
Austrian Dialect Classification Using
Machine Learning

Hanna Wagner, BA

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Juni 2019

© Copyright 2019 Hanna Wagner, BA

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, June 23, 2019

Hanna Wagner, BA

iii

Contents

Declaration iii

Abstract vi

Kurzfassung vii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem and Solution . 2
1.3 Limitations . 3
1.4 Outline . 4

2 Technical Background 5
2.1 Introduction to Machine Learning . 5

2.1.1 Types of Machine Learning Systems 5
2.1.2 Classification vs Regression . 6
2.1.3 Training a Machine Learning Model 7
2.1.4 Measurement of Performance . 7
2.1.5 Sequential Decision Making . 8
2.1.6 Challenges in Machine Learning 9

2.2 Neural Networks . 10
2.2.1 Convolutional Neural Network 11

2.3 Support Vector Machines . 11
2.4 Mel Frequency Cepstral Coefficient . 12
2.5 Formants . 15
2.6 Noise Reduction in Sound . 16

2.6.1 Median filter . 16
2.6.2 Kalman Filter . 17

2.7 Audio Normalization . 17
2.7.1 Peak Normalization . 19
2.7.2 RMS-based Normalization . 19
2.7.3 EBU R128 Standard . 19

3 Dialects in Austria 20
3.1 History and Characteristics of Dialects in Austria 21
3.2 Comparison of Words . 22

iv

Contents v

4 State of the Art 25
4.1 Scripted List of Words . 25
4.2 Continuous Speech . 29

5 Data 32
5.1 Creating the Dataset . 32
5.2 Data Cleaning . 34

6 Technical Approach 36
6.1 Window Size . 36
6.2 Normalization . 37
6.3 Noise Reduction . 38
6.4 Feature Extraction . 39

7 Results 42
7.1 Baseline Model . 42
7.2 Noise Filter Model Using MFCC and Formants 43
7.3 Audio Normalization Model Using MFCC 46
7.4 Combined Model . 47
7.5 Large Window Size Model . 48
7.6 Validation of Results . 50

8 Conclusion 54
8.1 Challenges and Results . 54
8.2 Limits and Future Work . 55

A Technical Details 56

B Data Gathering 60

C Packages 61

D CD-ROM Contents 62
D.1 PDF Files . 62
D.2 Code Files . 62
D.3 Feature Files . 62
D.4 Model Files . 63
D.5 Others . 63

Abstract

Different speaker dialects are one of the main problems in automatic speech recognition
(ASR). A possible solution to this issue is to have a separate classifier identify the
dialect of a speaker and then load an appropriate speech recognition system. Because
no attempts have yet been made in classifying Austrian dialects this thesis investigates
in the classification of the two dialects spoken in Vorarlberg and Vienna. The choice
of the selected classes is based on a linguistic perspective. Those two dialects have in
consideration of history and characteristics the most differences.

The first part of this thesis deals with theoretical explanations of machine learning in
general, the various algorithms that can be used, general challenges in machine learning
and feature extraction methods. Due to the lack of an existing Austrian dialect database,
several sources have been used to create a new one. Following a preprocessing pipeline
has been established, which shows several paths of the data preparation from the raw
data to the state where the data can be used as an input for the machine learning
algorithms. After implementing some states, the best path and its model was chosen
for evaluation. The classification was done using convolutional neural networks (CNNs).
Support vector machines (SVMs) were also implemented but could not perform as good
as the CNN algorithm.

Results showed that the best accuracy could have been achieved by splitting the files
in 0.4 second smaller ones, applying a median filter and extracting the features using
the mel frequency cepstral coefficient (MFCC). The CNN model reached the highest
accuracy of 84.20% on the test set and 77.85% on the validation set.

vi

Kurzfassung

Unterschiedliche Sprecherdialekte sind eines der Hauptprobleme bei der automatischen
Spracherkennung. Eine mögliche Lösung besteht darin, dass ein separater Klassifizie-
rungsalgorithmus den Dialekt eines Sprechers identifiziert und dann ein entsprechendes
Spracherkennungssystem verwendet. Da noch keine Versuche zur Klassifizierung öster-
reichischer Dialekte unternommen wurden, untersucht diese Arbeit die Klassifizierung
der beiden Dialekte in Vorarlberg und Wien. Die Auswahl der Klassen basiert auf sprach-
wissenschaftlichen Erkenntnissen. Beide Dialekte weisen in Bezug auf Geschichte und
Sprachmerkmalen die größten Unterschiede auf.

Der erste Teil dieser Arbeit befasst sich mit maschinellen Lernen im Allgemeinen,
den verschiedenen verwendbaren Algorithmen, den Herausforderungen beim maschinel-
len Lernen und den Methoden zur Extrahierung der Features. Aufgrund des Fehlens
einer vorhandenen österreichischen Dialektdatenbank wurden mehrere Quellen verwen-
det, um eine neue zu erstellen. Folgend wurde ein Vorbearbeitungsprozess für die Daten
erstellt, der verschiedene Möglichkeiten darstellt, wie die Rohdaten bearbeitet werden
können, damit sie als Eingabe für die Algorithmen verwendet werden können. Nach der
Implementierung einiger dieser Schritte wurde die beste Möglichkeit und deren Modell
ausgewählt. Die Klassifizierung erfolgte mithilfe von Convolutional Neural Networks
(CNN). Support Vector Machines (SVM) wurden ebenfalls implementiert, konnten je-
doch nicht so gute Resultate wie der CNN-Algorithmus erzielen.

Die Ergebnisse zeigten, dass die beste Genauigkeit erzielt werden konnte, wenn die
Dateien in 0.4 Sekunden kleinere Dateien aufgeteilt, ein Medianfilter angewendet und
die Features mit Mel-Frequenz-Cepstral-Koeffizienten (MFCC) extrahiert wurden. Das
CNN-Modell erreichte die höchste Genauigkeit von 84.20% auf dem Testdatensatz und
77.85% auf dem Validierungsdatensatz.

vii

Chapter 1

Introduction

This chapter provides a fundamental introduction to the topic of Austrian dialect clas-
sification using machine learning. First, background and motivation are presented. A lot
of different challenges need to be overcome, in order to implement a successful project,
which is described later on. Furthermore, some state of the art approaches and the
delimitation to them are proposed. Finally, the outline is stated.

1.1 Background and Motivation

Although artificial intelligence (AI) has been introduced decades ago, the interest in ma-
chine learning has set off over the past years. The topic has made it not only in computer
science programs and industry conferences but also to the daily local newspapers. The
same goes with neural networks, which have also been around for 50 years. However,
the lack of data and computing power weakened the interest over time. The enthusiasms
extended with the publication of Geoffrey Hinton in 2006. In this paper1, he showed how
to train a deep neural network, which is capable of recognizing handwritten digits with
a precision of over 98%. In the mid-1980s many significant architectural advancements
were also made using neural networks. Now an immense amount of data is produced
every day, which is an optimal foundation for this technology. Moreover, computational
power has increased drastically over the past couple of years, so problems, which seemed
to be impossible then can be solved now [12].

One of the earliest applications in this field, which are highly used until today, is the
spam filter. This machine learning application was introduced in the 1990s. Although
this program is no self-aware robot, it improves the lives of hundreds of million of people
every day. One of the many questions concerning machine learning is, where does it
start and where does it end? At what stage becomes a program intelligent? Machine
learning is stated as the science of programming computers so they can learn from data.
In the case of the spam filter, the program can learn to flag spam given examples of
spam emails and regular emails. A more recent and impressive example is known as the
Google DeepMind Challenge Match. In this application, a computer program, which
was developed by Google DeepMind, could beat the 18-time world champion Lee Sedol
in the abstract strategy board game Go. The third and most relevant application for

1http://www.cs.toronto.edu/∼fritz/absps/ncfast.pdf

1

http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf

1. Introduction 2

this thesis is using machine learning for recognizing speech [5].
Automatic speech recognition (ASR) has been around for the last 25 years. Although

assistants such as Apple’s Siri2 or Amazon’s Alexa3 deliver good performance, there are
still limitations of possible interactions due to the lack of natural communication with
computers [6]. Human speech can be affected by several factors. There are age, gen-
der, emotional state, and speaker-to-speaker variations, that have an impact on speech.
Another reason is the difficulty of systems understanding speech by non-native speak-
ers. Some efforts have been made on classifying dialects [20], but there are still some
improvements in increasing the accuracy and adding new dialects to their models. Fur-
thermore, the knowledge of the speaker’s accent is not only important for the selection
of specifically trained models, but it can also be significant for the results itself. For
example, when a person from Vienna and a person from Vorarlberg are asking their
phones the same questions using voice input, the program has two main challenges. The
first is understanding and translating the speech to text, so the computer can work with
it and execute the search. The second challenge is to deliver the best result possible.
The quality of the outcome can increase by knowing from which part of Austria the
speaker is from.

Recent individual studies [26, 13] have likewise shown that research has focused
on building accent classification systems using machine learning. However, these ap-
proaches have some gaps, which need to be filled. Although both approaches have
achieved promising results, some improvements are still possible. The first one is that
their data was very well structured. The words or sentences were given, which made it
easier to classify the accents because every speaker said the same. Therefore using one of
these models in a real-life scenario could decrease their accuracy, because different words
and word-combinations will highly likely be used. Several other approaches are intro-
duced and discussed in Chapter 4. Although a lot of studies regarding English dialects
classification exist, no attempts have yet been made in classifying Austrian dialects.

1.2 Problem and Solution
This section describes the main challenges that need to be covered and overcome dur-
ing the implementation of the thesis project. The first challenge deals with a lot of
questions concerning data. When classifying English dialects, databases like the Speech
Accent Archive4 or the Common Voice dataset by mozilla5 could be easily used. In con-
trast, the first issue is that the gathering of Austrian dialects is difficult because there
are no labeled audio files or databases in general available. Several approaches have
been carried out. The first idea was to gather the data from the Austrian TV Station
called ORF directly. Another method is to ask several students from the University of
Applied Sciences Upper Austria to record themselves answering given questions (see
Appendix B). The last option is to download the audio files directly from Vorarlberg

2https://www.apple.com/siri/
3https://alexa.amazon.com/
4http://accent.gmu.edu/
5https://voice.mozilla.org/en

https://www.apple.com/siri/
https://alexa.amazon.com/
http://accent.gmu.edu/
https://voice.mozilla.org/en

1. Introduction 3

press conferences6, from the City of Vienna7 and from the Literaturradio Vorarlberg8.
The second issue is that the audio files do not have a common word sequence, which

makes it most likely harder for the algorithm to differentiate. One approach could be to
interview a bunch of people asking them to read out the same text passage. This would
make it a lot easier for the algorithm to differentiate between the dialects. But this
approach has two main downsides. The first one is that it is immensely time-consuming
to gather that many interviews, so it can be used as a good source for training and
testing the model. The second contrast is, that this model would not succeed in a real-
life scenario, as mentioned before because different words and word-combinations are
used.

The third problem is that the volume, the quality and the length of each audio file
is different. So a lot of preprocessing and data cleaning steps will be inevitable. Also
in some cases, background noises can be disturbing. Moreover, it needs to be noticed
that an imbalance of female and male speakers can also worsen the results. The last
issue concerns the preprocessing pipeline. Because there are a lot of different steps
needed, such as audio normalization, defining the window size and choosing the right
algorithm, hundreds of contrasting paths are possible. Furthermore, the order of those
preprocessing steps is essential and needs to be evaluated. Therefore only a few of those
possible solutions can be implemented and tested. One possible approach is to choose
a baseline model as a reference and implement a few paths which are highly different
from each other.

The aim of this thesis is to not only find out which algorithms perform best in
this scenario but also to find out by experiments which data preparation steps are
most suitable for the classification of Austrian dialects using machine learning. The
implementation is written in Python using the Scikit-Learn9 library for the support
vector machine classifier and the Keras10 library for the neural network classifier. A full
account of packages is listed in Appendix C.

1.3 Limitations
This thesis focuses on data preparation, data cleaning and data wrangling. This is
partly motivated by the fact that preparing the audio signal for the machine learning
algorithms is a sophisticated and significant task. Furthermore, the main part of these
classification experiments deals with dialect classification based on spontaneous speech.
This is, in contrast to given utterances of single words or given sentences, which is
reasonably the more common variant of raw data, more difficult but more promising.
The embodiment of dialect identification into automatic speech recognition, which leads
possibly to a performance increase, is not tested. As no examples of Austrian dialect
classification with defined dialect regions have been found, two dialects are presented
and used here for the first time.

6http://presseaudio.vorarlberg.at/
7https://www.wien.gv.at/video/Wir-und-Wien
8http://www.literaturradio.at/kategorien/mundart/
9https://scikit-learn.org

10https://keras.io/

http://presseaudio.vorarlberg.at/
https://www.wien.gv.at/video/Wir-und-Wien
http://www.literaturradio.at/kategorien/mundart/
https://scikit-learn.org
https://keras.io/

1. Introduction 4

1.4 Outline
Chapter 2 introduces important definitions and provides detailed information about al-
gorithms, the feature extracting methods and other technical concepts. In Chapter 3
essential background information and insights into the differences between the dialects
of Austria are provided. Following, Chapter 4 presents various approaches to classifying
dialects for different languages. In Chapter 5 the data, which is later used for the experi-
ments, is introduced. Moreover, technical strategy and the data preparation pipeline are
defined in Chapter 6. Chapter 7 explains the details of the experiments and a reflected
discussion of these results. Lastly, Chapter 8 contains conclusions and reflections on the
work.

Chapter 2

Technical Background

Machine learning is a relevant and interesting field and with new algorithms and frame-
works developed and improved constantly, it is more relevant than ever. In order to
understand the following chapters, this chapter states necessary definitions and pro-
vides detailed information about algorithms, the feature extracting methods and other
technical concepts.

2.1 Introduction to Machine Learning
This section gives an introduction into the field of machine learning. The following
reference gives a good and understandable definition [30]:

“Machine learning is an application of artificial intelligence (AI) that pro-
vides systems the ability to automatically learn and improve from experience
without being explicitly programmed. Machine learning focuses on the de-
velopment of computer programs that can access data and use it learn for
themselves.”

2.1.1 Types of Machine Learning Systems
Figure 2.1 shows the relation between artificial intelligence and machine learning and
what other fields are dependent. There are several types of learning algorithms:

• supervised learning,
• unsupervised learning,
• reinforcement learning,
• deep learning and neural networks.

Using supervised learning, an algorithm can be trained with a dataset (input) and a
solution (output). At the beginning of the training, there is data with a labeled tag,
which means that each element of the dataset comes with a class. The algorithm remem-
bers that this item belongs to this special group and tries to extract some distinctive
features, which should be unique for this group. When a new input without a label is
being put into the algorithm, it compares the unique features of the new data with the
familiar groups that are already known. The new data obtains the label in which the

5

2. Technical Background 6

Figure 2.1: Related Fields [10].

highest accordance is. An exemplary task would be the classification of text categories
or to find out if an email is spam [5].

With the use of unsupervised learning algorithms, there is also a training dataset
(input) but does not provide a tag marker. A typical task would be to design a clustering
algorithm that tries to detect e.g., the groups of similar visitors on your website. Because
there are no labels involved here, the program needs to find out all the characteristics
and comes up with the number of groups by itself. There is also the possibility to have
hierarchical clustering, which means that you can subdivide your groups into smaller
ones. A possible task for these kinds of algorithms would be the anomaly detection.
That means that the program could detect unusual credit card transactions [5].

Reinforcement learning is a little bit different compared to supervised and unsuper-
vised learning. The learning algorithm is named an agent, which discovers its environ-
ment by a trial-and-error principle. After every move, the system gets a reward or a
penalty and it must learn by itself which the best strategy is to maximize the rewards.
The last concepts, deep learning, and neural networks are explained in Section 2.2. In
this case, the concept of supervised learning has been applied [5].

2.1.2 Classification vs Regression
Within this master thesis, the task is to distinguish between Austrian dialects. In the
machine learning environment, this is called a classification task, which is a typical
supervised learning task. An algorithm tries to create a model based on the input data,
which is able to tell for every new, unseen data, to which category (i.e., Vorarlberg) it
belongs. This prediction could either be 0 or 1, if there are only two possible classes or
can be a floating-point number i.e., 0.9, which means that the new data belongs to 90%
to this class [12].

Another typical task is called regression. The goal is not to predict a certain class or
category, but a numeric value, such as the price of an apartment. In order to achieve this
task, the data needs to consists of labels and a set of features (e.g., price, equipment,
and condition of the building) [5].

2. Technical Background 7

Figure 2.2: K-fold cross-validation [27].

2.1.3 Training a Machine Learning Model
After choosing one of the machine learning algorithms, which are later described in
Section 2.2 and Section 2.3, the training set is now ready for its training. In the first
step, the data is split into training and test. The chosen algorithm looks only at the
training set and tries to figure out characteristics that divide each class from another.
This knowledge is now tested against the second unseen dataset. If the algorithm has
chosen good characteristics it is now able to differentiate between the classes. Often the
first approach is not always the best. Therefore some improvements need to be done to
the algorithm, this is called hyperparameter tuning [5].

One possibility is to fine-tune all the hyperparameters manually, which is time-
consuming and lots of possibilities need to be explored. A better solution is, in the case
of Support Vector Machines, which are described in Section 2.3, to use grid search. In
this case, a list will be created with all the hyperparameters, that need to be tuned,
and its values. The grid search runs through all combinations and delivers those with
the best performance. Inside of this search cross-validation is used [5].

When using the cross-validation, the training data is split into multiple subsets.
Each model is trained with one of the subsets and validated through the remaining
ones. This technique is used to avoid needing too much training data in the validation
sets. Figure 2.2 displays the split of the training set into the different training folds.
By running through the comparison, a better estimate can be generated by the model’s
performance [27].

2.1.4 Measurement of Performance
Without any tools how to measure the performance there would be no comparison
possible, how well the selected algorithms perform. The following validation possibilities
can be used:

• confusion matrix,
• classification report.

2. Technical Background 8

Figure 2.3: Confusion Matrix [5].

The general idea of a confusion matrix is to count the number of how often an instance
of class A has been classified as class A, B or C. So you can see how often the classifier
confused the class with another class. For this matrix, you need the test data as well
as the target names. Figure 2.3 displays an illustrated confusion matrix, where hand-
written digits are classified. Two different methods exist on how to calculate the success
of this result. The first option is to calculate the precision [5] as

precision = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (2.1)

The precision is a result of dividing the true positives (TP) by the sum of the TP and
the false positive (FP). In other words, it is the accuracy of positive predictions. In this
example, three out of four were classified correctly. The second option is to calculate
the recall [5] as

recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (2.2)

The recall is a result of dividing the TP by the sum of the TP and the false negatives
(FN). It is also called sensitivity or true positive rate (TPR) and is the ratio of positive
instances that are correctly detected. Using the recall as a measurement, three out of
five digits were successfully recognized [5].

The classification report gives you a detailed view of the precision, recall, F1-score
and support for each class. The F1-score, also known as balanced F-score or F-measure,
can be interpreted as a weighted average of the precision and recall. The last parameter,
the support, indicates the number of occurrences of each class. Table 2.1 displays an
example of this classification report showing the precision etc. from 20 different classes
and also the overall average [5].

2.1.5 Sequential Decision Making
Usually, the whole data is processed before the result can be calculated. This approach is
called dynamic decision making. Sequential decision making on the other hand describes
a situation in which successive observations of the process are made before a final
decision is calculated. This results in being more concerned with controlling the system
over time [4].

2. Technical Background 9

Category Precision Recall F1-score Support
alt.atheism 0.82 0.76 0.79 319
comp.graphics 0.78 0.80 0.79 389
comp.os.ms-windows.misc 0.77 0.76 0.77 394
comp.sys.ibm.pc.hardware 0.74 0.76 0.75 392
comp.sys.mac.hardware 0.85 0.85 0.85 385
comp.windows.x 0.87 0.80 0.83 395
misc.forsale 0.83 0.89 0.86 390
rec.autos 0.91 0.90 0.90 396
rec.motorcycles 0.95 0.96 0.95 398
rec.sport.baseball 0.91 0.96 0.94 397
rec.sport.hockey 0.96 0.98 0.97 399
sci.crypt 0.92 0.95 0.94 396
sci.electronics 0.86 0.75 0.80 393
sci.med 0.89 0.88 0.89 396
sci.space 0.87 0.94 0.90 394
soc.religion.christian 0.83 0.93 0.88 398
talk.politics.guns 0.76 0.93 0.83 364
talk.politics.mideast 0.96 0.92 0.94 376
talk.politics.misc 0.83 0.65 0.73 310
talk.religion.misc 0.78 0.59 0.67 251
avg / total 0.86 0.86 0.85 7532

Table 2.1: Example of a classification report.

Formally expressed this problem can take observations X1, X2, X3 and so on, one at
a time. After each observation, a decision can be made which leads to the termination of
the process and calculates the final result. The algorithm could also decide to continue
taking more observations into consideration. This procedure, when to decide that the
observations should be terminated is called the stopping rule. The goal is to find a rule
that optimizes the decision in terms of minimizing losses or maximizing gains. In this
case, the best stopping rule would look at as little as possible new instances, but as
much as necessary items, in order to achieve a fast and good result [4].

2.1.6 Challenges in Machine Learning
Like in every field there are some challenges that need to be overcome in order to
generate a satisfying output [5]:

• quantity of training data,
• nonrepresentative training data,
• poor-quality data,
• irrelevant features,
• overfitting,
• underfitting.

2. Technical Background 10

Figure 2.4: Feed-forward and feedback networks [12].

One of the hardest parts of machine learning is the acquisition of huge amounts of
training data. Unfortunately even a very simple problem would need hundreds or better
thousands of examples with which the model can be trained in order to make a good
prediction. For more complex programs even millions of examples would be necessary.
On top of that, it is also important that the input data is of high quality and represents
the scenario as best as possible. The last two points are dealing with the problems of
over- and underfitting. Overfitting or overgeneralizing principally means the general-
ization from one small example to something for a larger group. This means that the
model or program only works with the training data, but not for any new data, so it is
not suitable for bigger unknown data. The opposite would be underfitting. When this
problem occurs the model is too elementary and has not extracted the features properly,
so it did not learn the underlying structure of the data well enough [5].

2.2 Neural Networks
Neural networks are systems or approaches inspired by the biological neural networks
that constitute animal brains. Figure 2.4 shows the layers in such a system:

• input layer,
• hidden layer,
• output layer.

The input layer is the first layer and introduces the initial data into the system. In the
hidden layers, which are in contrast to the first layer multiple ones, artificial neurons
take in a set of weighted inputs and produce an output through an activation function.
The last layer is the output layer, which produces given outputs for the program [12].

2. Technical Background 11

Figure 2.5: Basic CNN architecture [12].

2.2.1 Convolutional Neural Network
The aim of the convolutional neural network (CNN) is to learn features via convolutions.
One of their major applications is image classification. CNNs are competent at extracting
position invariant features from the data. Similar to neural networks, this architecture
also transforms the input by connecting layers into class predictions (output layer).
Different variations of the architecture exist, but all of them are based on the pattern
shown in Figure 2.5. The first group accepts three-dimensional input, the height and
width from the picture and the RGB color channel as a third option. The second group,
the feature-extraction layers, consist of a repeating pattern [12]:

• convolution layer,
• pooling layer.

These two layers find a set of different features and calculate higher-order features. The
last layers, which are called classification layers, have one or more fully connected layers.
They get the higher-order features as an input and produce the class probabilities [12].

2.3 Support Vector Machines
Although these algorithms were invented by Vladimir N. Vapnik and Alexey Ya. Cher-
vonenkis in the 1970s, they are still powerful machine learning models according to
Aurélien Géron [5]. On top of that, he even says that it is one of the most popular
models in machine learning and very well suited for classification.

Figure 2.6 shows the difference between a linear classification algorithm on the left
side and a support vector machines (SVMs) on the right side. The colored lines in the
left picture are showing the decision boundaries. One of them (the green one) does not
work at all. The red and the purple can clearly separate the two classes (the yellow
circles from the blue cubes). This choice will only perform well on this training data,
but will probably not perform as well on new instances as possible. In comparison, the
decision boundary of the SVM classifier, shown on the right, separates the two classes
and tries to stay as far away from the closest training instance. Because it looks like one
the dotted lines are also called a street.

2. Technical Background 12

Figure 2.6: Large margin classification [5].

Figure 2.7: Hard margin sensitivity to outliers [5].

Naturally, not all datasets can be 100% separable. If we would assume that all
instances being off the street and at the same time on the right side, this is called hard
margin classification. Not only can some datasets not be separated, but this classification
is also very sensitive to outliers, which is shown in Figure 2.7. To avoid this problem,
the solution is defined as following [5]:

“The objective is to find a good balance between keeping the street as large
as possible and limiting the margin violations (i.e., instances that end up in
the middle of the street or even on the wrong side).”

Figure 2.8 shows the attempt to balance the margin violations. On the right side, fewer
violations have been made, by keeping the street small. The right-hand displays a wider
street at the cost of having more violations. In all sorts of machine learning algorithms
implementing polynomial features are simple and can work great, but with support
vector machines high polynomial functions are creating an immense number of features
resulting in a too slow model. Using the mathematical technique called kernel trick
makes it possible to get the desired result from many polynomial features, without
adding them [5].

2.4 Mel Frequency Cepstral Coefficient
In contrast to text classification, in which words are counted and vectorized, extracting
features from audio data is a bit more complicated. One way is to use the mel frequency
cepstral coefficient (MFCC), which has been introduced in the 1980s by Davis and
Mermelstein [2] and has been one of the most popular approaches ever since. James
Lyons has divided the process in six steps [25]:

2. Technical Background 13

Figure 2.8: Fewer margin violations versus large margin [5].

1. Split the signal into short sections.
2. Calculate the peridogram estimate of the power spectrum for each section.
3. Apply the mel filter bank and sum the energy in each filter.
4. Take the logarithm of all filter bank energies.
5. Apply the discrete cosine transform (DCT) to the energies.
6. Only keep the coefficients 2–13 and remove the rest.

For simplification, we assume that for a certain short period of time, the signal from our
audio data is not changing. Therefore the signal is divided into short frames (20-40ms)
to get a reliable spectral estimate. If the period would be shorter, too little information
could be extracted. If the time would be much longer, the assumption that the signal
does not change over time could not be satisfied. Next, the power spectrum of each
frame is calculated to be able to identify which frequencies are present in each specific
frame.

Following the mel filter banks are used because the current signal still contains
too much information. In detail, the human cochlea cannot differentiate between two
frequencies if they are too close, which gets worse the higher the frequencies are. Using
the filter banks the signal gets divided into multiple chunks, each representing a specific
frequency range. The higher the frequency gets, the bigger the filter bank range is,
which is displayed in Figure 2.9. With these filter banks, an estimate of the energy,
which occurs at each spot, can be retrieved. The calculation of the filter banks can be
retrieved by applying triangular filters on a Mel-scale to the power spectrum to extract
frequency bands. The conversion between Hertz (𝑓) and Mel (𝑚) is the following [25],

𝑓 = 700(10𝑚/2595 − 1), (2.3)

𝑚 = 2595 log10(1 + 𝑓

700). (2.4)

Next up is taking the logarithm of the filter bank energies. This compression operation
makes features match more closely to what humans actually hear. In this step, the
features are compressed using the logarithm. The cepstral mean subtraction, which is a
channel normalization technique, can be applied afterward. Because the filter banks are
all overlapping, the filter bank energies are having a strong correlation. Using the DCT,
this correlation will be removed. Lastly only 12 out of the 25 DCT coefficients are used

2. Technical Background 14

Figure 2.9: Filter bank on a Mel-scale [23].

Figure 2.10: Spectrogram of the signal [23].

Figure 2.11: MFCCs [23].

further. This is because in the past better results have been achieved by dropping the
other energies. The results of this step are shown in Figure 2.10.

The result of the whole process is displayed in Figure 2.11, showing the 12 features,
which are called the mel frequency cepstral coefficients [25]. This picture shows a 3.5-
second frame. The dark blue spots representing little energy, in contrast to the dark red,
which are representing a massive amount of energy in this section. Some steps along this
path were motivated by the nature of the speech signal and the human perception of
such signals. The last steps, which are necessary to compute the MFCC filter out of the

2. Technical Background 15

Figure 2.12: Vocal tract for the vowels i and u and the according frequency spectra [14].

filter banks, were motivated due to the limitation of some machine learning algorithms.
Fayek [23] questions that if, with the usage of deep learning in speech systems, MFCCs
are still the optimal choice, given that deep neural networks are less susceptible to highly
correlated input and therefore the DCT is no longer a necessary step.

2.5 Formants
Similar to the MFCC, which have been described in Section 2.4, formants can also be
used in order to extract features from audio data. In acoustics and phonetics, formants
refer to the concentration of acoustic energy in a fixed (invariable) frequency range
(𝐻𝑧), independent of the frequency of the generated signal. These frequency ranges are
amplified or attenuated over others, leaving the formants as energy spikes. Each human
vowel outputs unique frequency spectra, which is illustrated in Figure 2.12. Generally
speaking, a formant is one of the characteristic partials of a sound and multiple formants
form a whole vowel [14].

Given the first two formants, each vowel can be identified. Theoretically, there are
more than four formants, but even the 5th can often not be measured. Furthermore,
those additional formants do not contribute to any new features. Therefore only the
first four are commonly used. The first two formants F1 and F2 are important for the
intelligibility of the vowels. Their position characterizes the spoken vowel, the third
and fourth formants F3 and F4 are no longer essential for understanding speech. They
characterize rather the anatomy of the speaker and its articulation characteristics as
well as the timbre of his language and vary depending on the speaker [1].

Using the software Praat1, formants can be extracted for every 0.01 seconds from an
audio file. Figure 2.13 shows the calculated formants from a 0.5-second audio snippet,
which are displayed as red dots throughout the timeline. The red dotted horizontal
line is used as a reference for the 𝐻𝑧 range. In this case, the range for the formants is

1http://www.fon.hum.uva.nl/praat/

http://www.fon.hum.uva.nl/praat/

2. Technical Background 16

Figure 2.13: Extracted formants using the Praat software.

between 0 𝐻𝑧 and 5000 𝐻𝑧 but could be increased by manual settings. In this scenario,
the value is the default and only used for exemplary matters.

Because the third and the fourth formants contain the characteristic of the sound,
the assumption could be made, that those two vowel formants can be used to classify
the dialect of the speaker. Furthermore, C. Themistocleous [16] provided a classification
model of two Greek dialects using information from the formants dynamics of F1, F2,
F3, F4, and vowel duration yielding good results.

2.6 Noise Reduction in Sound
ASR or in this scenario dialect detection describes a technology in which machines
are able to derive human spoken words. Ideally, the speech signals, which are used for
training, are recorded in a clean and noise-free environment. But in a real setting, speech
gets influenced by the microphone, the distance, the room, and the background noises,
which leads to worse quality of the audio. Noise can be defined as the following [29]:

“Noise refers to any external and unwanted information that interferes with
a transmission signal. Noise can diminish transmission strength and disturb
overall communication efficiency. In communications, noise can be created
by radio waves, power lines, lightning and bad connections.”

For better quality and a better accuracy, the goal is to reduce the noise as much as
possible without losing too many details of the signal. In this sections two different
filters are described:

• median filter,
• kalman filter.

2.6.1 Median filter
One solution is to use a median filter for the removal of the noise from the signal.
This filter is a non-linear filter. The first step is to sort the item to be changed and its
neighbors, according to their size. This filter has its popularity due to the simplicity of
its calculation and effectiveness [8].

2. Technical Background 17

4 3 7 2 5 4

2
3
4
5
7

Input Window Sorter Output Output Pixel

Low

High

Median

Figure 2.14: Steps of the median filter.

In the example in Figure 2.14 the values are arranged from 2 to 7. The value in the
middle (the median), in this case, 7, is representative and will be used to replace the
values, which need to be filtered. With this technique, outliners can be removed. So the
main concept is to go through the data entry by entry and replace each entry with the
median of the neighboring entries. In this example, the value 7 has been replaced by
4. The closest two neighbors have been used for calculations, but more values could be
used as an input.

Figure 2.15 shows the result of using this filter on a speech signal. The first 0.6
seconds and the last 0.6 seconds do not contain any human voice, but background
sounds. The word is spoken between 0.6 and 1.5 seconds. The most obvious results have
been achieved between 0.5 and 0.6 seconds. In this time period, the noise has been
reduced drastically. Therefore it can be assumed that the noise during the spoken word
has also reduced, even though it can not be seen as clearly on the MFCC pictures.

2.6.2 Kalman Filter
Another possibility to reduce the noise in sound is to use a Kalman filter. This filter
was invented in the 1960s by Rudolf E. Kalman. Originally it was used for discrete-time
linear systems. The huge advantage is the iterative aspect, which is especially useful for
real-time applications. The goal is to predict the values as well as possible over time. At
first, an initial estimate has been chosen. Then the first measured value will be looked
at. This measurement contains some errors. Based on the measurement an estimate for
the true value will be calculated. These steps will be repeated in an iterative way. So
first the value will be measured, then the estimate will be produced [9].

Nair et al. [11] propose that using this filter in combination with MFCC provides
considerable results in speech recognition. The approach proposes that the measured
values, which are not 100% reliable, contain background noises, which needs to be
filtered. The estimate values are describing the desired signal without the noise.

2.7 Audio Normalization
Audio normalization is an important step in data cleaning. Because different kinds of
audio files with various background noises and volume are used, the aim is to match

2. Technical Background 18

(a)

(b)

Figure 2.15: Effects of median filter on audio. Original audio (a), Audio after using
median filter (b).

them all as close as possible to the same volume. Therefore three different methods can
be used:

• peak normalization,
• root mean square(RMS)-based normalization,
• European broadcasting union(EBU) R128 standard.

2. Technical Background 19

2.7.1 Peak Normalization
Given the assumption that all signals lie between −1 and +1, the goal within peak
normalization is to convert the maximum value to either one of those extremes. The
maximum magnitude in this example is 1. A signal’s magnitude can be normalized to
1 full scale (𝐹𝑆). To create a normalized output is [18]

out = in
max(abs(in)) . (2.5)

The signal’s peak magnitude will be normalized to the value of 1 𝐹𝑆. In other words,
peak normalization results in making the audio as loud as possible. This method is
based on the instantaneous level of a signal [18].

2.7.2 RMS-based Normalization
In comparisont to the peak normalization, where the basis value is the highest value,
using the RMS-based normalization the average signal strength across the signal is being
used. The process can be described as the following [19],

𝑥rms =
√︂

1
𝑛

(𝑥2
1 + 𝑥2

2 + ... + 𝑥2
𝑛). (2.6)

In this case, the process does not simply measure the arithmetic mean of the signal. If
the arithmetic mean of the sine wave was taken, the values would cancel each other out.
Therefore, for the calculation of the value, it does not matter if the signal has positive
or negative values. The average is calculated by squaring each value (resulting in only
positive numbers), then the signal average can be calculated afterward. For implement-
ing the RMS-based normalization the first step is to convert the RMS amplitude on the
decibel (𝑑𝐵) scale to the linear scale. The process can be described as the following [19]:

“In this case, we will multiply a scaling factor, 𝑎, by the sample values in
our signal to change the amplitude such that the result has the desired RMS
level, 𝑅.”

Following, the whole signal will be normalized according to the previously calculated
value.

2.7.3 EBU R128 Standard
As the first two methods, this standard is also using 𝑑𝐵 as a reference unit. The EBU
R128 standard, which contains a loudness normalization and permitted maximum level
of audio signals recommendation, uses a subjective loudness level measured in 𝐿𝑈𝐹𝑆
(Loudness Unit Full Scale). This standard suggests using the average loudness for the
normalization of audio signals. Furthermore, the standard implies that peak normaliza-
tion has led to considerable loudness differences between programs and between broad-
cast channels. The audio files should be normalized to a target level −23.0 𝐿𝑈𝐹𝑆. A
permitted deviation from this level should not exceed ±0.5 𝐿𝑈𝐹𝑆 [17].

Chapter 3

Dialects in Austria

This chapter provides background information and insights into the differences between
the dialects of Austria. In this case, the federal states Vienna and Vorarlberg are espe-
cially interesting. Generally speaking, Austrian German is a variety of Standard German,
with differences in grammar, vocabulary, and pronunciation.

In this context, the distinction between accent and dialect is necessary. Hasa [24]
defines that accent is a way of pronouncing words that appear among people in a certain
region or country, whereas dialect is a variety of a language spoken in a particular
geographical area or by a specific group of people. For example, a person who is born
and raised in Vienna speaks Austrian German, more specific, the Austrian dialect called
Viennese, which will be elaborated later. Let us assume that the same person can also
speak English. In contrast to the Austrian dialect, this person then speaks English with
a German or Austrian accent. So native speaker can probably guess where you are from
based on how you pronounce specific words. Figure 3.1 displays that a lot of different
influences have characterized the Austrian language. Now following dialects exist:

• West-Central Bavarian,
• East-Central Bavarian,
• Viennese,
• South-central Bavarian,
• Southern Bavarian,
• Slovenian,
• Swabian,
• High Alemannic,
• Highest Alemannic,
• Alemannic influenced Southern Bavarian.

In contrast to Upper Austria and Lower Austria, which share some characteristics (East-
Central Bavarian), Vienna has almost its own characteristic language (Viennese). Also,
Vorarlberg does not share much of its specifics with other federal states such as High
Alemannic and Highest Alemannic. In contrast to all other federal states, Vorarlberg
is the only one that does not have any Bavarian influences. Therefore the assumption
can be made, that Vienna and Vorarlberg should be differentiated quite well, not only

20

3. Dialects in Austria 21

Figure 3.1: Austrian dialects [28].

because of the geographical distance but also due to the language features and influences
mentioned before.

3.1 History and Characteristics of Dialects in Austria
The Austrian dialects have historically developed from Middle High German. Even in
the High Middle Ages, there were distinct pronounced dialects in Austria. These dialects
could be found in the so-called dialect seals, which formation was related to the secular
and ecclesiastical dominions. The Middle Bavarian Language includes the dialects of
Vienna, Lower Austria, Burgenland, Upper Austria, most of Salzburg and a small part
of Styria. The characteristic features of these Austrian dialects of the Danube countries
and plains are [22]:

• consonant-weakening,
• vocalization of the l and r,
• disappearance of side-tone vowels,
• preservation of ancient usury sounds.

In the case of consonant-weakening are fortis consonants replaced with its lenis con-
sonants e.g, “p” changes to “b”, “t” to “d” and so on. Vocalization is the change of
pronunciation, where a consonant becomes a vowel. In this instance, the word “lernen”

3. Dialects in Austria 22

is pronounced as “leanen”, so the “r” becomes an “a”. The third example deals with the
disappearance of side-tone vowels. Here the vowels disappear, e.g., the prefix “-ge” and
the “-e” at the end. The word “gelernt” is pronounced as “glernt”. In the case of usury
sounds, pronunciation is facilitated by changing the syllable structure. This is done in
this case by syllable-forming insertion of a vowel. The Austrian dialects, which belong
to Southern Bavaria, are spoken in the mountainous regions in Styria, Carinthia, Tyrol,
in parts of Salzburg and in the south of Burgenland. Those dialects are closer to the
written language than the Middle Bavarian influenced dialects [22].

The dialects in Burgenland are regarded as relatively antiquated and singing. Carinthian
is also considered to be archaic, because of its melodious and smooth sound, which is
contingent by Slovenes influences. One trait of the Carinthian Dialect is the diminutive
“-le” and the filler word “lai”, which means “only”. In contrast, the Lower Austrian
language is already a modern type of dialect, especially in the areas around Vienna.
With the exception of the eastern part, the idiom in Upper Austria is traditional rural
dialects. The Salzburg Language is a mountain dialect and manifests bizarre forms in
the Flachgau region. In Styria, a distinction is made between the Highland or Upper
Styria and Middle Styria. In the northeast, its territory extends into Lower Austria.
The most conservative language is spoken in Tyrol, with noticeable features like [22]:

• “sch”-like pronunciation of the “s”,
• the affirmed “k” as “kch”.

Even more conservative are the numerous language island dialects emanating from Aus-
tria in the Middle Ages. The Old Viennese, which was spoken at the court of Maria
Theresia, has changed noticeably since then and has long been retreating. New forms
have developed like the new Viennese since 1918 and the young Viennese since 1945.
By contrast, a colloquial and linguistic language developed between the old dialect and
the high-level language. From Vienna, this language influences large parts of Austria,
especially the provincial and provincial towns, and increasingly shapes the rural di-
alects. Vorarlbergian is a collective name for in the Austrian province of Vorarlberg
widespread dialects of the language group of Alemannic dialects. Within the country,
there is a wealth of peculiarities and in-house developments [22].

3.2 Comparison of Words
This section displays the differences between the pronunciation from one man from Vo-
rarlberg and one man from Vienna. All recordings have been made using the same mi-
crophone and were taped in the same room. Therefore several words have been recorded
and the MFCC representation has been performed:

• Mama,
• Gabel,
• Samstag,
• Herbst,
• Knie,
• Stein,
• Freitag,

3. Dialects in Austria 23

(a) (b)

Figure 3.2: Similar pronunciation of the word Mama. Vorarlberg Mama (a), Vienna
Mama (b).

• Nebel,
• Bock.

The representation of these words can be found in Appendix A. Those words have been
chosen, because some of them are pronounced certainly different and result presumably
in completely different MFCC representations. The other half are pronounced almost
identical and result most likely in a similar image.

Figure 3.3 represents three examples in which the articulation of the words is dif-
ferent and presumably the representation can reflect this difference. The s in the word
“Herbst” is pronounced as an “sch” in the Vorarlberg example, in contrast to the Vi-
ennese example, were it remains a “s”. Therefore the upper lines have a much higher
energy dense in the Vorarlberg picture, than in the Viennese picture. In the second
illustration, the word “Knie” is spoken as it is written in Vienna. In Vorarlberg, on the
other hand, the “ie” sounds more like an “ü”. In the last word, “Stein”, the second part
has been pronounced something close to “-ua” and not “-ein” in the Vorarlberg dialect.
All those differences appear on various levels and forms in the MFCC representation.

Figure 3.2 displays the examples in which the exact opposite has occurred. It shows
the contrast between the spoken words “Mama” and “Gabel”. In both dialects, those
words have similar pronunciation. Therefore the graphical representation of the signal is
also almost identical. There are some minor differences due to the fact that two different
people have spoken those words, but it has nothing to do with their origin.

3. Dialects in Austria 24

(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Different pronunciation of words. Vorarlberg Herbst (a), Vienna Herbst (b),
Vorarlberg Knie (c), Vienna Knie (d), Vorarlberg Stein (e), Vienna Stein (f).

Chapter 4

State of the Art

This chapter will present various approaches to classifying dialects for different lan-
guages. The methods will be analyzed with regard to input data, feature extraction
methods, data preparation, and implemented algorithms. The following sections are
distinguished by the type of input data used. In the first part, all approaches have the
same list of words or sentences for each speaker, whereas in the second part free speech
or continuous speech has been used as an input.

4.1 Scripted List of Words

Sheng and Edmund [26] claim that gender and accent are still an issue in ASR systems.
Therefore they built an accent classification machine learning model, which distinguishes
the English from Chinese, English, and Korean as native language speakers. This model
could be used as an input for an ASR pipeline. As an input, they used an utterance of
a word by each speaker. The data used is called Wildcat Corpus of Native and Foreign-
Accented English 1, which contains a scripted list of words and the according audio files.
Using a peak detection library Sheng and Edmund were able to divide each audio file
into multiple segments each containing one word. After several experiments, they found
out that a window length of 0.18 seconds, where the energy density was more than 4.8%
of the average energy density of the entire audio signal in the file, was the optimal value.
A MFCC filter was used in order to extract the features from the signal. Following the
normalization of the samples by subtracting the mean and dividing by the standard
deviation has been carried out. The result of the preprocessing is a multidimensional
tensor. Table 4.1 shows the result of the used machine learning methods. The first two
methods were implemented as a baseline performance because the assumption was made
that the neural networks will outperform the traditional machine learning methods.
Furthermore, they discussed that those samples, which have been misclassified, had
noticeable background noises. Those parts were incorrectly extracted because they were
loud enough to be detected by the extraction script.

Another approach has been introduced by Rizwan and Anderson [13]. The algorithm
was built using the TIMIT 2 dataset, which was developed by Texas Instruments (TI)

1http://groups.linguistics.northwestern.edu/speech_comm_group/wildcat/
2https://catalog.ldc.upenn.edu/LDC93S1

25

http://groups.linguistics.northwestern.edu/speech_comm_group/wildcat/
https://catalog.ldc.upenn.edu/LDC93S1

4. State of the Art 26

Model Test Accuracy
Gradient Boosting 69.1
Random Forrest 69.1
MLP 80.0
CNN 88.0

Table 4.1: Results achieved by Sheng and Edmund [26].

and Massachusetts Institute of Technology (MIT). The data is particularly interesting
because it contains various dialects from the United States such as New York City, New
England and Northern. In this, two sentences by each speaker saying the same sentence
have been recorded. Rizwan and Anderson implemented a weighted accent classification
using multiple words. As an input, multiple words per speaker were used. Following
this, the samples were normalized between −1 and 1 and 12 MFCCs were extracted
and normalized. Furthermore, a Hamming window and a triangular filter bank for the
MFCCs were used. After applying the preprocessing steps, 21 extreme learning machines
(ELMs) were used to distinguish between two accents. They claim that ELMs are highly
suitable for accent classification because they can be quickly trained. Additionally, they
also provide a good generalization capability for small amounts of training data. Their
experiments were conducted in seven classes. As a comparison, Rizwan and Anderson
also implemented support vector machines as classifiers. The differences are that [13]:

“Both ELMs and SVMs converge to a single global optimum solution. ELMs
optimize sum of squared errors, while SVMs contruct a hyperplane that
maximizes the separation between the data classes.”

As they have increased the number of words to five for every speaker, the weighted
accent classification algorithm using ELMs and SVMs results in an accuracy of 77.88%
and 60.58%, which is displayed in Figure 4.1. Both introduced approaches have achieved
promising results, but there are still some improvements possible. First, the data used
was very well structured. The words or sentences were given, which made it easier to
classify the accents because every speaker said the same. Using one of these models
in a real-life scenario could decrease their accuracy because different words and word-
combinations will highly likely be used.

A different approach has been introduced by Deshpande et. al [3] in 2005. Their
main motivation does not primarily derive from the development from ASR systems,
rather than improving voice biometrics as an authentication technique. The goal is to
determine the role that features plays in discriminating between American English and
spoken English with an Indian accent. The first step was to normalize the audio files.
Following this, the removal of the silence was implemented by extracting the frames
whose energy was below 0.15 of the average energy of the entire waveform. Sounds in
speech can be divided into three groups:

• voiced,
• unvoiced,
• plosive.

4. State of the Art 27

Figure 4.1: Improvement of accuracy with different numbers of words [13].

Accent
Group

No of Per-
sons

Training
Files

Testing
Files

Training Testing

American 40 56 20 76.78% 85%
Indian 36 56 20 75% 87.5%

Table 4.2: Results achieved by Deshpande et. al [3].

Their next step was to extract only voiced frames of data. In comparison to the ap-
proaches introduced before, Deshpande et. al used formants, which have been described
in Section 2.5, for feature extraction. Following the suggestion that the second and third
formant play a big role in foreign accent classification compared to the remaining for-
mants, they have isolated those using linear predictive coding (LPC). The algorithm
was built using the Speech accent archive3 dataset. The speech files have a sampling
rate of 8 kHz. The speakers repeated a given paragraph text twice, which indicated that
this dataset does not contain any continuous speech. Furthermore, the data corpus was
collected in a quiet setting with no background noise using a head-mounted microphone.
Deshpande et. al leave out prosody and intonation and concentrate on the formant fre-
quencies since temporal features have larger intra-class variations. Therefore they have
chosen a hidden markov model (HMM) classifier over a gaussian mixture model (GMM)
based classifier. The results of this implementation are shown in Table 4.2. Out of the 76
in total, 40 people spoke with an American accent and 36 people spoke with an Indian
accent. The training accuracy for the American accent amounts to 76.78%, whereas
the Indian accent group reaches 75%. It is noticeable that 85% to 87.5% of the people
have been classified correctly in the testing phase. Another approach, which has also

3http://accent.gmu.edu/

http://accent.gmu.edu/

4. State of the Art 28

used formants as a feature extraction method, has been done by Themistocleous [16]
in 2017. The purpose of his study was to use machine learning methods to automatic
dialect classification using vowel formants and vowel dynamics. In comparison to other
attempts, this method does not use English, but Greek dialects. The study provides
a model of the two Modern Greek dialects, Athenian Greek (AG) and Cypriot Greek
(CG). The dataset was conducted in a recording studio in Athens and at the University
of Cyprus in Nicosia, avoiding no background noise and different qualities of the audio.
The recorded material consists of a set of nonsense words, each containing one of the
five Greek vowels. It is noticeable that no males have been recorded. 45 female speakers
participated in the study, 25 from CG and 20 AG speakers. Each person produced 80
utterances resulting in a total of 3600 productions. The features were extracted using
the open source software Praat4. The vowels were located and segmented manually and
extracted by the software. The extracting includes the vowel formants (F1, F2, F3, F4)
and vowel duration. For the classification following types of discriminative classifiers
were evaluated:

• linear discriminant analysis (LDA),
• flexible discriminant analysis (FDA),
• C5.0.

One of the interesting part of this study is, it focuses not only on discovering the
best method to classify the Greek dialects and vowels, but also how much each Vowel
contributes to the classification [16]:

“Notably, C5.0 classification showed that the most significant acoustic prop-
erties for the classification of the two Greek dialects are duration and the
polynomial coefficients of F2, F3, F4, and F1—in this order. Also, it showed
that the effects of the dialect pertain higher order formants, such as F3
and F4. In fact, F4 contributes more to the classification of dialect than
F1, which—along with F2—plays an important role for the classification of
vowel and stress.”

Using the C5.0 as an algorithm, an accuracy of 74% has been achieved. Although the
approaches from both Deshpande et. al and Themistocleous did not use continuous
speech in their implementation, the special aspect of this project relies on the feature
extracting. In comparison to other attempts, they did not use MFCCs, but formants.

The last approach, which will be discussed in this section, is by Sunija, Rajisha and
Riyas [15]. The objective behind their work is the creation of a new dialect database
due to the limited availability of a Malayalam speech database. It is a South Indian
language spoken in the state of Kerala. The goal is to differentiate between the two
dialects Thrissur and Kozhikode. Because no database existed for this research, a small
database has been created for these experiments. The corpus consists of 15 speakers for
each dialect. They were asked to read 30 sentences in their own dialect. Furthermore,
the audio was recorded in studio quality containing no background noise. For extracting
the features from the audio files, MFCC has been used. As the next step, the following
classifiers have been chosen:

• artificial neural networks (ANN),
4http://www.fon.hum.uva.nl/praat/

http://www.fon.hum.uva.nl/praat/

4. State of the Art 29

Classifier Recognition Accuracy(%)
ANN 90.23
SVM 88.25
Naive Bayes 84.13

Table 4.3: Results achieved by Sunija et. al. [15].

• SVM,
• naive Bayes.

Out of those three algorithms, ANN achieved the best results, which is shown in Ta-
ble 4.3. Although the results are encouraging, the fact of the lack of background noise
and no continuous speech are inflating this outcome. Nevertheless, the dealing with the
lack of data and the creation of their own data is particularly valuable.

4.2 Continuous Speech

Chu, Lai and Le [21] have used the foreign-accented English database, which has been
produced by the Center for Spoken Language Understanding (CSLU) and distributed
by the Linguistic Data Consortium (LDC). The dataset consists of English utterances
by native speakers of 22 different languages. Each sample lasts for about 20 seconds
and involves, in comparison to the approaches before, fluent continuous speech. For this
classification task, they have used five languages (Tamil, German, Brazilian Portuguese,
Hindi, and Spanish), because they have the most samples. As feature extraction methods
MFCC and filter banks have been used. The first 200 features were used in each sequence.
Principal component analysis (PCA) has been used for feature descriptors. Following
algorithms have been used:

• k-nearest neighbor (KNN),
• support vector classifier (SVC),
• multi-layer perceptron (MLP),
• long short-term memory (LSTM),
• CNN.

As a baseline model, they have KNN and the SVC without PCA. For KNN KNeigh-
borsClassifier was used and for SVC LinearSVC was implemented. A major part of their
experiments deals with hyperparamter tuning. Chu et. al underline multiple times the
importance of it because of the increase of the accuracy by as much as 19% in the MLP
models. The summary of the best results from all classifiers is displayed in Table 4.4.
The best accuracy on the test set could perform the LSTM model with 39.83%. The
table also shows that there has been enormous overfitting. The results from the training
set are mostly between 95% and 100%, in comparison, the test results reach from 28%
to 39%. Furthermore, experiments with fewer languages were made, which resulted in
81.8% for classifying two languages. Although the results for classifying five different
languages are not that promising, the accuracy for differentiating two languages is valu-
able. Furthermore, the project is highly relatable due to the fact that continuous speech

4. State of the Art 30

Baseln. SVC KNN SVC PCA MLP LSTM CNN
Test Acc 0.289 0.284 0.347 0.384 0.398 0.352
Train Acc 1.000 0.530 0.439 1.000 0.956 0.997
Tamil 0.215 0.446 0.246 0.339 0.431 0.169
Germany 0.556 0.349 0.603 0.651 0.730 0.635
Brazilian 0.275 0.308 0.297 0.374 0.286 0.341
Hindi 0.261 0.232 0.408 0.304 0.333 0.377
Spanish 0.148 0.066 0.197 0.262 0.262 0.246

Table 4.4: Highest accuracies achieved from all classifiers [21].

was used.
Lei and Hansen [7] have implemented a different approach in order to classify mul-

tiple dialects. Their motivation thrives from the importance of dialect as a factor next
to gender that influences speech recognition performance. The first dataset consists of
Arabic dialects from five different regions, including the United Arab Emirates (UAE),
Egypt, Iraq, Palestine, and Syria. The corpus includes 100 speakers for each dialect, hav-
ing a balance between male and female gender. The audio files contain conversations
about topics such as the weather, shopping or travel. All discussions were recorded
with a lapel microphone containing no disturbing background noise. The second cor-
pus is based on the MIAMI5 corpus, which contains dialect speech from Cuba, Peru,
and Puerto Rico (PR). In this set, only female speakers are considered. Continuous
speech consists of answers to interview questions. All recordings were taken using a
close-talk headset microphone. The third and last corpus used includes three Chinese
sub-languages:

• Mandarin,
• Cantonese,
• Xiang.

All recordings consist also of spontaneous speech and were achieved in a noise-free
setting. Both male and female subjects are represented in this corpus. In all three
corpora, silence removal is performed prior to training. Lei and Hansen are following
the hypothesis that some parts in the signal are significantly different among the dialects,
while others contain information that is dialect-neutral. Figure 4.2 displays the training
strategy based on Gaussian mixture selection by the Kullback–Leibler divergence (KLD)
(KLD-GMM). So in the decoding phase, the frames are divided into two classes: dialect
dependent and dialect-neutral frames. Before this separation, the silence frames are first
removed from the input data using an energy threshold. Moreover, features have been
extracted using MFCC. In the training, the KLD is used to find the most discriminative
GMM mixtures.

For the testing phase, the discriminative frames are detected using frame selection
decoding (FSD) in combination with GMM (FSD-GMM). The best-achieved results
from the Spanish dialects are 83.3%, in comparison to the Chinese corpus with 84.6%

5http://bangortalk.org.uk/speakers.php?c=miami

http://bangortalk.org.uk/speakers.php?c=miami

4. State of the Art 31

Figure 4.2: Training strategy [7].

and the Arabic corpus with an accuracy of 71.8%. Apart from the promising results,
the most interesting feature is the separation between dialect dependent and dialect-
neutral frame. The differences between dialects are not as big as the contrast between
languages. Therefore only characteristic features should be extracted and used for the
training and classification.

Chapter 5

Data

This chapter discusses the most essential and crucial part of this thesis, the data. Ques-
tions like, where does the data come from or which data cleaning steps have been applied,
will be answered.

5.1 Creating the Dataset
A lot of challenges concerning data exist, which needed to overcome, in order to gain
a valuable result in the end. The first problem deals with the lacking of a dataset con-
taining Austrian dialects. Therefore several approaches have been carried out. The first
idea was to gather the data from the Austrian TV Station called ORF directly. The
received audio material contained telephone interviews, cultural broadcasts, press con-
ferences, and many others. The quality, background noises, and loudness differentiated
quite heavily. Also a lot of manual editing needed to be done in order to retain only
those parts of the audio which contain a representative dialect. At first glance, a valuable
dataset could be created, but at a closer look, one huge setback could be discovered.
Because when people are faced with cameras or interviews, in general, they tend to
speak as clear and understandable as possible, at the expense of their dialect. After
confirming this assumption, the dataset became impractical.

The second dataset consists of several different approaches. The first method was to
ask several students from the University of Applied Sciences Upper Austria to record
themselves answering given questions (see Appendix B). The request was to answer one
or two questions (e.g., Explain your daily way to work or How do you prepare for exams)
and to speak in their original dialect. The second option was to download the audio files
directly. The Viennese material could be downloaded from the City of Vienna1. Those
videos contain interviews with people from society and politics describing their experi-
ences with Vienna. The second website, where audio material has been downloaded, is
called Literaturradio Vorarlberg2. The goal of this platform is to present and archive au-
dio of the Vorarlberg dialect. Since this is an initiative that emanates from Vorarlberg,
texts by Vorarlberg authors are currently being heard, as well as recordings of literary

1https://www.wien.gv.at/video/Wir-und-Wien
2http://www.literaturradio.at/kategorien/mundart/

32

https://www.wien.gv.at/video/Wir-und-Wien
http://www.literaturradio.at/kategorien/mundart/

5. Data 33

Federal State Source People
Vienna Wir und Wien 71
Vorarlberg University sumbissions 37
Vorarlberg Literaturadio 33
Vorarlberg Mundartradio 47

Table 5.1: Sources of the dataset.

Federal State Female Male
Vienna 24 47
Vorarlberg 65 52

Table 5.2: Gender distribution.

Federal State Length in Minutes
Vienna 286
Vorarlberg 245

Table 5.3: Total length of audio files.

events that took place in Vorarlberg. The resource is the Mundartradio3. The purpose
of this website is the conservation of the Vorarlberg dialect, by uploading videos from
various events. Several different people present their written poems and stories.

Table 5.1 displays the different sources for each federal state. For the Viennese
data, only the interviews from Wir und Wien were considered because no other dialect
recordings or programs existed. Those interviews were taken place with 71 different
people. Three sources have been selected for the Vorarlberg data. The first one is the
submissions from the University of Applied Sciences Austria, where 37 students have
sent in their recordings. The second part comes from the Literaturadio containing 33
different speakers. The third and final source is Mundartradio with 47 people. One
crucial aspect of classifying dialects is to have a good balance between female and male
speakers, to avoid that a certain gender is always classified as the same dialect. If that
happens the algorithm did not create a model, which is able to differentiate between
the dialects of Austria but to characterize gender from audio. Therefore one aspect was
to create a good balance between the genders, which is shown in Table 5.2. Although
there is a slight imbalance in the Viennese data, the gap is not too critical.

All sources added up, the dataset on the Vorarlberg side result in a total of 266
minutes, which is compared in Table 5.3. The original length of the Viennese data is
3203 minutes but has been cut down to four minutes per speaker, which results in a
final length of 286. The motivation behind this is to avoid a huge imbalance between the
two federal states. That makes it easier for the algorithm to differentiate the two classes

3https://www.mundartradio.at/de/mundartradio/

https://www.mundartradio.at/de/mundartradio/

5. Data 34

and no class imbalance countermeasure needs to be taken. It is noticeable to mention
that all audio files contain no scripted list of words. Although some of the recordings
contain the same topic, this dataset contains only continuous speech.

5.2 Data Cleaning
The majority of the data contains hardly any background noise and has been recorded
in a silent setting. Nevertheless, there are essential data cleaning steps taken in order to
achieve the best basis as possible. So this section describes the process from the original
dataset to the cleaned data, that can be used as an input in the preprocessing pipeline,
which is described in Chapter 6. The first step is to convert all audio files to the same
quality. Following four features have been adapted:

• sample rate,
• bits per sample,
• audio channel,
• format.

Because the audio files have been recorded by different people and settings, they all
determine a different quality. Therefore the sample rate has been changed to 44.1 𝑘𝐻𝑧,
the bits per sample were set to 32, the audio channel was defined to mono and the
format was set out to 𝑤𝑎𝑣. The second measure was to manually remove all unwanted
sound such as clapping or laughing. The part is similar to the elimination of background
noise with the difference because both contain undesirable audio. The difference is that
the noise is always present and can not be cut out by hand.

The third and last step was to remove the breaks every speaker makes between
words. After splitting all files into small ones, the amplitude of every file is checked.
Those with the lowest altitude will be deleted. Program 5.1 takes the path and the
files as an input and returns the files, which should be deleted. Line 5 and 6 define
the number of files, which should be removed. In this case, the lowest 5% will be cut out.
For every file in the list, the raw data is received by using wavfile.read. Because the
data also consists of negative values, the absolute value of each data point is taken in
Line 13 using abs(i). In Line 16 the name of the file is also added to the array. This is
not done for any calculation purposes, but for checking if the program wants to remove
files, which still contain voice instead of breaks. If this happens, the percentage needs
to be reduced from 5% to 4% and check again if it is now optimal. After summing up
all data points, the array is sorted ascending in Line 24. Finally, the unwanted audio
files are returned in Line 25.

After applying all the described measures to the data the length of the audio files
has changed. It has dropped from 284 minutes to 266 minutes for the Viennese side.
The Vorarlberg data length has been cut down from 245 minutes to 229 minutes in
total. In both cases, the data has been reduced by around 6.5%. After the data has
been converted to the same quality, removed from unwanted sounds and cleaned from
silence, it can be now used as an input in the preprocessing pipeline.

5. Data 35

1 def check_for_files_to_delete(path, files):
2 result = []
3 position = []
4
5 away = len(files)*0.05
6 away = round(away+0.49)
7
8 for index, file in enumerate(files):
9 try:

10 fs, data = wavfile.read(path + file)
11 sum = 0
12 for i in data:
13 sum += abs(i)
14 position.append(sum)
15 position.append(index)
16 position.append(file)
17 result.append(position)
18 sum = 0
19 position = []
20 except:
21 print ("An error occured")
22 print (file)
23
24 to_delete = sorted(result)[:away]
25 return to_delete

Program 5.1: Remove silence.

Chapter 6

Technical Approach

In this chapter, the technical approach and the connecting pipeline is presented. Fig-
ure 6.1 shows the process of the data preparation from the raw data to the state where
the data can be used as an input for the machine learning algorithms. It is necessary
to understand that in each section only one option is considered to be choosable (e.g.,
either the EBU normalization or the peak normalization is applied). This possibility of
options leads to 48 different paths. Due to the immense complexity and time factor,
only a few of those paths are realized. Why and which paths have been implemented
will be discussed in Chapter 7. There are four states, which need to be covered and
explained. The following stages will be accompanied by the implemented code sections:

• window size,
• normalization,
• noise reduction,
• feature extraction.

6.1 Window Size
The first variable to choose is the window size. In this context, it means the length
by which every audio clip is divided. Because the input data consist of a large variety

Figure 6.1: Preprocessing pipeline.

36

6. Technical Approach 37

1 prefix = 0
2 cmd_str = 'ffmpeg -i {tr} -f segment -segment_time {ti} -c copy {path}%03

d.wav'
3 for track in track_list:
4 command = cmd_str.format(tr=path+track, ti=time_seconds,
5 path=new_path+name+(str(prefix)))
6 call(command, shell=True)
7 prefix += 1

Program 6.1: Splitting audio files according to given time in seconds.

of different lengths, it is necessary that all are equal. Furthermore, it is required by
the machine learning algorithms that all input data are having the same amount of
features. On top of that, the selected window size should not be too large because of the
complexity which is not beneficial for the computing time of the algorithms. Following
two lengths have been implemented and will be discussed in this section:

• 0.2 seconds,
• 0.4 seconds.

Cutting the audio files to a specific window size and saving them as individual files
can be realized using the FFmpeg1 framework. This framework is capable of decoding,
encoding, transcoding, muxing, demuxing, streaming, filtering, playing and many other
editing functions related to audio. There are two options for how this framework can
be implemented. The first one to use the associated python package and the second
option is to execute the FFmpeg command on the shell via python. In this case, the
implementation was realized using the latter one. After several experiments, Sheng and
Edmund [26] achieved the best result with their classification task using a time window
of 0.18 seconds. Applying 0.2 seconds to the FFmpeg framework, most audio clips are
trimmed to a length of around 0.18 seconds. Therefore 0.2 seconds are listed above
instead of the suggest time window. Because of that, all sections below 0.18 seconds are
disposed of. Although Sheng and Edmund achieved valuable results, it is questionable if
such a short period contains enough characteristics for each dialect. Therefore not only
0.2 seconds, but also 0.4 seconds have been evaluated.

Program 6.1 displays the implemented approach. In Line 2 the command, which is
executed on the shell in Line 6, is listed. For every track in a given list, the trimming will
be executed. The prefix variable in Line 1 serves as the possibility to name all resulting
files differently so no overwriting can take place. The most important argument is the
time_seconds which is in this case either 0.2 or 0.4.

6.2 Normalization
The theoretical concepts and the motivation for using normalization as data preparation
steps have been explained in the related Section 2.7. As shown in Figure 6.1 there are
four different possibilities to choose from:

1https://ffmpeg.org/

https://ffmpeg.org/

6. Technical Approach 38

• none,
• EBU,
• peak,
• RMS.

Using the FFmpeg-normalize2 package all variants mentioned above can be imple-
mented. The EBU R128 loudness normalization procedure is set to default. This package
takes several audio files and writes them to a specific folder. All audio streams are nor-
malized so that they have the same volume based on the selected standards. So the
input and output variable in the given code examples represent the path to the fold-
ers, in which the original audio files are stored and the new ones should be saved to.
Executing the following command line, the audio will be normalized to the suggested
target level of −23.0 𝐿𝑈𝐹𝑆:

cmd_str = 'ffmpeg-normalize {input} -o {output}'

Using the peak normalization all audio streams are normalized to 0 𝑑𝐵, which can be
specified with the target-level option:

cmd_str = 'ffmpeg-normalize {input} --normalization-type peak --target-
level 0 --output {output}'

Following command line represents the code for implementing the RMS-based approach:
cmd_str = 'ffmpeg-normalize {input} --normalization-type rms --target-

level 0 --output {output}'

In this case, the audio files are also normalized to 0 𝑑𝐵, which can also be adapted
to the desired loudness. The fourth option, which does not take any measures, means
skipping this step (option none) and evaluate this impact.

6.3 Noise Reduction
The third state of the preprocessing pipeline follows up the removal of unwanted back-
ground sounds. The theoretical concept and the necessity behind the usage of noise
reduction have been elucidated in Section 2.6. Two different filters have been described
in the mentioned Section. One of them, the Kalman filter, can not be realized in this
scenario. For this filter, an audio file of the signal with background noises and an audio
file with just background noises is necessary. Because the background noise can change
over time, an audio clip containing the exact same noise does not exist. Furthermore,
there are different disturbances, a universal noise signal also results in no usable out-
come. The following python method reduce_noise_median applies the median filter to
the audio signal:

def reduce_noise_median(y):
y = scipy.signal.medfilt(y,3)
return (y)

2https://github.com/slhck/ffmpeg-normalize

https://github.com/slhck/ffmpeg-normalize

6. Technical Approach 39

1 def get_raw_from_files(path, audio_files):
2 raw_list = []
3 for file in audio_files:
4 fs, data = scipy.io.wavfile.read(path + file)
5 data = np.array(data)
6 raw_list.append(data)
7 return raw_list

Program 6.2: Extracting features from RAW audio.

The implementation is based on the Noise Reduction project3 using SciPy4. This func-
tion receives an audio matrix (𝑦) and returns the matrix after gain reduction on noise.
So it performs the median filter on an 𝑛-dimensional array. Figure 2.14 in Section 2.6.1
displays the case when only the direct neighbors have been used for calculations. In
this case, not one, but three neighbors have been used for the implementation, which
indicates the option 3 in Line 2. The second option, which does not take any measures,
means skipping the state of noise reduction (option none) and evaluating this impact.

6.4 Feature Extraction
After choosing the window size, applying normalization of the audio data and reducing
the background noise, the final state discusses the various options on how the features
can be extracted best from the signal. Three different possibilities exist:

• raw,
• formants,
• MFCC.

The first and easiest one is to obtain the wanted features by simply reading the audio in
raw form. This method is similar to the none option in the previous two states because no
calculation or changes are carried out. The only different part is that although nothing
is done to the data itself, it still needs to be prepared for the algorithm so it can be
handled as an input. The function shown in Program 6.2 takes the path and the names
of the audio files (audio_files) as an input. In Line 4, using also the SciPy package, the
sample rate (in samples/sec) and the raw data from every file in the list are extracted.

The second and more complex option describes the feature extraction with the us-
age of formants. The theoretical concept behind this method has been described in
Section 2.5. Extracting formants from a file is done with the Praat software. The big
advantage of this software is, that the signal and all formants can be viewed and edited,
such as Figure 2.13. But the main disadvantage is that it is hard to extract multiple
formants in several files. Therefore the python package praat-parselmouth5 by Yannick
Jadoul is essential and helpful because it provides a complete and Pythonic interface to
the internal Praat code. Function get_formant_form_files displayed in Program 6.3

3https://github.com/dodiku/noise_reduction
4https://www.scipy.org/
5https://github.com/YannickJadoul/Parselmouth

https://github.com/dodiku/noise_reduction
https://www.scipy.org/
https://github.com/YannickJadoul/Parselmouth

6. Technical Approach 40

1 def get_formant_from_files(path, audio_files):
2 formant_list = []
3 for file in audio_files:
4 # get sound
5 sound = parselmouth.Sound(path+file)
6 formant = sound.to_formant_burg(window_length=0.01,

maximum_formant=5500.0)
7 formant_no = 0
8 formant_section = []
9 # only get first four formants

10 while formant_no < 4:
11 formant_no += 1
12 cur = 0.03
13 end = 0.16
14 formant_rows = []
15 while cur < end:
16 tmp_formant = formant.get_value_at_time(formant_no, cur)
17 if math.isnan(tmp_formant):
18 tmp_formant = 0
19 formant_rows.append(tmp_formant)
20 cur += 0.01
21 formant_section.append(formant_rows)
22 formant_list.append(formant_section)
23 return formant_list

Program 6.3: Extracting features using formants.

shows the corresponding code section. Identical to the last code example, this func-
tion also takes the path and the names of the audio files (audio_files) as an input.
All extracted formants are stored and later returned in the variable formant_list.
First, for every file, the signal is extracted using parselmouth.Sound in Line 5. Follow-
ing the formant object is created in Line 6 using the class method to_formant_burg.
The maximum_formant parameter describes the highest frequency, up to which formats
should be calculated. Defining the window_length to 0.01 makes it possible that every
0.01 seconds formants can be extracted later. This object serves as a descriptive file
in order to be able to extract the formants. It contains information such as the length
of the audio file, the start and the endpoint and the number of frames. The next step
is to actually get the formants and add them to the list. Line 16 describes the pro-
cess of extracting every formant in every time step (0.03 seconds to 0.16). The method
get_value_at_time in Line 16 takes the formant number (1 to 4) and the current time
step as an input and returns the wanted value in 𝐻𝑧. In case a formant could not be
extracted at this specific time, it is set to 0, which is displayed in Line 17 and 18. When
all formant rows are added, the whole bundle can be finally returned in Line 25.

The third and last option of extracting formants is to use the MFCC based ap-
proach, which has been explained in Section 2.4. Several packages exist, that support
the extraction of features using Mel-frequency cepstral coefficients, but in this case, the

6. Technical Approach 41

1 def track_features(path, time_series_length, features_size, index):
2 print("Currently Extracting ", path, index)
3 y, sr = librosa.load(path)
4 mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
5 # creates array filled with zeros
6 features = numpy.zeros((time_series_length, features_size))
7 features[:, 0:13] = mfcc.T[0:time_series_length, :]
8 return features, index

Program 6.4: Extracting features from MFCC.

best option was to use the package LibROSA6. This option does not only allow the cal-
culation of the MFCCs, but also the representation of this method. The implemented
code, which is shown in Program 6.4, has been adapted from the original project, which
was done by theSoenke7. For every audio file the function track_features needs to be
called. It has several necessary input fields:

• path,
• time_series_length,
• features_size,
• index.

In comparison to the other program codes before, the path variable, in this case, contains
the path including the name of the audio file. The time_series_length input value
describes how long the input stream is. The longer the audio file, the higher this number
(e.g., for 0.18 seconds it takes the value of 8). The third value is the feature_size. As
it is in this example, this number is typically set to 13. These two parameters already
define the shape of the features, which is in this case, 8 × 13. The last parameter, the
index, serves the purpose of keeping track of the extracting files, which is shown in
Line 2. After receiving all the necessary input values, the main part starts in Line 4.
Here the audio file is loaded as a floating point time series using the librosa.load
method. The returned values are the audio time series (y) and the sampling rate of y
(sr). Following the MFCCs can be extracted by submitting the audio time series, the
sampling rate and the feature size to the librosa.feature.mfcc method. This step is
displayed in Line 5. Next, a new array needs to be created. The returned MFCC values
are stored within this array, which is shown in Line 8 and Line 10. Finally, the finished
array along with its index can be returned in Line 12.

After completing all these four states, the data has now been cut to the right window
size, normalized to a specific level, removed by unwanted background noises and finally
the features have been extracted and stored in a multidimensional array. With all the
steps completed the data is now ready to be used as an input for the machine learning
algorithms.

6https://librosa.github.io/librosa/
7https://github.com/theSoenke/VoiceClassification

https://librosa.github.io/librosa/
https://github.com/theSoenke/VoiceClassification

Chapter 7

Results

In Chapter 6 the preprocessing pipeline and its states have been introduced. The purpose
of the current chapter is the discussion and the produced results of the implemented
paths. Because of its huge complexity due to the immense number of possible paths,
only a few could be evaluated. Those handfuls of paths are tested for the best feature
extraction method and for the optimal algorithm. Moreover, hyperparameter tuning will
be applied to achieve the best results possible. The success of the approaches is measured
by test accuracy.

7.1 Baseline Model
The first one serves as a so-called baseline model. This signifies that the accuracy of
this model will be compared to all the other models. In order to achieve the most
basic selection of states, the window size has been set to 0.2 seconds. Furthermore, the
raw data will serve as a feature extraction method, which is displayed in Figure 7.1.
Because the calculations now have been made with the raw data, every input out of
the 118815 training data, has 8064 features. Therefore the training itself is absolutely
time-consuming and the support vector machine algorithm could not finish within 24
hours. So the CNN was chosen as the baseline’s algorithm. Program 7.1 displays the
selected base model. The input_shape value in Line 2 depends on the selected feature
extraction method (e.g., the MFCC features consist of a 8 × 13 feature vector). The
model achieved a training accuracy of 51.93% and a test accuracy of 51.34%. This
result is only slightly better than choosing randomly to which class an instance belongs.
Questioning the feature extraction method, where simply the raw data is read from each
file, the poor result is predictable.

Figure 7.1: States of the baseline model.

42

7. Results 43

1 model = Sequential()
2 model.add(Conv2D(64, kernel_size=1, activation="relu", input_shape

=(8,13,1)))
3 model.add(Conv2D(32, kernel_size=1, activation="relu"))
4 model.add(Flatten())
5 model.add(Dense(2, activation="softmax"))
6 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics

=['accuracy'])

Program 7.1: CNN model structure of the baseline model.

Figure 7.2: States of the noise filter model.

7.2 Noise Filter Model Using MFCC and Formants
After the rather dissatisfied performance of the baseline model, the second approach
implies two main differences. The first one is the addition of a noise filtering method,
the median filter. The second change covers the choice of the feature extraction method.
Both, the MFCC and the formants, have been tested. The full selection of the states is
displayed in Figure 7.2. The first big change for the implementation was the reduction
of the features. In contrast to the baseline model, where 8064 features were taken under
consideration, the MFCC method only used 104. Even smaller was the feature size
using the vowel formants with 52 features per instance. The second change was that
this reduction concluded to a desired decrease in the training time, so the support vector
machine algorithm could be used as well.

Figure 7.3 displays the test accuracy of the two feature extraction methods using
CNNs and SVM. Both models consist of a basic implementation with no hyperparameter
tuning done so far. For the support vector machine algorithm, the SVC model with its
default settings was used. The first and important takeaway from this result is the out-
performance of the MFCC in comparison to the formants. The accuracy from the later
feature extraction method could only achieve 46.99% using CNNs, which makes it not
only worse than the baseline model, but also worse than pure guessing. Using support
vector machines could increase the performance reaching 64.93%, but is still beaten by
the MFCC approaches with 75.16% and 79.68%.

After evaluating the basic models of these two algorithms, the goal is now to optimize
those results performing hyperparameter tuning. Program 7.2 displays the final model.
The first aspect is the filters used in the convolutional layers (128 and 64).

7. Results 44

Figure 7.3: Test accuracies of the noise filter model.

1 model = Sequential()
2 model.add(Conv2D(filters=128, kernel_size=(4, 4), activation="relu",

input_shape=(8,13,1)))
3 model.add(Conv2D(filters=128, kernel_size=(3, 3), activation="relu"))
4 model.add(Conv2D(filters=64, kernel_size=(3, 3), activation="relu"))
5 model.add(Dropout(0.4))
6 model.add(Flatten())
7 model.add(Dense(2, activation="softmax"))
8 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics

=['accuracy'])

Program 7.2: CNN model structure of the improved model.

Those values define the number of output filters in the convolution. Second the ker-
nel_size has been set to (4,4) and (3,3). This specifies the height and width of the
2D convolution window. Different activation functions have been tested and the best
performance could achieve the so-called relu. Following a dropout rate is applied. This
consists of randomly setting 40% of the input weights to 0 at each update during train-
ing time. Moreover, the layers are flattened in Line 6 and the softmax activation to
achieve the same shape as the input. In the last step, the model gets compiled using the
adam optimizer. It is noticeable that batch normalization and max pooling have not led
to better results in this case and also in the following approaches.

Figure 7.4 shows the achieved improvements using hyperparameter tuning on the
CNN model. The initial accuracy could reach 75.15%. After adding more hidden layers
the performance increased by 3.15%. Following the kernel size has been increased and
the dropout layer has been added. Finally, in the training five instead of three epochs
have been used. All changes have led to the final accuracy of 82.05% on the test data.

7. Results 45

Figure 7.4: CNN test accuracies of the tuned noise filter model.

Train Accuracy Test Accuracy
Initial model 87.41% 79.46%
Improved model 87.67% 80.54%

Table 7.1: SVM accuracies of the noise filter model.

Because the MFCC feature extraction method outperformed the vowel formant ap-
proach, this path has been chosen too for the hyperparameter tuning for the support
vector machine algorithm. At first, the baseline-model performance needed to be mea-
sured in order to compare the hyperparameter tuning. Therefore the standard SVC
model with its default settings has been used. This approach has achieved a test ac-
curacy of 79.46%, which is shown in Table 7.1. Following, multiple grid searches have
been performed resulting in the tuning of two parameters. The first one is increasing
the C from 1.0 to 3.0, which can be described as the penalty parameter of the error
term. Increasing this value may lead to better results, but also carries the risk of over-
fitting the training data. The second modified hyperparameter is called gamma. This
is a parameter for non-linear hyperplanes. The higher the value, the more exactly does
it fit the training data. Its default value depends on the number of features used. In
this case, the default value has been increased from 0.0096 to 0.02. Changing those two
hyperparameters, the test accuracy reached 80.54%.

In this first approach of improving the baseline model, which has been introduced
in Section 7.1, the CNN algorithm in combination with the MFCC feature extraction
method could achieve the best results with a test accuracy of 82.05%.

7. Results 46

Figure 7.5: States of the audio normalization model.

Figure 7.6: CNN test accuracies of the tuned audio normalization model.

7.3 Audio Normalization Model Using MFCC
In Section 7.2 a huge improvement could have been achieved using different feature
extraction methods and adding the median filter to the states. In this section, the
EBU normalization standard is added. Due to its prior high performance, only MFCC
will be used for feature extracting. Figure 7.5 displays the current choice of states
for this path. In comparison to the previous path, no noise filter has been used. After
implementing the baseline model, which is the same as in Section 7.2, similar results were
accomplished. The CNN algorithm reached an accuracy of 76.16%, whereas the SVM
performed even better with 79.57%. The next step was to improve those results using
again hyperparameter tuning. Figure 7.6 shows the development for the CNN classifier.
After adding more hidden layers, increasing the kernel size, adding a dropout rate of
40% and raising the epochs, the final accuracy has climbed to 81.79%. Surprisingly the
best model, which has been discovered using the hyperparameter tuning approach, is
the same as the one from the previous path, which is described in Program 7.2.

After calculating and improving the results of the CNN model, the next step is to do
the same for the support vector machine classifier. First, the base model was determined
using the SVC standard model from sklearn. This resulted in a test accuracy of 79.57%,
which is similar to the one achieved in Section 7.2. Following, for improving the result,

7. Results 47

Train Accuracy Test Accuracy
Initial model 88.28% 79.57%
Improved model 88.82% 80.10%

Table 7.2: SVM accuracies of the audio normalization model.

Figure 7.7: States of the combined model.

the GridSearchCV has been used, to find the optimal parameters. This search also found
out that two hyperparameters needed to be changed. The first one is the gamma, which
increased, similar to the previous Section, to 0.02. The second modified value is the C.
In this case, it is now set to 4. After changing those two values, the accuracy increased
to 80.10%, which is displayed in Table 7.2. After performing hyperparameter tuning on
both algorithms, the CNN algorithm outperformed the SVM approach reaching a test
accuracy of 81.79%.

7.4 Combined Model
In this section, the last approach using a window size of 0.2 seconds will be covered.
Figure 7.7 displays the choices of states for this approach. Additionally to the EBU
normalization standard, the median filter is also used trying to filter out the unwanted
background noise. As a feature extraction method, MFCC is used, due to its performance
on the previous attempts.

The first step here was also to implement the baseline model, using the standard
SVC classifier for the support vector machine algorithm and a basic model for CNN.
The initial result was similar to the approaches before reaching an accuracy of 79.89%
for the SVM and 76.16% for the CNN. Following, hyperparameter tuning was used
on both algorithms to improve the performance. Figure 7.8 shows the progress of the
CNN algorithm. Similar to the other paths before, the accuracy increased by adding
hidden layers and expanding the kernel size. In comparison to the first two approaches,
a dropout rate of 10% instead of 40% has been used. Additionally, only four epochs,
instead of five have been needed in order to achieve the best result possible. The final
accuracy of this algorithm could improve by 5.63% reaching 81.79%.

After tuning the hyperparameters for the CNN algorithm, the next step is to do the
same for the SVM classifier. Similar to the previous attempts, the parameters 𝐶 and
gamma have been altered. The best result has been achieved by setting 𝐶 to 3.0 and
gamma to 0.02. Table 7.3 shows those results. The test accuracy slightly improved from
79.89% to 80.65%. In this case, overfitting is an issue because the training accuracy

7. Results 48

Figure 7.8: CNN test accuracies of the tuned combined model.

Train Accuracy Test Accuracy
Initial model 88.28% 79.89%
Improved model 95.80% 80.65%

Table 7.3: SVM accuracies of the combined model.

after the hyperparameter tuning is too high in comparison with its test accuracy. In
this case the best method is to use the CNN algorithm in combination with the MFCC
feature extraction method, which leads to the test accuracy of 81.79%.

7.5 Large Window Size Model
After testing three different states of the preprocessing pipeline, the best test accuracy
has been achieved by the noise filter model, which has been described in Section 7.2.
The SVM classifier reached 80.54%. The CNN classifier performed even better with an
accuracy of 82.05%. This section evaluated the influence of doubling the window size
from 0.2 seconds to 0.4 seconds Figure 7.9 displays those selected states. After increasing
the window size to 0.4 seconds, the feature size went up as well. Initially, 104 features
existed. Following, 221 features were extracted due to the lager window. In contrast,
the number of data items dropped. The training items decreased from 118815 to 60112.
The test items declined from 29757 to 14973.

At first, the baseline models for both algorithms were measured. As baseline models,
the SVC standard model from scikit-learn1 has repeatedly been used for the SVM classi-
fication. For the CNN classifier, the model structure, which is displayed in Program 7.1

1https://scikit-learn.org/stable/

https://scikit-learn.org/stable/

7. Results 49

Figure 7.9: States of the large window size model.

Figure 7.10: CNN test accuracies of the tuned large window size model.

applied. This baseline model for using the SVM algorithm could achieve a test accuracy
of 81.95%. At first, these results appear promising, but overfitting is an issue due to
its high training accuracy of 90.93%. In contrast, this problem did not affect the CNN
algorithm. In this case, the test accuracy resulted in 78.10% with a training accuracy
of 78.00%.

The next step was to perform hyperparameter tuning for the CNN algorithm in
order to achieve better results. Figure 7.10 displays those improvements. The first step
here was the increase the hidden layers, which lead to the test accuracy of 82.57%. The
next step was to change the kernel size from 1 to (2, 2), which resulted in slightly better
accuracy of 82.90%. The last approach was to increase the epochs. In this case, eight
epochs were the optimal choice for reaching the best results with a test accuracy of
84.20%. Program 7.3 displays the model structure of this approach. In Line 2 it is visual
that the window size has changed by the different input_shape of (17,13,1) in contrast
to the previous (8,13,1).

After tuning the CNN model to its best, the SVM model also had a similar procedure.
Using the GridSearchCV from scikit-learn, the results have improved slightly. As in
the previous attempts tuning the C parameter and the gamma value lead to the best
performances. First, the C has been increased from its initial value of 1.0 up to 3.0.
Second, the gamma has been changed from 0.0045 to 0.01. Both adjustments have led

7. Results 50

1 model = Sequential()
2 model.add(Conv2D(128, kernel_size=(2, 2), activation="relu", input_shape

=(17,13,1)))
3 model.add(Conv2D(128, kernel_size=(2, 2), activation="relu"))
4 model.add(Conv2D(64, kernel_size=(2, 2), activation="relu"))
5 model.add(Flatten())
6 model.add(Dense(2, activation="softmax"))
7 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics

=['accuracy'])

Program 7.3: CNN model structure of the large window size model.

Train Accuracy Test Accuracy
Initial model 90.93% 81.95%
Improved model 98.68% 82.05%

Table 7.4: SVM accuracies of the large window size model.

SVM CNN
Baseline model - 51.34%
Noise filter model 80.54% 82.05%
Audio normalization model 80.10% 81.79%
Combined model 80.65% 81.46%
Large window size model 82.05% 84.20%

Table 7.5: Highest achieved test accuracies of all approaches.

to the final test accuracy of 82.05% which is 0.1% better than the baseline model.
Furthermore, overfitting is also an issue here, due to the high train accuracy of 98.68%.
Table 7.4 sums up the performance of the SVM classifier for this approach.

After implementing both algorithms, it is clear that the CNN approach is the bet-
ter choice in this case. This decision is not only based on the higher test accuracy of
84.20% in comparison to 82.05%, but also on the fact that the SVM model deals with
overfitting. In this section, five paths were implemented. This resulted in nine models.
Those results were compared and the best approach was evaluated. Table 7.5 displays
the test accuracies from all models. The best approach, in this case, is those with the
state choices from the large window size model in combination with the CNN algorithm.

7.6 Validation of Results
In the previous sections five different paths have been implemented, compared and the
best model was chosen. The next step is to validate this model. Therefore five unseen
Vorarlberg audio recordings and five unseen Viennese files are used for this evaluation.

7. Results 51

(a) (b)

(c)

Figure 7.11: Different validation approaches. All data points considered (a), Data points
above 70% and below 30% considered (b), Sequential decision with data points above 70%
and below 30% considered (c).

Every single file is tested separately. Those files run through the same states as the
training data and test data. The chosen steps of the preprocessing pipeline are displayed
in Figure 7.9. After splitting the file into 0.4-second pieces, removing the breaks and
applying the median filter, every file is validated by the model.

Three different approaches exist for the evaluation. The difference lies in the pro-
vision of the data points and in the decision theory. Figure 7.11 shows those different
approaches. In all cases, the same Vorarlberg file has been taken for testing. Each frag-
ment of the audio file is predicted separately. Therefore several accuracies for one single
file are produced and displayed. In the first picture, every data point is considered. The
second and more interesting picture displays only those data points which have achieved
an accuracy that is higher than 70% or lower than 30%. In both cases, the algorithm is
relatively sure that the item belongs either to Vorarlberg or Vienna. Those data points
which have an accuracy e.g., of 53% should not be taken under consideration due to
its uncertainty. The third approach is to change the decision theory, using a sequential
decision making, which has been described in Section 2.1.5, based model. In this case,
also only those data points which are higher than 70% or lower than 30% are consid-
ered. Furthermore, the calculation is not done by looking through all instances, but the

7. Results 52

1 import statistics
2
3 pred = []
4 means = []
5 index_pred = []
6 earliest_stop = round(len(acc)*0.2+0.49)
7 current_mean = 0
8
9 for i, value in enumerate(acc):

10 pred.append(float(value))
11 index_pred.append(i)
12
13 cur_mean = statistics.mean(pred)
14 means.append(current_mean)
15
16 if i>=earliest_stop and current_mean>0.7:
17 print ("Stop possible")
18 print (current_mean)
19 break
20
21 print (current_mean)

Program 7.4: Sequential validation of the best model.

decision making is done sequentially. The third picture shows this approach. The green
horizontal line displays the decision boundary, which is, in this case, 80%.

For the first two approaches for every new instance, the accuracy has been calculated
by summing all accuracies from the 0.4-second files divided by their quantity. The third
approach looks at each new item at a time. In the beginning it takes in the first item
with a chance of e.g., 70%. Next, it calculates the mean of all seen predictions. This
results in a new current mean. The algorithm stops taking in new arguments when two
conditions apply. The rules are that the program needs to look at at least 20% of the
whole data and the accuracy needs to be at least 70%. If both conditions apply the
program does not look at any further items and the current mean accuracy becomes
the final one. Program 7.4 displays this calculation.

The final results are displayed in Table 7.6. All data points considered, the average
accuracy amounts to 72.90%. In this case, the algorithm has more difficulties in the
detection of the Viennese files than of the Vorarlberg ones. This does not change by
considering a different amount of data points. However, the accuracy increases when
considering only those data points, which achieved an accuracy over 70% or under 30%.
In this instance, the accuracy came to 77.85%. Here, the performance of the Vorarlberg
accuracy also excels the Viennese accuracy with 82.17% in comparison to 73.53%. Using
the sequential decision making approach, the average validation accuracy amounts up
to 77.46%. Here, too, the Vorarlberg perform better than the Viennese, with 81.66% in
comparison to 73.27%. One explanation for the poor performance of the Viennese files
is the background noise. In those examples, in which the result is disappointing, noise
is present. Another possibility is the limitation of setting diversity in the training data.

7. Results 53

All Data Points 70/30 Data Points 70/30 Sequential
Vorarlberg 1 65.65% 73.28% 70.10%
Vorarlberg 2 75.73% 84.83% 82.12%
Vorarlberg 3 94.15% 95.36% 96.44%
Vorarlberg 4 60.31% 63.20% 63.20%
Vorarlberg 5 92.25% 94.17% 96.44%
Wien 1 66.76% 70.96% 70.60%
Wien 2 68.49% 74.07% 70.10%
Wien 3 72.52% 78.32% 76.86%
Wien 4 73.98% 81.73% 86.21%
Wien 5 59.29% 62.57% 62.57%
Vorarlberg acc 77.16% 82.17% 81.66%
Wien acc 68.21% 73.53% 73.27%
Avg acc 72.90% 77.85% 77.46%

Table 7.6: Validation results.

All things considered, the model does not perform as well on the validation set, as
on the training data and test data, considering the standard decision making process. In
general, all approaches have achieved promising results especially in the detection of the
Vorarlberg class. The algorithm also works fine for the Viennese files, but some settings
need to be given for achieving usable results. The most important factor is the loudness
of the background noises. If those sounds are too present, the algorithm misclassifies
the item in most cases.

Chapter 8

Conclusion

The result of this thesis proposes that Austrian dialect classification using machine
learning based on audio features is possible and achieved similar performance as in
other languages.

8.1 Challenges and Results
The motivation behind this research question was the limitations of possible interac-
tions due to the lack of natural communication with computers, in particular with ASR-
systems. Because those systems have trouble understanding speech by non-native speak-
ers, the effort was made on classifying two Austrian dialects. Before investing deeper
in the field of linguistic science, fundamental technical concepts have been explained.
Machine learning in general, the various algorithms that can be used, general challenges
in machine learning and feature extractions methods have been described. The choice of
the selected classes, Vorarlberg and Vienna, is based on a linguistic perspective. Those
two dialects have in consideration of history and characteristics the most differences.
Furthermore, it has been investigated if different pronunciations from one man from
Vorarlberg and one man from Vienna, display different feature representations.

After proving this theory, the first big challenge was to gather the appropriate data.
In contrast to the English language, where several dialect databases exist, nothing alike
was available for Austrian dialects. After several approaches have been carried out, a
mixed approach was chosen. The Viennese audio data could be downloaded from the
City of Vienna directly, containing interviews with people from society and politics
describing their experiences with the city. The Vorarlberg material could be down-
loaded from the Literaturradio Vorarlberg and the Mundartradio. Both platforms share
the same goal by presenting and archiving audio of the Vorarlberg dialect. Moreover,
students from the University of Applied Sciences Upper Austria recorded themselves
answering given questions.

The second big challenge is the number of possibilities of how to treat different
volumes, quality, and length of the audio files. Therefore a lot of preprocessing and data
cleaning steps have been inevitable. Because there were different steps needed, such
as audio normalization, defining the window size, and choosing the right algorithm,
hundreds of contrasting paths were possible. The decision on which possible solutions

54

8. Conclusion 55

should have been implemented was challenging. Based on research the window size was
defined to 0.2 seconds. The best model with this size then has been investigated how the
performance changes by doubling the window size. For audio normalization, the choice
needed to be made between three different methods. Based on research the EBU R128
standard was chosen. As a noise filter option, only one appropriate filter was available
and its impact has been tested. For the feature extraction methods formants, RAW data
and MFCC have been tried out on the first model. The MFCC approach was considered
the most promising based on those results. In the end, five different paths have been
implemented and compared.

The best approach, in this case, is those with the state choices from the large window
size model. This means that the audio files were split into 0.4-seconds files, a median
filter was applied, the features were extracted using MFCC, and the model was created
using the CNN algorithm. This resulted in a training accuracy of 86.70%, 84.20% on
the test set and 77.85% on the validation set.

8.2 Limits and Future Work
This thesis focuses on data preparation, data cleaning and data wrangling. Furthermore,
the main part of these classification experiments deals with dialect classification based
on spontaneous speech. Potential improvements and possible ongoing projects can be
separated into two classes:

• increasing numbers,
• using the model as an input.

The first category can be applied to several parts along the project. The first aspect
would be covering all nine federal states of Austria. Until now two dialects have been
considered, due to the accompanying increasing complexity and time. Not only because
of the increased states, but also in general more audio files could be downloaded and
recorded. The states along the preprocessing pipeline could also be increased by adding
more filters along the path. Here more possible solutions could be implemented. Cur-
rently, only a handful of those solutions have been tested. It is questionable if those
choices have led to the optimal solution or if another path would have been better. Fi-
nally, the quantity of the algorithms could also change. At present, the SVM and CNN
approach have been evaluated. As other researches have shown Random Forrest, HMM,
GMM or LSTM could also be an option. Realistically speaking the most potential and
valuable outcome lies probably in the increment of the dialects, the number of audio
files and the preprocessing steps.

The second category contains three possible ways how the outcome of this thesis can
be used as an input for further projects. The first idea would be trying to explain which
sounds or overtones are decisive for the classification of dialects. Moreover, it would be
a benefit of creating a live demo that classifies your dialect based on continuous speech.
Users can interact with the system and become more aware and familiar with this topic.
Lastly, it would be of interest to evaluate the impact on speech recognition performance
in Austrian that would come from a specially trained ASR-System for each dialect.

Appendix A

Technical Details

(a) (b)

(c) (d)

Figure A.1: Different pronunciation of words first part. Vorarlberg Freitag (a), Vienna
Freitag (b), Vorarlberg Nebel (c), Vienna Nebel (d).

56

A. Technical Details 57

(a) (b)

(c) (d)

(e) (f)

Figure A.2: Different pronunciation of words second part. Vorarlberg Herbst (a), Vienna
Herbst (b), Vorarlberg Knie (c), Vienna Knie (d), Vorarlberg Stein (e), Vienna Stein (f).

A. Technical Details 58

(a) (b)

(c) (d)

(e) (f)

Figure A.3: Similar pronunciation of words. Vorarlberg Mama (a), Vienna Mama (b),
Vorarlberg Gabel (c), Vienna Gabel (d), Vorarlberg Samstag (e), Vienna Samstag (f).

A. Technical Details 59

(a) (b)

Figure A.4: Different pronunciation of the word, but similar MFCC. Vorarlberg Bock (a),
Vienna Bock (b).

Appendix B

Data Gathering

Following questions and situations have been asked to describe in order to gather the
necessary data. Those topics served as examples in order to get the most realistic accent
possible:

• Beschreibe deinen Weg in die Arbeit.
• Was machst du in den ersten 10 Minuten nachdem du aufwachst?
• Was machst du in den letzten 10 Minuten vor dem Einschlafen?
• Beschreibe wie du dein Lieblingsrezept zubereitest.
• Wie bereitest du dich auf eine Prüfung vor?
• Wie ist deine Führerscheinprüfung abgelaufen?
• Was war die letzte Ausrede, warum du dich nicht mit jemandem treffen konntest?
• Beschreibe dein Auto.
• Beschreibe deine Wohnung.
• Erkläre warum dein Lieblingsfilm der Beste ist.
• Erkläre warum dein Lieblingsessen das Beste ist.
• Warum hast du dich für dieses Studium entschieden?
• Wenn du leben könntest wo du wolltest, wo wäre das und warum?
• Beschreibe deinen Arbeitsalltag wie du ihn in dir in 5 Jahren vorstellst.
• Wie schaut dein Traumurlaub aus?

60

Appendix C

Packages

Following packages and libraries have been used in order to accomplish the technical
implementation:

concurrent
joblib
keras
librosa
math
matplotlib
numpy
os
parslemouth
pydub
pysndfx
python_speech_features
scipy
shutil
sklearn
soundfile
subprocess
tensorflow

61

Appendix D

CD-ROM Contents

D.1 PDF Files
Path: /

Wagner_Hanna_2019.pdf Master thesis

D.2 Code Files
Path: /code/python

audioDownloadSplit.py Split audio files into smaller pieces
convertMP3ToWav.py . Convert MP3 files to wav format
extractFeatures.py . . . Extract MFCC features
parslemouth.py Extract Formants

Path: /code/jupyter
CNN.ipynb CNN classification
dataPreparation.ipynb . Data preparation (filter etc.)
saveFeatures.ipynb . . . Save Features (MFCC, Formants etc.)
SVM.ipynb SVM classification
validateOne.ipynb . . . Validate one new file

D.3 Feature Files
Path: /features

classes-10-test-0.4-MFCC.npy Test classes of best model
features-10-test-0.4-MFCC.npy Test features of best model
classes-10-train-0.4-MFCC.npy Train classes of best model
features-10-train-0.4-MFCC.npy Train features of best model

62

D. CD-ROM Contents 63

D.4 Model Files
Path: /model

10-CNN-best-MFCC.h5 H5 file of best model
10-CNN-best-MFCC.json Json file of best model

D.5 Others
Path: /

README.md Readme file
requirements.txt Required packages

Bibliography

Print Resources

[1] F. Brandl. Die Kunst der Stimmbildung auf physiologischer Grundlage. München:
Eigenverlag, 2001 (cit. on p. 15).

[2] S. Davis and P. Mermelstein. “Comparison of parametric representations for mono-
syllabic word recognition in continuously spoken sentences”. IEEE Transactions
on Acoustics, Speech, and Signal Processing 28.4 (Aug. 1980), pp. 357–366 (cit. on
p. 12).

[3] S. Deshpande, S. Chikkerur, and V. Govindaraju. “Accent classification in speech”.
In: Proceedings of the fourth IEEE Workshop on Automatic Identification Ad-
vanced Technologies (AutoID’05). Oct. 2005, pp. 139–143 (cit. on pp. 26, 27).

[4] Adele Diederich. “Decision and Choice: Sequential Decision Making”. In: Interna-
tional Encyclopedia of the Social & Behavioral Sciences. Ed. by James D. Wright.
Second Edition. Oxford: Elsevier, 2015, pp. 906–910 (cit. on pp. 8, 9).

[5] Aurélien Géron. Hands-on machine learning with Scikit-Learn and TensorFlow.
Concepts, tools, and techniques to build intelligent systems. Sebastopol, CA: O’Reilly
Media, Inc., 2017 (cit. on pp. 2, 6–13).

[6] John Karat et al. “Speech User Interface Evolution”. In: Human Factors and Voice
Interactive Systems. Ed. by Daryle Gardner-Bonneau. Boston, MA: Springer US,
1999, pp. 1–35 (cit. on p. 2).

[7] Y. Lei and J. H. L. Hansen. “Dialect Classification via Text-Independent Training
and Testing for Arabic, Spanish, and Chinese”. IEEE Transactions on Audio,
Speech, and Language Processing 19.1 (Jan. 2011), pp. 85–96 (cit. on pp. 30, 31).

[8] “Median Filters”. In: Encyclopedia of Microfluidics and Nanofluidics. Ed. by
Dongqing Li. Boston, MA: Springer US, 2008, pp. 1078–1078 (cit. on p. 16).

[9] R. Marchthaler and S. Dingler. Kalman-Filter: Einführung in die Zustandsschätzung
und ihre Anwendung für eingebettete Systeme. Wiesbaden: Springer, 2017 (cit. on
p. 17).

[10] John Paul Mueller and Luca Massaron. Machine Learning for Dummies. Hoboken,
NJ: John Wiley & Sons, 2016 (cit. on p. 6).

[11] A. P. Nair, S. Krishnan, and Z. Saquib. “MFCC based noise reduction in ASR
using Kalman filtering”. In: Proceedings of the 2016 Conference on Advances in
Signal Processing (CASP). June 2016, pp. 474–478 (cit. on p. 17).

64

Bibliography 65

[12] Josh Patterson and Adam Gibson. Deep learning. A practitioner’s approach. Se-
bastopol, CA: O’Reilly Media, Inc., 2017 (cit. on pp. 1, 6, 10, 11).

[13] Muhammad Rizwan and David V. Anderson. “A weighted accent classification
using multiple words”. Neurocomputing 277 (2018). Hierarchical Extreme Learning
Machines, pp. 120–128 (cit. on pp. 2, 25–27).

[14] M.R. Schroeder, H. Quast, and H.W. Strube. Computer Speech: Recognition, Com-
pression, Synthesis. Heidelberg: Springer, 2004 (cit. on p. 15).

[15] A.P. Sunija, T.M. Rajisha, and K.S. Riyas. “Comparative Study of Different Clas-
sifiers for Malayalam Dialect Recognition System”. Procedia Technology 24 (2016),
pp. 1080–1088 (cit. on pp. 28, 29).

[16] Charalambos Themistocleous. “Dialect classification using vowel acoustic param-
eters”. Speech Communication 92 (2017), pp. 13–22 (cit. on pp. 16, 28).

[17] European Broadcasting Union. R128. Loudness Normalisation and Permitted Max-
imum Level of Audio Signals. Geneva, June 2014. url: https://tech.ebu.ch/docs/
r/r128.pdf (cit. on p. 19).

Online Resources

[18] Hack Audio. Peak Normalization. 2018. url: https://www.hackaudio.com/digital-
signal-processing/amplitude/peak-normalization/ (visited on 06/19/2019) (cit. on
p. 19).

[19] Hack Audio. RMS Amplitude. 2018. url: https://www.hackaudio.com/digital -
signal-processing/amplitude/rms-amplitude/ (visited on 06/19/2019) (cit. on p. 19).

[20] Amit Paul Chowdhury. Did Siri finally get an Indian accent too? May 2017. url:
https : //www.analyticsindiamag . com/siri - finally - get - indian - accent/ (visited on
06/19/2019) (cit. on p. 2).

[21] Albert Chu, Peter Lai, and Diana Le. Accent Classification of Non-Native English
Speakers. 2017. url: http://web.stanford.edu/class/cs224s/reports/Albert_Chu.pdf
(visited on 06/19/2019) (cit. on pp. 29, 30).

[22] Sabine Erkinger-Kovanda. Dialekte, AEIOU. Apr. 2017. url: https : //austria -
forum.org/af/AEIOU/Dialekte (visited on 06/19/2019) (cit. on pp. 21, 22).

[23] Haytham Fayek. Speech Processing for Machine Learning. Filter banks, Mel-Frequency
Cepstral Coefficients (MFCCs) and What’s In-Between. Apr. 2016. url: https:
//haythamfayek.com/2016/04/21/speech- processing- for- machine- learning.html
(visited on 06/19/2019) (cit. on pp. 14, 15).

[24] Hasa. Difference Between Accent and Dialect. June 2016. url: https://pediaa.com/
difference-between-accent-and-dialect/ (visited on 06/19/2019) (cit. on p. 20).

[25] James Lyons. Mel Frequency Cepstral Coefficient (MFCC) tutorial. Jan. 2019.
url: http://www.practicalcryptography.com/miscellaneous/machine-learning/guide-
mel-frequency-cepstral-coefficients-mfccs/ (visited on 06/19/2019) (cit. on pp. 12–
14).

https://tech.ebu.ch/docs/r/r128.pdf
https://tech.ebu.ch/docs/r/r128.pdf
https://www.hackaudio.com/digital-signal-processing/amplitude/peak-normalization/
https://www.hackaudio.com/digital-signal-processing/amplitude/peak-normalization/
https://www.hackaudio.com/digital-signal-processing/amplitude/rms-amplitude/
https://www.hackaudio.com/digital-signal-processing/amplitude/rms-amplitude/
https://www.analyticsindiamag.com/siri-finally-get-indian-accent/
http://web.stanford.edu/class/cs224s/reports/Albert_Chu.pdf
https://austria-forum.org/af/AEIOU/Dialekte
https://austria-forum.org/af/AEIOU/Dialekte
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://pediaa.com/difference-between-accent-and-dialect/
https://pediaa.com/difference-between-accent-and-dialect/
http://www.practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://www.practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/

Bibliography 66

[26] Leon Mak, An Sheng, and Mok Edmund Wei Xiong. Deep Learning Approach
to Accent Classification. 2018. url: http ://cs229 . stanford .edu/proj2017/final -
reports/5244230.pdf (visited on 06/19/2019) (cit. on pp. 2, 25, 26, 37).

[27] Karl Rosaen. K-fold cross-validation. June 2016. url: http://karlrosaen.com/ml/
learning-log/2016-06-20/ (visited on 06/19/2019) (cit. on p. 7).

[28] Suesch. Sprachen der Republik Österreich. June 2018. url: https : //commons .
wikimedia . org / w / index . php ? curid = 70219855 (visited on 06/19/2019) (cit. on
p. 21).

[29] techopedia. Noise. 2019. url: https://www.techopedia.com/definition/2025/noise
(visited on 06/19/2019) (cit. on p. 16).

[30] Marco Varone, Daniel Mayer, and Andrea Melegari. What is Machine Learning? A
definition. 2018. url: http://www.expertsystem.com/machine-learning-definition/
(visited on 06/19/2019) (cit. on p. 5).

http://cs229.stanford.edu/proj2017/final-reports/5244230.pdf
http://cs229.stanford.edu/proj2017/final-reports/5244230.pdf
http://karlrosaen.com/ml/learning-log/2016-06-20/
http://karlrosaen.com/ml/learning-log/2016-06-20/
https://commons.wikimedia.org/w/index.php?curid=70219855
https://commons.wikimedia.org/w/index.php?curid=70219855
https://www.techopedia.com/definition/2025/noise
http://www.expertsystem.com/machine-learning-definition/

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Background and Motivation
	Problem and Solution
	Limitations
	Outline

	Technical Background
	Introduction to Machine Learning
	Types of Machine Learning Systems
	Classification vs Regression
	Training a Machine Learning Model
	Measurement of Performance
	Sequential Decision Making
	Challenges in Machine Learning

	Neural Networks
	Convolutional Neural Network

	Support Vector Machines
	Mel Frequency Cepstral Coefficient
	Formants
	Noise Reduction in Sound
	Median filter
	Kalman Filter

	Audio Normalization
	Peak Normalization
	RMS-based Normalization
	EBU R128 Standard

	Dialects in Austria
	History and Characteristics of Dialects in Austria
	Comparison of Words

	State of the Art
	Scripted List of Words
	Continuous Speech

	Data
	Creating the Dataset
	Data Cleaning

	Technical Approach
	Window Size
	Normalization
	Noise Reduction
	Feature Extraction

	Results
	Baseline Model
	Noise Filter Model Using MFCC and Formants
	Audio Normalization Model Using MFCC
	Combined Model
	Large Window Size Model
	Validation of Results

	Conclusion
	Challenges and Results
	Limits and Future Work

	Technical Details
	Data Gathering
	Packages
	CD-ROM Contents
	PDF Files
	Code Files
	Feature Files
	Model Files
	Others

