which are described in
section 3.2.6.

3.1 Early Concepts
The main goal of this thesis is to create a pure visual programming environ-
ment (as defined in section 2.1.1) for a domain-specific purpose and due to
the author’s interest and background in computer games this domain should
be settled within given scope — but nothing further was defined in the early
stages. The game had to be very stripped down to concentrate on the core
elements as there where no other team-members for graphics, sound design
or animations.

A fitting setting was found soon after — robotic entities without anima-
tions from a 2D top-down view to minimize the graphical effort, furthermore
robots are thematically a good choice to be programmable through our node-
based editor. An obvious game design choice for robots was a fighting game
with robots battling each other in arenas by running through routines de-

21

3. Prototype — NO:LE:AP 22

Figure 3.1: Screenshot taken from NO:LE:AP v1.0 while loading and con-
necting to the server.

fined by a behavior editor. This idea was also influenced by Robocode1, a
programming game by Mathew Nelson, where tanks are programmed with
Java to destroy the tanks of other programmers.

After a few non-relevant tries to further extend this idea, first studies of
the state of the art of VPLs showed the still ongoing discussions regarding
its efficiency, thus another goal emerged i.e., trying to find arguments for
and against it. These arguments also have to be valid and verifiable which
implies the need for some kind of performance measurement. Robots battling
in an arena did not seem to give enough room to achieve this goal and the
author was also not really happy with creating a fighting game. But after a
few further iterations, a more suitable idea was found soon.

3.2 Current Version
A more serious approach was taken for the final idea by looking into to scien-
tific field of educational video games. Removing the concept of battle arenas
and adding an educational layer brought much more depth to the game and
significantly helped to find a suitable way to measure the performance of
our node-based editor through player metrics (see section 3.2.6). While the
player has still to use the visual editor to program his robot with a certain
behavior, his goal is not to kill other robots anymore but to solve puzzles.

1You can find the latest version of Robocode, an in-depth tutorial and lots of other
useful links on the official website http://robocode.sourceforge.net/.

http://robocode.sourceforge.net/

3. Prototype — NO:LE:AP 23

Figure 3.2: This screenshot shows the world selection screen with easy
worlds starting top left getting progressively harder.

There are now a couple of worlds, each with certain unique tasks the player
has to solve (see section 3.2.4). To make them truly unique, there is a variety
of game entities, further described in section 3.2.3, that can be utilized for
these tasks in various ways. The title for this prototype was found during
this phase as well and there was also an early version for a logo created,
which you can see in figure 3.1.

As there are now worlds with tasks to solve, the goal was to make each
world harder to solve than the previous one, which is a very common but not
easily achievable game design choice. To support this progress, the initial
idea was to lock all but the very first level and every time the player finishes
a world, the next one is unlocked. Unfortunately, this leads to an impassable
wall, which immediately prevents the player to see further content, as soon
as he does not manage to finish a world. A better way that came up was the
following system:

• Whenever a player finishes a world, he gets a certain amount of points
credited.

• While new worlds still have to be unlocked to be playable, players can
unlock worlds directly by spending points to unlock them.

• To circumvent the just described impassable wall, worlds cost less
points to unlock than one can earn by completing a previous one, thus
leading to some spare points which can be spent on further worlds,
when the just unlocked is too hard.

• To prevent a player to spend points on too hard worlds too early, which

3. Prototype — NO:LE:AP 24

Figure 3.3: After a world is selected, this screen appears, describing the
selected world, the tasks to solve and further tips and information.

would again lead to an impassable wall, all worlds are categorized and
sorted by their difficulty, bringing the easier worlds to the player’s
attention at first (see figure 3.2).

Currently, all worlds are divided in three difficulty levels — easy, medium
and hard. While easy worlds are mostly used for introducing the player to the
game mechanics and to new entities, medium worlds do already take some
time to get solved and hard worlds are the most difficult ones, demanding a
fairly deep understanding of the systems of NO:LE:AP from the player.

As the player unlocks a world, the only information he gets about it
in the level selection screen is the name, the difficulty and the points, the
player can achieve (see figure 3.2). After said world is unlocked and selected
by the player, a new screen appears — the world description screen. This
screen shows all available information about the selected world and you can
see an example in figure 3.3. On the top left is the name, followed by a
small map showing the world and its entities. Underneath the map there is
a short summary of a few statistics. The most important area is the text-
field on the right side, containing a short description of the world, the tasks
to accomplish, available nodes (explained in section 3.2.2) and some further
hints.

3.2.1 Network

After the player read through all available information in the world descrip-
tion screen, he can hit the play button in the bottom right corner to actually

3. Prototype — NO:LE:AP 25

Figure 3.4: An actual world of NO:LE:AP, shown as soon as the player hits
the play button in the bottom right corner of the world description screen.

start the world. figure 3.4 shows the selected world after the player hit the
play button in the world description screen. There are also a few buttons in
the top edge, starting from left with a leave world button, which aborts the
current world. Next is a buy hidden hint button, showing one hidden hint
but also costs a few points (which is further described in section 3.2.6), an
open network button and finally a start/stop network button.

To actually solve the selected world, the player can control all the robots,
but only the robots, in the world called A.R.E. — further information about
them can be found in section 3.2.3. A.R.E.s are controlled through a behavior
editor called Network which can be opened by clicking on the open network
button. A network is corresponding to a graph in regard to the definition
by Morrison already explained in section 2.2.3. The idea is that the player
looks at the world, tries to figure out possible solutions for the tasks and
then opens the network to start programming one capable of solving given
tasks.

Figure 3.5 shows an empty network. On the left side there is a list, hold-
ing all available nodes, sorted by their type (which are further explained in
section 3.2.2). Underneath this list there are two buttons, start/stop network
and close network. The big empty area on the right side is the network itself.

Networks do not run by default, giving the player time to solve the tasks.
The world itself is also paused. As soon as he clicks on start/stop network,
the network grays out, the player can not modify it anymore and everything
starts running. If something did not work out as intended, the start/stop
network button has to be pressed again, stopping the network and resetting

3. Prototype — NO:LE:AP 26

Figure 3.5: Pressing the open network button reveals shown screen — the
core of the game.

the world to its initial state.
There is also a limited way of navigating within the network available,

e.g., pressing the arrow keys moves the network around and scrolling with
the mouse-wheel zooms the network in and out. This especially helps as soon
as there are bigger networks to build.

3.2.2 Nodes

Nodes are equal to Morrison’s components from section 2.2.3. They are pas-
sive black boxes and contain bits of functionality. They have input- and
output-ports and get activated as soon as some IPs do arrive at their input-
ports.

There is a certain amount of certain nodes enabled for the current world
to solve the tasks. You can find an entry button in the list on the left for
each available node including the number left for this type. These buttons
can be moved with drag & drop and dropping one within the network area
results in the creation of a node of given type. Following the rules of FBP,
output-ports can be connected to input-ports from other nodes — as long as
they share the same data type (see section 4.1.2). Figure 3.6 shows a fairly
complex network with multiple nodes connected to each other.

Furthermore, there are different colors for different nodes, representing
categories (regarding their functionality and usage) and all of them are as-
signed to one. On the one hand, these categories are used to separate the
available nodes into different lists and the user can select a category in the

3. Prototype — NO:LE:AP 27

Figure 3.6: Screenshot of NO:LE:AP’s network editor with a fairly complex
network.

network screen with the drop-down in the top left corner, thus the list is not
cluttered with nodes. On the other, different colors for different categories
try to support the player working with the network as they give certain
visual clues regarding their functionality. Furthermore, not only the nodes
are colored but also the connections between two nodes do light up in the
color of the output-port’s node category, whenever an IP is sent.

As of version 1.0, which is the version described by this thesis, there are
5 different categories with a total of 24 different nodes — all of them are
used for at least one world in the current version. This is a huge variate of
nodes which was fairly easy and fast to achieve thanks to the system’s im-
plementation (see section 4.1.2). Following, a brief overview of the categories
and a selection of nodes will be presented.

Energy

Energy came up as a gamified and stylized alternative to classic update ticks
in a game loop, better fitting to the game’s setting with robots. Nodes from
this category are colored in green. The idea behind this system is, that all
nodes that interact with the world need energy to work — these nodes can
be found in the category Robotics and are further described in section 3.2.2.

Energy Core: This is the most important node of all which also comes
in three different versions — core level I, core level II and core level III —
getting more powerful with increasing level. While regular output-ports are

3. Prototype — NO:LE:AP 28

Figure 3.7: A running network with active connections colored in the type
of their output-node.

not restricted to a maximum number of connections, energy cores can only
supply a certain amount of robotics nodes, which also increases with the
core level. They produce a certain amount of energy which gets distributed
to the connected nodes, allowing them to do their work.

Figure 3.7 shows a running network with two energy cores level I provid-
ing energy to multiple other nodes (which results in the three green colored
connections as they reflect the type’s color of their output-node).

Energy Splitter: As there is a restriction to the number of nodes that
can get connected to an energy core, Energy Splitter help to provide energy
to even more nodes by equally dividing incoming energy from a core to two
further nodes. This results in one more active node but also in less energy
for both nodes connected to the splitter. You can see an energy splitter in
figure 3.6.

Energy Toggler: This node allows the player to toggle one energy input
between two nodes — allowing to enable one node at a certain time while
simultaneously disabling the other.

Robotics

Robotics nodes are the blue nodes in figure 3.7 and 3.6 and their purpose is
to interact with the game world. There are nodes to interact with A.R.E.s,
nodes to survey certain things in the world and multiple further nodes rep-

3. Prototype — NO:LE:AP 29

resenting the player’s i.e., the robot’s senses. Robotics nodes do all need
energy, i.e., all have an input-port for energy and they do only work as long
as they are provided sufficient energy. They also do require different amounts
of energy to interact with the world — the author’s rule of thumb is more
energy is needed for interactions that feel more demanding.

A.R.E. Movement: This is an example for the available nodes to directly
manipulate A.R.E.s in the game. As the name already clarifies, this node
moves a selected A.R.E. around. There are four different input-ports,

1. the default energy input, providing energy to the node to stay active,
2. an input to additionally enable/disable the node (which results in the

selected A.R.E. not moving while there is still energy provided),
3. a boolean flag called forward which tells the node to move the A.R.E.

forwards when true and backwards when false and
4. a list of available and selectable A.R.E.s in the world.

Note that this node does only move the robot forwards and backwards,
there is a dedicated node called A.R.E. Rotation which enables the robot to
rotate.

Position Tracker: While not directly manipulating the world, this and
several other nodes have a surveilling purpose. With a Position Tracker, a
target can be selected (all entities not only A.R.E.s), the actual position of
the target is regularly updated and can be retrieved through an output-port.

Energy Ball Picker: With this node, an A.R.E. is capable of picking up
energy balls, as long as this node is active and no energy ball got picked up
already. This enables the robots to not only move energy balls around but
to also place them onto another corresponding entities called Energy Sockets
which are described in section 3.2.3.

Logic

This category includes all nodes that are used for logical conclusions. While
most of the worlds with difficulty easy only utilize energy and robotics nodes,
difficulty medium starts to introduce logical nodes. Their color is yellow,
both figures 3.7 and 3.6 show a few of them. These nodes are less high-level
and often simply evaluate a given assumption, leading to one single output
which states if this assumption is true or not. Still, these are very valuable
nodes.

Logical Negate: A very simple node with one boolean input-port and
one boolean output-port. Every input gets converted into the opposite.

3. Prototype — NO:LE:AP 30

Float Comparator: This node has three input-ports, two floating point
numbers and a comparator which is a list of typical logical operators like
greater than, equal or less or equal than. The number from the first input is
compared to the second, e.g., 2 < 1.

Math

As with logical nodes, nodes from the category math have increasing rele-
vance with harder worlds. Navigation in a 2D world requires at least points
in 2D space and angles, thus there are mainly vector and angle calculations
covered by this category. The category’s color is defined as white. You can
see some math nodes in figure 3.6.

Distance: As the name already indicates, given two 2D points, this nodes
results in the distance between them.

Vector AB: Similar to the node before, the name is pretty self-describing.
Given two points, the vector pointing from 𝑎 = (𝑥𝑎, 𝑦𝑎) to 𝑏 = (𝑥𝑏, 𝑦𝑏) is
calculated i.e., (︂

𝑥′

𝑦′

)︂
=

(︂
𝑥𝑏

𝑦𝑏

)︂
−
(︂

𝑥𝑎

𝑦𝑎

)︂
. (3.1)

Other

The last category, colored in purple, contains all nodes not fitting in any of
the previously presented categories. At the moment, there is only one node
in this category.

Key Input: While the focus is still on the idea of networks running on
their own and that the player is not capable of influencing the network he
created as soon as he starts it, there made it one node into the game, that
breaks with this rule. While initially developed for testing purposes and to
find out how far the implemented system can go, the key input node enabled
an additional unique layer of interaction for the player and thus was kept.

As the name already implies, this node listens to key input from the
player’s keyboard. You can see this node in figure 3.7, there is a list of
available keys as an input-port resulting in a boolean output-port which is
true, whenever the key is pressed. This allows several interactions between
the player and the running network, like enabling and disabling robotics
nodes.

3. Prototype — NO:LE:AP 31

(a) (b) (c) (d) (e) (f)

Figure 3.8: All entities from the current version of NO:LE:AP. A.R.E. (a),
Trigger (b), Jumper (c), Danger (d), Energy Ball (e) and Energy Socket (f).

3.2.3 Game Entities

There are currently six different game entities in NO:LE:AP. Figure 3.8
shows the graphical representations of these entities (also called sprites in
game development) with a few graphics more matured than others. Entities
are used to build the game worlds — nodes as-well as tasks rely on them.

A.R.E.

Figure 3.8(a) is the robot controlled by the user, called A.R.E (Autonome
Roboter Einheit — which is German for Autonomous Robotic Unit). This
is the core entity as there is at least one A.R.E. in every world and they are
the only way, users can interact with the worlds to solve given tasks.

Trigger

The second entity shown in figure 3.8 is a trigger that can be activated by an
A.R.E. through physical contact. As long as an A.R.E. is touching a trigger,
the trigger is colored green and active, but whenever the contact is lost, the
trigger is disabled immediately, switching its color back to red, showing the
user, that it is not active anymore.

Jumper

There is only one purpose for jumpers i.e., to switch their position in the
world randomly. They do not move but rather change their position imme-
diately and the next destinations are evaluated beforehand to only allow
positions near the worlds border (which is a restriction to the randomness
that came up after a few tests to eliminate positions that are reachable too
fast).

Danger

Danger fields have to be avoided at all costs by all A.R.E.s because as soon
as there is a contact between a danger field and an A.R.E., the whole world
is reset and the player gets a penalty that is described in section 3.2.6.

3. Prototype — NO:LE:AP 32

(a) (b)

(c) (d)

Figure 3.9: Few worlds from the current version of NO:LE:AP. Select and
Rotate (a), Energy Ball II (b), Attention, Danger! (c) and Catch the Jumper
II (d).

Energy Ball

Energy balls (shown in figure 3.8(e)) only appear with energy sockets to-
gether and have a unique way of interaction with A.R.E.s as they can be
collected and moved around by the robots. A.R.E. can interact with only
one energy ball at a time.

Energy Socket

Energy sockets can be activated by contact, similar to triggers. But they are
not enabled by A.R.E.s but rather through energy balls placed onto them.
As long as an energy ball is placed on a socket, it stays activate.

3.2.4 Worlds and Tasks

At the moment, there are five easy, four medium and one hard world avail-
able to play and each of them contains one or more tasks. Currently, there are
two main tasks available, rotating an entity for a certain amount of degree
and letting two entities touch each other. As soon as all tasks are accom-
plished simultaneously, the player has completed the world. To demonstrate
the various task combinations and mechanics in the game, four worlds will
be described now.

3. Prototype — NO:LE:AP 33

Select and Rotate: This is the second world to play with difficulty easy
and is part of the tutorial worlds, trying to explain the core mechanics to the
player. As you can see in figure 3.9(a), there are multiple A.R.E.s placed and
the only task is to rotate the robot with the number four for 360° degree.
The goal of this tutorial world is to present a few new nodes to the player
and to show him that he is capable of specifically selecting entities in the
world.

Energy Ball II: Not describing any further easy worlds, this is one of the
medium worlds to solve. There are three entities in the world, one A.R.E.,
an energy ball and an energy socket. The only task given is to bring the ball
to the socket. Notice the II after the name — this is because there is a easy
world called Energy Ball I, containing the same entities and the same task.
While the first world aligns the three entities in one line, thus requiring the
player to just pick up the ball while moving the A.R.E. forward, the second
world distributes the entities in a more chaotic way. The player has to move
to the ball first, then pick it up and finally somehow manage to move to the
socket.

Attention, Danger!: Another world with difficulty medium and an ex-
ample for worlds with multiple tasks i.e., touching the trigger with the
number one with A.R.E. one and simultaneously touching trigger two with
A.R.E. 2. Notice the danger fields placed in cross-shaped way in the middle
of the world, requiring the player to navigate both A.R.E.s around them.
The world is shown in figure 3.9(c).

Catch the Jumper II: This is the only hard world currently available,
also a second version of an already existing world, as you can see from its
name. There is only one task — touching the red jumper with the only
A.R.E. in the world. While the first version contains multiple very useful
nodes to accomplish this task (which is why it is classified as easy world),
this one has only very low-level nodes, forcing the player to do lots of math-
ematical calculations to actually catch the jumper.

3.2.5 Persistency

Another important aspect that made it into NO:LE:AP already came up
during early stages of the concepts, when the question for the type of ene-
mies in the battle arenas arose. There where two ideas discussed, both lead-
ing to crucially different games. One the one hand there was a kind of AI
system, making the game to a singleplayer experience where the player fights
against the computer. On the other hand, the idea of having some kind of
persistency came up. Players could create battle behaviors which where then
stored on a server and other players could match their robots against robots

3. Prototype — NO:LE:AP 34

Figure 3.10: The login screen from NO:LE:AP.

from other players — similar to the previously described Robocode, where
other programmer’s robots can be downloaded and battled. While the bat-
tle aspect vanished, the idea of persistency is more relevant than ever since
there is now a progress regarding earned points and unlocked worlds. As
there are already a couple of worlds available, players would loose all their
unlocked ones, whenever they close the game. Furthermore, some kind of
performance measurement is contemplated, thus the idea came up to store
the player’s progress online in a database — a technical explanation of the
implementation is given in section 4.2. This allows the player to continue
to play whenever and wherever he wants to, the only prerequisite is some
kind of registration mechanism to store login data in the database for a later
recognition.

The current version of NO:LE:AP does have a working login system, a
new player has to register himself first and than retrieve his personal progress
by typing in his login data. The only minor drawback with this system is the
requirement to be connected to the internet to play the game, which should
not be a problem nowadays though. There are not only the available points
and the unlocked worlds synchronized but also further information like the
amount of points left, the player can retrieve from the unlocked worlds. As
there are multiple factors of how well a world was completed — which is
important for and further explained in section 3.2.6 — players will often get
penalties on their received points. As with the current version of NO:LE:AP,
every world is worth 100 points i.e., whenever the player solves a world in an
ideal way, he gets the full 100 points. If he made some mistakes and did not
get the full 100 points, he can simply select the just accomplished world and

3. Prototype — NO:LE:AP 35

Figure 3.11: The summary screen showing the final score of the just ac-
complished world.

play it again. To prevent a player to gather more than a total of 100 points
in one world, the remaining points for every world are stored online and
updated after every successful try. So whenever a player starts NO:LE:AP,
the first screen he is shown is the login screen which is shown in figure 3.10.
After successfully connecting to the server, his progress is retrieved and the
game switches to the world selection screen, where the player can continue
to unlock and play worlds. Whenever he finishes a world, there is a summary
screen, calculating the points he accomplished and the actual points he got
credited — figure 3.11 is showing this last step before returning to the world
selection screen.

3.2.6 Metrics

As there is now a way to recognize the currently playing user, this sys-
tem can be further developed to automatically gather player metrics in the
background while playing. To get valuable data from the user, there are two
important categories of information that have to be collected i.e., who is
playing and how is he doing. The first category is called demographic data,
the second one is the actual user performance, both are described in the
following sections. This section gives a brief overview of what is collected,
an evaluation can be found in chapter 5.

3. Prototype — NO:LE:AP 36

Figure 3.12: The registration screen from NO:LE:AP.

Demographic Data

To be able to evaluate the thesis’s theory, the user metrics have to be cate-
gorized by the player’s experience and knowledge with areas like gaming or
programming. As the prototype will be spread and people playing it without
further observation, this has to be somehow automated. The solution is to
use the registration process, which every player has to do and extend it with
a few demographic questions about them. Figure 3.12 shows the registration
screen that appears when a new player clicks the button register shown in
figure 3.10. The upper panel contains login data like username and pass-
word. The lower panel contains the demographic data. Starting with age
and gender, the second and third question is about the player’s education
and current work. The last few questions are about his experience in various
areas. Limiting this short survey to a single page should provide enough
information to categorize the just registered person while taking not too
much time or even stop people to actually complete the registration pro-
cess. As there are no questions asked about sensible information like name
or address, everything collected is fully anonymous.

User Performance

The most important data collected by NO:LE:AP is the actual performance
of the playing user. There went a fair amount of work into the definition
with a few iterations during the conceptual phase of this project. Following
are important metrics collected by the current version of the prototype —
more information can be found in chapter 5.

3. Prototype — NO:LE:AP 37

Used Nodes: Every world is tested by the author extensively to find out
an optimal solution i.e., the lowest number of nodes needed. While this al-
ways depends on the types of nodes provided, there can be multiple solutions,
especially starting with medium worlds as there are more nodes available
than needed for the optimal solution most of the time. The number of nodes
used for the player’s network is stored and compared to the ideal solution.
The difference is further used for the calculation of the earned points as
every node more than the optimum counts as ten points penalty on the final
score.

Network Resets: As the player has to deliberately start the network and
stop it if it does not work out as intended, this is an important metric to
track. It can point out the player’s capability of finding a solution without
going the way of trial & error. Like used nodes, this does also influence
the earned points as every restart subtracts five points from the maximum
points.

Hidden Hints taken: The world description screen (shown in figure 3.3)
does already offer some free tips before the player starts the world. Another
way of helping the player to not get stuck with certain worlds are Hidden
Hints which he can unlock hint by hint by clicking the button in the top-mid
of the ingame screen. These hints are more useful than the free ones and give
a good indicator for a player having problems with the current world. They
also do come with five points penalty per unlocked hint (which is clearly
communicated to the player beforehand).

Taken Time: This metric does not influence the final score but is another
very interesting indicator for user performance tracking. There are several
reasons for a player taking very long for a world but it is still valid for an
overall look at the speed of a player when solving them.

Finished Worlds: All metrics above are collected on a per-finished-world-
basis, which means that every time a player starts a world and is able to
accomplish it, this try gets explicitly stored. As players are able to play a
world multiple times, whether to finally solve it for the first time after a few
aborted tries or to achieve a better score and to earn the remaining points,
it is important to keep track of the different tries and how well he did.

Aborted Worlds: Another interesting information to track, counting ev-
ery started world that gets aborted either through the quit world button or
whenever the player closes the application when ingame.

3. Prototype — NO:LE:AP 38

Figure 3.13: Screenshot taken from NO:LE:AP v1.0 showing one of the
steps during the tutorial.

3.3 Early Playtest Results
As the game grew in complexity and the tracking of player metrics was
already implemented, the idea came up to start an early playtest with a
very small closed group which was then not allowed to count towards the
valid data collected. The reason for this was to gather first feedback and get
rid of bugs while not influencing the outcome of the collected data as early
tester already knew the mechanics and most of the worlds. This would lead
to distorted data and should be avoided at all cost. The playtest was done
with two people and was very successful, a few of the additions that where
implemented as a result of these tests are presented now.

Tutorial

The tester where given no clues and no help, they where just observed while
they started the game for the very first time. While the author tried to
create a structured and logical user interface, it became clear very fast that
there has to be some kind of tutorial. This is even more important as the
game is planned to be released to a broader group of people who do not get
any help.

As the tests showed the necessity for such a system, the current version
of NO:LE:AP has a tutorial which starts with the very first login of a new
user, explaining every screen step by step and leading the player through
the first world. A second round of short tests with the same group resulted

3. Prototype — NO:LE:AP 39

Figure 3.14: As a result from the early playtests, tooltips where added to
further explain the functionality of the nodes.

in very positive feedback to this tutorial system. Figure 3.13 shows one of
the several steps of this introduction.

Tooltips

As the network editor is the core of the game and the most crucial part
to work properly, the testing of this area was especially extensive. While all
nodes are categorized and have a well thought out name, it soon showed that
this was not enough for the player to fully understand their functionality.
This resulted in lots of network restarts as the players had to drag the nodes
into the network and start it a few times to see what they actually do.

The solution is to extend not only the node itself but also all input- and
output-ports with further descriptions. This additional information is shown
as tooltip, whenever the player hovers over the name of the node or the port.
Figure 3.14 shows an example for a tooltip and the second round of closed
tests showed that player where able to understand the functionality of new
nodes much better.

Aborted Worlds

Fortunately, this flaw of the tracking system came up during early playtests,
because it would have been capable of ruining the collected data. One of the
testers had a few problems with a certain world, had to take a few hidden
hints and already restarted the network several times. He already had lots
of information about the game and its system due to several talks to the

3. Prototype — NO:LE:AP 40

author. So he knew that the game would sync this poor try as soon as he
finishes the world. To circumvent this, he simply quit the world, started
it again and was then able to get 100 points on the first try, because he
found out the solution before by trial & error. To get rid of this, the already
described metric Aborted Worlds was added — another way of playing the
world without getting a poor try uploaded to the database is to close the
whole game, which gets also detected by the current version of the game.

Chapter 4

Implementation

After chapter 3 focused on the concepts and game design decisions forming
the actual game, this chapter gives an in-depth view of the technical imple-
mentation of the prototype. There are two systems, the client and the server,
that work together but run on their own, thus are explained separately.

4.1 Client
The client is the actual game the player downloads and starts — the current
version is running on Windows only, other platforms are not planned at the
moment. To spread NO:LE:AP to as many people as possible, a small web-

Figure 4.1: The website hosting the download-link of the current version of
NO:LE:AP.

41

4. Implementation 42

site1 was implemented hosting the download-link of the current version of
NO:LE:AP. This is further important because there is a check for the client’s
version, whenever the player is starting the game — a safety mechanism to
prevent players to login with an outdated version and probably corrupting
the valuable data on the server. As soon as there is an update to the game
and the version of the client is different to the version of the server, the game
immediately switches to a dedicated error screen, telling the player to go to
the website and to download the latest version.

This section gives a brief overview of the software used to develop the
client and a technical description of the most important parts of the project
i.e., the core of the node system, the visual network editor and its connection
to the node system and the task system.

4.1.1 Software Stack

Unity3D

The game engine taken for this project is Unity3D. The reasons to choose
Unity is that there are extensive features to produce not only 3D but also 2D
games and apps, including an advanced UI system. Furthermore, it is very
fast for creating prototypes and finally the author has already experience in
working with it. Unity has a visual editor and a component-based system,
with new components written in C#, allowing programmers to utilize most
of the .net-framework — with some restrictions depending on the platform
the game will be distributed.

Visual Studio 2015

Microsoft’s Visual Studio (VS) is one of the most comprehensive IDEs cur-
rently available with lots of features like a fully-fledged code completion
system called IntelliSense, in-depth code metrics, a deeply integrated de-
bugger and the possibility to directly compile and build applications. While
VS is not used to build NO:LE:AP, there is a deep integration into Unity
with a extension called Visual Studio Tools for Unity that enables VS to
write C# code for the Unity project.

Adobe Creative Cloud

Adobe with its Creative Cloud is the leading authority regarding software
for creative minds. It consists of a variety of specialized apps ranging from
Photoshop for image manipulation, After Effects for video post-processing or
Illustrator for drawing vector graphics. Especially Photoshop and Illustrator
where used to create the graphics for this prototype.

1As of date of this thesis is written, the link to the website is http://noleap.tk —
figure 4.1 shows a screenshot of the latest version.

http://noleap.tk

4. Implementation 43

1

0..*

abs_Node

+ name : string
+ category : NodeCategory
+ description : string

+ Update(InputConnection) : void

NodeManager

- nodes : List<abs_Node>
- networkRunning : bool

- Update() : void
+ Init() : void
+ AddNode(abs_Node) : void
+ RemoveNode(abs_Node) : void
+ GetNumNodesOfType(Type) : int
+ SetRunning(bool) : void
+ ToggleRunning() : void

<<attribute>>
NodeAttribute

+ name : string
+ category : NodeCategory
+ description: string

abs_EnergyConsumerNode

- updateCost : float
- curEnergy : float
- producer : InputConnection

DoEnergyUpdate() : void
DoRegularUpdate(InputConnection) : void

abs_EnergyProducerNode

- energyPerSecond : float
+ OutEnergy : OutputConnection
+ InDoProvide : InputConnection

0..*

1

InputConnection

- connection : abs_Connection

OutputConnection

- maxAllowed : int
- connections : abs_Connection

<<attribute>>
ConnectionAttribute

+ connectionType : ConnectionType
+ description : string

abs_Connection

value : object
type : Type
+ name : string
node : abs_Node
isActive : bool
+ uiCon : UiCon

+ ValueChanged(object) : void
+ Active() : bool
+ GetValue() : object
HandleNewValue() : void
AllowAdditionalConnection() : bool
Connect(abs_Connection, bool) : bool
+ Disconnect(abs_Connection, bool) : bool

<<interface>>
iResetable

+ DoManualReset() : void

Figure 4.2: This class diagram shows the most important elements from
the node system.

4.1.2 Node System

The node system is the very core of the project. It utilizes concepts of FBP
that where described in section 2.2, though being rather classified as FBP-
like system, as there are several concepts not implemented or adopted —
section 4.1.2 describes these differences. The node system is built around a
singleton implementation of a manager-class called NodeManager that keeps
track of the active nodes, updates them and further handles resets of the
node system, whenever the network is stopped. Figure 4.2 outlines important
classes and their most important variables and functions, you can find the
NodeManager class in the top right corner.

The very base for all nodes is the abstract class abs_Node, handling
the registration at the NodeManager as well as storing data like the node’s
category (Energy, Robotics, Math,..). All existing nodes are directly de-
rived from abs_Node or from one of the further specialist abstract classes

4. Implementation 44

Program 4.1: The class abs_EnergyConsumerNode implementing the ab-
stract method UpdateNode from the base class abs_Node.

1 public override void UpdateNode(InputConnection valueChanged)
2 {
3 if (valueChanged == this.EnergyProducer)
4 {
5 this._currentEnergy += ((Energy)this.EnergyProducer.GetValue()).

amount;
6
7 if (this._currentEnergy >= this._costToUpdate)
8 {
9 this._currentEnergy -= this._costToUpdate;

10 this.DoEnergyUpdate();
11 }
12 }
13 else
14 this.DoRegularUpdate(valueChanged);
15 }
16 protected abstract void DoEnergyUpdate();
17 protected abstract void DoRegularUpdate(InputConnection valueChanged);

abs_EnergyProducerNode or abs_EnergyConsumerNode. Only energy cores
implement the first one as they are the only nodes that produce energy while
all Robotics nodes are derived from the second class. The class abs_Node
also exposes the following important abstract method:

public abstract void UpdateNode(InputConnection valueChanged);

This method defines the functionality of the node. Whenever an Input-
Connection gets updated (whether from an active connection or by the user
in the editor), UpdateNode is called, performing its functionality with the
new value. Derived classes implementing this method have to check which
input connection did change and then handle the new value of particular
connection.

Program 4.1 shows abs_EnergyConsumerNode implementing Update-
Node to internally supervising its energy pool. If the input that changed
is its dedicated input for energy, it updates the currently available energy
and performs a special EnergyUpdate, whenever there is enough energy for.
If it is not the energy input, it forwards it to another abstract method to
handle all other inputs that are not energy-dependent i.e., changes on input
values.

Establishing connections between nodes does work a bit differently com-
pared to Morrison’s system (see section 4.1.2) but there are also elements
implemented that are inspired by him — like Initial Information Packets
(IIPs). Whenever two nodes get connected to each other, an IIP is sent
from the output to the input, establishing the connection and updating the

4. Implementation 45

current value from the output to the input.

Differences to Classical FBP

While several concepts of Morrison’s definition of classical FBP are incor-
porated into the prototype, there are also big differences. The goal was to
create a system that fits rather than fully implementing classical FBP, thus
classifying NO:LE:AP as a FBP-like system.

IPs and Connections: In classical FBP, there are dedicated Connec-
tions with bounded buffers handling IPs with a certain lifetime. NO:LE:AP
does not incorporate these concepts as there are no large amounts of IPs,
waiting to get processed by the targeted node, or deeper IP trees. Instead,
connections are a mixture of connections and ports while input- and output-
connections do directly communicate with each other. Outputs immediately
update connected inputs, which again triggers the update method of the
corresponding node. This makes IPs with a certain lifetime redundant. In-
stead, all connections do have a well-defined data type they are allowed
to consume and all connections with differing data types are immediately
refused — more on data types in section 4.1.2.

Multiple Connections: Classical FBP does not allow multiple input-
connections to the same output-connection, because Morrison [24] sees data
objects behave like real world objects, thus they cannot get magically dupli-
cated. In our implementation, similar to most of other fbp-like ones, this is
allowed though. While inputs can establish only one concurrent connection,
outputs can be connected to more than one input. Still, the current imple-
mentation does allow to restrict the maximum amount of connections, and
while the default setting does not define a maximum, there are some nodes
that do use this restriction. An example are energy nodes, as they do allow
only a certain number of energy consumers connected to their energy-output
at the same time.

Asynchronous Processes: While classic FBP is highly asynchronous as
every process is running in its own thread, NO:LE:AP nodes are not auto-
matically asynchronous, as most of the nodes do not have very performance-
heavy calculations. Unity3D has its own system handling asynchronous tasks
called Coroutines. As it is a classical game engine, there is an internal
update-loop and coroutines do allow methods to pause their execution, con-
tinue the game’s update-loop and return to the method in the next update
cycle by calling the yield return statement. This is a very stable and
deeply integrated system but also costs some performance to allocate a new
asynchronous coroutine. Thus, nodes do work synchronous by default and
while this is sufficient for most of the logic in the existing node’s update

4. Implementation 46

methods, it is highly recommended to utilize coroutines for heavier calcula-
tions.

Data Types

Every connection defines the exact type of data it can send or receive. Con-
nections handling different data types cannot be connected to each other.
Currently, following types do exist:
Standard Types like Int, Float or Bool are essential for lots of nodes

and are all supported by default.
Vector2 is a default type from Unity and represents a two-dimensional vec-

tor i.e., two floats. NO:LE:AP’s nodes mainly use them for positional
calculations.

Selectable defines a Gameobject in the current world and its Selection-
Type, which is an Enum. Currently, there are three SelectionTypes
available, All, ARE and Moveable. It is used for filtering the Gameob-
jects in the current world for selection-lists. An example are Robotics-
nodes that directly control A.R.E.s. They filter for the Selectable-
Type ARE to restrict players to only select an A.R.E. to be manipulated.

Energy has no further purpose than to define connections that are used
for transferring energy between energyproducer and -consumer.

Equation is a special type only used for logical nodes like the Float Com-
parator at the moment and contains logical conditions like equal,
greater or lesser or equal.

AllowedKeys defines a set of letters representing the keys on a keyboard
that can be used for player input — solely used by the special node
Key Input at the moment.

C# Attributes and Reflection

To keep the node system as flexible as possible, a feature of C# called
Attributes was utilized. It is a way of storing additional information called
metadata which can be retrieved during runtime with Reflection. On this
way new nodes can be easily created without maintaining lists of available
nodes. There are two custom attributes, NodeAttribute and Connection-
Attribute. The first one stores the name of the node, its category and a
description, the second one defines the connection type and a description.

Program 4.2 shows the full source-code for the node Logic Negate. There
are just a few lines of code to define the whole node with a total of three at-
tributes for the node itself and its two connections. The method UpdateNode
implements the node’s logic, in this case, it simply inverts incoming boolean
values.

4. Implementation 47

Program 4.2: The full source-code for the node Logic Negate which outputs
an inverted boolean input value. Mind the German text, as the game is
currently only localized for German players.

1 [NodeAttribute("Logik - Negieren", NodeCategories.Logik, "Dreht den
einkommenden logischen Wert um. Aus WAHR wird FALSCH und umgekehrt."
)]

2 public class LogicNegateNode : abs_Node
3 {
4 [ConnectionAttribute(abs_Connection.ConnectionType.Input, "Der

logische Eingabewert")]
5 public InputConnection InLogic { get; set; }
6
7 [ConnectionAttribute(abs_Connection.ConnectionType.Output, "Negierte

Ausgabe")]
8 public OutputConnection OutLogicNegated { get; set; }
9

10 public LogicNegateNode() : base(NodeCategories.Logik)
11 {
12 this.OutLogicNegated = new OutputConnection("Negiert", this, false);
13 this.OutLogicNegated.Activate();
14
15 this.InLogic = new InputConnection("Logik", this, true);
16 this.InLogic.Activate();
17 }
18
19 public override void UpdateNode(InputConnection valueChanged)
20 {
21 this.OutLogicNegated.ValueChanged(!(bool)this.InLogic.GetValue());
22 }
23 }

4.1.3 Network Editor

While the node system previously described does work on its own, it has no
visual representation yet. To allow the player to create behavior-networks
without to program them, the network editor is the graphical representation
of the node system.

Whenever a world is selected, only a few nodes are unlocked to com-
plete given tasks. Reflection is used to find all classes implementing Node-
Attribute which are then filtered regarding their availability in this world.
The list of available nodes in the network editor is sorted regarding their
category but as NodeAttribute contains the node’s category, only for the
currently selected category, list-entries are created.

The core class for managing available nodes and creating new nodes is
called UINodeManager. Whenever an entry from the list of available nodes
is dragged into the network window, UINodeManager is called to create a
new graphical representation of this node. This system is very dynamic as

4. Implementation 48

Program 4.3: Part of the source-code of UINodeManager creating a new
node. Reflection is used to get all properties with ConnectionAttribute to
create the node’s input- and output-connections.

1 foreach (PropertyInfo property in nodeData.Type.GetProperties())
2 {
3 var atts = property.GetCustomAttributes(true);
4
5 foreach (object att in atts)
6 {
7 ConnectionAttribute con = att as ConnectionAttribute;
8
9 if (con != null)

10 {
11 // create graphical connection here
12 }
13 }
14 }

there is only a single base for all nodes. The node’s logic gets defined by the
following line of code:

node.NodeLogic = (abs_Node)Activator.CreateInstance(nodeData.Type);

Activator is another feature of C# that allows to create instances of given
types — in this case the type of node dragged to the network window.
To create graphical representations for all connections, reflection is utilized
again. Program 4.3 shows a code snippet that obtains all properties with
ConnectionAttribute in the currently selected node-type. For each found
attribute, a connection is created. As they always keep the latest value they
received and thus are never empty, they get a default value depending on
the data type they have defined. Finally, the labels of the node and its
connections are assigned and the node is ready to be used.

To connect two nodes with each other, the user can perform a drag and drop
gesture from one connection to another. A line follows the user’s gesture and
if the drop gesture is valid, the line stays after the gesture, presenting the
active connection between the input and the output. The gesture is valid
when it started at an input and ended at an output or vice versa, the data
type is the same and there are not already too many active connections.

To be able to draw lines in Unity3D’s UI system, a custom class Line-
Renderer class was implemented. All connections keep a reference on all
their active connections not only redraw them, whenever a node gets dragged
around but also the know, which connections have to be removed when a
node gets deleted. As the player can delete nodes and connection-lines as
well, they both implement a special interface called IDeletableElement.

4. Implementation 49

Whenever a node gets deleted, all lines get removed as well and all con-
nected nodes get informed about loosing an active connection. When the
user deletes a line, both nodes that where connected through this line get
updated.

Another feature of the prototype utilizing attributes are the tooltips that
where introduced after the early playtests (see section 3.3). Whenever the
user hovers over a node or a connection, a tooltip appears after a short
amount of time, revealing further information. These descriptions are also
stored within Node- and ConnectionAttribute.

4.1.4 Worlds and Tasks

To easily add new worlds with several tasks to be solved, a complex world-
and task system was implemented. All worlds are defined by a Struct called
World containing all information needed including all hints, hidden hints, de-
scriptions and all required tasks. A singleton class called WorldSelection-
Manager keeps track of all available worlds and is also responsible for loading
selected and unloading finished ones. Tasks are defined with following struc-
ture:

new string[][]
{

new string[] { "TaskTouchTarget", "A.R.E. 1", "Schalter 1" },
new string[] { "TaskTouchTarget", "A.R.E. 2", "Schalter 2" }

}

This is a two-dimensional string-array with each entry representing a task.
While the first string always defines the type of task, all other entries do vary.
In given code example above, two TaskTouchTarget instances are created,
with the first requiring A.R.E. 1 to touch the game entity Schalter 1 and
A.R.E. 2 to touch Schalter 2.

The core class for managing tasks is a singleton implementation called
TaskManager. It generates the tasks for the selected world and keeps track
of their status. Tasks are generated through the method GenerateTasks-
FromRaw which parses the two-dimensional array and instantiates a task
depending on its type. All tasks derive from an abstract base class called
abs_Task which requires deriving classes to implement two abstract meth-
ods:

protected abstract bool CheckCompletionInherited();
protected abstract void ResetTaskInherited();

TaskManager regularly checks all active tasks for their completion by calling
CheckCompletion. Whenever a running network gets stopped, the worlds
resets and TaskManager calls ResetTask to set all tasks to their default. As
soon as all tasks are completed simultaneously, the world is finished and the
game switches to the summary screen.

4. Implementation 50

Program 4.4: Example program for utilizing Unity’s WWW class to send
requests to the server.

1 private static IEnumerator LoginUser(string user, string pw)
2 {
3 // create request
4 WWWForm f = new WWWForm();
5 f.AddField("name", user);
6 f.AddField("pw", Instance.EncryptString(pw));
7
8 WWW w = new WWW("http://url-to-rest-api.com/login_auth", f);
9

10 yield return w;
11
12 if (w.error == null)
13 {
14 // everything is fine , handle request response
15 }
16 }

4.1.5 Persistency and Metrics

All communication with the server is done through a singleton class called
WebService. Unity offers a class called WWW that is utilized to send http
requests to the server’s REST API. Data is sent as a POST request with
content-type: form-data which can be achieved by creating a new instance of
Unity’s WWWForm class. This object can be then filled with key-value pairs and
added to a http request (see program 4.4). These requests are asynchronous,
thus happen in the background or during a loading animation. Whenever a
player starts NO:LE:AP, following requests are sent:

• During the initial loading screen, a check for a working internet con-
nection is done. If the server is reachable, the first request is a check
for the application’s version number. If the client has a different ver-
sion than the server, the client is not capable of log-in properly and
the game immediately switches to an error screen telling the player to
download the latest version.

• Entering the log-in screen, the player can now log-in with existing
username and password or register a new user.

– When the player is already registered, a log-in request is sent,
checking if the entered username does exist and if the password
does match with the password stored on the server. All errors are
displayed on the bottom telling the player what is wrong with
the log-in attempt.

– The player can also register a new user at the register screen. A
local check is done for all fields being filled out correctly and a

4. Implementation 51

ClientServer

Database REST WebServices

Figure 4.3: This figure shows the used software and how they communicate
with each other.

registration request is sent to the server. If the username or the
e-mail does not already exist, the user is registered successfully
and the player can now log-in.

• When the log-in is successful, a fetchUserData request is sent, gath-
ering all information about the active player from the server. This
contains the available points to spend, all unlocked levels and the ob-
tainable points remaining.

• Unlocking a new world does also trigger a request, checking for suffi-
cient points and updating the database.

• Whenever a player finishes a world, the player metrics are synchronized
to the server, e.g., time taken, components used or restarts. If there
where obtainable points left, the player’s available points get updated
too.

• Finally, all aborted games get tracked too — see section 3.3 for an
explanation.

4.2 Server
While the server is an essential part of the project and is used to keep track
of the player’s progression, his data and all the player metrics, there is clearly
no focus on the technical implementation in this thesis. This section gives a
brief overview of the server’s software and implementation.

4.2.1 Software Stack

The goal of the server-side implementation was to provide a solid API to
the client and a way of securely storing the collected data (see figure 4.3).
Following software was used to achieve these goals.

4. Implementation 52

MySQL

MySQL describes itself as “the world’s most popular open source database”
and is a relational database management system. It exists since more than
20 years, is owned and developed by Oracle and is a very mature software.
Lots of very prominent projects are using MySQL like Wordpress, Facebook,
TYPO3 or Youtube.

CodeIgniter

CodeIgniter is a light-weight PHP framework for fully-featured web applica-
tions. While it is open source, very easy to use and it has a large community,
it is lacking a very important feature as there is no native support for REST
services. Fortunately, there is a very mature open source implementation of
a CodeIgniter REST server which can be found on Github2.

4.2.2 Implementation

After setting up a server and installing MySQL, CodeIgniter and the REST
server, a few initial configurations have to be done. CodeIgniter makes this
a fairly easy task as it provides several configuration files including one for
our REST API and for database connections.

Database Structure

The next step is to create the structure of the database. Currently, following
tables exist:

users: This table contains all the information about the currently reg-
istered users. This is mainly the data gathered on the registration screen
i.e., the username, an encrypted version of the user’s password and the
demographic data. There is also a primary key called id, a unique auto-
incrementing integer used for dependencies between tables. Finally, the reg-
istration date and the current available points are stored as well. The current
table with the first three entries is shown in figure 4.4(a).

worlds_unlocked: To keep track of the worlds every player has unlocked,
the table worlds_unlocked adds an entry for each unlock transaction. The
columns of this table are the unique id of the user, the unique id of the
unlocked world, the date of the transaction and the unique id of the best
try — which is another table called games_completed. This enables the
database to join both tables together and easily get the best try and thus
the remaining points the player can obtain from this world.

2The link to the repository is https://github.com/chriskacerguis/codeigniter-restserver.

https://github.com/chriskacerguis/codeigniter-restserver

4. Implementation 53

(a)

(b) (c)

(d)

Figure 4.4: The four tables of the current database including their
first three entries: users (a), worlds_unlocked (b), games_aborted (c),
games_completed (d).

games_aborted: This table, shown in figure 4.4(c)), contains all worlds
that where aborted by the users, whether through clicking the Leave World
button or through directly closing the game. All available information are
uploaded as well, like the network restarts, unlocked hidden hints or the
total time taken until the world was aborted.

games_completed: Whenever a world is completed, all information re-
garding this try i.e., the player metrics of this world, are uploaded. The
table contains the unique user id, the unique world id and the player met-
rics like network restarts, unlocked hidden hints or the total time taken (see
figure 4.4(d).

CodeIgniter REST Server

Implementing the REST API is also fairly straight-forward. Deriving from
a class called REST_Controller tells the framework, that this class defines
methods reachable through our API. All methods following a certain naming
convention — methodname_requesttype — are automatically callable. An
example is login_auth_post where login_auth is the name of the method and
post defines the http method of the request (e.g., post, put, get or delete).
This particular method is called, whenever a user tries to login, therefor a
username and a password has to be added to the request. Post-parameters
can be obtained by calling

$this->post("key-name");

4. Implementation 54

which returns either NULL if the key does not exist or the corresponding
value. As the example method has to check if the user exists and the pass-
word does match, a query to our MySQL database has to be sent. This
is done by calling CodeIgniter’s native method query, thus checking if the
given username does exist in our database is the following single line of code

$this->db->query("SELECT * FROM users WHERE name = '" . $this->post("
name") . "'");

which returns an array with the response of the query. All http requests do
result in a response which is done by calling following method

$this->set_response(['status' => 'success'], REST_Controller::HTTP_OK);

The first parameter is an array of key-value-pairs that can be freely defined
and contains data the client requested. The second parameter defines the
http-status in the http-header.

Chapter 5

Evaluation

As soon as all systems explained in chapter 3 and 4 did work properly,
gathering data was a fairly easy task. The user’s relevant demographic data
is collected during the registration process and their game’s performance is
automatically synchronized too.

To be capable of optimally working with the gathered data, a small
software pipeline was created. A great and free solution to work with lots
of numerical data is Google Spreadsheet which also supports writing cell-
functions, similar to Excel. To get the data out of the MySQL database into
a table and its sheets, another software is used called Google Apps Script.
This allows to write complex Java functions that can be embedded into
Google’s other apps, like Spreadsheet. To connect and send queries to the
database, Java Database Connectivity (JDBC) can be utilized within Apps
Script. The final implemented function connects to the database, collects the
existing data and automatically adds it to the spreadsheet. All calculations
within the spreadsheet are written with functions, thus all data-updates
from the function automatically result in updated values in the sheets. To
not only present this data in plain numbers, Adobe Illustrator was utilized
to process them into visually appealing diagrams.

At first, this chapter presents the gathered data in an objective way in
section 5.1. Finally these metrics get analyzed and interpreted in section 5.2
to find out if there is material to support the stated theory in chapter 1.

5.1 Results
As of the date this thesis is written, a second wave of distribution is com-
pleted (with the early closed playtests from section 3.3 counting as first).
This results in following records in the four tables of the database (which
where described in section 4.2.2):

55

5. Evaluation 56

53,3%
Apprenticeship26,7%

University

13,3%
Higher vocational school

6,7%
Compulsory school

53,3%
Worker/
Employee

33,3%
Student

13,3%
Pupil

Figure 5.1: The left pie charts shows the user’s highest completed education,
the right one their current activity.

• 16 entries in users,
• 97 in worlds_unlocked,
• 100 in games_completed,
• and 29 in games_aborted.

After the first playtest, the database was completely cleared, thus all these
entries are from the current version. While the amount of collected data is
good enough for an evaluation, there could be of course much more due to
the nature of automated collection. More actual players would have directly
resulted into more data, but this second wave was still distributed in a
controlled way with the focus on a broad variety of differently educated
people with different interests. The idea behind such a restricted distribution
was to get enough data for an analysis while still maintaining a large group of
people not knowing NO:LE:AP to not distort the results of a possible third
wave of distribution after further updates to the application — see chapter 6
for problems that occurred and an eventual outlook of this project.

5.1.1 Demographic Data

The 16 registered users consist of 14 male and 2 female subjects, their age
ranging from 21 to 40 with an average of 27.4 years. Figure 5.1 shows their
highest completed education and their current activity. More than half of
them completed an apprenticeship and are currently working (which does
not imply that these are the same persons). The rest is still receiving some
sort of education, as there are 33.3% students and 13.3% pupils. With this
fairly homogenous group regarding education and activity as a solid basis,
the more interesting part is the demographic data as this will be used to

5. Evaluation 57

1

2

3

4

5

games
tech

riddles
math

programming
computer

1

2

3

4

5

games
tech

riddles
math

programming
computer

User Knowledge User Knowledge

Figure 5.2: These figures show the calculated average and median values
for the demographic questions.

classify the user later on. During the registration process in the registration
screen, the user has to answer six questions with one of five available answers
ranging from applies to me a lot to applies to me in no way. All questions are
about the interest and the amount of time spent regarding a certain area,
which are computers (in general), programming, math, riddles, technology
and games.

In figure 5.2, two column graphs are shown. The left one shows the
average answers, with the vertical axes presenting the possible answers (with
1 as applies to me a lot) and the horizontal axes the six questions. While
the interest in computers, riddles and technology is very high and games are
still interesting to them, programming and math are beyond average. The
median values shown in the right column graph makes this even more clear
as programming has a median value of only 4 (which resembles to an applies
to me rather not) while their interest in computers and technology gets even
stronger.

5.1.2 Played Worlds

Overall, the 16 users started 129 worlds in total, which then ran for more
than 625 minutes (until they got completed or aborted). They also unlocked
and even completed several worlds, is shown in figure 5.3. The vertical axis
is percentage from zero to hundred and the horizontal axis is split in ten
columns representing the amount of available levels in the current version of
NO:LE:AP (which is exactly ten). The darker line represents the percentage
of total users unlocked given amount of worlds i.e., 100% of all users unlocked
at least one world which is steadily decreasing down to 40% who unlocked
all 10 worlds. The second and brighter line is the percentage of total users
completed given amount of worlds to the users who unlocked it. For example,
in column 5 do both lines overlap which means that the same amount of users

5. Evaluation 58

0

50

100

Percentage

Amount of Worlds
1 2 3 4 5 6 7 8 9 10

Figure 5.3: This figure compares the amount of unlocked worlds (the dark
line) to the amount of completed worlds (the bright line) in percentage of
the total users.

that unlocked five worlds also managed to accomplish five worlds (which is
roughly 65% of all registered users). Another interesting comparison is the
first column where 100% unlocked at least one world but not all of them
accomplished this world. This is especially odd as the first world is part of
the tutorial which should be no problem at all — an explanation can be
found in section 6.2.

5.2 Interpretation

5.2.1 Analysis of the Progression System

The way the progression system currently works is exhaustively described in
section 3.2. While there went a fair amount of time and thoughts into this
system, it was not really clear if it also works as intended. Currently, users
earn a certain amount of points whenever they complete a world, depending
on how well they did and how many penalties they got. Unlocking worlds
costs points, but completing a world in an ideal way (i.e., with 100 points)
gives the users more points than unlocking new worlds costs. This leads to
more and more unused points the users can spend to unlock more than one
world at a time if they should be unable to finish a just unlocked world.

Figure 5.3 shows that the users did indeed utilize this system. During
the first several worlds, there are constantly users not completing unlocked

5. Evaluation 59

80 85 90 95 100
1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0 50 100 150 200
1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

User Classification User Classification

Average Points Median Time

Figure 5.4: The left figure shows the relation of the user’s skill to the average
points he achieved on the first successful completion, whereas the right one
the user’s skill in relation to the median time taken.

worlds and the amount of total users progressing further steadily decreases.
There could be several explanations for these drop-outs like they simply
stopped playing because they do not like the game. Beginning with the
second half of the worlds, more and more of them get unlocked while less
worlds getting actually completed. Users already gathered enough points
to unlock more than one world at once, whenever they did not manage to
complete one, resulting in 40% of all users unlocking all ten worlds while
only less then 10% also managed to complete all of them.

5.2.2 Supporting the Thesis’s Theory

Looking at the demographic data in figure 5.2, the actual interests and
spent time of the users can be described as a good distribution in terms of
using them to validate the theory of this thesis. Computers and technology
in general are of very high interest, followed by riddles and games. Math
and especially programming are areas they are much less into. Given these
values, the average user of our second wave of testing can be described as
a technology-affine subject who likes solving logical (and digital) problems
while not being used to think in a programmatic way.

Classifying the Users

The thesis goal is to find out if visual node-based editors can help to lower
the entry level to areas like programming or math and thus can be described
as beginner-friendly and a tool that can be utilized for educational purposes.
The average user can be indeed considered as beginner and thus being part
of the target group, looking at the just stated definition and only taking
the areas the average user is less potent into account. But all six questioned
areas are equally important, as bad self-estimations in all of them could

5. Evaluation 60

influence the outcome. A user who is very interested into math but never
used a computer before is also handicapped in a certain way and could at
least perform equally bad as someone with the opposite skills. Thus, all six
areas will be taken into account equally. Otherwise, the highest completed
education and the current activity should not directly influence the classifi-
cation of the users. Highly educated ones do not necessarily surpass others
automatically in the questioned areas, as the focus of their education could
be on completely unrelated areas.

These thoughts result into a user-classification by calculating the aver-
age of the six areas of interest. A user with a low value can thus be called
a professional while a high value marks a beginner. While this seems like
a reasonable classification, figure 5.2 should be still considered as there are
large differences between the interests resulting in fairly high average classi-
fications while a large group of the users are indeed programming and math
beginners.

Comparing the User Performance

Figure 5.4 utilizes just calculated classification to compare the performance
of the users in two graphs with the user-classification in both vertical axis.
Looking at the vertical distributions, it seems that there are not that many
beginners as most of the users classify themselves above the mean value.
Again, the large differences between the interests have to be considered and
filtering them for just programming and math would result in way more users
classified as beginners. The left graph shows the average earned points on
the first successful completion. While users can play worlds multiple times to
gain all available points, only the first try is the one that counts for this graph,
as with every other try, users already know the world and automatically
perform much better. Furthermore, to compensate any distortions of the
earned points by the system’s flaw described in section 3.3, an average of
the penalty-points of the user’s aborted worlds is additionally subtracted. The
calculated values range from 84 points up to 98.

The second graph compares the user-classification with the median time
taken. At first, the average value was calculated too, but there where some
extremely long times measured with values up to 45 minutes which is in-
terpreted as absence of the user by the author and thus would distort the
results. Similar to the first graph, the times of the aborted worlds are incor-
porated as well. In this graph, lower values are better results as they point
to faster completion times. Also mind that time was never indicated as a
measuring factor in NO:LE:AP and high values do not result in penalties,
thus the users did not play fast nor felt the pressure of time that could in-
fluence the outcome negatively. Using time they took to complete worlds is
still a valid way of comparing their performance with each other.

The most interesting part in figure 5.4 is the bottom right quarter of

5. Evaluation 61

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

User Classification

World Number
1 2 3 4 5 6 7 8 9 10

Figure 5.5: This figure shows the accomplished worlds in detail. Mind the
slightly darker lines indicating accomplished worlds of users with identical
classification i.e., have overlapping lines.

the left graph and the bottom left quarter of the right graph. There is a
large majority of the users performing very well with an average number of
achieved points way above 90 and a median time of less than 100 seconds
per world. Looking at the overall good performance already is a success re-
garding the network editor, the systems in place and NO:LE:AP in general.
But taking the distribution of the user-classification into account really in-
dicates that there is material that could support the theory of the thesis.
As there is clearly shown, the best as well as the fastest ratings are evenly
distributed among users classified between one and three. This means that
not only the users that classified themselves as very good in all six areas,
including programming and math, did very well but also users with an av-
erage self-estimated classification down to three. Looking at these users in
detail further supports this interpretation as they all have good values re-
garding computer, technology or games and very low self-estimations in the
fields of programming or math. Still, they perform equally to the better
classified users which certainly hints to the network editor helping them and
lowering the entry level to given areas for them. Users with much less expe-
rience in fields like programming or math do perform as good as users with
knowledge in these fields while using NO:LE:AP’s network editor. Another
positive sign comes up when looking at the performance of the users when
replaying worlds as they all perform much better in later tries which could
also indicate a certain aspect of learning progress.

5. Evaluation 62

One eventual pitfall came up which could probably distort this inter-
pretation. As figure 5.3 showed, there where users constantly dropping out.
This could lead to users being placed next to the best players by complet-
ing only very easy worlds with high points. To find out, which users did
drop out at which stage and if this would significantly influence the given
interpretation, figure 5.5 is added. With the vertical axis again representing
the user-classification, the columns of the horizontal axis represent the ten
available worlds. While the horizontal axis in figure 5.3 represented the to-
tal amount of worlds, the horizontal axis of this graph represents the actual
worlds. For example, looking at the user with a classification of approxi-
mately 2.4, the graph shows that he accomplished the first few worlds then
left out world six and finally again accomplished worlds seven and eight. This
graph also shows that there is not really a reason to fear this believed pitfall
as most of the users that did really well are also the ones that accomplished
the most worlds, regardless of the classification.

Chapter 6

Conclusion

This last chapter gives a final overview of the project’s goals and what was
actually achieved. Furthermore, eventual problems that came up during the
development process are summarized too, concluding with an outlook of
eventual next steps.

6.1 Summary
This thesis tried to find out, if a visual flow-based programming editor can
help to lower the entry level to areas like programming or math. To achieve
this goal, a solid foundation of knowledge about given topic had to be ac-
cumulated it first. Multiple concepts where developed on this basis, shaping
into a prototypical approach of a learning game called NO:LE:AP with the
goal to gather data from its users to support the theory of this thesis. After
the systems and concepts that made it into this prototype where presented,
a detailed insight into the technical aspects and the actual implementation
was given. First tests where conducted, resulting in feedback to the proto-
type and sufficient data for a first evaluation.

After presenting given data, it was finally analyzed and interpreted to
find valuable metrics supporting the thesis’s theory. While the total amount
of 16 registered users during the second wave of distribution is not enough
to really qualify the collected data and the resulting interpretation as con-
vincing, some important flaws where detected and corrected and the overall
conclusion is very promising. While more work and especially more data is
needed for a final conclusion, the current status does at least not disprove
the thesis’s theory.

6.2 Problems
As the project grew over time, the amount of known bugs also grew simul-
taneously, resulting in a fairly long list of minor and major problems that

63

6. Conclusion 64

did not make it into the current version. Several test users further reported
problems with certain screen resolutions (and display aspect ratios) or even
minor bugs with some game entities, meaning that this list is still growing.

A severe problem within NO:LE:AP, that has to be fixed immediately,
came up during the analysis of figure 5.3 in section 5.1. It was very con-
fusing that there where users that did not even finish the very first world.
Whenever a newly registered users starts NO:LE:AP for the first time, the
tutorial automatically starts and by following its instructions step-by-step,
everything gets explained to solve the first world without any problems. But
still, there where users that did not complete any worlds. As all test users
of the second wave are personally known to the author, the ones that did
not complete the tutorial could be questioned about their reasons. The so-
lution was fairly simple but also showed that there still has to be done lots
of optimization. These users told the author, that the tutorial was too long
for them with too many pages filled with too much text. They simply did
not want to read through the whole tutorial but then they also where not
capable of finishing the first world as they did not know what to do.

6.3 Outlook
NO:LE:AP became a huge project during its development, thus there are
still lots of things to add and optimize. But as the final outcome at the end
of this thesis is thoroughly positive, the motivation is very high to continue
developing NO:LE:AP. For a third, even bigger distribution wave than the
previous ones, usability will be an important topic. There have to be more
features on the project’s website like a way of resetting the user password
when forgotten, as this already happened in the second wave with a fairly
small amount of users — fortunately all test users where personally known
to the author, thus the password reset was done manually.

An even larger variety of worlds is also intended, as more worlds mean
more spare points to skip too hard worlds. More worlds does also mean
more time the users can spend with NO:LE:AP which results in more data.
Thanks to the very flexible world and task system, this should not be a
problem.

But one of the first things that has to be done is a further analysis of
the collected data, how this data will be interpreted in the future and which
metrics could be also interesting for the project’s evaluation. As this is the
core of the whole project, it has to be a fully satisfying process and the more
concrete the results will get in the future, the more NO:LE:AP can be seen
as success.

Appendix A

Contents of the CD-ROM

Format: CD-ROM, Single Layer, ISO9660-Format

A.1 Thesis
Pfad: /

Stuntner_Benjamin_2016.pdf Master thesis with instructions (entire
document)

A.2 Online Sources
Pfad: /online-sources/pdf

comp-based-se.pdf . . . Component-based software engineering,
Wikipedia

construct2.pdf Construct 2
deutsch-limit.pdf Deutsch limit, Wikipedia
fbp-github.pdf Flow-Based Programming, Terminology
gpss.pdf GPSS, Wikipedia
ue4-blueprints.pdf . . . Using Blueprints in Unreal Engine 4,

Thomas Ingham
json.pdf JSON, Wikipedia
fbp-morrison.pdf Flow-Based Programming, John Paul

Morrison
noflo-vs-fbp.pdf NoFlo vs. “Classical” FBP, John Paul

Morrison
noflo-jekyll-github.pdf . noflo-jekyll
prog-paradigm.pdf . . . Programming paradigm, Wikipedia

65

/
Stuntner_Benjamin_2016.pdf
/online-sources/pdf
comp-based-se.pdf
construct2.pdf
deutsch-limit.pdf
fbp-github.pdf
gpss.pdf
ue4-blueprints.pdf
json.pdf
fbp-morrison.pdf
noflo-vs-fbp.pdf
noflo-jekyll-github.pdf
prog-paradigm.pdf

A. Contents of the CD-ROM 66

Pfad: /online-sources/others
azzolini-dfd.ppt Introduction to Systems Engineering

Practices, John Azzolini

A.3 Images
Pfad: /images

*.pdf PDF files
*.psd PSD files
*.png PNG files
*.jpg JPG files

A.4 NO:LE:AP
Pfad: /client/source

* Source-Code NO:LE:AP v1.0

Pfad: /client/build
* Build NO:LE:AP v1.0

Pfad: /server/rest-api
* Source-Code Server v1.0

Pfad: /server/website
* Source-Code Website

/online-sources/others
azzolini-dfd.ppt
/images
*.pdf
*.psd
*.png
*.jpg
/client/source
*
/client/build
*
/server/rest-api
*
/server/website
*

References

Literature

[1] Andrew Begel. LogoBlocks: A Graphical Programming Language for
Interacting with the World. Tech. rep. MIT Media Laboratory, 1996.
url: http://research.microsoft.com/en- us/um/people/abegel/mit/
begel-aup.pdf (cit. on pp. 7, 8, 11, 12).

[2] Marat Boshernitsan and Michael Sean Downes. Visual programming
languages: a survey. Tech. rep. UCB/CSD-04-1368. Berkeley, CA:
Univ. of California, Computer Science Division (EECS), 2004. url:
http://digitalassets . lib .berkeley.edu/techreports/ucb/text/CSD- 04-
1368.pdf (cit. on pp. 4, 11).

[3] Timothy B. Brown. Completeness of a Visual Computation Model.
Tech. rep. WUCS-93-53. Washington Univ., St. Louis: All Computer
Science and Engineering Research, 1993. url: http://openscholarship.
wustl.edu/cse_research/548 (cit. on pp. 3, 5).

[4] Margaret Burnett et al. “Forms/3: A First-order Visual Language
to Explore the Boundaries of the Spreadsheet Paradigm”. Journal of
Functional Programming 11.2 (Mar. 2001), pp. 155–206 (cit. on p. 6).

[5] Shi-Kuo Chang, ed. Principles of Visual Programming Systems. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1990 (cit. on p. 3).

[6] Xin Chen et al. “A Model of Component-Based Programming”. In:
Proceedings of the Intl. Symposium on Fundamentals of Software En-
gineering. Ed. by Farhad Arbab and Marjan Sirjani. Tehran, Iran:
Springer Berlin Heidelberg, Apr. 2007, pp. 191–206 (cit. on p. 7).

[7] Melvin E. Conway. “Design of a Separable Transition-diagram Com-
piler”. Communications of the ACM 6.7 (July 1963), pp. 396–408 (cit.
on p. 13).

[8] M. Erwig and B. Meyer. “Heterogeneous Visual Languages-integrating
Visual and Textual Programming”. In: Proceedings of the 11th Inter-
national IEEE Symposium on Visual Languages. VL ’95. Washington,
DC, USA: IEEE Computer Society, 1995, pp. 318– (cit. on p. 4).

67

http://research.microsoft.com/en-us/um/people/abegel/mit/begel-aup.pdf
http://research.microsoft.com/en-us/um/people/abegel/mit/begel-aup.pdf
http://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-04-1368.pdf
http://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-04-1368.pdf
http://openscholarship.wustl.edu/cse_research/548
http://openscholarship.wustl.edu/cse_research/548

References 68

[9] Ephraim P. Gilnert and Steven L. Tanimoto. “Pict: An Interactive
Graphical Programming Environment”. Computer 17.11 (Nov. 1984),
pp. 7–25 (cit. on p. 10).

[10] Masahito Hirakawa and Tadao Ichikawa. “Visual Language Studies -
A Perspective”. Software - Concepts and Tools 15.2 (1994), pp. 61–67
(cit. on p. 10).

[11] Jill H. Larkin and Herbert A. Simon. “Why a Diagram is (Sometimes)
Worth Ten Thousand Words”. Cognitive Science 11.1 (1987), pp. 65–
100 (cit. on p. 10).

[12] Tim Menzies. “Evaluation Issues for Visual Programming Languages”.
In: Handbook of Software Engineering and Knowledge Engineering. Ed.
by Shi-Kuo Chang. Vol. 2. Canada: World Scientific Publishing Com-
pany, 2002, pp. 93–101 (cit. on pp. 4, 10).

[13] J. Paul Morrison. Flow-Based Programming, 2nd Edition: A New Ap-
proach to Application Development. Paramount, CA: CreateSpace,
2010 (cit. on p. 14).

[14] K. N. Whitley and Alan F. Blackwell. “Visual Programming: The Out-
look from Academia and Industry”. In: Proceedings of the Seventh
Workshop on Empirical Studies of Programmers. ESP ’97. Alexan-
dria, Virginia, USA: ACM, 1997, pp. 180–208 (cit. on p. 11).

Online sources

[15] John Azzolini. Introduction to Systems Engineering Practices. 2001.
url: https : / / www . cesames . net / fichier . php ? id = 80 (visited on
07/06/2016) (cit. on p. 12).

[16] Component-based software engineering. url: https://en.wikipedia.org/
wiki/Component-based_software_engineering (visited on 07/16/2016)
(cit. on p. 7).

[17] Construct 2 Website. url: https://www.scirra.com/construct2 (visited
on 07/24/2016) (cit. on p. 7).

[18] Deutsch limit. url: https : / / en . wikipedia . org / wiki / Deutsch _ limit
(visited on 07/06/2016) (cit. on p. 11).

[19] Flow Based Programming. url: https : / / github . com / flowbased /
flowbased.org/wiki/ (visited on 07/14/2016) (cit. on p. 15).

[20] General Purpose Simulation System (GPSS). url: https : / / en .
wikipedia.org/wiki/GPSS (visited on 07/03/2016) (cit. on p. 13).

[21] Thomas Ingham. Using Blueprints in Unreal Engine 4. url: http :
//martiancraft.com/blog/2014/07/blueprints-unreal-engine/ (visited on
07/26/2016) (cit. on p. 19).

https://www.cesames.net/fichier.php?id=80
https://en.wikipedia.org/wiki/Component-based_software_engineering
https://en.wikipedia.org/wiki/Component-based_software_engineering
https://www.scirra.com/construct2
https://en.wikipedia.org/wiki/Deutsch_limit
https://github.com/flowbased/flowbased.org/wiki/
https://github.com/flowbased/flowbased.org/wiki/
https://en.wikipedia.org/wiki/GPSS
https://en.wikipedia.org/wiki/GPSS
http://martiancraft.com/blog/2014/07/blueprints-unreal-engine/
http://martiancraft.com/blog/2014/07/blueprints-unreal-engine/

References 69

[22] JSON. url: https : / / en . wikipedia . org / wiki / JSON (visited on
06/27/2016) (cit. on p. 17).

[23] John Paul Morrison. Flow-Based Programming. url: http : / /www.
jpaulmorrison.com/fbp (visited on 07/06/2016) (cit. on p. 14).

[24] John Paul Morrison. NoFlo vs. “Classical” FBP. url: http://www.
jpaulmorrison . com / fbp / noflo . html (visited on 07/20/2016) (cit. on
pp. 16, 45).

[25] John Paul Morrison. Software on FBP Website. url: http ://www.
jpaulmorrison.com/fbp/software.html (visited on 07/06/2016) (cit. on
p. 13).

[26] noflo-jekyll. url: https://github.com/the-grid/noflo-jekyll (visited on
07/26/2016) (cit. on p. 17).

[27] Programming paradigm. url: https : / / en . wikipedia . org / wiki /
Programming_paradigm (visited on 06/25/2016) (cit. on p. 13).

https://en.wikipedia.org/wiki/JSON
http://www.jpaulmorrison.com/fbp
http://www.jpaulmorrison.com/fbp
http://www.jpaulmorrison.com/fbp/noflo.html
http://www.jpaulmorrison.com/fbp/noflo.html
http://www.jpaulmorrison.com/fbp/software.html
http://www.jpaulmorrison.com/fbp/software.html
https://github.com/the-grid/noflo-jekyll
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Programming_paradigm

Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

Breite = 100 mm
Höhe = 50 mm

— Diese Seite nach dem Druck entfernen! —

70

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Research Question
	Structure

	Visual Flow-Based Programming
	Visual Programming
	Definition
	Common VPL Systems
	Advantages
	Disadvantages

	Flow-Based Programming
	History
	Definition
	Terminology

	State of the Art
	NoFlo
	Unreal Engine 4
	vvvv

	Prototype — NO:LE:AP
	Early Concepts
	Current Version
	Network
	Nodes
	Game Entities
	Worlds and Tasks
	Persistency
	Metrics

	Early Playtest Results

	Implementation
	Client
	Software Stack
	Node System
	Network Editor
	Worlds and Tasks
	Persistency and Metrics

	Server
	Software Stack
	Implementation

	Evaluation
	Results
	Demographic Data
	Played Worlds

	Interpretation
	Analysis of the Progression System
	Supporting the Thesis's Theory

	Conclusion
	Summary
	Problems
	Outlook

	Contents of the CD-ROM
	Thesis
	Online Sources
	Images
	NO:LE:AP

	References
	Literature
	Online sources

