
A Modular Architecture for a Playful
Brainstorming Web Application

Lukas Ameisbichler

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2019

© Copyright 2019 Lukas Ameisbichler

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, September 24, 2019

Lukas Ameisbichler

iii

Contents

Declaration iii

Abstract vii

Kurzfassung viii

1 Introduction 1
1.1 Motivation . 1
1.2 Blobster Features Implemented . 1

1.2.1 Voting of Ideas . 2
1.3 Extension for the Master Project . 2

1.3.1 Situation . 2
1.3.2 Topic . 2

1.4 Evaluation . 2
1.5 Thesis Outline . 3

2 Fundamentals 4
2.1 Brainstorming . 4

2.1.1 Mind Mapping . 5
2.2 Gamestorming . 6

2.2.1 Affinity Map . 7
2.2.2 Dot-Voting . 8

2.3 Single Page Application . 9
2.3.1 Code-Splitting . 10
2.3.2 Route-based Splitting . 10
2.3.3 Component-based Splitting . 11

3 Related Work 12
3.1 Brainstorming . 12

3.1.1 Mural . 12
3.2 E-Learning . 12

3.2.1 Moodle . 12
3.3 Modular Architecture . 13

3.3.1 Nylas . 13
3.3.2 React-Slot-Fill . 14

3.4 Code-Splitting . 14

iv

Contents v

3.4.1 React Loadable . 14

4 Concept 15
4.1 Initial Goal . 15
4.2 System Requirements . 15

4.2.1 Blobster . 16
4.2.2 Plugin-System . 16
4.2.3 Sample Plugin . 16
4.2.4 Development Environment . 16
4.2.5 Data Architecture . 16

4.3 Use-Case . 17
4.3.1 Moderator . 17
4.3.2 Participant . 18
4.3.3 Blobster Developer . 18
4.3.4 Plugin Developer . 18

4.4 System Design . 18
4.4.1 Plugin-System . 18
4.4.2 Plugin Environment . 19
4.4.3 Data Architecture . 21

4.5 Template-System Mockup . 21

5 Technical Implementation 23
5.1 System Architecture . 23
5.2 Frontend . 23

5.2.1 ReactJs . 23
5.2.2 Redux . 24
5.2.3 React-DnD . 26
5.2.4 Code-Splitt . 26
5.2.5 Plugin-System . 26
5.2.6 Integration into Blobster . 29

5.3 Backend . 31
5.3.1 Node.js . 31
5.3.2 Express . 31
5.3.3 MongoDB . 31
5.3.4 Mongoose . 31
5.3.5 Database as a Service . 32
5.3.6 Routes for the Extensions and Plugins 33

5.4 Problem with the Existing Code Base 33
5.4.1 Local Storage . 33
5.4.2 Idea position after Dragging out of Folder/Cluster 36
5.4.3 Post-It . 37

5.5 Adding Color to the Project . 38
5.6 Screen Extension . 38

5.6.1 Socket.io . 40
5.7 Real-Time-Events . 40
5.8 Development Environment . 41

Contents vi

5.9 Build and Deployment . 41
5.9.1 Amazon S3 . 41

6 Evaluation 43
6.1 Fulfillment of the Requirements . 43

6.1.1 Correction and Improvement of Blobster 43
6.1.2 Plugin-System and Integration into Blobster 43
6.1.3 Development Environment . 44
6.1.4 Sample Plugin . 44

6.2 Comparison to Other Solutions . 44
6.2.1 Evaluation-System . 44
6.2.2 Comparison . 44
6.2.3 Conclusion . 46

6.3 Loading Time . 46

7 Final Results and Future Work 50
7.1 Final Results . 50
7.2 Challenges . 51

7.2.1 Communication Between Moderator and Participant View 51
7.2.2 Reusable Data . 51
7.2.3 State . 51
7.2.4 Bundle Everything Correctly . 52

7.3 Improvements and Future Developments 53
7.3.1 Security . 53
7.3.2 Full Screen Application . 53

A Content of the CD-ROM 54
A.1 PDF-Files . 54
A.2 Project Data . 54

A.2.1 Blobster Backend . 54
A.2.2 Blobster Frontend . 54
A.2.3 Blobster Plugin Environment . 54
A.2.4 Blobster Plugin System . 54

A.3 References . 55
A.4 Miscellaneous . 55

References 56
Literature . 56
Software . 57
Online sources . 57

Abstract

Brainstorming games were mostly performed offline together with a group of people.
The ideas created by the participants are written on small sticky notes, which are placed
on a whiteboard and grouped with markers or colors. There has been a transition start-
ing to use online tools for this type of activity. Web-based brainstorming applications
allow multiple users to contribute ideas and collaboratively develop a structure for their
ideas over the internet, without having to be in the same room. Although such systems
typically facilitate the input of a fairly large number of users, they focus primarily on
idea generation based on a rather fixed interaction paradigm. However, various appli-
cations could utilize the data which was generated by such brainstorming activities.
Therefore, the brainstorming web application should be extendable with different mod-
ules, as lightweight as possible, without the need for significant rewrites and changes in
the underlying architecture and data structure for reusing and changing the data.

In order to achieve this goal, a plugin system has been developed and added to
the brainstorming web application. Additionally, a plugin environment with a plugin
scaffold and a sample plugin was provided, were external programmers can create third
party plugins. These third-party plugins can be uploaded and used in brainstorming
sessions to reuse and extend the generated data.

vii

Kurzfassung

Brainstorming-Spiele wurden meist offline mit einer Gruppe von Personen durchgeführt.
Die Ideen der Teilnehmer werden auf kleine Haftnotizen geschrieben und auf ein Whi-
teboard geklebt und mithilfe von Farben und Markern gruppiert. Immer öfter werden
nun Online-Tools für diese Art von Aktivität verwendet. Webbasierte Brainstorming-
Anwendungen ermöglichen es mehreren Benutzern Ideen einzubringen und gemeinsam
über das Internet eine Struktur für diese Ideen zu entwickeln. Dafür müssen sie sich
nicht einmal im selben Raum befinden. Obwohl solche Systeme typischerweise die Ein-
gabe einer ziemlich großen Anzahl von Benutzern erleichtern soll, konzentrieren sie sich
in erster Linie auf die Ideenfindung auf der Grundlage eines eher festen Interaktions-
paradigmas. Verschiedene Anwendungen könnten jedoch diese Daten nutzen, die durch
solche Brainstorming-Aktivitäten generiert wurden. Daher war das Hauptziel, ein Onli-
ne Brainstorming tool so zu verändern, dass es mit verschiedenen Modulen erweiterbar
ist, ohne dass wesentliche Änderungen in der zugrunde liegenden Architektur und Da-
tenstruktur für die Wiederverwendung der Daten erforderlich sind.

Um dieses Ziel zu erreichen, wurde ein Plugin-System entwickelt und der Weban-
wendung hinzugefügt. Zusätzlich wurde eine Plugin-Umgebung mit einem Plugin-Gerüst
und einem Beispiel-Plugin bereitgestellt, in der externe Programmierer Plugins erstellen
können. Diese Plugins können dann im Anschluss hochgeladen und beim Brainstorming
verwendet werden, um die generierten Daten wiederzuverwenden und zu erweitern.

viii

Chapter 1

Introduction

1.1 Motivation
Brainstorming games are mostly performed offline with a group of people together. The
ideas, created from the participants, are written on small sticky notes, which are placed
on a whiteboard and grouped with markers or colors. Since people are interacting more
often with computers and smartphones, there has been a transition starting to use
online tools, where participants can collaborate with others over the internet without
having to be in the same room. These applications allow to contribute ideas to the
online whiteboard and collaboratively develop a structure for their ideas. Although
such systems typically facilitate the input of a fairly large number of users, they focus
primarily on idea generation based on a rather fixed interaction paradigm. However,
various applications could utilize the data generated by such brainstorming activities.
Most of these applications focus on mind mapping without the use of some gamestorming
techniques for creating a solution, which is one of the main topics in the thesis. Therefore
a modular data framework is needed for reusing the data in various playful activities
such as votings, quizzes and other games.

1.2 Blobster Features Implemented
The prototype of Blobster was implemented in the SS18 IM590: Project 2 Course. The
prototype consisted of the following features.

Grouping Ideas

A moderator can create a session with multiple participants, who can dispatch ideas to
the moderator screen. The moderator can group ideas by using a folder element. On
hovering over the folder, the moderator sees all the ideas of the folder. When clicking
on one of those ideas, the idea is expanded and the optional description is shown. An
idea can also be deleted, when there is no need for it or another duplicate exists.

1

1. Introduction 2

Dragging ideas and folders

Dragging folders and ideas is possible on the moderator screen of the web application.
When trying to drag a folder or idea, the item gets tilted and the moderator can drag
it around within the custom drag layer. If an item is dragged out of this layer, it gets
respawned to its original position before dragging.

1.2.1 Voting of Ideas
In the gamestorming technique Dot Voting, multiple participants can vote for all ideas
within a folder on a scale from 0, meaning bad, to 5, meaning excellent. Simultaneously
the votings are displayed in real-time on the moderator screen. This data is visualized
within a bar chart.

1.3 Extension for the Master Project
As part of the Master Thesis Project, Blobster is used as a base Frontend implementa-
tion.

1.3.1 Situation
Starting with the prototype of the Project 2 SS18 Project Blobster, a decision was made
that the folder structure is not suitable for this kind of use case. Therefore a change to a
clustering approach, where the user can see the ideas without the need of hovering over a
folder was selected. The main goal of the project is the extensibility of the data structure
and the web application without the need of major changes. Therefore it is needed to
introduce some kind of plugin system for the different gamestorming techniques and
other modules which can be used in the tool for reusing the generated data.

1.3.2 Topic
In the course of the project, the initial topic was transitioning from a data architecture
topic to a software topic, because there was more work needed to make a plugin system,
than to create a reusable data architecture with a suitable Frontend. During the project,
it became clear that the focus changed to have a good system pattern and a minimalistic
Frontend, which will use it as an example. The Frontend could then be adapted in the
future.

1.4 Evaluation
As an evaluation, a comparison with other possibilities and frameworks for a plugin-
system should be done. In addition, a verification how the code splitting improved the
loading time for the end-users should be made.

1. Introduction 3

1.5 Thesis Outline
The following chapter 2 illustrates the fundamentals of brainstorming, mind mapping
and gamestorming with some examples of gamestorming techniques. Furthermore, it
will shortly describe the base architecture of single-page applications used in the the-
sis project and the downside of it. Chapter 3 is about the most famous brainstorming
and e-learning tool, which are related to the Blobster project. Projects using a modular
architecture for creating an extensible web application will be shown afterwards. After
that, the thesis gets deeper into the thesis project part, with chapter 4. This chapter
presents the concept behind the thesis project. It covers the implemented requirements
of the system, the use-cases, the system architecture, and the concept of the devel-
oped plugin-system. Afterwards, the technical implementation is described in chapter
5. The evaluation part is located in chapter 6 and at the end, chapter 7 will summarize
everything up and show the challenges and possible future work.

Chapter 2

Fundamentals

This chapter describes the fundamentals needed for the practical part of the thesis.
Therefore the first section is about brainstorming and gamestorming with an in-depth
look into two different games which could be utilized in such an environment. The last
part of this chapter is about single page applications and one of the main problems of
them.

2.1 Brainstorming
Brainstorming is a popular method for creatively solving problems, mostly accomplished
in groups, where the ideal group size should be between five and ten people. Osborn
defined 4 basic rules for brainstorming sessions [18]:

• Judgment is ruled out: Ideas of others should not be criticized, every idea is wel-
come. Analysis and evaluation should be done after the brainstorming.

• Freewheeling is welcomed: The wildest ideas are the best. It is harder to make an
idea more exciting than the other way round.

• Quantity is wanted: Every idea is important and wanted. The more ideas are
spawned, the higher is the chance that an idea triggers other participants, which
then results in another one. Also, a bigger pool results in a bigger range to choose
from at the end of the session.

• Combination and improvement are sought: Suggestions on how to improve an idea,
or to combine ideas is highly appreciated in a brainstorming session.

Brainstorming is an approach of problem-solving with lateral thinking, which is a type
of thinking to solve problems innovatively and creatively in an open environment, where
everyone is encouraged to participate. The aim is to break out of the different old ap-
proaches and look at a problem in another way to generate an original and creative
solution, while others can give additional feedback and input or construct new ideas
out of them [7]. Many people with diverse experience are highly favored because this
will increase the richness of ideas generated by the group [1]. In this way, brainstorm-
ing can be better than conventional group interaction. They are often undermined by
group thinking, a phenomenon occurring when people do not want to jeopardize group
consensus rather than presenting an alternative way or give a more unpopular opinion

4

2. Fundamentals 5

about the topic than others. That means the view of the participants is shadowed by
the group notion [13]. The brainstorming rules and the open environment should avoid
this kind of behavior.

Although group brainstorming has many positive aspects, there are also some nega-
tive ones. In some cases, certain individuals doing brainstorming alone can create more
ideas, which could also be more unique than the same amount of people working to-
gether in groups [16]. The thinking of the participants is affected by others and could
lead them in the same direction, where they cannot create their ideas. Therefore their
creativity can get restricted to a certain area, compared to working alone without any
impact. Because during the brainstorming session, no one is allowed to criticize or re-
ward the ideas, there is an evaluation session afterward. Discussion and an analysis of
gathered ideas should take place and the solution can also be crafted in conventional
ways now, with the help of the gathered ideas. A great tool for brainstorming is mind
mapping, which helps to create a diagram out of the ideas and their relationships.

2.1.1 Mind Mapping
Mind mapping is a diagram often used for brainstorming, planning and many other use
cases developed from Tony and Barry Buzan. According to Buzan [3]:

The Mind Map is an expression of Radiant thinking and is, therefore, a
natural function of the human mind. It is a powerful graphic technique
which provides a universal key to unlock the potential of the brain. The
Mind Map can be applied to every aspect of life, where improved learning
and clearer thinking will enhance human performance. The Mind Map has
four essential characteristics:

• The subject of attention is crystallized in a central image.
• The main themes of the subject radiate from the central image as

branches.
• Branches comprise a key image or key word printed on an associated

line. Topics of lesser importance are also represented as branches at-
tached to higher-level branches.

• The branches form a connected nodal structure.

A mind map can be used as a diagram for capturing ideas on a sheet of paper and
is useful because it allows to use both sides of the brain at once. The left one is used
for analytical and sequential thinking and language thinking and the right side is for
intuitive thinking, spatial understanding, imagination, color and rhythm [2, 17]. One
could deduce that the right side is creative, likes to think freely and out of the box. In
comparison to lists on a lined notepad, mind maps are allowing more creative thought
processes and therefore favors the solution of problems. With mind maps, it is also
easier to see the bigger picture, focus on key issues and clarify thinking. In addition, the
thinking process can be tracked very easily. Therefore everyone knows how the ideas
came up. Figure 2.1 shows a mind map about creativity with multiple instructions on
it how a mind map should look like.

2. Fundamentals 6

Figure 2.1: Mind map about creativity with instructions for mind mapping [26].

2.2 Gamestorming
Gamestorming is an alternative technique to explore and look into challenges for gen-
erating a business result, such as making a decision, solving a problem, or developing a
strategy. As described in [11, S. 5]:

It can be used instead of a traditional meeting, where the games are typically
designed to ask questions, visualize ideas, combine ideas, experiment and
stimulate creativity.

The human mind is not working in a straight line [30] like it is needed for a process,
which is a chain of cause and effect [11, S. 6]. In figure 2.2, it can be seen what radiant
thinking looks like. Mind Maps, which are often used in the context of brainstorming,
are used for developing a concept and is an example for Radiant Thinking [4]. There
is one central idea, which expands in different directions and form sub-topics [9] with
more detail.

There are several gamestorming techniques which can be used in combination with
brainstorming. On the next pages, two of these techniques will be described in detail
to show what gamestorming is about and how it can help to make brainstorming even
better.

2. Fundamentals 7

Figure 2.2: Radiant Thinking visualization [30].

Figure 2.3: A visualization about before and after affinity mapping [34]

2.2.1 Affinity Map
In a brainstorming session, a group generates as many ideas as possible around a topic
within a limited time frame. After the time ended, there is a high quantity of mixed
information on the board. The question is now, how to get a meaning out of a large
amount of data. Affinity mapping is a technique that solves this issue and helps to
discover embedded patterns of thinking by sorting and clustering and creating categories
from all the notes created. It also points out which ideas occur more frequently by the
participants and are therefore more prevalent within the group [11].

How to Play

The first thing needed is the question of what the participants should think about.
As already stated in section 2.1.1, it would be great to have an image matching the
question, which will be presented on a whiteboard, projector, or something similar to
the whole group. The group size can accommodate up to 20 participants, which will
play the game for a maximum of 1.5 hours [11]. After preparation is done, the game
can start, each player should write down their ideas according to the question on sticky
notes and put them on a flat surface such as a whiteboard, which should be visible to

2. Fundamentals 8

everyone. With guidance from the players, the ideas should be sorted into columns or
clusters based on their relationships. After sorting is done, the group should agree on
names which represent the columns or clusters which were created by them. Figure 2.3
shows the start status and the result of this technique.

2.2.2 Dot-Voting
In most of the brainstorming sessions, the group has to reduce the amount of good
ideas at some point to proceed further. Therefore dot voting is one of the best and
most straightforward game to prioritize and converge upon an agreed solution [11] and
continue to focus only on the best or most popular ideas of the participants.

How To Play!

The starting point is an ongoing brainstorming session with lots of ideas or an already
sorted and clustered wall of sticky notes after an affinity mapping game, as described in
section 2.2.1. The dot voting can then be applied to a cluster to get the most valuable
approaches out of them. This could be done multiple times with different clusters to
reduce all ideas to a manageable quantity. Every participant gets 5 votes, which could
be stickers or markers, then they can use them on their favorite notes or feel the most
strongly about [11]. It is also possible to use multiple votes on the same idea. After
voting, the ranked list will be the new subject of discussion and decision making. Lower
voted ideas should not be included in further discussions. Only a short reflection can
be made to be sure nothing dropped out without any reason. Dot voting can be used in
many cases outside the brainstorming field, for example, to get the most wanted next
feature in the development or to choose among strategies and concepts [11] or vote on
the next dish to be cooked as it can bee seen in figure 2.4.

Figure 2.4: Dot-Voting on the next dish to be cooked [32].

2. Fundamentals 9

2.3 Single Page Application
Single page applications, also shortly called as SPAs are web applications which consists,
as the name says, only of one page. The content of the page is organized in components,
which can be exchanged and updated dynamically without a page reload [14]. Therefore
all the sources of the page, such as HTML, CSS and javascript have to be downloaded
at once, at the initial load of the SPA. This behavior is increasing the initial load time
of the SPA.

The load time of web applications is very important for users and long loading times
result in losing users, even before the application is fully shown to them [8]. Around 50%
of page visitors expect a page to load in 2 seconds and are likely to abandon the page
when it takes more than 3s to load [31]. That means that a fast site can be associated
with a good user experience [25]. One of the major problems slowing down mobile web
applications is the file size [31]. Therefore a SPA, which loads everything at once, makes
it even worse. Figure 2.5 shows a comparison between a normal website and a SPA. A
solution for this problem is code-splitting, which will be explained in the next section.

Figure 2.5: Lifecycle comparison between a traditional website and a single page appli-
cation [42].

2. Fundamentals 10

Figure 2.6: Before and after code-splitting [22].

2.3.1 Code-Splitting
A modular environment, where multiple plugins can be added to a single page appli-
cation, will result in an even more increased bundle size for the client. The bundle has
to be downloaded first by the browser before the website can be rendered to the screen
and therefore affects the page load time for the user. Code splitting is the solution to
this problem. It allows the browser to load the source code in smaller parts [8], which
can be seen in figure 2.6. The browser is only loading the chunks, which are needed to
show the page, which is currently requested. When the user is going to the next page,
other parts of the web page are downloaded. This results in an improved page load time
because only the essential needed parts are downloaded [33]. There are three main ways
of doing code splitting [33]:

• Vendor splitting: In this form of code splitting the source code of all the 3rd party
libraries is extracted and shipped in addition to the application source code. This
can also lead to better performance when the app cache is invalidated.

• Entry point splitting: Splits the source code by the app entry points. Single-page
applications are using client-side routing and therefore, entry point splitting is not
working that well. It is the best option for server-side routing.

• Dynamic splitting: Mostly the best choice for single-page applications, which use
dynamic import() statements.

2.3.2 Route-based Splitting
Route-based splitting is similar to the entry point splitting for server-side routing, but
in the case of a single page application, there is always a single entry point. From this
entry point, the routing is handled on the client-side. The routes then can be split away
from the main bundle, which can be seen on the left in figure 2.7 and makes sense when
certain routes or features have a large bundle size and are not always used from the
users. For example, in the context of Blobster, where only the moderator has to load

2. Fundamentals 11

Figure 2.7: Before and after code splitting [22].

the moderator screen. The participants only need to download the mobile screen with
their mobile devices, which often have a slow internet connection, resulting in a longer
page load time.

2.3.3 Component-based Splitting
Component-based splitting is an addition to the route-based splitting and can be ac-
complished with dynamic splitting. Therefore components can load chunks of the bundle
on demand. For example, when a plugin is not used in Blobster, then also the code is
not needed. On the right in figure 2.7 is the result of a web application, which is using
component-based splitting of the bundle.

Chapter 3

Related Work

This chapter is about the state of the art in the field of brainstorming tools and mod-
ular architectures in the web development area. In the first section, the most valuable
brainstorming and e-learning tool will be presented, which are relevant for the practical
part of the thesis. Afterwards, it will also explain the different development approaches
and frameworks for creating a modular architecture.

3.1 Brainstorming
There is a variety of different brainstorming tools on the market. The following section
will present the most popular and powerful tool.

3.1.1 Mural
Mural is an online tool where multiple participants can work together on a whiteboard,
without being at the same location. Images, notes and also drawings can be added and
seen by others on the whiteboard in real-time. In figure 3.1 the mural whiteboard can
be seen with a lot of sticky notes on it. Additionally, it is possible to create mind maps
with mural. The web application can be used on nearly every device and there is also a
mobile application for smartphones and tablets. On tablets, user can draw with the help
of a pen directly on the online whiteboard and show their ideas to other participants.

3.2 E-Learning

3.2.1 Moodle
Moodle is an e-learning system, used by many institutes. It is possible for teachers to
create courses where the students can register. Every course has a syllabus and a time
schedule with the corresponding slides, which were presented on this date. Additionally,
there are exercises with an upload form and more features like a small quiz.

12

3. Related Work 13

Figure 3.1: Mural whiteboard with many sticky notes on it [38].

3.3 Modular Architecture
A modular architecture in the software field is simply saying the splitting of a complex
problem into smaller manageable modules [40], or as Knoernschild would say [15]:

A software module is a deployable, manageable, natively reusable, compos-
able, stateless unit of software that provides a concise interface to consumers.

3.3.1 Nylas
Nylas was one of the key players in supporting Plugins in React before they abandoned
their Nylas Mail Client. However, their approaches are still a good starting point.

React is a good foundation to start supporting plugins because components can have
an isolated behavior and rendering and can be self-contained [37]. But there are three
main issues [37]:

• Plugin components need access to the state and database.
• Plugin components need to appear in the application and other components will

not know what they have to render.
• Plugin components may throw exceptions and crash the whole application.

The first issue is nowadays pretty simple, as Redux is now one of the most used state
containers and solves the issue. The key for the second issue is to think different, nor-
mally components are rendered directly in the render() method of react, but it is also
possible to create an array of them and store them in Redux and dynamically inject
more e.g., button components to a field as it can be seen here:

<div>{
injectedButtons.map(function(button){

return <button draft={this.props.api}/>;
});

}</div>

3. Related Work 14

Therefore it is also possible to pass some API calls over the props to the injected
components. But they have to be clearly documented for other developers [37].

3.3.2 React-Slot-Fill
React-Slot-Fill is another approach where places in the application, which can be used
to inject components are called slots. These slots can be filled with other components.
The following code snipped shows the principle [23]:

import { Slot, Fill } from 'react-slot-fill';

const toolBarLink = (props) =>
<div>

<Slot name="Toolbar.Link" />
</div>

export default Toolbar;

Toolbar.Link = (props) =>
<Fill name="Toolbar.Link">

<button>{ props.url }</button>
</Fill>

3.4 Code-Splitting

3.4.1 React Loadable
React Loadable is a small library and facilitates the dynamic imports for the component-
based splitting approach [22]. Therefore it provides a Higher Order Component, which
takes care of the imports and is also handling loading and error states. Hereafter a
sample dynamic import is shown.

Loadable({
loader: () => import('./components/Bar'),
loading: Loading,
delay: 300, // 0.3 seconds

});

The specified delay is the waiting time before the loading screen is presented to the user.
Depending on the size of the chunk and the internet connection, the loading screen is
not shown when the download is faster than the specified time in milliseconds.

Chapter 4

Concept

This chapter is dedicated to the concept and system design of the prototype, which was
part of the master project. In addition, a system and context analysis was performed
and the corresponding use cases and requirements were defined.

4.1 Initial Goal
The role of the thesis project is not to implement a complete brainstorming tool, a small
prototype for a brainstorming tool was already done before and the master thesis project
will build upon this project, called Blobster. Such brainstorming applications allow
to contribute ideas to the online whiteboard and collaboratively develop a structure
for their ideas. Although such systems typically facilitate the input of a reasonably
large number of users, they focus primarily on idea generation based on a rather fixed
interaction paradigm. However, various applications could utilize the data generated
by such brainstorming activities. Most of these applications focus on mind mapping
without the use of some gamestorming techniques for creating a solution, which is one
of the main topics in the thesis. Therefore a modular data framework is needed for
reusing the data in various playful activities such as a voting, quizzes and other games.

4.2 System Requirements
Requirements have been defined for the master thesis project to show the scope and
what needs to be done to realize the project. In the following listing, the requirements
are introduced and give an overview of all the changes and features which need to be
implemented.

• Revise of the Blobster project as well as stability improvements, bug fixes and the
rework of the clustering mechanism.

• Create a plugin system.
• Integrate the plugin system into Blobster.
• Create a development environment for plugins.
• Develop a sample plugin.
• Plugins should be able to add and change data from the session.

15

4. Concept 16

• Communication between moderator and participant plugin view.
• Possibility to upload the plugin source code.
• Possibility to add a plugin, also called template, to the session and use it in a

Blobster session.

4.2.1 Blobster
Blobster is a small web brainstorming tool where multiple people can brainstorm to-
gether over the internet. The improvement of the Blobster project is an essential part
of the master thesis because all the other requirements build upon this web application.
Therefore, the system must be so flawless and stable that other requirements are not
affected or blocked.

4.2.2 Plugin-System
The most significant part of the master thesis project is the plugin-system, which will
be integrated into the Blobster web application. Third-party developers should be able
to create a Plugin, or in the context of Blobster, called template. These templates are
added to the brainstorming session and can be used from users to evolve their gathered
ideas and data to something new, add aspects to the existing data or decide upon one
solution with voting. There are no limits, with the plugin system, it should be possible
to do nearly everything with the system. It could also be used in schools for teaching
and checking if the students are collaborating in the lessons with a small quiz afterward
about the transcript created in Blobster.

4.2.3 Sample Plugin

The sample plugin will be a combination of a voting and a quiz such as Kahoot1. There
will be a question or topic and the participants can vote or select one of the four different
possibilities. It can also be used in the beginning, where the moderator wants to check
the knowledge base of the group.

4.2.4 Development Environment
The developers who can create Templates need an environment where they can test and
develop their projects with a development version of Blobster.

4.2.5 Data Architecture
In most cases, the developed templates also need to save data in the database of Blobster.
Therefore an interface for the communication with the database has to be developed,
which can be used from the templates to save and manipulate data to or from the
session.

1https://kahoot.com

https://kahoot.com

4. Concept 17

4.3 Use-Case
The Diagram in figure 4.1 illustrates all the use cases of the Blobster web application.
It consists of 4 Actors who can interact with the system.

4.3.1 Moderator
The moderator is the actor with the most use-cases. He can create a brainstorming
session and invite participants to it. The created ideas from the participants can also
be changed with the edit ideas use-case. When enough ideas are gathered, a template
can be added to the session. Therefore the template list is shown, where the moderator
can select a template, which is then added to the session. Afterwards, the template can
be started. When everything is done, the session can be closed from the moderator.

Figure 4.1: Use-Case diagram of the Blobser Project.

4. Concept 18

4.3.2 Participant
At first, a participant has to join a session, which is created by a moderator. After
the joining process, he can spawn new ideas and send them to the session. When the
moderator decides to start a game, he has to attend an play the game with all other
participants.

4.3.3 Blobster Developer
The Blobster developer, which is also the author of the thesis, is the actor who will work
on the brainstorming tool. He is responsible for adding additional features and for bug
fixes in the brainstorming platform.

4.3.4 Plugin Developer
As a plugin developer, templates can be created and added to the plugin list. For
developing, he needs the Blobster environment.

4.4 System Design
This section describes the main parts of the project in a more detailed way and should
give an overview of the whole project as it can be seen in figure Figure 4.2.

4.4.1 Plugin-System
The plugin-system is one of the main parts of the thesis project, because of that, a long
research was done to define all the needed functionality and requirements on the system.
At the time of development, no solution could have been easily reused in this project,
such as a NPM 2 package. In addition, there are not many documented approaches out
there for ReactJS in the world wide web, how someone could create a plugin architecture,
or in the case of Blobster a Template System. Therefore a concept for a plugin system
was developed, which should be as general and straightforward as possible so that it
could be easily used from other developers in different projects with other frameworks as
ReactJS. Therefore it should be exported as a NPM Module in the future. For creating
such a system, these points were considered as the way to go:

1. Plugins should be separated projects, so the source code is not in the same Git
repository as Blobster or any other project where it is used.

2. Vendor libraries should be reused from the main application. Therefore the bundle
should exclude them. This will decrease the bundle size and increase usability
because of the lower loading time as nothing is loaded multiple times. Another
benefit is that there is no version mismatch between the main project and the
plugin projects. All of them are using the same library as provided from the main
source.

2NPM - Node Package Manager is a registry to share open-source software packages. (https://www.
npmjs.com)

https://www.npmjs.com
https://www.npmjs.com

4. Concept 19

Figure 4.2: Big picture of the whole project.

3. The plugin system has to provide a register function for the loaded plugins, where
they will register when they are loaded completely. The window object is the best
option to be reusable in other projects too.

4. The control is inverted. Therefore the plugin has to call this function, to register
in the plugin system. As a parameter, the plugin will pass its view and additional
data like IDs or functions which are passed to the project using the plugin system.

5. For the case a project is using some state management system, such as Redux,
there is also the option to pass a function to the plugin-system, which is called
when a plugin registered in the system. It is also possible to use the plugin-system
as a cache. All registered plugins are cached and can be queried from the system.

6. The main parameter the system needs is a list of URLs, where the bundled plugins
are saved. The system will then load them and dynamically inject the scripts to
the site and call the callback described in Point 5 and cache the components.

In figure 4.3, the flow of the plugin-system can be seen. First, it must query the list
of plugins that are needed. In most cases, all the plugin data is saved in a database or
something similar. With all the information needed, the system will spawn the plugins
in the context of the system. When the plugins are fully loaded, they will call the system
that they are ready to use. The system will then return a list of all loaded plugins to
the web application, which requested the plugins.

4.4.2 Plugin Environment
Developing a plugin should be as easy as possible. Therefore it is essential to have a
pleasant development environment. A third-party developer has to be able to test and
develop their plugins without much effort setting up the project and build pipeline.
Figure 4.4 shows a sequence diagram of how the procedure should look. Developers can

4. Concept 20

Figure 4.3: Flow chart of the registering from the plugins.

clone the project for developing a plugin from source control. In this project, everything
should be set up, including a development version of the Blobster project. The only thing
they have to do is install the packages, start the environment and start programming.
When they save in their favored coding ide, the code should be bundled and updated in
the Blobster web application. Testing is done after the automatic refresh ob the website.

When everything is correct and the plugin is finished, a release bundle can be created
and is returned to the developer. This bundle has to be uploaded to the plugin section
of the Blobster web application and will be published and usable after the input of a
name and a description and the upload of a corresponding image.

4. Concept 21

Figure 4.4: Sequence diagram of the plugin development.

4.4.3 Data Architecture
To give plugins access to the database, they will be provided with API methods for
manipulating the data they are allowed to change.

Reusable Data

Saving data is not the main problem, but the saved data should also be reusable later
on in other templates, for example. Therefore, a particular structure is needed which
can be read by the main project and other templates. This structure has to be defined
and documented.

4.5 Template-System Mockup
Figure 4.5 shows a mockup of the template system in the Blobster project. On the left
side, the moderator has a scroll view where all the templates added to the session are

4. Concept 22

Figure 4.5: Sketch of the template system.

listed. With drag and drop, a template can be added to the board. In this case, a quiz
template with one question and four answers is added. The fields can be filled either
with dragging a cluster or idea onto the template or writing the content directly into
the fields.

Chapter 5

Technical Implementation

5.1 System Architecture
As seen in figure 5.1, the frontend is built in React.js. With the help of Redux and
redux-observables. All the inputs are mapped to actions, which are going through the
reducer, the epic middleware and create a new state or fetch data from the rest API.
The features like sending a post-it to the moderator screen or the voting is sent over
the socket.IO connection between the moderator and the participants. The backend is
built in Node.js (using Express). In combination with a Rest API and Mongoose, the
backend stores data in the MongoDB database.

5.2 Frontend

5.2.1 ReactJs
React, or also called ReactJs, at which Js stands for Javascript, is an open source
JavaScript library for building user interfaces developed by Facebook in 2003 [10]. React

Figure 5.1: Basic concept of the application procedure.

23

5. Technical Implementation 24

Figure 5.2: Visualization of how the real DOM is updated [35].

is basically a declarative wrapper for the imperative DOM1 API [10]:
• Imperative describes how something has to be done.
• Declarative describes what has to be done without telling how.

React is only used for the view. Therefore the view is broken down into smaller parts,
which are called components. Each component has props passed by the parent and
manage their own state. Changing either the state or the props will result in re-rendering
this single component and not the whole view [28]. All the DOM manipulation is done
by React itself because these operations are expensive and imperative. Therefore React
provides a virtual DOM, which the developers use to render. The virtual DOM and the
real DOM are compared and React conducts the minimum number of DOM operations
required to patch the real DOM to the new state. [19].

5.2.2 Redux

Redux2 is a small library for JavaScript, which is used to maintain the state of a web
applications in an predictable state container. Thereore Redux is using these basic prin-
ciples [29]:

• Single source of truth, a project has only one store which handles the complete
state of the application.

• State is read-only. It can only be changed when dispatching a new action.
• Changes to the store are made with pure functions, at which “pure” means, the

same input will result in the same output every time.
1DOM, Document Object Model is a representation of a website as nodes and objects. (https://

developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction)
2https://redux.js.org

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://redux.js.org

5. Technical Implementation 25

Figure 5.3: Illustration of the redux flow [41].

In figure 5.3 the redux data-, action- and state flow is illustrated. The view is rendered
by ReactJs events such as a button click will be transformed to actions. An action is
simply a JSON Object with a type and a payload, as it can be seen in the following
snippet.

1 {
2 type: "INCREASE_COUNTER"
3 payload: 1
4 }

This action is then sent to the store. At the store, the action is first passed through all
the middle wares, which could produce side effects and query an Rest API for example.
The reducer is then generating a new state with the old stat and the passed action.
The state will then be returned back to the view Changes in the state will result in a
re render of the view or component. Side effects, such as a API call can also spawn new
actions and change the state.

5. Technical Implementation 26

5.2.3 React-DnD

React-DnD3 is a library for handling all the drag and drop features on the brainstorming
board in the Blobster project.

5.2.4 Code-Splitt
For splitting the source code bundle.js into multiple chunks, React-Loadable was used.
React-Loadable is a wrapper around components with dynamic imports. Webpack4 is
then splitting the bundle into chunks, which are loaded when the application needs
them. Therefore, the initial page load time is decreased. The snippet below is showing
one of the loadable components, which will be outsourced into a chunk.

1 const loadablePublicScreen = Loadable({
2 loader: () => import('./admin/PublicScreen'),
3 loading: () => <div>Loading Screen ... </div>
4 });

In this example, the public screen from the moderator is only loaded when the client is
a moderator. Participants will not load this chunk.

5.2.5 Plugin-System
The template or plugin system is an external module, developed in his own project. The
system is bundled and uploaded to an S3 Bucket and loaded into the application with
a script tag.

1 export default class PluginSystem {
2 constructor(pluginUrlList, pluginUpdateCb) {
3 console.log('New Plugin System')
4 this.pluginUrlList = pluginUrlList
5 this.pluginUpdateCb = pluginUpdateCb
6 this.pluginCache = []
7 window.registerPlugin = this.registerPlugin
8 pluginUrlList.forEach((pluginUrl) => {
9 this.dynamicallyInjectScript(pluginUrl)

10 })
11 }
12 }
13 registerPlugin = (plugin) => {
14 this.pluginCache.push(plugin)
15 this.pluginUpdateCb(this.pluginCache)
16 }

The system is passing the registerPlugin() function to the window object. Afterward,
all the requested bundles are downloaded and injected into the web application.

When the plugin is loaded into the application, it will call the registerPlugin()
function, which can be seen in the following code snippet.

1 let registerPlugin = () => {
2 if (window.registerPlugin) {
3 window.registerPlugin({

3https://github.com/react-dnd/react-dnd
4Webpack is a tool, which creates a bundle and chunks out of the source code. (https://webpack.js.org)

https://github.com/react-dnd/react-dnd
https://webpack.js.org

5. Technical Implementation 27

4 pluginId: PLUGIN_ID,
5 pluginAdmin: connect(
6 state => ({
7 topic: state.gui.topic,
8 session: state.session.session
9 }),

10 { goToFullScreenPlugin }
11)(ExamplePlugin),
12 pluginMember: ExampleMember,
13 reducer: [hoodmood],
14 epics: [hoodmoodEpic]
15 })
16 } else {
17 setTimeout(() => registerPlugin(), 100)
18 }
19 }
20 registerPlugin()

The template is trying to call the window.registerPlugin() function, if it is not set yet,
it will wait 100ms and try again. As soon as the function is ready, the template object is
passed to the plugin system. This object contains a plugin-id, which is used to distinguish
between the different templates. The template provides a moderator component and a
participant view, which are used from Blobster to present the template on the board.
The figure 5.4 sequence diagram shows the whole process. There is a Plugin Overview
page, in which Moderators can select plugins for their sessions. When a developer has
registered his plugin on the screen shown in figure 5.5, it is shown in the Plugin List, like
it can be seen in this figure 5.6. When the moderator adds a Plugin to the session, it is
added to the template system and a Socket.IO event is fired to inform the participated
clients to add the plugin, too.

Figure 5.4: Sequence diagram of the template loading process

5. Technical Implementation 28

Figure 5.5: Screen for adding templates to Blobster.

Figure 5.6: Template List with one template added to the session.

5. Technical Implementation 29

Redux

In order to use Redux, the reducer has to be injected into the store, the template system
will take care of this. The store configuration has to be adapted to this approach [39]:

1 function configureStore(initialState) {
2 const store = createStore(createReducer(), initialState)
3
4 // Keep track of the registered template reducers
5 store.templateReducer = {}
6
7 // Create an inject template reducer function
8 // This function adds the template reducer which is loaded async
9 // and creates a new combined reducer

10 store.injectReducer = (key, templateReducer) => {
11 store.templateReducer[key] = templateReducer
12 store.replaceReducer(createReducer(store.templateReducer))
13 }
14 return store
15 }
16
17 export default configureStore(composedEnhancers);

The template system then calls the injectReducer() function with the passed reducer.
After this has been done, the state from the store can be used in the template and also
actions can be dispatched.

Epics

For the epics, it is pretty much the same as with the reducer in section 5.2.5. Only the
injection method is different [20]:

1 export const epic$ = new BehaviorSubject(combineEpics(
2 userEpic,
3 apiEpic,
4 sessionEpic,
5 gameEpic,
6 guiEpic,
7 pluginEpic
8));
9 export const rootEpic = (action$, state$) => epic$.mergeMap(epic => epic(action$,

state$));
10 plugin.epics.forEach(epic => epic\$.next(epic))

5.2.6 Integration into Blobster
In this section, the integration of the plugin system into the Blobster project is described.
The first step is to load the system itself, which is also an independent project and is
bundled and uploaded to a web-server hosting the file. The system is loaded via a script
tag in the HTML.

1 <script src="https://s3.eu-central-1.amazonaws.com/plugins.blobster.it/
pluginSystemNew.js"></script>

For creating the system, the following code is used:

5. Technical Implementation 30

1 createPluginSystem(session) {
2 this.pluginSystem = new window.PluginSystemMeisi(session.plugins.map((it) =>

it.bundle), (plugins) => {
3 console.log('PLUGINS_CB: ', plugins);
4 plugins.forEach((plugin) => {
5 plugin.epics.forEach(epic => epic.next(epic))
6 plugin.reducer.forEach((reducer, index) => store.injectReducer(plugins[index

].pluginId, reducer))
7 });
8 this.props.receiveComponents(plugins);
9 })

10 }

The system is created with the plugin list from the session object as a parameter.
The session object contains all the information of the brainstorming session, such as
the ideas, cluster and added templates or also called plugins. The second parameter is
an anonymous function, which is called when the plugin is loaded and registered in the
system, as described in section 5.2.5. In this function, all the epics and reducer functions
are added to the Redux store, with the help of the functions created in section 5.2.5
and 5.2.5. Afterwards, the plugin components are added to the redux store with the
receiveComponents() function. When a plugin is added on the fly from the plugin
list(Figure 5.6), the addPluginToSession action is called with the plugin and session
id and the plugin itself.

1 this.props.addPluginToSession({pluginId: plugin._id, sessionId:
this.state.sessionActive, plugin: plugin});

2
3 action =>
4 action
5 .ofType(String(addPluginToSession))
6 .pluck("payload")
7 .do((x) => {
8 addNewPluginOnClient(x.plugin)
9 })

10 .mergeMap(data =>
11 api.post(
12 {
13 path: SESSION_PATH + '/addPluginToSession',
14 body: data
15 },
16 obs => obs.pluck("response").do((x)=> console.log(x)).map(receiveSession)
17)
18),

One of the epic is listening for this action and performs multiple side effects for this
action:

1. Send a socket event to the client. Therefore, the method addnewPluginOnClient
is called with the plugin and a Socket.io event is emitted with the same name and
the plugin data. The backend is then broadcasting an addNewPlugin event to all
the connected participants:

1 socket.on('addNewPluginOnClient', function(plugin) {
2 socket.broadcast.to(socket.sessionRoom).emit('addNewPlugin', plugin);
3 });
4

5. Technical Implementation 31

5 socket.on("addNewPlugin", data => {
6 if(this.pluginSystem) {
7 this.pluginSystem.addPlugin(data.bundle)
8 }
9 })

10

The clients receiving this broadcast will then add the plugin to their plugin-system.
2. Create a post request and add the plugin to the session object saved in the database

with the route addPluginToSession.

Draggable Extension

An extension is an instance of a template, because a session can have multiple instances
of a template at the same time. These Extensions need to be draggable at the brain-
storming board. Therefore, a draggable Extension component is created. The source
code of this extension is shown in program 5.1. The drop target object defines which
types of draggables can be dropped onto the extension. The render method connects
everything up and renders only the children. In the case of an extension, it will render
the components, which are passed from the plugin into the plugin-system.

5.3 Backend

5.3.1 Node.js
In the backend, Node.js is a Javascript interpreter and runtime system, which has made
JavaScript an attractive option for server-side programming. It is a combination of an
interpreter with an event-driven library. This makes the library particularly suitable for
web applications that deal with many requests [5].

5.3.2 Express
Express is a web application framework built on top of Node.js. It makes it easier to
handle routing and adds helpful utilities to Node.js, such as a middle ware approach. In
addition, Express facilitates the rendering of dynamic views [12].

5.3.3 MongoDB
As a database, MongoDB is used in the Blobster project. MongoDB is a powerful,
flexible and general-purpose database and is document-oriented. Therefore, the concept
of columns and rows is replaced by a more flexible object, the document [6].

5.3.4 Mongoose
Mongoose is an extension library for Node.js, which provides a schema-based solution to
model the application data in a MongoDB database. The main features are according
to [36]:

Built-in type casting, validation, query building, business logic hooks and
more.

5. Technical Implementation 32

Program 5.1: The draggable extension component drawn onto the brainstorming board.

1 const dropTarget = {
2 drop(props, monitor) {
3 const item = monitor.getItem();
4 if (monitor.getItemType() === ItemTypes.IDEA ||
5 monitor.getItemType() === ItemTypes.FOLDER ||
6 monitor.getItemType() === ItemTypes.IDEA_PREVIEW) {
7 if(window[props._id]) window[props._id](item, monitor.getItemType()
8 === ItemTypes.FOLDER);
9 }

10 return { name: 'extensionDropTarget' }
11 }
12 }
13 class DraggableFolder extends Component {
14 static propTypes = {
15 connectDragSource: PropTypes.func.isRequired,
16 connectDropTarget: PropTypes.func.isRequired,
17 left: PropTypes.number.isRequired,
18 top: PropTypes.number.isRequired
19 };
20 render() {
21 const { connectDragSource, connectDropTarget } = this.props
22 return connectDragSource(connectDropTarget(
23 <div style={getStyles(this.props)} className={'extension'}>
24 {this.props.children}
25 </div>
26))
27 }
28 }
29 export default compose(
30 DragSource(ItemTypes.EXTENSION, extensionDragSource, (connect, monitor) =>

({
31 connectDragSource: connect.dragSource(),
32 // connectDragPreview: connect.dragPreview(),
33 isDragging: monitor.isDragging()
34 })),
35 DropTarget([ItemTypes.IDEA, ItemTypes.FOLDER, ItemTypes.IDEA_PREVIEW],

dropTarget, (connect, monitor) => ({
36 connectDropTarget: connect.dropTarget(),
37 isOver: monitor.isOver(),
38 canDrop: monitor.canDrop()
39 }))
40)(DraggableExtension)
41

5.3.5 Database as a Service
Database as a Service (DBaaS) is a service, which provides a database without the
need for buying physical hardware or installing a database software on a machine in the
network. The developer only has to connect to the database over an specific address
[27].

5. Technical Implementation 33

Figure 5.7: Extension Mongoose schema.

5.3.6 Routes for the Extensions and Plugins

Extension Route

Program 5.2 is showing how an extension is created and updated in the database.

Plugin Routes

Program 5.3 is showing the route for adding a template to the session object by the
moderator. The second route is for the participant, which also need to fetch the plugins
from their current session.

Data

Templates can also store data in the Blobster MongoDB database. An extension field
is created as soon as a template is added to the board, which has a data field where
the template can save any kind of JSON data. Therefore they only need to dispatch
an updateExtension action to the store. After it is saved, the refreshed data object is
instantly passed back to the template. In addition to that, there is also an option to add
an extension to an idea. E.g., when an idea is dragged into the question editor, it will be
used as an answer. Then there is also an extension added to the idea, which gets a sort
extension after the quiz is finished, as it can be seen in figure 5.7. This sort of extension
could then be used in other templates or in Blobster to sort or filter. Currently, this is
only implemented in the backend and can not be used in the frontend. Program 5.4 is
showing the database schema.

5.4 Problem with the Existing Code Base

5.4.1 Local Storage
The local storage of the browser was used for reconnects and storing session data, which
was a wrong approach and in some situations, the sessions were mixed or side effects

5. Technical Implementation 34

Program 5.2: Extension route for adding and updating of the extension in the session
object.

1 router.post('/addExtensionToSession', function(req, res) {
2 if(req.body.sessionId && req.body.extension) {
3 Session.findOneAndUpdate(
4 { _id: req.body.sessionId },
5 { \$push: { extensions: req.body.extension } },
6 {new: true},
7 function(err, session) {
8 if(err || !session) return res.status(400).send({
9 "error": "400026",

10 "message": "Problem adding the extension to the database"
11 })
12 return res.status(200).send(session)
13 }
14);
15 } else {
16 return res.status(400).send({
17 "error": "400027",
18 "message": "Problem parsing JSON, probably Missing Fields",
19 "required": "sessionId, extension"
20 });
21 }
22 });
23
24 router.put('/updateExtension', function(req, res) {
25
26 if(req.body.sessionId &&
27 req.body.extension) {
28
29 Session.findOneAndUpdate(
30 { _id: req.body.sessionId, 'extensions._id': req.body.extension._id },
31 { \$set: {
32 'extensions.\$': req.body.extension
33 } },
34 {new: true},
35 function(err, session) {
36 if(err || !session) return res.status(400).send({
37 "error": "400028",
38 "message": "Problem updating the extension"
39 });
40 return res.status(200).send(session)
41 }
42);
43 } else {
44 return res.status(400).send({
45 "error": "400029",
46 "message": "Problem parsing JSON, probably Missing Fields",
47 "required": "sessionId, extension"
48 });
49 }
50 })
51

5. Technical Implementation 35

Program 5.3: Plugin route for adding fetching the plugins of a session.

1 router.post('/addPluginToSession', function(req, res) {
2 if(req.body.sessionId && req.body.pluginId) {
3 Session.findOneAndUpdate(
4 { _id: req.body.sessionId },
5 { \$addToSet: { plugins: mongoose.Types.ObjectId(req.body.pluginId) } },
6 {new: true},
7 function(err, session) {
8 if(err || !session) return res.status(400).send({
9 "error": "400012",

10 "message": "Problem adding the idea to the database"
11 })
12 session.populate('plugins', (err, sessionPopulated) => {
13 if(err || !sessionPopulated) return res.status(400).send({
14 "error": "400012",
15 "message": "Problem adding the idea to the database"
16 })
17 return res.status(200).send(sessionPopulated)
18 });
19 }
20);
21 } else {
22 return res.status(400).send({"error": "400011"});
23 }
24 });
25 router.get('/getPluginsFromGame/:gamePin', function (req, res) {
26 Session.findOne({ 'pin': req.params.gamePin}, function (err, session) {
27 if (err) {
28 return res.status(500).send({
29 "error": "5001",
30 "message": "Problem finding game"
31 });
32 } else {
33 if(session) {
34 if(session.active) {
35 return res.status(200).send(session.plugins);
36 } else {
37 return res.status(500).send({
38 "error": "5002",
39 "message": "Game is not open!"
40 })
41 }
42 } else {
43 return res.status(500).send({
44 "error": "5002",
45 "message": "Wrong Game Pin"
46 })
47 }
48 }
49 });
50 });
51

5. Technical Implementation 36

Program 5.4: Extension with the SortExtension field.

1 var mongoose = require('mongoose');
2 var SortExtSchema = new mongoose.Schema({
3 type: {
4 type: String,
5 },
6 value: {
7 type: String
8 },
9 }, { timestamps: true});

10
11 module.exports = SortExtSchema;
12 var ExtensionSchema = new mongoose.Schema({
13 title: {
14 type: String,
15 required: true
16 },
17 pluginId: {
18 type: String,
19 required: true
20 },
21 top: {
22 type: Number
23 },
24 left: {
25 type: Number
26 },
27 data: {
28 type: Object,
29 default: {}
30 },
31 sortExt: [SortExt],
32 }, { timestamps: true});
33 module.exports = ExtensionSchema;
34

occurred. Therefore, all the data stored in the local storage got transferred to the query
part in the URL, which is a much cleaner and manageable approach.

5.4.2 Idea position after Dragging out of Folder/Cluster
There was a problem, where the drop position was wrong calculated when dragging
ideas from one Drop-Target to another(e.g., When an idea is dragged out of a cluster
on the board). To narrow this problem down to its fundamentals, an environment to
study which factors are involved had to be created. React DnD supplies different offsets
when dropping an item to a target, these offsets are described in the documentation of
the library as followed [21]:

• getInitialClientOffset(): Returns the x, y client offset of the pointer
at the time when the current drag operation has started. Returns null
if no item is being dragged.

5. Technical Implementation 37

• getInitialSourceClientOffset(): Returns the x, y client offset of
the drag source component’s root DOM node at the time when the
current drag operation has started. Returns null if no item is being
dragged.

• getClientOffset(): Returns the last recorded x, y client offset of the
pointer while a drag operation is in progress. Returns null if no item is
being dragged.

• getDifferenceFromInitialOffset(): Returns the x, y difference be-
tween the last recorded client offset of the pointer and the client offset
when current the drag operation has started. Returns null if no item is
being dragged.

• getSourceClientOffset(): Returns the projected x, y client offset of
the drag source component’s root DOM node, based on its position at
the time when the current drag operation has started, and the move-
ment difference. Returns null if no item is being dragged.

For dragging the ideas on the board, the getDifferenceFromInitialOffset() method
is used, but in case of dragging an item out of another source, such as dragging an idea
out of a cluster, there is the initial position missing, because they are not on the board,
they are part of the cluster. After testing and thinking about the drag and drop context,
the best suitable one from these methods is getSourceClientOffset(). However, the
result was still wrong. After the investigation, the factors playing along with this problem
are:

• The Dom-Node,
• the Position of the Dom-Node and
• the scroll position of the Dom-Node.

The source client offset and the drag and drop context container node is needed. Re-
moving the offsets of the container, which includes margin, padding, position offset of
the container relative to the overall page and add the scroll offset to the item, will result
in the correct drop position.

1 const newPosition = monitor.getSourceClientOffset();
2 store.dispatch(deleteCategoryFromIdea({
3 _id: item._id,
4 left: newPosition.x-containerNode.offsetLeft+containerNode.scrollLeft,
5 top: newPosition.y-containerNode.offsetTop+containerNode.scrollTop}));

5.4.3 Post-It
The post-it, which was used until now was only a picture with a title field and a drop-
down text field for the description, which was not editable from the moderator. Because
this is not sufficient an HTML and CSS post-it was added to the project and replaced
the old picture post-it. This new post-it can also be colored in any color the user wants,
as it can be seen in figure 5.8.

5. Technical Implementation 38

Figure 5.8: New Post-It with title, description and a different color.

Figure 5.9: Cluster with colored post-it.

5.5 Adding Color to the Project
Up to now the whiteboard only has used yellow post-its, with the newly created ones,
the color is used that someone can see that they are selected instead of a slight rotation
of the note. This is a much better user experience. Moreover, clusters do now have
different colors as it can be seen in figure 5.9. Every time a cluster is created, a color
from a defined list, or a random color when all colors are used, is selected.

5.6 Screen Extension
When multiple users are generating ideas, the space is getting too small if there are
multiple clusters. Therefore a screen extension is needed. It is now possible to add more
screens with a click on the small plus symbols to the board, like adding a row to a

5. Technical Implementation 39

Figure 5.10: Screen extension icons

table. Figure 5.10 is showing the symbols on the brainstorming screen. The screen can
get one extra size to the right and 6 to the bottom until it is a 6 × 2 grid, which is the
max size currently. Because this was not part of the semester project, there was a lot
of rewriting required. A first step was fixing the problem mentioned in section 5.4.2,
which was needed for this extension. Also, the position calculation, when dragging items
longer distances, needed some adaption. (e.g., whenever an item is dragged from top to
bottom and the page is scrolling down) There was a method created, which takes the
scroll and offset position before and afterwards in order to calculate the correct offset
based on the different scroll positions:

1 function calculateOffset(offB, offA) {
2 if(offB === offA) return 0;
3 if(offB < offA) return offA-offB;
4 if(offB > offA) return (offB-offA)*-1;
5 }

OffB/offA is the scroll position offset before and after the dragging. Then it has to be
considered if it was not scrolling or it was scrolling left/right or up and down. Depending
on the scroll direction, the calculation has to be adapted to the offset. Furthermore, the
selection library, which is used (React Selectable) was not working as expected. Because
the functionality of this lib was needed, a dive into the library had to be done. After
investigating and debugging what could go wrong in the library, it was clear that the
library is missing some offsets. Therefore the calculation of the correct offset is now
done in the Blobster application and handed over to the library, which was changed to
use the values provided by our project:

1 const boxLeft = this.applyContainerScroll(
2 Math.min(leftContainerRelative - bowWidth, leftContainerRelative),
3 +this.props.nodeForOffset.scrollLeft

5. Technical Implementation 40

After that, the library had to be built, transpiled and replaced in the node modules
folder.

5.6.1 Socket.io
In the existing code base, which was used for the master thesis project, were multiple
problems with the real-time session handling. One of the most notable problems was the
duplication of the user name in the session invite screen, as well as the duplication of
ideas on the moderator screen. Debugging is pretty hard in this real-time scenarios, so
the search time for finding those mistakes was a long term investigation with multiple
changes and testing phases, because some mistakes occurred only after disconnects or
after a specific sequence of actions. For example, a user who disconnected because of
an internet issue joined back and was invited to another session without closing the old
session from the moderator ended in a user sending ideas to 2 sessions at the same time
or duplicating the ideas. Because of this problem, multiple changes were needed in the
frontend, as well as in the backend. In the frontend, the registration to the Socket.Io
listeners for a specific real-time event could be executed more than once, for example
when the registration is in the wrong life-cycle method or is not unregistered on a session
change, or it is executed again after a reconnect.

5.7 Real-Time-Events
One of the biggest challenges was the communication between the moderator and the
clients. Because developers cannot add Socket.IO events on the server dynamically.
Therefore, another method had to be considered. There are two events provided on the
server, which can be used for sending data from the moderator/client to the client/-
moderator:

1 socket.on('sendDataToModerator', function(data) {
2 socket.broadcast.to(socket.sessionRoom).emit('receivePluginDataFromClient', data

);
3 });
4
5 socket.on('sendDataToClient', function(data) {
6 socket.broadcast.to(socket.sessionRoom).emit('receivePluginDataFromModerator',

data);
7 });

When the client or moderator receives data from the other part, an action is called. In
the template epic, two epics are listening for these events. The template developer can
then think about a protocol and send actions over the socket and merge these actions
into the epic, which then gets dispatched on the other side, as it can be seen in the
following sample epic:

1 (action$, store) =>
2 action$
3 .ofType(String(receiveDataFromMod))
4 .pluck("payload")
5 .do(hood => console.log("hoodmoodepic", hood))
6 .mergeMap((data) => {
7 switch(data.action) {

5. Technical Implementation 41

8 case 0:
9 return Rx.Observable.of(goToFullScreenPlugin({pluginId: data.pluginId,

extensionId: data.extensionId, mod: false, sessionId: data.sessionId}))
10 case 1:
11 return Rx.Observable.of(goBackToPrivateScreen(), resetState());
12 case 2:
13 if(store.getState()[PLUGIN_ID].waiting) return Rx.Observable.of(

toggleWaiting())
14 return Rx.Observable.empty()
15 }
16 })

Styles

Importing styles the normal ReactJS way is currently not supported, the style is im-
ported and can then be used with the classnames library.

1 //ReactJS:
2 import './Cluster.scss'
3 //Template:
4 import qes from './QuestionsEditor.scss';
5 import cx from "classnames";
6
7 <div className=\{cx(qes\["answers"\])\}\>

Images

Images will be Base64 encoded by rollup. Because this is increasing the bundle size
heavily and therefore makes the usability worse, it is recommended to host the pictures
online and set the URL in the image tag.

5.8 Development Environment
A test environment was created for the developers, where the Blobster project is added
as a submodule. The test environment provides a template dummy project, which is
automatically added to the template system. Changes in the template section will au-
tomatically trigger a rebuild from the Blobster project. Therefore rollup is added for
building the template. When the template is finished, it can be bundled with browser-
ify:

1 browserify index.js -o hoodmood2.js

Afterwards it can be uploaded with the form in figure 5.5.

5.9 Build and Deployment

5.9.1 Amazon S3
The web application Blobster is hosted on an Amazon S3 bucket. To open the applica-
tion, one can enter the URL http://www.blobster.it into the web browser.

http://www.blobster.it

5. Technical Implementation 42

Amazon Simple Storage Service (Amazon S3) is a web-based cloud storage service
designed for online backup and archiving of data. In addition, it is also possible to host
a website or web application with an static URL on a S3 bucket. Each file stored in
the bucket has his own personal ID, which is used by an application to retrieve the file.
Over a rest interface it is also possible to add and access data [24].

Chapter 6

Evaluation

In the previous chapter 5, the implementation and the system design of the prototype
have been described in more detail. The following chapter is about the evaluation of the
created prototype. The evaluation consists of the fulfillment of the requirements and a
comparison to other systems with a modular architecture. In the end, the new Blobster
web application will be compared to the old code base and it will be verified whether
the loading time has improved due to the modular structure.

6.1 Fulfillment of the Requirements
In this section, the four main requirements defined in section 4.2 will be repeated in
more detail and explained how they were accomplished.

6.1.1 Correction and Improvement of Blobster
The first requirement, essential for all of the other requirements was to fix all the
problems in the existing code base and make multiple improvements. As described in
section 5.4, all mature problems such as the intersection between the sessions, the real-
time event duplication and the positioning problem after dragging the ideas, were fixed.

Moreover, some improvements were done, figure 5.9 is showing the new cluster format
in which the ideas are visually combined. Because of the space problem coming along
with the cluster showing the ideas without hiding them and therefore using a lot more
space and multiple templates on the board, the screen extension was also a required
functionality.

6.1.2 Plugin-System and Integration into Blobster
The actual point of the master thesis project was the development of a modular archi-
tecture, where plugins can be added without significant rewrites of the main project.
Therefore the plugin system described in section 5.2.5 was successfully developed and
integrated into the Blobster project. A view, where a moderator can select templates
for his session and also a navigation bar on the left side, was added for better usability.
Dragging a template from the left bar onto the board lets a template appear in the

43

6. Evaluation 44

actual session. For the developers, an add plugin screen was designed, where they can
upload their self-developed templates to Blobster.

6.1.3 Development Environment
Section 5.8 showed that there is a complete development environment where third party
developers have a basic scaffold of a plugin with the developer version of the Blobster
project for testing purposes. Editing the plugin source code will result in a refresh of
the web applications. Therefore the plugin developers have instant feedback about how
their template is looking in the Blobster brainstorming board.

6.1.4 Sample Plugin
As a sample plugin for testing the whole system, a small quiz was developed. Dragging
the quiz template from the sidebar onto the board will result in a question editor on the
board. With a full-screen option, the moderator can switch to a view where only the
active template is shown. There he can enter a question and four answers or possibilities
to choose from. Cluster and ideas can also be dragged into the template, after starting
the quiz/voting. The participant view will change to the corresponding template voting
screen where they can answer or vote on the different options. When the quiz is done,
the result will stay on the brainstorming board.

6.2 Comparison to Other Solutions
In addition to the fulfillment of the requirements, there will also be a comparison between
other frameworks and libraries for adding modularity to web applications and other
projects with a similar system that is not reusable. Some of these projects were already
introduced in chapter 3.

6.2.1 Evaluation-System
For comparison, important requirements were defined:

• Developed for web applications?
• Is ReactJs supported?
• Third-party plugin development, can every developer add a plugin to the system?
• Add on the fly, is it possible to add plugins without compiling and reloading the

page?
• Is the integration into other Applications possible?

6.2.2 Comparison
The projects compared to the Blobster modular architecture will be split into three
types, as it can be seen in table 6.1. Plugin-system is the first type, which will only focus
on the system itself, without any additional framework for creating a web application.
The second type is frameworks, which have a plugin system as part of their application
framework including multiple functionalities. The last type are products which also

6. Evaluation 45

include a modular architecture where plugins are involved. Some of them also support
third-party plugins, but the system they use is not a standalone package. Therefore, it
cannot be reused from other applications.

W
eb

A
pp

R
ea

ct
Js

T
hi

rd
pa

rt
y

Pl
ug

in

A
dd

on
th

e
fly

In
te

gr
at

ea
bl

e

Plugin-System
Thesis Project X X X X X
react-plugin-

system X X X X X

Frameworks
Fusion.js X X X/X X X
UmiJS X X X X X

Projects
Grafana X X X X X

React Static X X X X X
Nylas Mail

Client X X X X X

Figma X X X X X
Wordpress X X X X X

Table 6.1: Overview and comparison of libraries, frameworks and projects using a mod-
ular architecture.

Plugin-System

At the time of writing, there is only one library on the market, which is comparable
to the plugin-system developed in the thesis project. The react-plugin-system1 is online
since 02/19/2019. Around this time, the thesis project was also developed and it was
not known that this system was existing or was developed at the same time. It is similar
to the thesis project, but the main focus is on the modularization of a project and its
main features in the development and not like Blobster for adding additional content
on the fly for different use-cases without changing the main web application.

1https://github.com/siemiatj/react-plugin-system

https://github.com/siemiatj/react-plugin-system

6. Evaluation 46

Framework

UmiJS2 and Fusion.js3 are frameworks which provide a pluggable enterprise react ap-
plication and also include a plugin-system.

Fusion.js is only focused on modules used for the application, such as an interna-
tionalize plugin to make it simple to provide the application in different languages.
Therefore, most of the plugins are official plugins developed by the Fusion.js team to
simplify developing and having all the basic system functionality grouped in modules.

UmiJS puts the focus not only on basic web application functionalities, but they
also give a possibility to add community plugins.

Projects

The last category are the projects which use a modular data architecture, which is not
extracted from their solution and only applicable in their environment. It is a fascinating
topic and because of the lacking solutions out there, many of these companies created
blog entries on which they talk about how they managed to develop and integrate their
plugin-system approach, which gave an initial entry into the topic.

6.2.3 Conclusion
It was a hot topic in the last year since the beginning of this thesis in October 2018.
Many projects came up, facing the same problem as the thesis project and discovered
new ways to solve this, but they did not fulfill the requirements defined for this project.
Most of the projects made a system integrated into their products, nothing which could
be reused. Also adding modules on the fly was not covered by many others. Therefore,
developing a stand-alone system was the right choice.

6.3 Loading Time
Loading time is an important topic, as it has already been described in section 2.3. It
is a big problem in single page applications, because the complete bundle is loaded at
the initial page load. Most parts of the loaded Javascript Bundle are unused, but will
increase the loading time and therefore decrease the usability, because all the users have
to wait longer until the page is fully loaded. Even though they do not even need around
50% of the code. Figure 6.1 is showing a loading time and code coverage analysis for the
initial page of the Blobster project. The bundle.js, which includes the complete source
code of the project, takes on average 273.2ms to load, as it can be seen in table 6.2.
Depending on the CPU load and network traffic. The time sounds as if it would not be
that bad in most cases but it is directly from the development server hosted by the same
machine. Loading a bundle from a server over the internet with a mobile connection can
increase this loading time up to multiple seconds as most of the participants use their
phone in the brainstorming session. By use of the google developer tools, a simulation
of such bad conditions can be done. Figure 6.2 is showing the production build from

2https://umijs.org
3https://fusionjs.com

https://umijs.org
https://fusionjs.com

6. Evaluation 47

Figure 6.1: Loading time and coverage analysis from the Google Developer tools.

Figure 6.2: Loading time simulated from a Slow 3G connection.

a server with a bad internet connection. The loading time of the bundle.js alone took
around 14 seconds and calculated that half of the bundle is unused, would result in a
time save of 7 seconds, when different modules of the web application are not loaded
at the beginning. They should be loaded only when needed. In the case of Blobster,
where the view is split up into two parts. The moderator and the participant view, they
only need to load the part which is actually used by them. Also, the plugin system is
only loading the plugin bundle when the moderator is using it, to decrease the bundle
as much as possible. Another benefit of the plugin system is when plugins used in the
brainstorming session are loaded asynchronously. They are loaded after the initial page

6. Evaluation 48

T
im

e
B

ef
or

e
1

[m
s]

T
im

e
A

ft
er

1
[m

s]

T
im

e
B

ef
or

e
2

[m
s]

T
im

e
A

ft
er

2
[m

s]

1 270 150 292 171
2 253 175 253 184
3 263 160 291 174
4 257 151 269 160
5 298 163 243 154
6 246 149 293 163
7 282 157 259 170
8 266 162 267 158
9 330 180 253 169
10 267 152 278 175
∅ 273.2 159.9 270.3 167.8

Bytes(mB) 7.3 4 7.3 4.5
Unused

Bytes(%) 43.6 38.1 41.5 37.1

Table 6.2: Overview of the measurements with(After) and without(Before) code split-
ting. Measurement number one is about the initial page, where participants can join a
session. Measurement 2 was done for the moderator screen. A MacBook Pro Retina, 15-
inch, Mid 2014 with an i7 of the 4th generation with 2.5 GHz and 16Gb ram was used as
a test machine.

load is finished and appear a little bit delayed on the board. This behavior creates a
much smoother loading, where the user is seeing the first parts loaded. This will result
in the feeling, that it did not take that long as when the user is staring at a blank
white page, waiting for all at once. After adding the route-splitting approach described
in section 2.3.2, the loading size and time was reduced by a great amount. Figure 6.3
is another test with the google dev tools. The loading time is reduced on average to
159.9ms and the total bytes have decreased considerably as well as a slight change in
the unused percentage. This is already a success as the overall bundle size nearly halved.
However, there is also more potential in splitting it up. Still, there is around 40% code
unused.

6. Evaluation 49

Figure 6.3: Loading time and coverage analysis from the Google Developer tools after
code-splitting.

Chapter 7

Final Results and Future Work

7.1 Final Results
The final result is a reusable plugin-system, which is integrated into the Blobster project.
As a proof of concept and example, there is a Quiz sample plugin added. The plugin
was developed and tested in the plugin development environment. The plugin and his
functionality can be seen in figure 7.1 and figure 7.2. The main functionalities are:

1. A question list with the option to add questions. Ideas and a cluster can be inserted
via drag and drop into the question editor.

2. The moderator voting view, which can also be expanded to full screen as shown
in figure 7.4.

3. A list of finished questions, which will stay on the brainstorming board.
4. Clicking on the finished question will show a statistic, as it can be seen in figure

7.2.
5. A participant view, where they can select their answers, shown in figure 7.3.

Figure 7.1: On the left side is the moderator view for the voting sequence. The right
hand side shows the answered questions after the quiz.

50

7. Final Results and Future Work 51

Figure 7.2: Question Editor and the statistic of the quiz.

Figure 7.3: Client screen, where the participants can vote on their device.

7.2 Challenges

7.2.1 Communication Between Moderator and Participant View
In the case of Blobster, a Template has a moderator and a participant view. These two
different views, moderators mostly on a desktop pc with a beamer and the clients with
smartphones need to communicate, without changing anything on the backend side of
the application.

7.2.2 Reusable Data
Saving data is not the main problem, but we also want to reuse it later on in other
templates, for example. Therefore we need a unique structure, which can be read by the
main project and other templates.

7.2.3 State
Templates should also be able to get the state from Redux and fire some actions or
maybe a template should have his own state. Therefore there was the need for an

7. Final Results and Future Work 52

Figure 7.4: Full screen of the moderator screen, because during the quiz, the brainstorm-
ing board is not needed.

approach, where this kind of thing has to be dynamically editable.

7.2.4 Bundle Everything Correctly
The biggest challenge overall was to include everything correctly in the bundle, created
by rollup and browserify. Therefore, multiple changes to the config of rollup had to be
done. E.g., adding some named exports because they are not correctly imported. Also,
the URL limit had to be increased because the images were not encoded correctly:

1 plugins: [
2 external(),
3 postcss({
4 modules: true
5 }),
6 url({
7 limit: 28672
8 }),
9 svgr(),

10 babel({
11 exclude: 'node_modules/**',
12 plugins: ['external-helpers']
13 }),
14 resolve(),
15 commonjs({
16 include: 'node_modules/**',
17 namedExports: {
18 'node_modules/react-is/index.js': ['isValidElementType'],
19 'node_modules/react-dnd/lib/index.js': ['DropTarget']

7. Final Results and Future Work 53

20 }
21 })
22]

7.3 Improvements and Future Developments

7.3.1 Security
The security side of this topic has been left out of the equation due to a lack of time.

7.3.2 Full Screen Application
An additional feature or improvement would be a possibility to use the Blobster project
without the brainstorming tools. Developers can evolve full-screen applications, which
only use the environment and the moderator participant pattern implemented. Blobster
provides user authentication, session management and the communication between two
parties, which could be reused for many use-cases and applications, without the need
to invest time into things like user handling and session management, which would
be working out of the box. Therefore, the developer could focus on their application,
without being worried about the boilerplate.

Appendix A

Content of the CD-ROM

Format: CD-ROM, Single Layer, ISO9660-Format

A.1 PDF-Files
Path: /

MasterThesis.pdf Master’s Thesis

A.2 Project Data

A.2.1 Blobster Backend
Path: /implementation/blobster_backend

blobster_backend.zip . Backend Project of Blobster

A.2.2 Blobster Frontend
Path: /implementation/blobster_frontend

blobster_frontend.zip . Frontend Project of Blobster

A.2.3 Blobster Plugin Environment
Path: /implementation/blobster_plugin

blobster_plugin.zip . . . Plugin Development Environment Project

A.2.4 Blobster Plugin System
Path: /implementation/blobster_plugin_system

blobster_plugin_system.zip Plugin System Project

54

A. Content of the CD-ROM 55

A.3 References
Path: /references

literature/[reference_title].pdf Files of Referenced Literature
online/[reference_title].pdf Files of Referenced Online Sources
software/[reference_title].pdf Files of Referenced Software Sources

A.4 Miscellaneous
Path: /images

*.png PNG Images
*.jpg JPG Images

References

Literature

[1] Rudolf Beger. Present-Day Corporate Communication: A Practice-Oriented,
State-of-the-Art Guide. Springer Singapore, 2018 (cit. on p. 4).

[2] Tony Buzan. The Ultimate Book of Mind Maps: Unlock Your Creativity, Boost
Your Memory, Change Your Life. Thorsons, 2006 (cit. on p. 5).

[3] Tony Buzan and Barry Buzan. The Mind Map Book. Mind set. BBC Active, 2006
(cit. on p. 5).

[4] Tony Buzan and Barry Buzan. The mind map book: How to use radiant thinking
to maximize your brain’s untapped potential. Plume New York, 1996 (cit. on p. 6).

[5] Jenny Chapman. Javascript on the Server Using Node.js and Express. Macavon
Media, 2013 (cit. on p. 31).

[6] Kristina Chodorow. MongoDB. The Definitive Guide. O’Reilly Media, Inc., 2013
(cit. on p. 31).

[7] Edward De Bono and Efrem Zimbalist. Lateral Thinking. Penguin London, UK,
1970 (cit. on p. 4).

[8] Rasmus Eneman. “Improving load time of SPAs : An evaluation of three perfor-
mance techniques”. Bachelorarbeit. Linnaeus University, Department of Computer
Science, 2016 (cit. on pp. 9, 10).

[9] Martin J Eppler. “A comparison between concept maps, mind maps, conceptual
diagrams, and visual metaphors as complementary tools for knowledge construc-
tion and sharing”. Information visualization (2006) (cit. on p. 6).

[10] A. Fedosejev. React.js Essentials. Packt Publishing, 2015 (cit. on pp. 23, 24).
[11] Dave Gray, Sunni Brown, and James Macanufo. Gamestorming: A playbook for

innovators, rulebreakers, and changemakers. O’Reilly Media, Inc., 2010 (cit. on
pp. 6–8).

[12] Evan M. Hahn. Express in Action. Writing, building, and testing Node.js applica-
tions. Manning, 2016 (cit. on p. 31).

[13] Golkar Hassan. “Groupthink principles and fundamentals in organizations”. In-
terdisciplinary journal of contemporary research in business 5.8 (2013), pp. 225–
240 (cit. on p. 5).

56

References 57

[14] Madhuri A Jadhav, Balkrishna R Sawant, and Anushree Deshmukh. “Single Page
Application using AngularJS”. International Journal of Computer Science and
Information Technologies 6.3 (2015), pp. 2876–2879 (cit. on p. 9).

[15] Kirk Knoernschild. Java application architecture: modularity patterns with exam-
ples using OSGi. Prentice Hall Press, 2012 (cit. on p. 13).

[16] Helmut Lamm and Gisela Trommsdorff. “Group versus individual performance
on tasks requiring ideational proficiency (brainstorming): A review”. European
Journal of Social Psychology 3.4 (1973), pp. 361–388 (cit. on p. 5).

[17] Ulf Larsson. Cultures of Creativity: The Centennial Exhibition of the Nobel Prize.
Archives of the Nobel Museum. Science History Publications, 2001 (cit. on p. 5).

[18] Alex Osborn. Applied Imagination-Principles and Procedures of Creative Writing.
Read Books Ltd, 2013 (cit. on p. 4).

[19] AM Vipul and Prathamesh Sonpatki. ReactJS by Example-Building Modern Web
Applications with React. Packt Publishing Ltd, 2016 (cit. on p. 24).

Software

[20] Adding New Epics Asynchronously/Lazily. url: https://github.com/redux-obser
vable/redux-observable/blob/master/docs/recipes/AddingNewEpicsAsynchronously
.md (visited on 09/05/2019) (cit. on p. 29).

[21] React DnD. url: https : / / react - dnd . github . io / react - dnd / about (visited on
09/06/2019) (cit. on p. 36).

[22] React Loadable. url: https://github.com/jamiebuilds/react- loadable (visited on
04/05/2019) (cit. on pp. 10, 11, 14).

[23] react-slot-fill. url: https : / / github . com / camwest / react - slot - fill (visited on
04/05/2019) (cit. on p. 14).

Online sources

[24] Amazon Simple Storage Service (Amazon S3). url: https://searchaws.techtarget.c
om/definition/Amazon-Simple-Storage-Service-Amazon-S3 (visited on 09/07/2019)
(cit. on p. 42).

[25] Shaun Anderson. How Fast Should A Website Load in 2019? Mar. 9, 2018. url: ht
tps://www.hobo-web.co.uk/your-website-design-should-load-in-4-seconds/ (visited
on 04/30/2019) (cit. on p. 9).

[26] Giulia Comba. How can Mind Mapping put your thoughts in order and free your
creativity? url: http://www.themindmappinglady.com/themindmappinglady-englis
h/ (visited on 09/01/2019) (cit. on p. 6).

[27] Database as a Service (DBaaS). url: https://www.techopedia.com/definition/294
31/database-as-a-service-dbaas (visited on 09/10/2019) (cit. on p. 32).

https://github.com/redux-observable/redux-observable/blob/master/docs/recipes/AddingNewEpicsAsynchronously.md
https://github.com/redux-observable/redux-observable/blob/master/docs/recipes/AddingNewEpicsAsynchronously.md
https://github.com/redux-observable/redux-observable/blob/master/docs/recipes/AddingNewEpicsAsynchronously.md
https://react-dnd.github.io/react-dnd/about
https://github.com/jamiebuilds/react-loadable
https://github.com/camwest/react-slot-fill
https://searchaws.techtarget.com/definition/Amazon-Simple-Storage-Service-Amazon-S3
https://searchaws.techtarget.com/definition/Amazon-Simple-Storage-Service-Amazon-S3
https://www.hobo-web.co.uk/your-website-design-should-load-in-4-seconds/
https://www.hobo-web.co.uk/your-website-design-should-load-in-4-seconds/
http://www.themindmappinglady.com/themindmappinglady-english/
http://www.themindmappinglady.com/themindmappinglady-english/
https://www.techopedia.com/definition/29431/database-as-a-service-dbaas
https://www.techopedia.com/definition/29431/database-as-a-service-dbaas

References 58

[28] Facebook. React; A JavaScript library for building user interfaces. url: https://r
eactjs.org (visited on 09/04/2019) (cit. on p. 24).

[29] Hamza Firoz. React.js and Front-End Development. 2018. url: https://dzone.co
m/articles/why-choose-react-for- front-end-development (visited on 09/04/2019)
(cit. on p. 24).

[30] Flemming Funch. Radiant Thinking. 1995. url: http://www.worldtrans.org/essay
/radiantthink.html (visited on 01/09/2019) (cit. on pp. 6, 7).

[31] Google. The need for mobile speed: How mobile latency impacts publisher revenue.
Sept. 1, 2016. url: https://www.thinkwithgoogle.com/intl/en-154/insights-inspirat
ion/research-data/need-mobile-speed-how-mobile-latency-impacts-publisher-revenu
e/ (visited on 04/30/2019) (cit. on p. 9).

[32] How to Use Dot Voting Effectively. url: https : / / dotmocracy . org (visited on
08/23/2019) (cit. on p. 8).

[33] Addy Osmani Jeremy Wagner. Reduce JavaScript Payloads with Code Splitting.
url: https://developers.google.com/web/fundamentals/performance/optimizing-ja
vascript/code-splitting/ (visited on 04/05/2019) (cit. on p. 10).

[34] Steve Johnson. Affinity Mapping: A Powerful Tool. May 2017. url: https://w
ww . under10playbook . com / blog / affinity - mapping - a - powerful - tool (visited on
08/27/2019) (cit. on p. 7).

[35] Aditya Modi. The Fundamentals of Redux. 2019. url: https://dzone.com/articles
/basic-fundamentals-of-redux (visited on 09/04/2019) (cit. on p. 24).

[36] Mongoose, elegant MongoDB object modeling for Node.js. url: http://mongoosej
s.com/ (visited on 09/10/2019) (cit. on p. 31).

[37] Evan Morikawa. Building Plugins for React Apps. Dec. 3, 2016. url: https://ww
w.nylas.com/blog/react-plugins/ (visited on 04/10/2019) (cit. on pp. 13, 14).

[38] Mural, think and collaborate visually, anywhere at anytime. url: https://mural.c
o (visited on 01/09/2019) (cit. on p. 13).

[39] Redux Code Splitting. May 2019. url: https://redux.js.org/recipes/code-splitting
(visited on 09/05/2019) (cit. on p. 29).

[40] Param Rengaiah. On Modular Architectures What they are and why you should
care. Feb. 25, 2014. url: https://medium.com/on-software-architecture/on-modul
ar-architectures-53ec61f88ff4 (visited on 04/07/2019) (cit. on p. 13).

[41] Ethan R. Roberts. Stuck in the Middleware With You. Aug. 2018. url: https://m
edium.com/@ethan.reid.roberts/stuck- in- the-middleware-with- you- c667acb01fc
(visited on 09/11/2019) (cit. on p. 25).

[42] Mike Wasson. ASP.NET - Single-Page Applications: Build Modern, Responsive
Web Apps with ASP.NET. Nov. 2013. url: https://msdn.microsoft.com/en-us/m
agazine/dn463786.aspx?f=255&MSPPError=-2147217396 (visited on 06/27/2019)
(cit. on p. 9).

https://reactjs.org
https://reactjs.org
https://dzone.com/articles/why-choose-react-for-front-end-development
https://dzone.com/articles/why-choose-react-for-front-end-development
http://www.worldtrans.org/essay/radiantthink.html
http://www.worldtrans.org/essay/radiantthink.html
https://www.thinkwithgoogle.com/intl/en-154/insights-inspiration/research-data/need-mobile-speed-how-mobile-latency-impacts-publisher-revenue/
https://www.thinkwithgoogle.com/intl/en-154/insights-inspiration/research-data/need-mobile-speed-how-mobile-latency-impacts-publisher-revenue/
https://www.thinkwithgoogle.com/intl/en-154/insights-inspiration/research-data/need-mobile-speed-how-mobile-latency-impacts-publisher-revenue/
https://dotmocracy.org
https://developers.google.com/web/fundamentals/performance/optimizing-javascript/code-splitting/
https://developers.google.com/web/fundamentals/performance/optimizing-javascript/code-splitting/
https://www.under10playbook.com/blog/affinity-mapping-a-powerful-tool
https://www.under10playbook.com/blog/affinity-mapping-a-powerful-tool
https://dzone.com/articles/basic-fundamentals-of-redux
https://dzone.com/articles/basic-fundamentals-of-redux
http://mongoosejs.com/
http://mongoosejs.com/
https://www.nylas.com/blog/react-plugins/
https://www.nylas.com/blog/react-plugins/
https://mural.co
https://mural.co
https://redux.js.org/recipes/code-splitting
https://medium.com/on-software-architecture/on-modular-architectures-53ec61f88ff4
https://medium.com/on-software-architecture/on-modular-architectures-53ec61f88ff4
https://medium.com/@ethan.reid.roberts/stuck-in-the-middleware-with-you-c667acb01fc
https://medium.com/@ethan.reid.roberts/stuck-in-the-middleware-with-you-c667acb01fc
https://msdn.microsoft.com/en-us/magazine/dn463786.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/dn463786.aspx?f=255&MSPPError=-2147217396

Check Final Print Size

— Check final print size! —

width = 100mm
height = 50mm

— Remove this page after printing! —

59

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Motivation
	Blobster Features Implemented
	Voting of Ideas

	Extension for the Master Project
	Situation
	Topic

	Evaluation
	Thesis Outline

	Fundamentals
	Brainstorming
	Mind Mapping

	Gamestorming
	Affinity Map
	Dot-Voting

	Single Page Application
	Code-Splitting
	Route-based Splitting
	Component-based Splitting

	Related Work
	Brainstorming
	Mural

	E-Learning
	Moodle

	Modular Architecture
	Nylas
	React-Slot-Fill

	Code-Splitting
	React Loadable

	Concept
	Initial Goal
	System Requirements
	Blobster
	Plugin-System
	Sample Plugin
	Development Environment
	Data Architecture

	Use-Case
	Moderator
	Participant
	Blobster Developer
	Plugin Developer

	System Design
	Plugin-System
	Plugin Environment
	Data Architecture

	Template-System Mockup

	Technical Implementation
	System Architecture
	Frontend
	ReactJs
	Redux
	React-DnD
	Code-Splitt
	Plugin-System
	Integration into Blobster

	Backend
	Node.js
	Express
	MongoDB
	Mongoose
	Database as a Service
	Routes for the Extensions and Plugins

	Problem with the Existing Code Base
	Local Storage
	Idea position after Dragging out of Folder/Cluster
	Post-It

	Adding Color to the Project
	Screen Extension
	Socket.io

	Real-Time-Events
	Development Environment
	Build and Deployment
	Amazon S3

	Evaluation
	Fulfillment of the Requirements
	Correction and Improvement of Blobster
	Plugin-System and Integration into Blobster
	Development Environment
	Sample Plugin

	Comparison to Other Solutions
	Evaluation-System
	Comparison
	Conclusion

	Loading Time

	Final Results and Future Work
	Final Results
	Challenges
	Communication Between Moderator and Participant View
	Reusable Data
	State
	Bundle Everything Correctly

	Improvements and Future Developments
	Security
	Full Screen Application

	Content of the CD-ROM
	PDF-Files
	Project Data
	Blobster Backend
	Blobster Frontend
	Blobster Plugin Environment
	Blobster Plugin System

	References
	Miscellaneous

	References
	Literature
	Software
	Online sources

