
A Selective Rendering Concept for
Static Site Generators

Sascha Zarhuber

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Juni 2017

© Copyright 2017 Sascha Zarhuber

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, June 26, 2017

Sascha Zarhuber

iii

Contents

Declaration iii

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Problem statement . 2
1.2 Goals . 2
1.3 Structure . 2

2 State of the Art 4
2.1 Jekyll . 6

2.1.1 History . 6
2.1.2 Technology . 6

2.2 Hexo . 7
2.2.1 History . 7
2.2.2 Technology . 8

2.3 Metalsmith . 9
2.3.1 History . 9
2.3.2 Technology . 10

2.4 Comparison . 12

3 Technical Foundations 13
3.1 Build pipelines . 14

3.1.1 Frontmatter . 15
3.1.2 Markdown . 16
3.1.3 Templates . 16

3.2 Git . 17
3.2.1 History . 18
3.2.2 Technology . 18

3.3 GitHub . 20
3.3.1 History . 20
3.3.2 Technology . 21

iv

Contents v

3.3.3 REST API . 22
3.4 Diff . 22

3.4.1 History . 22
3.4.2 Technology . 23

4 Theoretical Approach 27
4.1 Challenges . 27

4.1.1 Distributed development 27
4.1.2 Build cycles . 29
4.1.3 Caching . 31

4.2 Solution strategies . 32
4.2.1 Distributed development on GitHub 32
4.2.2 Build cycles . 32
4.2.3 Caching . 34

4.3 Considerations towards implementation 35
4.3.1 Choosing a static site generator 36
4.3.2 Constructing a REST API 37
4.3.3 Caching and selective rendering 38

5 Implementation 39
5.1 Foundation . 39

5.1.1 Express.js for REST 40
5.1.2 MongoDB . 41
5.1.3 GitHub API . 43
5.1.4 Metalsmith . 46

5.2 Application structure . 47
5.2.1 Basic setup . 48
5.2.2 Build pipeline . 51

5.3 Engine . 52
5.3.1 Asynchronous work . 53
5.3.2 Child processes . 53
5.3.3 Storage . 54
5.3.4 Realization . 54

5.4 Cache . 56
5.4.1 Preconditions . 56
5.4.2 Filtering files . 57

6 Evaluation 60
6.1 Minimal requirements . 60

6.1.1 Configuration file . 61
6.1.2 Local testing . 61

6.2 Comparison . 62
6.2.1 Jekyll . 62
6.2.2 Metalsmith . 63

Contents vi

6.3 REST API . 64
6.3.1 Load testing . 64

6.4 Caching . 66
6.4.1 Initial build . 66
6.4.2 Caching strategy . 66

6.5 Outlook . 68
6.5.1 User experience . 68
6.5.2 Cache improvement 69

7 Conclusion 70

A Contents of the CD-ROM 72
A.1 PDF files . 72
A.2 Source code . 73
A.3 Graphics . 73

References 74
Literature . 74
Online sources . 75

Abstract

Whereas modern content management systems provide a solid environment
for dynamic content creating and editing, their dependency on external ser-
vices like database services or authentication providers often complicate
their abilities to scale. Additional duties for keeping them responsive in
larger ecosystems are therefore often responsible for slowing down the over-
all workflow of a developer.

Static site generators on the other hand offer an easy solution for steadily
growing websites. Their only task is to create a full-featured file structure,
which contains browser-readable HTML files that do not require any on-
the-fly rendering upon request. However, static site generators contain a
significant drawback, as the rendering mechanism normally cannot distin-
guish between already present files and new content. In fact, the build time
increases every time a new file is added to the source directory.

This Master’s thesis therefore tries to compensate the full extent of a
complete rebuild every single build cycle by providing a caching mechanism
based on a selective approach, together with a remotely working REST API
as wrapping interface for user-friendly interaction and improved division of
work.

vii

Kurzfassung

Während moderne Content Management Systeme ein gut entwickeltes Um-
feld für Online-Inhaltsverwaltung und -erstellung bereitstellen, sind sie doch
auf eine Anzahl externer Services angewiesen. Dazu zählen vordergründig
Datenbanksysteme, aber auch verschiedene Login-Mechanismen, um Zugang
zu einem gesperrten Editierbereich freizugeben. Durch die Abhängigkeit von
derartigen Services entsteht bei zunehmender Größe des jeweiligen Projekts
ein Anstieg des Aufwands für die Verwaltung dieser Erweiterungen.

Static Site Generatoren andererseits benötigen keine externen Erweite-
rungen, da ihre einzige Aufgabe darin besteht, die Website-Quellcodes in
eine für Webbrowser lesbare Version zu konvertieren. Allerdings haben diese
Static Site Generatoren einen erheblichen Nachteil; da sie nicht zwischen
bereits vorhandenen und neuen Inhalten unterscheiden können, ist jedesmal
ein vollständiger Neubau der Website-Quellen notwendig.

Diese Masterarbeit soll daher einen Lösungsweg für dieses Problem auf-
zeigen. Durch einen selektiven Algorithmus sollen am Ende nur die wirklich
notwendigen Inhalte gebaut werden und in eine vorhandene Dateistruktur
eingebunden werden. Zusammen mit einer REST API soll zusätzlich eine be-
nutzerfreundliche Interaktion und verbesserte Arbeitsteilung möglich sein.

viii

Chapter 1

Introduction

Back in the early 1990s, when the internet made its first steps towards a
broader public use, a group of students at the University of Illinois cre-
ated “Mosaic”, the first publicly available Browser [3, p. 11]. At that time,
websites consisted of just HTML and probably some images, whereas the
release of “Netscape Navigator” led to the introduction of Brendan Eich’s
JavaScript engine. Additionally, Netscape also introduced a web server soft-
ware called “Netscape Enterprise Server”, thus making the Internet available
for the first web developers [3, p. 12].

Since then, a lot has changed; content management systems were pub-
lished, the internet was turning to what was called “Web 2.0” and the com-
mon user was not just a content recipient anymore, but also a content creator
without requiring deeper understanding of web technologies [3, p. 19]. This
has affected not only private users, but also whole enterprise structures until
today.

However, the most important part stayed the same; steadily providing
content which is deliverable on request. To do so using content management
systems requires not only a web server and the client’s browser, but also a
properly set up chain of interacting services for assembling HTML code on
the fly. While this kind of architecture may surely be fitting smaller blogs
very well, the necessary effort of managing constantly growing enterprise
sites is likely to grow exponentially.

Therefore, systems which are not dependent on such a chain are con-
stantly on the rise over the last yars. They especially make sense in en-
vironments, where content is constantly added, but hardly ever deleted or
changed. Lastly, by constructing static websites in plain HTML and mostly
avoiding any dynamic features, a trend reversal back to the internet origins
is clearly noticeable in some fields of modern web development.

1

1. Introduction 2

1.1 Problem statement
Static site generators are growing fast and are more and more used as a
replacement for common content management systems. The main advantage
is their independence of external services, like database systems, session
caching services, etc. Also, they seldomly consist of complicated backend
systems and are mostly created in pure HTML or simple markup languages
like Markdown (see Sec. 3.1.2).

One of the biggest drawbacks however is the fact, that static site gener-
ators have to preprocess every bit of information they contain. This is the
complete opposite compared to other content management systems, which
process information on request. This means, that user-readable content is
fetched and rendered “just in time” it was requested from the client.

Therefore, depending on the setup, a dynamically growing amount of
time needed for a build cycle might be the case. For being able to work
against this fact, a working approach has to be found, which saves time by
leaving out information, which has not changed since the previous build.

1.2 Goals
To find a suitable solution, a service which contains a build pipeline including
a caching mechanism has to be implemented. The caching mechanism should
thereby act as the core part, as it is responsible for fetching data between the
current development state and a previous build cycle. Furthermore it should
determine the build extent by selecting the respective files for rendering
based on the fetched commit diff. The research question is therefore the
following:

How to speed up static site generation by a selective approach?

The implemented solution covers the necessary steps for working with cacheable
content in a way, that a remote-only building process is possible. Together
with the precondition of having a GitHub account, any repository consist-
ing of a Metalsmith project should be able to get rendered on this service’s
REST API.

By introducing this service early into a project workflow, the user should
notice a significant improvement concerning the rendering time per build
cycle. Furthermore, it should take a considerable amount of workload out
the developers hands.

1.3 Structure
To express the considerations which led to the finished solution, the following
pages are structured into several chapters.

1. Introduction 3

Chapter 2 – Shows the current state of the art, culminating in the presen-
tation of three selected static site generators: Jekyll, Hexo, Metalsmith,
as well as a comparison between them.

Chapter 3 – Explains the most important terms concerning the opera-
tion of static site generators (including code samples); build pipelines,
frontmatter, markdown, templates and diff.

Chapter 4 – Gives an understanding of the initial theoretical approach
behind this project. Challenges and solution strategies are examined
prior to general considerations towards the implementation are being
unveiled.

Chapter 5 – Describes the full extent of the implementation including the
whole REST framework, which was built around the build pipeline.
Different graphics are showing examples of how various parts were
realized.

Chapter 6 – Evaluates the project using different testing approaches. The
REST API was put under high load testing, whereas the build pipeline
and the caching mechanism were compared using the timespan needed
for an operation. Furthermore, an outlook shows possible future im-
provements.

Chapter 7 – Shows the conclusion of this project work and unveils diffi-
culties, as well as enhancement strategies for productive use.

Chapter 2

State of the Art

The roots of the most well-known modern Content Management Systems
(CMS) date back to the early 2000s, when PHP was (and still is) the dom-
inant factor in terms of server-side programming languages (see Fig. 2.1).

While the typical CMS was starting out as mostly just a “dynamic online
tool”, it also shows that with seamlessly integrating new features gained
through the development of its underlying programming languages, as well
as steadily adding new functionalities (mostly requested by the community),
a transition towards a fully-manageable and customizeable, semi-automatic
web application was possible [3, p. 17].

Figure 2.1: A graphic showing the global share of server-side programming
languages from January 2010 to April 2017. PHP remains the dominant
language with a share growing from 72.5% to 82.6% [43].

4

2. State of the Art 5

The advantages are clear: a web designer or content editor does not auto-
matically have to be a web developer, who needs profound knowledge about
software or server architecture. Instead, most of the time it is enough to know
how to operate an FTP-client and to know the credentials of the built-in
database service, submitted by the web hosting provider upon registration.
As a summary, it can be said: Less people for less responsibilities – the web
application does the rest.

However, this progression also caused a few drawbacks, especially when
it comes down to comparing the amount of workload needed before actually
being able to create content for the World Wide Web. Due to the fact, that
most CMSs evolved to their own sort of powerful admin panels, develop-
ers who are not keen about keeping their site updated, risk its defacing or
other embarrassing attacks through unmanaged security holes in the code
[3, p. 23]. So, how is it possible to bridge the gap between a fairly secure
system and creating content whenever it is desired?

In 2008, Tom Preston-Werner created Jekyll out of his frustration of
having the need of “styling a zillion template pages” and “moderating com-
ments all day long” before even being ready to create content on his blogging
engine [39]. Furthermore he mentioned, that one of the other main reasons
were the lack of possibility for publishing his posts on his own server, when
subscribing to a fully-managed online hosting service like wordpress.com1.
Services like this offer only limited customization options, where there likely
is no access to online storage and database without using the built-in admin
panel. Even then, access might be very restricted.

The intended core functionality of Jekyll narrows down its mode of oper-
ation to handle three main components found in most static site generators
today [3, p. 24]:
Core language – The language a static generator is written in, for example

JavaScript or Ruby.
Templates – The templating language to be used through the blog and

posts.
Plug-ins – All static site generators allow for additional functionality through

some sort of a plug-in system.
In contrast to common dynamic CMSs, a static site generator outputs plain
static HTML. It does it in a way, that a certain distribution folder holds the
complete web root, without the need of binding it to external services like
databases or session management tools. Occasionally, different plug-ins also
allow the generation of client-side JavaScript or Cascading Style Sheet files
through their respective pre-processing tools.

1https://en.wordpress.com – a hosted version of Wordpress.

https://en.wordpress.com

2. State of the Art 6

2.1 Jekyll
As already explained, Jekyll was created out of the need for avoiding to
service the blogging engine before writing and publishing content. Since it is
deeply integrated into GitHub, it is considered as the probably most-popular
static site generator.

2.1.1 History

Tom Preston-Werner, co-founder of GitHub2, announced it in October 2008
in one of his blog posts [39]. Already in December 2008, it was introduced
as build engine for the then newly featured GitHub Pages service, allowing
owners of repositories to publish a static website by just pushing to a certain
master or gh-pages branch [40], which is still available for free to this day.

All of this happened just 6 (respectively 8) months after GitHub was
launched [41] and is now even being used by technology-leading companies
to showcase their open-source efforts3.

2.1.2 Technology

Jekyll was entirely written in Ruby, as Tom Preston-Werner rather saw
himself as a software developer in the first place, than as a content author
[39]. Until now, the repository for Jekyll still consists mainly of Ruby code
at a share of roughly 77.5%.

Advantages

One of the main advantages is the modular structure of its code base. By
inheriting different Ruby classes, it is quite easy to extend and add features
to fit the developer’s needs. Due to its wide-spread usage initiated through
the GitHub universe, Jekyll also has an accordingly huge user base and is
therefore well documented [3, p. 26].

Furthermore, its website4, which mainly acts as starting basis for doc-
umentation, is not only available as open-sourced git repository, it is also
built using Jekyll to prove its universality.

Starting from scratch, the command jekyll new my_project installs a
blog environment for starters in the ./my_project folder. The basic install
consists of an elementar blog post structure, Sass source files, and a few
template files written for Shopify’s Liquid5 engine.
Using this starting environment, the unexperienced developer quickly gets

2https://github.com – GitHub Inc.
3https://github.com/showcases/github-pages-examples – GitHub Pages examples.
4http://jekyllrb.com – Jekyll website.
5https://help.shopify.com/themes/liquid – Shopify’s Liquid template engine.

https://github.com
https://github.com/showcases/github-pages-examples
http://jekyllrb.com
https://help.shopify.com/themes/liquid

2. State of the Art 7

a sufficient overview of what is generally possible using Jekyll, whereas the
content author is able to fully concentrate himself on writing content, as the
used Markdown markup language requires little to no prior syntax knowl-
edge. Furthermore, Jekyll already ships with a built-in webserver for quickly
reviewing the rendered static output.

Disadvantages

As powerful as Ruby might have been designed, many unskilled developers
are facing difficulties right from the beginning, as most of them experience
a steep learning curve. Nearly every single bit of customizing Jekyll requires
Ruby knowledge, especially if it is desired to move along the “predefined”
way and not including third-party extensions like Node.js tools or else.

Additionally, its template language, Liquid, offers customization on a
very high level, so it might happen to confuse business logic6 with template
logic7. To make things worse, different template constructions might also
evolve over time and therefore causing a parallel coding universe when trying
to surpass difficulties in the business logic.

2.2 Hexo
Hexo understands itself as counterpart to Jekyll, mostly by covering the
same ideas of static site generation, but building up completely on Node.js.
It even offers a migration service for Octopress- and Jekyll-users who are
willing to switch.

2.2.1 History

Version 1.0.0 was originally released in March 20138, although development
on GitHub dates back to September 2012 as the first commit was published
using the message “init”.

Tommy Chen, its creator, first used Octopress9 but quickly became dis-
satisfied with its performance, as the rendering of 54 blog posts already took
more than a minute of compile time [14]. Since he assumed Ruby might be
the cause for the lack of performance of his primarily used blogging frame-
work, and further development on this case was not likely to happen any
time soon, he decided to look for something which got his attention shortly
before: Node.js.

6How Jekyll processes data into programmatically readable structures.
7How Liquid transforms these structures into browser-readable HTML.
8https://github.com/hexojs/hexo/releases/tag/1.0.0 – Hexo v1.0.0 release page on

GitHub.
9http://octopress.org – Octopress website.

https://github.com/hexojs/hexo/releases/tag/1.0.0
http://octopress.org

2. State of the Art 8

However, Node.js was not really a big player back at that time, so the
offer of blogging frameworks written in JavaScript was very dense and not
really fitting the needs of Tommy Chen. In his announcement article for
Hexo [14], he references a blog post of Boris Mann, also an Octopress user
at that time, listing a few Node.js-based blogging frameworks, which were
already around in June 2012 [35]. Interestingly, only two of all the mentioned
ones, Wintersmith and DocPad are still actively maintained today.

2.2.2 Technology

As already stated above, Hexo primarily consists of JavaScript, thus making
it easier to start for developers with a frontend web development background.
In fact, its GitHub repository shows JavaScript holding a share of 100% on
the source code10.

Advantages

Right from the start, Hexo presents itself using its feature-rich command-line
interface (CLI), similar to Jekyll. Once it is installed, hexo init my_project
scaffolds a new starter template into the ./my_project folder.
As Tommy Chen himself wanted an easy-to-use replacement for Octopress,
Jekyll and Hexo share a lot of common features; their content files use both
YAML frontmatter and Markdown by default, even the main configuration
file uses a very similar structure in both frameworks. This should make it
extremely easy switching from Jekyll to Hexo.

First and foremost, programming-unaware content authors might espe-
cially like its CLI, as it also offers to create files based on the hexo new
command. Depending on other submitted command-line arguments, Hexo
may automatically put the new file in the according sub-folder, whether it is
a draft, page or post. Publishing a draft is as easy as hexo publish. When
creating content, Hexo also contains a feature-rich, Octopress-inspired cus-
tom tag selection for including content from YouTube, Vimeo or GitHub
Gists.

Additionally, its plugin collection is also constantly growing and mostly
community supported. A special naming convention using hexo- as prefix
helps by determining which plugins to auto-load out of the node_modules
folder. Using this way, Ruby’s convention over configuration mantra is ported
to JavaScript as well and especially supports beginners by not having to de-
fine the usage of a certain plugin.

10https://github.com/hexojs/hexo – Hexo repository on GitHub.

https://github.com/hexojs/hexo

2. State of the Art 9

Disadvantages

Hexo might look like as an ideal replacement for Jekyll, but since both share
so much similarities, they also share some disadvantages. Whereas Jekyll
ships with Liquid and Sass as standard, Hexo does with EJS and Stylus.
Although clearly stated, that both of these plugins might be easily unin-
stalled later on [15], the whole setup pre-installation seems as opinionated
as Jekyll’s.

In addition to the already mentioned plugin system, a missing configura-
tion option might as well turn out to be misleading in terms of customization
options, especially when being dependent on the CLI. If customization is nec-
essary, the developer often is forced to switch to the JavaScript API11 or to
add a plugin to the project to make the build pipeline fit the customization’s
needs.

When it comes to caching, Hexo uses a homebrew version of JSON mem-
ory caching called Warehouse, also created by Tommy Chen12, initially men-
tioned in the release notes for version 3.2.0-beta.2 [13]. Using this plugin, a
mode called “hot processing” should enable faster rebuilds. The main draw-
back here might be the caching speed, which is on the one hand filling up
the memory when working on bigger projects, whereas the persisting of the
database is fully dependent on file input/output write speeds of the under-
lying hard disk. Furthermore, a constantly growing database file is hardly
transferrable when trying to implement a decentralized building system out
of Hexo.

2.3 Metalsmith
Compared to the already described static site generators, Metalsmith is to
be considered the youngest project. It might also be the most radical project,
as it was designed to consist of nothing but plugins [3, p. 31]. Therefore, in
terms of still being a static site generator, it tries hard to push the limits
much further than previously mentioned Jekyll and Hexo.

2.3.1 History

Initially developed by Segment13 for their internal needs, such as documenta-
tion, help and blog pages [46], Metalsmith was finally open-sourced and made
publicly available around February 2015 – its commit history on GitHub
dates back to February 4th, 2014. Most of the commits at that time were
published by Ian Storm Taylor, co-founder of Segment, although his contri-

11https://hexo.io/api/ – Hexo’s JavaScript API documentation.
12https://github.com/tommy351/warehouse – Warehouse repository on GitHub.
13https://segment.com – Segment’s website.

https://hexo.io/api/
https://github.com/tommy351/warehouse
https://segment.com

2. State of the Art 10

bution to the project ends after releasing v2.1.0 on September 24th, 201514

at the moment.
Like Hexo, Metalsmith’s repository completely consists of JavaScript

code, as its developers also were unsatisfied with the then existing static site
generators. According to Chris Sperandio, the Metalsmith developers desired
pure flexibility for their “wide array of use cases”, while other frameworks
all asked for a certain structure on the content [46].

2.3.2 Technology

Since Metalsmith consists of only plugins, specifically written for this very
framework, there is no real standard setup provided. Although there are
a few tutorials and best practices listed in its GitHub repository [45], as
well as in a repository called “awesome-metalsmith”15, the initial dive-in
might scare a few people away, since Metalsmith might not be as well docu-
mented as the previously mentioned frameworks. Moreover, most developers
seem to experience a very steep learning curve at first, given the amount of
customization options and the requirements for understanding the blog en-
gine infrastructure [3, p. 31].

Advantages

Every developer is able to shape Metalsmith exactly to his/her needs, once
he knows about the basic usage. It ships with a CLI, as well as a JavaScript
API, where the “real hacking” is possible. The CLI gets easily configured via
a metalsmith.json file, stored in the project directory. It consists mainly
of general project configurations, placed in the object’s root, as well as an
array of used plugins, respectively combined with their configuration.

It neither contains a pre-installed template engine, nor any other pre-
processing tools, like Sass or Less. However, the available plugins support
most of them to a satisfying extent. As an example, the metalsmith-layouts
plugin is a wrapper for Consolidate.js, which per se acts as a wrapper for
the most common template engines16. Therefore, the developer is able to
select the tools based on his/her preferences and may initialize a project
from scratch, without needing to clean up any pre-installed demonstration
files first.

Using the built-in JavaScript API, it is also possible to invoke the needed
modules programmatically, which is one of the core topics of this Thesis.

14https://github.com/segmentio/metalsmith/commits/master?author=ianstormtaylor –
Contributions of Ian Storm Taylor to the Metalsmith repository on GitHub.

15https://github.com/metalsmith/awesome-metalsmith – “Awesome” Metalsmith re-
sources list.

16https://github.com/tj/consolidate.js#supported-template-engines – Consolidate.js-
supported template engines on GitHub.

https://github.com/segmentio/metalsmith/commits/master?author=ianstormtaylor
https://github.com/metalsmith/awesome-metalsmith
https://github.com/tj/consolidate.js#supported-template-engines

2. State of the Art 11

Program 2.1: config.js

1 const Metalsmith = require('metalsmith');
2 const layouts = require('metalsmith-layouts');
3 const markdown = require('metalsmith-markdown');
4
5 Metalsmith(__dirname) // Invoke with "__dirname" as CWD
6 .metadata({ // define globally available variables
7 name: 'Test site',
8 url: 'http://localhost:3000'
9 })

10 .source('_src') // the content directory
11 .destination('_site') // the output directory for compiled content
12 .clean(true) // delete output directory first? yes!
13 // (...) // Additional plugin configuration
14 .use(layouts({
15 engine: 'handlebars',
16 pattern: '*.html' // Plugin would look for .html files, although
17 })) // not yet processed by markdown renderer
18 .use(markdown()) // <− Here markdown gets processed to HTML
19 .build((err) => {
20 if (err) {
21 throw err;
22 }
23 console.log('Success!');
24 });

Disadvantages

Such an amount of freedom in designing a project may also cause some
dangers. In this case, one of the most crucial things is the arrangement of
plugins in the configuration. Since Metalsmith acts as a streaming build
system, every transformation of the content must happen at its time to not
interfere with any upcoming plugins. This is especially important when a
plugin might alter the underlying code in a way, that a following plugin
becomes useless, as it might not be able to succeed in its predefined task.
Andy Jiang gives a good example about a sample structuring of Metalsmith
plugins on the Segment blog [34].

As an example, Program 2.1 shows one bold example of misconfiguration
(see line 16):

Moreover, the available plugins may seem as not as popular as the plugins
from Hexo, given the average amount of stars received on GitHub. This
might be due to the often missing maintainance, or simply because of the
fact, that there seem to be multiple plugins for one single task (see Fig. 2.2).

2. State of the Art 12

Figure 2.2: A screenshot showing some of the results for the search query
“metalsmith static assets” on https://npms.io. Both of the shown entries de-
scribe an identical mode of operation within the Metalsmith build pipeline.
Also notice the very unstable semver versions: 0.1.0 and 0.0.5.

Table 2.1: A comparison of static site generators

Jekyll Hexo Metalsmith

Language Ruby JavaScript JavaScript
Foundation Oct. 2008 Sept. 2012 Feb. 2014

Contributors ~700 ~100 ~50
Plugins ~800 ~600 ~590

Customizability Mediocre Low High
Opinionatedness High High Low

Standard templates Liquid Swig none

2.4 Comparison
To conclude the summaries of different static site generators, a short overview
using a table is given below (see Table 2.1). The comparison is built up on
advantages and disadvantages, as well as the most important features they
consist of. Therefore overall popularity and customizability play an as im-
portant role, as the language they are written in. However, Metalsmith is
standing a little bit out, as it does not provide a full-featured framework
– it merely serves as the basis for further plugin setup, whereas Jekyll and
Hexo already contain some sort of standard setup. The numbers of plu-
gins in Table 2.1 were taken from search queries on https://npms.io and
https://rubygems.org.

https://npms.io
https://npms.io
https://rubygems.org

Chapter 3

Technical Foundations

Before any explanation of the theoretical approach behind this research,
there is a need of describing the technical foundations, on which the general
thoughts were built on.

Being mostly a back-end web developer, one surely gets confronted with
a lot of changes in this field. Changes which were mostly caused by the ongo-
ing progression of general web development, but also caused by constantly
coming and going “hypes”. Changes which might leave minor traces, but
sometimes also having a major impact on the way some developer processes
things during his/her work on different projects.

One of these major turning points was the introduction of EcmaScript 6
(ES6), which provides a more sophisticated application flow for software de-
velopers compared to the old standards, where the code architecture quickly
got out of hand, especially if not fastidiuosly checked using JSLint [16]. ES6
introduced a lot of new features, pushing JavaScript more and more towards
the definition of an “object-oriented” scripting language, thus not only by
providing “real classes”, instead of the old and cumbersome approach of
inheritence by setting a constructor function into the prototype object [2,
p. 47].

However, the probably most beneficial functions are Promises [37] and
Arrow functions [36], both saving significant amounts of code – especially
when working with asynchronous environments, like HTTP requests.

A dynamic web project often demands lots of preparation before receiv-
ing any visible outcome, sometimes even when using a predefined framework.
Additionally, though many projects in the Node.js universe are already ma-
tured to an extent, where they may be even used for enterprise projects, there
is still a remaining risk for failing a client due to the amount of dependen-
cies on external services like databases, session storages or user management
tools.

Compared to a dynamic CMS, a static site generator takes out the com-
plexity of a web project, as it only produces the very basic parts for serving

13

3. Technical Foundations 14

Figure 3.1: A graphic showing the basic flow of a build pipeline. First, the
configuration file is read and necessary modules invoked. Second, the global
metadata, as well as metadata from within the content, is parsed and stored
in the global configuration. Third, the content sources get compiled into basic
HTML markup. Lastly, the compiled content gets rendered into predefined
templates, to apply a given structure which is used commonly throughout
the website.

information to the client. Furthermore, most of these projects are quickly
scaffolded and provide a huge amount of variety in different tools they use.
When using an environment for automatic deployment, an updated version
may even be uploaded to the web server without a developer’s intervening.

3.1 Build pipelines
A static site generator mostly consists of a build pipeline, which handles the
workflow needed for bringing the content into shape. This goes from setting
the boundaries, determined by a configuration file, to finally producing a
web root, consisting of HTML, CSS and JavaScript files, as well as images.

Normally, the major part of it happens sequentially, as nearly all content
files are facing a series of transformations on them [34]. Although the amount
and extent of conversions may differ significantly from pipeline setup to
pipeline setup, it can be broken down to the following core parts (see Fig.
3.1):
Metadata parser – Parses global metadata, found in the configuration file

or in the YAML frontmatter of content files.

3. Technical Foundations 15

Program 3.1: frontmatter.md

1 ---
2 author: Sascha Zarhuber
3 title: Frontmatter demo
4 date: 2017-04-07
5 tags: # Array of tags for use later on
6 - some
7 - tags
8 - here
9 template: false # Order plugin to not render this file

10 ---
11
12 Here starts the normal content

Markdown compiler – Used to convert easily read- and writeable Mark-
down files in browser-readable HTML.

Template renderer – Responsible for bringing the very basic content struc-
ture in shape. The goal should be a common appearence, enriched with
additional elements (like navigation, breadcrumbs, etc.).

Of course, the list above overlaps at some point with the list mentioned by
Vikram Dhillon [3, p. 24], as a build pipeline may be considered only as
a part of the given static site generator (although the main part), not as
the generator itself. One of the reasons is its independence of programming
languages: A build pipeline doesn’t care which programming language it
consists of, as long as it knows how to interpret the content sources and
templates. Therefore, it merely should be called a concept, not a framework.

3.1.1 Frontmatter

Program 3.1 shows a sample usage of frontmatter inside a Markdown file.
Bounded by three dashes above the main content source, it allows certain
per-file metadata definitions, which will be parsed at build time and provided
for the template rendering engine.

As an example, the selected template for this sample file may also hold
a list for the mentioned tags, as well as a placeholder for the author ’s name
and/or title. The main content gets then rendered into the respective place-
holding tag, already self-containing a basic structure.

Using a template: false declaration, some plugins may prevent rendering
the content into a template. This might be interesting in cases, where differ-
ent partials should be included in the DOM by some sort of asynchronous
JavaScript later on.

3. Technical Foundations 16

Program 3.2: markdown.md

1 # This text gets wrapped in a h1 tag
2 ## This text gets wrapped in a h2 tag
3
4 *italic text*
5 **bold text**
6
7 [This is a hyperlink text](http://www.fh-ooe.at)
8 ![This is an image caption](http://localhost/assets/image.png)

3.1.2 Markdown

Markdown consists of shorthand conventions, which should be easier to type
for content creators [3, p. 38]. Therefore, it makes understanding HTML not
a necessary precondition anymore, as a basic content structure may be easily
achieved when prepending/surrounding text with certain special characters
like #, *, _, etc (see Program 3.2).

Originally created by John Gruber as a plugin for Movable Type and
Blosxom blogging engines in March 2004 [22][23], it should be a support-
ive tool for users against the complexity of formal markup languages (e.g.,
HTML5) [8, p. 4]. According to Gruber’s intention, there is no “invalid”
Markdown, as he suggests the author should either “keep on experimenting”
or “change the processor”, if the output happens to fail his/her expectations
[8, p. 5].

GitHub finally adapted Markdown to its own version, called “GitHub
Flavored Markdown” (GFM), somewhere around April 20091. The people
behind it enhanced its original functions to also support code blocks, ta-
bles, strike-through text, as well as auto-linking URL structures within the
content [8, p. 18]. Additionally, also GitHub-specific functions, such as user
mentions, commit references or emojis, may be used [29].

Since then, GitHub renders browser-friendly versions of general descrip-
tions written in Markdown, for providing fast and easy overviews of the
respective repository. As an example, an existing README.md always appears
below the root file tree section on a repository front page [4, p. 5].

3.1.3 Templates

Templates are the frames of each content page, caring for a common, browser-
readable HTML structure. A uniform design layout allows site-wide look and
feel using a global CSS style sheet, as well as certain events triggered by user
behaviour, handled by a single JavaScript file.

1https://github.com/mojombo/github-flavored-markdown/issues/1 – GitHub Flavored
Markdown examples by Tom Preston-Werner.

https://github.com/mojombo/github-flavored-markdown/issues/1

3. Technical Foundations 17

Program 3.3: post.hbs

1 <!−− include header partial −−>
2 {{> header.hbs}}
3
4 <!−− set title of post in h1 −−>
5 <h1>{{title}}</h1>
6 <!−− insert post author & date metadata −−>
7 <p>by {{author}} on {{date}}</p>
8
9 <div>

10 <!−− insert the main content here −−>
11 {{{contents}}}
12 </div>
13
14 <!−− include footer partial −−>
15 {{> footer.hbs}}

Born out of the need to fail-safe produce HTML on the server, as the
produced data chunks – initiated by a client HTTP request – steadily grew,
the goal behind templating engines is primarily to separate business logic
from data display. Ideally, at the end of the day, there should be no code in
HTML, and no HTML in code [12, p. 225].

A simple template file example for a blog post is shown in Program
3.3. It is written in Handlebars, a very basic templating language, offering
only a very limited amount of template logic. Included are loops, if/else,
partials, . . . – however, additional “helper”-functions may be added by the
developer.

Although such template logic may come in handy for the most part, as
some business logic decisions seem to be rather taken during rendering, in-
stead of being hard-coded before, the concept of data separation is therefore
often unknowingly violated [12, p. 228]. Thus, the choice of the “optimal”
templating engine for a given project is crucial, as different engines offer a
different range of built-in logic. This could go from very conservative Mus-
tache2 to very powerful ones like Liquid3 (see Sec. 2.1.2) or EJS4.

3.2 Git
Today, hardly any software project is started without any form of version
control system (VCS). It supports developers as a back-up system and living
archive of their work, as data generally is ephemeral and can be lost easily

2https://mustache.github.io/ – Mustache website.
3https://help.shopify.com/themes/liquid – Shopify’s Liquid template engine.
4http://www.embeddedjs.com/ – Embedded JavaScript website

https://mustache.github.io/
https://help.shopify.com/themes/liquid
http://www.embeddedjs.com/

3. Technical Foundations 18

[9, p. 1]. Although there are many different variations offered, some of the
most popular ones today are Git, Apache Subversion, Mercurial and Bazaar.

3.2.1 History

Git was initially published by Linus Torvalds on April 7th, 2005 [9, p. 6].
This was necessary, as the “free” version of the then used VCS for the
Linux kernel development, BitKeeper, was restricted in a way it was not
suitable any longer for the community behind it. Furthermore, the search
of an already available alternative to the BitKeeper system failed due to
an unsatisfying combination of needed features, so Torvalds came up with
his own VCS flavor, containing all desired functionalities for further Linux
development (among others) [9, p. 4]:

• distributed development,
• handle thousands of developers,
• efficient performance,
• support branched development, as well as
• free, as in freedom.

While it was merely a tool for kernel hackers in the beginning, its simplicity
quickly made developers use it for other projects too. However, the CLI still
scared off people with less programming background, until GitHub came
and introduced its Desktop client5. Today, it is one of many GUIs, which are
available for different operating systems6 and completely omits the necessity
of terminal emulator knowledge when working with Git.

3.2.2 Technology

Having decided to use Git as VCS, everything begins with setting up a
new respository. This can be made remotely on a service like GitHub, or
locally using git init. When initialized as a local repository, it can still
be published remotely through setting the correct URL using git remote
later on [9, p. 198].

Commits

The next step would be to work with the repository. For the most part,
this should not influence the developer’s workflow in any way, as the .git
directory should be automatically hidden in most modern editors to not
distract him/herself from the actual work. If the developer succeeded in a
sub-task or simply wanted to save the current project state, he/she would
create a commit.

5https://desktop.github.com/ – GitHub Desktop client.
6https://git-scm.com/downloads/guis – Git GUI clients on the Git website.

https://desktop.github.com/
https://git-scm.com/downloads/guis

3. Technical Foundations 19

Figure 3.2: A graphic showing the basic structure of branches in Git.
The testing branch was created out of project state “B”, whereas dev was
branched away from state “D” and currently holds the head commit at “Z”.
In the meantime, testing was merged into dev at state “R”. In the end, dev
contains the commit history of all states connected with the bold line [9, p.
92f].

A commit is a snapshot of the current repository’s state. While it does
not contain a copy of every file and directory in the project tree, it rather
compares the current condition with its predecessing snapshot and creates
a list of affected files and their changes. Blobs7 are either reused, if they
remain unchanged or created new, if they were altered [9, p. 65].

Every commit is organized in a way, that it is chained to its predecessor
(parent), thus representing a singly linked list with the ability of gaplessly
going back from the current state (head) to the initial commit [3, p. 204][9,
p. 65]. This is necessary, as it may happen to fix a bug or improve a design
decision only by reworking a certain snapshot in the past [9, p. 151].

Branches

Since its early days, Git was used not only as back-up or archive system, but
also as code management system. This is possible due to built-in functions,
such as the so-called branched development, where a current state of the
actual development is duplicated and worked on separately. It allows for
development to continue in multiple directions simultaneously [9, p. 89] (see
Fig. 3.2).

When being part of a remote team, a developer may also push his/her
own local branches for providing it to others, as well as keeping them for local
development and merging them back to the main branch after succeeding
in his current task [3, p. 207]. Through the use of these possibilities, a
responsible administrator keeping track of the development structure is not
necessarily required to be appointed in any repository settings. Furthermore,

7BLOB – Binary Large OBject, a file which does not consist of queryable source code.

3. Technical Foundations 20

the team may decide members in charge for merges in an agile way, based
on the current need.

Usage in static site development

The advantages of using Git in static site development are mainly its pos-
sibilities of providing a full-featured archive of the content and source code
of each project. Seamlessly going back and forth in the website develop-
ment history makes it easy to navigate between every single content edit,
without loosing track of previous and future revisions. In this case, it may
work significantly better than using a common database system for content
storage.

Furthermore, it is also possible to make use of Git hooks. Once a new
commit is created, a hook might take care of invoking the build pipeline as a
“post-receive” hook – thus, the new website version gets built automatically
without requiring any additional user interaction. However, hooks should
be only used with caution, as they are not distributed the same way as the
files tracked in a given repository and also may harm the integrity of the
respective Git repository [9, p. 285f].

3.3 GitHub

As already mentioned a few times before (see p. 6 or 16), GitHub is currently
probably the most popular online collaboration platform, hosting not only
the source code for the Linux kernel8, but also for other huge projects like
Google’s TensorFlow9, Microsoft’s .NET 10 or Facebook’s React11.

3.3.1 History

Tom Preston-Werner, a Ruby programmer from San Francisco and creator
of earlier mentioned Jekyll (see Sec. 2.1) and Chris Wanstrath started de-
veloping GitHub in October 2007. After releasing a private beta in January,
they released the site to the public on April 10th, 2008 [41].

Since then, GitHub grew very fast and quickly gained on popularity
throughout the developer landscape, hosting more than 56 million projects
today12. Thanks to their generous freemium pricing model, collaborating in
open source projects still is for free: A free tier account may hold unlimited
open source repositories, working together with unlimited contributors13.

8https://github.com/torvalds/linux – Linux kernel repository on GitHub.
9https://github.com/tensorflow/tensorflow – Tensorflow repository on GitHub.

10https://github.com/Microsoft/dotnet – .NET repository on GitHub.
11https://github.com/facebook/react – React repository on GitHub.
12https://github.com/about – GitHub’s “about” page.
13https://github.com/pricing – GitHub’s pricing page.

https://github.com/torvalds/linux
https://github.com/tensorflow/tensorflow
https://github.com/Microsoft/dotnet
https://github.com/facebook/react
https://github.com/about
https://github.com/pricing

3. Technical Foundations 21

Figure 3.3: A Screenshot showing the In-Page Code Editor of GitHub.
An existing file is selected and ready to be edited. When finished, the user
may commit the changes into the repository, so that other contributors also
benefit from his/her adjustments.

All in all it seems, that GitHub turned coding into a truly social activity [9,
p. 416].

3.3.2 Technology

The main use case for creating a repository on GitHub is the fact, that unlike
other privately hosted remote repositories, it offers a wide range of additional
services. Services like Issue tracking, Pull requests and Code reviews leverage
the maintainability of source code in a repository, making it easy for each
developer to discuss and manage the current project state without the need
of switching to a third-party application.

Especially for content authors without programming knowledge, the In-
Page Code Editor might be a very supportive tool, as it provides a clean
and easy-to-use frontend for directly adding content to the repository (see
Fig. 3.3). Additionally, the just edited file may not only be committed into
the currently selected branch, but also in a newly created branch. Therefore,
the source branch stays clean, whereas the edited file may get reviewed by
an assigned supervisor, before being ready to get merged. Furthermore, also
developers might make use of this feature, especially when a small hotfix
is to be made, where it would be too time-consuming to pull, commit and
push from/to the repository [9, p. 405].

Pushing to a gh-pages branch, or creating a “<username>.github.io”
repository, enables the use of GitHub’s built-in website hosting service. From
there, either a Jekyll project is freshly built, or already compiled static
HTML are automatically published to the web – additionally, custom do-

3. Technical Foundations 22

mains may be used when adding a CNAME file [3, p. 171f].

3.3.3 REST API

Another significant advantage is the access of GitHub’s REST API. Cur-
rently existing in its third major release, it almost offers every feature also
available graphically in its web interface, as an equivalent JavaScript Object
Notation (JSON) upon programmatical request. Some services even feature
more advanced data through the API than through the UI [9, p. 410].

When having the need of including data from a GitHub account into
a third-party service, a single authenticated HTTP request does the trick.
Due to many available endpoints, a developer may quickly find the type
information he/she needs to further process data directly from a repository.
As an example, a complete listing of a repository’s file tree is also possible,
without needing to download and unpack an archive file. For one thing,
this saves quite some time, for another thing, the requested data is already
processed and presented, so that not only file paths are unveiled, but also
their direct links and data types.

Furthermore, the API not only offers access to informational data about
a given repository, instead, its manipulation through creating commits or
uploading a file may also happen. To sum everything up, very well docu-
mented examples are available on the API page on GitHub, where developers
catch a good glimpse, of what is possible overall14 [9, p. 401].

3.4 Diff
“diff reports file differences between two files, expressed as a minimal list of
line changes (. . .)” [6, p. 1]. Existing more than 40 years now, it has been
an essential tool for file comparison throughout the history of computing
– furthermore, it is also a core component of Git, which contains its own
version called git diff [9, p. 108].

3.4.1 History

Initially published by James W. Hunt and Malcolm D. McIlroy in July
1976 when working at Bell Labs, the algorithm was later used in UNIX as
application called diff. Paul Eggert and Richard Stallman (among others)
also wrote the diff application as part of their GNU diffutils15, which is
nowadays mainly distributed in Linux derivatives, MacOS, as well as part of
Git. They used an improved algorithm published by Webb Miller and Eugene
W. Myers in 1985 [10, p. 3], who proved that the original “Hunt-McIlroy

14https://developer.github.com/v3/ – API v3 documentation on GitHub.
15http://manpages.ubuntu.com/manpages/zesty/en/man1/diff.1.html – Manpage for

GNU diff.

https://developer.github.com/v3/
http://manpages.ubuntu.com/manpages/zesty/en/man1/diff.1.html

3. Technical Foundations 23

Program 3.4: sample.diff

1 0a1
2 > w
3 3,4c4,6
4 < c
5 < d
6 ---
7 > x
8 > y
9 > z

10 6,7d7
11 < f
12 < g
13

algorithm” is inefficient on certain special cases. As a test case, they used
a file containing 1000 blank lines, and a second file, consisting of the initial
file, but with a single non-blank line added on both ends. As a fact, using
other experiments performed on typical files, Miller’s and Myers’ algorithm
ran roughly four times faster [11, p. 1034f].

3.4.2 Technology

diff’s core task is finding the “shortest sequence of insertions and deletions
that will convert the first string to the second” [11, p. 1025] together with
finding the longest common subsequence occurring in both files [6, p. 2].
Combined with the mathematical algorithm, it should provide an easily
understandable format for humans, consisting of line numbers joined with a,
c or d (append, change, delete), as well as < and > line prefixes, showing the
affiliation either to the initial or compared file. This is called the “Normal
Format” [10, p. 12]. Program 3.4 shows a sample output, comparing the
strings a b c d e f g and w a b x y z e (one line per letter) [6, p. 1f].

The Unified Format

To provide a more readable user experience, GNU diff contains an improved
format, called Unified Format, removing redundancy by using a more com-
pact syntax. It can be selected as output format by executing diff together
with a -u flag [10, p. 16], whereas git diff uses this as standard format to
show changes within the current working tree [20].

As an example, Program 3.5 shows the same diff output as Program 3.4,
only as Unified Format using the following components: ––– {filename}
{timestamp} indicates the initial file together with the timestamp it was cre-
ated, whereas +++ {filename} {timestamp} is the same as above, but for

3. Technical Foundations 24

Program 3.5: unified_format.diff

1 --- oldfile 2017-04-13 09:42:47.474769553 +0200
2 +++ newfile 2017-04-13 09:43:13.898566935 +0200
3 @@ -1,7 +1,7 @@
4 +w
5 a
6 b
7 -c
8 -d
9 +x

10 +y
11 +z
12 e
13 -f
14 -g
15

Program 3.6: file.diff

1 --- oldfile 2017-04-13 09:33:18.092200876 +0200
2 +++ newfile 2017-04-13 09:34:11.256529061 +0200
3 @@ -1,8 +1,10 @@
4 Hello,
5 -this line gets deleted in newfile.txt,
6 -as well as this, so both get prefixed with a minus
7 +
8 This line stays the same, but is preceded
9 by a blank line, which gets prefixed with a plus

10 +Oh yes, and this line got added in newfile.txt
11 All other lines staying the same as in oldfile.txt
12 are prefixed with a blank space.
13 (such as this, which should be a blank line)
14 + (but not this, as it also got added in newfile.txt)
15 +Good bye (also added)

the compared file. @@ -{intial line range} +{compared line range}
@@ shows the affected line range, where -1,7 indicates the following 7 lines,
starting from the first line of the initial file. Lastly + marks a line as added
in compared file and - marks a line as deleted in the compared file. To make
the above explanation a little bit more clear, an additional example with a
text speaking for itself is shown in Program 3.6.

It can be clearly seen, that line 3 shows a growth of newfile by two lines:
-1,8 vs. +1,10. Having also a color-coded representation, it would boost
the readability of such diff outputs once again.

3. Technical Foundations 25

Program 3.7: A snippet of a file called “manual.txt”, which is affected by
a conflict. Content between HEAD and ======= contains the local version,
content below contains the foreign conflicting version.

1 <<<<<<< HEAD:manual.txt
2 I (the developer) am right!
3 =======
4 The branch_name is right!
5 >>>>>>> branch_name:manual.txt

Usage with Git

As already stated, diff is one of the core components of Git. Not only does
it support determining changes in the source code between a snapshot and
another, it may also reveal merge conflicts, if segments are mutually exclu-
sive and therefore preventing a flawless propagation of development. Thus,
a varying development history of different origins (e.g. branches) not com-
patible to each other might be indicated. Furthermore, a conflict may also
happen, if a developer forgot to pull the latest changes before committing
his/her current development progress. These conflicts may only be handled
through human guidance [9, p. 124].

A conflict presents itself primarily through a message similar to:

CONFLICT (content): Merge conflict in file
Automatic merge failed; fix conflicts and then commit the

result.

If anything like the above happens, the affected files by the conflict also
contain a structure like shown in Program 3.7. A conflict can then be resolved
by removing its markers and picking the appropriate resolution of either side
of the ======= delimiter [31], as well as mixing them to the developers needs
[9, p. 126]. A single file may also contain multiple conflicts.

Usage with GitHub

Especially when interacting with GitHub’s REST API, it is very easy to
generate and import file diffs of a given repository. Whether two branches
or two commits using their SHA values are compared, a single HTTP re-
quest suffices for programmatically retrieving data, which is normally only
accessible using a terminal emulator.

Depending on the requested media type in the appropriate HTTP header
field, either a full-featured diff, patch or JSON containing per-file patches is
emitted by the API. If the latter was used, the underlying diff is translated
into a JSON object, containing information like the number of additions,
deletions and changes, as well as the mentioned patch for each file.

3. Technical Foundations 26

As a consequence, a repository does not necessarily have to be cloned,
as it may be patched constantly using the API to keep it up to date – using
this method, patch is even able to create and delete files, if necessary [10,
p. 57]. The only prerequisite is to keep track of the single commit hashes
the patches are applied from.

Chapter 4

Theoretical Approach

Once a decision is made in favor of a project using a static site generator,
first challenges may already arise:

• What kind of media is being used? Images, videos, or just text?
• How is the project structured? How many independent permalink

structures are there?
• How many content authors are there? How often is content added or

altered?
• How steady is the site design? Does the site have more than one inde-

pendent design flow?
Some content-related issues may not be improved in a predictable amount of
time, but even in projects where only a high amount of content productivity
is pursued, developers are forced to keep the build pipeline performant and
responsive to the content author’s needs.

4.1 Challenges
As already stated above, nearly every web project bears challenges to solve,
both for developers on the one hand, and for content creators on the other
hand. While content creators mostly need to solve structural issues in the
published content, developers are mainly responsible for supporting authors
in technical questions, as well as constantly keeping an eye on the backend
development. This might go from always keeping the underlying modules
updated, to populating the source code with design or template changes, to
finally maintaining the build pipeline and deployment setup.

4.1.1 Distributed development

When it comes to administer a static site project, it is very likely that
there will not be any possiblity of working on the same project in the same

27

4. Theoretical Approach 28

Figure 4.1: A graphic showing the stylized separation of a project into
a content and a development repository. The content authors may only be
granted access to the content repository, while developers should be granted
access to both, thus providing a seamless integration for the content into the
build pipeline flow (see Fig. 3.1).

environment in a linear way. Instead, every developer will have to have a
local install of the used generator at his/her disposal, together with access
to a remote repository of a version control system for exchanging the current
development status with other project maintainers. The main reason for that
is the fact, that unlike content authors, developers do have the obligation of
installing or maintaining the project’s dependencies [3, p. 85].

Content Editors on the other hand may, if using for example GitHub,
make use of the remote “In-Page Code Editor” (see Fig. 3.3), which also
provides an optimistically rendered version of the current content, although
without making use of the project’s style sheet.

Separating content from code

As constantly growing static site projects may sooner or later come to a
point, where content progression differs from development progression, it
might be useful to separate both parts into independent repositories (see
Fig. 4.1). This especially makes sense, if the content editor team is also
locally separated from the development team and therefore an additional
level of security against accidental branch intermixture is needed.

4. Theoretical Approach 29

Merging only using pull requests

However, if this kind of strong division is not desired anyhow, another op-
tion would be to limit access to the development repository in a way, that
everyone may fork a repository, but only certain project users are allowed
to merge external branches into the main development tree. On GitHub,
pull requests may be used. These pull requests allow any user to announce
his/her contribution to the project using a commit history of a forked repos-
itory. The source project owners may then decide whether or not to merge
the announced changes and also have the chance to express their point of
view via comments directly on the pull request to its creator [9, p. 394f].

The point in time, when a pull request is created is subsidiary, as fur-
ther development on the specific branch is automatically included as well.
Thus, per-line comments are also removed, once the specific line of code has
been modified in a following commit [27]. Furthermore, the possibility to
merge is checked after every commit pushed to the respective branch, so
the responsible users always know, if a merge operation may be successfully
executed. Otherwise, a merge is only possible after locally checking out the
pull request and processing it using the command line [30].

Staging versions

Working with separate remote branches on a version control system like Git
also allows for staging environments and therefore testing different versions
of the projects concurrently. The public version however, visible to all clients
visiting the website, remains stable and should receive only well-tested or
well-considered updates as the very last step in the ongoing development.

To achieve this goal, a testbed is necessary and may be realized using
another branch besides “master”. Sometimes an additional “bleeding edge”
version is also likely to be included in the build process. Based on this
strategy, it is easy to control and maintain different revisions at the same
time and nevertheless infer the functionality of different proof of concepts
for merging them into the public version later on.

4.1.2 Build cycles

One of the major challenges using static site generators remains the issue of
providing a “real website look and feel” to the content editor. Whereas au-
thors in dynamic CMSs are presented with an already pre-rendered version
of the newly added content (since the underlying system is not dependent
on any template rendering before deployment), static site generators only
offer a glance of the author’s work, after the whole build pipeline process
succeeded in its render flow, unless other pre-caching methods are used. Yet,
most static site generators do not include such kind of tools by default.

Based on the size and the amount of files in the website source code, this

4. Theoretical Approach 30

Figure 4.2: A graphic showing the theoretical approach of a build pro-
cess flow, supported by caching. After the client (content creator, developer)
executes a build, the included caching mechanism should filter modified or
added files and send them to the build pipeline. After the build succeeded,
the newly built files should be merged with the already existing files to form
an updated version of the website root.

time frame can easily grow linearly. If there are also additional tasks added
to the build process, such as resizing images to different screen sizes for
providing a responsive user experience, the computational effort may easily
get out of hand and therefore the duration until the content editor first sees
the result of his/her work simply gets unacceptable.

Possible problems of long-lasting build processes

Waiting for the completion of the build pipeline can cause severe recesses
in the work performance of a content editor or developer, as further work
depends on its success, while a failure is often combined with time loss
beforehand and intensive bug hunting afterwards – probably resulting in
even more consecutive build pipeline failures. This assertion may not only
be linked to crucial modifications in development, also the smallest hotfixes
might as well provoke a full rebuild without justifying the whole effort.

Furthermore, being forced to wait in line may cause a developer to loose
track on the development process, thus the introduction of hidden bugs
(although not resulting in a build failure) is more likely. Additionally, mind-
lessly executing build cycles may even lead to data loss or blocking the
workflow of other contributors.

4. Theoretical Approach 31

4.1.3 Caching

Speeding up a build process can be done via caching. The right caching
method should differ between unmodified content and files which actually
have been reworked or were newly introduced into the project source. Using
this sort of information, the algorithm might only choose the latter files, send
them to the build pipeline and merge the outcome to the already existing
project build (see Fig. 4.2). Although a few static site generators already
include some sort of caching methods – although most of them only work
locally (like Hexo’s Warehouse, see Sec. 2.2.2), a first step is made. It should
significantly improve the build duration for local development, as long as the
optimal cache storage is being used. Hexo’s Warehouse uses a JSON file as
persistant storage, while the temporary storage lies in the Computer’s RAM.
This is fine for smaller projects, but could also lead to critical memory issues
when used in projects containing a huge amount of files. For bigger data sets,
it would be possible to use caching in conjunction with databases like SQLite
using the JSON1 1 extension.

As the local cache may not easily be transferred to other contributors
or deployment engines, the first build after a pull does not take advantage
of any speed up technique. Moreover, the methods mentioned above all use
a significant amount of local computing power to provide a useable cache,
which could lead to problems and unwanted slowdowns on portable devices.

Determination of cacheable contents

The next step would be to select cacheable files, as not every file has the
same impact on the project source. While normal blog posts are mostly self-
contained – unless there is probably a preview of a post featured somewhere,
a template file on the other hand is often a dependency for many blog posts.
A working cache is more important for a commit only containing content
data, than for a commit which only contains template files, as a template
file acts as a dependency for possibly multiple content files. Therefore a
template file invalidates the cache, which leads to a complete rebuild.

Since the relations between files, as well as their dependencies, may ap-
pear a bit obscure at first sight, it needs some kind of tracking system for
ensuring a persistent overview of cacheable contents. This does not stop at
comparing the file path within the project tree, as for example, all template
files are stored within one special directory. For future considerations, also
the source code would have to be examined, as the frontmatter in content
files may contain information about dependencies to external files (see Sec.
3.1.1). Therefore, the challenge here would be a reverse lookup mechanism
for spotting file relations in the project source.

1https://www.sqlite.org/json1.html – JSON1 documentation on SQLite’s website.

https://www.sqlite.org/json1.html

4. Theoretical Approach 32

4.2 Solution strategies
A primary task would be the focusing on critical issues to at least boosting
the project’s overall performance noticeably without losing too much track.
This may be worked on in terms of collaboration, as well as in the project’s
setup, where on the one hand the team’s performance and on the other hand
the build engine’s performance should be improved.

A lot of issues can be covered using GitHub’s API, although some project
specific adaptions are still necessary. Nevertheless, the API provides enough
information for quickly perceiving a sufficient overview of the respective
repository.

4.2.1 Distributed development on GitHub

Based on GitHub’s API and the advantages of using Git as version control
system, it is definitely a significant benefit to equip all project contributors
with a GitHub account. While the public, open-source model is free of charge
(see Sec. 3.3.1), there are also different pricing models offered for privately
held projects, which should be hidden to the public2.

Although dependent on financial expenditures, the additional value of
working on a project with closed source (though it may be released as open
source somewhere in the future) may be worth considering. Yet, full-featured
access to the API is also included in the free tier though.

Not only GitHub offers a queryable API, also Bitbucket provides an
API with similar response data3 – although certain features are missing,
compared to GitHub. These missing features include for example certain
project download functions, among others.

In addition to the API, GitHub’s built-in In-Page Code Editor plays an
important role for choosing it as core support tool for this project. Therefore,
merging using pull requests and a continuous branching model for supporting
staging versions qualify as proposed strategies to developers.

4.2.2 Build cycles

Supporting content authors in their workflow also means to not require them
to install unnecessary build tools manually, unless critically needed. Due to
the possibility of using GitHub’s In-Page Editor, the whole Git checkout,
commit and push process becomes in a way redundant too. Moreover, the
online editor automatically creates pull requests on demand, so that the
respective project owners should get notified automatically, if a merge is
possible and therefore an update of the currently published project may be

2https://github.com/pricing – GitHub’s pricing models.
3https://developer.atlassian.com/bitbucket/api/2/reference/ – Bitbucket’s API docu-

mentation.

https://github.com/pricing
https://developer.atlassian.com/bitbucket/api/2/reference/

4. Theoretical Approach 33

initiated.
Normally, a responsible user would pull the new state after a merge of

the pull request, then execute the build pipeline. After the build process
succeeded, he/she then has to take care for updating the webroot on the
server, so that the newest version of the website gets delivered to the client
upon request. However, this practice may easily get cumbersome, as the
respective developer might get distracted by checking out new branches and
possibly leaving behind his/her own work for the moment. Moreover, if the
deployment has to be done manually, additional mistakes may happen during
the whole action (see Sec. 4.1.2).

In this case, it makes sense to remotely outsource the build service and
to possibly even automatically execute the render cycle. Used in conjunction
with GitHub’s Webhooks, an external service would receive a build execution
order via a HTTP POST request, based on certain predefined events in the
GitHub repository [32]. Apart from the information the webhook provides,
the service would even accept custom build options issued by responsible
users, as the endpoint has to be publicly available anyhow. Once a build
succeeds, the service should then notify a predefined list of users about the
render cycle result and provide the outcome via download possibility.

Existing remote services for static site generators

CloudCannon4 is probably the most popular online static site generator and
offers a commercial external building service for Jekyll projects, together
with source access using a GitHub or Bitbucket repository. According to
its documentation, it currently supports Jekyll projects running v2.4.0 or
newer5. It features a project file explorer and presents every new project as
opinionated as Jekyll usually does (see Sec. 2.1.2), as well as an automatic
deployment service on their own subdomains. However, access to the ren-
dered website files is not included, so every customer is dependent on using
their hosting service.

BowTie6 is similar to CloudCannon and is also offering a commercial on-
line service. It seems to be a much more standalone service than CloudCan-
non, though it also offers GitHub integration, as well as custom Webhooks
for event-based actions on external services.

Pancake7 is a free service for externally building static sites. It features an
engine auto-detection and currently supports Jekyll, Wintersmith, Pelican,
Sphinx, Hyde and Middleman8. Due to its non-commercial version, several

4http://cloudcannon.com – CloudCannon, the Cloud CMS for Jekyll.
5https://docs.cloudcannon.com/building/versions/ – Supported versions on CloudCan-

non documentation.
6https://bowtie.io – Website of BowTie.
7https://www.pancake.io – Website of Pancake.
8https://github.com/pancakeio/detect/blob/master/heuristics.go – Currently supported

http://cloudcannon.com
https://docs.cloudcannon.com/building/versions/
https://bowtie.io
https://www.pancake.io
https://github.com/pancakeio/detect/blob/master/heuristics.go

4. Theoretical Approach 34

Figure 4.3: A screenshot of an approach to pushing a Jekyll project to
Pancake. As a result, the operation failed with an “Unknown error”.

restrictions are to be considered [38].
However, the service does currently not run stable, as an initial project

setup failed (see Fig. 4.3). It seems that Pancake uses a post-receive hook
for automatically trying to build a project, once it detected the underlying
engine type. This causes waiting time for the developer on the one hand, but
on the other hand informs whether a build was successful or failed. During
another push attempt, it failed, as bundler9, a gem dependency management
tool required by Jekyll, was not mentioned in the “Gemfile” contained in the
repository.

4.2.3 Caching

As stated before, most static site generators do not contain any form of
caching mechanism by default – if they do, caching is limited to the local
machine a build is executed on. Since there probably is no easy way of
providing a form of remote caching, as this largely includes the necessity of
external services to exchange a common status, as well as an index containing
information about source and destination files for later rebuilds, it needs an
equivalent strategy, which merely contains these information from a certain
point in the past to the present, without relying on physical file structures
to be exchanged.

Furthermore, such a caching strategy must be universally useable across
all operating systems and ideally does not require any additional setup from
the user. Moreover, it should also feature hassle-free integration into any
project without depending on an external, yet unused service.

Keeping all of these issues under consideration, not every suggestion
might get featured equally in the final solution – the main reason is, that a
kind of transformation like the one caused by a build pipeline always needs
an existing status to build up from. So, tradeoffs are likely to accompany

static site generators by Pancake in raw source file on GitHub.
9http://bundler.io – Bundler, a gem dependency manager.

http://bundler.io

4. Theoretical Approach 35

any form of decision to be made in this case.

Caching based on diff

As Git was chosen as version control system, diff is already part of the
development suite. Therefore, a gapless detection of development progress
between two arbitrary commits is possible. The diff format can be parsed to
JSON and makes it easy for use in JavaScript. Thus, its usability for further
processing on application level is assured10.

The most important parts of a diff representation in this context are
the file paths, as well as the type of modification on each file affected in
the respective time span. Considering this kind of information, an existing
repository might be quickly divided into unaffected and affected files – where
affected files, as well as their dependents possibly need to be selected for a
rebuild. The final decision of the rebuild extent based on the diff, however,
should be based on heuristics.

To conclude the consideration of using diff, the approach explained above
is different from “classical” caching. Such a mechanism, founded on diff, is
not dependent on support-files produced on its own (like a caching cata-
logue), but it requires a consistent and strict git workflow, otherwise it has
no control over untracked files.

4.3 Considerations towards implementation
After looking at challenges and possible solutions, the following topics can
be identified as being essential for:
Remote – Outsorce long-lasting actions to an external service.
Caching – Speed up builds by making use of already finished work.
Versioning – Keep track on development and possibly revert, if necessary.
Branching – Let different parts of development evolve to their own speed.

Git qualifies as core companion to any website project, especially when
the project itself is maintained by multiple developers, designers and/or au-
thors. Being aware of GitHub as social code management tool and moreover
the benefits of its API, it serves well as foundation for the solution (see Sec.
4.2.1).

Since the tool should also be remotely accessible, it makes sense to also
design it as RESTful API, for handling programmatical access as well as
access from possible frontend apps lying on top. Furthermore, its main work
cycle might get detached for neither distracting users due to ordering them to
wait until it finished, nor blocking access in between (see Fig. 4.4). However,

10https://runkit.com/saschazar21/diff-parsing-demo – An interactive example for fetching
and parsing a diff-file.

https://runkit.com/saschazar21/diff-parsing-demo

4. Theoretical Approach 36

Figure 4.4: An abstract flow visualization of the planned request cycle. The
client (developer, content creator) manages his/her code on GitHub. Based
on the respective configuration, a build cycle may be triggered automatically
using a GitHub webhook, or manually by sending a POST request to a certain
endpoint. This creates an instance of the build pipeline. The pipeline requests
data of the project from GitHub and sets up the project configuration. After
a successful build, the REST API provides a downloadable archive of the
newly built webroot.

the most important part behind these thoughts is the choice of the ideal
static site generator system.

4.3.1 Choosing a static site generator

The evaluation needs to cover the usability, pluggability, customizability
and overall maintenance, as well as the level of its general support of the
candidate systems. First and foremost, the installation process should be as
easy as possible and not rely on too many third-party dependencies, which
are probably not needed afterwards. This improves the maintainability of
the system.

The programming language of the chosen static site generator does have
to be considered well, as it has to fit seamlessly into a planned REST API,
in the best case without any further adapter in between. This should provide
an easy way to hook additional code into the configuration step, if needed.
Ideally, it emits events as well, so any host process knows when a detached
process is finished.

All in all, the currently best solution seems to be Metalsmith (see Sec.
2.3), as it offers a pluggable module ecosystem, and also provides access to
a JavaScript API, among others. Together with some custom tweaks (e.g.
dynamic module loading), an independent build setup for each project may
be injected using only a specific configuration file.

4. Theoretical Approach 37

Program 4.1: An example for a basic express.js setup, roughly taken from
http://expressjs.com/en/starter/hello-world.html. In this case, a web applica-
tion listens for a GET request on its root path “/” and responds with a
“Hello World!” message.

1 const express = require('express'); // require base module
2 const app = express(); // Create instance
3
4 app.get('/', function rootRoute(req, res) { // Listen for GET request
5 return res.send('Hello World!'); // Send response
6 });
7
8 app.listen(3000); // Listen on port 3000

4.3.2 Constructing a REST API

JavaScript proved its universality due to its usage both on client- and
server-side. Node.js is a server-side implementation for JavaScript, backed
by Google’s V8 engine, which directly translates the scripting language into
machine code [1, p. 4]. A seamless integration of Metalsmith into the API
service may therefore happen without much hassle.

The easy installation is supported by several third-party apps like Node
Version Manager (NVM)11 and mostly will not need any admin rights, which
makes it ideal to use on hosting environments without root access (unlike
PHP or Ruby for example). Although not equally well supported among the
most popular operating systems, at least MacOS and Linux provide a stable
enough environment for NVM.

Looking for a framework for setting up an API, Express12 is well suited
for this task, as it only consists of a very basic setup – similar to Metalsmith
– but may be easily enhanced using different node modules, thus providing
a uniquely shaped web application in contrast to conventional, monolithic
frameworks like Django or Ruby on Rails [1, p. 176].

As a result, the main purpose of such an express application would be
acting as a web-based infrastructure for the underlying build pipeline. Based
on different REST endpoints, as well as their request parameters, executing
a uniquely configured Metalsmith process on a project directory within the
API’s file tree should be possible without any further external interaction
requirement. The project directory would be provided using an appropriate
GitHub repository, requiring only a basic, as little opinionated configuration
as possible, together with a public access possibility to the repo.

Additionally, to benefit most from any remote outsourcing, a current
production-ready version of the website may be held available at a special

11https://github.com/creationix/nvm – NVM’s repository on GitHub.
12http://expressjs.com/ – Website of Express.

http://expressjs.com/en/starter/hello-world.html
https://github.com/creationix/nvm
http://expressjs.com/

4. Theoretical Approach 38

endpoint for downloading at any time. In this case, deployment is enabled
without waiting for completion of any build cycle beforehand, unless the
source code received any updates through development.

4.3.3 Caching and selective rendering

As the technical foundations for a project covering the use case of static
site generation are now defined, a constantly growing amount of necessary
build time still remains as one of the core problems. Caching across remote
machines is likely to be impossible, especially if local computers also have
to be added to the caching network and not every node is working on the
same project revision at the same time. Moreover, an additional distribution
mechanism would also have to be implemented, acting primarily as supply
tool for providing already rendered revisions of different steps in develop-
ment.

Concentrating on basic improvements of speeding up a build cycle, a
solution without exchanging complete file trees might be possible. To make
sure all required data is accessible, the respective GitHub API credentials
are mandatory. The main reason behind that is the gapless availability of
every commit and its underlying file tree via HTTP – therefore a separate
git checkout on server level is not needed, GitHub provides the according
file tree as immediately obtainable tarball or zip archive.

Together with the development history between two individual commits
resulting in a diff and a downloadable file tree representing a certain step in
the current progress, a build log has to keep track of the ongoing rendering
actions and their results. The idea behind that is the possibility of remem-
bering any render action in the past and incrementally building up on the
latest positive result by only selecting the modified files for use in the build
pipeline and leave out any other. Relying on an already available bugless re-
sult of a previous build cycle, any successful outcome of an upcoming action
based on a later commit may be easily merged (see Sec. 4.2.3).

Chapter 5

Implementation

After shaping a basic theoretical approach and probably sketching different
considerations, it is time to define the needed tools and setting up a project
repository. Also, it has to be considered, that the finished project should
depend on as little third-party software as possible, but also be as deployable
as possible.

At the very beginning, a clear structure has to be adopted, which con-
currently serves as navigation guide for later development. Having a folder
structure ready at development start, it may seem rigid and even narrow
down the developer’s freedom in creating his/her part of the application
logic during some part of the process, but nevertheless it is definitely an
important and easy supporting tool for projects being maintained using an
asynchronous collaboration workflow. Furthermore, it may even help in cre-
ating tasks focusing on certain parts of the development process.

5.1 Foundation
Since Node.js is very suitable for providing an instant development environ-
ment on most popular operating systems1, as well as quickly leveraging a
basic application, which provides immediate feedback to its creator – with-
out depending on any precompilation steps – it may be considered as basic
framework for any further development.

Together with the achievements of ES6, a clean code foundation marks
the base structure for further module introduction into the project. Step by
step, a modular web service is going to be raised and formed according to
its designed operation mode.

1http://nodejs.org/dist/latest/ – Precompiled versions of the latest Node.js release, for
different operating systems.

39

http://nodejs.org/dist/latest/

5. Implementation 40

5.1.1 Express.js for REST

Starting with Express.js, the sample code in Sec. 4.3.2 shows a reasonable
example on how to easily provide an API endpoint. While the example only
returns a string containing “Hello World!”, a JSON structure may also be
used and is probably a better choice for working programmatically on the
response data later on.

Furthermore, a good advice would be to use a modular form of route
definitions, since the main source file will soon get too bloated and may grow
a lot of spaghetti-code in it. This may be achieved in outsourcing the routes
in specific files and/or folders and importing them via a require-statement.
As a bonus, an external source file containing route definitions also allows
for custom logic and middlewares, which may be hidden to the rest of the
application by default [1, p. 220f].

Middleware

Especially when depending on advanced application logic (e.g. user authen-
tication, database management, etc. . .), further tasks containing validation
checks or user definitions may get necessary. If these tasks are required by
more than one route, it makes sense to abstract their logic into reusable
components for use as middleware in these specific routes [1, p. 223]. Op-
tionally, more than one middleware may be used on a single route, where
their placement stands for their execution order – from first to last.

Listing 5.1: An example for middleware ordering, where firstMiddleware
gets called right before secondMiddleware. Both middlewares have to succeed
(e.g. return done-callback function) in order to grant access to the “/secret”
route.

1 const firstMiddleware = function (req, res, done) {
2 // Application logic ...
3 if (false) {
4 return res.send('Not allowed'); // Middleware failed
5 }
6 return done(); // Call done, if middleware succeeded
7 };
8
9 const secondMiddleware = function (req, res, done) {

10 // More application logic ...
11 return done(); // Call done, if this middleware also

succeeded
12 };
13
14 router.get('/secret', firstMiddleware, secondMiddleware, function

callback(req, res) {
15 // Finally access to route logic , if both middlewares succeeded
16 });

5. Implementation 41

OAuth 2.0

OAuth 2.0 stands for an open authorization framework, which grants lim-
ited access to a certain HTTP service, either on behalf of a resource owner
(e.g. allow access to user data of a social network account), or by allowing
a third-party application to obtain access on its own behalf [5, p. 1]. In
this case, the latter is more interesting, as a programmatical access may be
achieved by issuing an access token via a “client credentials” grant type.
Therefore, an application-only access is possible without depending on any
user interaction.

The whole authentication process is necessary, as the final web appli-
cation will hold different user accounts, as well as their registered projects.
Thus, every client (human or non-human) may interact with the applica-
tion’s API only via certain issued tokens, which ideally are only valid for a
specific amount of time before they expire [5, p. 43].

5.1.2 MongoDB

Every account or project data has to be stored on a non-volatile type of
memory to faithfully provide any requested information at any desired point
in time. Moreover, these data requests may not interfere with each other,
nor cause inconsistencies or conflicts within the storage, even if accessed
at the same time. As a consequence, a memory solution depending on files
will not likely fulfill every crucial requirement, especially when a service is
constantly and fast growing.

A good choice is therefore to use MongoDB, since it stores the entries
already as formatted JSON and is not depending on a fixed table schema
beforehand. As a result, the structure most likely does not have to be ex-
cessively administered during development and stays as adaptive as possible
until a final schema has evolved.

Additionally, MongoDB also features the possibility of administration
via JavaScript-files on the server-side. These files may not only query the
database for entries, but also contain predefined tasks for manipulating
the contents – critical commands therefore should be rather automated
by a Cronjob or executed by the user from within the mongo shell by
only using this form of interaction method [33]. This supports preventing
mistyped commands as well as reducing the risk of data loss on the database.
Moreover, it may also help in constantly keeping a second database up-
dated, which is intended for testing purposes and is assumedly relying on a
production-like ecosystem.

In this case, the database is used for holding user data together with data
logged by the API during every single build process. Thus, the user may get
provided with a seamless reproduction of the build history of his/her project
at any time.

5. Implementation 42

Schemas

Besides holding user data and information about the build cycles, the database
also is the first section to be addressed in terms of information about the
currently processed repository itself. This saves time and reduces the ac-
cess rate to the GitHub API, as the most important information about the
repository and its contributors gets stored in the database upon registration
using the REST API.

However, most of the required data during a build cycle still is fetched
from GitHub, as the database’s core task is the user management, as well
as the storage of build logs. It would be a bit redundant to also constantly
update repository changes on GitHub into the database.

Therefore, the schema structure on the database can be listed as follows:
users – Holds the plain user data; users have to sign up using the e-mail

addresses they are also using on GitHub. The schema then contains
the user’s name, the hashed password, as well as the e-mail address.
Additionally, the respective GitHub user data is also stored using a
github property.

clients – Registered users have to register a client for OAuth 2.0 token
exchange. Client ID and password are generated automatically by the
REST API. Besides the client secret, there is also a reference to the
respective user entry present.

accesstokens – Holds access tokens issued by the OAuth 2.0 framework.
The tokens are only valid for 60 minutes and are checked for validity
upon every request (see Sec. 5.1.1).

projects – Once new repositories are registered using the REST API, data
from GitHub is fetched and stored together with references to the
user schema. Furthermore, every time a build log was created, the
respective array in the project schema grows by one reference to the
builds schema.

builds – Every time a build cycle was triggered and succeeded in validating
the repository information on GitHub, an intermediate build entry is
created. Finally, after the process finished, the success property in
the build log is updated accordingly (either true or false). To provide
precise, usable information, the schema also contains the base and
head hash of the current commit range, the start and end timestamp
of the process, as well as an array containing rendered file paths. If
this array is empty, it indicates either an initial build, or a full rebuild.
Furthermore, the filename property stores the name of the generated
tar.gz archive (see fig 6.3).

5. Implementation 43

5.1.3 GitHub API

Since the project will require every suitable static site source to be hosted
on GitHub, the GitHub API is able to provide short and fast overviews
of their current state. For providing an automated static site builder, the
project needs to rely on some crucial information before being able to set
everything in place.

Because of the fact, that speed and performance are the dominant factors
in such considerations, it is unlikely to look up information from a “physical”
file tree on the disk, unless it cannot be done using a service, which already
delivers data in an understandable form. Hence the GitHub API offers a
wide range of information about a hosted repository and furthermore is able
to cope with a constantly high amount of load, it should be a good fit while
even having the need of sending multiple requests until receiving the right
extent of data.

The most important API calls for this project are listed below, their
description may be found on GitHub’s API Reference2.

• /repos/:owner/:repo/git/trees/:sha – Returns the file tree of a
repository at a given commit hash.

• /repos/:owner/:repo/contents/:path – Returns the contents of a
file or directory.

• /repos/:owner/:repo/:archive_format/:ref – Returns the link for
a repo tarball at a given reference (e.g. master, but can also be a
commit hash).

• /repos/:owner/:repo/commits – Returns commits for the given repos-
itory.

• /repos/:owner/:repo/compare/:base...:head – Returns affected
files between a base and head commit. Comparison between branches
and/or forked repositories is also possible.

Get a Tree

One of the most important steps prior to working with a foreign website
source is the examination of its file structure, especially when dealing with
static site sources. Unlike any other dynamic project, which probably up-
dates itself using certain online sources under predefined circumstances, a
static site nearly always has to be rebuilt from scratch.

Although it is also possible to unveil the desired state from the past by
reverting to that commit, multiple actions have to be taken before succeeding
in that task. This goes from checking out the branch the commit belongs
to, triggering a git revert command – which reverts the changes made up

2https://developer.github.com/v3/ – API Reference for version 3 on GitHub.

https://developer.github.com/v3/

5. Implementation 44

to the current commit [21] – to reading in the file tree using any third-party
plugin like node-klaw3.

When calling the “Get a Tree” endpoint on the GitHub API although
via a GET request, the response contains an array of objects, including file
paths, as well as information whether it is a file or directory (among others).
Based on the provided parameters like recursive, the endpoint filters every
file and directory down to the lowest level, instead of returning only the files
living in the top level of the repository. If the response also bears a truncated
key with value “true”, the repository exceeded the file limit and not every
file could be filtered. In this case, a manual checkout would be necessary4.

Get contents

After having caught a glimpse of the file structure, it is easy to look up
certain file names and therefore check for their existence. Also, it allows for
failing early in case of any user defined error concerning the availability of
certain files before downloading its contents. Whenever the existence of a
desired file is assured by having found its position in the file tree, the API is
able to send its raw contents upon requesting the “Get contents” endpoint
together with the appropriate Accept header5.

The use of this endpoint is as simple as valuable, as it lets the project’s
engine parse single files (e.g. configurations), without being dependent on
downloading whole tarballs or zip archives. This completes the fail-early
stage, as it not only checks for existence, but also for parseability of crucial
files before requesting and processing heavy project archives. On the other
hand, it is also necessary for setting up the required build steps, which should
enable a parallel workflow, once everything comes into play.

One of the core limitations, which should be considered here, is a max-
imum file size of 1MB. Whenever a file exceeds this limit, it should be
downloaded as a buffer and read in manually afterwards.

Get archive link

Once all the preceding checks have passed, one of the heavier tasks may
be executed. Since the possible integrity of the project was assumed using
the successfully parsed configuration file, the subsequent step would be to
download the static site repository, in fact at a certain commit state in the
past, probably.

However, this can only be done using GitHub’s API, as the “Get archive
link” endpoint might be one of the very few, which are not available in the

3https://github.com/jprichardson/node-klaw – Klaw’s repository on GitHub.
4https://developer.github.com/v3/git/trees/#get-a-tree – “Get a Tree”-section in the

GitHub API Reference.
5https://developer.github.com/v3/repos/contents/#get-contents – “Get contents”-

section in the GitHub API Reference.

https://github.com/jprichardson/node-klaw
https://developer.github.com/v3/git/trees/#get-a-tree
https://developer.github.com/v3/repos/contents/#get-contents

5. Implementation 45

Browser version yet. After the endpoint received a request by the client, it
produces an archive according to the provided parameters and prepares a
download possibility at a URL, which gets included in the response header,
together with a “302 Found” HTTP status. Either the framework is con-
figured to automatically follow the issued URL, or a second request to the
location included in the Location header field, becomes necessary. Private
repository archives are issued together with a quickly expiring token6.

After the download succeeded, a final step would be to extract the archive
in a project working directory – therefore, any further command line inter-
action for this task becomes obsolete.

List commits on a repository

For keeping track on a project, git commits contain a lot of information
about the project – however, probably the most important information is
the list of affected files since the last commit [9, p. 65]. Normally, git projects
include these snapshots automatically, but since the downloaded archive
from the GitHub API does not contain any git-specific files, but only source
code immediately belonging to the project, the commits have to be obtained
from another source.

Due to the fact, that the project will store build results into the database,
there might always be a reference to a previous build process and the commit
hash used as state of development progress. This will therefore be a starting
point from which to query commits from the GitHub API. The “List commits
on a repository” endpoint provides all commit information corresponding
to the included parameters in the request, up to a certain amount, before
subsequent pagination requests become necessary7.

The call to this endpoint especially makes sense, if a certain time frame
has to be queried and only timestamps are available, as the call may also
include since and until parameters in ISO 8601 format.

Compare two commits

Following the download of the website source repository and its commit data,
the affected files of the development progress since the last build are the next
task in determining the build extent. Because of the caching approach, this
is one of the most critical steps, as the affected files mark the beginning of
a list of files which need to be considered for a rebuild task.

One of the biggest advantages of this API endpoint is the fact, that pars-
ing the diff manually may be fully omitted, as the response already contains

6https://developer.github.com/v3/repos/contents/#get-archive-link – “Get archive
link”-section in the GitHub API Reference.

7https://developer.github.com/v3/repos/commits/#list-commits-on-a-repository – “List
commits on a repository”-section in the GitHub API Reference.

https://developer.github.com/v3/repos/contents/#get-archive-link
https://developer.github.com/v3/repos/commits/#list-commits-on-a-repository

5. Implementation 46

a JSON including all the necessary data concerning the repository modifi-
cations within the given time frame. Again, based on the Accept header, a
custom response in patch or diff format can also be enforced, if it needs to.

After fetching the diff data, the list of affected files only has to be fil-
tered based on the modification type (status) of each included file (modified,
added, deleted) and synchronized with the existing file tree. All other files
may be safely deleted before the build process starts, unless they are crit-
ically needed by the static site generator or share any form of dependency
to the files present in the diff.

5.1.4 Metalsmith

As already stated in Sec. 4.3.1, Metalsmith would be a good fit for a project
like this. The most important part after setting up a REST API using Ex-
press, is to include Metalsmith’s JavaScript API as a module for on-demand
building – first and foremost although, a strong focus should be kept on
maintaining its customizability in terms of loadable modules.

Metalsmith instance

Creating a Metalsmith instance marks the beginning of any further build
pipeline interaction, as it holds all the necessary modules, configurations,
as well as the asynchronous build-function, caring for the overall work and
furthermore emitting different events for signaling errors or warnings during
the process itself.

It is included the same way as any other ordinary Node.js module, there-
fore the first step towards a dynamic setup is taken – basically all that needs
to be done in the first place, is the provision of a callback function, contain-
ing a reference to Metalsmith, as well as taking a configuration object as
parameter.

Before being ready to get exported, the Metalsmith instance has to han-
dle the configuration object provided by the function parameter to form at
least a basic shape of a useable static site generator. Compared to Program
2.1, this may look like Program 5.1.

After the Metalsmith instance was returned from the module, the re-
ceiving function only has to execute metal.build() for the build process
to start. If acting from a foreign working directory, a smart advice would
also be to change the CWD to the folder Metalsmith should perform his ac-
tions in. Some of the community-built modules tend to ignore the working
directory set in Metalsmith’s configuration and use the current one instead,
which could lead to unwanted side effects of not handling certain tasks at
all.

5. Implementation 47

Program 5.1: A sample file showing a Metalsmith setup handled as a mod-
ule. The module.exports-function marks the entry point from outside. The
return-statement is everything a function from outside will see.

1 const metalsmith = require('metalsmith'); // Require metalsmith module.
2
3 module.exports = function metalsmithSetup(obj) {
4 const config = obj; // Set obj as config variable.
5 const metal = metalsmith(config.cwd) // Set current working directory.
6 .source(config.source)
7 .destination(config.destination)
8 .metadata(config.metadata); // Set global metadata
9

10 // Loop through config . plugins array of objects (name, configuration).
11 config.plugins.forEach(function getPlugin(plugin) {
12 // Dynamically require() plugin name.
13 const loadedPlugin = require(plugin.name);
14
15 // Append plugin to metalsmith instance.
16 metal.use(loadedPlugin(plugin.configuration));
17 });
18
19 return metal; // Return the configured instance.
20 };

Dynamic module loading

Line 13 of Program 5.1 already shows what dynamic module loading is all
about. Of course, the required modules differ from website project to website
project, therefore all needed modules have to be listed in a configuration
object – in the best case, they are included in an iterable form, so that the
setup function may process one module after the other.

However, one of the biggest challenges is the verification of available mod-
ules, otherwise missing modules need to be downloaded prior to inclusion
on runtime. Together with setting up the instance, these two steps probably
require the most background checks for not being responsible to crash the
application if any error occurs.

5.2 Application structure
A basic approach of the project structure may be seen in Fig. 5.1. Although
this might look still very abstract, the core packages are already clearly
visible, while neither the access to the GitHub API, nor the access to the
MongoDB is yet visualized. The graphic can be interpreted as follows:

• Base Application – The base structure, consisting of a Node.js en-
vironment, together with necessary supporting packages, such as a

5. Implementation 48

Figure 5.1: A graphic showing the base structure of the implemented appli-
cation. The base application layer serves as foundation, containing necessary
libraries for implementing the HTTP specifications. The routing and OAuth
layer are responsible for authenticated requests to the endpoints, while the
builder package is designed as a partly autonomous, loosely coupled rendering
service.

MongoDB driver and a GitHub API implementation.
• Backend – The Express.js ecosystem, responsible for controlling the

HTTP subset.
• Router – The Express.js router instance, providing all the necessary

endpoints for accessing the application’s functions.
• OAuth – The authentication framework, as theoretically explained in

Sec. 5.1.1.
• Builder – The main build pipeline package consisting of many small

plugins for asynchronous handling the process from parsing the con-
figuration to actually building the website.

5.2.1 Basic setup

The base application layer is more or less a Node.js stack, covering neces-
sary support features, like reading environment variables or creating various
instances of needed modules for the main application flow. It also cares
for connecting the service to a MongoDB database, as well as providing a
connection framework to the GitHub API.

Furthermore, it holds different database models for user registration,
OAuth tokens and build logs. These models are necessary for maintaining
a consistent structure on the database collections, thus avoiding custom
value checks after fetching entries. Using Mongoose8, additional features
like manipulation functions and automatic population may be used without
depending on other toolsets. One example would be the automatic hashing

8http://mongoosejs.com – Mongoose, “elegant mongodb object modeling for node.js”

http://mongoosejs.com

5. Implementation 49

and comparison of passwords, which is enabled using pre hooks on schemas
at a certain event (e.g., “save”)9.

Express.js

On top of the base application layer, an Express.js setup works as a REST
API service. It is configured as first instance in the application’s main entry
point and is bootstrapped right after the launch of the project. Extending the
core module of Express is easy due to the built-in middleware pluggability.
A middleware function may get added to the application by binding it to
an instance of the app object using an app.use() call [26].

One of the additional middlewares used to extend the app instance is
a logging mechanism called “morgan”10, which allows a fully customizeable
output format for logging HTTP requests and the duration until a response
was sent. Another important extension is “method-override”11. This module
allows the consideration of a X-HTTP-Method-Override field in the request
header, sent by clients, which are not supporting request types like PUT or
DELETE.

Router

The middleware concept is designed as a sequential flow of callback func-
tions. Once a request is coming in, the instance is forwarding the data from
middleware to middleware until either a response is returned and the mid-
dleware chain gets interrupted, or no additional function is left and the
instance throws an error.

Thus, the routing mechanism is nothing more than a built-in middle-
ware of Express. It allows for dividing incoming requests based on their
URL structure and subsequently assigning them to their respective prede-
fined tasks. These functions again may behave like middleware functions
(e.g. for checking authorization, including abstracted functions, imposing
pre-conditions, etc.) and therefore expand the callback cycle by additional
functionality [25]. A sample implementation of routing middleware may be
seen in Program 5.1.

Authentication

Several routes require authentication before being able to access, as a conse-
quence, an automated mechanism handling all necessary steps for securely
exchanging user details is inserted in front of the respective routes. Before

9http://mongoosejs.com/docs/api.html#schema_Schema-pre – “Pre” hook documenta-
tion for MongooseJS.

10https://github.com/expressjs/morgan – Morgan repository on GitHub.
11https://github.com/expressjs/method-override – Method-override repository on

GitHub.

http://mongoosejs.com/docs/api.html#schema_Schema-pre
https://github.com/expressjs/morgan
https://github.com/expressjs/method-override

5. Implementation 50

Program 5.2: A basic router configuration showing the use of an authoriza-
tion service as a middleware, thus dividing the routes into fully accessible
ones (/all) and ones with limited access (/limited and /secret).

1 const express = require('express');
2 const router = express.Router();
3
4 // Include OAuth configuration from ./oauth. js in middleware format.
5 const oauth = require('./oauth');
6
7 // fully accessible route without authentication
8 router.get('/all', function allRoute(req, res) {
9 // route logic ...

10 });
11
12 // Every route from now on demands authentication via the following middleware.
13 router.use(oauth);
14
15 router.get('/limited', function limitedRoute(req, res) {
16 // route logic ...
17 });
18
19 router.get('/secret', function secretRoute(req, res) {
20 // route logic ...
21 });
22
23 // Export router instance for using as middleware in app's main entry point.
24 module.exports = router;

doing so, the OAuth stack has been implemented – the OAuth2orize package
provides an authorization server toolkit for setting up a service implement-
ing the OAuth 2.0 protocol.

The skeleton coming with the package needs to be configured based on
the current project’s setup, then the instance exposes a middleware, which
may be mounted in certain routes [24]. After this has happened, the use
of the framework may divide the routing configuration into fully accessible
routes on the one hand and routes with limited access on the other hand
(see Program 5.2).

From this point on, the client has to provide an access token in the
Authorization HTTP header using the “Bearer” authentication scheme for
gaining access [7, p. 5]. The service will deny further processing if either an
inexisting or already expired access token was provided. In this case, the
client has to exchange his/her correct client credentials for a new access
token on the authorization endpoint prior accessing the desired endpoint
again [5, p. 41] (see Sec. 5.1.1).

5. Implementation 51

Figure 5.2: A graphic showing the first draft of the then proposed REST
API cycle. At first the OAuth step should care for authentication, then the
build pipeline should be initiated and orchestrate its services to interact with
the GitHub API, select files to build and run the build task before saving a
rendered version of the webroot, ready for deployment.

5.2.2 Build pipeline

After the HTTP- and authentication service was built as a user interac-
tion possibility for the upcoming build pipeline realization, the full extent
of the necessary API endpoints needed to be defined. Since the OAuth 2.0
framework was already implemented and the access to the GitHub API was
prepared as includeable module, only the endpoints responsible for manag-
ing and triggering builds, needed to be reserved for the final build service
development.

API definition

From the first draft of an API cycle (as seen in Fig. 5.2) to the final structure,
a lot of details needed to be tidied up. This was mainly due to the complexity
of the build pipeline itself, since one of the biggest challenges was to provide
a real non-blocking event loop. By realizing such a non-blocking loop, the
client receives an instant, intermediate response, instead of having to queue
beforehand, and/or wait until the whole operation finishes. Furthermore, a
recurring request for obtaining the build status was enabled using an own
endpoint returning information from the database entry. The endpoints,
which were implemented in favor of user projects, were the following:

• POST /api/project – Creates a project in the database, together with
reference to its GitHub data.

5. Implementation 52

• POST /api/project/:owner/:repo/delete – Deletes all references
to the project from the database.

• POST /api/project/:owner/:repo/build – Trigger a new build cy-
cle. Returns the reference to the database entry of its build log.

• GET /api/project/:owner/:repo/status – Get the status of the lat-
est build (pending, failed, success).

• GET /api/project/:owner/:repo/download – Download the latest
successful build as tar.gz archive. (e.g. for automated deployments)

Tasks

As already explained, the build pipeline is realized as a modular concept,
consisting of different sub-tasks, bound together in a network of various
dependencies to and from each other. Most of these modules are dynamically
interlinked with API calls to GitHub, but also with partially strong data
modifications of the respective responses.

One after the other, all necessary modules are loaded on request – to not
confuse them by their actual functions, they are divided into three action
levels: engine, module and support.

• Engine-specific tasks are immediately working for and on the compile
actions (e.g. setting up the build pipeline, loading necessary modules,
etc.),

• Module-specific tasks care for external assistance (e.g. installing mod-
ules, compressing rendered output, etc.) and

• Support-specific tasks care for engine-specific assistance (e.g. parsing
configurations, creating new database entries, etc.).

5.3 Engine
The build pipeline engine basically wraps a common interface around the
static site generator. Together with already mentioned supporting modules,
it forms a nearly standalone ecosystem within a service, which happens to
expose a REST API.

Other than pure HTTP services, the build engine not only has to cope
with database queries – its main purpose is to handle file input/output man-
agement based on various configurations, ideally asynchronous and possibily
even in parallel. Especially the latter may cause trouble at some point, be-
cause of JavaScript’s single threaded model. Though Node.js may handle
asynchronous operations well, it requires its event loop to continue running,
when non-blocking operations (like input/output) are executed concurrently.
This differs heavily from other programming languages, which are likely to
create additional threads for such kind of tasks [19].

5. Implementation 53

5.3.1 Asynchronous work

Possibly one of the most important requirements of the project is to work
with asynchronous calls, as well as processing them as performant as possi-
ble. As already explained, the API depends on a significant variety of tasks
for fetching data to create an instance of the build pipeline according to a
certain configuration.

Most of them are realized using the JavaScript Promise API, where on
the one hand subsequently nesting callback functions are avoided and on the
other hand, various then-functions are not only getting chained to each other
(“Promise chain”), but also returning a Promise themself [37]. This allows
to keep an asynchronous flow in the same block – some operations even
allow handling more than one asynchronous function concurrently within a
Promise construct.

As a result, all API calls to GitHub are realized using Promises – as a
matter of fact, the contained then-functions are acting as necessary back-
bone, as the returned data often needs to be altered or even merged with
the response of a second, concurrent request. One example would be the
comparison of the existing file tree versus the affected files by the commit
range.

5.3.2 Child processes

For keeping the API responsive to requests while a build process is running,
it makes sense to decouple the heavy rendering task into an own process
(“Child process”). The child process will balance the work load, so that the
rendering will happen in its own V8-process on an additional processor core
[1, p. 335], only able to communicate to the host process via emitting events
on its built-in communication channel [17]. The host process will reside in
its initial thread and only receive a message, if the child process emits one
or exited – therefore enough information will be distributed to keep the
project’s status in the database up to date.

There is a critical thing to consider though; since every child process
gets equipped with an own memory and V8 instance, constantly allocating
resources by spawning a large amount processes may lead to unexpected
server crashes [17]. Virtual private servers (VPS) with a significant amount
of RAM, as well as up to 20 processor cores and more will handle such heavy
tasks of course better than local machines with often less than 4 cores, but
also have to be managed well in terms of resource usage. Every child process
is likely to occupy a minimum of 10 megabytes of RAM by default – though
this amount surely increases. The final extent is based on the task it has to
handle [44].

5. Implementation 54

5.3.3 Storage

Because of the fact, that the project requires different stages of every reposi-
tory to be stored for making use of caching, a significant amount of data has
to be stored for quick access. To not loose track on the constantly growing
extent, it possibly would be best to export them to long-lasting storage ser-
vices like Amazon S3 buckets12 – however, due to the many locally hosted
services (first and foremost the REST API), the decision was made in favor
of also storing repository data locally in the mean time during development.

The first kind of data to outsource would surely be the rendered archive,
containing the webroot. As this needs to be accessed at all time, a downtime
is simply not acceptable and a constant uptime cannot be guaranteed on a
service like this, unless it is also run on multiple failsafe instances around
the globe.

5.3.4 Realization

After the necessary technologies for providing a non-blocking event flow were
defined, the build pipeline module set could be brought in shape. Together
with the wrapping REST API and the predefined endpoints (see Sec. 5.2.2),
the main entry point should be able to carry the heavy load of instantiating
the static site generator, as well as fetching data from GitHub. Furthermore,
it should act as control interface for managing the internal communication
between Metalsmith and the API.

As seen in Fig. 5.3, much of the build pipeline’s workflow actually hap-
pens without the user knowing about (grayish area). Basically the only thing
happening before sending an HTTP response, is the parsing of the config-
uration file, as well as filtering files, affected by the commit range. If both
succeeds, the database entry is created and the user may then query the
API for getting to know the current status, while the main task possibly is
still running in a forked child process. So, the REST API stays responsive
the whole time during build, without causing any lack of performance.

Forking a child process

According to the Node.js documentation, the child_process.fork()-function
is used specifically to spawn new Node.js processes. This means, that every
child process creation happens without breaking the event loop of the parent
process [17]. Therefore, this step is crucial before invoking any heavy task,
which may result in blocking the API’s responsiveness to handle additional
HTTP requests.

Since the sub process is completely decoupled from the main task, it
likely will not do its job in the same current working directory as its parent

12https://aws.amazon.com/de/s3/ – Amazon’s S3 cloud storage service.

https://aws.amazon.com/de/s3/

5. Implementation 55

process. Whenever that happens, a cwd option may be set in the configura-
tion object upon fork [17]. The Metalsmith instance requires this feature, as
every repository it will be working on is nested in a certain sub folder in the
project’s file tree. Most of the Metalsmith plugins are moreover designed to
only work in the actual CWD, unlike its API initially proposed (see line 5
in Program 2.1) [45].

However, equipping the child process with a cwd option was not possible
at this point, as the child process also was responsible to install missing
node modules. These would have been stored at the repository level – thus,
they got deleted in a subsequent build cycle, as the repository folder gets
cleared prior to every download action. By omitting the cwd flag, the node
modules are getting installed at the level of the REST API to make them
also accessible for other website projects. Finally, the CWD gets set to the
building directory via process.chdir() after the Metalsmith instance was
configured, but before the build function was triggered.

What is additionally happening in the child task, is the following; the
respective repository archive is being fetched from the GitHub API – this
happens in parallel to setting up the build pipeline:

1. Creating a Metalsmith instance by setting the global API options ac-
cording to the global configuration object, provided by the parent pro-
cess.

2. Filter required Metalsmith module names from the configuration ob-
ject.

3. Sequentially invoke the modules to the Metalsmith instance.
(a) Check if the current module is already available in the main

project’s node modules folder,
(b) append it by default,
(c) or catch any error by appending the module name into an array

of yet missing node modules.
(d) npm install the missing modules and repeat.

4. Return the completed Metalsmith instance to the child process.
Everything that is still missing, is waiting until both tasks (archive fetching,
build pipeline setup) have succeeded, before the build()-function is ready
to be triggered and the rendering process will be initiated. No matter if it
fails or succeeds, the parent process receives a message containing necessary
build information in any case.

Finishing the task

When the build pipeline was fully executed and nothing is left to do in the
external JavaScript file, the process should normally exit automatically. This
can be determined by listening to the close or exit events – moreover, it is

5. Implementation 56

also possible to kill it right from the parent process using child.kill()
[18].

After the build pipeline finished, the CWD gets reset to its initial value,
before the file tree of the rendered website is compressed into a tar.gz archive.
This currently overwrites any previous archive of the same commit data –
nevertheless, any previous version may be held available by appending the
respective commit hash to the file name. From this point on, any future
HTTP requests trying to fetch the website archive will get provided the
latest version.

To conclude the build task, the database entry finally gets updated with
information about the outcome of the rendering cycle.

5.4 Cache
Since the structure of the application flow is now in shape, the last major
thing missing is the caching method, although already largely prepared us-
ing the GitHub API calls. As seen on Fig. 5.3, the first action after fetching
the file tree and commit data, respectively, is to filter the unchanged files.
But to really make caching work using diff, there are a few additional pre-
conditions to be aware of; one of them is a functional folder structure at
certain levels, another one is some crucial project-based information, which
should be contained in the repository’s configuration file.

5.4.1 Preconditions

Basically the most important place for gaining information about cacheable
data is the structure of the respective repository itself. To know which files
should be considered for caching presumes to know which files are critical
for the project. It is very unlikely though, to perceive the full extent of this
data.

A first approach however would be to getting to know the exact opposite;
files which are unnecessary to cache. Metalsmith already cares for a first step
of file separation, as the content file directory is announced in the source-
property of its configuration, whereas everything on the same level of its
CWD is treated as a supporting file (e.g., templates, partials, etc. . .). Since
the relations between certain supporting files (or system files) and content
files remain unclear – unless there is already some kind of network, which is
able to sketch these relationships – the developer may announce ignoreable
files right in the build pipeline configuration.

As the content files more or less are likely to not have any dependents, it
can be safely assumed, that commits only featuring content files cause the
build pipeline to only include these files and leave out every other content
file (see Sec. 4.1.3). This marks the ideal scenario for this caching approach.

5. Implementation 57

1. To make the approach work, the source repository has to be placed in
the future working directory of Metalsmith, deleting any remains of
past build cycles.

2. Then, the website has to be built to an intermediate file path, which
remains until a full rebuild becomes necessary (e.g., a template file has
changed).

3. Any further builds are either merged into this intermediate directory,
or completely rebuilt after deleting the file tree.

4. Finally, this directory is holding the latest website version, so that a
tar.gz archive is created out of it.

5.4.2 Filtering files

Because of the fact that both Metalsmith’s source directory and the ignore-
able files declared by the developer are known after parsing the repository’s
configuration file, it is easy to filter any possibly cacheable file out of the
affected files by the given commit range. Without already having to deal
with physical files, the respective file path is enough to compare it against
the file path of the declared source directory.

If the list only contained content files, every other content file, which
was unmentioned in the commit result, is being put on the ignore list, as it
remained unchanged. This only works, if there was at least one successful
build log stored in the database and the build engine is able to rely on an
already present intermediate build folder. Otherwise, the result would be an
incomplete webroot.

After the ignore list was populated, it is also added to Metalsmith’s build
instance, after the child process was forked. Therefore it stays in the global
configuration object, which is handed from one task to the other. In the
end, the ignore list is being stored in the database entry, so that the caching
extent of every build may be looked up using the respective build log.

Ignore vs. delete

Initially, the ignore list was inexistent, as one of the first tasks of the build
pipeline was to slim down the build directory in deleting all unchanged files.
On the one hand, this supports the engine in precisely only rendering altered
files, without having to deal with different globbing patterns13, or an array
of file paths.

However, there are a few downsides; the first is the inevitability of re-
turning to files which have been deleted. If any future task needs to access
a file deleted by the prior selection, it would have to download the whole
archive again, which would be very costly in terms of time. Additionally, file

13https://github.com/isaacs/minimatch#usage – Minimatch matching library on
GitHub.

https://github.com/isaacs/minimatch#usage

5. Implementation 58

input/output is always a computational expensive operation – physically
deleting a file by overwriting it even more.

Therefore, populating an array with file path strings, without having to
read from disk, seems the best possible solution for this ecosystem after all.

5. Implementation 59

Figure 5.3: A graphic showing the main application flow of the build
pipeline from top to bottom. At first, the repo tree and file diff are fetched
from the GitHub API in parallel. After file filtering and creating a database
entry, a child process is forked, which cares for executing the heavy tasks for
building. After a successful build, the resulting files are compressed into a
tar.gz archive, then the database entry is updated accordingly. Afterwards,
the child process is terminating gracefully.

Chapter 6

Evaluation

To prove the project’s usability, it has not only to be tested against a “real”
setup; additionally, it also has to be tested against different settings. Since
it was designed to be as unopinionated as possible, there are still challenges
to face concerning the overall support of different third-party tools, like
template engines, etc.

Nevertheless, a base repository for future building using the REST API
is set up without much hassle. As the project features a generic Metalsmith
instance for building and rendering the different website projects, a local
installation setup might as well be useful prior to handing over the repository
to the REST API. This might support fixing bugs, which are probably much
easier detected, if the source code is at hand.

6.1 Minimal requirements
For even being able to build a repository successfully, it has to consist of a
“valid” Metalsmith project. This means, that a few requirements have to be
met, such as the following:

• A folder structure, which consists of at least a source folder inside the
project root,

• a configuration file, either in YAML or JSON format and named _con-
fig.*,

• and finally being hosted on GitHub as public repository.
• Furthermore, it must not rely on any other build tools (e.g. Gulp1,

Webpack2, etc. . .), only Metalsmith is supported at this time.
1http://gulpjs.com – Website of Gulp.js
2https://webpack.js.org – Website of Webpack.

60

http://gulpjs.com
https://webpack.js.org

6. Evaluation 61

Program 6.1: _config.yml – a sample configuration file, containing some
global configuration data, as well as a few Metalsmith plugin definitions.

1 global:
2 source: '_src' # source folder
3 destination: '_dist' # distribution folder
4 metadata:
5 # define metadata
6
7 exclude: # list of ignoreable files
8
9 # Metalsmith plugin configuration starts here

10
11 drafts: true # metalsmith−drafts plugin
12 markdown: true # metalsmith−markdown plugin
13 excerpts: true # metalsmith−excerpts plugin
14
15 collections: # metalsmith−collections plugin
16 blog: posts/*.md
17 repos: repos/*.md
18
19 # To be continued (...)

6.1.1 Configuration file

The configuration file is probably the most critical part in the repository’s
contents, as it is the only source for the build pipeline to obtain the setup
instructions from. Since the Metalsmith CLI is able to render a project
based on a single JSON configuration file and the API setup doesn’t really
differ, the format of the configuration needed by the REST API is nearly
identical. Therefore, the configuration for a local Metalsmith installation and
the one used for the project’s build pipeline are very well interchangeable
(see Program 6.1).

Since the REST API is able to parse both YAML and JSON notations,
it is up to the developer to choose what fits his/her needs best. Since Met-
alsmith only understands JavaScript, any YAML configuration is parsed to
JSON by the API, prior to forking the child process. This makes sense in a
way, as the build setting information is getting included in the general op-
tions object, which is handed over from the REST API to the build pipeline,
where parts of it get stored in the database together with the build log.

6.1.2 Local testing

Having a local Metalsmith install at stake may not only support the devel-
oper in finding and fixing bugs, it also helps to constantly pursue a clean
build setup. The remote build pipeline neither is configured to inform about

6. Evaluation 62

any installed modules, nor is it able to independently draw any conclusions
of the provided configuration file. The only way to communicate with any
responsible developer, is to send E-Mails containing status messages, or to
respond build log information from the database upon request.

Although caching is not available when testing locally, it is often the
only way to fix the build tree in a way, that Metalsmith is able to produce a
successful outcome again. The reason behind that is the fact, that developers
often try to fix a bug using subsequent small code changes – this requires
multiple rebuilds to check if the effort succeeded. However, it is also possible
to patch the code base by adding one commit after another and analyze the
messages of the build log entries.

6.2 Comparison
When trying to compare the project’s build pipeline to standalone static
site generators like Jekyll or Metalsmith, it has to be stated, that neither
one of those requires a git repository, nor any sort of authorization (besides
during their installation process possibly). Furthermore, Jekyll also provides
a command line argument for setting up a base project (see Sec. 2.1.2), so
that hardly any time is lost before a content author actually is being able
to start writing.

As this project initially was designed to support porting Jekyll projects
to Metalsmith, it already requires a basic structure for being able to work
with. However, when starting from scratch, the probably best advice is to
set up a local project, which makes use of the Metalsmith CLI and then
start porting the configuration to fit the REST APIs standards.

6.2.1 Jekyll

A Jekyll project, as already explained in Sec. 2.1.2, is entirely written in
Ruby and sets up on the Liquid templating engine. As a configuration file,
it requires a YAML file called _config.yml in the project root and supports
parsing data from YAML, JSON and CSV files to usable site variables out
of the box [3, p. 76]. A functional Jekyll project also has to be equipped with
Liquid templates in the _layouts folder, together with a few more directories
holding different contents resulting in various recycleable parts during the
build process. As of Jekyll 3.2, most of these parts have gotten outsourced in
different Ruby gems, thus being hidden to the public and making it harder
to port them to other generator applications like Metalsmith [42].

6. Evaluation 63

Jekyll source repository

Parallel to the development of this project, the Jekyll docs sources3 were
ported the best possible for setting a benchmark for the usability of the
REST API. To make this happen, a few major changes needed to be made
in order to get a positive build result:

• The root folder was put in the source folder, but _data, _layouts and
_includes were left out. Additionally, all asset-containing folders were
moved into the _public directory.

• Necessary plugins were installed and configured for correctly setting
the render flow:

– metalsmith-date-in-filename,
– metalsmith-sass,
– metalsmith-collections,
– metalsmith-permalinks,
– and a few more.

• Due to the limitations of TinyLiquid4, especially file paths in include
and extend statements had to be adjusted.

• Some functionality still does not work without further engineering,
for example the YAML files in the _data directory, or gem-dependent
tasks like generating the sitemap or managing redirects.

To conclude; it is possible to successfully render a Jekyll project using
Metalsmith, although there are a lot of adjustments necessary beforehand,
not to speak of the deficits of the TinyLiquid package. Therefore, the ex-
pected behaviour of the outcome is likely to differ heavily from the reality.
The test repository for this evaluation was obviously uploaded on GitHub5

and may be tested locally using the Metalsmith CLI.

6.2.2 Metalsmith

Since Metalsmith was chosen for use as static site generator within the
REST API (see Sec. 4.3.1), it should be used as the foundation framework
for any website project, which should be built using the REST API in the
future. Due to the fact that Metalsmith is yet another npm module built
for Node.js, it also offers to act as part of any available build tool, such as
Gulp, Webpack or else – however, this is not supported (see Sec. 6.1).

3https://github.com/jekyll/jekyll/tree/master/docs – Jekyll docs section in the Jekyll
repository on GitHub.

4https://github.com/leizongmin/tinyliquid – TinyLiquid repository on GitHub.
5https://github.com/vorchdorfmedia/jekyll-docs – Test repository for porting a Jekyll

project to Metalsmith.

https://github.com/jekyll/jekyll/tree/master/docs
https://github.com/leizongmin/tinyliquid
https://github.com/vorchdorfmedia/jekyll-docs

6. Evaluation 64

The main reason behind this limitation is, that automatically detecting
a different or additional build setup is error-prone and may easily slow down
the render process. Furthermore, Metalsmith offers a feature-rich API and
the possibility of writing plugins6 to fit the developer’s needs, thus making
nearly any additional build tool obsolete. All that is left to do, is to publish
any written plugin publicly available to npm and append it to the reposi-
tory’s configuration file for future use in the build pipeline. As a result, other
developers may also download and/or enhance the plugin to keep it up to
date.

6.3 REST API
The REST API was built and designed as remote-acting, standalone web
application, running on Node’s servers-side JavaScript engine. Apart from
specifically reserved firewall ports, the project is only dependent on a Node.js
installation, every other dependency may be installed using npm, regardless
on the used operating system.

By extending any desired Node.js Dockerfile7, it may be even run as
autonomous Docker container and therefore multiplied for better load bal-
ancing, based on the current HTTP load extent.

6.3.1 Load testing

To evaluate the basic stability while handling multiple concurrent requests,
the API was put under a high load test using Artillery8 (see Figs. 6.1 and
6.2). Without any load balancing, nor any other high load supporting tool,
1200 POST requests triggered the build pipeline for a total duration of 60
seconds. As explained in the graphic’s caption, the penetration test showed
a success rate of roughly 1%, a reasonable minimal response time of about 5
seconds but a terrible maximum response time of 51 seconds. Of course, this
data may not be interpreted as a successful result in the first place, but it has
to be stated, that the test was run on the endpoint causing the heaviest task
in the system and most failure responses were effected by GitHub blocking
most requests due to their rate abuse checking system.

The same test running on a much lighter task is showing a different
picture; 1200 GET requests for receiving information about the latest build
cycle had a response rate of 100%. The response time ranged from 3 to
13 seconds, which is again a sign to not let a single application handle
such an amount of requests without load balancing beforehand. In the end,
it is safe to say, that the REST API may handle a reasonable amount of

6http://www.metalsmith.io/#writing-a-plugin – “Writing a plugin” section in Metal-
smith’s documentation.

7https://hub.docker.com/_/node/ – Official repository for Node.js on Docker Hub.
8https://artillery.io – Website of Artillery, a load testing toolkit.

http://www.metalsmith.io/#writing-a-plugin
https://hub.docker.com/_/node/
https://artillery.io

6. Evaluation 65

Figure 6.1: Screenshots of two command line outputs showing the results
of the REST API being put under high HTTP load. During 60 seconds, the
API had to face 1200 requests of 20 virtual clients created by Artillery. The
test on the left was defined to include a single POST request triggering a
new build cycle (with a full rebuild option) every time the API accepted a
new connection. The results show the following: 24 could not be handled at
all, 1162 resulted in gateway timeouts (GitHub blocks), but 13 were handled
successfully and returned with a 200 OK HTTP status code.

Figure 6.2: A screenshot showing the extent of the previous load-test (see
Fig. 6.1) in the Mailgun dashboard. Obviously, the build pipeline was trig-
gered 34 times, leading to the same number of E-Mails being sent. Out of this
34 E-Mails, 8 showed a success message, whereas the others mostly failed
due to other concurrent requests deleting the CWD as a preparation step
prior to downloading the repository archive.

6. Evaluation 66

requests quite well on its own (e.g. requests triggered by GitHub webhooks),
but consisting of multiple instances may be the best option for handling a
significant amount of requests every once in a while.

6.4 Caching
In terms of caching, the build pipeline is best evaluated when assuming the
best possible, as well as the worst possible case. As already explained in Sec.
4.1.3, such scenarios would be on the one hand a commit only containing
content changes (e.g. new or modified blog posts) and on the other hand a
commit containing a modification of the default template. Since the default
template is very likely to act as a dependency of nearly all content files, a
full rebuild is inevitable.

6.4.1 Initial build

An initial build is necessary every time a repository was registered using the
REST API, or the repository’s previous build attempts constantly failed and
no successful outcome was produced yet. Not only caring for the required
folder structure, a successful build cycle also provides information for a sub-
sequent rendering process by storing its head commit hash value in the build
log on the database. Any following build attempt is able to forge upon the
last successful build files.

Therefore it is a good advice to have a successful initial build ready as
soon as possible, as future build cycles profit from an early render history
and a best possible caching structure. By omitting an early registration to
the REST API, any initial build cycle in the future will last a significant
amount of time longer, due to continuous progression which is not able to
make use of any cached file structure.

6.4.2 Caching strategy

Since caching works most effectively if subsequent commits only contain con-
tent changes, the commit culture should be focused towards a content-only
development, to make use of a long-lasting series of performant build cycles.
Normally, this would be the standard for steady sites containing a signifi-
cant amount of various information (e.g., FAQ-, support-, or documentation-
sites), where constantly changing design decisions are not likely to play an
important role. Concerning the need of a templating- or design change, the
probably best advice is to collect commits containing such system files for
as long as possible before actually merging them into the main branch and
causing a longer lasting rebuild task, resulting in a major redesign.

Blogs are also likely to follow this kind of commit pattern, as usually a
theme is set once, before subsequent blog posts are published. Using this type

6. Evaluation 67

Figure 6.3: Two screenshots of build log entries on the database showing
the extent of ideal caching. Example 1) shows a forced rebuild during the
load test (see Fig. 6.1). Obviously there already happened some successful
rendering cycles in the past, as base and head show the same commit hashes.
The build lasted roughly 30 seconds and resulted in a successful archive file.
Example 2) shows an earlier build, which made use of an available cache.
The entry listed in the “files” array was the only file, which was rendered
and added to the existing file structure. Therefore the build cycle lasted only
4 seconds.

of scenario, the extent of ideal caching may be seen on Fig. 6.3. A rebuild,
as well as an initial build at a later time is a lot more time consuming for
resulting in a sane file structure, than a selectively rendered build result,
which is able to get merged into an existing website root. Thereby it is not
important to check for any existing file structure, if any previously failed
build attempt forced a rebuild due to its commit history, as the current
build is always able to rely on the rendering result of the last successfully
logged attempt.

6. Evaluation 68

6.5 Outlook
Since this project has to be merely seen as a proof of concept, a few open
points still remain. One of them would be the possibility of including it
into a project workflow as a continuous integration service. By acting as
an interface between GitHub and any deployment service, which is able to
decompress a tar.gz archive, it would be the missing link for an automated
update process to the web hosting service.

However, for extending the precision and usability of the REST API,
some additional enhancements are necessary, where each of them is likely to
form the extent of a project of its own.

6.5.1 User experience

To not only offer access to the REST API, but also a certain level of project
management without relying on pure HTTP requests, it needs a graphical
user interface. Furthermore, the current setup consists of a hard-coded access
token for accessing certain data on GitHub – this is not feasible for a multi-
user system.

Graphical user interface

Through providing a graphical user interface (GUI), a repository owner
may not only have the possibility of a quick overview of his/her project, also
managing a repository by adding/removing contributors authorized for trig-
gering build cycles, as well as adjusting settings for any possible deployment
strategy surely leverages the overall productivity. Moreover, build messages
may be examined much easier and clearer.

Because of the REST API already being present, such a GUI may easily
be built on top using different frontend libraries based on JavaScript. In the
end, the API below will have to be extended for a few endpoints more. This
not only enhances the overall functionality of the GUI, but also enables to
provide the same functions to low level HTTP requests.

GitHub authorization

For making it possible to interact with repository data of any logged in user,
he/she has to grant access somehow [28]. Normally this is done via a dialog in
the browser, then the REST API receives an access token for making future
requests without permanently asking the user for authorization, similar to
the implemented OAuth 2.0 framework (see Sec. 5.1.1).

6. Evaluation 69

6.5.2 Cache improvement

Caching currently works by only comparing file paths, thus differentiating
between system- and content files. Whereas this works fine for the vast
majority of used repositories to a reasonable extent, the performance, as
well as the reliability also depend on future improvements concerning the
selective rendering algorithm.

Frontmatter parsing

The first approach for improving the overall caching performance would be
an analysis of the frontmatter. As it is written in YAML and delimited using
three dashes on the top and on the bottom [3, p. 77], it should be very well
parseable. Metalsmith already does that in order to provide different plugins
with additional per-post metadata. However, since the list of cacheable files
already has to be declared prior to creating the Metalsmith instance, making
use of data parsed by Metalsmith would conflict the actual caching process.

This is aggravated by the fact that frontmatter does not always follow a
fixed schema, so that every repository owner would have to introduce certain
keys into a kind of tracking system on the REST API for supporting the
caching algroithm with additional data.

Machine learning

A much more performant approach would be the constant tracking of pro-
cessed files and thereby creating a virtual network of dependencies within a
respository. Based on the individual data of every website project, the con-
junctions to various dependent files of a system file (e.g., a template) could
be revealed. A precise detection of cacheable files could be refined more and
more, resulting in the most performant build process possible.

Chapter 7

Conclusion

The main interest for static site generators evolved during my work at a
digital performance monitoring company based in Linz, Upper Austria. I was
impressed by the simplicity of generating HTML content without having to
construct an extensive interface before even getting to the point of actually
creating content. One of the major drawbacks although was the idle time I
had to face during a rendering cycle.

One of the projects I used to work with was initially based on Jekyll,
but with some strong customizations added to the build pipeline setup.
Consisting of a reasonable amount of content files, a build cycle sometimes
lasted more than 20 minutes – mostly due to heavy tasks, such as picture
resizing, etc.

Therefore, this project was originally designed only as supporting tool
for local development, but it quickly grew out of hand as I figured out,
that this type of development is facing too many limitations. One of the
very first approaches was to use the GitHub API, as I had already gained
some experience in using it while working on a few projects in the past.
Concerning the amount of information needed, and first and foremost where
to actually fetch it, GitHub is the best possible tool to use, unless a strictly
local solution is preferred. Soon after, it was clear to build something, which
is able to act remotely and as automated as possible.

However, the major premise for this project was to provide an unopinion-
ated tool for rendering a website with a caching solution included. Although
this may sound fairly understandable in the first place, it soon turned out,
that this mixture is also going to be the biggest challenge in finding a suitable
way of solving this problem statement.

As a conclusion, I can now say, the most interesting part about my
research was not only to find ways to overcome those local performance
issues during rebuilds, but also trying to leverage the common workflow in
moving as many local tasks to a remote workspace as possible. This should
support content authors and developers in focusing on their core jobs by

70

7. Conclusion 71

taking unnecessary responsibilities off their hands.
Soon after my initial project setup, I was already forced to balance the

importance of the core principles and therefore I had to compromise over
some of them. First, the project is not as unopinionatedly usable as originally
planned, as by all forms of customizability, Metalsmith needs at least a core
structure of parameters in its configuration file. To not interfere with the
standard configuration file, I designed an adjusted format, by also allowing it
to be written in YAML. This especially should support developers switching
from Jekyll.

Second, by providing an automated remote workspace, the question of
long-term storage has to be reconsidered, as the tar.gz archive currently
only gets written to the same file structure the REST API lies in. This saves
time by always having the latest version at hand, however, using an external
storage like Amazon S31, the file distribution would scale significantly better
(especially when using multiple instances in Docker containers, etc. . .) and
is also a lot cheaper in the long run.

Third, the caching algorithm currently appears very basic, as the vari-
ety of future repositories cannot be correctly evaluated by now. Therefore
it needs some kind of machine learning, which is able to virtualize a depen-
dency graph throughout a single repository (see Sec. 6.5.2). However, this
would cover the extent of a project on its own.

Lastly it can be said, that the overall performance of the REST API han-
dling different smaller demo projects during my tests was quite the same,
as both a repository containing 24 files and a repository containing roughly
over 300 files needed little over 30 seconds for an initial build. A much more
interesting examination would be testing the REST API in a productive
ecosystem, as the “real” needs of a comparable development team would be
revealed much faster and much more precise. Depending on these informa-
tions, future development could be led towards fields which really matter.

To sum everything up, the outcome is quite the initially expected extent;
a proof of concept, which is able to produce a usable website on the one
hand, but on the other hand should as well demonstrate the difficulties
of providing and running an unopinionated, semi-automated system, which
should be able to work with highly diverse source repositories together with
as many requests as possible at the same time. This project shows that all of
this is possible, if the end user is able to compromise on his expectations and
development is pushed further towards a more user-friendly surrounding.

1https://aws.amazon.com/s3/?hp=tile&so-exp=below – Amazon S3 website.

https://aws.amazon.com/s3/?hp=tile&so-exp=below

Appendix A

Contents of the CD-ROM

Format: CD-ROM, Single Layer, ISO9660-Format

A.1 PDF files
Path: /

S1510629021_Zarhuber_Thesis.pdf Master’s Thesis with instructions
(entire document)

Path: /online
Hexo 3.2.0-beta.2.pdf . [13]
Hexo debut.pdf [14]
Hexo Documentation - Setup.pdf [15]
JSLint Documentation.pdf [16]
Node.js Documentation.pdf [17][18]
Overview of Blocking vs Non-Blocking.pdf [19]
git-diff.pdf [20]
git-revert.pdf [21]
Introducing Markdown.pdf [22]
Markdown.pdf [23]
OAuth2orize.pdf [24]
Routing.pdf [25]
Using middleware.pdf . [26]
About pull requests.pdf [27]
Basics of Authentication.pdf [28]
Mastering Markdown.pdf [29]
Merging a pull request.pdf [30]

72

/
S1510629021_Zarhuber_Thesis.pdf
/online
Hexo 3.2.0-beta.2.pdf
Hexo debut.pdf
Hexo Documentation - Setup.pdf
JSLint Documentation.pdf
Node.js Documentation.pdf
Overview of Blocking vs Non-Blocking.pdf
git-diff.pdf
git-revert.pdf
Introducing Markdown.pdf
Markdown.pdf
OAuth2orize.pdf
Routing.pdf
Using middleware.pdf
About pull requests.pdf
Basics of Authentication.pdf
Mastering Markdown.pdf
Merging a pull request.pdf

A. Contents of the CD-ROM 73

Resolving a merge conflict using the command line.pdf [31]
Webhooks.pdf [32]
Write Scripts for the mongo Shell.pdf [33]
Building Technical Documentation with Metalsmith.pdf [34]
Node based static site generators.pdf [35]
JavaScript reference - Arrow functions.pdf [36]
Using promises.pdf . . . [37]
Git Projects.pdf [38]
Blogging Like a Hacker.pdf [39]
GitHub Pages.pdf . . . [40]
How I Turned Down USD 300,000.pdf [41]
Directory structure.pdf [42]
Usage of server-side programming languages for websites.pdf [43]
Setting up a Node.js Cluster.pdf [44]
Metalsmith Repository.pdf [45]
Building Building Blocks [46]

Path: /source
Technical Documentation.pdf LaTeX version of the project’s

README.md

A.2 Source code
Path: /source

v1.0.1.zip Source code of the project

A.3 Graphics
Path: /images

*.sketch Source files
*.svg Vector graphics
*.png Rendered images & Screenshots

Resolving a merge conflict using the command line.pdf
Webhooks.pdf
Write Scripts for the mongo Shell.pdf
Building Technical Documentation with Metalsmith.pdf
Node based static site generators.pdf
JavaScript reference - Arrow functions.pdf
Using promises.pdf
Git Projects.pdf
Blogging Like a Hacker.pdf
GitHub Pages.pdf
How I Turned Down USD 300,000.pdf
Directory structure.pdf
Usage of server-side programming languages for websites.pdf
Setting up a Node.js Cluster.pdf
Metalsmith Repository.pdf
Building Building Blocks
/source
Technical Documentation.pdf
/source
v1.0.1.zip
/images
*.sketch
*.svg
*.png

References

Literature

[1] Mike Cantelon et al. Node.Js in Action. Greenwich, CT, USA: Man-
ning Publications Company, Oct. 2013 (cit. on pp. 37, 40, 53).

[2] Douglas Crockford. JavaScript: The Good Parts. Sebastopol, CA,
USA: O’Reilly Media, May 2008 (cit. on p. 13).

[3] Vikram Dhillon. Creating Blogs with Jekyll. Build elegant and mini-
malistic static blogs. Orlando, FL: Apress, 2016 (cit. on pp. 1, 4–6, 9,
10, 15, 16, 19, 22, 28, 62, 69).

[4] Christopher Gandrud. “GitHub: A tool for social data set development
and verification in the cloud”. The Political Methodologist 20.2 (May
2013), pp. 7–16 (cit. on p. 16).

[5] Dick Hardt. The OAuth 2.0 Authorization Framework. Ed. by Dick
Hardt. Request for Comments. Oct. 2012. url: https://rfc-editor.org/
rfc/rfc6749.txt (cit. on pp. 41, 50).

[6] James Wayne Hunt and Malcolm Douglas McIlroy. An algorithm for
differential file comparison. Tech. rep. 41. Murray Hill, NJ, USA: Bell
Laboratories, June 1976. url: https : //nanohub .org/ infrastructure/
rappture/export/3582/trunk/gui/src/diff.pdf (cit. on pp. 22, 23).

[7] Michael Jones and Dick Hardt. The OAuth 2.0 Authorization Frame-
work: Bearer Token Usage. Ed. by Michael Jones and Dick Hardt.
Request for Comments. Oct. 2012. url: https://rfc- editor.org/rfc/
rfc6750.txt (cit. on p. 50).

[8] Sean Leonard. Guidance on Markdown: Design Philosophies, Stability
Strategies, and Select Registrations. Ed. by Sean Leonard. Request for
Comments. Mar. 2016. url: https :// rfc - editor .org/ rfc/ rfc7764 . txt
(cit. on p. 16).

[9] J. Loeliger and M. McCullough. Version Control with Git: Power-
ful tools and techniques for collaborative software development. Se-
bastopol, CA, USA: O’Reilly Media, Aug. 2012 (cit. on pp. 18–22,
25, 29, 45).

74

https://rfc-editor.org/rfc/rfc6749.txt
https://rfc-editor.org/rfc/rfc6749.txt
https://nanohub.org/infrastructure/rappture/export/3582/trunk/gui/src/diff.pdf
https://nanohub.org/infrastructure/rappture/export/3582/trunk/gui/src/diff.pdf
https://rfc-editor.org/rfc/rfc6750.txt
https://rfc-editor.org/rfc/rfc6750.txt
https://rfc-editor.org/rfc/rfc7764.txt

References 75

[10] David MacKenzie, Paul Eggert, and Richard Stallman. Comparing and
Merging Files with GNU diff and patch. Bristol, UK: Network Theory
Ltd., June 2003 (cit. on pp. 22, 23, 26).

[11] Webb Miller and Eugene W. Myers. “A file comparison program”.
Software: Practice and Experience 15.11 (1985), pp. 1025–1040 (cit.
on p. 23).

[12] Terence John Parr. “Enforcing Strict Model-view Separation in Tem-
plate Engines”. In: Proceedings of the 13th International Conference
on World Wide Web. WWW ’04. New York, NY, USA: ACM, 2004,
pp. 224–233. url: http://doi.acm.org/10.1145/988672.988703 (cit. on
p. 17).

Online sources

[13] Tommy Chen. Hexo 3.2.0-beta.2. Dec. 2015. url: https://github.com/
hexojs/hexo/releases/tag/3.2.0-beta.2 (cit. on pp. 9, 72).

[14] Tommy Chen. Hexo debut! chinese. Oct. 2012. url: https://zespia.tw/
blog/2012/10/11/hexo-debut/ (cit. on pp. 7, 8, 72).

[15] Tommy Chen. Hexo Documentation: Setup. url: https : //hexo . io /
docs/setup.html (cit. on pp. 9, 72).

[16] Douglas Crockford. JSLint Documentation. url: http://www.jslint.
com/help.html (cit. on pp. 13, 72).

[17] Node.js Foundation. Node.js Documentation – Asynchronous Process
Creation. url: https ://nodejs . org/api/child_ process .html#child_
process_child_process_fork_modulepath_args_options (cit. on pp. 53–
55, 72).

[18] Node.js Foundation. Node.js Documentation – child.kill([signal]). url:
https://nodejs.org/api/child_process.html#child_process_child_kill_
signal (cit. on pp. 56, 72).

[19] Node.js Foundation. Overview of Blocking vs Non-Blocking. url: https:
//nodejs.org/en/docs/guides/blocking-vs-non-blocking/ (cit. on pp. 52,
72).

[20] Git. git-diff - Show changes between commits, commit and working
tree, etc. url: https://git-scm.com/docs/git-diff (cit. on pp. 23, 72).

[21] Git. git-revert - Revert some existing commits. url: https://git-scm.
com/docs/git-revert (cit. on pp. 44, 72).

[22] John Gruber. Introducing Markdown. Mar. 2004. url: http : / /
daringfireball.net/2004/03/introducing_markdown (cit. on pp. 16, 72).

[23] John Gruber. Markdown. 2004. url: http://daringfireball.net/projects/
markdown/ (cit. on pp. 16, 72).

http://doi.acm.org/10.1145/988672.988703
https://github.com/hexojs/hexo/releases/tag/3.2.0-beta.2
https://github.com/hexojs/hexo/releases/tag/3.2.0-beta.2
https://zespia.tw/blog/2012/10/11/hexo-debut/
https://zespia.tw/blog/2012/10/11/hexo-debut/
https://hexo.io/docs/setup.html
https://hexo.io/docs/setup.html
http://www.jslint.com/help.html
http://www.jslint.com/help.html
https://nodejs.org/api/child_process.html#child_process_child_process_fork_modulepath_args_options
https://nodejs.org/api/child_process.html#child_process_child_process_fork_modulepath_args_options
https://nodejs.org/api/child_process.html#child_process_child_kill_signal
https://nodejs.org/api/child_process.html#child_process_child_kill_signal
https://nodejs.org/en/docs/guides/blocking-vs-non-blocking/
https://nodejs.org/en/docs/guides/blocking-vs-non-blocking/
https://git-scm.com/docs/git-diff
https://git-scm.com/docs/git-revert
https://git-scm.com/docs/git-revert
http://daringfireball.net/2004/03/introducing_markdown
http://daringfireball.net/2004/03/introducing_markdown
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/

References 76

[24] Jared Hanson. OAuth2orize. url: https://github.com/jaredhanson/
oauth2orize (cit. on pp. 50, 72).

[25] StrongLoop, IBM and other express.js contributors. Routing. url:
http://expressjs.com/en/guide/routing.html (cit. on pp. 49, 72).

[26] StrongLoop, IBM and other express.js contributors. Using middleware.
url: http://expressjs.com/en/guide/using-middleware.html (cit. on
pp. 49, 72).

[27] GitHub Inc. About pull requests. url: https://help.github.com/articles/
about-pull-requests/ (cit. on pp. 29, 72).

[28] GitHub Inc. Basics of Authentication. url: https://developer.github.
com/v3/guides/basics-of-authentication/ (cit. on pp. 68, 72).

[29] GitHub Inc. Mastering Markdown. 2014. url: https://guides.github.
com/features/mastering-markdown/ (cit. on pp. 16, 72).

[30] GitHub Inc. Merging a pull request. url: https://help.github.com/
articles/merging-a-pull-request/ (cit. on pp. 29, 72).

[31] GitHub Inc. Resolving a merge conflict using the command line. url:
https://help.github.com/articles/resolving-a-merge-conflict-using-the-
command-line/ (cit. on pp. 25, 73).

[32] GitHub Inc. Webhooks. url: https://developer.github.com/webhooks/
(cit. on pp. 33, 73).

[33] MongoDB, Inc. Write Scripts for the mongo Shell. url: https://docs.
mongodb.com/manual/tutorial/write-scripts-for-the-mongo-shell/ (cit.
on pp. 41, 73).

[34] Andy Jiang. Building Technical Documentation with Metalsmith.
Oct. 2015. url: https : / / segment . com / blog / building - technical -
documentation-with-metalsmith/ (cit. on pp. 11, 14, 73).

[35] Boris Mann. Node based static site generators. June 2012. url: http:
//blog.bmannconsulting.com/node-static-site-generators (cit. on pp. 8,
73).

[36] Mozilla Developer Network and individual contributors. JavaScript
reference – Arrow functions. url: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Functions/Arrow_functions (cit.
on pp. 13, 73).

[37] Mozilla Developer Network and individual contributors. Using
promises. url: https : / / developer . mozilla . org / en - US / docs / Web /
JavaScript/Guide/Using_promises (cit. on pp. 13, 53, 73).

[38] Pancake.io. Git Projects. url: http://docs.pancake.io/docs/git/basics
(cit. on pp. 34, 73).

https://github.com/jaredhanson/oauth2orize
https://github.com/jaredhanson/oauth2orize
http://expressjs.com/en/guide/routing.html
http://expressjs.com/en/guide/using-middleware.html
https://help.github.com/articles/about-pull-requests/
https://help.github.com/articles/about-pull-requests/
https://developer.github.com/v3/guides/basics-of-authentication/
https://developer.github.com/v3/guides/basics-of-authentication/
https://guides.github.com/features/mastering-markdown/
https://guides.github.com/features/mastering-markdown/
https://help.github.com/articles/merging-a-pull-request/
https://help.github.com/articles/merging-a-pull-request/
https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/
https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/
https://developer.github.com/webhooks/
https://docs.mongodb.com/manual/tutorial/write-scripts-for-the-mongo-shell/
https://docs.mongodb.com/manual/tutorial/write-scripts-for-the-mongo-shell/
https://segment.com/blog/building-technical-documentation-with-metalsmith/
https://segment.com/blog/building-technical-documentation-with-metalsmith/
http://blog.bmannconsulting.com/node-static-site-generators
http://blog.bmannconsulting.com/node-static-site-generators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
http://docs.pancake.io/docs/git/basics

References 77

[39] Tom Preston-Werner. Blogging Like a Hacker. Nov. 2008. url: http:
//tom.preston-werner.com/2008/11/17/blogging- like-a-hacker.html
(cit. on pp. 5, 6, 73).

[40] Tom Preston-Werner. GitHub Pages. Dec. 2008. url: https://github.
com/blog/272-github-pages (cit. on pp. 6, 73).

[41] Tom Preston-Werner. How I Turned Down $300,000 from Microsoft
to go Full-Time on GitHub. Oct. 2008. url: http : / / tom . preston -
werner.com/2008/10/18/how-i-turned-down-300k.html (cit. on pp. 6,
20, 73).

[42] Tom Preston-Werner and Jekyll contributors. Directory structure.
url: http://jekyllrb.com/docs/structure/ (cit. on pp. 62, 73).

[43] Q-Success. Historical yearly trends in the usage of server-side program-
ming languages for websites. Apr. 2017. url: https://w3techs.com/
technologies/history_overview/programming_language/ms/y (cit. on
pp. 4, 73).

[44] Scott Robinson. Setting up a Node.js Cluster. Jan. 2016. url: http:
//stackabuse.com/setting-up-a-node-js-cluster/ (cit. on pp. 53, 73).

[45] Segment. Metalsmith Repository. url: https://github.com/segmentio/
metalsmith/blob/master/Readme.md (cit. on pp. 10, 55, 73).

[46] Chris Sperandio. Building Building Blocks. Feb. 2015. url: https://
segment.com/blog/building-building-blocks/#metalsmith (cit. on pp. 9,
10, 73).

http://tom.preston-werner.com/2008/11/17/blogging-like-a-hacker.html
http://tom.preston-werner.com/2008/11/17/blogging-like-a-hacker.html
https://github.com/blog/272-github-pages
https://github.com/blog/272-github-pages
http://tom.preston-werner.com/2008/10/18/how-i-turned-down-300k.html
http://tom.preston-werner.com/2008/10/18/how-i-turned-down-300k.html
http://jekyllrb.com/docs/structure/
https://w3techs.com/technologies/history_overview/programming_language/ms/y
https://w3techs.com/technologies/history_overview/programming_language/ms/y
http://stackabuse.com/setting-up-a-node-js-cluster/
http://stackabuse.com/setting-up-a-node-js-cluster/
https://github.com/segmentio/metalsmith/blob/master/Readme.md
https://github.com/segmentio/metalsmith/blob/master/Readme.md
https://segment.com/blog/building-building-blocks/#metalsmith
https://segment.com/blog/building-building-blocks/#metalsmith

Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

Breite = 100 mm
Höhe = 50 mm

— Diese Seite nach dem Druck entfernen! —

78

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Problem statement
	Goals
	Structure

	State of the Art
	Jekyll
	History
	Technology

	Hexo
	History
	Technology

	Metalsmith
	History
	Technology

	Comparison

	Technical Foundations
	Build pipelines
	Frontmatter
	Markdown
	Templates

	Git
	History
	Technology

	GitHub
	History
	Technology
	REST API

	Diff
	History
	Technology

	Theoretical Approach
	Challenges
	Distributed development
	Build cycles
	Caching

	Solution strategies
	Distributed development on GitHub
	Build cycles
	Caching

	Considerations towards implementation
	Choosing a static site generator
	Constructing a REST API
	Caching and selective rendering

	Implementation
	Foundation
	Express.js for REST
	MongoDB
	GitHub API
	Metalsmith

	Application structure
	Basic setup
	Build pipeline

	Engine
	Asynchronous work
	Child processes
	Storage
	Realization

	Cache
	Preconditions
	Filtering files

	Evaluation
	Minimal requirements
	Configuration file
	Local testing

	Comparison
	Jekyll
	Metalsmith

	REST API
	Load testing

	Caching
	Initial build
	Caching strategy

	Outlook
	User experience
	Cache improvement

	Conclusion
	Contents of the CD-ROM
	PDF files
	Source code
	Graphics

	References
	Literature
	Online sources

